blob: 650012e7f96f65e0422c6b5654500654c0d124b0 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
522Global variables definitions must be initialized, may have an explicit section
523to be placed in, and may have an optional explicit alignment specified.
524
525Global variables in other translation units can also be declared, in which
526case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000527
Michael Gottesman006039c2013-01-31 05:48:48 +0000528A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000529the contents of the variable will **never** be modified (enabling better
530optimization, allowing the global data to be placed in the read-only
531section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000532initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000533variable.
534
535LLVM explicitly allows *declarations* of global variables to be marked
536constant, even if the final definition of the global is not. This
537capability can be used to enable slightly better optimization of the
538program, but requires the language definition to guarantee that
539optimizations based on the 'constantness' are valid for the translation
540units that do not include the definition.
541
542As SSA values, global variables define pointer values that are in scope
543(i.e. they dominate) all basic blocks in the program. Global variables
544always define a pointer to their "content" type because they describe a
545region of memory, and all memory objects in LLVM are accessed through
546pointers.
547
548Global variables can be marked with ``unnamed_addr`` which indicates
549that the address is not significant, only the content. Constants marked
550like this can be merged with other constants if they have the same
551initializer. Note that a constant with significant address *can* be
552merged with a ``unnamed_addr`` constant, the result being a constant
553whose address is significant.
554
555A global variable may be declared to reside in a target-specific
556numbered address space. For targets that support them, address spaces
557may affect how optimizations are performed and/or what target
558instructions are used to access the variable. The default address space
559is zero. The address space qualifier must precede any other attributes.
560
561LLVM allows an explicit section to be specified for globals. If the
562target supports it, it will emit globals to the section specified.
563
Michael Gottesmane743a302013-02-04 03:22:00 +0000564By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000565variables defined within the module are not modified from their
566initial values before the start of the global initializer. This is
567true even for variables potentially accessible from outside the
568module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000569``@llvm.used`` or dllexported variables. This assumption may be suppressed
570by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571
Sean Silvab084af42012-12-07 10:36:55 +0000572An explicit alignment may be specified for a global, which must be a
573power of 2. If not present, or if the alignment is set to zero, the
574alignment of the global is set by the target to whatever it feels
575convenient. If an explicit alignment is specified, the global is forced
576to have exactly that alignment. Targets and optimizers are not allowed
577to over-align the global if the global has an assigned section. In this
578case, the extra alignment could be observable: for example, code could
579assume that the globals are densely packed in their section and try to
580iterate over them as an array, alignment padding would break this
581iteration.
582
Nico Rieck7157bb72014-01-14 15:22:47 +0000583Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
584
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000585Variables and aliasaes can have a
586:ref:`Thread Local Storage Model <tls_model>`.
587
Nico Rieck7157bb72014-01-14 15:22:47 +0000588Syntax::
589
590 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
591 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
592 <global | constant> <Type>
593 [, section "name"] [, align <Alignment>]
594
Sean Silvab084af42012-12-07 10:36:55 +0000595For example, the following defines a global in a numbered address space
596with an initializer, section, and alignment:
597
598.. code-block:: llvm
599
600 @G = addrspace(5) constant float 1.0, section "foo", align 4
601
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000602The following example just declares a global variable
603
604.. code-block:: llvm
605
606 @G = external global i32
607
Sean Silvab084af42012-12-07 10:36:55 +0000608The following example defines a thread-local global with the
609``initialexec`` TLS model:
610
611.. code-block:: llvm
612
613 @G = thread_local(initialexec) global i32 0, align 4
614
615.. _functionstructure:
616
617Functions
618---------
619
620LLVM function definitions consist of the "``define``" keyword, an
621optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000622style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
623an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000624an optional ``unnamed_addr`` attribute, a return type, an optional
625:ref:`parameter attribute <paramattrs>` for the return type, a function
626name, a (possibly empty) argument list (each with optional :ref:`parameter
627attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
628an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000629collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
630curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000631
632LLVM function declarations consist of the "``declare``" keyword, an
633optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000634style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
635an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000636an optional ``unnamed_addr`` attribute, a return type, an optional
637:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000638name, a possibly empty list of arguments, an optional alignment, an optional
639:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000640
Bill Wendling6822ecb2013-10-27 05:09:12 +0000641A function definition contains a list of basic blocks, forming the CFG (Control
642Flow Graph) for the function. Each basic block may optionally start with a label
643(giving the basic block a symbol table entry), contains a list of instructions,
644and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
645function return). If an explicit label is not provided, a block is assigned an
646implicit numbered label, using the next value from the same counter as used for
647unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
648entry block does not have an explicit label, it will be assigned label "%0",
649then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000650
651The first basic block in a function is special in two ways: it is
652immediately executed on entrance to the function, and it is not allowed
653to have predecessor basic blocks (i.e. there can not be any branches to
654the entry block of a function). Because the block can have no
655predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
656
657LLVM allows an explicit section to be specified for functions. If the
658target supports it, it will emit functions to the section specified.
659
660An explicit alignment may be specified for a function. If not present,
661or if the alignment is set to zero, the alignment of the function is set
662by the target to whatever it feels convenient. If an explicit alignment
663is specified, the function is forced to have at least that much
664alignment. All alignments must be a power of 2.
665
666If the ``unnamed_addr`` attribute is given, the address is know to not
667be significant and two identical functions can be merged.
668
669Syntax::
670
Nico Rieck7157bb72014-01-14 15:22:47 +0000671 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000672 [cconv] [ret attrs]
673 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000674 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000675 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000676
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000677.. _langref_aliases:
678
Sean Silvab084af42012-12-07 10:36:55 +0000679Aliases
680-------
681
682Aliases act as "second name" for the aliasee value (which can be either
683function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000684Aliases may have an optional :ref:`linkage type <linkage>`, an optional
685:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
686<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000687
688Syntax::
689
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000690 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000691
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000692The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000693``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000694might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000695alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000696
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000697Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
698the aliasee.
699
700The aliasee must be a definition.
701
Rafael Espindola24a669d2014-03-27 15:26:56 +0000702Aliases are not allowed to point to aliases with linkages that can be
703overridden. Since they are only a second name, the possibility of the
704intermediate alias being overridden cannot be represented in an object file.
705
Sean Silvab084af42012-12-07 10:36:55 +0000706.. _namedmetadatastructure:
707
708Named Metadata
709--------------
710
711Named metadata is a collection of metadata. :ref:`Metadata
712nodes <metadata>` (but not metadata strings) are the only valid
713operands for a named metadata.
714
715Syntax::
716
717 ; Some unnamed metadata nodes, which are referenced by the named metadata.
718 !0 = metadata !{metadata !"zero"}
719 !1 = metadata !{metadata !"one"}
720 !2 = metadata !{metadata !"two"}
721 ; A named metadata.
722 !name = !{!0, !1, !2}
723
724.. _paramattrs:
725
726Parameter Attributes
727--------------------
728
729The return type and each parameter of a function type may have a set of
730*parameter attributes* associated with them. Parameter attributes are
731used to communicate additional information about the result or
732parameters of a function. Parameter attributes are considered to be part
733of the function, not of the function type, so functions with different
734parameter attributes can have the same function type.
735
736Parameter attributes are simple keywords that follow the type specified.
737If multiple parameter attributes are needed, they are space separated.
738For example:
739
740.. code-block:: llvm
741
742 declare i32 @printf(i8* noalias nocapture, ...)
743 declare i32 @atoi(i8 zeroext)
744 declare signext i8 @returns_signed_char()
745
746Note that any attributes for the function result (``nounwind``,
747``readonly``) come immediately after the argument list.
748
749Currently, only the following parameter attributes are defined:
750
751``zeroext``
752 This indicates to the code generator that the parameter or return
753 value should be zero-extended to the extent required by the target's
754 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
755 the caller (for a parameter) or the callee (for a return value).
756``signext``
757 This indicates to the code generator that the parameter or return
758 value should be sign-extended to the extent required by the target's
759 ABI (which is usually 32-bits) by the caller (for a parameter) or
760 the callee (for a return value).
761``inreg``
762 This indicates that this parameter or return value should be treated
763 in a special target-dependent fashion during while emitting code for
764 a function call or return (usually, by putting it in a register as
765 opposed to memory, though some targets use it to distinguish between
766 two different kinds of registers). Use of this attribute is
767 target-specific.
768``byval``
769 This indicates that the pointer parameter should really be passed by
770 value to the function. The attribute implies that a hidden copy of
771 the pointee is made between the caller and the callee, so the callee
772 is unable to modify the value in the caller. This attribute is only
773 valid on LLVM pointer arguments. It is generally used to pass
774 structs and arrays by value, but is also valid on pointers to
775 scalars. The copy is considered to belong to the caller not the
776 callee (for example, ``readonly`` functions should not write to
777 ``byval`` parameters). This is not a valid attribute for return
778 values.
779
780 The byval attribute also supports specifying an alignment with the
781 align attribute. It indicates the alignment of the stack slot to
782 form and the known alignment of the pointer specified to the call
783 site. If the alignment is not specified, then the code generator
784 makes a target-specific assumption.
785
Reid Klecknera534a382013-12-19 02:14:12 +0000786.. _attr_inalloca:
787
788``inalloca``
789
Reid Kleckner60d3a832014-01-16 22:59:24 +0000790 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000791 address of outgoing stack arguments. An ``inalloca`` argument must
792 be a pointer to stack memory produced by an ``alloca`` instruction.
793 The alloca, or argument allocation, must also be tagged with the
794 inalloca keyword. Only the past argument may have the ``inalloca``
795 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000796
Reid Kleckner436c42e2014-01-17 23:58:17 +0000797 An argument allocation may be used by a call at most once because
798 the call may deallocate it. The ``inalloca`` attribute cannot be
799 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000800 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
801 ``inalloca`` attribute also disables LLVM's implicit lowering of
802 large aggregate return values, which means that frontend authors
803 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000804
Reid Kleckner60d3a832014-01-16 22:59:24 +0000805 When the call site is reached, the argument allocation must have
806 been the most recent stack allocation that is still live, or the
807 results are undefined. It is possible to allocate additional stack
808 space after an argument allocation and before its call site, but it
809 must be cleared off with :ref:`llvm.stackrestore
810 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000811
812 See :doc:`InAlloca` for more information on how to use this
813 attribute.
814
Sean Silvab084af42012-12-07 10:36:55 +0000815``sret``
816 This indicates that the pointer parameter specifies the address of a
817 structure that is the return value of the function in the source
818 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000819 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000820 not to trap and to be properly aligned. This may only be applied to
821 the first parameter. This is not a valid attribute for return
822 values.
Sean Silva1703e702014-04-08 21:06:22 +0000823
824.. _noalias:
825
Sean Silvab084af42012-12-07 10:36:55 +0000826``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000827 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000828 the argument or return value do not alias pointer values which are
829 not *based* on it, ignoring certain "irrelevant" dependencies. For a
830 call to the parent function, dependencies between memory references
831 from before or after the call and from those during the call are
832 "irrelevant" to the ``noalias`` keyword for the arguments and return
833 value used in that call. The caller shares the responsibility with
834 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000835 details, please see the discussion of the NoAlias response in :ref:`alias
836 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000837
838 Note that this definition of ``noalias`` is intentionally similar
839 to the definition of ``restrict`` in C99 for function arguments,
840 though it is slightly weaker.
841
842 For function return values, C99's ``restrict`` is not meaningful,
843 while LLVM's ``noalias`` is.
844``nocapture``
845 This indicates that the callee does not make any copies of the
846 pointer that outlive the callee itself. This is not a valid
847 attribute for return values.
848
849.. _nest:
850
851``nest``
852 This indicates that the pointer parameter can be excised using the
853 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000854 attribute for return values and can only be applied to one parameter.
855
856``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000857 This indicates that the function always returns the argument as its return
858 value. This is an optimization hint to the code generator when generating
859 the caller, allowing tail call optimization and omission of register saves
860 and restores in some cases; it is not checked or enforced when generating
861 the callee. The parameter and the function return type must be valid
862 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
863 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000864
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000865``nonnull``
866 This indicates that the parameter or return pointer is not null. This
867 attribute may only be applied to pointer typed parameters. This is not
868 checked or enforced by LLVM, the caller must ensure that the pointer
869 passed in is non-null, or the callee must ensure that the returned pointer
870 is non-null.
871
Sean Silvab084af42012-12-07 10:36:55 +0000872.. _gc:
873
874Garbage Collector Names
875-----------------------
876
877Each function may specify a garbage collector name, which is simply a
878string:
879
880.. code-block:: llvm
881
882 define void @f() gc "name" { ... }
883
884The compiler declares the supported values of *name*. Specifying a
885collector which will cause the compiler to alter its output in order to
886support the named garbage collection algorithm.
887
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000888.. _prefixdata:
889
890Prefix Data
891-----------
892
893Prefix data is data associated with a function which the code generator
894will emit immediately before the function body. The purpose of this feature
895is to allow frontends to associate language-specific runtime metadata with
896specific functions and make it available through the function pointer while
897still allowing the function pointer to be called. To access the data for a
898given function, a program may bitcast the function pointer to a pointer to
899the constant's type. This implies that the IR symbol points to the start
900of the prefix data.
901
902To maintain the semantics of ordinary function calls, the prefix data must
903have a particular format. Specifically, it must begin with a sequence of
904bytes which decode to a sequence of machine instructions, valid for the
905module's target, which transfer control to the point immediately succeeding
906the prefix data, without performing any other visible action. This allows
907the inliner and other passes to reason about the semantics of the function
908definition without needing to reason about the prefix data. Obviously this
909makes the format of the prefix data highly target dependent.
910
Peter Collingbourne213358a2013-09-23 20:14:21 +0000911Prefix data is laid out as if it were an initializer for a global variable
912of the prefix data's type. No padding is automatically placed between the
913prefix data and the function body. If padding is required, it must be part
914of the prefix data.
915
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000916A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
917which encodes the ``nop`` instruction:
918
919.. code-block:: llvm
920
921 define void @f() prefix i8 144 { ... }
922
923Generally prefix data can be formed by encoding a relative branch instruction
924which skips the metadata, as in this example of valid prefix data for the
925x86_64 architecture, where the first two bytes encode ``jmp .+10``:
926
927.. code-block:: llvm
928
929 %0 = type <{ i8, i8, i8* }>
930
931 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
932
933A function may have prefix data but no body. This has similar semantics
934to the ``available_externally`` linkage in that the data may be used by the
935optimizers but will not be emitted in the object file.
936
Bill Wendling63b88192013-02-06 06:52:58 +0000937.. _attrgrp:
938
939Attribute Groups
940----------------
941
942Attribute groups are groups of attributes that are referenced by objects within
943the IR. They are important for keeping ``.ll`` files readable, because a lot of
944functions will use the same set of attributes. In the degenerative case of a
945``.ll`` file that corresponds to a single ``.c`` file, the single attribute
946group will capture the important command line flags used to build that file.
947
948An attribute group is a module-level object. To use an attribute group, an
949object references the attribute group's ID (e.g. ``#37``). An object may refer
950to more than one attribute group. In that situation, the attributes from the
951different groups are merged.
952
953Here is an example of attribute groups for a function that should always be
954inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
955
956.. code-block:: llvm
957
958 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000959 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000960
961 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000962 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000963
964 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
965 define void @f() #0 #1 { ... }
966
Sean Silvab084af42012-12-07 10:36:55 +0000967.. _fnattrs:
968
969Function Attributes
970-------------------
971
972Function attributes are set to communicate additional information about
973a function. Function attributes are considered to be part of the
974function, not of the function type, so functions with different function
975attributes can have the same function type.
976
977Function attributes are simple keywords that follow the type specified.
978If multiple attributes are needed, they are space separated. For
979example:
980
981.. code-block:: llvm
982
983 define void @f() noinline { ... }
984 define void @f() alwaysinline { ... }
985 define void @f() alwaysinline optsize { ... }
986 define void @f() optsize { ... }
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``alignstack(<n>)``
989 This attribute indicates that, when emitting the prologue and
990 epilogue, the backend should forcibly align the stack pointer.
991 Specify the desired alignment, which must be a power of two, in
992 parentheses.
993``alwaysinline``
994 This attribute indicates that the inliner should attempt to inline
995 this function into callers whenever possible, ignoring any active
996 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000997``builtin``
998 This indicates that the callee function at a call site should be
999 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001000 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001001 direct calls to functions which are declared with the ``nobuiltin``
1002 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001003``cold``
1004 This attribute indicates that this function is rarely called. When
1005 computing edge weights, basic blocks post-dominated by a cold
1006 function call are also considered to be cold; and, thus, given low
1007 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001008``inlinehint``
1009 This attribute indicates that the source code contained a hint that
1010 inlining this function is desirable (such as the "inline" keyword in
1011 C/C++). It is just a hint; it imposes no requirements on the
1012 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001013``minsize``
1014 This attribute suggests that optimization passes and code generator
1015 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001016 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001017 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001018``naked``
1019 This attribute disables prologue / epilogue emission for the
1020 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001021``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001022 This indicates that the callee function at a call site is not recognized as
1023 a built-in function. LLVM will retain the original call and not replace it
1024 with equivalent code based on the semantics of the built-in function, unless
1025 the call site uses the ``builtin`` attribute. This is valid at call sites
1026 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001027``noduplicate``
1028 This attribute indicates that calls to the function cannot be
1029 duplicated. A call to a ``noduplicate`` function may be moved
1030 within its parent function, but may not be duplicated within
1031 its parent function.
1032
1033 A function containing a ``noduplicate`` call may still
1034 be an inlining candidate, provided that the call is not
1035 duplicated by inlining. That implies that the function has
1036 internal linkage and only has one call site, so the original
1037 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001038``noimplicitfloat``
1039 This attributes disables implicit floating point instructions.
1040``noinline``
1041 This attribute indicates that the inliner should never inline this
1042 function in any situation. This attribute may not be used together
1043 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001044``nonlazybind``
1045 This attribute suppresses lazy symbol binding for the function. This
1046 may make calls to the function faster, at the cost of extra program
1047 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001048``noredzone``
1049 This attribute indicates that the code generator should not use a
1050 red zone, even if the target-specific ABI normally permits it.
1051``noreturn``
1052 This function attribute indicates that the function never returns
1053 normally. This produces undefined behavior at runtime if the
1054 function ever does dynamically return.
1055``nounwind``
1056 This function attribute indicates that the function never returns
1057 with an unwind or exceptional control flow. If the function does
1058 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001059``optnone``
1060 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001061 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001062 exception of interprocedural optimization passes.
1063 This attribute cannot be used together with the ``alwaysinline``
1064 attribute; this attribute is also incompatible
1065 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001066
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001067 This attribute requires the ``noinline`` attribute to be specified on
1068 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001069 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001070 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001071``optsize``
1072 This attribute suggests that optimization passes and code generator
1073 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001074 and otherwise do optimizations specifically to reduce code size as
1075 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001076``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001077 On a function, this attribute indicates that the function computes its
1078 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001079 without dereferencing any pointer arguments or otherwise accessing
1080 any mutable state (e.g. memory, control registers, etc) visible to
1081 caller functions. It does not write through any pointer arguments
1082 (including ``byval`` arguments) and never changes any state visible
1083 to callers. This means that it cannot unwind exceptions by calling
1084 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001085
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001086 On an argument, this attribute indicates that the function does not
1087 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001088 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001089``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001090 On a function, this attribute indicates that the function does not write
1091 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001092 modify any state (e.g. memory, control registers, etc) visible to
1093 caller functions. It may dereference pointer arguments and read
1094 state that may be set in the caller. A readonly function always
1095 returns the same value (or unwinds an exception identically) when
1096 called with the same set of arguments and global state. It cannot
1097 unwind an exception by calling the ``C++`` exception throwing
1098 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001099
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001100 On an argument, this attribute indicates that the function does not write
1101 through this pointer argument, even though it may write to the memory that
1102 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001103``returns_twice``
1104 This attribute indicates that this function can return twice. The C
1105 ``setjmp`` is an example of such a function. The compiler disables
1106 some optimizations (like tail calls) in the caller of these
1107 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001108``sanitize_address``
1109 This attribute indicates that AddressSanitizer checks
1110 (dynamic address safety analysis) are enabled for this function.
1111``sanitize_memory``
1112 This attribute indicates that MemorySanitizer checks (dynamic detection
1113 of accesses to uninitialized memory) are enabled for this function.
1114``sanitize_thread``
1115 This attribute indicates that ThreadSanitizer checks
1116 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001117``ssp``
1118 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001119 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001120 placed on the stack before the local variables that's checked upon
1121 return from the function to see if it has been overwritten. A
1122 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001123 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001124
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001125 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1126 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1127 - Calls to alloca() with variable sizes or constant sizes greater than
1128 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001129
Josh Magee24c7f062014-02-01 01:36:16 +00001130 Variables that are identified as requiring a protector will be arranged
1131 on the stack such that they are adjacent to the stack protector guard.
1132
Sean Silvab084af42012-12-07 10:36:55 +00001133 If a function that has an ``ssp`` attribute is inlined into a
1134 function that doesn't have an ``ssp`` attribute, then the resulting
1135 function will have an ``ssp`` attribute.
1136``sspreq``
1137 This attribute indicates that the function should *always* emit a
1138 stack smashing protector. This overrides the ``ssp`` function
1139 attribute.
1140
Josh Magee24c7f062014-02-01 01:36:16 +00001141 Variables that are identified as requiring a protector will be arranged
1142 on the stack such that they are adjacent to the stack protector guard.
1143 The specific layout rules are:
1144
1145 #. Large arrays and structures containing large arrays
1146 (``>= ssp-buffer-size``) are closest to the stack protector.
1147 #. Small arrays and structures containing small arrays
1148 (``< ssp-buffer-size``) are 2nd closest to the protector.
1149 #. Variables that have had their address taken are 3rd closest to the
1150 protector.
1151
Sean Silvab084af42012-12-07 10:36:55 +00001152 If a function that has an ``sspreq`` attribute is inlined into a
1153 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001154 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1155 an ``sspreq`` attribute.
1156``sspstrong``
1157 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001158 protector. This attribute causes a strong heuristic to be used when
1159 determining if a function needs stack protectors. The strong heuristic
1160 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001161
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001162 - Arrays of any size and type
1163 - Aggregates containing an array of any size and type.
1164 - Calls to alloca().
1165 - Local variables that have had their address taken.
1166
Josh Magee24c7f062014-02-01 01:36:16 +00001167 Variables that are identified as requiring a protector will be arranged
1168 on the stack such that they are adjacent to the stack protector guard.
1169 The specific layout rules are:
1170
1171 #. Large arrays and structures containing large arrays
1172 (``>= ssp-buffer-size``) are closest to the stack protector.
1173 #. Small arrays and structures containing small arrays
1174 (``< ssp-buffer-size``) are 2nd closest to the protector.
1175 #. Variables that have had their address taken are 3rd closest to the
1176 protector.
1177
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001178 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001179
1180 If a function that has an ``sspstrong`` attribute is inlined into a
1181 function that doesn't have an ``sspstrong`` attribute, then the
1182 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001183``uwtable``
1184 This attribute indicates that the ABI being targeted requires that
1185 an unwind table entry be produce for this function even if we can
1186 show that no exceptions passes by it. This is normally the case for
1187 the ELF x86-64 abi, but it can be disabled for some compilation
1188 units.
Sean Silvab084af42012-12-07 10:36:55 +00001189
1190.. _moduleasm:
1191
1192Module-Level Inline Assembly
1193----------------------------
1194
1195Modules may contain "module-level inline asm" blocks, which corresponds
1196to the GCC "file scope inline asm" blocks. These blocks are internally
1197concatenated by LLVM and treated as a single unit, but may be separated
1198in the ``.ll`` file if desired. The syntax is very simple:
1199
1200.. code-block:: llvm
1201
1202 module asm "inline asm code goes here"
1203 module asm "more can go here"
1204
1205The strings can contain any character by escaping non-printable
1206characters. The escape sequence used is simply "\\xx" where "xx" is the
1207two digit hex code for the number.
1208
1209The inline asm code is simply printed to the machine code .s file when
1210assembly code is generated.
1211
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001212.. _langref_datalayout:
1213
Sean Silvab084af42012-12-07 10:36:55 +00001214Data Layout
1215-----------
1216
1217A module may specify a target specific data layout string that specifies
1218how data is to be laid out in memory. The syntax for the data layout is
1219simply:
1220
1221.. code-block:: llvm
1222
1223 target datalayout = "layout specification"
1224
1225The *layout specification* consists of a list of specifications
1226separated by the minus sign character ('-'). Each specification starts
1227with a letter and may include other information after the letter to
1228define some aspect of the data layout. The specifications accepted are
1229as follows:
1230
1231``E``
1232 Specifies that the target lays out data in big-endian form. That is,
1233 the bits with the most significance have the lowest address
1234 location.
1235``e``
1236 Specifies that the target lays out data in little-endian form. That
1237 is, the bits with the least significance have the lowest address
1238 location.
1239``S<size>``
1240 Specifies the natural alignment of the stack in bits. Alignment
1241 promotion of stack variables is limited to the natural stack
1242 alignment to avoid dynamic stack realignment. The stack alignment
1243 must be a multiple of 8-bits. If omitted, the natural stack
1244 alignment defaults to "unspecified", which does not prevent any
1245 alignment promotions.
1246``p[n]:<size>:<abi>:<pref>``
1247 This specifies the *size* of a pointer and its ``<abi>`` and
1248 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001249 bits. The address space, ``n`` is optional, and if not specified,
1250 denotes the default address space 0. The value of ``n`` must be
1251 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001252``i<size>:<abi>:<pref>``
1253 This specifies the alignment for an integer type of a given bit
1254 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1255``v<size>:<abi>:<pref>``
1256 This specifies the alignment for a vector type of a given bit
1257 ``<size>``.
1258``f<size>:<abi>:<pref>``
1259 This specifies the alignment for a floating point type of a given bit
1260 ``<size>``. Only values of ``<size>`` that are supported by the target
1261 will work. 32 (float) and 64 (double) are supported on all targets; 80
1262 or 128 (different flavors of long double) are also supported on some
1263 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001264``a:<abi>:<pref>``
1265 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001266``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001267 If present, specifies that llvm names are mangled in the output. The
1268 options are
1269
1270 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1271 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1272 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1273 symbols get a ``_`` prefix.
1274 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1275 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001276``n<size1>:<size2>:<size3>...``
1277 This specifies a set of native integer widths for the target CPU in
1278 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1279 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1280 this set are considered to support most general arithmetic operations
1281 efficiently.
1282
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001283On every specification that takes a ``<abi>:<pref>``, specifying the
1284``<pref>`` alignment is optional. If omitted, the preceding ``:``
1285should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1286
Sean Silvab084af42012-12-07 10:36:55 +00001287When constructing the data layout for a given target, LLVM starts with a
1288default set of specifications which are then (possibly) overridden by
1289the specifications in the ``datalayout`` keyword. The default
1290specifications are given in this list:
1291
1292- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001293- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1294- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1295 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001296- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001297- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1298- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1299- ``i16:16:16`` - i16 is 16-bit aligned
1300- ``i32:32:32`` - i32 is 32-bit aligned
1301- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1302 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001303- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001304- ``f32:32:32`` - float is 32-bit aligned
1305- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001306- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001307- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1308- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001309- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001310
1311When LLVM is determining the alignment for a given type, it uses the
1312following rules:
1313
1314#. If the type sought is an exact match for one of the specifications,
1315 that specification is used.
1316#. If no match is found, and the type sought is an integer type, then
1317 the smallest integer type that is larger than the bitwidth of the
1318 sought type is used. If none of the specifications are larger than
1319 the bitwidth then the largest integer type is used. For example,
1320 given the default specifications above, the i7 type will use the
1321 alignment of i8 (next largest) while both i65 and i256 will use the
1322 alignment of i64 (largest specified).
1323#. If no match is found, and the type sought is a vector type, then the
1324 largest vector type that is smaller than the sought vector type will
1325 be used as a fall back. This happens because <128 x double> can be
1326 implemented in terms of 64 <2 x double>, for example.
1327
1328The function of the data layout string may not be what you expect.
1329Notably, this is not a specification from the frontend of what alignment
1330the code generator should use.
1331
1332Instead, if specified, the target data layout is required to match what
1333the ultimate *code generator* expects. This string is used by the
1334mid-level optimizers to improve code, and this only works if it matches
1335what the ultimate code generator uses. If you would like to generate IR
1336that does not embed this target-specific detail into the IR, then you
1337don't have to specify the string. This will disable some optimizations
1338that require precise layout information, but this also prevents those
1339optimizations from introducing target specificity into the IR.
1340
Bill Wendling5cc90842013-10-18 23:41:25 +00001341.. _langref_triple:
1342
1343Target Triple
1344-------------
1345
1346A module may specify a target triple string that describes the target
1347host. The syntax for the target triple is simply:
1348
1349.. code-block:: llvm
1350
1351 target triple = "x86_64-apple-macosx10.7.0"
1352
1353The *target triple* string consists of a series of identifiers delimited
1354by the minus sign character ('-'). The canonical forms are:
1355
1356::
1357
1358 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1359 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1360
1361This information is passed along to the backend so that it generates
1362code for the proper architecture. It's possible to override this on the
1363command line with the ``-mtriple`` command line option.
1364
Sean Silvab084af42012-12-07 10:36:55 +00001365.. _pointeraliasing:
1366
1367Pointer Aliasing Rules
1368----------------------
1369
1370Any memory access must be done through a pointer value associated with
1371an address range of the memory access, otherwise the behavior is
1372undefined. Pointer values are associated with address ranges according
1373to the following rules:
1374
1375- A pointer value is associated with the addresses associated with any
1376 value it is *based* on.
1377- An address of a global variable is associated with the address range
1378 of the variable's storage.
1379- The result value of an allocation instruction is associated with the
1380 address range of the allocated storage.
1381- A null pointer in the default address-space is associated with no
1382 address.
1383- An integer constant other than zero or a pointer value returned from
1384 a function not defined within LLVM may be associated with address
1385 ranges allocated through mechanisms other than those provided by
1386 LLVM. Such ranges shall not overlap with any ranges of addresses
1387 allocated by mechanisms provided by LLVM.
1388
1389A pointer value is *based* on another pointer value according to the
1390following rules:
1391
1392- A pointer value formed from a ``getelementptr`` operation is *based*
1393 on the first operand of the ``getelementptr``.
1394- The result value of a ``bitcast`` is *based* on the operand of the
1395 ``bitcast``.
1396- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1397 values that contribute (directly or indirectly) to the computation of
1398 the pointer's value.
1399- The "*based* on" relationship is transitive.
1400
1401Note that this definition of *"based"* is intentionally similar to the
1402definition of *"based"* in C99, though it is slightly weaker.
1403
1404LLVM IR does not associate types with memory. The result type of a
1405``load`` merely indicates the size and alignment of the memory from
1406which to load, as well as the interpretation of the value. The first
1407operand type of a ``store`` similarly only indicates the size and
1408alignment of the store.
1409
1410Consequently, type-based alias analysis, aka TBAA, aka
1411``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1412:ref:`Metadata <metadata>` may be used to encode additional information
1413which specialized optimization passes may use to implement type-based
1414alias analysis.
1415
1416.. _volatile:
1417
1418Volatile Memory Accesses
1419------------------------
1420
1421Certain memory accesses, such as :ref:`load <i_load>`'s,
1422:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1423marked ``volatile``. The optimizers must not change the number of
1424volatile operations or change their order of execution relative to other
1425volatile operations. The optimizers *may* change the order of volatile
1426operations relative to non-volatile operations. This is not Java's
1427"volatile" and has no cross-thread synchronization behavior.
1428
Andrew Trick89fc5a62013-01-30 21:19:35 +00001429IR-level volatile loads and stores cannot safely be optimized into
1430llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1431flagged volatile. Likewise, the backend should never split or merge
1432target-legal volatile load/store instructions.
1433
Andrew Trick7e6f9282013-01-31 00:49:39 +00001434.. admonition:: Rationale
1435
1436 Platforms may rely on volatile loads and stores of natively supported
1437 data width to be executed as single instruction. For example, in C
1438 this holds for an l-value of volatile primitive type with native
1439 hardware support, but not necessarily for aggregate types. The
1440 frontend upholds these expectations, which are intentionally
1441 unspecified in the IR. The rules above ensure that IR transformation
1442 do not violate the frontend's contract with the language.
1443
Sean Silvab084af42012-12-07 10:36:55 +00001444.. _memmodel:
1445
1446Memory Model for Concurrent Operations
1447--------------------------------------
1448
1449The LLVM IR does not define any way to start parallel threads of
1450execution or to register signal handlers. Nonetheless, there are
1451platform-specific ways to create them, and we define LLVM IR's behavior
1452in their presence. This model is inspired by the C++0x memory model.
1453
1454For a more informal introduction to this model, see the :doc:`Atomics`.
1455
1456We define a *happens-before* partial order as the least partial order
1457that
1458
1459- Is a superset of single-thread program order, and
1460- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1461 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1462 techniques, like pthread locks, thread creation, thread joining,
1463 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1464 Constraints <ordering>`).
1465
1466Note that program order does not introduce *happens-before* edges
1467between a thread and signals executing inside that thread.
1468
1469Every (defined) read operation (load instructions, memcpy, atomic
1470loads/read-modify-writes, etc.) R reads a series of bytes written by
1471(defined) write operations (store instructions, atomic
1472stores/read-modify-writes, memcpy, etc.). For the purposes of this
1473section, initialized globals are considered to have a write of the
1474initializer which is atomic and happens before any other read or write
1475of the memory in question. For each byte of a read R, R\ :sub:`byte`
1476may see any write to the same byte, except:
1477
1478- If write\ :sub:`1` happens before write\ :sub:`2`, and
1479 write\ :sub:`2` happens before R\ :sub:`byte`, then
1480 R\ :sub:`byte` does not see write\ :sub:`1`.
1481- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1482 R\ :sub:`byte` does not see write\ :sub:`3`.
1483
1484Given that definition, R\ :sub:`byte` is defined as follows:
1485
1486- If R is volatile, the result is target-dependent. (Volatile is
1487 supposed to give guarantees which can support ``sig_atomic_t`` in
1488 C/C++, and may be used for accesses to addresses which do not behave
1489 like normal memory. It does not generally provide cross-thread
1490 synchronization.)
1491- Otherwise, if there is no write to the same byte that happens before
1492 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1493- Otherwise, if R\ :sub:`byte` may see exactly one write,
1494 R\ :sub:`byte` returns the value written by that write.
1495- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1496 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1497 Memory Ordering Constraints <ordering>` section for additional
1498 constraints on how the choice is made.
1499- Otherwise R\ :sub:`byte` returns ``undef``.
1500
1501R returns the value composed of the series of bytes it read. This
1502implies that some bytes within the value may be ``undef`` **without**
1503the entire value being ``undef``. Note that this only defines the
1504semantics of the operation; it doesn't mean that targets will emit more
1505than one instruction to read the series of bytes.
1506
1507Note that in cases where none of the atomic intrinsics are used, this
1508model places only one restriction on IR transformations on top of what
1509is required for single-threaded execution: introducing a store to a byte
1510which might not otherwise be stored is not allowed in general.
1511(Specifically, in the case where another thread might write to and read
1512from an address, introducing a store can change a load that may see
1513exactly one write into a load that may see multiple writes.)
1514
1515.. _ordering:
1516
1517Atomic Memory Ordering Constraints
1518----------------------------------
1519
1520Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1521:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1522:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001523ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001524the same address they *synchronize with*. These semantics are borrowed
1525from Java and C++0x, but are somewhat more colloquial. If these
1526descriptions aren't precise enough, check those specs (see spec
1527references in the :doc:`atomics guide <Atomics>`).
1528:ref:`fence <i_fence>` instructions treat these orderings somewhat
1529differently since they don't take an address. See that instruction's
1530documentation for details.
1531
1532For a simpler introduction to the ordering constraints, see the
1533:doc:`Atomics`.
1534
1535``unordered``
1536 The set of values that can be read is governed by the happens-before
1537 partial order. A value cannot be read unless some operation wrote
1538 it. This is intended to provide a guarantee strong enough to model
1539 Java's non-volatile shared variables. This ordering cannot be
1540 specified for read-modify-write operations; it is not strong enough
1541 to make them atomic in any interesting way.
1542``monotonic``
1543 In addition to the guarantees of ``unordered``, there is a single
1544 total order for modifications by ``monotonic`` operations on each
1545 address. All modification orders must be compatible with the
1546 happens-before order. There is no guarantee that the modification
1547 orders can be combined to a global total order for the whole program
1548 (and this often will not be possible). The read in an atomic
1549 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1550 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1551 order immediately before the value it writes. If one atomic read
1552 happens before another atomic read of the same address, the later
1553 read must see the same value or a later value in the address's
1554 modification order. This disallows reordering of ``monotonic`` (or
1555 stronger) operations on the same address. If an address is written
1556 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1557 read that address repeatedly, the other threads must eventually see
1558 the write. This corresponds to the C++0x/C1x
1559 ``memory_order_relaxed``.
1560``acquire``
1561 In addition to the guarantees of ``monotonic``, a
1562 *synchronizes-with* edge may be formed with a ``release`` operation.
1563 This is intended to model C++'s ``memory_order_acquire``.
1564``release``
1565 In addition to the guarantees of ``monotonic``, if this operation
1566 writes a value which is subsequently read by an ``acquire``
1567 operation, it *synchronizes-with* that operation. (This isn't a
1568 complete description; see the C++0x definition of a release
1569 sequence.) This corresponds to the C++0x/C1x
1570 ``memory_order_release``.
1571``acq_rel`` (acquire+release)
1572 Acts as both an ``acquire`` and ``release`` operation on its
1573 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1574``seq_cst`` (sequentially consistent)
1575 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1576 operation which only reads, ``release`` for an operation which only
1577 writes), there is a global total order on all
1578 sequentially-consistent operations on all addresses, which is
1579 consistent with the *happens-before* partial order and with the
1580 modification orders of all the affected addresses. Each
1581 sequentially-consistent read sees the last preceding write to the
1582 same address in this global order. This corresponds to the C++0x/C1x
1583 ``memory_order_seq_cst`` and Java volatile.
1584
1585.. _singlethread:
1586
1587If an atomic operation is marked ``singlethread``, it only *synchronizes
1588with* or participates in modification and seq\_cst total orderings with
1589other operations running in the same thread (for example, in signal
1590handlers).
1591
1592.. _fastmath:
1593
1594Fast-Math Flags
1595---------------
1596
1597LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1598:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1599:ref:`frem <i_frem>`) have the following flags that can set to enable
1600otherwise unsafe floating point operations
1601
1602``nnan``
1603 No NaNs - Allow optimizations to assume the arguments and result are not
1604 NaN. Such optimizations are required to retain defined behavior over
1605 NaNs, but the value of the result is undefined.
1606
1607``ninf``
1608 No Infs - Allow optimizations to assume the arguments and result are not
1609 +/-Inf. Such optimizations are required to retain defined behavior over
1610 +/-Inf, but the value of the result is undefined.
1611
1612``nsz``
1613 No Signed Zeros - Allow optimizations to treat the sign of a zero
1614 argument or result as insignificant.
1615
1616``arcp``
1617 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1618 argument rather than perform division.
1619
1620``fast``
1621 Fast - Allow algebraically equivalent transformations that may
1622 dramatically change results in floating point (e.g. reassociate). This
1623 flag implies all the others.
1624
1625.. _typesystem:
1626
1627Type System
1628===========
1629
1630The LLVM type system is one of the most important features of the
1631intermediate representation. Being typed enables a number of
1632optimizations to be performed on the intermediate representation
1633directly, without having to do extra analyses on the side before the
1634transformation. A strong type system makes it easier to read the
1635generated code and enables novel analyses and transformations that are
1636not feasible to perform on normal three address code representations.
1637
Rafael Espindola08013342013-12-07 19:34:20 +00001638.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001639
Rafael Espindola08013342013-12-07 19:34:20 +00001640Void Type
1641---------
Sean Silvab084af42012-12-07 10:36:55 +00001642
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001643:Overview:
1644
Rafael Espindola08013342013-12-07 19:34:20 +00001645
1646The void type does not represent any value and has no size.
1647
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001648:Syntax:
1649
Rafael Espindola08013342013-12-07 19:34:20 +00001650
1651::
1652
1653 void
Sean Silvab084af42012-12-07 10:36:55 +00001654
1655
Rafael Espindola08013342013-12-07 19:34:20 +00001656.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola08013342013-12-07 19:34:20 +00001658Function Type
1659-------------
Sean Silvab084af42012-12-07 10:36:55 +00001660
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001661:Overview:
1662
Sean Silvab084af42012-12-07 10:36:55 +00001663
Rafael Espindola08013342013-12-07 19:34:20 +00001664The function type can be thought of as a function signature. It consists of a
1665return type and a list of formal parameter types. The return type of a function
1666type is a void type or first class type --- except for :ref:`label <t_label>`
1667and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001670
Rafael Espindola08013342013-12-07 19:34:20 +00001671::
Sean Silvab084af42012-12-07 10:36:55 +00001672
Rafael Espindola08013342013-12-07 19:34:20 +00001673 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001674
Rafael Espindola08013342013-12-07 19:34:20 +00001675...where '``<parameter list>``' is a comma-separated list of type
1676specifiers. Optionally, the parameter list may include a type ``...``, which
1677indicates that the function takes a variable number of arguments. Variable
1678argument functions can access their arguments with the :ref:`variable argument
1679handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1680except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001681
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001682:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001683
Rafael Espindola08013342013-12-07 19:34:20 +00001684+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1685| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1686+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1687| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1688+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1689| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1690+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1691| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1692+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1693
1694.. _t_firstclass:
1695
1696First Class Types
1697-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001698
1699The :ref:`first class <t_firstclass>` types are perhaps the most important.
1700Values of these types are the only ones which can be produced by
1701instructions.
1702
Rafael Espindola08013342013-12-07 19:34:20 +00001703.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001704
Rafael Espindola08013342013-12-07 19:34:20 +00001705Single Value Types
1706^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001707
Rafael Espindola08013342013-12-07 19:34:20 +00001708These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001709
1710.. _t_integer:
1711
1712Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001713""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001714
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001715:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001716
1717The integer type is a very simple type that simply specifies an
1718arbitrary bit width for the integer type desired. Any bit width from 1
1719bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1720
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001721:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001722
1723::
1724
1725 iN
1726
1727The number of bits the integer will occupy is specified by the ``N``
1728value.
1729
1730Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001731*********
Sean Silvab084af42012-12-07 10:36:55 +00001732
1733+----------------+------------------------------------------------+
1734| ``i1`` | a single-bit integer. |
1735+----------------+------------------------------------------------+
1736| ``i32`` | a 32-bit integer. |
1737+----------------+------------------------------------------------+
1738| ``i1942652`` | a really big integer of over 1 million bits. |
1739+----------------+------------------------------------------------+
1740
1741.. _t_floating:
1742
1743Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001744""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001745
1746.. list-table::
1747 :header-rows: 1
1748
1749 * - Type
1750 - Description
1751
1752 * - ``half``
1753 - 16-bit floating point value
1754
1755 * - ``float``
1756 - 32-bit floating point value
1757
1758 * - ``double``
1759 - 64-bit floating point value
1760
1761 * - ``fp128``
1762 - 128-bit floating point value (112-bit mantissa)
1763
1764 * - ``x86_fp80``
1765 - 80-bit floating point value (X87)
1766
1767 * - ``ppc_fp128``
1768 - 128-bit floating point value (two 64-bits)
1769
Reid Kleckner9a16d082014-03-05 02:41:37 +00001770X86_mmx Type
1771""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001772
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001773:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001774
Reid Kleckner9a16d082014-03-05 02:41:37 +00001775The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001776machine. The operations allowed on it are quite limited: parameters and
1777return values, load and store, and bitcast. User-specified MMX
1778instructions are represented as intrinsic or asm calls with arguments
1779and/or results of this type. There are no arrays, vectors or constants
1780of this type.
1781
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001782:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001783
1784::
1785
Reid Kleckner9a16d082014-03-05 02:41:37 +00001786 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001787
Sean Silvab084af42012-12-07 10:36:55 +00001788
Rafael Espindola08013342013-12-07 19:34:20 +00001789.. _t_pointer:
1790
1791Pointer Type
1792""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001795
Rafael Espindola08013342013-12-07 19:34:20 +00001796The pointer type is used to specify memory locations. Pointers are
1797commonly used to reference objects in memory.
1798
1799Pointer types may have an optional address space attribute defining the
1800numbered address space where the pointed-to object resides. The default
1801address space is number zero. The semantics of non-zero address spaces
1802are target-specific.
1803
1804Note that LLVM does not permit pointers to void (``void*``) nor does it
1805permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001806
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001807:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001808
1809::
1810
Rafael Espindola08013342013-12-07 19:34:20 +00001811 <type> *
1812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001814
1815+-------------------------+--------------------------------------------------------------------------------------------------------------+
1816| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1817+-------------------------+--------------------------------------------------------------------------------------------------------------+
1818| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1819+-------------------------+--------------------------------------------------------------------------------------------------------------+
1820| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1821+-------------------------+--------------------------------------------------------------------------------------------------------------+
1822
1823.. _t_vector:
1824
1825Vector Type
1826"""""""""""
1827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001829
1830A vector type is a simple derived type that represents a vector of
1831elements. Vector types are used when multiple primitive data are
1832operated in parallel using a single instruction (SIMD). A vector type
1833requires a size (number of elements) and an underlying primitive data
1834type. Vector types are considered :ref:`first class <t_firstclass>`.
1835
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001836:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001837
1838::
1839
1840 < <# elements> x <elementtype> >
1841
1842The number of elements is a constant integer value larger than 0;
1843elementtype may be any integer or floating point type, or a pointer to
1844these types. Vectors of size zero are not allowed.
1845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001846:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001847
1848+-------------------+--------------------------------------------------+
1849| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1850+-------------------+--------------------------------------------------+
1851| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1852+-------------------+--------------------------------------------------+
1853| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1854+-------------------+--------------------------------------------------+
1855| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1856+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001857
1858.. _t_label:
1859
1860Label Type
1861^^^^^^^^^^
1862
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001863:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865The label type represents code labels.
1866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001868
1869::
1870
1871 label
1872
1873.. _t_metadata:
1874
1875Metadata Type
1876^^^^^^^^^^^^^
1877
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001878:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001879
1880The metadata type represents embedded metadata. No derived types may be
1881created from metadata except for :ref:`function <t_function>` arguments.
1882
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001883:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001884
1885::
1886
1887 metadata
1888
Sean Silvab084af42012-12-07 10:36:55 +00001889.. _t_aggregate:
1890
1891Aggregate Types
1892^^^^^^^^^^^^^^^
1893
1894Aggregate Types are a subset of derived types that can contain multiple
1895member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1896aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1897aggregate types.
1898
1899.. _t_array:
1900
1901Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001902""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001903
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001904:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906The array type is a very simple derived type that arranges elements
1907sequentially in memory. The array type requires a size (number of
1908elements) and an underlying data type.
1909
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001910:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001911
1912::
1913
1914 [<# elements> x <elementtype>]
1915
1916The number of elements is a constant integer value; ``elementtype`` may
1917be any type with a size.
1918
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001919:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001920
1921+------------------+--------------------------------------+
1922| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1923+------------------+--------------------------------------+
1924| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1925+------------------+--------------------------------------+
1926| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1927+------------------+--------------------------------------+
1928
1929Here are some examples of multidimensional arrays:
1930
1931+-----------------------------+----------------------------------------------------------+
1932| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1933+-----------------------------+----------------------------------------------------------+
1934| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1935+-----------------------------+----------------------------------------------------------+
1936| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1937+-----------------------------+----------------------------------------------------------+
1938
1939There is no restriction on indexing beyond the end of the array implied
1940by a static type (though there are restrictions on indexing beyond the
1941bounds of an allocated object in some cases). This means that
1942single-dimension 'variable sized array' addressing can be implemented in
1943LLVM with a zero length array type. An implementation of 'pascal style
1944arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1945example.
1946
Sean Silvab084af42012-12-07 10:36:55 +00001947.. _t_struct:
1948
1949Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001950""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001951
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001952:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001953
1954The structure type is used to represent a collection of data members
1955together in memory. The elements of a structure may be any type that has
1956a size.
1957
1958Structures in memory are accessed using '``load``' and '``store``' by
1959getting a pointer to a field with the '``getelementptr``' instruction.
1960Structures in registers are accessed using the '``extractvalue``' and
1961'``insertvalue``' instructions.
1962
1963Structures may optionally be "packed" structures, which indicate that
1964the alignment of the struct is one byte, and that there is no padding
1965between the elements. In non-packed structs, padding between field types
1966is inserted as defined by the DataLayout string in the module, which is
1967required to match what the underlying code generator expects.
1968
1969Structures can either be "literal" or "identified". A literal structure
1970is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1971identified types are always defined at the top level with a name.
1972Literal types are uniqued by their contents and can never be recursive
1973or opaque since there is no way to write one. Identified types can be
1974recursive, can be opaqued, and are never uniqued.
1975
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001976:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978::
1979
1980 %T1 = type { <type list> } ; Identified normal struct type
1981 %T2 = type <{ <type list> }> ; Identified packed struct type
1982
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001983:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001984
1985+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1986| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1987+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001988| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001989+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1990| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1991+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1992
1993.. _t_opaque:
1994
1995Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001996""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001997
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001998:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001999
2000Opaque structure types are used to represent named structure types that
2001do not have a body specified. This corresponds (for example) to the C
2002notion of a forward declared structure.
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006::
2007
2008 %X = type opaque
2009 %52 = type opaque
2010
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002011:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002012
2013+--------------+-------------------+
2014| ``opaque`` | An opaque type. |
2015+--------------+-------------------+
2016
Sean Silva1703e702014-04-08 21:06:22 +00002017.. _constants:
2018
Sean Silvab084af42012-12-07 10:36:55 +00002019Constants
2020=========
2021
2022LLVM has several different basic types of constants. This section
2023describes them all and their syntax.
2024
2025Simple Constants
2026----------------
2027
2028**Boolean constants**
2029 The two strings '``true``' and '``false``' are both valid constants
2030 of the ``i1`` type.
2031**Integer constants**
2032 Standard integers (such as '4') are constants of the
2033 :ref:`integer <t_integer>` type. Negative numbers may be used with
2034 integer types.
2035**Floating point constants**
2036 Floating point constants use standard decimal notation (e.g.
2037 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2038 hexadecimal notation (see below). The assembler requires the exact
2039 decimal value of a floating-point constant. For example, the
2040 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2041 decimal in binary. Floating point constants must have a :ref:`floating
2042 point <t_floating>` type.
2043**Null pointer constants**
2044 The identifier '``null``' is recognized as a null pointer constant
2045 and must be of :ref:`pointer type <t_pointer>`.
2046
2047The one non-intuitive notation for constants is the hexadecimal form of
2048floating point constants. For example, the form
2049'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2050than) '``double 4.5e+15``'. The only time hexadecimal floating point
2051constants are required (and the only time that they are generated by the
2052disassembler) is when a floating point constant must be emitted but it
2053cannot be represented as a decimal floating point number in a reasonable
2054number of digits. For example, NaN's, infinities, and other special
2055values are represented in their IEEE hexadecimal format so that assembly
2056and disassembly do not cause any bits to change in the constants.
2057
2058When using the hexadecimal form, constants of types half, float, and
2059double are represented using the 16-digit form shown above (which
2060matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002061must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002062precision, respectively. Hexadecimal format is always used for long
2063double, and there are three forms of long double. The 80-bit format used
2064by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2065128-bit format used by PowerPC (two adjacent doubles) is represented by
2066``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002067represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2068will only work if they match the long double format on your target.
2069The IEEE 16-bit format (half precision) is represented by ``0xH``
2070followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2071(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002074
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002075.. _complexconstants:
2076
Sean Silvab084af42012-12-07 10:36:55 +00002077Complex Constants
2078-----------------
2079
2080Complex constants are a (potentially recursive) combination of simple
2081constants and smaller complex constants.
2082
2083**Structure constants**
2084 Structure constants are represented with notation similar to
2085 structure type definitions (a comma separated list of elements,
2086 surrounded by braces (``{}``)). For example:
2087 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2088 "``@G = external global i32``". Structure constants must have
2089 :ref:`structure type <t_struct>`, and the number and types of elements
2090 must match those specified by the type.
2091**Array constants**
2092 Array constants are represented with notation similar to array type
2093 definitions (a comma separated list of elements, surrounded by
2094 square brackets (``[]``)). For example:
2095 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2096 :ref:`array type <t_array>`, and the number and types of elements must
2097 match those specified by the type.
2098**Vector constants**
2099 Vector constants are represented with notation similar to vector
2100 type definitions (a comma separated list of elements, surrounded by
2101 less-than/greater-than's (``<>``)). For example:
2102 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2103 must have :ref:`vector type <t_vector>`, and the number and types of
2104 elements must match those specified by the type.
2105**Zero initialization**
2106 The string '``zeroinitializer``' can be used to zero initialize a
2107 value to zero of *any* type, including scalar and
2108 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2109 having to print large zero initializers (e.g. for large arrays) and
2110 is always exactly equivalent to using explicit zero initializers.
2111**Metadata node**
2112 A metadata node is a structure-like constant with :ref:`metadata
2113 type <t_metadata>`. For example:
2114 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2115 constants that are meant to be interpreted as part of the
2116 instruction stream, metadata is a place to attach additional
2117 information such as debug info.
2118
2119Global Variable and Function Addresses
2120--------------------------------------
2121
2122The addresses of :ref:`global variables <globalvars>` and
2123:ref:`functions <functionstructure>` are always implicitly valid
2124(link-time) constants. These constants are explicitly referenced when
2125the :ref:`identifier for the global <identifiers>` is used and always have
2126:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2127file:
2128
2129.. code-block:: llvm
2130
2131 @X = global i32 17
2132 @Y = global i32 42
2133 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2134
2135.. _undefvalues:
2136
2137Undefined Values
2138----------------
2139
2140The string '``undef``' can be used anywhere a constant is expected, and
2141indicates that the user of the value may receive an unspecified
2142bit-pattern. Undefined values may be of any type (other than '``label``'
2143or '``void``') and be used anywhere a constant is permitted.
2144
2145Undefined values are useful because they indicate to the compiler that
2146the program is well defined no matter what value is used. This gives the
2147compiler more freedom to optimize. Here are some examples of
2148(potentially surprising) transformations that are valid (in pseudo IR):
2149
2150.. code-block:: llvm
2151
2152 %A = add %X, undef
2153 %B = sub %X, undef
2154 %C = xor %X, undef
2155 Safe:
2156 %A = undef
2157 %B = undef
2158 %C = undef
2159
2160This is safe because all of the output bits are affected by the undef
2161bits. Any output bit can have a zero or one depending on the input bits.
2162
2163.. code-block:: llvm
2164
2165 %A = or %X, undef
2166 %B = and %X, undef
2167 Safe:
2168 %A = -1
2169 %B = 0
2170 Unsafe:
2171 %A = undef
2172 %B = undef
2173
2174These logical operations have bits that are not always affected by the
2175input. For example, if ``%X`` has a zero bit, then the output of the
2176'``and``' operation will always be a zero for that bit, no matter what
2177the corresponding bit from the '``undef``' is. As such, it is unsafe to
2178optimize or assume that the result of the '``and``' is '``undef``'.
2179However, it is safe to assume that all bits of the '``undef``' could be
21800, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2181all the bits of the '``undef``' operand to the '``or``' could be set,
2182allowing the '``or``' to be folded to -1.
2183
2184.. code-block:: llvm
2185
2186 %A = select undef, %X, %Y
2187 %B = select undef, 42, %Y
2188 %C = select %X, %Y, undef
2189 Safe:
2190 %A = %X (or %Y)
2191 %B = 42 (or %Y)
2192 %C = %Y
2193 Unsafe:
2194 %A = undef
2195 %B = undef
2196 %C = undef
2197
2198This set of examples shows that undefined '``select``' (and conditional
2199branch) conditions can go *either way*, but they have to come from one
2200of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2201both known to have a clear low bit, then ``%A`` would have to have a
2202cleared low bit. However, in the ``%C`` example, the optimizer is
2203allowed to assume that the '``undef``' operand could be the same as
2204``%Y``, allowing the whole '``select``' to be eliminated.
2205
2206.. code-block:: llvm
2207
2208 %A = xor undef, undef
2209
2210 %B = undef
2211 %C = xor %B, %B
2212
2213 %D = undef
2214 %E = icmp lt %D, 4
2215 %F = icmp gte %D, 4
2216
2217 Safe:
2218 %A = undef
2219 %B = undef
2220 %C = undef
2221 %D = undef
2222 %E = undef
2223 %F = undef
2224
2225This example points out that two '``undef``' operands are not
2226necessarily the same. This can be surprising to people (and also matches
2227C semantics) where they assume that "``X^X``" is always zero, even if
2228``X`` is undefined. This isn't true for a number of reasons, but the
2229short answer is that an '``undef``' "variable" can arbitrarily change
2230its value over its "live range". This is true because the variable
2231doesn't actually *have a live range*. Instead, the value is logically
2232read from arbitrary registers that happen to be around when needed, so
2233the value is not necessarily consistent over time. In fact, ``%A`` and
2234``%C`` need to have the same semantics or the core LLVM "replace all
2235uses with" concept would not hold.
2236
2237.. code-block:: llvm
2238
2239 %A = fdiv undef, %X
2240 %B = fdiv %X, undef
2241 Safe:
2242 %A = undef
2243 b: unreachable
2244
2245These examples show the crucial difference between an *undefined value*
2246and *undefined behavior*. An undefined value (like '``undef``') is
2247allowed to have an arbitrary bit-pattern. This means that the ``%A``
2248operation can be constant folded to '``undef``', because the '``undef``'
2249could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2250However, in the second example, we can make a more aggressive
2251assumption: because the ``undef`` is allowed to be an arbitrary value,
2252we are allowed to assume that it could be zero. Since a divide by zero
2253has *undefined behavior*, we are allowed to assume that the operation
2254does not execute at all. This allows us to delete the divide and all
2255code after it. Because the undefined operation "can't happen", the
2256optimizer can assume that it occurs in dead code.
2257
2258.. code-block:: llvm
2259
2260 a: store undef -> %X
2261 b: store %X -> undef
2262 Safe:
2263 a: <deleted>
2264 b: unreachable
2265
2266These examples reiterate the ``fdiv`` example: a store *of* an undefined
2267value can be assumed to not have any effect; we can assume that the
2268value is overwritten with bits that happen to match what was already
2269there. However, a store *to* an undefined location could clobber
2270arbitrary memory, therefore, it has undefined behavior.
2271
2272.. _poisonvalues:
2273
2274Poison Values
2275-------------
2276
2277Poison values are similar to :ref:`undef values <undefvalues>`, however
2278they also represent the fact that an instruction or constant expression
2279which cannot evoke side effects has nevertheless detected a condition
2280which results in undefined behavior.
2281
2282There is currently no way of representing a poison value in the IR; they
2283only exist when produced by operations such as :ref:`add <i_add>` with
2284the ``nsw`` flag.
2285
2286Poison value behavior is defined in terms of value *dependence*:
2287
2288- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2289- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2290 their dynamic predecessor basic block.
2291- Function arguments depend on the corresponding actual argument values
2292 in the dynamic callers of their functions.
2293- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2294 instructions that dynamically transfer control back to them.
2295- :ref:`Invoke <i_invoke>` instructions depend on the
2296 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2297 call instructions that dynamically transfer control back to them.
2298- Non-volatile loads and stores depend on the most recent stores to all
2299 of the referenced memory addresses, following the order in the IR
2300 (including loads and stores implied by intrinsics such as
2301 :ref:`@llvm.memcpy <int_memcpy>`.)
2302- An instruction with externally visible side effects depends on the
2303 most recent preceding instruction with externally visible side
2304 effects, following the order in the IR. (This includes :ref:`volatile
2305 operations <volatile>`.)
2306- An instruction *control-depends* on a :ref:`terminator
2307 instruction <terminators>` if the terminator instruction has
2308 multiple successors and the instruction is always executed when
2309 control transfers to one of the successors, and may not be executed
2310 when control is transferred to another.
2311- Additionally, an instruction also *control-depends* on a terminator
2312 instruction if the set of instructions it otherwise depends on would
2313 be different if the terminator had transferred control to a different
2314 successor.
2315- Dependence is transitive.
2316
2317Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2318with the additional affect that any instruction which has a *dependence*
2319on a poison value has undefined behavior.
2320
2321Here are some examples:
2322
2323.. code-block:: llvm
2324
2325 entry:
2326 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2327 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2328 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2329 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2330
2331 store i32 %poison, i32* @g ; Poison value stored to memory.
2332 %poison2 = load i32* @g ; Poison value loaded back from memory.
2333
2334 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2335
2336 %narrowaddr = bitcast i32* @g to i16*
2337 %wideaddr = bitcast i32* @g to i64*
2338 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2339 %poison4 = load i64* %wideaddr ; Returns a poison value.
2340
2341 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2342 br i1 %cmp, label %true, label %end ; Branch to either destination.
2343
2344 true:
2345 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2346 ; it has undefined behavior.
2347 br label %end
2348
2349 end:
2350 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2351 ; Both edges into this PHI are
2352 ; control-dependent on %cmp, so this
2353 ; always results in a poison value.
2354
2355 store volatile i32 0, i32* @g ; This would depend on the store in %true
2356 ; if %cmp is true, or the store in %entry
2357 ; otherwise, so this is undefined behavior.
2358
2359 br i1 %cmp, label %second_true, label %second_end
2360 ; The same branch again, but this time the
2361 ; true block doesn't have side effects.
2362
2363 second_true:
2364 ; No side effects!
2365 ret void
2366
2367 second_end:
2368 store volatile i32 0, i32* @g ; This time, the instruction always depends
2369 ; on the store in %end. Also, it is
2370 ; control-equivalent to %end, so this is
2371 ; well-defined (ignoring earlier undefined
2372 ; behavior in this example).
2373
2374.. _blockaddress:
2375
2376Addresses of Basic Blocks
2377-------------------------
2378
2379``blockaddress(@function, %block)``
2380
2381The '``blockaddress``' constant computes the address of the specified
2382basic block in the specified function, and always has an ``i8*`` type.
2383Taking the address of the entry block is illegal.
2384
2385This value only has defined behavior when used as an operand to the
2386':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2387against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002388undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002389no label is equal to the null pointer. This may be passed around as an
2390opaque pointer sized value as long as the bits are not inspected. This
2391allows ``ptrtoint`` and arithmetic to be performed on these values so
2392long as the original value is reconstituted before the ``indirectbr``
2393instruction.
2394
2395Finally, some targets may provide defined semantics when using the value
2396as the operand to an inline assembly, but that is target specific.
2397
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002398.. _constantexprs:
2399
Sean Silvab084af42012-12-07 10:36:55 +00002400Constant Expressions
2401--------------------
2402
2403Constant expressions are used to allow expressions involving other
2404constants to be used as constants. Constant expressions may be of any
2405:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2406that does not have side effects (e.g. load and call are not supported).
2407The following is the syntax for constant expressions:
2408
2409``trunc (CST to TYPE)``
2410 Truncate a constant to another type. The bit size of CST must be
2411 larger than the bit size of TYPE. Both types must be integers.
2412``zext (CST to TYPE)``
2413 Zero extend a constant to another type. The bit size of CST must be
2414 smaller than the bit size of TYPE. Both types must be integers.
2415``sext (CST to TYPE)``
2416 Sign extend a constant to another type. The bit size of CST must be
2417 smaller than the bit size of TYPE. Both types must be integers.
2418``fptrunc (CST to TYPE)``
2419 Truncate a floating point constant to another floating point type.
2420 The size of CST must be larger than the size of TYPE. Both types
2421 must be floating point.
2422``fpext (CST to TYPE)``
2423 Floating point extend a constant to another type. The size of CST
2424 must be smaller or equal to the size of TYPE. Both types must be
2425 floating point.
2426``fptoui (CST to TYPE)``
2427 Convert a floating point constant to the corresponding unsigned
2428 integer constant. TYPE must be a scalar or vector integer type. CST
2429 must be of scalar or vector floating point type. Both CST and TYPE
2430 must be scalars, or vectors of the same number of elements. If the
2431 value won't fit in the integer type, the results are undefined.
2432``fptosi (CST to TYPE)``
2433 Convert a floating point constant to the corresponding signed
2434 integer constant. TYPE must be a scalar or vector integer type. CST
2435 must be of scalar or vector floating point type. Both CST and TYPE
2436 must be scalars, or vectors of the same number of elements. If the
2437 value won't fit in the integer type, the results are undefined.
2438``uitofp (CST to TYPE)``
2439 Convert an unsigned integer constant to the corresponding floating
2440 point constant. TYPE must be a scalar or vector floating point type.
2441 CST must be of scalar or vector integer type. Both CST and TYPE must
2442 be scalars, or vectors of the same number of elements. If the value
2443 won't fit in the floating point type, the results are undefined.
2444``sitofp (CST to TYPE)``
2445 Convert a signed integer constant to the corresponding floating
2446 point constant. TYPE must be a scalar or vector floating point type.
2447 CST must be of scalar or vector integer type. Both CST and TYPE must
2448 be scalars, or vectors of the same number of elements. If the value
2449 won't fit in the floating point type, the results are undefined.
2450``ptrtoint (CST to TYPE)``
2451 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002452 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002453 pointer type. The ``CST`` value is zero extended, truncated, or
2454 unchanged to make it fit in ``TYPE``.
2455``inttoptr (CST to TYPE)``
2456 Convert an integer constant to a pointer constant. TYPE must be a
2457 pointer type. CST must be of integer type. The CST value is zero
2458 extended, truncated, or unchanged to make it fit in a pointer size.
2459 This one is *really* dangerous!
2460``bitcast (CST to TYPE)``
2461 Convert a constant, CST, to another TYPE. The constraints of the
2462 operands are the same as those for the :ref:`bitcast
2463 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002464``addrspacecast (CST to TYPE)``
2465 Convert a constant pointer or constant vector of pointer, CST, to another
2466 TYPE in a different address space. The constraints of the operands are the
2467 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002468``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2469 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2470 constants. As with the :ref:`getelementptr <i_getelementptr>`
2471 instruction, the index list may have zero or more indexes, which are
2472 required to make sense for the type of "CSTPTR".
2473``select (COND, VAL1, VAL2)``
2474 Perform the :ref:`select operation <i_select>` on constants.
2475``icmp COND (VAL1, VAL2)``
2476 Performs the :ref:`icmp operation <i_icmp>` on constants.
2477``fcmp COND (VAL1, VAL2)``
2478 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2479``extractelement (VAL, IDX)``
2480 Perform the :ref:`extractelement operation <i_extractelement>` on
2481 constants.
2482``insertelement (VAL, ELT, IDX)``
2483 Perform the :ref:`insertelement operation <i_insertelement>` on
2484 constants.
2485``shufflevector (VEC1, VEC2, IDXMASK)``
2486 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2487 constants.
2488``extractvalue (VAL, IDX0, IDX1, ...)``
2489 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2490 constants. The index list is interpreted in a similar manner as
2491 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2492 least one index value must be specified.
2493``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2494 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2495 The index list is interpreted in a similar manner as indices in a
2496 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2497 value must be specified.
2498``OPCODE (LHS, RHS)``
2499 Perform the specified operation of the LHS and RHS constants. OPCODE
2500 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2501 binary <bitwiseops>` operations. The constraints on operands are
2502 the same as those for the corresponding instruction (e.g. no bitwise
2503 operations on floating point values are allowed).
2504
2505Other Values
2506============
2507
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002508.. _inlineasmexprs:
2509
Sean Silvab084af42012-12-07 10:36:55 +00002510Inline Assembler Expressions
2511----------------------------
2512
2513LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2514Inline Assembly <moduleasm>`) through the use of a special value. This
2515value represents the inline assembler as a string (containing the
2516instructions to emit), a list of operand constraints (stored as a
2517string), a flag that indicates whether or not the inline asm expression
2518has side effects, and a flag indicating whether the function containing
2519the asm needs to align its stack conservatively. An example inline
2520assembler expression is:
2521
2522.. code-block:: llvm
2523
2524 i32 (i32) asm "bswap $0", "=r,r"
2525
2526Inline assembler expressions may **only** be used as the callee operand
2527of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2528Thus, typically we have:
2529
2530.. code-block:: llvm
2531
2532 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2533
2534Inline asms with side effects not visible in the constraint list must be
2535marked as having side effects. This is done through the use of the
2536'``sideeffect``' keyword, like so:
2537
2538.. code-block:: llvm
2539
2540 call void asm sideeffect "eieio", ""()
2541
2542In some cases inline asms will contain code that will not work unless
2543the stack is aligned in some way, such as calls or SSE instructions on
2544x86, yet will not contain code that does that alignment within the asm.
2545The compiler should make conservative assumptions about what the asm
2546might contain and should generate its usual stack alignment code in the
2547prologue if the '``alignstack``' keyword is present:
2548
2549.. code-block:: llvm
2550
2551 call void asm alignstack "eieio", ""()
2552
2553Inline asms also support using non-standard assembly dialects. The
2554assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2555the inline asm is using the Intel dialect. Currently, ATT and Intel are
2556the only supported dialects. An example is:
2557
2558.. code-block:: llvm
2559
2560 call void asm inteldialect "eieio", ""()
2561
2562If multiple keywords appear the '``sideeffect``' keyword must come
2563first, the '``alignstack``' keyword second and the '``inteldialect``'
2564keyword last.
2565
2566Inline Asm Metadata
2567^^^^^^^^^^^^^^^^^^^
2568
2569The call instructions that wrap inline asm nodes may have a
2570"``!srcloc``" MDNode attached to it that contains a list of constant
2571integers. If present, the code generator will use the integer as the
2572location cookie value when report errors through the ``LLVMContext``
2573error reporting mechanisms. This allows a front-end to correlate backend
2574errors that occur with inline asm back to the source code that produced
2575it. For example:
2576
2577.. code-block:: llvm
2578
2579 call void asm sideeffect "something bad", ""(), !srcloc !42
2580 ...
2581 !42 = !{ i32 1234567 }
2582
2583It is up to the front-end to make sense of the magic numbers it places
2584in the IR. If the MDNode contains multiple constants, the code generator
2585will use the one that corresponds to the line of the asm that the error
2586occurs on.
2587
2588.. _metadata:
2589
2590Metadata Nodes and Metadata Strings
2591-----------------------------------
2592
2593LLVM IR allows metadata to be attached to instructions in the program
2594that can convey extra information about the code to the optimizers and
2595code generator. One example application of metadata is source-level
2596debug information. There are two metadata primitives: strings and nodes.
2597All metadata has the ``metadata`` type and is identified in syntax by a
2598preceding exclamation point ('``!``').
2599
2600A metadata string is a string surrounded by double quotes. It can
2601contain any character by escaping non-printable characters with
2602"``\xx``" where "``xx``" is the two digit hex code. For example:
2603"``!"test\00"``".
2604
2605Metadata nodes are represented with notation similar to structure
2606constants (a comma separated list of elements, surrounded by braces and
2607preceded by an exclamation point). Metadata nodes can have any values as
2608their operand. For example:
2609
2610.. code-block:: llvm
2611
2612 !{ metadata !"test\00", i32 10}
2613
2614A :ref:`named metadata <namedmetadatastructure>` is a collection of
2615metadata nodes, which can be looked up in the module symbol table. For
2616example:
2617
2618.. code-block:: llvm
2619
2620 !foo = metadata !{!4, !3}
2621
2622Metadata can be used as function arguments. Here ``llvm.dbg.value``
2623function is using two metadata arguments:
2624
2625.. code-block:: llvm
2626
2627 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2628
2629Metadata can be attached with an instruction. Here metadata ``!21`` is
2630attached to the ``add`` instruction using the ``!dbg`` identifier:
2631
2632.. code-block:: llvm
2633
2634 %indvar.next = add i64 %indvar, 1, !dbg !21
2635
2636More information about specific metadata nodes recognized by the
2637optimizers and code generator is found below.
2638
2639'``tbaa``' Metadata
2640^^^^^^^^^^^^^^^^^^^
2641
2642In LLVM IR, memory does not have types, so LLVM's own type system is not
2643suitable for doing TBAA. Instead, metadata is added to the IR to
2644describe a type system of a higher level language. This can be used to
2645implement typical C/C++ TBAA, but it can also be used to implement
2646custom alias analysis behavior for other languages.
2647
2648The current metadata format is very simple. TBAA metadata nodes have up
2649to three fields, e.g.:
2650
2651.. code-block:: llvm
2652
2653 !0 = metadata !{ metadata !"an example type tree" }
2654 !1 = metadata !{ metadata !"int", metadata !0 }
2655 !2 = metadata !{ metadata !"float", metadata !0 }
2656 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2657
2658The first field is an identity field. It can be any value, usually a
2659metadata string, which uniquely identifies the type. The most important
2660name in the tree is the name of the root node. Two trees with different
2661root node names are entirely disjoint, even if they have leaves with
2662common names.
2663
2664The second field identifies the type's parent node in the tree, or is
2665null or omitted for a root node. A type is considered to alias all of
2666its descendants and all of its ancestors in the tree. Also, a type is
2667considered to alias all types in other trees, so that bitcode produced
2668from multiple front-ends is handled conservatively.
2669
2670If the third field is present, it's an integer which if equal to 1
2671indicates that the type is "constant" (meaning
2672``pointsToConstantMemory`` should return true; see `other useful
2673AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2674
2675'``tbaa.struct``' Metadata
2676^^^^^^^^^^^^^^^^^^^^^^^^^^
2677
2678The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2679aggregate assignment operations in C and similar languages, however it
2680is defined to copy a contiguous region of memory, which is more than
2681strictly necessary for aggregate types which contain holes due to
2682padding. Also, it doesn't contain any TBAA information about the fields
2683of the aggregate.
2684
2685``!tbaa.struct`` metadata can describe which memory subregions in a
2686memcpy are padding and what the TBAA tags of the struct are.
2687
2688The current metadata format is very simple. ``!tbaa.struct`` metadata
2689nodes are a list of operands which are in conceptual groups of three.
2690For each group of three, the first operand gives the byte offset of a
2691field in bytes, the second gives its size in bytes, and the third gives
2692its tbaa tag. e.g.:
2693
2694.. code-block:: llvm
2695
2696 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2697
2698This describes a struct with two fields. The first is at offset 0 bytes
2699with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2700and has size 4 bytes and has tbaa tag !2.
2701
2702Note that the fields need not be contiguous. In this example, there is a
27034 byte gap between the two fields. This gap represents padding which
2704does not carry useful data and need not be preserved.
2705
2706'``fpmath``' Metadata
2707^^^^^^^^^^^^^^^^^^^^^
2708
2709``fpmath`` metadata may be attached to any instruction of floating point
2710type. It can be used to express the maximum acceptable error in the
2711result of that instruction, in ULPs, thus potentially allowing the
2712compiler to use a more efficient but less accurate method of computing
2713it. ULP is defined as follows:
2714
2715 If ``x`` is a real number that lies between two finite consecutive
2716 floating-point numbers ``a`` and ``b``, without being equal to one
2717 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2718 distance between the two non-equal finite floating-point numbers
2719 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2720
2721The metadata node shall consist of a single positive floating point
2722number representing the maximum relative error, for example:
2723
2724.. code-block:: llvm
2725
2726 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2727
2728'``range``' Metadata
2729^^^^^^^^^^^^^^^^^^^^
2730
2731``range`` metadata may be attached only to loads of integer types. It
2732expresses the possible ranges the loaded value is in. The ranges are
2733represented with a flattened list of integers. The loaded value is known
2734to be in the union of the ranges defined by each consecutive pair. Each
2735pair has the following properties:
2736
2737- The type must match the type loaded by the instruction.
2738- The pair ``a,b`` represents the range ``[a,b)``.
2739- Both ``a`` and ``b`` are constants.
2740- The range is allowed to wrap.
2741- The range should not represent the full or empty set. That is,
2742 ``a!=b``.
2743
2744In addition, the pairs must be in signed order of the lower bound and
2745they must be non-contiguous.
2746
2747Examples:
2748
2749.. code-block:: llvm
2750
2751 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2752 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2753 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2754 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2755 ...
2756 !0 = metadata !{ i8 0, i8 2 }
2757 !1 = metadata !{ i8 255, i8 2 }
2758 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2759 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2760
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761'``llvm.loop``'
2762^^^^^^^^^^^^^^^
2763
2764It is sometimes useful to attach information to loop constructs. Currently,
2765loop metadata is implemented as metadata attached to the branch instruction
2766in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002767guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002768specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002769
2770The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002771itself to avoid merging it with any other identifier metadata, e.g.,
2772during module linkage or function inlining. That is, each loop should refer
2773to their own identification metadata even if they reside in separate functions.
2774The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002775constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002776
2777.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002778
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002779 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002780 !1 = metadata !{ metadata !1 }
2781
Paul Redmond5fdf8362013-05-28 20:00:34 +00002782The loop identifier metadata can be used to specify additional per-loop
2783metadata. Any operands after the first operand can be treated as user-defined
2784metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2785by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002786
Paul Redmond5fdf8362013-05-28 20:00:34 +00002787.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002788
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2790 ...
2791 !0 = metadata !{ metadata !0, metadata !1 }
2792 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002793
2794'``llvm.mem``'
2795^^^^^^^^^^^^^^^
2796
2797Metadata types used to annotate memory accesses with information helpful
2798for optimizations are prefixed with ``llvm.mem``.
2799
2800'``llvm.mem.parallel_loop_access``' Metadata
2801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2802
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002803The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2804or metadata containing a list of loop identifiers for nested loops.
2805The metadata is attached to memory accessing instructions and denotes that
2806no loop carried memory dependence exist between it and other instructions denoted
2807with the same loop identifier.
2808
2809Precisely, given two instructions ``m1`` and ``m2`` that both have the
2810``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2811set of loops associated with that metadata, respectively, then there is no loop
2812carried dependence between ``m1`` and ``m2`` for loops ``L1`` or
2813``L2``.
2814
2815As a special case, if all memory accessing instructions in a loop have
2816``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2817loop has no loop carried memory dependences and is considered to be a parallel
2818loop.
2819
2820Note that if not all memory access instructions have such metadata referring to
2821the loop, then the loop is considered not being trivially parallel. Additional
2822memory dependence analysis is required to make that determination. As a fail
2823safe mechanism, this causes loops that were originally parallel to be considered
2824sequential (if optimization passes that are unaware of the parallel semantics
2825insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002826
2827Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002828both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002829metadata types that refer to the same loop identifier metadata.
2830
2831.. code-block:: llvm
2832
2833 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002834 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002835 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002836 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002837 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002838 ...
2839 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002840
2841 for.end:
2842 ...
2843 !0 = metadata !{ metadata !0 }
2844
2845It is also possible to have nested parallel loops. In that case the
2846memory accesses refer to a list of loop identifier metadata nodes instead of
2847the loop identifier metadata node directly:
2848
2849.. code-block:: llvm
2850
2851 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002852 ...
2853 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2854 ...
2855 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002856
2857 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002858 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002859 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002860 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002861 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002862 ...
2863 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002864
2865 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002866 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002867 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002868 ...
2869 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002870
2871 outer.for.end: ; preds = %for.body
2872 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002873 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2874 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2875 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002876
Paul Redmond5fdf8362013-05-28 20:00:34 +00002877'``llvm.vectorizer``'
2878^^^^^^^^^^^^^^^^^^^^^
2879
2880Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2881vectorization parameters such as vectorization factor and unroll factor.
2882
2883``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2884loop identification metadata.
2885
2886'``llvm.vectorizer.unroll``' Metadata
2887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2888
2889This metadata instructs the loop vectorizer to unroll the specified
2890loop exactly ``N`` times.
2891
2892The first operand is the string ``llvm.vectorizer.unroll`` and the second
2893operand is an integer specifying the unroll factor. For example:
2894
2895.. code-block:: llvm
2896
2897 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2898
2899Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2900loop.
2901
2902If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2903determined automatically.
2904
2905'``llvm.vectorizer.width``' Metadata
2906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2907
Paul Redmondeccbb322013-05-30 17:22:46 +00002908This metadata sets the target width of the vectorizer to ``N``. Without
2909this metadata, the vectorizer will choose a width automatically.
2910Regardless of this metadata, the vectorizer will only vectorize loops if
2911it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002912
2913The first operand is the string ``llvm.vectorizer.width`` and the second
2914operand is an integer specifying the width. For example:
2915
2916.. code-block:: llvm
2917
2918 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2919
2920Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2921loop.
2922
2923If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2924automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002925
Sean Silvab084af42012-12-07 10:36:55 +00002926Module Flags Metadata
2927=====================
2928
2929Information about the module as a whole is difficult to convey to LLVM's
2930subsystems. The LLVM IR isn't sufficient to transmit this information.
2931The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002932this. These flags are in the form of key / value pairs --- much like a
2933dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002934look it up.
2935
2936The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2937Each triplet has the following form:
2938
2939- The first element is a *behavior* flag, which specifies the behavior
2940 when two (or more) modules are merged together, and it encounters two
2941 (or more) metadata with the same ID. The supported behaviors are
2942 described below.
2943- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002944 metadata. Each module may only have one flag entry for each unique ID (not
2945 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002946- The third element is the value of the flag.
2947
2948When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002949``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2950each unique metadata ID string, there will be exactly one entry in the merged
2951modules ``llvm.module.flags`` metadata table, and the value for that entry will
2952be determined by the merge behavior flag, as described below. The only exception
2953is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002954
2955The following behaviors are supported:
2956
2957.. list-table::
2958 :header-rows: 1
2959 :widths: 10 90
2960
2961 * - Value
2962 - Behavior
2963
2964 * - 1
2965 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002966 Emits an error if two values disagree, otherwise the resulting value
2967 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002968
2969 * - 2
2970 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002971 Emits a warning if two values disagree. The result value will be the
2972 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002973
2974 * - 3
2975 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002976 Adds a requirement that another module flag be present and have a
2977 specified value after linking is performed. The value must be a
2978 metadata pair, where the first element of the pair is the ID of the
2979 module flag to be restricted, and the second element of the pair is
2980 the value the module flag should be restricted to. This behavior can
2981 be used to restrict the allowable results (via triggering of an
2982 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002983
2984 * - 4
2985 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002986 Uses the specified value, regardless of the behavior or value of the
2987 other module. If both modules specify **Override**, but the values
2988 differ, an error will be emitted.
2989
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002990 * - 5
2991 - **Append**
2992 Appends the two values, which are required to be metadata nodes.
2993
2994 * - 6
2995 - **AppendUnique**
2996 Appends the two values, which are required to be metadata
2997 nodes. However, duplicate entries in the second list are dropped
2998 during the append operation.
2999
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003000It is an error for a particular unique flag ID to have multiple behaviors,
3001except in the case of **Require** (which adds restrictions on another metadata
3002value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003003
3004An example of module flags:
3005
3006.. code-block:: llvm
3007
3008 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3009 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3010 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3011 !3 = metadata !{ i32 3, metadata !"qux",
3012 metadata !{
3013 metadata !"foo", i32 1
3014 }
3015 }
3016 !llvm.module.flags = !{ !0, !1, !2, !3 }
3017
3018- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3019 if two or more ``!"foo"`` flags are seen is to emit an error if their
3020 values are not equal.
3021
3022- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3023 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003024 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003025
3026- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3027 behavior if two or more ``!"qux"`` flags are seen is to emit a
3028 warning if their values are not equal.
3029
3030- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3031
3032 ::
3033
3034 metadata !{ metadata !"foo", i32 1 }
3035
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003036 The behavior is to emit an error if the ``llvm.module.flags`` does not
3037 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3038 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003039
3040Objective-C Garbage Collection Module Flags Metadata
3041----------------------------------------------------
3042
3043On the Mach-O platform, Objective-C stores metadata about garbage
3044collection in a special section called "image info". The metadata
3045consists of a version number and a bitmask specifying what types of
3046garbage collection are supported (if any) by the file. If two or more
3047modules are linked together their garbage collection metadata needs to
3048be merged rather than appended together.
3049
3050The Objective-C garbage collection module flags metadata consists of the
3051following key-value pairs:
3052
3053.. list-table::
3054 :header-rows: 1
3055 :widths: 30 70
3056
3057 * - Key
3058 - Value
3059
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003060 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003061 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003062
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003063 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003064 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003065 always 0.
3066
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003067 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003068 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003069 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3070 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3071 Objective-C ABI version 2.
3072
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003073 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003074 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003075 not. Valid values are 0, for no garbage collection, and 2, for garbage
3076 collection supported.
3077
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003078 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003079 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003080 If present, its value must be 6. This flag requires that the
3081 ``Objective-C Garbage Collection`` flag have the value 2.
3082
3083Some important flag interactions:
3084
3085- If a module with ``Objective-C Garbage Collection`` set to 0 is
3086 merged with a module with ``Objective-C Garbage Collection`` set to
3087 2, then the resulting module has the
3088 ``Objective-C Garbage Collection`` flag set to 0.
3089- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3090 merged with a module with ``Objective-C GC Only`` set to 6.
3091
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003092Automatic Linker Flags Module Flags Metadata
3093--------------------------------------------
3094
3095Some targets support embedding flags to the linker inside individual object
3096files. Typically this is used in conjunction with language extensions which
3097allow source files to explicitly declare the libraries they depend on, and have
3098these automatically be transmitted to the linker via object files.
3099
3100These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003101using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003102to be ``AppendUnique``, and the value for the key is expected to be a metadata
3103node which should be a list of other metadata nodes, each of which should be a
3104list of metadata strings defining linker options.
3105
3106For example, the following metadata section specifies two separate sets of
3107linker options, presumably to link against ``libz`` and the ``Cocoa``
3108framework::
3109
Michael Liaoa7699082013-03-06 18:24:34 +00003110 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003111 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003112 metadata !{ metadata !"-lz" },
3113 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003114 !llvm.module.flags = !{ !0 }
3115
3116The metadata encoding as lists of lists of options, as opposed to a collapsed
3117list of options, is chosen so that the IR encoding can use multiple option
3118strings to specify e.g., a single library, while still having that specifier be
3119preserved as an atomic element that can be recognized by a target specific
3120assembly writer or object file emitter.
3121
3122Each individual option is required to be either a valid option for the target's
3123linker, or an option that is reserved by the target specific assembly writer or
3124object file emitter. No other aspect of these options is defined by the IR.
3125
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003126.. _intrinsicglobalvariables:
3127
Sean Silvab084af42012-12-07 10:36:55 +00003128Intrinsic Global Variables
3129==========================
3130
3131LLVM has a number of "magic" global variables that contain data that
3132affect code generation or other IR semantics. These are documented here.
3133All globals of this sort should have a section specified as
3134"``llvm.metadata``". This section and all globals that start with
3135"``llvm.``" are reserved for use by LLVM.
3136
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003137.. _gv_llvmused:
3138
Sean Silvab084af42012-12-07 10:36:55 +00003139The '``llvm.used``' Global Variable
3140-----------------------------------
3141
Rafael Espindola74f2e462013-04-22 14:58:02 +00003142The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003143:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003144pointers to named global variables, functions and aliases which may optionally
3145have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003146use of it is:
3147
3148.. code-block:: llvm
3149
3150 @X = global i8 4
3151 @Y = global i32 123
3152
3153 @llvm.used = appending global [2 x i8*] [
3154 i8* @X,
3155 i8* bitcast (i32* @Y to i8*)
3156 ], section "llvm.metadata"
3157
Rafael Espindola74f2e462013-04-22 14:58:02 +00003158If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3159and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003160symbol that it cannot see (which is why they have to be named). For example, if
3161a variable has internal linkage and no references other than that from the
3162``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3163references from inline asms and other things the compiler cannot "see", and
3164corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003165
3166On some targets, the code generator must emit a directive to the
3167assembler or object file to prevent the assembler and linker from
3168molesting the symbol.
3169
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003170.. _gv_llvmcompilerused:
3171
Sean Silvab084af42012-12-07 10:36:55 +00003172The '``llvm.compiler.used``' Global Variable
3173--------------------------------------------
3174
3175The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3176directive, except that it only prevents the compiler from touching the
3177symbol. On targets that support it, this allows an intelligent linker to
3178optimize references to the symbol without being impeded as it would be
3179by ``@llvm.used``.
3180
3181This is a rare construct that should only be used in rare circumstances,
3182and should not be exposed to source languages.
3183
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003184.. _gv_llvmglobalctors:
3185
Sean Silvab084af42012-12-07 10:36:55 +00003186The '``llvm.global_ctors``' Global Variable
3187-------------------------------------------
3188
3189.. code-block:: llvm
3190
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003191 %0 = type { i32, void ()*, i8* }
3192 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003193
3194The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003195functions, priorities, and an optional associated global or function.
3196The functions referenced by this array will be called in ascending order
3197of priority (i.e. lowest first) when the module is loaded. The order of
3198functions with the same priority is not defined.
3199
3200If the third field is present, non-null, and points to a global variable
3201or function, the initializer function will only run if the associated
3202data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003203
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003204.. _llvmglobaldtors:
3205
Sean Silvab084af42012-12-07 10:36:55 +00003206The '``llvm.global_dtors``' Global Variable
3207-------------------------------------------
3208
3209.. code-block:: llvm
3210
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003211 %0 = type { i32, void ()*, i8* }
3212 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003213
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003214The ``@llvm.global_dtors`` array contains a list of destructor
3215functions, priorities, and an optional associated global or function.
3216The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003217order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003218order of functions with the same priority is not defined.
3219
3220If the third field is present, non-null, and points to a global variable
3221or function, the destructor function will only run if the associated
3222data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003223
3224Instruction Reference
3225=====================
3226
3227The LLVM instruction set consists of several different classifications
3228of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3229instructions <binaryops>`, :ref:`bitwise binary
3230instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3231:ref:`other instructions <otherops>`.
3232
3233.. _terminators:
3234
3235Terminator Instructions
3236-----------------------
3237
3238As mentioned :ref:`previously <functionstructure>`, every basic block in a
3239program ends with a "Terminator" instruction, which indicates which
3240block should be executed after the current block is finished. These
3241terminator instructions typically yield a '``void``' value: they produce
3242control flow, not values (the one exception being the
3243':ref:`invoke <i_invoke>`' instruction).
3244
3245The terminator instructions are: ':ref:`ret <i_ret>`',
3246':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3247':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3248':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3249
3250.. _i_ret:
3251
3252'``ret``' Instruction
3253^^^^^^^^^^^^^^^^^^^^^
3254
3255Syntax:
3256"""""""
3257
3258::
3259
3260 ret <type> <value> ; Return a value from a non-void function
3261 ret void ; Return from void function
3262
3263Overview:
3264"""""""""
3265
3266The '``ret``' instruction is used to return control flow (and optionally
3267a value) from a function back to the caller.
3268
3269There are two forms of the '``ret``' instruction: one that returns a
3270value and then causes control flow, and one that just causes control
3271flow to occur.
3272
3273Arguments:
3274""""""""""
3275
3276The '``ret``' instruction optionally accepts a single argument, the
3277return value. The type of the return value must be a ':ref:`first
3278class <t_firstclass>`' type.
3279
3280A function is not :ref:`well formed <wellformed>` if it it has a non-void
3281return type and contains a '``ret``' instruction with no return value or
3282a return value with a type that does not match its type, or if it has a
3283void return type and contains a '``ret``' instruction with a return
3284value.
3285
3286Semantics:
3287""""""""""
3288
3289When the '``ret``' instruction is executed, control flow returns back to
3290the calling function's context. If the caller is a
3291":ref:`call <i_call>`" instruction, execution continues at the
3292instruction after the call. If the caller was an
3293":ref:`invoke <i_invoke>`" instruction, execution continues at the
3294beginning of the "normal" destination block. If the instruction returns
3295a value, that value shall set the call or invoke instruction's return
3296value.
3297
3298Example:
3299""""""""
3300
3301.. code-block:: llvm
3302
3303 ret i32 5 ; Return an integer value of 5
3304 ret void ; Return from a void function
3305 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3306
3307.. _i_br:
3308
3309'``br``' Instruction
3310^^^^^^^^^^^^^^^^^^^^
3311
3312Syntax:
3313"""""""
3314
3315::
3316
3317 br i1 <cond>, label <iftrue>, label <iffalse>
3318 br label <dest> ; Unconditional branch
3319
3320Overview:
3321"""""""""
3322
3323The '``br``' instruction is used to cause control flow to transfer to a
3324different basic block in the current function. There are two forms of
3325this instruction, corresponding to a conditional branch and an
3326unconditional branch.
3327
3328Arguments:
3329""""""""""
3330
3331The conditional branch form of the '``br``' instruction takes a single
3332'``i1``' value and two '``label``' values. The unconditional form of the
3333'``br``' instruction takes a single '``label``' value as a target.
3334
3335Semantics:
3336""""""""""
3337
3338Upon execution of a conditional '``br``' instruction, the '``i1``'
3339argument is evaluated. If the value is ``true``, control flows to the
3340'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3341to the '``iffalse``' ``label`` argument.
3342
3343Example:
3344""""""""
3345
3346.. code-block:: llvm
3347
3348 Test:
3349 %cond = icmp eq i32 %a, %b
3350 br i1 %cond, label %IfEqual, label %IfUnequal
3351 IfEqual:
3352 ret i32 1
3353 IfUnequal:
3354 ret i32 0
3355
3356.. _i_switch:
3357
3358'``switch``' Instruction
3359^^^^^^^^^^^^^^^^^^^^^^^^
3360
3361Syntax:
3362"""""""
3363
3364::
3365
3366 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3367
3368Overview:
3369"""""""""
3370
3371The '``switch``' instruction is used to transfer control flow to one of
3372several different places. It is a generalization of the '``br``'
3373instruction, allowing a branch to occur to one of many possible
3374destinations.
3375
3376Arguments:
3377""""""""""
3378
3379The '``switch``' instruction uses three parameters: an integer
3380comparison value '``value``', a default '``label``' destination, and an
3381array of pairs of comparison value constants and '``label``'s. The table
3382is not allowed to contain duplicate constant entries.
3383
3384Semantics:
3385""""""""""
3386
3387The ``switch`` instruction specifies a table of values and destinations.
3388When the '``switch``' instruction is executed, this table is searched
3389for the given value. If the value is found, control flow is transferred
3390to the corresponding destination; otherwise, control flow is transferred
3391to the default destination.
3392
3393Implementation:
3394"""""""""""""""
3395
3396Depending on properties of the target machine and the particular
3397``switch`` instruction, this instruction may be code generated in
3398different ways. For example, it could be generated as a series of
3399chained conditional branches or with a lookup table.
3400
3401Example:
3402""""""""
3403
3404.. code-block:: llvm
3405
3406 ; Emulate a conditional br instruction
3407 %Val = zext i1 %value to i32
3408 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3409
3410 ; Emulate an unconditional br instruction
3411 switch i32 0, label %dest [ ]
3412
3413 ; Implement a jump table:
3414 switch i32 %val, label %otherwise [ i32 0, label %onzero
3415 i32 1, label %onone
3416 i32 2, label %ontwo ]
3417
3418.. _i_indirectbr:
3419
3420'``indirectbr``' Instruction
3421^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3422
3423Syntax:
3424"""""""
3425
3426::
3427
3428 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3429
3430Overview:
3431"""""""""
3432
3433The '``indirectbr``' instruction implements an indirect branch to a
3434label within the current function, whose address is specified by
3435"``address``". Address must be derived from a
3436:ref:`blockaddress <blockaddress>` constant.
3437
3438Arguments:
3439""""""""""
3440
3441The '``address``' argument is the address of the label to jump to. The
3442rest of the arguments indicate the full set of possible destinations
3443that the address may point to. Blocks are allowed to occur multiple
3444times in the destination list, though this isn't particularly useful.
3445
3446This destination list is required so that dataflow analysis has an
3447accurate understanding of the CFG.
3448
3449Semantics:
3450""""""""""
3451
3452Control transfers to the block specified in the address argument. All
3453possible destination blocks must be listed in the label list, otherwise
3454this instruction has undefined behavior. This implies that jumps to
3455labels defined in other functions have undefined behavior as well.
3456
3457Implementation:
3458"""""""""""""""
3459
3460This is typically implemented with a jump through a register.
3461
3462Example:
3463""""""""
3464
3465.. code-block:: llvm
3466
3467 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3468
3469.. _i_invoke:
3470
3471'``invoke``' Instruction
3472^^^^^^^^^^^^^^^^^^^^^^^^
3473
3474Syntax:
3475"""""""
3476
3477::
3478
3479 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3480 to label <normal label> unwind label <exception label>
3481
3482Overview:
3483"""""""""
3484
3485The '``invoke``' instruction causes control to transfer to a specified
3486function, with the possibility of control flow transfer to either the
3487'``normal``' label or the '``exception``' label. If the callee function
3488returns with the "``ret``" instruction, control flow will return to the
3489"normal" label. If the callee (or any indirect callees) returns via the
3490":ref:`resume <i_resume>`" instruction or other exception handling
3491mechanism, control is interrupted and continued at the dynamically
3492nearest "exception" label.
3493
3494The '``exception``' label is a `landing
3495pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3496'``exception``' label is required to have the
3497":ref:`landingpad <i_landingpad>`" instruction, which contains the
3498information about the behavior of the program after unwinding happens,
3499as its first non-PHI instruction. The restrictions on the
3500"``landingpad``" instruction's tightly couples it to the "``invoke``"
3501instruction, so that the important information contained within the
3502"``landingpad``" instruction can't be lost through normal code motion.
3503
3504Arguments:
3505""""""""""
3506
3507This instruction requires several arguments:
3508
3509#. The optional "cconv" marker indicates which :ref:`calling
3510 convention <callingconv>` the call should use. If none is
3511 specified, the call defaults to using C calling conventions.
3512#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3513 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3514 are valid here.
3515#. '``ptr to function ty``': shall be the signature of the pointer to
3516 function value being invoked. In most cases, this is a direct
3517 function invocation, but indirect ``invoke``'s are just as possible,
3518 branching off an arbitrary pointer to function value.
3519#. '``function ptr val``': An LLVM value containing a pointer to a
3520 function to be invoked.
3521#. '``function args``': argument list whose types match the function
3522 signature argument types and parameter attributes. All arguments must
3523 be of :ref:`first class <t_firstclass>` type. If the function signature
3524 indicates the function accepts a variable number of arguments, the
3525 extra arguments can be specified.
3526#. '``normal label``': the label reached when the called function
3527 executes a '``ret``' instruction.
3528#. '``exception label``': the label reached when a callee returns via
3529 the :ref:`resume <i_resume>` instruction or other exception handling
3530 mechanism.
3531#. The optional :ref:`function attributes <fnattrs>` list. Only
3532 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3533 attributes are valid here.
3534
3535Semantics:
3536""""""""""
3537
3538This instruction is designed to operate as a standard '``call``'
3539instruction in most regards. The primary difference is that it
3540establishes an association with a label, which is used by the runtime
3541library to unwind the stack.
3542
3543This instruction is used in languages with destructors to ensure that
3544proper cleanup is performed in the case of either a ``longjmp`` or a
3545thrown exception. Additionally, this is important for implementation of
3546'``catch``' clauses in high-level languages that support them.
3547
3548For the purposes of the SSA form, the definition of the value returned
3549by the '``invoke``' instruction is deemed to occur on the edge from the
3550current block to the "normal" label. If the callee unwinds then no
3551return value is available.
3552
3553Example:
3554""""""""
3555
3556.. code-block:: llvm
3557
3558 %retval = invoke i32 @Test(i32 15) to label %Continue
3559 unwind label %TestCleanup ; {i32}:retval set
3560 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3561 unwind label %TestCleanup ; {i32}:retval set
3562
3563.. _i_resume:
3564
3565'``resume``' Instruction
3566^^^^^^^^^^^^^^^^^^^^^^^^
3567
3568Syntax:
3569"""""""
3570
3571::
3572
3573 resume <type> <value>
3574
3575Overview:
3576"""""""""
3577
3578The '``resume``' instruction is a terminator instruction that has no
3579successors.
3580
3581Arguments:
3582""""""""""
3583
3584The '``resume``' instruction requires one argument, which must have the
3585same type as the result of any '``landingpad``' instruction in the same
3586function.
3587
3588Semantics:
3589""""""""""
3590
3591The '``resume``' instruction resumes propagation of an existing
3592(in-flight) exception whose unwinding was interrupted with a
3593:ref:`landingpad <i_landingpad>` instruction.
3594
3595Example:
3596""""""""
3597
3598.. code-block:: llvm
3599
3600 resume { i8*, i32 } %exn
3601
3602.. _i_unreachable:
3603
3604'``unreachable``' Instruction
3605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3606
3607Syntax:
3608"""""""
3609
3610::
3611
3612 unreachable
3613
3614Overview:
3615"""""""""
3616
3617The '``unreachable``' instruction has no defined semantics. This
3618instruction is used to inform the optimizer that a particular portion of
3619the code is not reachable. This can be used to indicate that the code
3620after a no-return function cannot be reached, and other facts.
3621
3622Semantics:
3623""""""""""
3624
3625The '``unreachable``' instruction has no defined semantics.
3626
3627.. _binaryops:
3628
3629Binary Operations
3630-----------------
3631
3632Binary operators are used to do most of the computation in a program.
3633They require two operands of the same type, execute an operation on
3634them, and produce a single value. The operands might represent multiple
3635data, as is the case with the :ref:`vector <t_vector>` data type. The
3636result value has the same type as its operands.
3637
3638There are several different binary operators:
3639
3640.. _i_add:
3641
3642'``add``' Instruction
3643^^^^^^^^^^^^^^^^^^^^^
3644
3645Syntax:
3646"""""""
3647
3648::
3649
3650 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3651 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3652 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3653 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3654
3655Overview:
3656"""""""""
3657
3658The '``add``' instruction returns the sum of its two operands.
3659
3660Arguments:
3661""""""""""
3662
3663The two arguments to the '``add``' instruction must be
3664:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3665arguments must have identical types.
3666
3667Semantics:
3668""""""""""
3669
3670The value produced is the integer sum of the two operands.
3671
3672If the sum has unsigned overflow, the result returned is the
3673mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3674the result.
3675
3676Because LLVM integers use a two's complement representation, this
3677instruction is appropriate for both signed and unsigned integers.
3678
3679``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3680respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3681result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3682unsigned and/or signed overflow, respectively, occurs.
3683
3684Example:
3685""""""""
3686
3687.. code-block:: llvm
3688
3689 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3690
3691.. _i_fadd:
3692
3693'``fadd``' Instruction
3694^^^^^^^^^^^^^^^^^^^^^^
3695
3696Syntax:
3697"""""""
3698
3699::
3700
3701 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3702
3703Overview:
3704"""""""""
3705
3706The '``fadd``' instruction returns the sum of its two operands.
3707
3708Arguments:
3709""""""""""
3710
3711The two arguments to the '``fadd``' instruction must be :ref:`floating
3712point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3713Both arguments must have identical types.
3714
3715Semantics:
3716""""""""""
3717
3718The value produced is the floating point sum of the two operands. This
3719instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3720which are optimization hints to enable otherwise unsafe floating point
3721optimizations:
3722
3723Example:
3724""""""""
3725
3726.. code-block:: llvm
3727
3728 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3729
3730'``sub``' Instruction
3731^^^^^^^^^^^^^^^^^^^^^
3732
3733Syntax:
3734"""""""
3735
3736::
3737
3738 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3739 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3740 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3741 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3742
3743Overview:
3744"""""""""
3745
3746The '``sub``' instruction returns the difference of its two operands.
3747
3748Note that the '``sub``' instruction is used to represent the '``neg``'
3749instruction present in most other intermediate representations.
3750
3751Arguments:
3752""""""""""
3753
3754The two arguments to the '``sub``' instruction must be
3755:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3756arguments must have identical types.
3757
3758Semantics:
3759""""""""""
3760
3761The value produced is the integer difference of the two operands.
3762
3763If the difference has unsigned overflow, the result returned is the
3764mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3765the result.
3766
3767Because LLVM integers use a two's complement representation, this
3768instruction is appropriate for both signed and unsigned integers.
3769
3770``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3771respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3772result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3773unsigned and/or signed overflow, respectively, occurs.
3774
3775Example:
3776""""""""
3777
3778.. code-block:: llvm
3779
3780 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3781 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3782
3783.. _i_fsub:
3784
3785'``fsub``' Instruction
3786^^^^^^^^^^^^^^^^^^^^^^
3787
3788Syntax:
3789"""""""
3790
3791::
3792
3793 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3794
3795Overview:
3796"""""""""
3797
3798The '``fsub``' instruction returns the difference of its two operands.
3799
3800Note that the '``fsub``' instruction is used to represent the '``fneg``'
3801instruction present in most other intermediate representations.
3802
3803Arguments:
3804""""""""""
3805
3806The two arguments to the '``fsub``' instruction must be :ref:`floating
3807point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3808Both arguments must have identical types.
3809
3810Semantics:
3811""""""""""
3812
3813The value produced is the floating point difference of the two operands.
3814This instruction can also take any number of :ref:`fast-math
3815flags <fastmath>`, which are optimization hints to enable otherwise
3816unsafe floating point optimizations:
3817
3818Example:
3819""""""""
3820
3821.. code-block:: llvm
3822
3823 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3824 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3825
3826'``mul``' Instruction
3827^^^^^^^^^^^^^^^^^^^^^
3828
3829Syntax:
3830"""""""
3831
3832::
3833
3834 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3835 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3836 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3837 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3838
3839Overview:
3840"""""""""
3841
3842The '``mul``' instruction returns the product of its two operands.
3843
3844Arguments:
3845""""""""""
3846
3847The two arguments to the '``mul``' instruction must be
3848:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3849arguments must have identical types.
3850
3851Semantics:
3852""""""""""
3853
3854The value produced is the integer product of the two operands.
3855
3856If the result of the multiplication has unsigned overflow, the result
3857returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3858bit width of the result.
3859
3860Because LLVM integers use a two's complement representation, and the
3861result is the same width as the operands, this instruction returns the
3862correct result for both signed and unsigned integers. If a full product
3863(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3864sign-extended or zero-extended as appropriate to the width of the full
3865product.
3866
3867``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3868respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3869result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3870unsigned and/or signed overflow, respectively, occurs.
3871
3872Example:
3873""""""""
3874
3875.. code-block:: llvm
3876
3877 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3878
3879.. _i_fmul:
3880
3881'``fmul``' Instruction
3882^^^^^^^^^^^^^^^^^^^^^^
3883
3884Syntax:
3885"""""""
3886
3887::
3888
3889 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3890
3891Overview:
3892"""""""""
3893
3894The '``fmul``' instruction returns the product of its two operands.
3895
3896Arguments:
3897""""""""""
3898
3899The two arguments to the '``fmul``' instruction must be :ref:`floating
3900point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3901Both arguments must have identical types.
3902
3903Semantics:
3904""""""""""
3905
3906The value produced is the floating point product of the two operands.
3907This instruction can also take any number of :ref:`fast-math
3908flags <fastmath>`, which are optimization hints to enable otherwise
3909unsafe floating point optimizations:
3910
3911Example:
3912""""""""
3913
3914.. code-block:: llvm
3915
3916 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3917
3918'``udiv``' Instruction
3919^^^^^^^^^^^^^^^^^^^^^^
3920
3921Syntax:
3922"""""""
3923
3924::
3925
3926 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3927 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3928
3929Overview:
3930"""""""""
3931
3932The '``udiv``' instruction returns the quotient of its two operands.
3933
3934Arguments:
3935""""""""""
3936
3937The two arguments to the '``udiv``' instruction must be
3938:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3939arguments must have identical types.
3940
3941Semantics:
3942""""""""""
3943
3944The value produced is the unsigned integer quotient of the two operands.
3945
3946Note that unsigned integer division and signed integer division are
3947distinct operations; for signed integer division, use '``sdiv``'.
3948
3949Division by zero leads to undefined behavior.
3950
3951If the ``exact`` keyword is present, the result value of the ``udiv`` is
3952a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3953such, "((a udiv exact b) mul b) == a").
3954
3955Example:
3956""""""""
3957
3958.. code-block:: llvm
3959
3960 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3961
3962'``sdiv``' Instruction
3963^^^^^^^^^^^^^^^^^^^^^^
3964
3965Syntax:
3966"""""""
3967
3968::
3969
3970 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3971 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3972
3973Overview:
3974"""""""""
3975
3976The '``sdiv``' instruction returns the quotient of its two operands.
3977
3978Arguments:
3979""""""""""
3980
3981The two arguments to the '``sdiv``' instruction must be
3982:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3983arguments must have identical types.
3984
3985Semantics:
3986""""""""""
3987
3988The value produced is the signed integer quotient of the two operands
3989rounded towards zero.
3990
3991Note that signed integer division and unsigned integer division are
3992distinct operations; for unsigned integer division, use '``udiv``'.
3993
3994Division by zero leads to undefined behavior. Overflow also leads to
3995undefined behavior; this is a rare case, but can occur, for example, by
3996doing a 32-bit division of -2147483648 by -1.
3997
3998If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3999a :ref:`poison value <poisonvalues>` if the result would be rounded.
4000
4001Example:
4002""""""""
4003
4004.. code-block:: llvm
4005
4006 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
4007
4008.. _i_fdiv:
4009
4010'``fdiv``' Instruction
4011^^^^^^^^^^^^^^^^^^^^^^
4012
4013Syntax:
4014"""""""
4015
4016::
4017
4018 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4019
4020Overview:
4021"""""""""
4022
4023The '``fdiv``' instruction returns the quotient of its two operands.
4024
4025Arguments:
4026""""""""""
4027
4028The two arguments to the '``fdiv``' instruction must be :ref:`floating
4029point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4030Both arguments must have identical types.
4031
4032Semantics:
4033""""""""""
4034
4035The value produced is the floating point quotient of the two operands.
4036This instruction can also take any number of :ref:`fast-math
4037flags <fastmath>`, which are optimization hints to enable otherwise
4038unsafe floating point optimizations:
4039
4040Example:
4041""""""""
4042
4043.. code-block:: llvm
4044
4045 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4046
4047'``urem``' Instruction
4048^^^^^^^^^^^^^^^^^^^^^^
4049
4050Syntax:
4051"""""""
4052
4053::
4054
4055 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4056
4057Overview:
4058"""""""""
4059
4060The '``urem``' instruction returns the remainder from the unsigned
4061division of its two arguments.
4062
4063Arguments:
4064""""""""""
4065
4066The two arguments to the '``urem``' instruction must be
4067:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4068arguments must have identical types.
4069
4070Semantics:
4071""""""""""
4072
4073This instruction returns the unsigned integer *remainder* of a division.
4074This instruction always performs an unsigned division to get the
4075remainder.
4076
4077Note that unsigned integer remainder and signed integer remainder are
4078distinct operations; for signed integer remainder, use '``srem``'.
4079
4080Taking the remainder of a division by zero leads to undefined behavior.
4081
4082Example:
4083""""""""
4084
4085.. code-block:: llvm
4086
4087 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4088
4089'``srem``' Instruction
4090^^^^^^^^^^^^^^^^^^^^^^
4091
4092Syntax:
4093"""""""
4094
4095::
4096
4097 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4098
4099Overview:
4100"""""""""
4101
4102The '``srem``' instruction returns the remainder from the signed
4103division of its two operands. This instruction can also take
4104:ref:`vector <t_vector>` versions of the values in which case the elements
4105must be integers.
4106
4107Arguments:
4108""""""""""
4109
4110The two arguments to the '``srem``' instruction must be
4111:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4112arguments must have identical types.
4113
4114Semantics:
4115""""""""""
4116
4117This instruction returns the *remainder* of a division (where the result
4118is either zero or has the same sign as the dividend, ``op1``), not the
4119*modulo* operator (where the result is either zero or has the same sign
4120as the divisor, ``op2``) of a value. For more information about the
4121difference, see `The Math
4122Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4123table of how this is implemented in various languages, please see
4124`Wikipedia: modulo
4125operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4126
4127Note that signed integer remainder and unsigned integer remainder are
4128distinct operations; for unsigned integer remainder, use '``urem``'.
4129
4130Taking the remainder of a division by zero leads to undefined behavior.
4131Overflow also leads to undefined behavior; this is a rare case, but can
4132occur, for example, by taking the remainder of a 32-bit division of
4133-2147483648 by -1. (The remainder doesn't actually overflow, but this
4134rule lets srem be implemented using instructions that return both the
4135result of the division and the remainder.)
4136
4137Example:
4138""""""""
4139
4140.. code-block:: llvm
4141
4142 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4143
4144.. _i_frem:
4145
4146'``frem``' Instruction
4147^^^^^^^^^^^^^^^^^^^^^^
4148
4149Syntax:
4150"""""""
4151
4152::
4153
4154 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4155
4156Overview:
4157"""""""""
4158
4159The '``frem``' instruction returns the remainder from the division of
4160its two operands.
4161
4162Arguments:
4163""""""""""
4164
4165The two arguments to the '``frem``' instruction must be :ref:`floating
4166point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4167Both arguments must have identical types.
4168
4169Semantics:
4170""""""""""
4171
4172This instruction returns the *remainder* of a division. The remainder
4173has the same sign as the dividend. This instruction can also take any
4174number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4175to enable otherwise unsafe floating point optimizations:
4176
4177Example:
4178""""""""
4179
4180.. code-block:: llvm
4181
4182 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4183
4184.. _bitwiseops:
4185
4186Bitwise Binary Operations
4187-------------------------
4188
4189Bitwise binary operators are used to do various forms of bit-twiddling
4190in a program. They are generally very efficient instructions and can
4191commonly be strength reduced from other instructions. They require two
4192operands of the same type, execute an operation on them, and produce a
4193single value. The resulting value is the same type as its operands.
4194
4195'``shl``' Instruction
4196^^^^^^^^^^^^^^^^^^^^^
4197
4198Syntax:
4199"""""""
4200
4201::
4202
4203 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4204 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4205 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4206 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4207
4208Overview:
4209"""""""""
4210
4211The '``shl``' instruction returns the first operand shifted to the left
4212a specified number of bits.
4213
4214Arguments:
4215""""""""""
4216
4217Both arguments to the '``shl``' instruction must be the same
4218:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4219'``op2``' is treated as an unsigned value.
4220
4221Semantics:
4222""""""""""
4223
4224The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4225where ``n`` is the width of the result. If ``op2`` is (statically or
4226dynamically) negative or equal to or larger than the number of bits in
4227``op1``, the result is undefined. If the arguments are vectors, each
4228vector element of ``op1`` is shifted by the corresponding shift amount
4229in ``op2``.
4230
4231If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4232value <poisonvalues>` if it shifts out any non-zero bits. If the
4233``nsw`` keyword is present, then the shift produces a :ref:`poison
4234value <poisonvalues>` if it shifts out any bits that disagree with the
4235resultant sign bit. As such, NUW/NSW have the same semantics as they
4236would if the shift were expressed as a mul instruction with the same
4237nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4238
4239Example:
4240""""""""
4241
4242.. code-block:: llvm
4243
4244 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4245 <result> = shl i32 4, 2 ; yields {i32}: 16
4246 <result> = shl i32 1, 10 ; yields {i32}: 1024
4247 <result> = shl i32 1, 32 ; undefined
4248 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4249
4250'``lshr``' Instruction
4251^^^^^^^^^^^^^^^^^^^^^^
4252
4253Syntax:
4254"""""""
4255
4256::
4257
4258 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4259 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4260
4261Overview:
4262"""""""""
4263
4264The '``lshr``' instruction (logical shift right) returns the first
4265operand shifted to the right a specified number of bits with zero fill.
4266
4267Arguments:
4268""""""""""
4269
4270Both arguments to the '``lshr``' instruction must be the same
4271:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4272'``op2``' is treated as an unsigned value.
4273
4274Semantics:
4275""""""""""
4276
4277This instruction always performs a logical shift right operation. The
4278most significant bits of the result will be filled with zero bits after
4279the shift. If ``op2`` is (statically or dynamically) equal to or larger
4280than the number of bits in ``op1``, the result is undefined. If the
4281arguments are vectors, each vector element of ``op1`` is shifted by the
4282corresponding shift amount in ``op2``.
4283
4284If the ``exact`` keyword is present, the result value of the ``lshr`` is
4285a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4286non-zero.
4287
4288Example:
4289""""""""
4290
4291.. code-block:: llvm
4292
4293 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4294 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4295 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004296 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004297 <result> = lshr i32 1, 32 ; undefined
4298 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4299
4300'``ashr``' Instruction
4301^^^^^^^^^^^^^^^^^^^^^^
4302
4303Syntax:
4304"""""""
4305
4306::
4307
4308 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4309 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4310
4311Overview:
4312"""""""""
4313
4314The '``ashr``' instruction (arithmetic shift right) returns the first
4315operand shifted to the right a specified number of bits with sign
4316extension.
4317
4318Arguments:
4319""""""""""
4320
4321Both arguments to the '``ashr``' instruction must be the same
4322:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4323'``op2``' is treated as an unsigned value.
4324
4325Semantics:
4326""""""""""
4327
4328This instruction always performs an arithmetic shift right operation,
4329The most significant bits of the result will be filled with the sign bit
4330of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4331than the number of bits in ``op1``, the result is undefined. If the
4332arguments are vectors, each vector element of ``op1`` is shifted by the
4333corresponding shift amount in ``op2``.
4334
4335If the ``exact`` keyword is present, the result value of the ``ashr`` is
4336a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4337non-zero.
4338
4339Example:
4340""""""""
4341
4342.. code-block:: llvm
4343
4344 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4345 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4346 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4347 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4348 <result> = ashr i32 1, 32 ; undefined
4349 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4350
4351'``and``' Instruction
4352^^^^^^^^^^^^^^^^^^^^^
4353
4354Syntax:
4355"""""""
4356
4357::
4358
4359 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4360
4361Overview:
4362"""""""""
4363
4364The '``and``' instruction returns the bitwise logical and of its two
4365operands.
4366
4367Arguments:
4368""""""""""
4369
4370The two arguments to the '``and``' instruction must be
4371:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4372arguments must have identical types.
4373
4374Semantics:
4375""""""""""
4376
4377The truth table used for the '``and``' instruction is:
4378
4379+-----+-----+-----+
4380| In0 | In1 | Out |
4381+-----+-----+-----+
4382| 0 | 0 | 0 |
4383+-----+-----+-----+
4384| 0 | 1 | 0 |
4385+-----+-----+-----+
4386| 1 | 0 | 0 |
4387+-----+-----+-----+
4388| 1 | 1 | 1 |
4389+-----+-----+-----+
4390
4391Example:
4392""""""""
4393
4394.. code-block:: llvm
4395
4396 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4397 <result> = and i32 15, 40 ; yields {i32}:result = 8
4398 <result> = and i32 4, 8 ; yields {i32}:result = 0
4399
4400'``or``' Instruction
4401^^^^^^^^^^^^^^^^^^^^
4402
4403Syntax:
4404"""""""
4405
4406::
4407
4408 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4409
4410Overview:
4411"""""""""
4412
4413The '``or``' instruction returns the bitwise logical inclusive or of its
4414two operands.
4415
4416Arguments:
4417""""""""""
4418
4419The two arguments to the '``or``' instruction must be
4420:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4421arguments must have identical types.
4422
4423Semantics:
4424""""""""""
4425
4426The truth table used for the '``or``' instruction is:
4427
4428+-----+-----+-----+
4429| In0 | In1 | Out |
4430+-----+-----+-----+
4431| 0 | 0 | 0 |
4432+-----+-----+-----+
4433| 0 | 1 | 1 |
4434+-----+-----+-----+
4435| 1 | 0 | 1 |
4436+-----+-----+-----+
4437| 1 | 1 | 1 |
4438+-----+-----+-----+
4439
4440Example:
4441""""""""
4442
4443::
4444
4445 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4446 <result> = or i32 15, 40 ; yields {i32}:result = 47
4447 <result> = or i32 4, 8 ; yields {i32}:result = 12
4448
4449'``xor``' Instruction
4450^^^^^^^^^^^^^^^^^^^^^
4451
4452Syntax:
4453"""""""
4454
4455::
4456
4457 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4458
4459Overview:
4460"""""""""
4461
4462The '``xor``' instruction returns the bitwise logical exclusive or of
4463its two operands. The ``xor`` is used to implement the "one's
4464complement" operation, which is the "~" operator in C.
4465
4466Arguments:
4467""""""""""
4468
4469The two arguments to the '``xor``' instruction must be
4470:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4471arguments must have identical types.
4472
4473Semantics:
4474""""""""""
4475
4476The truth table used for the '``xor``' instruction is:
4477
4478+-----+-----+-----+
4479| In0 | In1 | Out |
4480+-----+-----+-----+
4481| 0 | 0 | 0 |
4482+-----+-----+-----+
4483| 0 | 1 | 1 |
4484+-----+-----+-----+
4485| 1 | 0 | 1 |
4486+-----+-----+-----+
4487| 1 | 1 | 0 |
4488+-----+-----+-----+
4489
4490Example:
4491""""""""
4492
4493.. code-block:: llvm
4494
4495 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4496 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4497 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4498 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4499
4500Vector Operations
4501-----------------
4502
4503LLVM supports several instructions to represent vector operations in a
4504target-independent manner. These instructions cover the element-access
4505and vector-specific operations needed to process vectors effectively.
4506While LLVM does directly support these vector operations, many
4507sophisticated algorithms will want to use target-specific intrinsics to
4508take full advantage of a specific target.
4509
4510.. _i_extractelement:
4511
4512'``extractelement``' Instruction
4513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4514
4515Syntax:
4516"""""""
4517
4518::
4519
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004520 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004521
4522Overview:
4523"""""""""
4524
4525The '``extractelement``' instruction extracts a single scalar element
4526from a vector at a specified index.
4527
4528Arguments:
4529""""""""""
4530
4531The first operand of an '``extractelement``' instruction is a value of
4532:ref:`vector <t_vector>` type. The second operand is an index indicating
4533the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004534variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004535
4536Semantics:
4537""""""""""
4538
4539The result is a scalar of the same type as the element type of ``val``.
4540Its value is the value at position ``idx`` of ``val``. If ``idx``
4541exceeds the length of ``val``, the results are undefined.
4542
4543Example:
4544""""""""
4545
4546.. code-block:: llvm
4547
4548 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4549
4550.. _i_insertelement:
4551
4552'``insertelement``' Instruction
4553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4554
4555Syntax:
4556"""""""
4557
4558::
4559
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004560 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004561
4562Overview:
4563"""""""""
4564
4565The '``insertelement``' instruction inserts a scalar element into a
4566vector at a specified index.
4567
4568Arguments:
4569""""""""""
4570
4571The first operand of an '``insertelement``' instruction is a value of
4572:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4573type must equal the element type of the first operand. The third operand
4574is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004575index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004576
4577Semantics:
4578""""""""""
4579
4580The result is a vector of the same type as ``val``. Its element values
4581are those of ``val`` except at position ``idx``, where it gets the value
4582``elt``. If ``idx`` exceeds the length of ``val``, the results are
4583undefined.
4584
4585Example:
4586""""""""
4587
4588.. code-block:: llvm
4589
4590 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4591
4592.. _i_shufflevector:
4593
4594'``shufflevector``' Instruction
4595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4596
4597Syntax:
4598"""""""
4599
4600::
4601
4602 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4603
4604Overview:
4605"""""""""
4606
4607The '``shufflevector``' instruction constructs a permutation of elements
4608from two input vectors, returning a vector with the same element type as
4609the input and length that is the same as the shuffle mask.
4610
4611Arguments:
4612""""""""""
4613
4614The first two operands of a '``shufflevector``' instruction are vectors
4615with the same type. The third argument is a shuffle mask whose element
4616type is always 'i32'. The result of the instruction is a vector whose
4617length is the same as the shuffle mask and whose element type is the
4618same as the element type of the first two operands.
4619
4620The shuffle mask operand is required to be a constant vector with either
4621constant integer or undef values.
4622
4623Semantics:
4624""""""""""
4625
4626The elements of the two input vectors are numbered from left to right
4627across both of the vectors. The shuffle mask operand specifies, for each
4628element of the result vector, which element of the two input vectors the
4629result element gets. The element selector may be undef (meaning "don't
4630care") and the second operand may be undef if performing a shuffle from
4631only one vector.
4632
4633Example:
4634""""""""
4635
4636.. code-block:: llvm
4637
4638 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4639 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4640 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4641 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4642 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4643 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4644 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4645 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4646
4647Aggregate Operations
4648--------------------
4649
4650LLVM supports several instructions for working with
4651:ref:`aggregate <t_aggregate>` values.
4652
4653.. _i_extractvalue:
4654
4655'``extractvalue``' Instruction
4656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4657
4658Syntax:
4659"""""""
4660
4661::
4662
4663 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4664
4665Overview:
4666"""""""""
4667
4668The '``extractvalue``' instruction extracts the value of a member field
4669from an :ref:`aggregate <t_aggregate>` value.
4670
4671Arguments:
4672""""""""""
4673
4674The first operand of an '``extractvalue``' instruction is a value of
4675:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4676constant indices to specify which value to extract in a similar manner
4677as indices in a '``getelementptr``' instruction.
4678
4679The major differences to ``getelementptr`` indexing are:
4680
4681- Since the value being indexed is not a pointer, the first index is
4682 omitted and assumed to be zero.
4683- At least one index must be specified.
4684- Not only struct indices but also array indices must be in bounds.
4685
4686Semantics:
4687""""""""""
4688
4689The result is the value at the position in the aggregate specified by
4690the index operands.
4691
4692Example:
4693""""""""
4694
4695.. code-block:: llvm
4696
4697 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4698
4699.. _i_insertvalue:
4700
4701'``insertvalue``' Instruction
4702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4703
4704Syntax:
4705"""""""
4706
4707::
4708
4709 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4710
4711Overview:
4712"""""""""
4713
4714The '``insertvalue``' instruction inserts a value into a member field in
4715an :ref:`aggregate <t_aggregate>` value.
4716
4717Arguments:
4718""""""""""
4719
4720The first operand of an '``insertvalue``' instruction is a value of
4721:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4722a first-class value to insert. The following operands are constant
4723indices indicating the position at which to insert the value in a
4724similar manner as indices in a '``extractvalue``' instruction. The value
4725to insert must have the same type as the value identified by the
4726indices.
4727
4728Semantics:
4729""""""""""
4730
4731The result is an aggregate of the same type as ``val``. Its value is
4732that of ``val`` except that the value at the position specified by the
4733indices is that of ``elt``.
4734
4735Example:
4736""""""""
4737
4738.. code-block:: llvm
4739
4740 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4741 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4742 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4743
4744.. _memoryops:
4745
4746Memory Access and Addressing Operations
4747---------------------------------------
4748
4749A key design point of an SSA-based representation is how it represents
4750memory. In LLVM, no memory locations are in SSA form, which makes things
4751very simple. This section describes how to read, write, and allocate
4752memory in LLVM.
4753
4754.. _i_alloca:
4755
4756'``alloca``' Instruction
4757^^^^^^^^^^^^^^^^^^^^^^^^
4758
4759Syntax:
4760"""""""
4761
4762::
4763
David Majnemerc4ab61c2014-03-09 06:41:58 +00004764 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004765
4766Overview:
4767"""""""""
4768
4769The '``alloca``' instruction allocates memory on the stack frame of the
4770currently executing function, to be automatically released when this
4771function returns to its caller. The object is always allocated in the
4772generic address space (address space zero).
4773
4774Arguments:
4775""""""""""
4776
4777The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4778bytes of memory on the runtime stack, returning a pointer of the
4779appropriate type to the program. If "NumElements" is specified, it is
4780the number of elements allocated, otherwise "NumElements" is defaulted
4781to be one. If a constant alignment is specified, the value result of the
4782allocation is guaranteed to be aligned to at least that boundary. If not
4783specified, or if zero, the target can choose to align the allocation on
4784any convenient boundary compatible with the type.
4785
4786'``type``' may be any sized type.
4787
4788Semantics:
4789""""""""""
4790
4791Memory is allocated; a pointer is returned. The operation is undefined
4792if there is insufficient stack space for the allocation. '``alloca``'d
4793memory is automatically released when the function returns. The
4794'``alloca``' instruction is commonly used to represent automatic
4795variables that must have an address available. When the function returns
4796(either with the ``ret`` or ``resume`` instructions), the memory is
4797reclaimed. Allocating zero bytes is legal, but the result is undefined.
4798The order in which memory is allocated (ie., which way the stack grows)
4799is not specified.
4800
4801Example:
4802""""""""
4803
4804.. code-block:: llvm
4805
4806 %ptr = alloca i32 ; yields {i32*}:ptr
4807 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4808 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4809 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4810
4811.. _i_load:
4812
4813'``load``' Instruction
4814^^^^^^^^^^^^^^^^^^^^^^
4815
4816Syntax:
4817"""""""
4818
4819::
4820
4821 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4822 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4823 !<index> = !{ i32 1 }
4824
4825Overview:
4826"""""""""
4827
4828The '``load``' instruction is used to read from memory.
4829
4830Arguments:
4831""""""""""
4832
Eli Bendersky239a78b2013-04-17 20:17:08 +00004833The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004834from which to load. The pointer must point to a :ref:`first
4835class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4836then the optimizer is not allowed to modify the number or order of
4837execution of this ``load`` with other :ref:`volatile
4838operations <volatile>`.
4839
4840If the ``load`` is marked as ``atomic``, it takes an extra
4841:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4842``release`` and ``acq_rel`` orderings are not valid on ``load``
4843instructions. Atomic loads produce :ref:`defined <memmodel>` results
4844when they may see multiple atomic stores. The type of the pointee must
4845be an integer type whose bit width is a power of two greater than or
4846equal to eight and less than or equal to a target-specific size limit.
4847``align`` must be explicitly specified on atomic loads, and the load has
4848undefined behavior if the alignment is not set to a value which is at
4849least the size in bytes of the pointee. ``!nontemporal`` does not have
4850any defined semantics for atomic loads.
4851
4852The optional constant ``align`` argument specifies the alignment of the
4853operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004854or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004855alignment for the target. It is the responsibility of the code emitter
4856to ensure that the alignment information is correct. Overestimating the
4857alignment results in undefined behavior. Underestimating the alignment
4858may produce less efficient code. An alignment of 1 is always safe.
4859
4860The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004861metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004862``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004863metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004864that this load is not expected to be reused in the cache. The code
4865generator may select special instructions to save cache bandwidth, such
4866as the ``MOVNT`` instruction on x86.
4867
4868The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004869metadata name ``<index>`` corresponding to a metadata node with no
4870entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004871instruction tells the optimizer and code generator that this load
4872address points to memory which does not change value during program
4873execution. The optimizer may then move this load around, for example, by
4874hoisting it out of loops using loop invariant code motion.
4875
4876Semantics:
4877""""""""""
4878
4879The location of memory pointed to is loaded. If the value being loaded
4880is of scalar type then the number of bytes read does not exceed the
4881minimum number of bytes needed to hold all bits of the type. For
4882example, loading an ``i24`` reads at most three bytes. When loading a
4883value of a type like ``i20`` with a size that is not an integral number
4884of bytes, the result is undefined if the value was not originally
4885written using a store of the same type.
4886
4887Examples:
4888"""""""""
4889
4890.. code-block:: llvm
4891
4892 %ptr = alloca i32 ; yields {i32*}:ptr
4893 store i32 3, i32* %ptr ; yields {void}
4894 %val = load i32* %ptr ; yields {i32}:val = i32 3
4895
4896.. _i_store:
4897
4898'``store``' Instruction
4899^^^^^^^^^^^^^^^^^^^^^^^
4900
4901Syntax:
4902"""""""
4903
4904::
4905
4906 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4907 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4908
4909Overview:
4910"""""""""
4911
4912The '``store``' instruction is used to write to memory.
4913
4914Arguments:
4915""""""""""
4916
Eli Benderskyca380842013-04-17 17:17:20 +00004917There are two arguments to the ``store`` instruction: a value to store
4918and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004919operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004920the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004921then the optimizer is not allowed to modify the number or order of
4922execution of this ``store`` with other :ref:`volatile
4923operations <volatile>`.
4924
4925If the ``store`` is marked as ``atomic``, it takes an extra
4926:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4927``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4928instructions. Atomic loads produce :ref:`defined <memmodel>` results
4929when they may see multiple atomic stores. The type of the pointee must
4930be an integer type whose bit width is a power of two greater than or
4931equal to eight and less than or equal to a target-specific size limit.
4932``align`` must be explicitly specified on atomic stores, and the store
4933has undefined behavior if the alignment is not set to a value which is
4934at least the size in bytes of the pointee. ``!nontemporal`` does not
4935have any defined semantics for atomic stores.
4936
Eli Benderskyca380842013-04-17 17:17:20 +00004937The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004938operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004939or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004940alignment for the target. It is the responsibility of the code emitter
4941to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004942alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004943alignment may produce less efficient code. An alignment of 1 is always
4944safe.
4945
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004946The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004947name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004948value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004949tells the optimizer and code generator that this load is not expected to
4950be reused in the cache. The code generator may select special
4951instructions to save cache bandwidth, such as the MOVNT instruction on
4952x86.
4953
4954Semantics:
4955""""""""""
4956
Eli Benderskyca380842013-04-17 17:17:20 +00004957The contents of memory are updated to contain ``<value>`` at the
4958location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004959of scalar type then the number of bytes written does not exceed the
4960minimum number of bytes needed to hold all bits of the type. For
4961example, storing an ``i24`` writes at most three bytes. When writing a
4962value of a type like ``i20`` with a size that is not an integral number
4963of bytes, it is unspecified what happens to the extra bits that do not
4964belong to the type, but they will typically be overwritten.
4965
4966Example:
4967""""""""
4968
4969.. code-block:: llvm
4970
4971 %ptr = alloca i32 ; yields {i32*}:ptr
4972 store i32 3, i32* %ptr ; yields {void}
4973 %val = load i32* %ptr ; yields {i32}:val = i32 3
4974
4975.. _i_fence:
4976
4977'``fence``' Instruction
4978^^^^^^^^^^^^^^^^^^^^^^^
4979
4980Syntax:
4981"""""""
4982
4983::
4984
4985 fence [singlethread] <ordering> ; yields {void}
4986
4987Overview:
4988"""""""""
4989
4990The '``fence``' instruction is used to introduce happens-before edges
4991between operations.
4992
4993Arguments:
4994""""""""""
4995
4996'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4997defines what *synchronizes-with* edges they add. They can only be given
4998``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4999
5000Semantics:
5001""""""""""
5002
5003A fence A which has (at least) ``release`` ordering semantics
5004*synchronizes with* a fence B with (at least) ``acquire`` ordering
5005semantics if and only if there exist atomic operations X and Y, both
5006operating on some atomic object M, such that A is sequenced before X, X
5007modifies M (either directly or through some side effect of a sequence
5008headed by X), Y is sequenced before B, and Y observes M. This provides a
5009*happens-before* dependency between A and B. Rather than an explicit
5010``fence``, one (but not both) of the atomic operations X or Y might
5011provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5012still *synchronize-with* the explicit ``fence`` and establish the
5013*happens-before* edge.
5014
5015A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5016``acquire`` and ``release`` semantics specified above, participates in
5017the global program order of other ``seq_cst`` operations and/or fences.
5018
5019The optional ":ref:`singlethread <singlethread>`" argument specifies
5020that the fence only synchronizes with other fences in the same thread.
5021(This is useful for interacting with signal handlers.)
5022
5023Example:
5024""""""""
5025
5026.. code-block:: llvm
5027
5028 fence acquire ; yields {void}
5029 fence singlethread seq_cst ; yields {void}
5030
5031.. _i_cmpxchg:
5032
5033'``cmpxchg``' Instruction
5034^^^^^^^^^^^^^^^^^^^^^^^^^
5035
5036Syntax:
5037"""""""
5038
5039::
5040
Tim Northovere94a5182014-03-11 10:48:52 +00005041 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005042
5043Overview:
5044"""""""""
5045
5046The '``cmpxchg``' instruction is used to atomically modify memory. It
5047loads a value in memory and compares it to a given value. If they are
5048equal, it stores a new value into the memory.
5049
5050Arguments:
5051""""""""""
5052
5053There are three arguments to the '``cmpxchg``' instruction: an address
5054to operate on, a value to compare to the value currently be at that
5055address, and a new value to place at that address if the compared values
5056are equal. The type of '<cmp>' must be an integer type whose bit width
5057is a power of two greater than or equal to eight and less than or equal
5058to a target-specific size limit. '<cmp>' and '<new>' must have the same
5059type, and the type of '<pointer>' must be a pointer to that type. If the
5060``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5061to modify the number or order of execution of this ``cmpxchg`` with
5062other :ref:`volatile operations <volatile>`.
5063
Tim Northovere94a5182014-03-11 10:48:52 +00005064The success and failure :ref:`ordering <ordering>` arguments specify how this
5065``cmpxchg`` synchronizes with other atomic operations. The both ordering
5066parameters must be at least ``monotonic``, the ordering constraint on failure
5067must be no stronger than that on success, and the failure ordering cannot be
5068either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005069
5070The optional "``singlethread``" argument declares that the ``cmpxchg``
5071is only atomic with respect to code (usually signal handlers) running in
5072the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5073respect to all other code in the system.
5074
5075The pointer passed into cmpxchg must have alignment greater than or
5076equal to the size in memory of the operand.
5077
5078Semantics:
5079""""""""""
5080
5081The contents of memory at the location specified by the '``<pointer>``'
5082operand is read and compared to '``<cmp>``'; if the read value is the
5083equal, '``<new>``' is written. The original value at the location is
5084returned.
5085
Tim Northovere94a5182014-03-11 10:48:52 +00005086A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5087identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5088load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005089
5090Example:
5091""""""""
5092
5093.. code-block:: llvm
5094
5095 entry:
5096 %orig = atomic load i32* %ptr unordered ; yields {i32}
5097 br label %loop
5098
5099 loop:
5100 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5101 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005102 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005103 %success = icmp eq i32 %cmp, %old
5104 br i1 %success, label %done, label %loop
5105
5106 done:
5107 ...
5108
5109.. _i_atomicrmw:
5110
5111'``atomicrmw``' Instruction
5112^^^^^^^^^^^^^^^^^^^^^^^^^^^
5113
5114Syntax:
5115"""""""
5116
5117::
5118
5119 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5120
5121Overview:
5122"""""""""
5123
5124The '``atomicrmw``' instruction is used to atomically modify memory.
5125
5126Arguments:
5127""""""""""
5128
5129There are three arguments to the '``atomicrmw``' instruction: an
5130operation to apply, an address whose value to modify, an argument to the
5131operation. The operation must be one of the following keywords:
5132
5133- xchg
5134- add
5135- sub
5136- and
5137- nand
5138- or
5139- xor
5140- max
5141- min
5142- umax
5143- umin
5144
5145The type of '<value>' must be an integer type whose bit width is a power
5146of two greater than or equal to eight and less than or equal to a
5147target-specific size limit. The type of the '``<pointer>``' operand must
5148be a pointer to that type. If the ``atomicrmw`` is marked as
5149``volatile``, then the optimizer is not allowed to modify the number or
5150order of execution of this ``atomicrmw`` with other :ref:`volatile
5151operations <volatile>`.
5152
5153Semantics:
5154""""""""""
5155
5156The contents of memory at the location specified by the '``<pointer>``'
5157operand are atomically read, modified, and written back. The original
5158value at the location is returned. The modification is specified by the
5159operation argument:
5160
5161- xchg: ``*ptr = val``
5162- add: ``*ptr = *ptr + val``
5163- sub: ``*ptr = *ptr - val``
5164- and: ``*ptr = *ptr & val``
5165- nand: ``*ptr = ~(*ptr & val)``
5166- or: ``*ptr = *ptr | val``
5167- xor: ``*ptr = *ptr ^ val``
5168- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5169- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5170- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5171 comparison)
5172- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5173 comparison)
5174
5175Example:
5176""""""""
5177
5178.. code-block:: llvm
5179
5180 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5181
5182.. _i_getelementptr:
5183
5184'``getelementptr``' Instruction
5185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5186
5187Syntax:
5188"""""""
5189
5190::
5191
5192 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5193 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5194 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5195
5196Overview:
5197"""""""""
5198
5199The '``getelementptr``' instruction is used to get the address of a
5200subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5201address calculation only and does not access memory.
5202
5203Arguments:
5204""""""""""
5205
5206The first argument is always a pointer or a vector of pointers, and
5207forms the basis of the calculation. The remaining arguments are indices
5208that indicate which of the elements of the aggregate object are indexed.
5209The interpretation of each index is dependent on the type being indexed
5210into. The first index always indexes the pointer value given as the
5211first argument, the second index indexes a value of the type pointed to
5212(not necessarily the value directly pointed to, since the first index
5213can be non-zero), etc. The first type indexed into must be a pointer
5214value, subsequent types can be arrays, vectors, and structs. Note that
5215subsequent types being indexed into can never be pointers, since that
5216would require loading the pointer before continuing calculation.
5217
5218The type of each index argument depends on the type it is indexing into.
5219When indexing into a (optionally packed) structure, only ``i32`` integer
5220**constants** are allowed (when using a vector of indices they must all
5221be the **same** ``i32`` integer constant). When indexing into an array,
5222pointer or vector, integers of any width are allowed, and they are not
5223required to be constant. These integers are treated as signed values
5224where relevant.
5225
5226For example, let's consider a C code fragment and how it gets compiled
5227to LLVM:
5228
5229.. code-block:: c
5230
5231 struct RT {
5232 char A;
5233 int B[10][20];
5234 char C;
5235 };
5236 struct ST {
5237 int X;
5238 double Y;
5239 struct RT Z;
5240 };
5241
5242 int *foo(struct ST *s) {
5243 return &s[1].Z.B[5][13];
5244 }
5245
5246The LLVM code generated by Clang is:
5247
5248.. code-block:: llvm
5249
5250 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5251 %struct.ST = type { i32, double, %struct.RT }
5252
5253 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5254 entry:
5255 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5256 ret i32* %arrayidx
5257 }
5258
5259Semantics:
5260""""""""""
5261
5262In the example above, the first index is indexing into the
5263'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5264= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5265indexes into the third element of the structure, yielding a
5266'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5267structure. The third index indexes into the second element of the
5268structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5269dimensions of the array are subscripted into, yielding an '``i32``'
5270type. The '``getelementptr``' instruction returns a pointer to this
5271element, thus computing a value of '``i32*``' type.
5272
5273Note that it is perfectly legal to index partially through a structure,
5274returning a pointer to an inner element. Because of this, the LLVM code
5275for the given testcase is equivalent to:
5276
5277.. code-block:: llvm
5278
5279 define i32* @foo(%struct.ST* %s) {
5280 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5281 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5282 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5283 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5284 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5285 ret i32* %t5
5286 }
5287
5288If the ``inbounds`` keyword is present, the result value of the
5289``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5290pointer is not an *in bounds* address of an allocated object, or if any
5291of the addresses that would be formed by successive addition of the
5292offsets implied by the indices to the base address with infinitely
5293precise signed arithmetic are not an *in bounds* address of that
5294allocated object. The *in bounds* addresses for an allocated object are
5295all the addresses that point into the object, plus the address one byte
5296past the end. In cases where the base is a vector of pointers the
5297``inbounds`` keyword applies to each of the computations element-wise.
5298
5299If the ``inbounds`` keyword is not present, the offsets are added to the
5300base address with silently-wrapping two's complement arithmetic. If the
5301offsets have a different width from the pointer, they are sign-extended
5302or truncated to the width of the pointer. The result value of the
5303``getelementptr`` may be outside the object pointed to by the base
5304pointer. The result value may not necessarily be used to access memory
5305though, even if it happens to point into allocated storage. See the
5306:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5307information.
5308
5309The getelementptr instruction is often confusing. For some more insight
5310into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5311
5312Example:
5313""""""""
5314
5315.. code-block:: llvm
5316
5317 ; yields [12 x i8]*:aptr
5318 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5319 ; yields i8*:vptr
5320 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5321 ; yields i8*:eptr
5322 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5323 ; yields i32*:iptr
5324 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5325
5326In cases where the pointer argument is a vector of pointers, each index
5327must be a vector with the same number of elements. For example:
5328
5329.. code-block:: llvm
5330
5331 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5332
5333Conversion Operations
5334---------------------
5335
5336The instructions in this category are the conversion instructions
5337(casting) which all take a single operand and a type. They perform
5338various bit conversions on the operand.
5339
5340'``trunc .. to``' Instruction
5341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5342
5343Syntax:
5344"""""""
5345
5346::
5347
5348 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5349
5350Overview:
5351"""""""""
5352
5353The '``trunc``' instruction truncates its operand to the type ``ty2``.
5354
5355Arguments:
5356""""""""""
5357
5358The '``trunc``' instruction takes a value to trunc, and a type to trunc
5359it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5360of the same number of integers. The bit size of the ``value`` must be
5361larger than the bit size of the destination type, ``ty2``. Equal sized
5362types are not allowed.
5363
5364Semantics:
5365""""""""""
5366
5367The '``trunc``' instruction truncates the high order bits in ``value``
5368and converts the remaining bits to ``ty2``. Since the source size must
5369be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5370It will always truncate bits.
5371
5372Example:
5373""""""""
5374
5375.. code-block:: llvm
5376
5377 %X = trunc i32 257 to i8 ; yields i8:1
5378 %Y = trunc i32 123 to i1 ; yields i1:true
5379 %Z = trunc i32 122 to i1 ; yields i1:false
5380 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5381
5382'``zext .. to``' Instruction
5383^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5384
5385Syntax:
5386"""""""
5387
5388::
5389
5390 <result> = zext <ty> <value> to <ty2> ; yields ty2
5391
5392Overview:
5393"""""""""
5394
5395The '``zext``' instruction zero extends its operand to type ``ty2``.
5396
5397Arguments:
5398""""""""""
5399
5400The '``zext``' instruction takes a value to cast, and a type to cast it
5401to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5402the same number of integers. The bit size of the ``value`` must be
5403smaller than the bit size of the destination type, ``ty2``.
5404
5405Semantics:
5406""""""""""
5407
5408The ``zext`` fills the high order bits of the ``value`` with zero bits
5409until it reaches the size of the destination type, ``ty2``.
5410
5411When zero extending from i1, the result will always be either 0 or 1.
5412
5413Example:
5414""""""""
5415
5416.. code-block:: llvm
5417
5418 %X = zext i32 257 to i64 ; yields i64:257
5419 %Y = zext i1 true to i32 ; yields i32:1
5420 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5421
5422'``sext .. to``' Instruction
5423^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5424
5425Syntax:
5426"""""""
5427
5428::
5429
5430 <result> = sext <ty> <value> to <ty2> ; yields ty2
5431
5432Overview:
5433"""""""""
5434
5435The '``sext``' sign extends ``value`` to the type ``ty2``.
5436
5437Arguments:
5438""""""""""
5439
5440The '``sext``' instruction takes a value to cast, and a type to cast it
5441to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5442the same number of integers. The bit size of the ``value`` must be
5443smaller than the bit size of the destination type, ``ty2``.
5444
5445Semantics:
5446""""""""""
5447
5448The '``sext``' instruction performs a sign extension by copying the sign
5449bit (highest order bit) of the ``value`` until it reaches the bit size
5450of the type ``ty2``.
5451
5452When sign extending from i1, the extension always results in -1 or 0.
5453
5454Example:
5455""""""""
5456
5457.. code-block:: llvm
5458
5459 %X = sext i8 -1 to i16 ; yields i16 :65535
5460 %Y = sext i1 true to i32 ; yields i32:-1
5461 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5462
5463'``fptrunc .. to``' Instruction
5464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5465
5466Syntax:
5467"""""""
5468
5469::
5470
5471 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5472
5473Overview:
5474"""""""""
5475
5476The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5477
5478Arguments:
5479""""""""""
5480
5481The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5482value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5483The size of ``value`` must be larger than the size of ``ty2``. This
5484implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5485
5486Semantics:
5487""""""""""
5488
5489The '``fptrunc``' instruction truncates a ``value`` from a larger
5490:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5491point <t_floating>` type. If the value cannot fit within the
5492destination type, ``ty2``, then the results are undefined.
5493
5494Example:
5495""""""""
5496
5497.. code-block:: llvm
5498
5499 %X = fptrunc double 123.0 to float ; yields float:123.0
5500 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5501
5502'``fpext .. to``' Instruction
5503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5504
5505Syntax:
5506"""""""
5507
5508::
5509
5510 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5511
5512Overview:
5513"""""""""
5514
5515The '``fpext``' extends a floating point ``value`` to a larger floating
5516point value.
5517
5518Arguments:
5519""""""""""
5520
5521The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5522``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5523to. The source type must be smaller than the destination type.
5524
5525Semantics:
5526""""""""""
5527
5528The '``fpext``' instruction extends the ``value`` from a smaller
5529:ref:`floating point <t_floating>` type to a larger :ref:`floating
5530point <t_floating>` type. The ``fpext`` cannot be used to make a
5531*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5532*no-op cast* for a floating point cast.
5533
5534Example:
5535""""""""
5536
5537.. code-block:: llvm
5538
5539 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5540 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5541
5542'``fptoui .. to``' Instruction
5543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5544
5545Syntax:
5546"""""""
5547
5548::
5549
5550 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5551
5552Overview:
5553"""""""""
5554
5555The '``fptoui``' converts a floating point ``value`` to its unsigned
5556integer equivalent of type ``ty2``.
5557
5558Arguments:
5559""""""""""
5560
5561The '``fptoui``' instruction takes a value to cast, which must be a
5562scalar or vector :ref:`floating point <t_floating>` value, and a type to
5563cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5564``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5565type with the same number of elements as ``ty``
5566
5567Semantics:
5568""""""""""
5569
5570The '``fptoui``' instruction converts its :ref:`floating
5571point <t_floating>` operand into the nearest (rounding towards zero)
5572unsigned integer value. If the value cannot fit in ``ty2``, the results
5573are undefined.
5574
5575Example:
5576""""""""
5577
5578.. code-block:: llvm
5579
5580 %X = fptoui double 123.0 to i32 ; yields i32:123
5581 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5582 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5583
5584'``fptosi .. to``' Instruction
5585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5586
5587Syntax:
5588"""""""
5589
5590::
5591
5592 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5593
5594Overview:
5595"""""""""
5596
5597The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5598``value`` to type ``ty2``.
5599
5600Arguments:
5601""""""""""
5602
5603The '``fptosi``' instruction takes a value to cast, which must be a
5604scalar or vector :ref:`floating point <t_floating>` value, and a type to
5605cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5606``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5607type with the same number of elements as ``ty``
5608
5609Semantics:
5610""""""""""
5611
5612The '``fptosi``' instruction converts its :ref:`floating
5613point <t_floating>` operand into the nearest (rounding towards zero)
5614signed integer value. If the value cannot fit in ``ty2``, the results
5615are undefined.
5616
5617Example:
5618""""""""
5619
5620.. code-block:: llvm
5621
5622 %X = fptosi double -123.0 to i32 ; yields i32:-123
5623 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5624 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5625
5626'``uitofp .. to``' Instruction
5627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5628
5629Syntax:
5630"""""""
5631
5632::
5633
5634 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5635
5636Overview:
5637"""""""""
5638
5639The '``uitofp``' instruction regards ``value`` as an unsigned integer
5640and converts that value to the ``ty2`` type.
5641
5642Arguments:
5643""""""""""
5644
5645The '``uitofp``' instruction takes a value to cast, which must be a
5646scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5647``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5648``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5649type with the same number of elements as ``ty``
5650
5651Semantics:
5652""""""""""
5653
5654The '``uitofp``' instruction interprets its operand as an unsigned
5655integer quantity and converts it to the corresponding floating point
5656value. If the value cannot fit in the floating point value, the results
5657are undefined.
5658
5659Example:
5660""""""""
5661
5662.. code-block:: llvm
5663
5664 %X = uitofp i32 257 to float ; yields float:257.0
5665 %Y = uitofp i8 -1 to double ; yields double:255.0
5666
5667'``sitofp .. to``' Instruction
5668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5669
5670Syntax:
5671"""""""
5672
5673::
5674
5675 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5676
5677Overview:
5678"""""""""
5679
5680The '``sitofp``' instruction regards ``value`` as a signed integer and
5681converts that value to the ``ty2`` type.
5682
5683Arguments:
5684""""""""""
5685
5686The '``sitofp``' instruction takes a value to cast, which must be a
5687scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5688``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5689``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5690type with the same number of elements as ``ty``
5691
5692Semantics:
5693""""""""""
5694
5695The '``sitofp``' instruction interprets its operand as a signed integer
5696quantity and converts it to the corresponding floating point value. If
5697the value cannot fit in the floating point value, the results are
5698undefined.
5699
5700Example:
5701""""""""
5702
5703.. code-block:: llvm
5704
5705 %X = sitofp i32 257 to float ; yields float:257.0
5706 %Y = sitofp i8 -1 to double ; yields double:-1.0
5707
5708.. _i_ptrtoint:
5709
5710'``ptrtoint .. to``' Instruction
5711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5712
5713Syntax:
5714"""""""
5715
5716::
5717
5718 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5719
5720Overview:
5721"""""""""
5722
5723The '``ptrtoint``' instruction converts the pointer or a vector of
5724pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5725
5726Arguments:
5727""""""""""
5728
5729The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5730a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5731type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5732a vector of integers type.
5733
5734Semantics:
5735""""""""""
5736
5737The '``ptrtoint``' instruction converts ``value`` to integer type
5738``ty2`` by interpreting the pointer value as an integer and either
5739truncating or zero extending that value to the size of the integer type.
5740If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5741``value`` is larger than ``ty2`` then a truncation is done. If they are
5742the same size, then nothing is done (*no-op cast*) other than a type
5743change.
5744
5745Example:
5746""""""""
5747
5748.. code-block:: llvm
5749
5750 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5751 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5752 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5753
5754.. _i_inttoptr:
5755
5756'``inttoptr .. to``' Instruction
5757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5758
5759Syntax:
5760"""""""
5761
5762::
5763
5764 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5765
5766Overview:
5767"""""""""
5768
5769The '``inttoptr``' instruction converts an integer ``value`` to a
5770pointer type, ``ty2``.
5771
5772Arguments:
5773""""""""""
5774
5775The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5776cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5777type.
5778
5779Semantics:
5780""""""""""
5781
5782The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5783applying either a zero extension or a truncation depending on the size
5784of the integer ``value``. If ``value`` is larger than the size of a
5785pointer then a truncation is done. If ``value`` is smaller than the size
5786of a pointer then a zero extension is done. If they are the same size,
5787nothing is done (*no-op cast*).
5788
5789Example:
5790""""""""
5791
5792.. code-block:: llvm
5793
5794 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5795 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5796 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5797 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5798
5799.. _i_bitcast:
5800
5801'``bitcast .. to``' Instruction
5802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5803
5804Syntax:
5805"""""""
5806
5807::
5808
5809 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5810
5811Overview:
5812"""""""""
5813
5814The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5815changing any bits.
5816
5817Arguments:
5818""""""""""
5819
5820The '``bitcast``' instruction takes a value to cast, which must be a
5821non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005822also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5823bit sizes of ``value`` and the destination type, ``ty2``, must be
5824identical. If the source type is a pointer, the destination type must
5825also be a pointer of the same size. This instruction supports bitwise
5826conversion of vectors to integers and to vectors of other types (as
5827long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005828
5829Semantics:
5830""""""""""
5831
Matt Arsenault24b49c42013-07-31 17:49:08 +00005832The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5833is always a *no-op cast* because no bits change with this
5834conversion. The conversion is done as if the ``value`` had been stored
5835to memory and read back as type ``ty2``. Pointer (or vector of
5836pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005837pointers) types with the same address space through this instruction.
5838To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5839or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005840
5841Example:
5842""""""""
5843
5844.. code-block:: llvm
5845
5846 %X = bitcast i8 255 to i8 ; yields i8 :-1
5847 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5848 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5849 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5850
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005851.. _i_addrspacecast:
5852
5853'``addrspacecast .. to``' Instruction
5854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5855
5856Syntax:
5857"""""""
5858
5859::
5860
5861 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5862
5863Overview:
5864"""""""""
5865
5866The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5867address space ``n`` to type ``pty2`` in address space ``m``.
5868
5869Arguments:
5870""""""""""
5871
5872The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5873to cast and a pointer type to cast it to, which must have a different
5874address space.
5875
5876Semantics:
5877""""""""""
5878
5879The '``addrspacecast``' instruction converts the pointer value
5880``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005881value modification, depending on the target and the address space
5882pair. Pointer conversions within the same address space must be
5883performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005884conversion is legal then both result and operand refer to the same memory
5885location.
5886
5887Example:
5888""""""""
5889
5890.. code-block:: llvm
5891
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005892 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5893 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5894 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005895
Sean Silvab084af42012-12-07 10:36:55 +00005896.. _otherops:
5897
5898Other Operations
5899----------------
5900
5901The instructions in this category are the "miscellaneous" instructions,
5902which defy better classification.
5903
5904.. _i_icmp:
5905
5906'``icmp``' Instruction
5907^^^^^^^^^^^^^^^^^^^^^^
5908
5909Syntax:
5910"""""""
5911
5912::
5913
5914 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5915
5916Overview:
5917"""""""""
5918
5919The '``icmp``' instruction returns a boolean value or a vector of
5920boolean values based on comparison of its two integer, integer vector,
5921pointer, or pointer vector operands.
5922
5923Arguments:
5924""""""""""
5925
5926The '``icmp``' instruction takes three operands. The first operand is
5927the condition code indicating the kind of comparison to perform. It is
5928not a value, just a keyword. The possible condition code are:
5929
5930#. ``eq``: equal
5931#. ``ne``: not equal
5932#. ``ugt``: unsigned greater than
5933#. ``uge``: unsigned greater or equal
5934#. ``ult``: unsigned less than
5935#. ``ule``: unsigned less or equal
5936#. ``sgt``: signed greater than
5937#. ``sge``: signed greater or equal
5938#. ``slt``: signed less than
5939#. ``sle``: signed less or equal
5940
5941The remaining two arguments must be :ref:`integer <t_integer>` or
5942:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5943must also be identical types.
5944
5945Semantics:
5946""""""""""
5947
5948The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5949code given as ``cond``. The comparison performed always yields either an
5950:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5951
5952#. ``eq``: yields ``true`` if the operands are equal, ``false``
5953 otherwise. No sign interpretation is necessary or performed.
5954#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5955 otherwise. No sign interpretation is necessary or performed.
5956#. ``ugt``: interprets the operands as unsigned values and yields
5957 ``true`` if ``op1`` is greater than ``op2``.
5958#. ``uge``: interprets the operands as unsigned values and yields
5959 ``true`` if ``op1`` is greater than or equal to ``op2``.
5960#. ``ult``: interprets the operands as unsigned values and yields
5961 ``true`` if ``op1`` is less than ``op2``.
5962#. ``ule``: interprets the operands as unsigned values and yields
5963 ``true`` if ``op1`` is less than or equal to ``op2``.
5964#. ``sgt``: interprets the operands as signed values and yields ``true``
5965 if ``op1`` is greater than ``op2``.
5966#. ``sge``: interprets the operands as signed values and yields ``true``
5967 if ``op1`` is greater than or equal to ``op2``.
5968#. ``slt``: interprets the operands as signed values and yields ``true``
5969 if ``op1`` is less than ``op2``.
5970#. ``sle``: interprets the operands as signed values and yields ``true``
5971 if ``op1`` is less than or equal to ``op2``.
5972
5973If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5974are compared as if they were integers.
5975
5976If the operands are integer vectors, then they are compared element by
5977element. The result is an ``i1`` vector with the same number of elements
5978as the values being compared. Otherwise, the result is an ``i1``.
5979
5980Example:
5981""""""""
5982
5983.. code-block:: llvm
5984
5985 <result> = icmp eq i32 4, 5 ; yields: result=false
5986 <result> = icmp ne float* %X, %X ; yields: result=false
5987 <result> = icmp ult i16 4, 5 ; yields: result=true
5988 <result> = icmp sgt i16 4, 5 ; yields: result=false
5989 <result> = icmp ule i16 -4, 5 ; yields: result=false
5990 <result> = icmp sge i16 4, 5 ; yields: result=false
5991
5992Note that the code generator does not yet support vector types with the
5993``icmp`` instruction.
5994
5995.. _i_fcmp:
5996
5997'``fcmp``' Instruction
5998^^^^^^^^^^^^^^^^^^^^^^
5999
6000Syntax:
6001"""""""
6002
6003::
6004
6005 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
6006
6007Overview:
6008"""""""""
6009
6010The '``fcmp``' instruction returns a boolean value or vector of boolean
6011values based on comparison of its operands.
6012
6013If the operands are floating point scalars, then the result type is a
6014boolean (:ref:`i1 <t_integer>`).
6015
6016If the operands are floating point vectors, then the result type is a
6017vector of boolean with the same number of elements as the operands being
6018compared.
6019
6020Arguments:
6021""""""""""
6022
6023The '``fcmp``' instruction takes three operands. The first operand is
6024the condition code indicating the kind of comparison to perform. It is
6025not a value, just a keyword. The possible condition code are:
6026
6027#. ``false``: no comparison, always returns false
6028#. ``oeq``: ordered and equal
6029#. ``ogt``: ordered and greater than
6030#. ``oge``: ordered and greater than or equal
6031#. ``olt``: ordered and less than
6032#. ``ole``: ordered and less than or equal
6033#. ``one``: ordered and not equal
6034#. ``ord``: ordered (no nans)
6035#. ``ueq``: unordered or equal
6036#. ``ugt``: unordered or greater than
6037#. ``uge``: unordered or greater than or equal
6038#. ``ult``: unordered or less than
6039#. ``ule``: unordered or less than or equal
6040#. ``une``: unordered or not equal
6041#. ``uno``: unordered (either nans)
6042#. ``true``: no comparison, always returns true
6043
6044*Ordered* means that neither operand is a QNAN while *unordered* means
6045that either operand may be a QNAN.
6046
6047Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6048point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6049type. They must have identical types.
6050
6051Semantics:
6052""""""""""
6053
6054The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6055condition code given as ``cond``. If the operands are vectors, then the
6056vectors are compared element by element. Each comparison performed
6057always yields an :ref:`i1 <t_integer>` result, as follows:
6058
6059#. ``false``: always yields ``false``, regardless of operands.
6060#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6061 is equal to ``op2``.
6062#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6063 is greater than ``op2``.
6064#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6065 is greater than or equal to ``op2``.
6066#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6067 is less than ``op2``.
6068#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6069 is less than or equal to ``op2``.
6070#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6071 is not equal to ``op2``.
6072#. ``ord``: yields ``true`` if both operands are not a QNAN.
6073#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6074 equal to ``op2``.
6075#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6076 greater than ``op2``.
6077#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6078 greater than or equal to ``op2``.
6079#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6080 less than ``op2``.
6081#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6082 less than or equal to ``op2``.
6083#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6084 not equal to ``op2``.
6085#. ``uno``: yields ``true`` if either operand is a QNAN.
6086#. ``true``: always yields ``true``, regardless of operands.
6087
6088Example:
6089""""""""
6090
6091.. code-block:: llvm
6092
6093 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6094 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6095 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6096 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6097
6098Note that the code generator does not yet support vector types with the
6099``fcmp`` instruction.
6100
6101.. _i_phi:
6102
6103'``phi``' Instruction
6104^^^^^^^^^^^^^^^^^^^^^
6105
6106Syntax:
6107"""""""
6108
6109::
6110
6111 <result> = phi <ty> [ <val0>, <label0>], ...
6112
6113Overview:
6114"""""""""
6115
6116The '``phi``' instruction is used to implement the φ node in the SSA
6117graph representing the function.
6118
6119Arguments:
6120""""""""""
6121
6122The type of the incoming values is specified with the first type field.
6123After this, the '``phi``' instruction takes a list of pairs as
6124arguments, with one pair for each predecessor basic block of the current
6125block. Only values of :ref:`first class <t_firstclass>` type may be used as
6126the value arguments to the PHI node. Only labels may be used as the
6127label arguments.
6128
6129There must be no non-phi instructions between the start of a basic block
6130and the PHI instructions: i.e. PHI instructions must be first in a basic
6131block.
6132
6133For the purposes of the SSA form, the use of each incoming value is
6134deemed to occur on the edge from the corresponding predecessor block to
6135the current block (but after any definition of an '``invoke``'
6136instruction's return value on the same edge).
6137
6138Semantics:
6139""""""""""
6140
6141At runtime, the '``phi``' instruction logically takes on the value
6142specified by the pair corresponding to the predecessor basic block that
6143executed just prior to the current block.
6144
6145Example:
6146""""""""
6147
6148.. code-block:: llvm
6149
6150 Loop: ; Infinite loop that counts from 0 on up...
6151 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6152 %nextindvar = add i32 %indvar, 1
6153 br label %Loop
6154
6155.. _i_select:
6156
6157'``select``' Instruction
6158^^^^^^^^^^^^^^^^^^^^^^^^
6159
6160Syntax:
6161"""""""
6162
6163::
6164
6165 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6166
6167 selty is either i1 or {<N x i1>}
6168
6169Overview:
6170"""""""""
6171
6172The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006173condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006174
6175Arguments:
6176""""""""""
6177
6178The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6179values indicating the condition, and two values of the same :ref:`first
6180class <t_firstclass>` type. If the val1/val2 are vectors and the
6181condition is a scalar, then entire vectors are selected, not individual
6182elements.
6183
6184Semantics:
6185""""""""""
6186
6187If the condition is an i1 and it evaluates to 1, the instruction returns
6188the first value argument; otherwise, it returns the second value
6189argument.
6190
6191If the condition is a vector of i1, then the value arguments must be
6192vectors of the same size, and the selection is done element by element.
6193
6194Example:
6195""""""""
6196
6197.. code-block:: llvm
6198
6199 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6200
6201.. _i_call:
6202
6203'``call``' Instruction
6204^^^^^^^^^^^^^^^^^^^^^^
6205
6206Syntax:
6207"""""""
6208
6209::
6210
Reid Kleckner5772b772014-04-24 20:14:34 +00006211 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006212
6213Overview:
6214"""""""""
6215
6216The '``call``' instruction represents a simple function call.
6217
6218Arguments:
6219""""""""""
6220
6221This instruction requires several arguments:
6222
Reid Kleckner5772b772014-04-24 20:14:34 +00006223#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6224 should perform tail call optimization. The ``tail`` marker is a hint that
6225 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6226 means that the call must be tail call optimized in order for the program to
6227 be correct. The ``musttail`` marker provides these guarantees:
6228
6229 #. The call will not cause unbounded stack growth if it is part of a
6230 recursive cycle in the call graph.
6231 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6232 forwarded in place.
6233
6234 Both markers imply that the callee does not access allocas or varargs from
6235 the caller. Calls marked ``musttail`` must obey the following additional
6236 rules:
6237
6238 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6239 or a pointer bitcast followed by a ret instruction.
6240 - The ret instruction must return the (possibly bitcasted) value
6241 produced by the call or void.
6242 - The caller and callee prototypes must match. Pointer types of
6243 parameters or return types may differ in pointee type, but not
6244 in address space.
6245 - The calling conventions of the caller and callee must match.
6246 - All ABI-impacting function attributes, such as sret, byval, inreg,
6247 returned, and inalloca, must match.
6248
6249 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6250 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006251
6252 - Caller and callee both have the calling convention ``fastcc``.
6253 - The call is in tail position (ret immediately follows call and ret
6254 uses value of call or is void).
6255 - Option ``-tailcallopt`` is enabled, or
6256 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6257 - `Platform specific constraints are
6258 met. <CodeGenerator.html#tailcallopt>`_
6259
6260#. The optional "cconv" marker indicates which :ref:`calling
6261 convention <callingconv>` the call should use. If none is
6262 specified, the call defaults to using C calling conventions. The
6263 calling convention of the call must match the calling convention of
6264 the target function, or else the behavior is undefined.
6265#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6266 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6267 are valid here.
6268#. '``ty``': the type of the call instruction itself which is also the
6269 type of the return value. Functions that return no value are marked
6270 ``void``.
6271#. '``fnty``': shall be the signature of the pointer to function value
6272 being invoked. The argument types must match the types implied by
6273 this signature. This type can be omitted if the function is not
6274 varargs and if the function type does not return a pointer to a
6275 function.
6276#. '``fnptrval``': An LLVM value containing a pointer to a function to
6277 be invoked. In most cases, this is a direct function invocation, but
6278 indirect ``call``'s are just as possible, calling an arbitrary pointer
6279 to function value.
6280#. '``function args``': argument list whose types match the function
6281 signature argument types and parameter attributes. All arguments must
6282 be of :ref:`first class <t_firstclass>` type. If the function signature
6283 indicates the function accepts a variable number of arguments, the
6284 extra arguments can be specified.
6285#. The optional :ref:`function attributes <fnattrs>` list. Only
6286 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6287 attributes are valid here.
6288
6289Semantics:
6290""""""""""
6291
6292The '``call``' instruction is used to cause control flow to transfer to
6293a specified function, with its incoming arguments bound to the specified
6294values. Upon a '``ret``' instruction in the called function, control
6295flow continues with the instruction after the function call, and the
6296return value of the function is bound to the result argument.
6297
6298Example:
6299""""""""
6300
6301.. code-block:: llvm
6302
6303 %retval = call i32 @test(i32 %argc)
6304 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6305 %X = tail call i32 @foo() ; yields i32
6306 %Y = tail call fastcc i32 @foo() ; yields i32
6307 call void %foo(i8 97 signext)
6308
6309 %struct.A = type { i32, i8 }
6310 %r = call %struct.A @foo() ; yields { 32, i8 }
6311 %gr = extractvalue %struct.A %r, 0 ; yields i32
6312 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6313 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6314 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6315
6316llvm treats calls to some functions with names and arguments that match
6317the standard C99 library as being the C99 library functions, and may
6318perform optimizations or generate code for them under that assumption.
6319This is something we'd like to change in the future to provide better
6320support for freestanding environments and non-C-based languages.
6321
6322.. _i_va_arg:
6323
6324'``va_arg``' Instruction
6325^^^^^^^^^^^^^^^^^^^^^^^^
6326
6327Syntax:
6328"""""""
6329
6330::
6331
6332 <resultval> = va_arg <va_list*> <arglist>, <argty>
6333
6334Overview:
6335"""""""""
6336
6337The '``va_arg``' instruction is used to access arguments passed through
6338the "variable argument" area of a function call. It is used to implement
6339the ``va_arg`` macro in C.
6340
6341Arguments:
6342""""""""""
6343
6344This instruction takes a ``va_list*`` value and the type of the
6345argument. It returns a value of the specified argument type and
6346increments the ``va_list`` to point to the next argument. The actual
6347type of ``va_list`` is target specific.
6348
6349Semantics:
6350""""""""""
6351
6352The '``va_arg``' instruction loads an argument of the specified type
6353from the specified ``va_list`` and causes the ``va_list`` to point to
6354the next argument. For more information, see the variable argument
6355handling :ref:`Intrinsic Functions <int_varargs>`.
6356
6357It is legal for this instruction to be called in a function which does
6358not take a variable number of arguments, for example, the ``vfprintf``
6359function.
6360
6361``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6362function <intrinsics>` because it takes a type as an argument.
6363
6364Example:
6365""""""""
6366
6367See the :ref:`variable argument processing <int_varargs>` section.
6368
6369Note that the code generator does not yet fully support va\_arg on many
6370targets. Also, it does not currently support va\_arg with aggregate
6371types on any target.
6372
6373.. _i_landingpad:
6374
6375'``landingpad``' Instruction
6376^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6377
6378Syntax:
6379"""""""
6380
6381::
6382
6383 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6384 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6385
6386 <clause> := catch <type> <value>
6387 <clause> := filter <array constant type> <array constant>
6388
6389Overview:
6390"""""""""
6391
6392The '``landingpad``' instruction is used by `LLVM's exception handling
6393system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006394is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006395code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6396defines values supplied by the personality function (``pers_fn``) upon
6397re-entry to the function. The ``resultval`` has the type ``resultty``.
6398
6399Arguments:
6400""""""""""
6401
6402This instruction takes a ``pers_fn`` value. This is the personality
6403function associated with the unwinding mechanism. The optional
6404``cleanup`` flag indicates that the landing pad block is a cleanup.
6405
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006406A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006407contains the global variable representing the "type" that may be caught
6408or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6409clause takes an array constant as its argument. Use
6410"``[0 x i8**] undef``" for a filter which cannot throw. The
6411'``landingpad``' instruction must contain *at least* one ``clause`` or
6412the ``cleanup`` flag.
6413
6414Semantics:
6415""""""""""
6416
6417The '``landingpad``' instruction defines the values which are set by the
6418personality function (``pers_fn``) upon re-entry to the function, and
6419therefore the "result type" of the ``landingpad`` instruction. As with
6420calling conventions, how the personality function results are
6421represented in LLVM IR is target specific.
6422
6423The clauses are applied in order from top to bottom. If two
6424``landingpad`` instructions are merged together through inlining, the
6425clauses from the calling function are appended to the list of clauses.
6426When the call stack is being unwound due to an exception being thrown,
6427the exception is compared against each ``clause`` in turn. If it doesn't
6428match any of the clauses, and the ``cleanup`` flag is not set, then
6429unwinding continues further up the call stack.
6430
6431The ``landingpad`` instruction has several restrictions:
6432
6433- A landing pad block is a basic block which is the unwind destination
6434 of an '``invoke``' instruction.
6435- A landing pad block must have a '``landingpad``' instruction as its
6436 first non-PHI instruction.
6437- There can be only one '``landingpad``' instruction within the landing
6438 pad block.
6439- A basic block that is not a landing pad block may not include a
6440 '``landingpad``' instruction.
6441- All '``landingpad``' instructions in a function must have the same
6442 personality function.
6443
6444Example:
6445""""""""
6446
6447.. code-block:: llvm
6448
6449 ;; A landing pad which can catch an integer.
6450 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6451 catch i8** @_ZTIi
6452 ;; A landing pad that is a cleanup.
6453 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6454 cleanup
6455 ;; A landing pad which can catch an integer and can only throw a double.
6456 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6457 catch i8** @_ZTIi
6458 filter [1 x i8**] [@_ZTId]
6459
6460.. _intrinsics:
6461
6462Intrinsic Functions
6463===================
6464
6465LLVM supports the notion of an "intrinsic function". These functions
6466have well known names and semantics and are required to follow certain
6467restrictions. Overall, these intrinsics represent an extension mechanism
6468for the LLVM language that does not require changing all of the
6469transformations in LLVM when adding to the language (or the bitcode
6470reader/writer, the parser, etc...).
6471
6472Intrinsic function names must all start with an "``llvm.``" prefix. This
6473prefix is reserved in LLVM for intrinsic names; thus, function names may
6474not begin with this prefix. Intrinsic functions must always be external
6475functions: you cannot define the body of intrinsic functions. Intrinsic
6476functions may only be used in call or invoke instructions: it is illegal
6477to take the address of an intrinsic function. Additionally, because
6478intrinsic functions are part of the LLVM language, it is required if any
6479are added that they be documented here.
6480
6481Some intrinsic functions can be overloaded, i.e., the intrinsic
6482represents a family of functions that perform the same operation but on
6483different data types. Because LLVM can represent over 8 million
6484different integer types, overloading is used commonly to allow an
6485intrinsic function to operate on any integer type. One or more of the
6486argument types or the result type can be overloaded to accept any
6487integer type. Argument types may also be defined as exactly matching a
6488previous argument's type or the result type. This allows an intrinsic
6489function which accepts multiple arguments, but needs all of them to be
6490of the same type, to only be overloaded with respect to a single
6491argument or the result.
6492
6493Overloaded intrinsics will have the names of its overloaded argument
6494types encoded into its function name, each preceded by a period. Only
6495those types which are overloaded result in a name suffix. Arguments
6496whose type is matched against another type do not. For example, the
6497``llvm.ctpop`` function can take an integer of any width and returns an
6498integer of exactly the same integer width. This leads to a family of
6499functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6500``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6501overloaded, and only one type suffix is required. Because the argument's
6502type is matched against the return type, it does not require its own
6503name suffix.
6504
6505To learn how to add an intrinsic function, please see the `Extending
6506LLVM Guide <ExtendingLLVM.html>`_.
6507
6508.. _int_varargs:
6509
6510Variable Argument Handling Intrinsics
6511-------------------------------------
6512
6513Variable argument support is defined in LLVM with the
6514:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6515functions. These functions are related to the similarly named macros
6516defined in the ``<stdarg.h>`` header file.
6517
6518All of these functions operate on arguments that use a target-specific
6519value type "``va_list``". The LLVM assembly language reference manual
6520does not define what this type is, so all transformations should be
6521prepared to handle these functions regardless of the type used.
6522
6523This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6524variable argument handling intrinsic functions are used.
6525
6526.. code-block:: llvm
6527
6528 define i32 @test(i32 %X, ...) {
6529 ; Initialize variable argument processing
6530 %ap = alloca i8*
6531 %ap2 = bitcast i8** %ap to i8*
6532 call void @llvm.va_start(i8* %ap2)
6533
6534 ; Read a single integer argument
6535 %tmp = va_arg i8** %ap, i32
6536
6537 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6538 %aq = alloca i8*
6539 %aq2 = bitcast i8** %aq to i8*
6540 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6541 call void @llvm.va_end(i8* %aq2)
6542
6543 ; Stop processing of arguments.
6544 call void @llvm.va_end(i8* %ap2)
6545 ret i32 %tmp
6546 }
6547
6548 declare void @llvm.va_start(i8*)
6549 declare void @llvm.va_copy(i8*, i8*)
6550 declare void @llvm.va_end(i8*)
6551
6552.. _int_va_start:
6553
6554'``llvm.va_start``' Intrinsic
6555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
Nick Lewycky04f6de02013-09-11 22:04:52 +00006562 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006563
6564Overview:
6565"""""""""
6566
6567The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6568subsequent use by ``va_arg``.
6569
6570Arguments:
6571""""""""""
6572
6573The argument is a pointer to a ``va_list`` element to initialize.
6574
6575Semantics:
6576""""""""""
6577
6578The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6579available in C. In a target-dependent way, it initializes the
6580``va_list`` element to which the argument points, so that the next call
6581to ``va_arg`` will produce the first variable argument passed to the
6582function. Unlike the C ``va_start`` macro, this intrinsic does not need
6583to know the last argument of the function as the compiler can figure
6584that out.
6585
6586'``llvm.va_end``' Intrinsic
6587^^^^^^^^^^^^^^^^^^^^^^^^^^^
6588
6589Syntax:
6590"""""""
6591
6592::
6593
6594 declare void @llvm.va_end(i8* <arglist>)
6595
6596Overview:
6597"""""""""
6598
6599The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6600initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6601
6602Arguments:
6603""""""""""
6604
6605The argument is a pointer to a ``va_list`` to destroy.
6606
6607Semantics:
6608""""""""""
6609
6610The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6611available in C. In a target-dependent way, it destroys the ``va_list``
6612element to which the argument points. Calls to
6613:ref:`llvm.va_start <int_va_start>` and
6614:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6615``llvm.va_end``.
6616
6617.. _int_va_copy:
6618
6619'``llvm.va_copy``' Intrinsic
6620^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
6627 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6628
6629Overview:
6630"""""""""
6631
6632The '``llvm.va_copy``' intrinsic copies the current argument position
6633from the source argument list to the destination argument list.
6634
6635Arguments:
6636""""""""""
6637
6638The first argument is a pointer to a ``va_list`` element to initialize.
6639The second argument is a pointer to a ``va_list`` element to copy from.
6640
6641Semantics:
6642""""""""""
6643
6644The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6645available in C. In a target-dependent way, it copies the source
6646``va_list`` element into the destination ``va_list`` element. This
6647intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6648arbitrarily complex and require, for example, memory allocation.
6649
6650Accurate Garbage Collection Intrinsics
6651--------------------------------------
6652
6653LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6654(GC) requires the implementation and generation of these intrinsics.
6655These intrinsics allow identification of :ref:`GC roots on the
6656stack <int_gcroot>`, as well as garbage collector implementations that
6657require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6658Front-ends for type-safe garbage collected languages should generate
6659these intrinsics to make use of the LLVM garbage collectors. For more
6660details, see `Accurate Garbage Collection with
6661LLVM <GarbageCollection.html>`_.
6662
6663The garbage collection intrinsics only operate on objects in the generic
6664address space (address space zero).
6665
6666.. _int_gcroot:
6667
6668'``llvm.gcroot``' Intrinsic
6669^^^^^^^^^^^^^^^^^^^^^^^^^^^
6670
6671Syntax:
6672"""""""
6673
6674::
6675
6676 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6677
6678Overview:
6679"""""""""
6680
6681The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6682the code generator, and allows some metadata to be associated with it.
6683
6684Arguments:
6685""""""""""
6686
6687The first argument specifies the address of a stack object that contains
6688the root pointer. The second pointer (which must be either a constant or
6689a global value address) contains the meta-data to be associated with the
6690root.
6691
6692Semantics:
6693""""""""""
6694
6695At runtime, a call to this intrinsic stores a null pointer into the
6696"ptrloc" location. At compile-time, the code generator generates
6697information to allow the runtime to find the pointer at GC safe points.
6698The '``llvm.gcroot``' intrinsic may only be used in a function which
6699:ref:`specifies a GC algorithm <gc>`.
6700
6701.. _int_gcread:
6702
6703'``llvm.gcread``' Intrinsic
6704^^^^^^^^^^^^^^^^^^^^^^^^^^^
6705
6706Syntax:
6707"""""""
6708
6709::
6710
6711 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6712
6713Overview:
6714"""""""""
6715
6716The '``llvm.gcread``' intrinsic identifies reads of references from heap
6717locations, allowing garbage collector implementations that require read
6718barriers.
6719
6720Arguments:
6721""""""""""
6722
6723The second argument is the address to read from, which should be an
6724address allocated from the garbage collector. The first object is a
6725pointer to the start of the referenced object, if needed by the language
6726runtime (otherwise null).
6727
6728Semantics:
6729""""""""""
6730
6731The '``llvm.gcread``' intrinsic has the same semantics as a load
6732instruction, but may be replaced with substantially more complex code by
6733the garbage collector runtime, as needed. The '``llvm.gcread``'
6734intrinsic may only be used in a function which :ref:`specifies a GC
6735algorithm <gc>`.
6736
6737.. _int_gcwrite:
6738
6739'``llvm.gcwrite``' Intrinsic
6740^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6741
6742Syntax:
6743"""""""
6744
6745::
6746
6747 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6748
6749Overview:
6750"""""""""
6751
6752The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6753locations, allowing garbage collector implementations that require write
6754barriers (such as generational or reference counting collectors).
6755
6756Arguments:
6757""""""""""
6758
6759The first argument is the reference to store, the second is the start of
6760the object to store it to, and the third is the address of the field of
6761Obj to store to. If the runtime does not require a pointer to the
6762object, Obj may be null.
6763
6764Semantics:
6765""""""""""
6766
6767The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6768instruction, but may be replaced with substantially more complex code by
6769the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6770intrinsic may only be used in a function which :ref:`specifies a GC
6771algorithm <gc>`.
6772
6773Code Generator Intrinsics
6774-------------------------
6775
6776These intrinsics are provided by LLVM to expose special features that
6777may only be implemented with code generator support.
6778
6779'``llvm.returnaddress``' Intrinsic
6780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6781
6782Syntax:
6783"""""""
6784
6785::
6786
6787 declare i8 *@llvm.returnaddress(i32 <level>)
6788
6789Overview:
6790"""""""""
6791
6792The '``llvm.returnaddress``' intrinsic attempts to compute a
6793target-specific value indicating the return address of the current
6794function or one of its callers.
6795
6796Arguments:
6797""""""""""
6798
6799The argument to this intrinsic indicates which function to return the
6800address for. Zero indicates the calling function, one indicates its
6801caller, etc. The argument is **required** to be a constant integer
6802value.
6803
6804Semantics:
6805""""""""""
6806
6807The '``llvm.returnaddress``' intrinsic either returns a pointer
6808indicating the return address of the specified call frame, or zero if it
6809cannot be identified. The value returned by this intrinsic is likely to
6810be incorrect or 0 for arguments other than zero, so it should only be
6811used for debugging purposes.
6812
6813Note that calling this intrinsic does not prevent function inlining or
6814other aggressive transformations, so the value returned may not be that
6815of the obvious source-language caller.
6816
6817'``llvm.frameaddress``' Intrinsic
6818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6819
6820Syntax:
6821"""""""
6822
6823::
6824
6825 declare i8* @llvm.frameaddress(i32 <level>)
6826
6827Overview:
6828"""""""""
6829
6830The '``llvm.frameaddress``' intrinsic attempts to return the
6831target-specific frame pointer value for the specified stack frame.
6832
6833Arguments:
6834""""""""""
6835
6836The argument to this intrinsic indicates which function to return the
6837frame pointer for. Zero indicates the calling function, one indicates
6838its caller, etc. The argument is **required** to be a constant integer
6839value.
6840
6841Semantics:
6842""""""""""
6843
6844The '``llvm.frameaddress``' intrinsic either returns a pointer
6845indicating the frame address of the specified call frame, or zero if it
6846cannot be identified. The value returned by this intrinsic is likely to
6847be incorrect or 0 for arguments other than zero, so it should only be
6848used for debugging purposes.
6849
6850Note that calling this intrinsic does not prevent function inlining or
6851other aggressive transformations, so the value returned may not be that
6852of the obvious source-language caller.
6853
Renato Golinc7aea402014-05-06 16:51:25 +00006854.. _int_read_register:
6855.. _int_write_register:
6856
6857'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6859
6860Syntax:
6861"""""""
6862
6863::
6864
6865 declare i32 @llvm.read_register.i32(metadata)
6866 declare i64 @llvm.read_register.i64(metadata)
6867 declare void @llvm.write_register.i32(metadata, i32 @value)
6868 declare void @llvm.write_register.i64(metadata, i64 @value)
6869 !0 = metadata !{metadata !"sp\00"}
6870
6871Overview:
6872"""""""""
6873
6874The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6875provides access to the named register. The register must be valid on
6876the architecture being compiled to. The type needs to be compatible
6877with the register being read.
6878
6879Semantics:
6880""""""""""
6881
6882The '``llvm.read_register``' intrinsic returns the current value of the
6883register, where possible. The '``llvm.write_register``' intrinsic sets
6884the current value of the register, where possible.
6885
6886This is useful to implement named register global variables that need
6887to always be mapped to a specific register, as is common practice on
6888bare-metal programs including OS kernels.
6889
6890The compiler doesn't check for register availability or use of the used
6891register in surrounding code, including inline assembly. Because of that,
6892allocatable registers are not supported.
6893
6894Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006895architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006896work is needed to support other registers and even more so, allocatable
6897registers.
6898
Sean Silvab084af42012-12-07 10:36:55 +00006899.. _int_stacksave:
6900
6901'``llvm.stacksave``' Intrinsic
6902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907::
6908
6909 declare i8* @llvm.stacksave()
6910
6911Overview:
6912"""""""""
6913
6914The '``llvm.stacksave``' intrinsic is used to remember the current state
6915of the function stack, for use with
6916:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6917implementing language features like scoped automatic variable sized
6918arrays in C99.
6919
6920Semantics:
6921""""""""""
6922
6923This intrinsic returns a opaque pointer value that can be passed to
6924:ref:`llvm.stackrestore <int_stackrestore>`. When an
6925``llvm.stackrestore`` intrinsic is executed with a value saved from
6926``llvm.stacksave``, it effectively restores the state of the stack to
6927the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6928practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6929were allocated after the ``llvm.stacksave`` was executed.
6930
6931.. _int_stackrestore:
6932
6933'``llvm.stackrestore``' Intrinsic
6934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6935
6936Syntax:
6937"""""""
6938
6939::
6940
6941 declare void @llvm.stackrestore(i8* %ptr)
6942
6943Overview:
6944"""""""""
6945
6946The '``llvm.stackrestore``' intrinsic is used to restore the state of
6947the function stack to the state it was in when the corresponding
6948:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6949useful for implementing language features like scoped automatic variable
6950sized arrays in C99.
6951
6952Semantics:
6953""""""""""
6954
6955See the description for :ref:`llvm.stacksave <int_stacksave>`.
6956
6957'``llvm.prefetch``' Intrinsic
6958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6959
6960Syntax:
6961"""""""
6962
6963::
6964
6965 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6966
6967Overview:
6968"""""""""
6969
6970The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6971insert a prefetch instruction if supported; otherwise, it is a noop.
6972Prefetches have no effect on the behavior of the program but can change
6973its performance characteristics.
6974
6975Arguments:
6976""""""""""
6977
6978``address`` is the address to be prefetched, ``rw`` is the specifier
6979determining if the fetch should be for a read (0) or write (1), and
6980``locality`` is a temporal locality specifier ranging from (0) - no
6981locality, to (3) - extremely local keep in cache. The ``cache type``
6982specifies whether the prefetch is performed on the data (1) or
6983instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6984arguments must be constant integers.
6985
6986Semantics:
6987""""""""""
6988
6989This intrinsic does not modify the behavior of the program. In
6990particular, prefetches cannot trap and do not produce a value. On
6991targets that support this intrinsic, the prefetch can provide hints to
6992the processor cache for better performance.
6993
6994'``llvm.pcmarker``' Intrinsic
6995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6996
6997Syntax:
6998"""""""
6999
7000::
7001
7002 declare void @llvm.pcmarker(i32 <id>)
7003
7004Overview:
7005"""""""""
7006
7007The '``llvm.pcmarker``' intrinsic is a method to export a Program
7008Counter (PC) in a region of code to simulators and other tools. The
7009method is target specific, but it is expected that the marker will use
7010exported symbols to transmit the PC of the marker. The marker makes no
7011guarantees that it will remain with any specific instruction after
7012optimizations. It is possible that the presence of a marker will inhibit
7013optimizations. The intended use is to be inserted after optimizations to
7014allow correlations of simulation runs.
7015
7016Arguments:
7017""""""""""
7018
7019``id`` is a numerical id identifying the marker.
7020
7021Semantics:
7022""""""""""
7023
7024This intrinsic does not modify the behavior of the program. Backends
7025that do not support this intrinsic may ignore it.
7026
7027'``llvm.readcyclecounter``' Intrinsic
7028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7029
7030Syntax:
7031"""""""
7032
7033::
7034
7035 declare i64 @llvm.readcyclecounter()
7036
7037Overview:
7038"""""""""
7039
7040The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7041counter register (or similar low latency, high accuracy clocks) on those
7042targets that support it. On X86, it should map to RDTSC. On Alpha, it
7043should map to RPCC. As the backing counters overflow quickly (on the
7044order of 9 seconds on alpha), this should only be used for small
7045timings.
7046
7047Semantics:
7048""""""""""
7049
7050When directly supported, reading the cycle counter should not modify any
7051memory. Implementations are allowed to either return a application
7052specific value or a system wide value. On backends without support, this
7053is lowered to a constant 0.
7054
Tim Northoverbc933082013-05-23 19:11:20 +00007055Note that runtime support may be conditional on the privilege-level code is
7056running at and the host platform.
7057
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007058'``llvm.clear_cache``' Intrinsic
7059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7060
7061Syntax:
7062"""""""
7063
7064::
7065
7066 declare void @llvm.clear_cache(i8*, i8*)
7067
7068Overview:
7069"""""""""
7070
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007071The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7072in the specified range to the execution unit of the processor. On
7073targets with non-unified instruction and data cache, the implementation
7074flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007075
7076Semantics:
7077""""""""""
7078
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007079On platforms with coherent instruction and data caches (e.g. x86), this
7080intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007081cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007082instructions or a system call, if cache flushing requires special
7083privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007084
Sean Silvad02bf3e2014-04-07 22:29:53 +00007085The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007086time library.
Renato Golin93010e62014-03-26 14:01:32 +00007087
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007088This instrinsic does *not* empty the instruction pipeline. Modifications
7089of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007090
Sean Silvab084af42012-12-07 10:36:55 +00007091Standard C Library Intrinsics
7092-----------------------------
7093
7094LLVM provides intrinsics for a few important standard C library
7095functions. These intrinsics allow source-language front-ends to pass
7096information about the alignment of the pointer arguments to the code
7097generator, providing opportunity for more efficient code generation.
7098
7099.. _int_memcpy:
7100
7101'``llvm.memcpy``' Intrinsic
7102^^^^^^^^^^^^^^^^^^^^^^^^^^^
7103
7104Syntax:
7105"""""""
7106
7107This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7108integer bit width and for different address spaces. Not all targets
7109support all bit widths however.
7110
7111::
7112
7113 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7114 i32 <len>, i32 <align>, i1 <isvolatile>)
7115 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7116 i64 <len>, i32 <align>, i1 <isvolatile>)
7117
7118Overview:
7119"""""""""
7120
7121The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7122source location to the destination location.
7123
7124Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7125intrinsics do not return a value, takes extra alignment/isvolatile
7126arguments and the pointers can be in specified address spaces.
7127
7128Arguments:
7129""""""""""
7130
7131The first argument is a pointer to the destination, the second is a
7132pointer to the source. The third argument is an integer argument
7133specifying the number of bytes to copy, the fourth argument is the
7134alignment of the source and destination locations, and the fifth is a
7135boolean indicating a volatile access.
7136
7137If the call to this intrinsic has an alignment value that is not 0 or 1,
7138then the caller guarantees that both the source and destination pointers
7139are aligned to that boundary.
7140
7141If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7142a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7143very cleanly specified and it is unwise to depend on it.
7144
7145Semantics:
7146""""""""""
7147
7148The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7149source location to the destination location, which are not allowed to
7150overlap. It copies "len" bytes of memory over. If the argument is known
7151to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007152argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007153
7154'``llvm.memmove``' Intrinsic
7155^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7156
7157Syntax:
7158"""""""
7159
7160This is an overloaded intrinsic. You can use llvm.memmove on any integer
7161bit width and for different address space. Not all targets support all
7162bit widths however.
7163
7164::
7165
7166 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7167 i32 <len>, i32 <align>, i1 <isvolatile>)
7168 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7169 i64 <len>, i32 <align>, i1 <isvolatile>)
7170
7171Overview:
7172"""""""""
7173
7174The '``llvm.memmove.*``' intrinsics move a block of memory from the
7175source location to the destination location. It is similar to the
7176'``llvm.memcpy``' intrinsic but allows the two memory locations to
7177overlap.
7178
7179Note that, unlike the standard libc function, the ``llvm.memmove.*``
7180intrinsics do not return a value, takes extra alignment/isvolatile
7181arguments and the pointers can be in specified address spaces.
7182
7183Arguments:
7184""""""""""
7185
7186The first argument is a pointer to the destination, the second is a
7187pointer to the source. The third argument is an integer argument
7188specifying the number of bytes to copy, the fourth argument is the
7189alignment of the source and destination locations, and the fifth is a
7190boolean indicating a volatile access.
7191
7192If the call to this intrinsic has an alignment value that is not 0 or 1,
7193then the caller guarantees that the source and destination pointers are
7194aligned to that boundary.
7195
7196If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7197is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7198not very cleanly specified and it is unwise to depend on it.
7199
7200Semantics:
7201""""""""""
7202
7203The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7204source location to the destination location, which may overlap. It
7205copies "len" bytes of memory over. If the argument is known to be
7206aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007207otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007208
7209'``llvm.memset.*``' Intrinsics
7210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7211
7212Syntax:
7213"""""""
7214
7215This is an overloaded intrinsic. You can use llvm.memset on any integer
7216bit width and for different address spaces. However, not all targets
7217support all bit widths.
7218
7219::
7220
7221 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7222 i32 <len>, i32 <align>, i1 <isvolatile>)
7223 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7224 i64 <len>, i32 <align>, i1 <isvolatile>)
7225
7226Overview:
7227"""""""""
7228
7229The '``llvm.memset.*``' intrinsics fill a block of memory with a
7230particular byte value.
7231
7232Note that, unlike the standard libc function, the ``llvm.memset``
7233intrinsic does not return a value and takes extra alignment/volatile
7234arguments. Also, the destination can be in an arbitrary address space.
7235
7236Arguments:
7237""""""""""
7238
7239The first argument is a pointer to the destination to fill, the second
7240is the byte value with which to fill it, the third argument is an
7241integer argument specifying the number of bytes to fill, and the fourth
7242argument is the known alignment of the destination location.
7243
7244If the call to this intrinsic has an alignment value that is not 0 or 1,
7245then the caller guarantees that the destination pointer is aligned to
7246that boundary.
7247
7248If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7249a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7250very cleanly specified and it is unwise to depend on it.
7251
7252Semantics:
7253""""""""""
7254
7255The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7256at the destination location. If the argument is known to be aligned to
7257some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007258it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007259
7260'``llvm.sqrt.*``' Intrinsic
7261^^^^^^^^^^^^^^^^^^^^^^^^^^^
7262
7263Syntax:
7264"""""""
7265
7266This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7267floating point or vector of floating point type. Not all targets support
7268all types however.
7269
7270::
7271
7272 declare float @llvm.sqrt.f32(float %Val)
7273 declare double @llvm.sqrt.f64(double %Val)
7274 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7275 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7276 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7277
7278Overview:
7279"""""""""
7280
7281The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7282returning the same value as the libm '``sqrt``' functions would. Unlike
7283``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7284negative numbers other than -0.0 (which allows for better optimization,
7285because there is no need to worry about errno being set).
7286``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7287
7288Arguments:
7289""""""""""
7290
7291The argument and return value are floating point numbers of the same
7292type.
7293
7294Semantics:
7295""""""""""
7296
7297This function returns the sqrt of the specified operand if it is a
7298nonnegative floating point number.
7299
7300'``llvm.powi.*``' Intrinsic
7301^^^^^^^^^^^^^^^^^^^^^^^^^^^
7302
7303Syntax:
7304"""""""
7305
7306This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7307floating point or vector of floating point type. Not all targets support
7308all types however.
7309
7310::
7311
7312 declare float @llvm.powi.f32(float %Val, i32 %power)
7313 declare double @llvm.powi.f64(double %Val, i32 %power)
7314 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7315 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7316 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7317
7318Overview:
7319"""""""""
7320
7321The '``llvm.powi.*``' intrinsics return the first operand raised to the
7322specified (positive or negative) power. The order of evaluation of
7323multiplications is not defined. When a vector of floating point type is
7324used, the second argument remains a scalar integer value.
7325
7326Arguments:
7327""""""""""
7328
7329The second argument is an integer power, and the first is a value to
7330raise to that power.
7331
7332Semantics:
7333""""""""""
7334
7335This function returns the first value raised to the second power with an
7336unspecified sequence of rounding operations.
7337
7338'``llvm.sin.*``' Intrinsic
7339^^^^^^^^^^^^^^^^^^^^^^^^^^
7340
7341Syntax:
7342"""""""
7343
7344This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7345floating point or vector of floating point type. Not all targets support
7346all types however.
7347
7348::
7349
7350 declare float @llvm.sin.f32(float %Val)
7351 declare double @llvm.sin.f64(double %Val)
7352 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7353 declare fp128 @llvm.sin.f128(fp128 %Val)
7354 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7355
7356Overview:
7357"""""""""
7358
7359The '``llvm.sin.*``' intrinsics return the sine of the operand.
7360
7361Arguments:
7362""""""""""
7363
7364The argument and return value are floating point numbers of the same
7365type.
7366
7367Semantics:
7368""""""""""
7369
7370This function returns the sine of the specified operand, returning the
7371same values as the libm ``sin`` functions would, and handles error
7372conditions in the same way.
7373
7374'``llvm.cos.*``' Intrinsic
7375^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7381floating point or vector of floating point type. Not all targets support
7382all types however.
7383
7384::
7385
7386 declare float @llvm.cos.f32(float %Val)
7387 declare double @llvm.cos.f64(double %Val)
7388 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7389 declare fp128 @llvm.cos.f128(fp128 %Val)
7390 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7391
7392Overview:
7393"""""""""
7394
7395The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7396
7397Arguments:
7398""""""""""
7399
7400The argument and return value are floating point numbers of the same
7401type.
7402
7403Semantics:
7404""""""""""
7405
7406This function returns the cosine of the specified operand, returning the
7407same values as the libm ``cos`` functions would, and handles error
7408conditions in the same way.
7409
7410'``llvm.pow.*``' Intrinsic
7411^^^^^^^^^^^^^^^^^^^^^^^^^^
7412
7413Syntax:
7414"""""""
7415
7416This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7417floating point or vector of floating point type. Not all targets support
7418all types however.
7419
7420::
7421
7422 declare float @llvm.pow.f32(float %Val, float %Power)
7423 declare double @llvm.pow.f64(double %Val, double %Power)
7424 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7425 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7426 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7427
7428Overview:
7429"""""""""
7430
7431The '``llvm.pow.*``' intrinsics return the first operand raised to the
7432specified (positive or negative) power.
7433
7434Arguments:
7435""""""""""
7436
7437The second argument is a floating point power, and the first is a value
7438to raise to that power.
7439
7440Semantics:
7441""""""""""
7442
7443This function returns the first value raised to the second power,
7444returning the same values as the libm ``pow`` functions would, and
7445handles error conditions in the same way.
7446
7447'``llvm.exp.*``' Intrinsic
7448^^^^^^^^^^^^^^^^^^^^^^^^^^
7449
7450Syntax:
7451"""""""
7452
7453This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7454floating point or vector of floating point type. Not all targets support
7455all types however.
7456
7457::
7458
7459 declare float @llvm.exp.f32(float %Val)
7460 declare double @llvm.exp.f64(double %Val)
7461 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7462 declare fp128 @llvm.exp.f128(fp128 %Val)
7463 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7464
7465Overview:
7466"""""""""
7467
7468The '``llvm.exp.*``' intrinsics perform the exp function.
7469
7470Arguments:
7471""""""""""
7472
7473The argument and return value are floating point numbers of the same
7474type.
7475
7476Semantics:
7477""""""""""
7478
7479This function returns the same values as the libm ``exp`` functions
7480would, and handles error conditions in the same way.
7481
7482'``llvm.exp2.*``' Intrinsic
7483^^^^^^^^^^^^^^^^^^^^^^^^^^^
7484
7485Syntax:
7486"""""""
7487
7488This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7489floating point or vector of floating point type. Not all targets support
7490all types however.
7491
7492::
7493
7494 declare float @llvm.exp2.f32(float %Val)
7495 declare double @llvm.exp2.f64(double %Val)
7496 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7497 declare fp128 @llvm.exp2.f128(fp128 %Val)
7498 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7499
7500Overview:
7501"""""""""
7502
7503The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7504
7505Arguments:
7506""""""""""
7507
7508The argument and return value are floating point numbers of the same
7509type.
7510
7511Semantics:
7512""""""""""
7513
7514This function returns the same values as the libm ``exp2`` functions
7515would, and handles error conditions in the same way.
7516
7517'``llvm.log.*``' Intrinsic
7518^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523This is an overloaded intrinsic. You can use ``llvm.log`` on any
7524floating point or vector of floating point type. Not all targets support
7525all types however.
7526
7527::
7528
7529 declare float @llvm.log.f32(float %Val)
7530 declare double @llvm.log.f64(double %Val)
7531 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7532 declare fp128 @llvm.log.f128(fp128 %Val)
7533 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7534
7535Overview:
7536"""""""""
7537
7538The '``llvm.log.*``' intrinsics perform the log function.
7539
7540Arguments:
7541""""""""""
7542
7543The argument and return value are floating point numbers of the same
7544type.
7545
7546Semantics:
7547""""""""""
7548
7549This function returns the same values as the libm ``log`` functions
7550would, and handles error conditions in the same way.
7551
7552'``llvm.log10.*``' Intrinsic
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7559floating point or vector of floating point type. Not all targets support
7560all types however.
7561
7562::
7563
7564 declare float @llvm.log10.f32(float %Val)
7565 declare double @llvm.log10.f64(double %Val)
7566 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7567 declare fp128 @llvm.log10.f128(fp128 %Val)
7568 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7569
7570Overview:
7571"""""""""
7572
7573The '``llvm.log10.*``' intrinsics perform the log10 function.
7574
7575Arguments:
7576""""""""""
7577
7578The argument and return value are floating point numbers of the same
7579type.
7580
7581Semantics:
7582""""""""""
7583
7584This function returns the same values as the libm ``log10`` functions
7585would, and handles error conditions in the same way.
7586
7587'``llvm.log2.*``' Intrinsic
7588^^^^^^^^^^^^^^^^^^^^^^^^^^^
7589
7590Syntax:
7591"""""""
7592
7593This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7594floating point or vector of floating point type. Not all targets support
7595all types however.
7596
7597::
7598
7599 declare float @llvm.log2.f32(float %Val)
7600 declare double @llvm.log2.f64(double %Val)
7601 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7602 declare fp128 @llvm.log2.f128(fp128 %Val)
7603 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7604
7605Overview:
7606"""""""""
7607
7608The '``llvm.log2.*``' intrinsics perform the log2 function.
7609
7610Arguments:
7611""""""""""
7612
7613The argument and return value are floating point numbers of the same
7614type.
7615
7616Semantics:
7617""""""""""
7618
7619This function returns the same values as the libm ``log2`` functions
7620would, and handles error conditions in the same way.
7621
7622'``llvm.fma.*``' Intrinsic
7623^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7629floating point or vector of floating point type. Not all targets support
7630all types however.
7631
7632::
7633
7634 declare float @llvm.fma.f32(float %a, float %b, float %c)
7635 declare double @llvm.fma.f64(double %a, double %b, double %c)
7636 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7637 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7638 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7639
7640Overview:
7641"""""""""
7642
7643The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7644operation.
7645
7646Arguments:
7647""""""""""
7648
7649The argument and return value are floating point numbers of the same
7650type.
7651
7652Semantics:
7653""""""""""
7654
7655This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007656would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007657
7658'``llvm.fabs.*``' Intrinsic
7659^^^^^^^^^^^^^^^^^^^^^^^^^^^
7660
7661Syntax:
7662"""""""
7663
7664This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7665floating point or vector of floating point type. Not all targets support
7666all types however.
7667
7668::
7669
7670 declare float @llvm.fabs.f32(float %Val)
7671 declare double @llvm.fabs.f64(double %Val)
7672 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7673 declare fp128 @llvm.fabs.f128(fp128 %Val)
7674 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7675
7676Overview:
7677"""""""""
7678
7679The '``llvm.fabs.*``' intrinsics return the absolute value of the
7680operand.
7681
7682Arguments:
7683""""""""""
7684
7685The argument and return value are floating point numbers of the same
7686type.
7687
7688Semantics:
7689""""""""""
7690
7691This function returns the same values as the libm ``fabs`` functions
7692would, and handles error conditions in the same way.
7693
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007694'``llvm.copysign.*``' Intrinsic
7695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7696
7697Syntax:
7698"""""""
7699
7700This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7701floating point or vector of floating point type. Not all targets support
7702all types however.
7703
7704::
7705
7706 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7707 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7708 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7709 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7710 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7711
7712Overview:
7713"""""""""
7714
7715The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7716first operand and the sign of the second operand.
7717
7718Arguments:
7719""""""""""
7720
7721The arguments and return value are floating point numbers of the same
7722type.
7723
7724Semantics:
7725""""""""""
7726
7727This function returns the same values as the libm ``copysign``
7728functions would, and handles error conditions in the same way.
7729
Sean Silvab084af42012-12-07 10:36:55 +00007730'``llvm.floor.*``' Intrinsic
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7737floating point or vector of floating point type. Not all targets support
7738all types however.
7739
7740::
7741
7742 declare float @llvm.floor.f32(float %Val)
7743 declare double @llvm.floor.f64(double %Val)
7744 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7745 declare fp128 @llvm.floor.f128(fp128 %Val)
7746 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7747
7748Overview:
7749"""""""""
7750
7751The '``llvm.floor.*``' intrinsics return the floor of the operand.
7752
7753Arguments:
7754""""""""""
7755
7756The argument and return value are floating point numbers of the same
7757type.
7758
7759Semantics:
7760""""""""""
7761
7762This function returns the same values as the libm ``floor`` functions
7763would, and handles error conditions in the same way.
7764
7765'``llvm.ceil.*``' Intrinsic
7766^^^^^^^^^^^^^^^^^^^^^^^^^^^
7767
7768Syntax:
7769"""""""
7770
7771This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7772floating point or vector of floating point type. Not all targets support
7773all types however.
7774
7775::
7776
7777 declare float @llvm.ceil.f32(float %Val)
7778 declare double @llvm.ceil.f64(double %Val)
7779 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7780 declare fp128 @llvm.ceil.f128(fp128 %Val)
7781 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7782
7783Overview:
7784"""""""""
7785
7786The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7787
7788Arguments:
7789""""""""""
7790
7791The argument and return value are floating point numbers of the same
7792type.
7793
7794Semantics:
7795""""""""""
7796
7797This function returns the same values as the libm ``ceil`` functions
7798would, and handles error conditions in the same way.
7799
7800'``llvm.trunc.*``' Intrinsic
7801^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7802
7803Syntax:
7804"""""""
7805
7806This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7807floating point or vector of floating point type. Not all targets support
7808all types however.
7809
7810::
7811
7812 declare float @llvm.trunc.f32(float %Val)
7813 declare double @llvm.trunc.f64(double %Val)
7814 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7815 declare fp128 @llvm.trunc.f128(fp128 %Val)
7816 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7817
7818Overview:
7819"""""""""
7820
7821The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7822nearest integer not larger in magnitude than the operand.
7823
7824Arguments:
7825""""""""""
7826
7827The argument and return value are floating point numbers of the same
7828type.
7829
7830Semantics:
7831""""""""""
7832
7833This function returns the same values as the libm ``trunc`` functions
7834would, and handles error conditions in the same way.
7835
7836'``llvm.rint.*``' Intrinsic
7837^^^^^^^^^^^^^^^^^^^^^^^^^^^
7838
7839Syntax:
7840"""""""
7841
7842This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7843floating point or vector of floating point type. Not all targets support
7844all types however.
7845
7846::
7847
7848 declare float @llvm.rint.f32(float %Val)
7849 declare double @llvm.rint.f64(double %Val)
7850 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7851 declare fp128 @llvm.rint.f128(fp128 %Val)
7852 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7853
7854Overview:
7855"""""""""
7856
7857The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7858nearest integer. It may raise an inexact floating-point exception if the
7859operand isn't an integer.
7860
7861Arguments:
7862""""""""""
7863
7864The argument and return value are floating point numbers of the same
7865type.
7866
7867Semantics:
7868""""""""""
7869
7870This function returns the same values as the libm ``rint`` functions
7871would, and handles error conditions in the same way.
7872
7873'``llvm.nearbyint.*``' Intrinsic
7874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7875
7876Syntax:
7877"""""""
7878
7879This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7880floating point or vector of floating point type. Not all targets support
7881all types however.
7882
7883::
7884
7885 declare float @llvm.nearbyint.f32(float %Val)
7886 declare double @llvm.nearbyint.f64(double %Val)
7887 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7888 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7889 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7890
7891Overview:
7892"""""""""
7893
7894The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7895nearest integer.
7896
7897Arguments:
7898""""""""""
7899
7900The argument and return value are floating point numbers of the same
7901type.
7902
7903Semantics:
7904""""""""""
7905
7906This function returns the same values as the libm ``nearbyint``
7907functions would, and handles error conditions in the same way.
7908
Hal Finkel171817e2013-08-07 22:49:12 +00007909'``llvm.round.*``' Intrinsic
7910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7911
7912Syntax:
7913"""""""
7914
7915This is an overloaded intrinsic. You can use ``llvm.round`` on any
7916floating point or vector of floating point type. Not all targets support
7917all types however.
7918
7919::
7920
7921 declare float @llvm.round.f32(float %Val)
7922 declare double @llvm.round.f64(double %Val)
7923 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7924 declare fp128 @llvm.round.f128(fp128 %Val)
7925 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7926
7927Overview:
7928"""""""""
7929
7930The '``llvm.round.*``' intrinsics returns the operand rounded to the
7931nearest integer.
7932
7933Arguments:
7934""""""""""
7935
7936The argument and return value are floating point numbers of the same
7937type.
7938
7939Semantics:
7940""""""""""
7941
7942This function returns the same values as the libm ``round``
7943functions would, and handles error conditions in the same way.
7944
Sean Silvab084af42012-12-07 10:36:55 +00007945Bit Manipulation Intrinsics
7946---------------------------
7947
7948LLVM provides intrinsics for a few important bit manipulation
7949operations. These allow efficient code generation for some algorithms.
7950
7951'``llvm.bswap.*``' Intrinsics
7952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7953
7954Syntax:
7955"""""""
7956
7957This is an overloaded intrinsic function. You can use bswap on any
7958integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7959
7960::
7961
7962 declare i16 @llvm.bswap.i16(i16 <id>)
7963 declare i32 @llvm.bswap.i32(i32 <id>)
7964 declare i64 @llvm.bswap.i64(i64 <id>)
7965
7966Overview:
7967"""""""""
7968
7969The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7970values with an even number of bytes (positive multiple of 16 bits).
7971These are useful for performing operations on data that is not in the
7972target's native byte order.
7973
7974Semantics:
7975""""""""""
7976
7977The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7978and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7979intrinsic returns an i32 value that has the four bytes of the input i32
7980swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7981returned i32 will have its bytes in 3, 2, 1, 0 order. The
7982``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7983concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7984respectively).
7985
7986'``llvm.ctpop.*``' Intrinsic
7987^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7988
7989Syntax:
7990"""""""
7991
7992This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7993bit width, or on any vector with integer elements. Not all targets
7994support all bit widths or vector types, however.
7995
7996::
7997
7998 declare i8 @llvm.ctpop.i8(i8 <src>)
7999 declare i16 @llvm.ctpop.i16(i16 <src>)
8000 declare i32 @llvm.ctpop.i32(i32 <src>)
8001 declare i64 @llvm.ctpop.i64(i64 <src>)
8002 declare i256 @llvm.ctpop.i256(i256 <src>)
8003 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8004
8005Overview:
8006"""""""""
8007
8008The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8009in a value.
8010
8011Arguments:
8012""""""""""
8013
8014The only argument is the value to be counted. The argument may be of any
8015integer type, or a vector with integer elements. The return type must
8016match the argument type.
8017
8018Semantics:
8019""""""""""
8020
8021The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8022each element of a vector.
8023
8024'``llvm.ctlz.*``' Intrinsic
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8031integer bit width, or any vector whose elements are integers. Not all
8032targets support all bit widths or vector types, however.
8033
8034::
8035
8036 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8037 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8038 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8039 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8040 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8041 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8042
8043Overview:
8044"""""""""
8045
8046The '``llvm.ctlz``' family of intrinsic functions counts the number of
8047leading zeros in a variable.
8048
8049Arguments:
8050""""""""""
8051
8052The first argument is the value to be counted. This argument may be of
8053any integer type, or a vectory with integer element type. The return
8054type must match the first argument type.
8055
8056The second argument must be a constant and is a flag to indicate whether
8057the intrinsic should ensure that a zero as the first argument produces a
8058defined result. Historically some architectures did not provide a
8059defined result for zero values as efficiently, and many algorithms are
8060now predicated on avoiding zero-value inputs.
8061
8062Semantics:
8063""""""""""
8064
8065The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8066zeros in a variable, or within each element of the vector. If
8067``src == 0`` then the result is the size in bits of the type of ``src``
8068if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8069``llvm.ctlz(i32 2) = 30``.
8070
8071'``llvm.cttz.*``' Intrinsic
8072^^^^^^^^^^^^^^^^^^^^^^^^^^^
8073
8074Syntax:
8075"""""""
8076
8077This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8078integer bit width, or any vector of integer elements. Not all targets
8079support all bit widths or vector types, however.
8080
8081::
8082
8083 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8084 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8085 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8086 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8087 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8088 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8089
8090Overview:
8091"""""""""
8092
8093The '``llvm.cttz``' family of intrinsic functions counts the number of
8094trailing zeros.
8095
8096Arguments:
8097""""""""""
8098
8099The first argument is the value to be counted. This argument may be of
8100any integer type, or a vectory with integer element type. The return
8101type must match the first argument type.
8102
8103The second argument must be a constant and is a flag to indicate whether
8104the intrinsic should ensure that a zero as the first argument produces a
8105defined result. Historically some architectures did not provide a
8106defined result for zero values as efficiently, and many algorithms are
8107now predicated on avoiding zero-value inputs.
8108
8109Semantics:
8110""""""""""
8111
8112The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8113zeros in a variable, or within each element of a vector. If ``src == 0``
8114then the result is the size in bits of the type of ``src`` if
8115``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8116``llvm.cttz(2) = 1``.
8117
8118Arithmetic with Overflow Intrinsics
8119-----------------------------------
8120
8121LLVM provides intrinsics for some arithmetic with overflow operations.
8122
8123'``llvm.sadd.with.overflow.*``' Intrinsics
8124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8125
8126Syntax:
8127"""""""
8128
8129This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8130on any integer bit width.
8131
8132::
8133
8134 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8135 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8136 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8137
8138Overview:
8139"""""""""
8140
8141The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8142a signed addition of the two arguments, and indicate whether an overflow
8143occurred during the signed summation.
8144
8145Arguments:
8146""""""""""
8147
8148The arguments (%a and %b) and the first element of the result structure
8149may be of integer types of any bit width, but they must have the same
8150bit width. The second element of the result structure must be of type
8151``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8152addition.
8153
8154Semantics:
8155""""""""""
8156
8157The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008158a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008159first element of which is the signed summation, and the second element
8160of which is a bit specifying if the signed summation resulted in an
8161overflow.
8162
8163Examples:
8164"""""""""
8165
8166.. code-block:: llvm
8167
8168 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8169 %sum = extractvalue {i32, i1} %res, 0
8170 %obit = extractvalue {i32, i1} %res, 1
8171 br i1 %obit, label %overflow, label %normal
8172
8173'``llvm.uadd.with.overflow.*``' Intrinsics
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8180on any integer bit width.
8181
8182::
8183
8184 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8185 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8186 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8187
8188Overview:
8189"""""""""
8190
8191The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8192an unsigned addition of the two arguments, and indicate whether a carry
8193occurred during the unsigned summation.
8194
8195Arguments:
8196""""""""""
8197
8198The arguments (%a and %b) and the first element of the result structure
8199may be of integer types of any bit width, but they must have the same
8200bit width. The second element of the result structure must be of type
8201``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8202addition.
8203
8204Semantics:
8205""""""""""
8206
8207The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008208an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008209first element of which is the sum, and the second element of which is a
8210bit specifying if the unsigned summation resulted in a carry.
8211
8212Examples:
8213"""""""""
8214
8215.. code-block:: llvm
8216
8217 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8218 %sum = extractvalue {i32, i1} %res, 0
8219 %obit = extractvalue {i32, i1} %res, 1
8220 br i1 %obit, label %carry, label %normal
8221
8222'``llvm.ssub.with.overflow.*``' Intrinsics
8223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8224
8225Syntax:
8226"""""""
8227
8228This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8229on any integer bit width.
8230
8231::
8232
8233 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8234 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8235 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8236
8237Overview:
8238"""""""""
8239
8240The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8241a signed subtraction of the two arguments, and indicate whether an
8242overflow occurred during the signed subtraction.
8243
8244Arguments:
8245""""""""""
8246
8247The arguments (%a and %b) and the first element of the result structure
8248may be of integer types of any bit width, but they must have the same
8249bit width. The second element of the result structure must be of type
8250``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8251subtraction.
8252
8253Semantics:
8254""""""""""
8255
8256The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008257a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008258first element of which is the subtraction, and the second element of
8259which is a bit specifying if the signed subtraction resulted in an
8260overflow.
8261
8262Examples:
8263"""""""""
8264
8265.. code-block:: llvm
8266
8267 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8268 %sum = extractvalue {i32, i1} %res, 0
8269 %obit = extractvalue {i32, i1} %res, 1
8270 br i1 %obit, label %overflow, label %normal
8271
8272'``llvm.usub.with.overflow.*``' Intrinsics
8273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8274
8275Syntax:
8276"""""""
8277
8278This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8279on any integer bit width.
8280
8281::
8282
8283 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8284 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8285 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8286
8287Overview:
8288"""""""""
8289
8290The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8291an unsigned subtraction of the two arguments, and indicate whether an
8292overflow occurred during the unsigned subtraction.
8293
8294Arguments:
8295""""""""""
8296
8297The arguments (%a and %b) and the first element of the result structure
8298may be of integer types of any bit width, but they must have the same
8299bit width. The second element of the result structure must be of type
8300``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8301subtraction.
8302
8303Semantics:
8304""""""""""
8305
8306The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008307an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008308the first element of which is the subtraction, and the second element of
8309which is a bit specifying if the unsigned subtraction resulted in an
8310overflow.
8311
8312Examples:
8313"""""""""
8314
8315.. code-block:: llvm
8316
8317 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8318 %sum = extractvalue {i32, i1} %res, 0
8319 %obit = extractvalue {i32, i1} %res, 1
8320 br i1 %obit, label %overflow, label %normal
8321
8322'``llvm.smul.with.overflow.*``' Intrinsics
8323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8324
8325Syntax:
8326"""""""
8327
8328This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8329on any integer bit width.
8330
8331::
8332
8333 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8334 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8335 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8336
8337Overview:
8338"""""""""
8339
8340The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8341a signed multiplication of the two arguments, and indicate whether an
8342overflow occurred during the signed multiplication.
8343
8344Arguments:
8345""""""""""
8346
8347The arguments (%a and %b) and the first element of the result structure
8348may be of integer types of any bit width, but they must have the same
8349bit width. The second element of the result structure must be of type
8350``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8351multiplication.
8352
8353Semantics:
8354""""""""""
8355
8356The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008357a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008358the first element of which is the multiplication, and the second element
8359of which is a bit specifying if the signed multiplication resulted in an
8360overflow.
8361
8362Examples:
8363"""""""""
8364
8365.. code-block:: llvm
8366
8367 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8368 %sum = extractvalue {i32, i1} %res, 0
8369 %obit = extractvalue {i32, i1} %res, 1
8370 br i1 %obit, label %overflow, label %normal
8371
8372'``llvm.umul.with.overflow.*``' Intrinsics
8373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8374
8375Syntax:
8376"""""""
8377
8378This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8379on any integer bit width.
8380
8381::
8382
8383 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8384 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8385 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8386
8387Overview:
8388"""""""""
8389
8390The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8391a unsigned multiplication of the two arguments, and indicate whether an
8392overflow occurred during the unsigned multiplication.
8393
8394Arguments:
8395""""""""""
8396
8397The arguments (%a and %b) and the first element of the result structure
8398may be of integer types of any bit width, but they must have the same
8399bit width. The second element of the result structure must be of type
8400``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8401multiplication.
8402
8403Semantics:
8404""""""""""
8405
8406The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008407an unsigned multiplication of the two arguments. They return a structure ---
8408the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008409element of which is a bit specifying if the unsigned multiplication
8410resulted in an overflow.
8411
8412Examples:
8413"""""""""
8414
8415.. code-block:: llvm
8416
8417 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8418 %sum = extractvalue {i32, i1} %res, 0
8419 %obit = extractvalue {i32, i1} %res, 1
8420 br i1 %obit, label %overflow, label %normal
8421
8422Specialised Arithmetic Intrinsics
8423---------------------------------
8424
8425'``llvm.fmuladd.*``' Intrinsic
8426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8427
8428Syntax:
8429"""""""
8430
8431::
8432
8433 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8434 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8435
8436Overview:
8437"""""""""
8438
8439The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008440expressions that can be fused if the code generator determines that (a) the
8441target instruction set has support for a fused operation, and (b) that the
8442fused operation is more efficient than the equivalent, separate pair of mul
8443and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008444
8445Arguments:
8446""""""""""
8447
8448The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8449multiplicands, a and b, and an addend c.
8450
8451Semantics:
8452""""""""""
8453
8454The expression:
8455
8456::
8457
8458 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8459
8460is equivalent to the expression a \* b + c, except that rounding will
8461not be performed between the multiplication and addition steps if the
8462code generator fuses the operations. Fusion is not guaranteed, even if
8463the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008464corresponding llvm.fma.\* intrinsic function should be used
8465instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008466
8467Examples:
8468"""""""""
8469
8470.. code-block:: llvm
8471
8472 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8473
8474Half Precision Floating Point Intrinsics
8475----------------------------------------
8476
8477For most target platforms, half precision floating point is a
8478storage-only format. This means that it is a dense encoding (in memory)
8479but does not support computation in the format.
8480
8481This means that code must first load the half-precision floating point
8482value as an i16, then convert it to float with
8483:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8484then be performed on the float value (including extending to double
8485etc). To store the value back to memory, it is first converted to float
8486if needed, then converted to i16 with
8487:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8488i16 value.
8489
8490.. _int_convert_to_fp16:
8491
8492'``llvm.convert.to.fp16``' Intrinsic
8493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8494
8495Syntax:
8496"""""""
8497
8498::
8499
8500 declare i16 @llvm.convert.to.fp16(f32 %a)
8501
8502Overview:
8503"""""""""
8504
8505The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8506from single precision floating point format to half precision floating
8507point format.
8508
8509Arguments:
8510""""""""""
8511
8512The intrinsic function contains single argument - the value to be
8513converted.
8514
8515Semantics:
8516""""""""""
8517
8518The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8519from single precision floating point format to half precision floating
8520point format. The return value is an ``i16`` which contains the
8521converted number.
8522
8523Examples:
8524"""""""""
8525
8526.. code-block:: llvm
8527
8528 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8529 store i16 %res, i16* @x, align 2
8530
8531.. _int_convert_from_fp16:
8532
8533'``llvm.convert.from.fp16``' Intrinsic
8534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8535
8536Syntax:
8537"""""""
8538
8539::
8540
8541 declare f32 @llvm.convert.from.fp16(i16 %a)
8542
8543Overview:
8544"""""""""
8545
8546The '``llvm.convert.from.fp16``' intrinsic function performs a
8547conversion from half precision floating point format to single precision
8548floating point format.
8549
8550Arguments:
8551""""""""""
8552
8553The intrinsic function contains single argument - the value to be
8554converted.
8555
8556Semantics:
8557""""""""""
8558
8559The '``llvm.convert.from.fp16``' intrinsic function performs a
8560conversion from half single precision floating point format to single
8561precision floating point format. The input half-float value is
8562represented by an ``i16`` value.
8563
8564Examples:
8565"""""""""
8566
8567.. code-block:: llvm
8568
8569 %a = load i16* @x, align 2
8570 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8571
8572Debugger Intrinsics
8573-------------------
8574
8575The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8576prefix), are described in the `LLVM Source Level
8577Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8578document.
8579
8580Exception Handling Intrinsics
8581-----------------------------
8582
8583The LLVM exception handling intrinsics (which all start with
8584``llvm.eh.`` prefix), are described in the `LLVM Exception
8585Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8586
8587.. _int_trampoline:
8588
8589Trampoline Intrinsics
8590---------------------
8591
8592These intrinsics make it possible to excise one parameter, marked with
8593the :ref:`nest <nest>` attribute, from a function. The result is a
8594callable function pointer lacking the nest parameter - the caller does
8595not need to provide a value for it. Instead, the value to use is stored
8596in advance in a "trampoline", a block of memory usually allocated on the
8597stack, which also contains code to splice the nest value into the
8598argument list. This is used to implement the GCC nested function address
8599extension.
8600
8601For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8602then the resulting function pointer has signature ``i32 (i32, i32)*``.
8603It can be created as follows:
8604
8605.. code-block:: llvm
8606
8607 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8608 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8609 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8610 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8611 %fp = bitcast i8* %p to i32 (i32, i32)*
8612
8613The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8614``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8615
8616.. _int_it:
8617
8618'``llvm.init.trampoline``' Intrinsic
8619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8620
8621Syntax:
8622"""""""
8623
8624::
8625
8626 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8627
8628Overview:
8629"""""""""
8630
8631This fills the memory pointed to by ``tramp`` with executable code,
8632turning it into a trampoline.
8633
8634Arguments:
8635""""""""""
8636
8637The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8638pointers. The ``tramp`` argument must point to a sufficiently large and
8639sufficiently aligned block of memory; this memory is written to by the
8640intrinsic. Note that the size and the alignment are target-specific -
8641LLVM currently provides no portable way of determining them, so a
8642front-end that generates this intrinsic needs to have some
8643target-specific knowledge. The ``func`` argument must hold a function
8644bitcast to an ``i8*``.
8645
8646Semantics:
8647""""""""""
8648
8649The block of memory pointed to by ``tramp`` is filled with target
8650dependent code, turning it into a function. Then ``tramp`` needs to be
8651passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8652be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8653function's signature is the same as that of ``func`` with any arguments
8654marked with the ``nest`` attribute removed. At most one such ``nest``
8655argument is allowed, and it must be of pointer type. Calling the new
8656function is equivalent to calling ``func`` with the same argument list,
8657but with ``nval`` used for the missing ``nest`` argument. If, after
8658calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8659modified, then the effect of any later call to the returned function
8660pointer is undefined.
8661
8662.. _int_at:
8663
8664'``llvm.adjust.trampoline``' Intrinsic
8665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8666
8667Syntax:
8668"""""""
8669
8670::
8671
8672 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8673
8674Overview:
8675"""""""""
8676
8677This performs any required machine-specific adjustment to the address of
8678a trampoline (passed as ``tramp``).
8679
8680Arguments:
8681""""""""""
8682
8683``tramp`` must point to a block of memory which already has trampoline
8684code filled in by a previous call to
8685:ref:`llvm.init.trampoline <int_it>`.
8686
8687Semantics:
8688""""""""""
8689
8690On some architectures the address of the code to be executed needs to be
8691different to the address where the trampoline is actually stored. This
8692intrinsic returns the executable address corresponding to ``tramp``
8693after performing the required machine specific adjustments. The pointer
8694returned can then be :ref:`bitcast and executed <int_trampoline>`.
8695
8696Memory Use Markers
8697------------------
8698
8699This class of intrinsics exists to information about the lifetime of
8700memory objects and ranges where variables are immutable.
8701
Reid Klecknera534a382013-12-19 02:14:12 +00008702.. _int_lifestart:
8703
Sean Silvab084af42012-12-07 10:36:55 +00008704'``llvm.lifetime.start``' Intrinsic
8705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8706
8707Syntax:
8708"""""""
8709
8710::
8711
8712 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8713
8714Overview:
8715"""""""""
8716
8717The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8718object's lifetime.
8719
8720Arguments:
8721""""""""""
8722
8723The first argument is a constant integer representing the size of the
8724object, or -1 if it is variable sized. The second argument is a pointer
8725to the object.
8726
8727Semantics:
8728""""""""""
8729
8730This intrinsic indicates that before this point in the code, the value
8731of the memory pointed to by ``ptr`` is dead. This means that it is known
8732to never be used and has an undefined value. A load from the pointer
8733that precedes this intrinsic can be replaced with ``'undef'``.
8734
Reid Klecknera534a382013-12-19 02:14:12 +00008735.. _int_lifeend:
8736
Sean Silvab084af42012-12-07 10:36:55 +00008737'``llvm.lifetime.end``' Intrinsic
8738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8739
8740Syntax:
8741"""""""
8742
8743::
8744
8745 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8746
8747Overview:
8748"""""""""
8749
8750The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8751object's lifetime.
8752
8753Arguments:
8754""""""""""
8755
8756The first argument is a constant integer representing the size of the
8757object, or -1 if it is variable sized. The second argument is a pointer
8758to the object.
8759
8760Semantics:
8761""""""""""
8762
8763This intrinsic indicates that after this point in the code, the value of
8764the memory pointed to by ``ptr`` is dead. This means that it is known to
8765never be used and has an undefined value. Any stores into the memory
8766object following this intrinsic may be removed as dead.
8767
8768'``llvm.invariant.start``' Intrinsic
8769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8770
8771Syntax:
8772"""""""
8773
8774::
8775
8776 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8777
8778Overview:
8779"""""""""
8780
8781The '``llvm.invariant.start``' intrinsic specifies that the contents of
8782a memory object will not change.
8783
8784Arguments:
8785""""""""""
8786
8787The first argument is a constant integer representing the size of the
8788object, or -1 if it is variable sized. The second argument is a pointer
8789to the object.
8790
8791Semantics:
8792""""""""""
8793
8794This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8795the return value, the referenced memory location is constant and
8796unchanging.
8797
8798'``llvm.invariant.end``' Intrinsic
8799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8800
8801Syntax:
8802"""""""
8803
8804::
8805
8806 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8807
8808Overview:
8809"""""""""
8810
8811The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8812memory object are mutable.
8813
8814Arguments:
8815""""""""""
8816
8817The first argument is the matching ``llvm.invariant.start`` intrinsic.
8818The second argument is a constant integer representing the size of the
8819object, or -1 if it is variable sized and the third argument is a
8820pointer to the object.
8821
8822Semantics:
8823""""""""""
8824
8825This intrinsic indicates that the memory is mutable again.
8826
8827General Intrinsics
8828------------------
8829
8830This class of intrinsics is designed to be generic and has no specific
8831purpose.
8832
8833'``llvm.var.annotation``' Intrinsic
8834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8835
8836Syntax:
8837"""""""
8838
8839::
8840
8841 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8842
8843Overview:
8844"""""""""
8845
8846The '``llvm.var.annotation``' intrinsic.
8847
8848Arguments:
8849""""""""""
8850
8851The first argument is a pointer to a value, the second is a pointer to a
8852global string, the third is a pointer to a global string which is the
8853source file name, and the last argument is the line number.
8854
8855Semantics:
8856""""""""""
8857
8858This intrinsic allows annotation of local variables with arbitrary
8859strings. This can be useful for special purpose optimizations that want
8860to look for these annotations. These have no other defined use; they are
8861ignored by code generation and optimization.
8862
Michael Gottesman88d18832013-03-26 00:34:27 +00008863'``llvm.ptr.annotation.*``' Intrinsic
8864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8865
8866Syntax:
8867"""""""
8868
8869This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8870pointer to an integer of any width. *NOTE* you must specify an address space for
8871the pointer. The identifier for the default address space is the integer
8872'``0``'.
8873
8874::
8875
8876 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8877 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8878 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8879 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8880 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8881
8882Overview:
8883"""""""""
8884
8885The '``llvm.ptr.annotation``' intrinsic.
8886
8887Arguments:
8888""""""""""
8889
8890The first argument is a pointer to an integer value of arbitrary bitwidth
8891(result of some expression), the second is a pointer to a global string, the
8892third is a pointer to a global string which is the source file name, and the
8893last argument is the line number. It returns the value of the first argument.
8894
8895Semantics:
8896""""""""""
8897
8898This intrinsic allows annotation of a pointer to an integer with arbitrary
8899strings. This can be useful for special purpose optimizations that want to look
8900for these annotations. These have no other defined use; they are ignored by code
8901generation and optimization.
8902
Sean Silvab084af42012-12-07 10:36:55 +00008903'``llvm.annotation.*``' Intrinsic
8904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8905
8906Syntax:
8907"""""""
8908
8909This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8910any integer bit width.
8911
8912::
8913
8914 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8915 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8916 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8917 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8918 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8919
8920Overview:
8921"""""""""
8922
8923The '``llvm.annotation``' intrinsic.
8924
8925Arguments:
8926""""""""""
8927
8928The first argument is an integer value (result of some expression), the
8929second is a pointer to a global string, the third is a pointer to a
8930global string which is the source file name, and the last argument is
8931the line number. It returns the value of the first argument.
8932
8933Semantics:
8934""""""""""
8935
8936This intrinsic allows annotations to be put on arbitrary expressions
8937with arbitrary strings. This can be useful for special purpose
8938optimizations that want to look for these annotations. These have no
8939other defined use; they are ignored by code generation and optimization.
8940
8941'``llvm.trap``' Intrinsic
8942^^^^^^^^^^^^^^^^^^^^^^^^^
8943
8944Syntax:
8945"""""""
8946
8947::
8948
8949 declare void @llvm.trap() noreturn nounwind
8950
8951Overview:
8952"""""""""
8953
8954The '``llvm.trap``' intrinsic.
8955
8956Arguments:
8957""""""""""
8958
8959None.
8960
8961Semantics:
8962""""""""""
8963
8964This intrinsic is lowered to the target dependent trap instruction. If
8965the target does not have a trap instruction, this intrinsic will be
8966lowered to a call of the ``abort()`` function.
8967
8968'``llvm.debugtrap``' Intrinsic
8969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8970
8971Syntax:
8972"""""""
8973
8974::
8975
8976 declare void @llvm.debugtrap() nounwind
8977
8978Overview:
8979"""""""""
8980
8981The '``llvm.debugtrap``' intrinsic.
8982
8983Arguments:
8984""""""""""
8985
8986None.
8987
8988Semantics:
8989""""""""""
8990
8991This intrinsic is lowered to code which is intended to cause an
8992execution trap with the intention of requesting the attention of a
8993debugger.
8994
8995'``llvm.stackprotector``' Intrinsic
8996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9004
9005Overview:
9006"""""""""
9007
9008The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9009onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9010is placed on the stack before local variables.
9011
9012Arguments:
9013""""""""""
9014
9015The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9016The first argument is the value loaded from the stack guard
9017``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9018enough space to hold the value of the guard.
9019
9020Semantics:
9021""""""""""
9022
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009023This intrinsic causes the prologue/epilogue inserter to force the position of
9024the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9025to ensure that if a local variable on the stack is overwritten, it will destroy
9026the value of the guard. When the function exits, the guard on the stack is
9027checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9028different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9029calling the ``__stack_chk_fail()`` function.
9030
9031'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009033
9034Syntax:
9035"""""""
9036
9037::
9038
9039 declare void @llvm.stackprotectorcheck(i8** <guard>)
9040
9041Overview:
9042"""""""""
9043
9044The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009045created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009046``__stack_chk_fail()`` function.
9047
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009048Arguments:
9049""""""""""
9050
9051The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9052the variable ``@__stack_chk_guard``.
9053
9054Semantics:
9055""""""""""
9056
9057This intrinsic is provided to perform the stack protector check by comparing
9058``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9059values do not match call the ``__stack_chk_fail()`` function.
9060
9061The reason to provide this as an IR level intrinsic instead of implementing it
9062via other IR operations is that in order to perform this operation at the IR
9063level without an intrinsic, one would need to create additional basic blocks to
9064handle the success/failure cases. This makes it difficult to stop the stack
9065protector check from disrupting sibling tail calls in Codegen. With this
9066intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009067codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009068
Sean Silvab084af42012-12-07 10:36:55 +00009069'``llvm.objectsize``' Intrinsic
9070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9071
9072Syntax:
9073"""""""
9074
9075::
9076
9077 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9078 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9079
9080Overview:
9081"""""""""
9082
9083The ``llvm.objectsize`` intrinsic is designed to provide information to
9084the optimizers to determine at compile time whether a) an operation
9085(like memcpy) will overflow a buffer that corresponds to an object, or
9086b) that a runtime check for overflow isn't necessary. An object in this
9087context means an allocation of a specific class, structure, array, or
9088other object.
9089
9090Arguments:
9091""""""""""
9092
9093The ``llvm.objectsize`` intrinsic takes two arguments. The first
9094argument is a pointer to or into the ``object``. The second argument is
9095a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9096or -1 (if false) when the object size is unknown. The second argument
9097only accepts constants.
9098
9099Semantics:
9100""""""""""
9101
9102The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9103the size of the object concerned. If the size cannot be determined at
9104compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9105on the ``min`` argument).
9106
9107'``llvm.expect``' Intrinsic
9108^^^^^^^^^^^^^^^^^^^^^^^^^^^
9109
9110Syntax:
9111"""""""
9112
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009113This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9114integer bit width.
9115
Sean Silvab084af42012-12-07 10:36:55 +00009116::
9117
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009118 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009119 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9120 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9121
9122Overview:
9123"""""""""
9124
9125The ``llvm.expect`` intrinsic provides information about expected (the
9126most probable) value of ``val``, which can be used by optimizers.
9127
9128Arguments:
9129""""""""""
9130
9131The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9132a value. The second argument is an expected value, this needs to be a
9133constant value, variables are not allowed.
9134
9135Semantics:
9136""""""""""
9137
9138This intrinsic is lowered to the ``val``.
9139
9140'``llvm.donothing``' Intrinsic
9141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9142
9143Syntax:
9144"""""""
9145
9146::
9147
9148 declare void @llvm.donothing() nounwind readnone
9149
9150Overview:
9151"""""""""
9152
9153The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9154only intrinsic that can be called with an invoke instruction.
9155
9156Arguments:
9157""""""""""
9158
9159None.
9160
9161Semantics:
9162""""""""""
9163
9164This intrinsic does nothing, and it's removed by optimizers and ignored
9165by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009166
9167Stack Map Intrinsics
9168--------------------
9169
9170LLVM provides experimental intrinsics to support runtime patching
9171mechanisms commonly desired in dynamic language JITs. These intrinsics
9172are described in :doc:`StackMaps`.