blob: 07d72f5ee201a2081ed7ba519fadae849b554e50 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Benjamin Kramer214935e2012-10-26 17:31:32 +0000114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
Wei Mia49559b2016-02-04 01:27:38 +0000118static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
120 cl::desc("Verify no dangling value in ScalarEvolution's"
121 "ExprValueMap (slow)"));
Benjamin Kramer214935e2012-10-26 17:31:32 +0000122
Chris Lattnerd934c702004-04-02 20:23:17 +0000123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Davide Italiano2071f4c2015-10-25 19:55:24 +0000131LLVM_DUMP_METHOD
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136
Dan Gohman534749b2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000138 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000139 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000169 if (AR->hasNoUnsignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000170 OS << "nuw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000171 if (AR->hasNoSignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000172 OS << "nsw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000173 if (AR->hasNoSelfWrap() &&
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000185 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000196 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
Sanjoy Das76c48e02016-02-04 18:21:54 +0000203 if (NAry->hasNoUnsignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000204 OS << "<nuw>";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000205 if (NAry->hasNoSignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000206 OS << "<nsw>";
207 }
Dan Gohman534749b2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000226
Chris Lattner229907c2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000231 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000232 OS << ")";
233 return;
234 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000235
Dan Gohman534749b2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000237 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000243 }
244 llvm_unreachable("Unknown SCEV kind!");
245}
246
Chris Lattner229907c2011-07-18 04:54:35 +0000247Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000248 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000268 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000270}
271
Dan Gohmanbe928e32008-06-18 16:23:07 +0000272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
Chris Lattnerd934c702004-04-02 20:23:17 +0000283
Dan Gohman18a96bb2009-06-24 00:30:26 +0000284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
Andrew Trick881a7762012-01-07 00:27:31 +0000290/// isNonConstantNegative - Return true if the specified scev is negated, but
291/// not a constant.
292bool SCEV::isNonConstantNegative() const {
293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294 if (!Mul) return false;
295
296 // If there is a constant factor, it will be first.
297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298 if (!SC) return false;
299
300 // Return true if the value is negative, this matches things like (-42 * V).
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000301 return SC->getAPInt().isNegative();
Andrew Trick881a7762012-01-07 00:27:31 +0000302}
303
Owen Anderson04052ec2009-06-22 21:57:23 +0000304SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000306
Chris Lattnerd934c702004-04-02 20:23:17 +0000307bool SCEVCouldNotCompute::classof(const SCEV *S) {
308 return S->getSCEVType() == scCouldNotCompute;
309}
310
Dan Gohmanaf752342009-07-07 17:06:11 +0000311const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 FoldingSetNodeID ID;
313 ID.AddInteger(scConstant);
314 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000315 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000318 UniqueSCEVs.InsertNode(S, IP);
319 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000320}
Chris Lattnerd934c702004-04-02 20:23:17 +0000321
Nick Lewycky31eaca52014-01-27 10:04:03 +0000322const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000323 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000324}
325
Dan Gohmanaf752342009-07-07 17:06:11 +0000326const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000327ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000329 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000330}
331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000335
Dan Gohman24ceda82010-06-18 19:54:20 +0000336SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000337 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000338 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000341 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342}
Chris Lattnerd934c702004-04-02 20:23:17 +0000343
Dan Gohman24ceda82010-06-18 19:54:20 +0000344SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000345 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000346 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000349 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350}
351
Dan Gohman24ceda82010-06-18 19:54:20 +0000352SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000353 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000354 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000357 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358}
359
Dan Gohman7cac9572010-08-02 23:49:30 +0000360void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000361 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000362 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000363
364 // Remove this SCEVUnknown from the uniquing map.
365 SE->UniqueSCEVs.RemoveNode(this);
366
367 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000368 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000369}
370
371void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000372 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000373 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374
375 // Remove this SCEVUnknown from the uniquing map.
376 SE->UniqueSCEVs.RemoveNode(this);
377
378 // Update this SCEVUnknown to point to the new value. This is needed
379 // because there may still be outstanding SCEVs which still point to
380 // this SCEVUnknown.
381 setValPtr(New);
382}
383
Chris Lattner229907c2011-07-18 04:54:35 +0000384bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue() &&
390 CE->getNumOperands() == 2)
391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392 if (CI->isOne()) {
393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394 ->getElementType();
395 return true;
396 }
Dan Gohmancf913832010-01-28 02:15:55 +0000397
398 return false;
399}
400
Chris Lattner229907c2011-07-18 04:54:35 +0000401bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000403 if (VCE->getOpcode() == Instruction::PtrToInt)
404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (CE->getOpcode() == Instruction::GetElementPtr &&
406 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000409 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (!STy->isPacked() &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(1)->isNullValue()) {
413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414 if (CI->isOne() &&
415 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000416 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000417 AllocTy = STy->getElementType(1);
418 return true;
419 }
420 }
421 }
Dan Gohmancf913832010-01-28 02:15:55 +0000422
423 return false;
424}
425
Chris Lattner229907c2011-07-18 04:54:35 +0000426bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000428 if (VCE->getOpcode() == Instruction::PtrToInt)
429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430 if (CE->getOpcode() == Instruction::GetElementPtr &&
431 CE->getNumOperands() == 3 &&
432 CE->getOperand(0)->isNullValue() &&
433 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000434 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436 // Ignore vector types here so that ScalarEvolutionExpander doesn't
437 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000438 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000439 CTy = Ty;
440 FieldNo = CE->getOperand(2);
441 return true;
442 }
443 }
444
445 return false;
446}
447
Chris Lattnereb3e8402004-06-20 06:23:15 +0000448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
Sanjoy Das7881abd2015-12-08 04:32:51 +0000453/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454/// than the complexity of the RHS. This comparator is used to canonicalize
455/// expressions.
456class SCEVComplexityCompare {
457 const LoopInfo *const LI;
458public:
459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000460
Sanjoy Das7881abd2015-12-08 04:32:51 +0000461 // Return true or false if LHS is less than, or at least RHS, respectively.
462 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463 return compare(LHS, RHS) < 0;
464 }
Dan Gohman27065672010-08-27 15:26:01 +0000465
Sanjoy Das7881abd2015-12-08 04:32:51 +0000466 // Return negative, zero, or positive, if LHS is less than, equal to, or
467 // greater than RHS, respectively. A three-way result allows recursive
468 // comparisons to be more efficient.
469 int compare(const SCEV *LHS, const SCEV *RHS) const {
470 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471 if (LHS == RHS)
472 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473
Sanjoy Das7881abd2015-12-08 04:32:51 +0000474 // Primarily, sort the SCEVs by their getSCEVType().
475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476 if (LType != RType)
477 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000478
Sanjoy Das7881abd2015-12-08 04:32:51 +0000479 // Aside from the getSCEVType() ordering, the particular ordering
480 // isn't very important except that it's beneficial to be consistent,
481 // so that (a + b) and (b + a) don't end up as different expressions.
482 switch (static_cast<SCEVTypes>(LType)) {
483 case scUnknown: {
484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000486
Sanjoy Das7881abd2015-12-08 04:32:51 +0000487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488 // not as complete as it could be.
489 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000490
Sanjoy Das7881abd2015-12-08 04:32:51 +0000491 // Order pointer values after integer values. This helps SCEVExpander
492 // form GEPs.
493 bool LIsPointer = LV->getType()->isPointerTy(),
494 RIsPointer = RV->getType()->isPointerTy();
495 if (LIsPointer != RIsPointer)
496 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000497
Sanjoy Das7881abd2015-12-08 04:32:51 +0000498 // Compare getValueID values.
499 unsigned LID = LV->getValueID(),
500 RID = RV->getValueID();
501 if (LID != RID)
502 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000503
Sanjoy Das7881abd2015-12-08 04:32:51 +0000504 // Sort arguments by their position.
505 if (const Argument *LA = dyn_cast<Argument>(LV)) {
506 const Argument *RA = cast<Argument>(RV);
507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000509 }
510
Sanjoy Das7881abd2015-12-08 04:32:51 +0000511 // For instructions, compare their loop depth, and their operand
512 // count. This is pretty loose.
513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000515
Sanjoy Das7881abd2015-12-08 04:32:51 +0000516 // Compare loop depths.
517 const BasicBlock *LParent = LInst->getParent(),
518 *RParent = RInst->getParent();
519 if (LParent != RParent) {
520 unsigned LDepth = LI->getLoopDepth(LParent),
521 RDepth = LI->getLoopDepth(RParent);
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000523 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000524 }
Dan Gohman27065672010-08-27 15:26:01 +0000525
Sanjoy Das7881abd2015-12-08 04:32:51 +0000526 // Compare the number of operands.
527 unsigned LNumOps = LInst->getNumOperands(),
528 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000529 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000530 }
531
Sanjoy Das7881abd2015-12-08 04:32:51 +0000532 return 0;
533 }
Dan Gohman27065672010-08-27 15:26:01 +0000534
Sanjoy Das7881abd2015-12-08 04:32:51 +0000535 case scConstant: {
536 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538
539 // Compare constant values.
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000540 const APInt &LA = LC->getAPInt();
541 const APInt &RA = RC->getAPInt();
Sanjoy Das7881abd2015-12-08 04:32:51 +0000542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543 if (LBitWidth != RBitWidth)
544 return (int)LBitWidth - (int)RBitWidth;
545 return LA.ult(RA) ? -1 : 1;
546 }
547
548 case scAddRecExpr: {
549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551
552 // Compare addrec loop depths.
553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554 if (LLoop != RLoop) {
555 unsigned LDepth = LLoop->getLoopDepth(),
556 RDepth = RLoop->getLoopDepth();
557 if (LDepth != RDepth)
558 return (int)LDepth - (int)RDepth;
559 }
560
561 // Addrec complexity grows with operand count.
562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563 if (LNumOps != RNumOps)
564 return (int)LNumOps - (int)RNumOps;
565
566 // Lexicographically compare.
567 for (unsigned i = 0; i != LNumOps; ++i) {
568 long X = compare(LA->getOperand(i), RA->getOperand(i));
Dan Gohman27065672010-08-27 15:26:01 +0000569 if (X != 0)
570 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000571 }
572
Sanjoy Das7881abd2015-12-08 04:32:51 +0000573 return 0;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000574 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000575
576 case scAddExpr:
577 case scMulExpr:
578 case scSMaxExpr:
579 case scUMaxExpr: {
580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582
583 // Lexicographically compare n-ary expressions.
584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585 if (LNumOps != RNumOps)
586 return (int)LNumOps - (int)RNumOps;
587
588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
594 }
595 return (int)LNumOps - (int)RNumOps;
596 }
597
598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
607 }
608
609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
619 case scCouldNotCompute:
620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621 }
622 llvm_unreachable("Unknown SCEV kind!");
623 }
624};
625} // end anonymous namespace
Chris Lattnereb3e8402004-06-20 06:23:15 +0000626
627/// GroupByComplexity - Given a list of SCEV objects, order them by their
628/// complexity, and group objects of the same complexity together by value.
629/// When this routine is finished, we know that any duplicates in the vector are
630/// consecutive and that complexity is monotonically increasing.
631///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000632/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000633/// results from this routine. In other words, we don't want the results of
634/// this to depend on where the addresses of various SCEV objects happened to
635/// land in memory.
636///
Dan Gohmanaf752342009-07-07 17:06:11 +0000637static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000638 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000639 if (Ops.size() < 2) return; // Noop
640 if (Ops.size() == 2) {
641 // This is the common case, which also happens to be trivially simple.
642 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644 if (SCEVComplexityCompare(LI)(RHS, LHS))
645 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000646 return;
647 }
648
Dan Gohman24ceda82010-06-18 19:54:20 +0000649 // Do the rough sort by complexity.
650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651
652 // Now that we are sorted by complexity, group elements of the same
653 // complexity. Note that this is, at worst, N^2, but the vector is likely to
654 // be extremely short in practice. Note that we take this approach because we
655 // do not want to depend on the addresses of the objects we are grouping.
656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657 const SCEV *S = Ops[i];
658 unsigned Complexity = S->getSCEVType();
659
660 // If there are any objects of the same complexity and same value as this
661 // one, group them.
662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663 if (Ops[j] == S) { // Found a duplicate.
664 // Move it to immediately after i'th element.
665 std::swap(Ops[i+1], Ops[j]);
666 ++i; // no need to rescan it.
667 if (i == e-2) return; // Done!
668 }
669 }
670 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000671}
672
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000673// Returns the size of the SCEV S.
674static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000675 struct FindSCEVSize {
676 int Size;
677 FindSCEVSize() : Size(0) {}
678
679 bool follow(const SCEV *S) {
680 ++Size;
681 // Keep looking at all operands of S.
682 return true;
683 }
684 bool isDone() const {
685 return false;
686 }
687 };
688
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000689 FindSCEVSize F;
690 SCEVTraversal<FindSCEVSize> ST(F);
691 ST.visitAll(S);
692 return F.Size;
693}
694
695namespace {
696
David Majnemer4e879362014-12-14 09:12:33 +0000697struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000698public:
699 // Computes the Quotient and Remainder of the division of Numerator by
700 // Denominator.
701 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702 const SCEV *Denominator, const SCEV **Quotient,
703 const SCEV **Remainder) {
704 assert(Numerator && Denominator && "Uninitialized SCEV");
705
David Majnemer4e879362014-12-14 09:12:33 +0000706 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000707
708 // Check for the trivial case here to avoid having to check for it in the
709 // rest of the code.
710 if (Numerator == Denominator) {
711 *Quotient = D.One;
712 *Remainder = D.Zero;
713 return;
714 }
715
716 if (Numerator->isZero()) {
717 *Quotient = D.Zero;
718 *Remainder = D.Zero;
719 return;
720 }
721
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000722 // A simple case when N/1. The quotient is N.
723 if (Denominator->isOne()) {
724 *Quotient = Numerator;
725 *Remainder = D.Zero;
726 return;
727 }
728
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000767 APInt NumeratorVal = Numerator->getAPInt();
768 APInt DenominatorVal = D->getAPInt();
David Majnemer4e879362014-12-14 09:12:33 +0000769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000788 if (!Numerator->isAffine())
789 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000792 // Bail out if the types do not match.
793 Type *Ty = Denominator->getType();
794 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000795 Ty != StepQ->getType() || Ty != StepR->getType())
796 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800 Numerator->getNoWrapFlags());
801 }
802
803 void visitAddExpr(const SCEVAddExpr *Numerator) {
804 SmallVector<const SCEV *, 2> Qs, Rs;
805 Type *Ty = Denominator->getType();
806
807 for (const SCEV *Op : Numerator->operands()) {
808 const SCEV *Q, *R;
809 divide(SE, Op, Denominator, &Q, &R);
810
811 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000812 if (Ty != Q->getType() || Ty != R->getType())
813 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000814
815 Qs.push_back(Q);
816 Rs.push_back(R);
817 }
818
819 if (Qs.size() == 1) {
820 Quotient = Qs[0];
821 Remainder = Rs[0];
822 return;
823 }
824
825 Quotient = SE.getAddExpr(Qs);
826 Remainder = SE.getAddExpr(Rs);
827 }
828
829 void visitMulExpr(const SCEVMulExpr *Numerator) {
830 SmallVector<const SCEV *, 2> Qs;
831 Type *Ty = Denominator->getType();
832
833 bool FoundDenominatorTerm = false;
834 for (const SCEV *Op : Numerator->operands()) {
835 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000836 if (Ty != Op->getType())
837 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000853 if (Ty != Q->getType())
854 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000855
856 FoundDenominatorTerm = true;
857 Qs.push_back(Q);
858 }
859
860 if (FoundDenominatorTerm) {
861 Remainder = Zero;
862 if (Qs.size() == 1)
863 Quotient = Qs[0];
864 else
865 Quotient = SE.getMulExpr(Qs);
866 return;
867 }
868
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000869 if (!isa<SCEVUnknown>(Denominator))
870 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000871
872 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873 ValueToValueMap RewriteMap;
874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875 cast<SCEVConstant>(Zero)->getValue();
876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877
878 if (Remainder->isZero()) {
879 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(One)->getValue();
882 Quotient =
883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884 return;
885 }
886
887 // Quotient is (Numerator - Remainder) divided by Denominator.
888 const SCEV *Q, *R;
889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000890 // This SCEV does not seem to simplify: fail the division here.
891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000893 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000894 if (R != Zero)
895 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000896 Quotient = Q;
897 }
898
899private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901 const SCEV *Denominator)
902 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000903 Zero = SE.getZero(Denominator->getType());
904 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000905
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000906 // We generally do not know how to divide Expr by Denominator. We
907 // initialize the division to a "cannot divide" state to simplify the rest
908 // of the code.
909 cannotDivide(Numerator);
910 }
911
912 // Convenience function for giving up on the division. We set the quotient to
913 // be equal to zero and the remainder to be equal to the numerator.
914 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000915 Quotient = Zero;
916 Remainder = Numerator;
917 }
918
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000919 ScalarEvolution &SE;
920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000921};
922
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000923}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000924
Chris Lattnerd934c702004-04-02 20:23:17 +0000925//===----------------------------------------------------------------------===//
926// Simple SCEV method implementations
927//===----------------------------------------------------------------------===//
928
Eli Friedman61f67622008-08-04 23:49:06 +0000929/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000930/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000931static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000932 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000933 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000934 // Handle the simplest case efficiently.
935 if (K == 1)
936 return SE.getTruncateOrZeroExtend(It, ResultTy);
937
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000938 // We are using the following formula for BC(It, K):
939 //
940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941 //
Eli Friedman61f67622008-08-04 23:49:06 +0000942 // Suppose, W is the bitwidth of the return value. We must be prepared for
943 // overflow. Hence, we must assure that the result of our computation is
944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
945 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000946 //
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000948 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // This formula is trivially equivalent to the previous formula. However,
955 // this formula can be implemented much more efficiently. The trick is that
956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957 // arithmetic. To do exact division in modular arithmetic, all we have
958 // to do is multiply by the inverse. Therefore, this step can be done at
959 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000960 //
Eli Friedman61f67622008-08-04 23:49:06 +0000961 // The next issue is how to safely do the division by 2^T. The way this
962 // is done is by doing the multiplication step at a width of at least W + T
963 // bits. This way, the bottom W+T bits of the product are accurate. Then,
964 // when we perform the division by 2^T (which is equivalent to a right shift
965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
966 // truncated out after the division by 2^T.
967 //
968 // In comparison to just directly using the first formula, this technique
969 // is much more efficient; using the first formula requires W * K bits,
970 // but this formula less than W + K bits. Also, the first formula requires
971 // a division step, whereas this formula only requires multiplies and shifts.
972 //
973 // It doesn't matter whether the subtraction step is done in the calculation
974 // width or the input iteration count's width; if the subtraction overflows,
975 // the result must be zero anyway. We prefer here to do it in the width of
976 // the induction variable because it helps a lot for certain cases; CodeGen
977 // isn't smart enough to ignore the overflow, which leads to much less
978 // efficient code if the width of the subtraction is wider than the native
979 // register width.
980 //
981 // (It's possible to not widen at all by pulling out factors of 2 before
982 // the multiplication; for example, K=2 can be calculated as
983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984 // extra arithmetic, so it's not an obvious win, and it gets
985 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000986
Eli Friedman61f67622008-08-04 23:49:06 +0000987 // Protection from insane SCEVs; this bound is conservative,
988 // but it probably doesn't matter.
989 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000990 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000992 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Eli Friedman61f67622008-08-04 23:49:06 +0000994 // Calculate K! / 2^T and T; we divide out the factors of two before
995 // multiplying for calculating K! / 2^T to avoid overflow.
996 // Other overflow doesn't matter because we only care about the bottom
997 // W bits of the result.
998 APInt OddFactorial(W, 1);
999 unsigned T = 1;
1000 for (unsigned i = 3; i <= K; ++i) {
1001 APInt Mult(W, i);
1002 unsigned TwoFactors = Mult.countTrailingZeros();
1003 T += TwoFactors;
1004 Mult = Mult.lshr(TwoFactors);
1005 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001006 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001007
Eli Friedman61f67622008-08-04 23:49:06 +00001008 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001009 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001010
Dan Gohman8b0a4192010-03-01 17:49:51 +00001011 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001013
1014 // Calculate the multiplicative inverse of K! / 2^T;
1015 // this multiplication factor will perform the exact division by
1016 // K! / 2^T.
1017 APInt Mod = APInt::getSignedMinValue(W+1);
1018 APInt MultiplyFactor = OddFactorial.zext(W+1);
1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020 MultiplyFactor = MultiplyFactor.trunc(W);
1021
1022 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001024 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001026 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001028 Dividend = SE.getMulExpr(Dividend,
1029 SE.getTruncateOrZeroExtend(S, CalculationTy));
1030 }
1031
1032 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001034
1035 // Truncate the result, and divide by K! / 2^T.
1036
1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001039}
1040
Chris Lattnerd934c702004-04-02 20:23:17 +00001041/// evaluateAtIteration - Return the value of this chain of recurrences at
1042/// the specified iteration number. We can evaluate this recurrence by
1043/// multiplying each element in the chain by the binomial coefficient
1044/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Dan Gohmanaf752342009-07-07 17:06:11 +00001050const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001051 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001052 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001054 // The computation is correct in the face of overflow provided that the
1055 // multiplication is performed _after_ the evaluation of the binomial
1056 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001058 if (isa<SCEVCouldNotCompute>(Coeff))
1059 return Coeff;
1060
1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001062 }
1063 return Result;
1064}
1065
Chris Lattnerd934c702004-04-02 20:23:17 +00001066//===----------------------------------------------------------------------===//
1067// SCEV Expression folder implementations
1068//===----------------------------------------------------------------------===//
1069
Dan Gohmanaf752342009-07-07 17:06:11 +00001070const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001071 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001073 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001074 assert(isSCEVable(Ty) &&
1075 "This is not a conversion to a SCEVable type!");
1076 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001077
Dan Gohman3a302cb2009-07-13 20:50:19 +00001078 FoldingSetNodeID ID;
1079 ID.AddInteger(scTruncate);
1080 ID.AddPointer(Op);
1081 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001082 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084
Dan Gohman3423e722009-06-30 20:13:32 +00001085 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001087 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001089
Dan Gohman79af8542009-04-22 16:20:48 +00001090 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001092 return getTruncateExpr(ST->getOperand(), Ty);
1093
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097
1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001103 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105 SmallVector<const SCEV *, 4> Operands;
1106 bool hasTrunc = false;
1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001109 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001111 Operands.push_back(S);
1112 }
1113 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001114 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001116 }
1117
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001119 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121 SmallVector<const SCEV *, 4> Operands;
1122 bool hasTrunc = false;
1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001125 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001137 for (const SCEV *Op : AddRec->operands())
1138 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Sanjoy Das4153f472015-02-18 01:47:07 +00001151// Get the limit of a recurrence such that incrementing by Step cannot cause
1152// signed overflow as long as the value of the recurrence within the
1153// loop does not exceed this limit before incrementing.
1154static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155 ICmpInst::Predicate *Pred,
1156 ScalarEvolution *SE) {
1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158 if (SE->isKnownPositive(Step)) {
1159 *Pred = ICmpInst::ICMP_SLT;
1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161 SE->getSignedRange(Step).getSignedMax());
1162 }
1163 if (SE->isKnownNegative(Step)) {
1164 *Pred = ICmpInst::ICMP_SGT;
1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166 SE->getSignedRange(Step).getSignedMin());
1167 }
1168 return nullptr;
1169}
1170
1171// Get the limit of a recurrence such that incrementing by Step cannot cause
1172// unsigned overflow as long as the value of the recurrence within the loop does
1173// not exceed this limit before incrementing.
1174static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175 ICmpInst::Predicate *Pred,
1176 ScalarEvolution *SE) {
1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178 *Pred = ICmpInst::ICMP_ULT;
1179
1180 return SE->getConstant(APInt::getMinValue(BitWidth) -
1181 SE->getUnsignedRange(Step).getUnsignedMax());
1182}
1183
1184namespace {
1185
1186struct ExtendOpTraitsBase {
1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188};
1189
1190// Used to make code generic over signed and unsigned overflow.
1191template <typename ExtendOp> struct ExtendOpTraits {
1192 // Members present:
1193 //
1194 // static const SCEV::NoWrapFlags WrapType;
1195 //
1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197 //
1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199 // ICmpInst::Predicate *Pred,
1200 // ScalarEvolution *SE);
1201};
1202
1203template <>
1204struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206
1207 static const GetExtendExprTy GetExtendExpr;
1208
1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210 ICmpInst::Predicate *Pred,
1211 ScalarEvolution *SE) {
1212 return getSignedOverflowLimitForStep(Step, Pred, SE);
1213 }
1214};
1215
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001216const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218
1219template <>
1220struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222
1223 static const GetExtendExprTy GetExtendExpr;
1224
1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226 ICmpInst::Predicate *Pred,
1227 ScalarEvolution *SE) {
1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229 }
1230};
1231
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001232const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001234}
Sanjoy Das4153f472015-02-18 01:47:07 +00001235
1236// The recurrence AR has been shown to have no signed/unsigned wrap or something
1237// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241// expression "Step + sext/zext(PreIncAR)" is congruent with
1242// "sext/zext(PostIncAR)"
1243template <typename ExtendOpTy>
1244static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245 ScalarEvolution *SE) {
1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248
1249 const Loop *L = AR->getLoop();
1250 const SCEV *Start = AR->getStart();
1251 const SCEV *Step = AR->getStepRecurrence(*SE);
1252
1253 // Check for a simple looking step prior to loop entry.
1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255 if (!SA)
1256 return nullptr;
1257
1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259 // subtraction is expensive. For this purpose, perform a quick and dirty
1260 // difference, by checking for Step in the operand list.
1261 SmallVector<const SCEV *, 4> DiffOps;
1262 for (const SCEV *Op : SA->operands())
1263 if (Op != Step)
1264 DiffOps.push_back(Op);
1265
1266 if (DiffOps.size() == SA->getNumOperands())
1267 return nullptr;
1268
1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270 // `Step`:
1271
1272 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001273 auto PreStartFlags =
1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001281 //
1282
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001283 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001286 return PreStart;
1287
1288 // 2. Direct overflow check on the step operation's expression.
1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291 const SCEV *OperandExtendedStart =
1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293 (SE->*GetExtendExpr)(Step, WideTy));
1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300 }
1301 return PreStart;
1302 }
1303
1304 // 3. Loop precondition.
1305 ICmpInst::Predicate Pred;
1306 const SCEV *OverflowLimit =
1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001311 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001312
Sanjoy Das4153f472015-02-18 01:47:07 +00001313 return nullptr;
1314}
1315
1316// Get the normalized zero or sign extended expression for this AddRec's Start.
1317template <typename ExtendOpTy>
1318static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319 ScalarEvolution *SE) {
1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323 if (!PreStart)
1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327 (SE->*GetExtendExpr)(PreStart, Ty));
1328}
1329
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001330// Try to prove away overflow by looking at "nearby" add recurrences. A
1331// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333//
1334// Formally:
1335//
1336// {S,+,X} == {S-T,+,X} + T
1337// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338//
1339// If ({S-T,+,X} + T) does not overflow ... (1)
1340//
1341// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342//
1343// If {S-T,+,X} does not overflow ... (2)
1344//
1345// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346// == {Ext(S-T)+Ext(T),+,Ext(X)}
1347//
1348// If (S-T)+T does not overflow ... (3)
1349//
1350// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351// == {Ext(S),+,Ext(X)} == LHS
1352//
1353// Thus, if (1), (2) and (3) are true for some T, then
1354// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355//
1356// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357// does not overflow" restricted to the 0th iteration. Therefore we only need
1358// to check for (1) and (2).
1359//
1360// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361// is `Delta` (defined below).
1362//
1363template <typename ExtendOpTy>
1364bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365 const SCEV *Step,
1366 const Loop *L) {
1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369 // We restrict `Start` to a constant to prevent SCEV from spending too much
1370 // time here. It is correct (but more expensive) to continue with a
1371 // non-constant `Start` and do a general SCEV subtraction to compute
1372 // `PreStart` below.
1373 //
1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375 if (!StartC)
1376 return false;
1377
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001378 APInt StartAI = StartC->getAPInt();
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001379
1380 for (unsigned Delta : {-2, -1, 1, 2}) {
1381 const SCEV *PreStart = getConstant(StartAI - Delta);
1382
Sanjoy Das42801102015-10-23 06:57:21 +00001383 FoldingSetNodeID ID;
1384 ID.AddInteger(scAddRecExpr);
1385 ID.AddPointer(PreStart);
1386 ID.AddPointer(Step);
1387 ID.AddPointer(L);
1388 void *IP = nullptr;
1389 const auto *PreAR =
1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 // Give up if we don't already have the add recurrence we need because
1393 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398 DeltaS, &Pred, this);
1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
Dan Gohmanaf752342009-07-07 17:06:11 +00001407const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001408 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001411 assert(isSCEVable(Ty) &&
1412 "This is not a conversion to a SCEVable type!");
1413 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001414
Dan Gohman3423e722009-06-30 20:13:32 +00001415 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001419
Dan Gohman79af8542009-04-22 16:20:48 +00001420 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001422 return getZeroExtendExpr(SZ->getOperand(), Ty);
1423
Dan Gohman74a0ba12009-07-13 20:55:53 +00001424 // Before doing any expensive analysis, check to see if we've already
1425 // computed a SCEV for this Op and Ty.
1426 FoldingSetNodeID ID;
1427 ID.AddInteger(scZeroExtend);
1428 ID.AddPointer(Op);
1429 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001430 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001433 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435 // It's possible the bits taken off by the truncate were all zero bits. If
1436 // so, we should be able to simplify this further.
1437 const SCEV *X = ST->getOperand();
1438 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001439 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440 unsigned NewBits = getTypeSizeInBits(Ty);
1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001442 CR.zextOrTrunc(NewBits)))
1443 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001444 }
1445
Dan Gohman76466372009-04-27 20:16:15 +00001446 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001448 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001451 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001452 const SCEV *Start = AR->getStart();
1453 const SCEV *Step = AR->getStepRecurrence(*this);
1454 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455 const Loop *L = AR->getLoop();
1456
Dan Gohman62ef6a72009-07-25 01:22:26 +00001457 // If we have special knowledge that this addrec won't overflow,
1458 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001459 if (AR->hasNoUnsignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001460 return getAddRecExpr(
1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001463
Dan Gohman76466372009-04-27 20:16:15 +00001464 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465 // Note that this serves two purposes: It filters out loops that are
1466 // simply not analyzable, and it covers the case where this code is
1467 // being called from within backedge-taken count analysis, such that
1468 // attempting to ask for the backedge-taken count would likely result
1469 // in infinite recursion. In the later case, the analysis code will
1470 // cope with a conservative value, and it will take care to purge
1471 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001474 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001475 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001476
1477 // Check whether the backedge-taken count can be losslessly casted to
1478 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001480 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001481 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001485 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489 const SCEV *WideMaxBECount =
1490 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001491 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 getAddExpr(WideStart,
1493 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001494 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001495 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001496 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001498 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001499 return getAddRecExpr(
1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001502 }
Dan Gohman76466372009-04-27 20:16:15 +00001503 // Similar to above, only this time treat the step value as signed.
1504 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001505 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001506 getAddExpr(WideStart,
1507 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001508 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001509 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001510 // Cache knowledge of AR NW, which is propagated to this AddRec.
1511 // Negative step causes unsigned wrap, but it still can't self-wrap.
1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001513 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001514 return getAddRecExpr(
1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001517 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001518 }
1519
1520 // If the backedge is guarded by a comparison with the pre-inc value
1521 // the addrec is safe. Also, if the entry is guarded by a comparison
1522 // with the start value and the backedge is guarded by a comparison
1523 // with the post-inc value, the addrec is safe.
1524 if (isKnownPositive(Step)) {
1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526 getUnsignedRange(Step).getUnsignedMax());
1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001530 AR->getPostIncExpr(*this), N))) {
1531 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001533 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001534 return getAddRecExpr(
1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001537 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001538 } else if (isKnownNegative(Step)) {
1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001544 AR->getPostIncExpr(*this), N))) {
1545 // Cache knowledge of AR NW, which is propagated to this AddRec.
1546 // Negative step causes unsigned wrap, but it still can't self-wrap.
1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001549 return getAddRecExpr(
1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001552 }
Dan Gohman76466372009-04-27 20:16:15 +00001553 }
1554 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001555
1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558 return getAddRecExpr(
1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561 }
Dan Gohman76466372009-04-27 20:16:15 +00001562 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001563
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001564 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1565 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001566 if (SA->hasNoUnsignedWrap()) {
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001567 // If the addition does not unsign overflow then we can, by definition,
1568 // commute the zero extension with the addition operation.
1569 SmallVector<const SCEV *, 4> Ops;
1570 for (const auto *Op : SA->operands())
1571 Ops.push_back(getZeroExtendExpr(Op, Ty));
1572 return getAddExpr(Ops, SCEV::FlagNUW);
1573 }
1574 }
1575
Dan Gohman74a0ba12009-07-13 20:55:53 +00001576 // The cast wasn't folded; create an explicit cast node.
1577 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001578 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001579 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1580 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001581 UniqueSCEVs.InsertNode(S, IP);
1582 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001583}
1584
Dan Gohmanaf752342009-07-07 17:06:11 +00001585const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001586 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001587 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001588 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001589 assert(isSCEVable(Ty) &&
1590 "This is not a conversion to a SCEVable type!");
1591 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001592
Dan Gohman3423e722009-06-30 20:13:32 +00001593 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001594 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1595 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001596 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001597
Dan Gohman79af8542009-04-22 16:20:48 +00001598 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001599 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001600 return getSignExtendExpr(SS->getOperand(), Ty);
1601
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001602 // sext(zext(x)) --> zext(x)
1603 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1604 return getZeroExtendExpr(SZ->getOperand(), Ty);
1605
Dan Gohman74a0ba12009-07-13 20:55:53 +00001606 // Before doing any expensive analysis, check to see if we've already
1607 // computed a SCEV for this Op and Ty.
1608 FoldingSetNodeID ID;
1609 ID.AddInteger(scSignExtend);
1610 ID.AddPointer(Op);
1611 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001612 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001613 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1614
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001615 // If the input value is provably positive, build a zext instead.
1616 if (isKnownNonNegative(Op))
1617 return getZeroExtendExpr(Op, Ty);
1618
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001619 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1620 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1621 // It's possible the bits taken off by the truncate were all sign bits. If
1622 // so, we should be able to simplify this further.
1623 const SCEV *X = ST->getOperand();
1624 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001625 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1626 unsigned NewBits = getTypeSizeInBits(Ty);
1627 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001628 CR.sextOrTrunc(NewBits)))
1629 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001630 }
1631
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001632 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001633 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001634 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001635 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1636 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001637 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001638 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001639 const APInt &C1 = SC1->getAPInt();
1640 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001641 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001642 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001643 return getAddExpr(getSignExtendExpr(SC1, Ty),
1644 getSignExtendExpr(SMul, Ty));
1645 }
1646 }
1647 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001648
1649 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001650 if (SA->hasNoSignedWrap()) {
Sanjoy Dasa060e602015-10-22 19:57:25 +00001651 // If the addition does not sign overflow then we can, by definition,
1652 // commute the sign extension with the addition operation.
1653 SmallVector<const SCEV *, 4> Ops;
1654 for (const auto *Op : SA->operands())
1655 Ops.push_back(getSignExtendExpr(Op, Ty));
1656 return getAddExpr(Ops, SCEV::FlagNSW);
1657 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001658 }
Dan Gohman76466372009-04-27 20:16:15 +00001659 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001660 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001661 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001662 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001663 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001664 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001665 const SCEV *Start = AR->getStart();
1666 const SCEV *Step = AR->getStepRecurrence(*this);
1667 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1668 const Loop *L = AR->getLoop();
1669
Dan Gohman62ef6a72009-07-25 01:22:26 +00001670 // If we have special knowledge that this addrec won't overflow,
1671 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001672 if (AR->hasNoSignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001673 return getAddRecExpr(
1674 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1675 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001676
Dan Gohman76466372009-04-27 20:16:15 +00001677 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1678 // Note that this serves two purposes: It filters out loops that are
1679 // simply not analyzable, and it covers the case where this code is
1680 // being called from within backedge-taken count analysis, such that
1681 // attempting to ask for the backedge-taken count would likely result
1682 // in infinite recursion. In the later case, the analysis code will
1683 // cope with a conservative value, and it will take care to purge
1684 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001685 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001686 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001687 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001688 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001689
1690 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001691 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001692 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001693 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001694 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001695 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1696 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001697 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001698 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001699 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001700 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1701 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1702 const SCEV *WideMaxBECount =
1703 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001704 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001705 getAddExpr(WideStart,
1706 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001707 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001708 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001709 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1710 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001711 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001712 return getAddRecExpr(
1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001715 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001716 // Similar to above, only this time treat the step value as unsigned.
1717 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001718 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001719 getAddExpr(WideStart,
1720 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001721 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001722 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001723 // If AR wraps around then
1724 //
1725 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1726 // => SAdd != OperandExtendedAdd
1727 //
1728 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1729 // (SAdd == OperandExtendedAdd => AR is NW)
1730
1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1732
Dan Gohman8c129d72009-07-16 17:34:36 +00001733 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001734 return getAddRecExpr(
1735 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001737 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001738 }
1739
1740 // If the backedge is guarded by a comparison with the pre-inc value
1741 // the addrec is safe. Also, if the entry is guarded by a comparison
1742 // with the start value and the backedge is guarded by a comparison
1743 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001744 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001745 const SCEV *OverflowLimit =
1746 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001747 if (OverflowLimit &&
1748 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1749 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1750 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1751 OverflowLimit)))) {
1752 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001754 return getAddRecExpr(
1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001757 }
1758 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001759 // If Start and Step are constants, check if we can apply this
1760 // transformation:
1761 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001762 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1763 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001764 if (SC1 && SC2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001765 const APInt &C1 = SC1->getAPInt();
1766 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001767 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1768 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001769 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001770 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1771 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001772 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1773 }
1774 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001775
1776 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1777 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1778 return getAddRecExpr(
1779 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1780 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1781 }
Dan Gohman76466372009-04-27 20:16:15 +00001782 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001783
Dan Gohman74a0ba12009-07-13 20:55:53 +00001784 // The cast wasn't folded; create an explicit cast node.
1785 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001786 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001787 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1788 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001789 UniqueSCEVs.InsertNode(S, IP);
1790 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001791}
1792
Dan Gohman8db2edc2009-06-13 15:56:47 +00001793/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1794/// unspecified bits out to the given type.
1795///
Dan Gohmanaf752342009-07-07 17:06:11 +00001796const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001797 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001798 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1799 "This is not an extending conversion!");
1800 assert(isSCEVable(Ty) &&
1801 "This is not a conversion to a SCEVable type!");
1802 Ty = getEffectiveSCEVType(Ty);
1803
1804 // Sign-extend negative constants.
1805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001806 if (SC->getAPInt().isNegative())
Dan Gohman8db2edc2009-06-13 15:56:47 +00001807 return getSignExtendExpr(Op, Ty);
1808
1809 // Peel off a truncate cast.
1810 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001811 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001812 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1813 return getAnyExtendExpr(NewOp, Ty);
1814 return getTruncateOrNoop(NewOp, Ty);
1815 }
1816
1817 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001818 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001819 if (!isa<SCEVZeroExtendExpr>(ZExt))
1820 return ZExt;
1821
1822 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001823 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001824 if (!isa<SCEVSignExtendExpr>(SExt))
1825 return SExt;
1826
Dan Gohman51ad99d2010-01-21 02:09:26 +00001827 // Force the cast to be folded into the operands of an addrec.
1828 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1829 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001830 for (const SCEV *Op : AR->operands())
1831 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001832 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001833 }
1834
Dan Gohman8db2edc2009-06-13 15:56:47 +00001835 // If the expression is obviously signed, use the sext cast value.
1836 if (isa<SCEVSMaxExpr>(Op))
1837 return SExt;
1838
1839 // Absent any other information, use the zext cast value.
1840 return ZExt;
1841}
1842
Dan Gohman038d02e2009-06-14 22:58:51 +00001843/// CollectAddOperandsWithScales - Process the given Ops list, which is
1844/// a list of operands to be added under the given scale, update the given
1845/// map. This is a helper function for getAddRecExpr. As an example of
1846/// what it does, given a sequence of operands that would form an add
1847/// expression like this:
1848///
Tobias Grosserba49e422014-03-05 10:37:17 +00001849/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001850///
1851/// where A and B are constants, update the map with these values:
1852///
1853/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1854///
1855/// and add 13 + A*B*29 to AccumulatedConstant.
1856/// This will allow getAddRecExpr to produce this:
1857///
1858/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1859///
1860/// This form often exposes folding opportunities that are hidden in
1861/// the original operand list.
1862///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001863/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001864/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1865/// the common case where no interesting opportunities are present, and
1866/// is also used as a check to avoid infinite recursion.
1867///
1868static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001869CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001870 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001871 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001872 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001873 const APInt &Scale,
1874 ScalarEvolution &SE) {
1875 bool Interesting = false;
1876
Dan Gohman45073042010-06-18 19:12:32 +00001877 // Iterate over the add operands. They are sorted, with constants first.
1878 unsigned i = 0;
1879 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1880 ++i;
1881 // Pull a buried constant out to the outside.
1882 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1883 Interesting = true;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001884 AccumulatedConstant += Scale * C->getAPInt();
Dan Gohman45073042010-06-18 19:12:32 +00001885 }
1886
1887 // Next comes everything else. We're especially interested in multiplies
1888 // here, but they're in the middle, so just visit the rest with one loop.
1889 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001890 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1891 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1892 APInt NewScale =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001893 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
Dan Gohman038d02e2009-06-14 22:58:51 +00001894 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1895 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001896 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 Interesting |=
1898 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001899 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001900 NewScale, SE);
1901 } else {
1902 // A multiplication of a constant with some other value. Update
1903 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001904 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1905 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001906 auto Pair = M.insert({Key, NewScale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001907 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001908 NewOps.push_back(Pair.first->first);
1909 } else {
1910 Pair.first->second += NewScale;
1911 // The map already had an entry for this value, which may indicate
1912 // a folding opportunity.
1913 Interesting = true;
1914 }
1915 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001916 } else {
1917 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001918 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001919 M.insert({Ops[i], Scale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001920 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001921 NewOps.push_back(Pair.first->first);
1922 } else {
1923 Pair.first->second += Scale;
1924 // The map already had an entry for this value, which may indicate
1925 // a folding opportunity.
1926 Interesting = true;
1927 }
1928 }
1929 }
1930
1931 return Interesting;
1932}
1933
Sanjoy Das81401d42015-01-10 23:41:24 +00001934// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1935// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1936// can't-overflow flags for the operation if possible.
1937static SCEV::NoWrapFlags
1938StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1939 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001940 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001941 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001942 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001943
1944 bool CanAnalyze =
1945 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1946 (void)CanAnalyze;
1947 assert(CanAnalyze && "don't call from other places!");
1948
1949 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1950 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001951 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001952
1953 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001954 auto IsKnownNonNegative = [&](const SCEV *S) {
1955 return SE->isKnownNonNegative(S);
1956 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001957
Sanjoy Das3b827c72015-11-29 23:40:53 +00001958 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001959 Flags =
1960 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001961
Sanjoy Das8f274152015-10-22 19:57:19 +00001962 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1963
1964 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1965 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1966
1967 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1968 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1969
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001970 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
Sanjoy Das8f274152015-10-22 19:57:19 +00001971 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1972 auto NSWRegion =
1973 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1974 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1975 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1976 }
1977 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1978 auto NUWRegion =
1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1980 OBO::NoUnsignedWrap);
1981 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1982 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1983 }
1984 }
1985
1986 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001987}
1988
Dan Gohman4d5435d2009-05-24 23:45:28 +00001989/// getAddExpr - Get a canonical add expression, or something simpler if
1990/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001991const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001992 SCEV::NoWrapFlags Flags) {
1993 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1994 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001995 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001996 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001997#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001998 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001999 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002000 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002001 "SCEVAddExpr operand types don't match!");
2002#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002003
2004 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002005 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002006
Sanjoy Das64895612015-10-09 02:44:45 +00002007 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2008
Chris Lattnerd934c702004-04-02 20:23:17 +00002009 // If there are any constants, fold them together.
2010 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002011 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002012 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002013 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002014 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002016 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
Dan Gohman011cf682009-06-14 22:53:57 +00002017 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002018 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002019 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002020 }
2021
2022 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002023 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002024 Ops.erase(Ops.begin());
2025 --Idx;
2026 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002027
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002028 if (Ops.size() == 1) return Ops[0];
2029 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002030
Dan Gohman15871f22010-08-27 21:39:59 +00002031 // Okay, check to see if the same value occurs in the operand list more than
2032 // once. If so, merge them together into an multiply expression. Since we
2033 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002034 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002035 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002036 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002037 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002038 // Scan ahead to count how many equal operands there are.
2039 unsigned Count = 2;
2040 while (i+Count != e && Ops[i+Count] == Ops[i])
2041 ++Count;
2042 // Merge the values into a multiply.
2043 const SCEV *Scale = getConstant(Ty, Count);
2044 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2045 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002046 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002047 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002048 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002049 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002050 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002051 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002052 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002053 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002054
Dan Gohman2e55cc52009-05-08 21:03:19 +00002055 // Check for truncates. If all the operands are truncated from the same
2056 // type, see if factoring out the truncate would permit the result to be
2057 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2058 // if the contents of the resulting outer trunc fold to something simple.
2059 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2060 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002061 Type *DstType = Trunc->getType();
2062 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002063 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002064 bool Ok = true;
2065 // Check all the operands to see if they can be represented in the
2066 // source type of the truncate.
2067 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2068 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2069 if (T->getOperand()->getType() != SrcType) {
2070 Ok = false;
2071 break;
2072 }
2073 LargeOps.push_back(T->getOperand());
2074 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002075 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002076 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002077 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002078 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2079 if (const SCEVTruncateExpr *T =
2080 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2081 if (T->getOperand()->getType() != SrcType) {
2082 Ok = false;
2083 break;
2084 }
2085 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002086 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002087 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002088 } else {
2089 Ok = false;
2090 break;
2091 }
2092 }
2093 if (Ok)
2094 LargeOps.push_back(getMulExpr(LargeMulOps));
2095 } else {
2096 Ok = false;
2097 break;
2098 }
2099 }
2100 if (Ok) {
2101 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002102 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002103 // If it folds to something simple, use it. Otherwise, don't.
2104 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2105 return getTruncateExpr(Fold, DstType);
2106 }
2107 }
2108
2109 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2111 ++Idx;
2112
2113 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002114 if (Idx < Ops.size()) {
2115 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002116 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002117 // If we have an add, expand the add operands onto the end of the operands
2118 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002119 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002120 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002121 DeletedAdd = true;
2122 }
2123
2124 // If we deleted at least one add, we added operands to the end of the list,
2125 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002126 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002127 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002128 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002129 }
2130
2131 // Skip over the add expression until we get to a multiply.
2132 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2133 ++Idx;
2134
Dan Gohman038d02e2009-06-14 22:58:51 +00002135 // Check to see if there are any folding opportunities present with
2136 // operands multiplied by constant values.
2137 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2138 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002139 DenseMap<const SCEV *, APInt> M;
2140 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002141 APInt AccumulatedConstant(BitWidth, 0);
2142 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002143 Ops.data(), Ops.size(),
2144 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002145 struct APIntCompare {
2146 bool operator()(const APInt &LHS, const APInt &RHS) const {
2147 return LHS.ult(RHS);
2148 }
2149 };
2150
Dan Gohman038d02e2009-06-14 22:58:51 +00002151 // Some interesting folding opportunity is present, so its worthwhile to
2152 // re-generate the operands list. Group the operands by constant scale,
2153 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002154 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002155 for (const SCEV *NewOp : NewOps)
2156 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002157 // Re-generate the operands list.
2158 Ops.clear();
2159 if (AccumulatedConstant != 0)
2160 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002161 for (auto &MulOp : MulOpLists)
2162 if (MulOp.first != 0)
2163 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2164 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002165 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002166 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002167 if (Ops.size() == 1)
2168 return Ops[0];
2169 return getAddExpr(Ops);
2170 }
2171 }
2172
Chris Lattnerd934c702004-04-02 20:23:17 +00002173 // If we are adding something to a multiply expression, make sure the
2174 // something is not already an operand of the multiply. If so, merge it into
2175 // the multiply.
2176 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002177 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002178 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002179 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002180 if (isa<SCEVConstant>(MulOpSCEV))
2181 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002182 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002183 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002184 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002185 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002186 if (Mul->getNumOperands() != 2) {
2187 // If the multiply has more than two operands, we must get the
2188 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002189 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2190 Mul->op_begin()+MulOp);
2191 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002192 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002194 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002195 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002196 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002197 if (Ops.size() == 2) return OuterMul;
2198 if (AddOp < Idx) {
2199 Ops.erase(Ops.begin()+AddOp);
2200 Ops.erase(Ops.begin()+Idx-1);
2201 } else {
2202 Ops.erase(Ops.begin()+Idx);
2203 Ops.erase(Ops.begin()+AddOp-1);
2204 }
2205 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002206 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002207 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002208
Chris Lattnerd934c702004-04-02 20:23:17 +00002209 // Check this multiply against other multiplies being added together.
2210 for (unsigned OtherMulIdx = Idx+1;
2211 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2212 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002213 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002214 // If MulOp occurs in OtherMul, we can fold the two multiplies
2215 // together.
2216 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2217 OMulOp != e; ++OMulOp)
2218 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2219 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002220 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002221 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002222 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002223 Mul->op_begin()+MulOp);
2224 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002225 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002227 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002228 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002229 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002230 OtherMul->op_begin()+OMulOp);
2231 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002232 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002233 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002234 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2235 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002236 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002237 Ops.erase(Ops.begin()+Idx);
2238 Ops.erase(Ops.begin()+OtherMulIdx-1);
2239 Ops.push_back(OuterMul);
2240 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002241 }
2242 }
2243 }
2244 }
2245
2246 // If there are any add recurrences in the operands list, see if any other
2247 // added values are loop invariant. If so, we can fold them into the
2248 // recurrence.
2249 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2250 ++Idx;
2251
2252 // Scan over all recurrences, trying to fold loop invariants into them.
2253 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2254 // Scan all of the other operands to this add and add them to the vector if
2255 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002256 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002257 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002258 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002259 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002260 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002261 LIOps.push_back(Ops[i]);
2262 Ops.erase(Ops.begin()+i);
2263 --i; --e;
2264 }
2265
2266 // If we found some loop invariants, fold them into the recurrence.
2267 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002268 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002269 LIOps.push_back(AddRec->getStart());
2270
Dan Gohmanaf752342009-07-07 17:06:11 +00002271 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002272 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002273 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002274
Dan Gohman16206132010-06-30 07:16:37 +00002275 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002276 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002277 // Always propagate NW.
2278 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002279 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002280
Chris Lattnerd934c702004-04-02 20:23:17 +00002281 // If all of the other operands were loop invariant, we are done.
2282 if (Ops.size() == 1) return NewRec;
2283
Nick Lewyckydb66b822011-09-06 05:08:09 +00002284 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002285 for (unsigned i = 0;; ++i)
2286 if (Ops[i] == AddRec) {
2287 Ops[i] = NewRec;
2288 break;
2289 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002290 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002291 }
2292
2293 // Okay, if there weren't any loop invariants to be folded, check to see if
2294 // there are multiple AddRec's with the same loop induction variable being
2295 // added together. If so, we can fold them.
2296 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002297 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2298 ++OtherIdx)
2299 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2300 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2301 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2302 AddRec->op_end());
2303 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2304 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002305 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002306 if (OtherAddRec->getLoop() == AddRecLoop) {
2307 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2308 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002309 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002310 AddRecOps.append(OtherAddRec->op_begin()+i,
2311 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002312 break;
2313 }
Dan Gohman028c1812010-08-29 14:53:34 +00002314 AddRecOps[i] = getAddExpr(AddRecOps[i],
2315 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002316 }
2317 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002318 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002319 // Step size has changed, so we cannot guarantee no self-wraparound.
2320 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002321 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002322 }
2323
2324 // Otherwise couldn't fold anything into this recurrence. Move onto the
2325 // next one.
2326 }
2327
2328 // Okay, it looks like we really DO need an add expr. Check to see if we
2329 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002330 FoldingSetNodeID ID;
2331 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002332 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2333 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002334 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002335 SCEVAddExpr *S =
2336 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2337 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002338 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2339 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002340 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2341 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002342 UniqueSCEVs.InsertNode(S, IP);
2343 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002344 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002345 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002346}
2347
Nick Lewycky287682e2011-10-04 06:51:26 +00002348static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2349 uint64_t k = i*j;
2350 if (j > 1 && k / j != i) Overflow = true;
2351 return k;
2352}
2353
2354/// Compute the result of "n choose k", the binomial coefficient. If an
2355/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002356/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002357static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2358 // We use the multiplicative formula:
2359 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2360 // At each iteration, we take the n-th term of the numeral and divide by the
2361 // (k-n)th term of the denominator. This division will always produce an
2362 // integral result, and helps reduce the chance of overflow in the
2363 // intermediate computations. However, we can still overflow even when the
2364 // final result would fit.
2365
2366 if (n == 0 || n == k) return 1;
2367 if (k > n) return 0;
2368
2369 if (k > n/2)
2370 k = n-k;
2371
2372 uint64_t r = 1;
2373 for (uint64_t i = 1; i <= k; ++i) {
2374 r = umul_ov(r, n-(i-1), Overflow);
2375 r /= i;
2376 }
2377 return r;
2378}
2379
Nick Lewycky05044c22014-12-06 00:45:50 +00002380/// Determine if any of the operands in this SCEV are a constant or if
2381/// any of the add or multiply expressions in this SCEV contain a constant.
2382static bool containsConstantSomewhere(const SCEV *StartExpr) {
2383 SmallVector<const SCEV *, 4> Ops;
2384 Ops.push_back(StartExpr);
2385 while (!Ops.empty()) {
2386 const SCEV *CurrentExpr = Ops.pop_back_val();
2387 if (isa<SCEVConstant>(*CurrentExpr))
2388 return true;
2389
2390 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2391 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002392 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002393 }
2394 }
2395 return false;
2396}
2397
Dan Gohman4d5435d2009-05-24 23:45:28 +00002398/// getMulExpr - Get a canonical multiply expression, or something simpler if
2399/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002400const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002401 SCEV::NoWrapFlags Flags) {
2402 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2403 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002404 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002405 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002406#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002407 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002408 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002409 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002410 "SCEVMulExpr operand types don't match!");
2411#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002412
2413 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002414 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002415
Sanjoy Das64895612015-10-09 02:44:45 +00002416 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2417
Chris Lattnerd934c702004-04-02 20:23:17 +00002418 // If there are any constants, fold them together.
2419 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002420 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002421
2422 // C1*(C2+V) -> C1*C2 + C1*V
2423 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002424 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2425 // If any of Add's ops are Adds or Muls with a constant,
2426 // apply this transformation as well.
2427 if (Add->getNumOperands() == 2)
2428 if (containsConstantSomewhere(Add))
2429 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2430 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002431
Chris Lattnerd934c702004-04-02 20:23:17 +00002432 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002433 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002434 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002435 ConstantInt *Fold =
2436 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002437 Ops[0] = getConstant(Fold);
2438 Ops.erase(Ops.begin()+1); // Erase the folded element
2439 if (Ops.size() == 1) return Ops[0];
2440 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002441 }
2442
2443 // If we are left with a constant one being multiplied, strip it off.
2444 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2445 Ops.erase(Ops.begin());
2446 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002447 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002448 // If we have a multiply of zero, it will always be zero.
2449 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002450 } else if (Ops[0]->isAllOnesValue()) {
2451 // If we have a mul by -1 of an add, try distributing the -1 among the
2452 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002453 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002454 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2455 SmallVector<const SCEV *, 4> NewOps;
2456 bool AnyFolded = false;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002457 for (const SCEV *AddOp : Add->operands()) {
2458 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002459 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2460 NewOps.push_back(Mul);
2461 }
2462 if (AnyFolded)
2463 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002464 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002465 // Negation preserves a recurrence's no self-wrap property.
2466 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002467 for (const SCEV *AddRecOp : AddRec->operands())
2468 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2469
Andrew Tricke92dcce2011-03-14 17:38:54 +00002470 return getAddRecExpr(Operands, AddRec->getLoop(),
2471 AddRec->getNoWrapFlags(SCEV::FlagNW));
2472 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002473 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002474 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002475
2476 if (Ops.size() == 1)
2477 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 }
2479
2480 // Skip over the add expression until we get to a multiply.
2481 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2482 ++Idx;
2483
Chris Lattnerd934c702004-04-02 20:23:17 +00002484 // If there are mul operands inline them all into this expression.
2485 if (Idx < Ops.size()) {
2486 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002487 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002488 // If we have an mul, expand the mul operands onto the end of the operands
2489 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002490 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002491 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002492 DeletedMul = true;
2493 }
2494
2495 // If we deleted at least one mul, we added operands to the end of the list,
2496 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002497 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002498 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002499 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002500 }
2501
2502 // If there are any add recurrences in the operands list, see if any other
2503 // added values are loop invariant. If so, we can fold them into the
2504 // recurrence.
2505 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2506 ++Idx;
2507
2508 // Scan over all recurrences, trying to fold loop invariants into them.
2509 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2510 // Scan all of the other operands to this mul and add them to the vector if
2511 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002512 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002513 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002514 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002515 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002516 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002517 LIOps.push_back(Ops[i]);
2518 Ops.erase(Ops.begin()+i);
2519 --i; --e;
2520 }
2521
2522 // If we found some loop invariants, fold them into the recurrence.
2523 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002524 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002525 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002526 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002527 const SCEV *Scale = getMulExpr(LIOps);
2528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2529 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002530
Dan Gohman16206132010-06-30 07:16:37 +00002531 // Build the new addrec. Propagate the NUW and NSW flags if both the
2532 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002533 //
2534 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002535 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002536 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2537 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002538
2539 // If all of the other operands were loop invariant, we are done.
2540 if (Ops.size() == 1) return NewRec;
2541
Nick Lewyckydb66b822011-09-06 05:08:09 +00002542 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002543 for (unsigned i = 0;; ++i)
2544 if (Ops[i] == AddRec) {
2545 Ops[i] = NewRec;
2546 break;
2547 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002548 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002549 }
2550
2551 // Okay, if there weren't any loop invariants to be folded, check to see if
2552 // there are multiple AddRec's with the same loop induction variable being
2553 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002554
2555 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2556 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2557 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2558 // ]]],+,...up to x=2n}.
2559 // Note that the arguments to choose() are always integers with values
2560 // known at compile time, never SCEV objects.
2561 //
2562 // The implementation avoids pointless extra computations when the two
2563 // addrec's are of different length (mathematically, it's equivalent to
2564 // an infinite stream of zeros on the right).
2565 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002566 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002567 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002568 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002569 const SCEVAddRecExpr *OtherAddRec =
2570 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2571 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002572 continue;
2573
Nick Lewycky97756402014-09-01 05:17:15 +00002574 bool Overflow = false;
2575 Type *Ty = AddRec->getType();
2576 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2577 SmallVector<const SCEV*, 7> AddRecOps;
2578 for (int x = 0, xe = AddRec->getNumOperands() +
2579 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002580 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002581 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2582 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2583 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2584 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2585 z < ze && !Overflow; ++z) {
2586 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2587 uint64_t Coeff;
2588 if (LargerThan64Bits)
2589 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2590 else
2591 Coeff = Coeff1*Coeff2;
2592 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2593 const SCEV *Term1 = AddRec->getOperand(y-z);
2594 const SCEV *Term2 = OtherAddRec->getOperand(z);
2595 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002596 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002597 }
Nick Lewycky97756402014-09-01 05:17:15 +00002598 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002599 }
Nick Lewycky97756402014-09-01 05:17:15 +00002600 if (!Overflow) {
2601 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2602 SCEV::FlagAnyWrap);
2603 if (Ops.size() == 2) return NewAddRec;
2604 Ops[Idx] = NewAddRec;
2605 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2606 OpsModified = true;
2607 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2608 if (!AddRec)
2609 break;
2610 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002611 }
Nick Lewycky97756402014-09-01 05:17:15 +00002612 if (OpsModified)
2613 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002614
2615 // Otherwise couldn't fold anything into this recurrence. Move onto the
2616 // next one.
2617 }
2618
2619 // Okay, it looks like we really DO need an mul expr. Check to see if we
2620 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002621 FoldingSetNodeID ID;
2622 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002623 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2624 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002625 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002626 SCEVMulExpr *S =
2627 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2628 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002629 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2630 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002631 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2632 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002633 UniqueSCEVs.InsertNode(S, IP);
2634 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002635 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002636 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002637}
2638
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002639/// getUDivExpr - Get a canonical unsigned division expression, or something
2640/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002641const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2642 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002643 assert(getEffectiveSCEVType(LHS->getType()) ==
2644 getEffectiveSCEVType(RHS->getType()) &&
2645 "SCEVUDivExpr operand types don't match!");
2646
Dan Gohmana30370b2009-05-04 22:02:23 +00002647 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002648 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002649 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002650 // If the denominator is zero, the result of the udiv is undefined. Don't
2651 // try to analyze it, because the resolution chosen here may differ from
2652 // the resolution chosen in other parts of the compiler.
2653 if (!RHSC->getValue()->isZero()) {
2654 // Determine if the division can be folded into the operands of
2655 // its operands.
2656 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002657 Type *Ty = LHS->getType();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002658 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002659 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002660 // For non-power-of-two values, effectively round the value up to the
2661 // nearest power of two.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002662 if (!RHSC->getAPInt().isPowerOf2())
Dan Gohmanacd700a2010-04-22 01:35:11 +00002663 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002664 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002665 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2667 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002668 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2669 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002670 const APInt &StepInt = Step->getAPInt();
2671 const APInt &DivInt = RHSC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002672 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002673 getZeroExtendExpr(AR, ExtTy) ==
2674 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2675 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002676 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002677 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002678 for (const SCEV *Op : AR->operands())
2679 Operands.push_back(getUDivExpr(Op, RHS));
2680 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002681 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002682 /// Get a canonical UDivExpr for a recurrence.
2683 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2684 // We can currently only fold X%N if X is constant.
2685 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2686 if (StartC && !DivInt.urem(StepInt) &&
2687 getZeroExtendExpr(AR, ExtTy) ==
2688 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2689 getZeroExtendExpr(Step, ExtTy),
2690 AR->getLoop(), SCEV::FlagAnyWrap)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002691 const APInt &StartInt = StartC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002692 const APInt &StartRem = StartInt.urem(StepInt);
2693 if (StartRem != 0)
2694 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2695 AR->getLoop(), SCEV::FlagNW);
2696 }
2697 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002698 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2699 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2700 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002701 for (const SCEV *Op : M->operands())
2702 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002703 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2704 // Find an operand that's safely divisible.
2705 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2706 const SCEV *Op = M->getOperand(i);
2707 const SCEV *Div = getUDivExpr(Op, RHSC);
2708 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2709 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2710 M->op_end());
2711 Operands[i] = Div;
2712 return getMulExpr(Operands);
2713 }
2714 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002715 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002716 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002717 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002718 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002719 for (const SCEV *Op : A->operands())
2720 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002721 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2722 Operands.clear();
2723 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2724 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2725 if (isa<SCEVUDivExpr>(Op) ||
2726 getMulExpr(Op, RHS) != A->getOperand(i))
2727 break;
2728 Operands.push_back(Op);
2729 }
2730 if (Operands.size() == A->getNumOperands())
2731 return getAddExpr(Operands);
2732 }
2733 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002734
Dan Gohmanacd700a2010-04-22 01:35:11 +00002735 // Fold if both operands are constant.
2736 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2737 Constant *LHSCV = LHSC->getValue();
2738 Constant *RHSCV = RHSC->getValue();
2739 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2740 RHSCV)));
2741 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002742 }
2743 }
2744
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002745 FoldingSetNodeID ID;
2746 ID.AddInteger(scUDivExpr);
2747 ID.AddPointer(LHS);
2748 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002749 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002751 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2752 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002753 UniqueSCEVs.InsertNode(S, IP);
2754 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002755}
2756
Nick Lewycky31eaca52014-01-27 10:04:03 +00002757static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002758 APInt A = C1->getAPInt().abs();
2759 APInt B = C2->getAPInt().abs();
Nick Lewycky31eaca52014-01-27 10:04:03 +00002760 uint32_t ABW = A.getBitWidth();
2761 uint32_t BBW = B.getBitWidth();
2762
2763 if (ABW > BBW)
2764 B = B.zext(ABW);
2765 else if (ABW < BBW)
2766 A = A.zext(BBW);
2767
2768 return APIntOps::GreatestCommonDivisor(A, B);
2769}
2770
2771/// getUDivExactExpr - Get a canonical unsigned division expression, or
2772/// something simpler if possible. There is no representation for an exact udiv
2773/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2774/// We can't do this when it's not exact because the udiv may be clearing bits.
2775const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2776 const SCEV *RHS) {
2777 // TODO: we could try to find factors in all sorts of things, but for now we
2778 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2779 // end of this file for inspiration.
2780
2781 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2782 if (!Mul)
2783 return getUDivExpr(LHS, RHS);
2784
2785 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2786 // If the mulexpr multiplies by a constant, then that constant must be the
2787 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002788 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002789 if (LHSCst == RHSCst) {
2790 SmallVector<const SCEV *, 2> Operands;
2791 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2792 return getMulExpr(Operands);
2793 }
2794
2795 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2796 // that there's a factor provided by one of the other terms. We need to
2797 // check.
2798 APInt Factor = gcd(LHSCst, RHSCst);
2799 if (!Factor.isIntN(1)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002800 LHSCst =
2801 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2802 RHSCst =
2803 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
Nick Lewycky31eaca52014-01-27 10:04:03 +00002804 SmallVector<const SCEV *, 2> Operands;
2805 Operands.push_back(LHSCst);
2806 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2807 LHS = getMulExpr(Operands);
2808 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002809 Mul = dyn_cast<SCEVMulExpr>(LHS);
2810 if (!Mul)
2811 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002812 }
2813 }
2814 }
2815
2816 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2817 if (Mul->getOperand(i) == RHS) {
2818 SmallVector<const SCEV *, 2> Operands;
2819 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2820 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2821 return getMulExpr(Operands);
2822 }
2823 }
2824
2825 return getUDivExpr(LHS, RHS);
2826}
Chris Lattnerd934c702004-04-02 20:23:17 +00002827
Dan Gohman4d5435d2009-05-24 23:45:28 +00002828/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2829/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002830const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2831 const Loop *L,
2832 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002833 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002834 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002835 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002836 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002837 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002838 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002839 }
2840
2841 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002842 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002843}
2844
Dan Gohman4d5435d2009-05-24 23:45:28 +00002845/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2846/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002847const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002848ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002849 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002850 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002851#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002852 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002853 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002854 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002855 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002856 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002857 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002858 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002859#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002860
Dan Gohmanbe928e32008-06-18 16:23:07 +00002861 if (Operands.back()->isZero()) {
2862 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002863 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002864 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002865
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002866 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2867 // use that information to infer NUW and NSW flags. However, computing a
2868 // BE count requires calling getAddRecExpr, so we may not yet have a
2869 // meaningful BE count at this point (and if we don't, we'd be stuck
2870 // with a SCEVCouldNotCompute as the cached BE count).
2871
Sanjoy Das81401d42015-01-10 23:41:24 +00002872 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002873
Dan Gohman223a5d22008-08-08 18:33:12 +00002874 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002875 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002876 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002877 if (L->contains(NestedLoop)
2878 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2879 : (!NestedLoop->contains(L) &&
2880 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002881 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002882 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002883 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002884 // AddRecs require their operands be loop-invariant with respect to their
2885 // loops. Don't perform this transformation if it would break this
2886 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002887 bool AllInvariant = all_of(
2888 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002889
Dan Gohmancc030b72009-06-26 22:36:20 +00002890 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002891 // Create a recurrence for the outer loop with the same step size.
2892 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002893 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2894 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002895 SCEV::NoWrapFlags OuterFlags =
2896 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002897
2898 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002899 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2900 return isLoopInvariant(Op, NestedLoop);
2901 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002902
Andrew Trick8b55b732011-03-14 16:50:06 +00002903 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002904 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002905 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002906 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2907 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002908 SCEV::NoWrapFlags InnerFlags =
2909 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002910 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2911 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002912 }
2913 // Reset Operands to its original state.
2914 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002915 }
2916 }
2917
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002918 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2919 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002920 FoldingSetNodeID ID;
2921 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002922 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2923 ID.AddPointer(Operands[i]);
2924 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002925 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002926 SCEVAddRecExpr *S =
2927 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2928 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002929 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2930 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002931 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2932 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002933 UniqueSCEVs.InsertNode(S, IP);
2934 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002935 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002936 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002937}
2938
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002939const SCEV *
2940ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2941 const SmallVectorImpl<const SCEV *> &IndexExprs,
2942 bool InBounds) {
2943 // getSCEV(Base)->getType() has the same address space as Base->getType()
2944 // because SCEV::getType() preserves the address space.
2945 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2946 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2947 // instruction to its SCEV, because the Instruction may be guarded by control
2948 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002949 // context. This can be fixed similarly to how these flags are handled for
2950 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002951 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2952
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002953 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002954 // The address space is unimportant. The first thing we do on CurTy is getting
2955 // its element type.
2956 Type *CurTy = PointerType::getUnqual(PointeeType);
2957 for (const SCEV *IndexExpr : IndexExprs) {
2958 // Compute the (potentially symbolic) offset in bytes for this index.
2959 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2960 // For a struct, add the member offset.
2961 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2962 unsigned FieldNo = Index->getZExtValue();
2963 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2964
2965 // Add the field offset to the running total offset.
2966 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2967
2968 // Update CurTy to the type of the field at Index.
2969 CurTy = STy->getTypeAtIndex(Index);
2970 } else {
2971 // Update CurTy to its element type.
2972 CurTy = cast<SequentialType>(CurTy)->getElementType();
2973 // For an array, add the element offset, explicitly scaled.
2974 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2975 // Getelementptr indices are signed.
2976 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2977
2978 // Multiply the index by the element size to compute the element offset.
2979 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2980
2981 // Add the element offset to the running total offset.
2982 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2983 }
2984 }
2985
2986 // Add the total offset from all the GEP indices to the base.
2987 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2988}
2989
Dan Gohmanabd17092009-06-24 14:49:00 +00002990const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2991 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002992 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002993 Ops.push_back(LHS);
2994 Ops.push_back(RHS);
2995 return getSMaxExpr(Ops);
2996}
2997
Dan Gohmanaf752342009-07-07 17:06:11 +00002998const SCEV *
2999ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003000 assert(!Ops.empty() && "Cannot get empty smax!");
3001 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003002#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003004 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003006 "SCEVSMaxExpr operand types don't match!");
3007#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003008
3009 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003010 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003011
3012 // If there are any constants, fold them together.
3013 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003014 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003015 ++Idx;
3016 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003017 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003018 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003019 ConstantInt *Fold = ConstantInt::get(
3020 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003021 Ops[0] = getConstant(Fold);
3022 Ops.erase(Ops.begin()+1); // Erase the folded element
3023 if (Ops.size() == 1) return Ops[0];
3024 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003025 }
3026
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003027 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003028 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3029 Ops.erase(Ops.begin());
3030 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003031 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3032 // If we have an smax with a constant maximum-int, it will always be
3033 // maximum-int.
3034 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003035 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003036
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003037 if (Ops.size() == 1) return Ops[0];
3038 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003039
3040 // Find the first SMax
3041 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3042 ++Idx;
3043
3044 // Check to see if one of the operands is an SMax. If so, expand its operands
3045 // onto our operand list, and recurse to simplify.
3046 if (Idx < Ops.size()) {
3047 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003048 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003049 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003050 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003051 DeletedSMax = true;
3052 }
3053
3054 if (DeletedSMax)
3055 return getSMaxExpr(Ops);
3056 }
3057
3058 // Okay, check to see if the same value occurs in the operand list twice. If
3059 // so, delete one. Since we sorted the list, these values are required to
3060 // be adjacent.
3061 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003062 // X smax Y smax Y --> X smax Y
3063 // X smax Y --> X, if X is always greater than Y
3064 if (Ops[i] == Ops[i+1] ||
3065 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3066 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3067 --i; --e;
3068 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003069 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3070 --i; --e;
3071 }
3072
3073 if (Ops.size() == 1) return Ops[0];
3074
3075 assert(!Ops.empty() && "Reduced smax down to nothing!");
3076
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003077 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003078 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003079 FoldingSetNodeID ID;
3080 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003081 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3082 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003083 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003084 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003085 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3086 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003087 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3088 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003089 UniqueSCEVs.InsertNode(S, IP);
3090 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003091}
3092
Dan Gohmanabd17092009-06-24 14:49:00 +00003093const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3094 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003095 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003096 Ops.push_back(LHS);
3097 Ops.push_back(RHS);
3098 return getUMaxExpr(Ops);
3099}
3100
Dan Gohmanaf752342009-07-07 17:06:11 +00003101const SCEV *
3102ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003103 assert(!Ops.empty() && "Cannot get empty umax!");
3104 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003105#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003106 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003107 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003108 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003109 "SCEVUMaxExpr operand types don't match!");
3110#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003111
3112 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003113 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003114
3115 // If there are any constants, fold them together.
3116 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003117 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003118 ++Idx;
3119 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003120 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003121 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003122 ConstantInt *Fold = ConstantInt::get(
3123 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124 Ops[0] = getConstant(Fold);
3125 Ops.erase(Ops.begin()+1); // Erase the folded element
3126 if (Ops.size() == 1) return Ops[0];
3127 LHSC = cast<SCEVConstant>(Ops[0]);
3128 }
3129
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003130 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003131 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3132 Ops.erase(Ops.begin());
3133 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003134 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3135 // If we have an umax with a constant maximum-int, it will always be
3136 // maximum-int.
3137 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003138 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003139
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003140 if (Ops.size() == 1) return Ops[0];
3141 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003142
3143 // Find the first UMax
3144 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3145 ++Idx;
3146
3147 // Check to see if one of the operands is a UMax. If so, expand its operands
3148 // onto our operand list, and recurse to simplify.
3149 if (Idx < Ops.size()) {
3150 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003151 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003152 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003153 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003154 DeletedUMax = true;
3155 }
3156
3157 if (DeletedUMax)
3158 return getUMaxExpr(Ops);
3159 }
3160
3161 // Okay, check to see if the same value occurs in the operand list twice. If
3162 // so, delete one. Since we sorted the list, these values are required to
3163 // be adjacent.
3164 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003165 // X umax Y umax Y --> X umax Y
3166 // X umax Y --> X, if X is always greater than Y
3167 if (Ops[i] == Ops[i+1] ||
3168 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3169 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3170 --i; --e;
3171 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003172 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3173 --i; --e;
3174 }
3175
3176 if (Ops.size() == 1) return Ops[0];
3177
3178 assert(!Ops.empty() && "Reduced umax down to nothing!");
3179
3180 // Okay, it looks like we really DO need a umax expr. Check to see if we
3181 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003182 FoldingSetNodeID ID;
3183 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003184 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3185 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003186 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003188 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3189 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003190 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3191 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003192 UniqueSCEVs.InsertNode(S, IP);
3193 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003194}
3195
Dan Gohmanabd17092009-06-24 14:49:00 +00003196const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3197 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003198 // ~smax(~x, ~y) == smin(x, y).
3199 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3200}
3201
Dan Gohmanabd17092009-06-24 14:49:00 +00003202const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3203 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003204 // ~umax(~x, ~y) == umin(x, y)
3205 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3206}
3207
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003208const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003209 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003210 // constant expression and then folding it back into a ConstantInt.
3211 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003212 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003213}
3214
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003215const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3216 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003217 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003218 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003219 // constant expression and then folding it back into a ConstantInt.
3220 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003221 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003222 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003223}
3224
Dan Gohmanaf752342009-07-07 17:06:11 +00003225const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003226 // Don't attempt to do anything other than create a SCEVUnknown object
3227 // here. createSCEV only calls getUnknown after checking for all other
3228 // interesting possibilities, and any other code that calls getUnknown
3229 // is doing so in order to hide a value from SCEV canonicalization.
3230
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003231 FoldingSetNodeID ID;
3232 ID.AddInteger(scUnknown);
3233 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003234 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003235 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3236 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3237 "Stale SCEVUnknown in uniquing map!");
3238 return S;
3239 }
3240 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3241 FirstUnknown);
3242 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003243 UniqueSCEVs.InsertNode(S, IP);
3244 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003245}
3246
Chris Lattnerd934c702004-04-02 20:23:17 +00003247//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003248// Basic SCEV Analysis and PHI Idiom Recognition Code
3249//
3250
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003251/// isSCEVable - Test if values of the given type are analyzable within
3252/// the SCEV framework. This primarily includes integer types, and it
3253/// can optionally include pointer types if the ScalarEvolution class
3254/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003255bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003256 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003257 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003258}
3259
3260/// getTypeSizeInBits - Return the size in bits of the specified type,
3261/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003262uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003263 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003264 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003265}
3266
3267/// getEffectiveSCEVType - Return a type with the same bitwidth as
3268/// the given type and which represents how SCEV will treat the given
3269/// type, for which isSCEVable must return true. For pointer types,
3270/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003271Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003272 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3273
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003274 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003275 return Ty;
3276
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003277 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003278 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003279 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003280}
Chris Lattnerd934c702004-04-02 20:23:17 +00003281
Dan Gohmanaf752342009-07-07 17:06:11 +00003282const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003283 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003284}
3285
Sanjoy Das7d752672015-12-08 04:32:54 +00003286
3287bool ScalarEvolution::checkValidity(const SCEV *S) const {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003288 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3289 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3290 // is set iff if find such SCEVUnknown.
3291 //
3292 struct FindInvalidSCEVUnknown {
3293 bool FindOne;
3294 FindInvalidSCEVUnknown() { FindOne = false; }
3295 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003296 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003297 case scConstant:
3298 return false;
3299 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003300 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003301 FindOne = true;
3302 return false;
3303 default:
3304 return true;
3305 }
3306 }
3307 bool isDone() const { return FindOne; }
3308 };
Shuxin Yangefc4c012013-07-08 17:33:13 +00003309
Shuxin Yangefc4c012013-07-08 17:33:13 +00003310 FindInvalidSCEVUnknown F;
3311 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3312 ST.visitAll(S);
3313
3314 return !F.FindOne;
3315}
3316
Wei Mia49559b2016-02-04 01:27:38 +00003317namespace {
3318// Helper class working with SCEVTraversal to figure out if a SCEV contains
3319// a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3320// iff if such sub scAddRecExpr type SCEV is found.
3321struct FindAddRecurrence {
3322 bool FoundOne;
3323 FindAddRecurrence() : FoundOne(false) {}
3324
3325 bool follow(const SCEV *S) {
3326 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3327 case scAddRecExpr:
3328 FoundOne = true;
3329 case scConstant:
3330 case scUnknown:
3331 case scCouldNotCompute:
3332 return false;
3333 default:
3334 return true;
3335 }
3336 }
3337 bool isDone() const { return FoundOne; }
3338};
3339}
3340
3341bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3342 HasRecMapType::iterator I = HasRecMap.find_as(S);
3343 if (I != HasRecMap.end())
3344 return I->second;
3345
3346 FindAddRecurrence F;
3347 SCEVTraversal<FindAddRecurrence> ST(F);
3348 ST.visitAll(S);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003349 HasRecMap.insert({S, F.FoundOne});
Wei Mia49559b2016-02-04 01:27:38 +00003350 return F.FoundOne;
3351}
3352
3353/// getSCEVValues - Return the Value set from S.
3354SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3355 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3356 if (SI == ExprValueMap.end())
3357 return nullptr;
3358#ifndef NDEBUG
3359 if (VerifySCEVMap) {
3360 // Check there is no dangling Value in the set returned.
3361 for (const auto &VE : SI->second)
3362 assert(ValueExprMap.count(VE));
3363 }
3364#endif
3365 return &SI->second;
3366}
3367
3368/// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3369/// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3370/// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3371/// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3372void ScalarEvolution::eraseValueFromMap(Value *V) {
3373 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3374 if (I != ValueExprMap.end()) {
3375 const SCEV *S = I->second;
3376 SetVector<Value *> *SV = getSCEVValues(S);
3377 // Remove V from the set of ExprValueMap[S]
3378 if (SV)
3379 SV->remove(V);
3380 ValueExprMap.erase(V);
3381 }
3382}
3383
Chris Lattnerd934c702004-04-02 20:23:17 +00003384/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3385/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003386const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003387 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003388
Jingyue Wu42f1d672015-07-28 18:22:40 +00003389 const SCEV *S = getExistingSCEV(V);
3390 if (S == nullptr) {
3391 S = createSCEV(V);
Wei Mia49559b2016-02-04 01:27:38 +00003392 // During PHI resolution, it is possible to create two SCEVs for the same
3393 // V, so it is needed to double check whether V->S is inserted into
3394 // ValueExprMap before insert S->V into ExprValueMap.
3395 std::pair<ValueExprMapType::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003396 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
Wei Mia49559b2016-02-04 01:27:38 +00003397 if (Pair.second)
3398 ExprValueMap[S].insert(V);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003399 }
3400 return S;
3401}
3402
3403const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3404 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3405
Shuxin Yangefc4c012013-07-08 17:33:13 +00003406 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3407 if (I != ValueExprMap.end()) {
3408 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003409 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003410 return S;
Wei Mia49559b2016-02-04 01:27:38 +00003411 forgetMemoizedResults(S);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003412 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003413 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003414 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003415}
3416
Dan Gohman0a40ad92009-04-16 03:18:22 +00003417/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3418///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003419const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3420 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003421 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003422 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003423 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003424
Chris Lattner229907c2011-07-18 04:54:35 +00003425 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003426 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003427 return getMulExpr(
3428 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003429}
3430
3431/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003432const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003433 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003434 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003435 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003436
Chris Lattner229907c2011-07-18 04:54:35 +00003437 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003438 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003439 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003440 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003441 return getMinusSCEV(AllOnes, V);
3442}
3443
Andrew Trick8b55b732011-03-14 16:50:06 +00003444/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003445const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003446 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003447 // Fast path: X - X --> 0.
3448 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003449 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003450
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003451 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3452 // makes it so that we cannot make much use of NUW.
3453 auto AddFlags = SCEV::FlagAnyWrap;
3454 const bool RHSIsNotMinSigned =
3455 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3456 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3457 // Let M be the minimum representable signed value. Then (-1)*RHS
3458 // signed-wraps if and only if RHS is M. That can happen even for
3459 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3460 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3461 // (-1)*RHS, we need to prove that RHS != M.
3462 //
3463 // If LHS is non-negative and we know that LHS - RHS does not
3464 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3465 // either by proving that RHS > M or that LHS >= 0.
3466 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3467 AddFlags = SCEV::FlagNSW;
3468 }
3469 }
3470
3471 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3472 // RHS is NSW and LHS >= 0.
3473 //
3474 // The difficulty here is that the NSW flag may have been proven
3475 // relative to a loop that is to be found in a recurrence in LHS and
3476 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3477 // larger scope than intended.
3478 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3479
3480 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003481}
3482
3483/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3484/// input value to the specified type. If the type must be extended, it is zero
3485/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003486const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003487ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3488 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3490 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003491 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003492 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003493 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003494 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003495 return getTruncateExpr(V, Ty);
3496 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003497}
3498
3499/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3500/// input value to the specified type. If the type must be extended, it is sign
3501/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003502const SCEV *
3503ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003504 Type *Ty) {
3505 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003506 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3507 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003508 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003509 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003510 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003511 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003512 return getTruncateExpr(V, Ty);
3513 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003514}
3515
Dan Gohmane712a2f2009-05-13 03:46:30 +00003516/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3517/// input value to the specified type. If the type must be extended, it is zero
3518/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003519const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003520ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3521 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003522 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3523 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003524 "Cannot noop or zero extend with non-integer arguments!");
3525 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3526 "getNoopOrZeroExtend cannot truncate!");
3527 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3528 return V; // No conversion
3529 return getZeroExtendExpr(V, Ty);
3530}
3531
3532/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3533/// input value to the specified type. If the type must be extended, it is sign
3534/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003535const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003536ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3537 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003538 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3539 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003540 "Cannot noop or sign extend with non-integer arguments!");
3541 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3542 "getNoopOrSignExtend cannot truncate!");
3543 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3544 return V; // No conversion
3545 return getSignExtendExpr(V, Ty);
3546}
3547
Dan Gohman8db2edc2009-06-13 15:56:47 +00003548/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3549/// the input value to the specified type. If the type must be extended,
3550/// it is extended with unspecified bits. The conversion must not be
3551/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003552const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003553ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3554 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003555 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3556 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003557 "Cannot noop or any extend with non-integer arguments!");
3558 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3559 "getNoopOrAnyExtend cannot truncate!");
3560 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3561 return V; // No conversion
3562 return getAnyExtendExpr(V, Ty);
3563}
3564
Dan Gohmane712a2f2009-05-13 03:46:30 +00003565/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3566/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003567const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003568ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3569 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3571 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003572 "Cannot truncate or noop with non-integer arguments!");
3573 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3574 "getTruncateOrNoop cannot extend!");
3575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3576 return V; // No conversion
3577 return getTruncateExpr(V, Ty);
3578}
3579
Dan Gohman96212b62009-06-22 00:31:57 +00003580/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3581/// the types using zero-extension, and then perform a umax operation
3582/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003583const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3584 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003585 const SCEV *PromotedLHS = LHS;
3586 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003587
3588 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3589 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3590 else
3591 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3592
3593 return getUMaxExpr(PromotedLHS, PromotedRHS);
3594}
3595
Dan Gohman2bc22302009-06-22 15:03:27 +00003596/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3597/// the types using zero-extension, and then perform a umin operation
3598/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003599const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3600 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003601 const SCEV *PromotedLHS = LHS;
3602 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003603
3604 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3605 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3606 else
3607 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3608
3609 return getUMinExpr(PromotedLHS, PromotedRHS);
3610}
3611
Andrew Trick87716c92011-03-17 23:51:11 +00003612/// getPointerBase - Transitively follow the chain of pointer-type operands
3613/// until reaching a SCEV that does not have a single pointer operand. This
3614/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3615/// but corner cases do exist.
3616const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3617 // A pointer operand may evaluate to a nonpointer expression, such as null.
3618 if (!V->getType()->isPointerTy())
3619 return V;
3620
3621 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3622 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003623 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003624 const SCEV *PtrOp = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003625 for (const SCEV *NAryOp : NAry->operands()) {
3626 if (NAryOp->getType()->isPointerTy()) {
Andrew Trick87716c92011-03-17 23:51:11 +00003627 // Cannot find the base of an expression with multiple pointer operands.
3628 if (PtrOp)
3629 return V;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003630 PtrOp = NAryOp;
Andrew Trick87716c92011-03-17 23:51:11 +00003631 }
3632 }
3633 if (!PtrOp)
3634 return V;
3635 return getPointerBase(PtrOp);
3636 }
3637 return V;
3638}
3639
Dan Gohman0b89dff2009-07-25 01:13:03 +00003640/// PushDefUseChildren - Push users of the given Instruction
3641/// onto the given Worklist.
3642static void
3643PushDefUseChildren(Instruction *I,
3644 SmallVectorImpl<Instruction *> &Worklist) {
3645 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003646 for (User *U : I->users())
3647 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003648}
3649
3650/// ForgetSymbolicValue - This looks up computed SCEV values for all
3651/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003652/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003653/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003654void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003655ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003656 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003657 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003658
Dan Gohman0b89dff2009-07-25 01:13:03 +00003659 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003660 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003661 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003662 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003663 if (!Visited.insert(I).second)
3664 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003665
Sanjoy Das63914592015-10-18 00:29:20 +00003666 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003667 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003668 const SCEV *Old = It->second;
3669
Dan Gohman0b89dff2009-07-25 01:13:03 +00003670 // Short-circuit the def-use traversal if the symbolic name
3671 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003672 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003673 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003674
Dan Gohman0b89dff2009-07-25 01:13:03 +00003675 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003676 // structure, it's a PHI that's in the progress of being computed
3677 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3678 // additional loop trip count information isn't going to change anything.
3679 // In the second case, createNodeForPHI will perform the necessary
3680 // updates on its own when it gets to that point. In the third, we do
3681 // want to forget the SCEVUnknown.
3682 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003683 !isa<SCEVUnknown>(Old) ||
3684 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003685 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003686 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003687 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003688 }
3689
3690 PushDefUseChildren(I, Worklist);
3691 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003692}
Chris Lattnerd934c702004-04-02 20:23:17 +00003693
Benjamin Kramer83709b12015-11-16 09:01:28 +00003694namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003695class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3696public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003697 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003698 ScalarEvolution &SE) {
3699 SCEVInitRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003700 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003701 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3702 }
3703
3704 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3705 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3706
3707 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3708 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3709 Valid = false;
3710 return Expr;
3711 }
3712
3713 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3714 // Only allow AddRecExprs for this loop.
3715 if (Expr->getLoop() == L)
3716 return Expr->getStart();
3717 Valid = false;
3718 return Expr;
3719 }
3720
3721 bool isValid() { return Valid; }
3722
3723private:
3724 const Loop *L;
3725 bool Valid;
3726};
3727
3728class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3729public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003730 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003731 ScalarEvolution &SE) {
3732 SCEVShiftRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003733 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003734 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3735 }
3736
3737 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3738 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3739
3740 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3741 // Only allow AddRecExprs for this loop.
3742 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3743 Valid = false;
3744 return Expr;
3745 }
3746
3747 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3748 if (Expr->getLoop() == L && Expr->isAffine())
3749 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3750 Valid = false;
3751 return Expr;
3752 }
3753 bool isValid() { return Valid; }
3754
3755private:
3756 const Loop *L;
3757 bool Valid;
3758};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003759} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003760
Sanjoy Das55015d22015-10-02 23:09:44 +00003761const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3762 const Loop *L = LI.getLoopFor(PN->getParent());
3763 if (!L || L->getHeader() != PN->getParent())
3764 return nullptr;
3765
3766 // The loop may have multiple entrances or multiple exits; we can analyze
3767 // this phi as an addrec if it has a unique entry value and a unique
3768 // backedge value.
3769 Value *BEValueV = nullptr, *StartValueV = nullptr;
3770 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3771 Value *V = PN->getIncomingValue(i);
3772 if (L->contains(PN->getIncomingBlock(i))) {
3773 if (!BEValueV) {
3774 BEValueV = V;
3775 } else if (BEValueV != V) {
3776 BEValueV = nullptr;
3777 break;
3778 }
3779 } else if (!StartValueV) {
3780 StartValueV = V;
3781 } else if (StartValueV != V) {
3782 StartValueV = nullptr;
3783 break;
3784 }
3785 }
3786 if (BEValueV && StartValueV) {
3787 // While we are analyzing this PHI node, handle its value symbolically.
3788 const SCEV *SymbolicName = getUnknown(PN);
3789 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3790 "PHI node already processed?");
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003791 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
Sanjoy Das55015d22015-10-02 23:09:44 +00003792
3793 // Using this symbolic name for the PHI, analyze the value coming around
3794 // the back-edge.
3795 const SCEV *BEValue = getSCEV(BEValueV);
3796
3797 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3798 // has a special value for the first iteration of the loop.
3799
3800 // If the value coming around the backedge is an add with the symbolic
3801 // value we just inserted, then we found a simple induction variable!
3802 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3803 // If there is a single occurrence of the symbolic value, replace it
3804 // with a recurrence.
3805 unsigned FoundIndex = Add->getNumOperands();
3806 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3807 if (Add->getOperand(i) == SymbolicName)
3808 if (FoundIndex == e) {
3809 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003810 break;
3811 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003812
3813 if (FoundIndex != Add->getNumOperands()) {
3814 // Create an add with everything but the specified operand.
3815 SmallVector<const SCEV *, 8> Ops;
3816 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3817 if (i != FoundIndex)
3818 Ops.push_back(Add->getOperand(i));
3819 const SCEV *Accum = getAddExpr(Ops);
3820
3821 // This is not a valid addrec if the step amount is varying each
3822 // loop iteration, but is not itself an addrec in this loop.
3823 if (isLoopInvariant(Accum, L) ||
3824 (isa<SCEVAddRecExpr>(Accum) &&
3825 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3826 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3827
3828 // If the increment doesn't overflow, then neither the addrec nor
3829 // the post-increment will overflow.
3830 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3831 if (OBO->getOperand(0) == PN) {
3832 if (OBO->hasNoUnsignedWrap())
3833 Flags = setFlags(Flags, SCEV::FlagNUW);
3834 if (OBO->hasNoSignedWrap())
3835 Flags = setFlags(Flags, SCEV::FlagNSW);
3836 }
3837 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3838 // If the increment is an inbounds GEP, then we know the address
3839 // space cannot be wrapped around. We cannot make any guarantee
3840 // about signed or unsigned overflow because pointers are
3841 // unsigned but we may have a negative index from the base
3842 // pointer. We can guarantee that no unsigned wrap occurs if the
3843 // indices form a positive value.
3844 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3845 Flags = setFlags(Flags, SCEV::FlagNW);
3846
3847 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3848 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3849 Flags = setFlags(Flags, SCEV::FlagNUW);
3850 }
3851
3852 // We cannot transfer nuw and nsw flags from subtraction
3853 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3854 // for instance.
3855 }
3856
3857 const SCEV *StartVal = getSCEV(StartValueV);
3858 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3859
3860 // Since the no-wrap flags are on the increment, they apply to the
3861 // post-incremented value as well.
3862 if (isLoopInvariant(Accum, L))
3863 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3864
3865 // Okay, for the entire analysis of this edge we assumed the PHI
3866 // to be symbolic. We now need to go back and purge all of the
3867 // entries for the scalars that use the symbolic expression.
3868 ForgetSymbolicName(PN, SymbolicName);
3869 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3870 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003871 }
3872 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00003873 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00003874 // Otherwise, this could be a loop like this:
3875 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3876 // In this case, j = {1,+,1} and BEValue is j.
3877 // Because the other in-value of i (0) fits the evolution of BEValue
3878 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00003879 //
3880 // We can generalize this saying that i is the shifted value of BEValue
3881 // by one iteration:
3882 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
3883 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3884 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3885 if (Shifted != getCouldNotCompute() &&
3886 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003887 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003888 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003889 // Okay, for the entire analysis of this edge we assumed the PHI
3890 // to be symbolic. We now need to go back and purge all of the
3891 // entries for the scalars that use the symbolic expression.
3892 ForgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003893 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3894 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00003895 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003896 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003897 }
Tobias Grosser934fcf42016-02-21 18:50:09 +00003898
3899 // Remove the temporary PHI node SCEV that has been inserted while intending
3900 // to create an AddRecExpr for this PHI node. We can not keep this temporary
3901 // as it will prevent later (possibly simpler) SCEV expressions to be added
3902 // to the ValueExprMap.
3903 ValueExprMap.erase(PN);
Sanjoy Das55015d22015-10-02 23:09:44 +00003904 }
3905
3906 return nullptr;
3907}
3908
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003909// Checks if the SCEV S is available at BB. S is considered available at BB
3910// if S can be materialized at BB without introducing a fault.
3911static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3912 BasicBlock *BB) {
3913 struct CheckAvailable {
3914 bool TraversalDone = false;
3915 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003916
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003917 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3918 BasicBlock *BB = nullptr;
3919 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003920
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003921 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3922 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003923
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003924 bool setUnavailable() {
3925 TraversalDone = true;
3926 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003927 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003928 }
3929
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003930 bool follow(const SCEV *S) {
3931 switch (S->getSCEVType()) {
3932 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3933 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003934 // These expressions are available if their operand(s) is/are.
3935 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003936
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003937 case scAddRecExpr: {
3938 // We allow add recurrences that are on the loop BB is in, or some
3939 // outer loop. This guarantees availability because the value of the
3940 // add recurrence at BB is simply the "current" value of the induction
3941 // variable. We can relax this in the future; for instance an add
3942 // recurrence on a sibling dominating loop is also available at BB.
3943 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3944 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003945 return true;
3946
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003947 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003948 }
3949
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003950 case scUnknown: {
3951 // For SCEVUnknown, we check for simple dominance.
3952 const auto *SU = cast<SCEVUnknown>(S);
3953 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003954
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003955 if (isa<Argument>(V))
3956 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003957
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003958 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3959 return false;
3960
3961 return setUnavailable();
3962 }
3963
3964 case scUDivExpr:
3965 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003966 // We do not try to smart about these at all.
3967 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003968 }
3969 llvm_unreachable("switch should be fully covered!");
3970 }
3971
3972 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003973 };
3974
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003975 CheckAvailable CA(L, BB, DT);
3976 SCEVTraversal<CheckAvailable> ST(CA);
3977
3978 ST.visitAll(S);
3979 return CA.Available;
3980}
3981
3982// Try to match a control flow sequence that branches out at BI and merges back
3983// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3984// match.
3985static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3986 Value *&C, Value *&LHS, Value *&RHS) {
3987 C = BI->getCondition();
3988
3989 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3990 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3991
3992 if (!LeftEdge.isSingleEdge())
3993 return false;
3994
3995 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3996
3997 Use &LeftUse = Merge->getOperandUse(0);
3998 Use &RightUse = Merge->getOperandUse(1);
3999
4000 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4001 LHS = LeftUse;
4002 RHS = RightUse;
4003 return true;
4004 }
4005
4006 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4007 LHS = RightUse;
4008 RHS = LeftUse;
4009 return true;
4010 }
4011
4012 return false;
4013}
4014
4015const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004016 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004017 const Loop *L = LI.getLoopFor(PN->getParent());
4018
Sanjoy Das337d4782015-10-31 23:21:40 +00004019 // We don't want to break LCSSA, even in a SCEV expression tree.
4020 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4021 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4022 return nullptr;
4023
Sanjoy Das55015d22015-10-02 23:09:44 +00004024 // Try to match
4025 //
4026 // br %cond, label %left, label %right
4027 // left:
4028 // br label %merge
4029 // right:
4030 // br label %merge
4031 // merge:
4032 // V = phi [ %x, %left ], [ %y, %right ]
4033 //
4034 // as "select %cond, %x, %y"
4035
4036 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4037 assert(IDom && "At least the entry block should dominate PN");
4038
4039 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4040 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4041
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004042 if (BI && BI->isConditional() &&
4043 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4044 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4045 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00004046 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4047 }
4048
4049 return nullptr;
4050}
4051
4052const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4053 if (const SCEV *S = createAddRecFromPHI(PN))
4054 return S;
4055
4056 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4057 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00004058
Dan Gohmana9c205c2010-02-25 06:57:05 +00004059 // If the PHI has a single incoming value, follow that value, unless the
4060 // PHI's incoming blocks are in a different loop, in which case doing so
4061 // risks breaking LCSSA form. Instcombine would normally zap these, but
4062 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004063 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004064 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00004065 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00004066
Chris Lattnerd934c702004-04-02 20:23:17 +00004067 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00004068 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00004069}
4070
Sanjoy Das55015d22015-10-02 23:09:44 +00004071const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4072 Value *Cond,
4073 Value *TrueVal,
4074 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004075 // Handle "constant" branch or select. This can occur for instance when a
4076 // loop pass transforms an inner loop and moves on to process the outer loop.
4077 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4078 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4079
Sanjoy Dasd0671342015-10-02 19:39:59 +00004080 // Try to match some simple smax or umax patterns.
4081 auto *ICI = dyn_cast<ICmpInst>(Cond);
4082 if (!ICI)
4083 return getUnknown(I);
4084
4085 Value *LHS = ICI->getOperand(0);
4086 Value *RHS = ICI->getOperand(1);
4087
4088 switch (ICI->getPredicate()) {
4089 case ICmpInst::ICMP_SLT:
4090 case ICmpInst::ICMP_SLE:
4091 std::swap(LHS, RHS);
4092 // fall through
4093 case ICmpInst::ICMP_SGT:
4094 case ICmpInst::ICMP_SGE:
4095 // a >s b ? a+x : b+x -> smax(a, b)+x
4096 // a >s b ? b+x : a+x -> smin(a, b)+x
4097 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4098 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4099 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4100 const SCEV *LA = getSCEV(TrueVal);
4101 const SCEV *RA = getSCEV(FalseVal);
4102 const SCEV *LDiff = getMinusSCEV(LA, LS);
4103 const SCEV *RDiff = getMinusSCEV(RA, RS);
4104 if (LDiff == RDiff)
4105 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4106 LDiff = getMinusSCEV(LA, RS);
4107 RDiff = getMinusSCEV(RA, LS);
4108 if (LDiff == RDiff)
4109 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4110 }
4111 break;
4112 case ICmpInst::ICMP_ULT:
4113 case ICmpInst::ICMP_ULE:
4114 std::swap(LHS, RHS);
4115 // fall through
4116 case ICmpInst::ICMP_UGT:
4117 case ICmpInst::ICMP_UGE:
4118 // a >u b ? a+x : b+x -> umax(a, b)+x
4119 // a >u b ? b+x : a+x -> umin(a, b)+x
4120 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4121 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4122 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4123 const SCEV *LA = getSCEV(TrueVal);
4124 const SCEV *RA = getSCEV(FalseVal);
4125 const SCEV *LDiff = getMinusSCEV(LA, LS);
4126 const SCEV *RDiff = getMinusSCEV(RA, RS);
4127 if (LDiff == RDiff)
4128 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4129 LDiff = getMinusSCEV(LA, RS);
4130 RDiff = getMinusSCEV(RA, LS);
4131 if (LDiff == RDiff)
4132 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4133 }
4134 break;
4135 case ICmpInst::ICMP_NE:
4136 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4137 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4138 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4139 const SCEV *One = getOne(I->getType());
4140 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4141 const SCEV *LA = getSCEV(TrueVal);
4142 const SCEV *RA = getSCEV(FalseVal);
4143 const SCEV *LDiff = getMinusSCEV(LA, LS);
4144 const SCEV *RDiff = getMinusSCEV(RA, One);
4145 if (LDiff == RDiff)
4146 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4147 }
4148 break;
4149 case ICmpInst::ICMP_EQ:
4150 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4151 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4152 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4153 const SCEV *One = getOne(I->getType());
4154 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4155 const SCEV *LA = getSCEV(TrueVal);
4156 const SCEV *RA = getSCEV(FalseVal);
4157 const SCEV *LDiff = getMinusSCEV(LA, One);
4158 const SCEV *RDiff = getMinusSCEV(RA, LS);
4159 if (LDiff == RDiff)
4160 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4161 }
4162 break;
4163 default:
4164 break;
4165 }
4166
4167 return getUnknown(I);
4168}
4169
Dan Gohmanee750d12009-05-08 20:26:55 +00004170/// createNodeForGEP - Expand GEP instructions into add and multiply
4171/// operations. This allows them to be analyzed by regular SCEV code.
4172///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004173const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman30f24fe2009-05-09 00:14:52 +00004174 // Don't attempt to analyze GEPs over unsized objects.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004175 if (!GEP->getSourceElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004176 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004177
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004178 SmallVector<const SCEV *, 4> IndexExprs;
4179 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4180 IndexExprs.push_back(getSCEV(*Index));
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004181 return getGEPExpr(GEP->getSourceElementType(),
4182 getSCEV(GEP->getPointerOperand()),
4183 IndexExprs, GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004184}
4185
Nick Lewycky3783b462007-11-22 07:59:40 +00004186/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4187/// guaranteed to end in (at every loop iteration). It is, at the same time,
4188/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4189/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004190uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004191ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004192 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004193 return C->getAPInt().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004194
Dan Gohmana30370b2009-05-04 22:02:23 +00004195 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004196 return std::min(GetMinTrailingZeros(T->getOperand()),
4197 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004198
Dan Gohmana30370b2009-05-04 22:02:23 +00004199 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004200 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4201 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4202 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004203 }
4204
Dan Gohmana30370b2009-05-04 22:02:23 +00004205 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004206 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4207 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4208 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004209 }
4210
Dan Gohmana30370b2009-05-04 22:02:23 +00004211 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004212 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004213 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004214 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004215 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004216 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004217 }
4218
Dan Gohmana30370b2009-05-04 22:02:23 +00004219 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004220 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004221 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4222 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004223 for (unsigned i = 1, e = M->getNumOperands();
4224 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004225 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004226 BitWidth);
4227 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004228 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004229
Dan Gohmana30370b2009-05-04 22:02:23 +00004230 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004231 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004232 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004233 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004234 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004235 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004236 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004237
Dan Gohmana30370b2009-05-04 22:02:23 +00004238 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004239 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004240 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004241 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004242 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004243 return MinOpRes;
4244 }
4245
Dan Gohmana30370b2009-05-04 22:02:23 +00004246 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004247 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004248 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004249 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004250 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004251 return MinOpRes;
4252 }
4253
Dan Gohmanc702fc02009-06-19 23:29:04 +00004254 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4255 // For a SCEVUnknown, ask ValueTracking.
4256 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004257 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004258 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4259 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004260 return Zeros.countTrailingOnes();
4261 }
4262
4263 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004264 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004265}
Chris Lattnerd934c702004-04-02 20:23:17 +00004266
Sanjoy Das1f05c512014-10-10 21:22:34 +00004267/// GetRangeFromMetadata - Helper method to assign a range to V from
4268/// metadata present in the IR.
4269static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004270 if (Instruction *I = dyn_cast<Instruction>(V))
4271 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4272 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004273
4274 return None;
4275}
4276
Sanjoy Das91b54772015-03-09 21:43:43 +00004277/// getRange - Determine the range for a particular SCEV. If SignHint is
4278/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4279/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004280///
4281ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004282ScalarEvolution::getRange(const SCEV *S,
4283 ScalarEvolution::RangeSignHint SignHint) {
4284 DenseMap<const SCEV *, ConstantRange> &Cache =
4285 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4286 : SignedRanges;
4287
Dan Gohman761065e2010-11-17 02:44:44 +00004288 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004289 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4290 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004291 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004292
4293 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004294 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004295
Dan Gohman85be4332010-01-26 19:19:05 +00004296 unsigned BitWidth = getTypeSizeInBits(S->getType());
4297 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4298
Sanjoy Das91b54772015-03-09 21:43:43 +00004299 // If the value has known zeros, the maximum value will have those known zeros
4300 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004301 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004302 if (TZ != 0) {
4303 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4304 ConservativeResult =
4305 ConstantRange(APInt::getMinValue(BitWidth),
4306 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4307 else
4308 ConservativeResult = ConstantRange(
4309 APInt::getSignedMinValue(BitWidth),
4310 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4311 }
Dan Gohman85be4332010-01-26 19:19:05 +00004312
Dan Gohmane65c9172009-07-13 21:35:55 +00004313 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004314 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004315 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004316 X = X.add(getRange(Add->getOperand(i), SignHint));
4317 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004318 }
4319
4320 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004321 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004322 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004323 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4324 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004325 }
4326
4327 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004328 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004329 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004330 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4331 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004332 }
4333
4334 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004335 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004336 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004337 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4338 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004339 }
4340
4341 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004342 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4343 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4344 return setRange(UDiv, SignHint,
4345 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004346 }
4347
4348 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004349 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4350 return setRange(ZExt, SignHint,
4351 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004352 }
4353
4354 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004355 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4356 return setRange(SExt, SignHint,
4357 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004358 }
4359
4360 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004361 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4362 return setRange(Trunc, SignHint,
4363 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004364 }
4365
Dan Gohmane65c9172009-07-13 21:35:55 +00004366 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004367 // If there's no unsigned wrap, the value will never be less than its
4368 // initial value.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004369 if (AddRec->hasNoUnsignedWrap())
Dan Gohman51ad99d2010-01-21 02:09:26 +00004370 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004371 if (!C->getValue()->isZero())
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004372 ConservativeResult = ConservativeResult.intersectWith(
4373 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004374
Dan Gohman51ad99d2010-01-21 02:09:26 +00004375 // If there's no signed wrap, and all the operands have the same sign or
4376 // zero, the value won't ever change sign.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004377 if (AddRec->hasNoSignedWrap()) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004378 bool AllNonNeg = true;
4379 bool AllNonPos = true;
4380 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4381 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4382 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4383 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004384 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004385 ConservativeResult = ConservativeResult.intersectWith(
4386 ConstantRange(APInt(BitWidth, 0),
4387 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004388 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004389 ConservativeResult = ConservativeResult.intersectWith(
4390 ConstantRange(APInt::getSignedMinValue(BitWidth),
4391 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004392 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004393
4394 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004395 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004396 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004397 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004398 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4399 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004400
4401 // Check for overflow. This must be done with ConstantRange arithmetic
4402 // because we could be called from within the ScalarEvolution overflow
4403 // checking code.
4404
Dan Gohmane65c9172009-07-13 21:35:55 +00004405 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004406 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4407 ConstantRange ZExtMaxBECountRange =
4408 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004409
4410 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004411 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004412 ConstantRange StepSRange = getSignedRange(Step);
4413 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004414
Sanjoy Das91b54772015-03-09 21:43:43 +00004415 ConstantRange StartURange = getUnsignedRange(Start);
4416 ConstantRange EndURange =
4417 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004418
Sanjoy Das91b54772015-03-09 21:43:43 +00004419 // Check for unsigned overflow.
4420 ConstantRange ZExtStartURange =
4421 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4422 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4423 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4424 ZExtEndURange) {
4425 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4426 EndURange.getUnsignedMin());
4427 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4428 EndURange.getUnsignedMax());
4429 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4430 if (!IsFullRange)
4431 ConservativeResult =
4432 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4433 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004434
Sanjoy Das91b54772015-03-09 21:43:43 +00004435 ConstantRange StartSRange = getSignedRange(Start);
4436 ConstantRange EndSRange =
4437 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4438
4439 // Check for signed overflow. This must be done with ConstantRange
4440 // arithmetic because we could be called from within the ScalarEvolution
4441 // overflow checking code.
4442 ConstantRange SExtStartSRange =
4443 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4444 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4445 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4446 SExtEndSRange) {
4447 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4448 EndSRange.getSignedMin());
4449 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4450 EndSRange.getSignedMax());
4451 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4452 if (!IsFullRange)
4453 ConservativeResult =
4454 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4455 }
Dan Gohmand261d272009-06-24 01:05:09 +00004456 }
Dan Gohmand261d272009-06-24 01:05:09 +00004457 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004458
Sanjoy Das91b54772015-03-09 21:43:43 +00004459 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004460 }
4461
Dan Gohmanc702fc02009-06-19 23:29:04 +00004462 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004463 // Check if the IR explicitly contains !range metadata.
4464 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4465 if (MDRange.hasValue())
4466 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4467
Sanjoy Das91b54772015-03-09 21:43:43 +00004468 // Split here to avoid paying the compile-time cost of calling both
4469 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4470 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004471 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004472 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4473 // For a SCEVUnknown, ask ValueTracking.
4474 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004475 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004476 if (Ones != ~Zeros + 1)
4477 ConservativeResult =
4478 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4479 } else {
4480 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4481 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004482 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004483 if (NS > 1)
4484 ConservativeResult = ConservativeResult.intersectWith(
4485 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4486 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004487 }
4488
4489 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004490 }
4491
Sanjoy Das91b54772015-03-09 21:43:43 +00004492 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004493}
4494
Jingyue Wu42f1d672015-07-28 18:22:40 +00004495SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004496 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004497 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4498
4499 // Return early if there are no flags to propagate to the SCEV.
4500 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4501 if (BinOp->hasNoUnsignedWrap())
4502 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4503 if (BinOp->hasNoSignedWrap())
4504 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4505 if (Flags == SCEV::FlagAnyWrap) {
4506 return SCEV::FlagAnyWrap;
4507 }
4508
4509 // Here we check that BinOp is in the header of the innermost loop
4510 // containing BinOp, since we only deal with instructions in the loop
4511 // header. The actual loop we need to check later will come from an add
4512 // recurrence, but getting that requires computing the SCEV of the operands,
4513 // which can be expensive. This check we can do cheaply to rule out some
4514 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004515 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004516 if (innermostContainingLoop == nullptr ||
4517 innermostContainingLoop->getHeader() != BinOp->getParent())
4518 return SCEV::FlagAnyWrap;
4519
4520 // Only proceed if we can prove that BinOp does not yield poison.
4521 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4522
4523 // At this point we know that if V is executed, then it does not wrap
4524 // according to at least one of NSW or NUW. If V is not executed, then we do
4525 // not know if the calculation that V represents would wrap. Multiple
4526 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4527 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4528 // derived from other instructions that map to the same SCEV. We cannot make
4529 // that guarantee for cases where V is not executed. So we need to find the
4530 // loop that V is considered in relation to and prove that V is executed for
4531 // every iteration of that loop. That implies that the value that V
4532 // calculates does not wrap anywhere in the loop, so then we can apply the
4533 // flags to the SCEV.
4534 //
4535 // We check isLoopInvariant to disambiguate in case we are adding two
4536 // recurrences from different loops, so that we know which loop to prove
4537 // that V is executed in.
4538 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4539 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4540 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4541 const int OtherOpIndex = 1 - OpIndex;
4542 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4543 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4544 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4545 return Flags;
4546 }
4547 }
4548 return SCEV::FlagAnyWrap;
4549}
4550
4551/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4552/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004553///
Dan Gohmanaf752342009-07-07 17:06:11 +00004554const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004555 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004556 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004557
Dan Gohman05e89732008-06-22 19:56:46 +00004558 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004559 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004560 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004561
4562 // Don't attempt to analyze instructions in blocks that aren't
4563 // reachable. Such instructions don't matter, and they aren't required
4564 // to obey basic rules for definitions dominating uses which this
4565 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004566 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004567 return getUnknown(V);
4568 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004569 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004570 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4571 return getConstant(CI);
4572 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004573 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004574 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4575 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004576 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004577 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004578
Dan Gohman80ca01c2009-07-17 20:47:02 +00004579 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004580 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004581 case Instruction::Add: {
4582 // The simple thing to do would be to just call getSCEV on both operands
4583 // and call getAddExpr with the result. However if we're looking at a
4584 // bunch of things all added together, this can be quite inefficient,
4585 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4586 // Instead, gather up all the operands and make a single getAddExpr call.
4587 // LLVM IR canonical form means we need only traverse the left operands.
4588 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004589 for (Value *Op = U;; Op = U->getOperand(0)) {
4590 U = dyn_cast<Operator>(Op);
4591 unsigned Opcode = U ? U->getOpcode() : 0;
4592 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4593 assert(Op != V && "V should be an add");
4594 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004595 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004596 }
4597
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004598 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004599 AddOps.push_back(OpSCEV);
4600 break;
4601 }
4602
4603 // If a NUW or NSW flag can be applied to the SCEV for this
4604 // addition, then compute the SCEV for this addition by itself
4605 // with a separate call to getAddExpr. We need to do that
4606 // instead of pushing the operands of the addition onto AddOps,
4607 // since the flags are only known to apply to this particular
4608 // addition - they may not apply to other additions that can be
4609 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004610 const SCEV *RHS = getSCEV(U->getOperand(1));
4611 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4612 if (Flags != SCEV::FlagAnyWrap) {
4613 const SCEV *LHS = getSCEV(U->getOperand(0));
4614 if (Opcode == Instruction::Sub)
4615 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4616 else
4617 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4618 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004619 }
4620
Dan Gohman47308d52010-08-31 22:53:17 +00004621 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004622 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004623 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004624 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004625 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004626 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004627 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004628
Dan Gohmane5fb1032010-08-16 16:03:49 +00004629 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004630 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004631 for (Value *Op = U;; Op = U->getOperand(0)) {
4632 U = dyn_cast<Operator>(Op);
4633 if (!U || U->getOpcode() != Instruction::Mul) {
4634 assert(Op != V && "V should be a mul");
4635 MulOps.push_back(getSCEV(Op));
4636 break;
4637 }
4638
4639 if (auto *OpSCEV = getExistingSCEV(U)) {
4640 MulOps.push_back(OpSCEV);
4641 break;
4642 }
4643
4644 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4645 if (Flags != SCEV::FlagAnyWrap) {
4646 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4647 getSCEV(U->getOperand(1)), Flags));
4648 break;
4649 }
4650
Dan Gohmane5fb1032010-08-16 16:03:49 +00004651 MulOps.push_back(getSCEV(U->getOperand(1)));
4652 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004653 return getMulExpr(MulOps);
4654 }
Dan Gohman05e89732008-06-22 19:56:46 +00004655 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004656 return getUDivExpr(getSCEV(U->getOperand(0)),
4657 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004658 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004659 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4660 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004661 case Instruction::And:
4662 // For an expression like x&255 that merely masks off the high bits,
4663 // use zext(trunc(x)) as the SCEV expression.
4664 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004665 if (CI->isNullValue())
4666 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004667 if (CI->isAllOnesValue())
4668 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004669 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004670
4671 // Instcombine's ShrinkDemandedConstant may strip bits out of
4672 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004673 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004674 // knew about to reconstruct a low-bits mask value.
4675 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004676 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004677 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004678 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004679 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4680 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004681
Nick Lewycky31eaca52014-01-27 10:04:03 +00004682 APInt EffectiveMask =
4683 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4684 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4685 const SCEV *MulCount = getConstant(
4686 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4687 return getMulExpr(
4688 getZeroExtendExpr(
4689 getTruncateExpr(
4690 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4691 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4692 U->getType()),
4693 MulCount);
4694 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004695 }
4696 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004697
Dan Gohman05e89732008-06-22 19:56:46 +00004698 case Instruction::Or:
4699 // If the RHS of the Or is a constant, we may have something like:
4700 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4701 // optimizations will transparently handle this case.
4702 //
4703 // In order for this transformation to be safe, the LHS must be of the
4704 // form X*(2^n) and the Or constant must be less than 2^n.
4705 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004706 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004707 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004708 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004709 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4710 // Build a plain add SCEV.
4711 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4712 // If the LHS of the add was an addrec and it has no-wrap flags,
4713 // transfer the no-wrap flags, since an or won't introduce a wrap.
4714 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4715 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004716 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4717 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004718 }
4719 return S;
4720 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004721 }
Dan Gohman05e89732008-06-22 19:56:46 +00004722 break;
4723 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004724 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004725 // If the RHS of the xor is a signbit, then this is just an add.
4726 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004727 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004728 return getAddExpr(getSCEV(U->getOperand(0)),
4729 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004730
4731 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004732 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004733 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004734
4735 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4736 // This is a variant of the check for xor with -1, and it handles
4737 // the case where instcombine has trimmed non-demanded bits out
4738 // of an xor with -1.
4739 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4740 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4741 if (BO->getOpcode() == Instruction::And &&
4742 LCI->getValue() == CI->getValue())
4743 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004744 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004745 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004746 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004747 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004748 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4749
Dan Gohman8b0a4192010-03-01 17:49:51 +00004750 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004751 // mask off the high bits. Complement the operand and
4752 // re-apply the zext.
4753 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4754 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4755
4756 // If C is a single bit, it may be in the sign-bit position
4757 // before the zero-extend. In this case, represent the xor
4758 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004759 APInt Trunc = CI->getValue().trunc(Z0TySize);
4760 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004761 Trunc.isSignBit())
4762 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4763 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004764 }
Dan Gohman05e89732008-06-22 19:56:46 +00004765 }
4766 break;
4767
4768 case Instruction::Shl:
4769 // Turn shift left of a constant amount into a multiply.
4770 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004771 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004772
4773 // If the shift count is not less than the bitwidth, the result of
4774 // the shift is undefined. Don't try to analyze it, because the
4775 // resolution chosen here may differ from the resolution chosen in
4776 // other parts of the compiler.
4777 if (SA->getValue().uge(BitWidth))
4778 break;
4779
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004780 // It is currently not resolved how to interpret NSW for left
4781 // shift by BitWidth - 1, so we avoid applying flags in that
4782 // case. Remove this check (or this comment) once the situation
4783 // is resolved. See
4784 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4785 // and http://reviews.llvm.org/D8890 .
4786 auto Flags = SCEV::FlagAnyWrap;
4787 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4788
Owen Andersonedb4a702009-07-24 23:12:02 +00004789 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004790 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004791 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004792 }
4793 break;
4794
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004795 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004796 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004797 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004798 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004799
4800 // If the shift count is not less than the bitwidth, the result of
4801 // the shift is undefined. Don't try to analyze it, because the
4802 // resolution chosen here may differ from the resolution chosen in
4803 // other parts of the compiler.
4804 if (SA->getValue().uge(BitWidth))
4805 break;
4806
Owen Andersonedb4a702009-07-24 23:12:02 +00004807 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004808 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004809 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004810 }
4811 break;
4812
Dan Gohman0ec05372009-04-21 02:26:00 +00004813 case Instruction::AShr:
4814 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4815 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004816 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004817 if (L->getOpcode() == Instruction::Shl &&
4818 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004819 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4820
4821 // If the shift count is not less than the bitwidth, the result of
4822 // the shift is undefined. Don't try to analyze it, because the
4823 // resolution chosen here may differ from the resolution chosen in
4824 // other parts of the compiler.
4825 if (CI->getValue().uge(BitWidth))
4826 break;
4827
Dan Gohmandf199482009-04-25 17:05:40 +00004828 uint64_t Amt = BitWidth - CI->getZExtValue();
4829 if (Amt == BitWidth)
4830 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004831 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004832 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004833 IntegerType::get(getContext(),
4834 Amt)),
4835 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004836 }
4837 break;
4838
Dan Gohman05e89732008-06-22 19:56:46 +00004839 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004840 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004841
4842 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004843 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004844
4845 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004846 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004847
4848 case Instruction::BitCast:
4849 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004850 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004851 return getSCEV(U->getOperand(0));
4852 break;
4853
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004854 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4855 // lead to pointer expressions which cannot safely be expanded to GEPs,
4856 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4857 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004858
Dan Gohmanee750d12009-05-08 20:26:55 +00004859 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004860 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004861
Dan Gohman05e89732008-06-22 19:56:46 +00004862 case Instruction::PHI:
4863 return createNodeForPHI(cast<PHINode>(U));
4864
4865 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004866 // U can also be a select constant expr, which let fall through. Since
4867 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4868 // constant expressions cannot have instructions as operands, we'd have
4869 // returned getUnknown for a select constant expressions anyway.
4870 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004871 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4872 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004873
4874 default: // We cannot analyze this expression.
4875 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004876 }
4877
Dan Gohmanc8e23622009-04-21 23:15:49 +00004878 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004879}
4880
4881
4882
4883//===----------------------------------------------------------------------===//
4884// Iteration Count Computation Code
4885//
4886
Chandler Carruth6666c272014-10-11 00:12:11 +00004887unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4888 if (BasicBlock *ExitingBB = L->getExitingBlock())
4889 return getSmallConstantTripCount(L, ExitingBB);
4890
4891 // No trip count information for multiple exits.
4892 return 0;
4893}
4894
Andrew Trick2b6860f2011-08-11 23:36:16 +00004895/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004896/// normal unsigned value. Returns 0 if the trip count is unknown or not
4897/// constant. Will also return 0 if the maximum trip count is very large (>=
4898/// 2^32).
4899///
4900/// This "trip count" assumes that control exits via ExitingBlock. More
4901/// precisely, it is the number of times that control may reach ExitingBlock
4902/// before taking the branch. For loops with multiple exits, it may not be the
4903/// number times that the loop header executes because the loop may exit
4904/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004905unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4906 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004907 assert(ExitingBlock && "Must pass a non-null exiting block!");
4908 assert(L->isLoopExiting(ExitingBlock) &&
4909 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004910 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004911 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004912 if (!ExitCount)
4913 return 0;
4914
4915 ConstantInt *ExitConst = ExitCount->getValue();
4916
4917 // Guard against huge trip counts.
4918 if (ExitConst->getValue().getActiveBits() > 32)
4919 return 0;
4920
4921 // In case of integer overflow, this returns 0, which is correct.
4922 return ((unsigned)ExitConst->getZExtValue()) + 1;
4923}
4924
Chandler Carruth6666c272014-10-11 00:12:11 +00004925unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4926 if (BasicBlock *ExitingBB = L->getExitingBlock())
4927 return getSmallConstantTripMultiple(L, ExitingBB);
4928
4929 // No trip multiple information for multiple exits.
4930 return 0;
4931}
4932
Andrew Trick2b6860f2011-08-11 23:36:16 +00004933/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4934/// trip count of this loop as a normal unsigned value, if possible. This
4935/// means that the actual trip count is always a multiple of the returned
4936/// value (don't forget the trip count could very well be zero as well!).
4937///
4938/// Returns 1 if the trip count is unknown or not guaranteed to be the
4939/// multiple of a constant (which is also the case if the trip count is simply
4940/// constant, use getSmallConstantTripCount for that case), Will also return 1
4941/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004942///
4943/// As explained in the comments for getSmallConstantTripCount, this assumes
4944/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004945unsigned
4946ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4947 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004948 assert(ExitingBlock && "Must pass a non-null exiting block!");
4949 assert(L->isLoopExiting(ExitingBlock) &&
4950 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004951 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004952 if (ExitCount == getCouldNotCompute())
4953 return 1;
4954
4955 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004956 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004957 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4958 // to factor simple cases.
4959 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4960 TCMul = Mul->getOperand(0);
4961
4962 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4963 if (!MulC)
4964 return 1;
4965
4966 ConstantInt *Result = MulC->getValue();
4967
Hal Finkel30bd9342012-10-24 19:46:44 +00004968 // Guard against huge trip counts (this requires checking
4969 // for zero to handle the case where the trip count == -1 and the
4970 // addition wraps).
4971 if (!Result || Result->getValue().getActiveBits() > 32 ||
4972 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004973 return 1;
4974
4975 return (unsigned)Result->getZExtValue();
4976}
4977
Andrew Trick3ca3f982011-07-26 17:19:55 +00004978// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004979// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004980// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004981const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4982 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004983}
4984
Dan Gohman0bddac12009-02-24 18:55:53 +00004985/// getBackedgeTakenCount - If the specified loop has a predictable
4986/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4987/// object. The backedge-taken count is the number of times the loop header
4988/// will be branched to from within the loop. This is one less than the
4989/// trip count of the loop, since it doesn't count the first iteration,
4990/// when the header is branched to from outside the loop.
4991///
4992/// Note that it is not valid to call this method on a loop without a
4993/// loop-invariant backedge-taken count (see
4994/// hasLoopInvariantBackedgeTakenCount).
4995///
Dan Gohmanaf752342009-07-07 17:06:11 +00004996const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004997 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004998}
4999
5000/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5001/// return the least SCEV value that is known never to be less than the
5002/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00005003const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005004 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005005}
5006
Dan Gohmandc191042009-07-08 19:23:34 +00005007/// PushLoopPHIs - Push PHI nodes in the header of the given loop
5008/// onto the given Worklist.
5009static void
5010PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5011 BasicBlock *Header = L->getHeader();
5012
5013 // Push all Loop-header PHIs onto the Worklist stack.
5014 for (BasicBlock::iterator I = Header->begin();
5015 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5016 Worklist.push_back(PN);
5017}
5018
Dan Gohman2b8da352009-04-30 20:47:05 +00005019const ScalarEvolution::BackedgeTakenInfo &
5020ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005021 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00005022 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00005023 // update the value. The temporary CouldNotCompute value tells SCEV
5024 // code elsewhere that it shouldn't attempt to request a new
5025 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00005026 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00005027 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
Chris Lattnera337f5e2011-01-09 02:16:18 +00005028 if (!Pair.second)
5029 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00005030
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005031 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00005032 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5033 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005034 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005035
5036 if (Result.getExact(this) != getCouldNotCompute()) {
5037 assert(isLoopInvariant(Result.getExact(this), L) &&
5038 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00005039 "Computed backedge-taken count isn't loop invariant for loop!");
5040 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005041 }
5042 else if (Result.getMax(this) == getCouldNotCompute() &&
5043 isa<PHINode>(L->getHeader()->begin())) {
5044 // Only count loops that have phi nodes as not being computable.
5045 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00005046 }
Dan Gohman2b8da352009-04-30 20:47:05 +00005047
Chris Lattnera337f5e2011-01-09 02:16:18 +00005048 // Now that we know more about the trip count for this loop, forget any
5049 // existing SCEV values for PHI nodes in this loop since they are only
5050 // conservative estimates made without the benefit of trip count
5051 // information. This is similar to the code in forgetLoop, except that
5052 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005053 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00005054 SmallVector<Instruction *, 16> Worklist;
5055 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005056
Chris Lattnera337f5e2011-01-09 02:16:18 +00005057 SmallPtrSet<Instruction *, 8> Visited;
5058 while (!Worklist.empty()) {
5059 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005060 if (!Visited.insert(I).second)
5061 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005062
Chris Lattnera337f5e2011-01-09 02:16:18 +00005063 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005064 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00005065 if (It != ValueExprMap.end()) {
5066 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00005067
Chris Lattnera337f5e2011-01-09 02:16:18 +00005068 // SCEVUnknown for a PHI either means that it has an unrecognized
5069 // structure, or it's a PHI that's in the progress of being computed
5070 // by createNodeForPHI. In the former case, additional loop trip
5071 // count information isn't going to change anything. In the later
5072 // case, createNodeForPHI will perform the necessary updates on its
5073 // own when it gets to that point.
5074 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5075 forgetMemoizedResults(Old);
5076 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005077 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005078 if (PHINode *PN = dyn_cast<PHINode>(I))
5079 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005080 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005081
5082 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005083 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005084 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005085
5086 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005087 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005088 // recusive call to getBackedgeTakenInfo (on a different
5089 // loop), which would invalidate the iterator computed
5090 // earlier.
5091 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005092}
5093
Dan Gohman880c92a2009-10-31 15:04:55 +00005094/// forgetLoop - This method should be called by the client when it has
5095/// changed a loop in a way that may effect ScalarEvolution's ability to
5096/// compute a trip count, or if the loop is deleted.
5097void ScalarEvolution::forgetLoop(const Loop *L) {
5098 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005099 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5100 BackedgeTakenCounts.find(L);
5101 if (BTCPos != BackedgeTakenCounts.end()) {
5102 BTCPos->second.clear();
5103 BackedgeTakenCounts.erase(BTCPos);
5104 }
Dan Gohmanf1505722009-05-02 17:43:35 +00005105
Dan Gohman880c92a2009-10-31 15:04:55 +00005106 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005107 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005108 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005109
Dan Gohmandc191042009-07-08 19:23:34 +00005110 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005111 while (!Worklist.empty()) {
5112 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005113 if (!Visited.insert(I).second)
5114 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005115
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005116 ValueExprMapType::iterator It =
5117 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005118 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005119 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005120 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005121 if (PHINode *PN = dyn_cast<PHINode>(I))
5122 ConstantEvolutionLoopExitValue.erase(PN);
5123 }
5124
5125 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005126 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005127
5128 // Forget all contained loops too, to avoid dangling entries in the
5129 // ValuesAtScopes map.
5130 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5131 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005132}
5133
Eric Christopheref6d5932010-07-29 01:25:38 +00005134/// forgetValue - This method should be called by the client when it has
5135/// changed a value in a way that may effect its value, or which may
5136/// disconnect it from a def-use chain linking it to a loop.
5137void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005138 Instruction *I = dyn_cast<Instruction>(V);
5139 if (!I) return;
5140
5141 // Drop information about expressions based on loop-header PHIs.
5142 SmallVector<Instruction *, 16> Worklist;
5143 Worklist.push_back(I);
5144
5145 SmallPtrSet<Instruction *, 8> Visited;
5146 while (!Worklist.empty()) {
5147 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005148 if (!Visited.insert(I).second)
5149 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005150
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005151 ValueExprMapType::iterator It =
5152 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005153 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005154 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005155 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005156 if (PHINode *PN = dyn_cast<PHINode>(I))
5157 ConstantEvolutionLoopExitValue.erase(PN);
5158 }
5159
5160 PushDefUseChildren(I, Worklist);
5161 }
5162}
5163
Andrew Trick3ca3f982011-07-26 17:19:55 +00005164/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005165/// exits. A computable result can only be returned for loops with a single
5166/// exit. Returning the minimum taken count among all exits is incorrect
5167/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5168/// assumes that the limit of each loop test is never skipped. This is a valid
5169/// assumption as long as the loop exits via that test. For precise results, it
5170/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005171/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005172const SCEV *
5173ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5174 // If any exits were not computable, the loop is not computable.
5175 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5176
Andrew Trick90c7a102011-11-16 00:52:40 +00005177 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005178 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005179 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5180
Craig Topper9f008862014-04-15 04:59:12 +00005181 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005182 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005183 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005184
5185 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5186
5187 if (!BECount)
5188 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005189 else if (BECount != ENT->ExactNotTaken)
5190 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005191 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005192 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005193 return BECount;
5194}
5195
5196/// getExact - Get the exact not taken count for this loop exit.
5197const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005198ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005199 ScalarEvolution *SE) const {
5200 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005201 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005202
Andrew Trick77c55422011-08-02 04:23:35 +00005203 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005204 return ENT->ExactNotTaken;
5205 }
5206 return SE->getCouldNotCompute();
5207}
5208
5209/// getMax - Get the max backedge taken count for the loop.
5210const SCEV *
5211ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5212 return Max ? Max : SE->getCouldNotCompute();
5213}
5214
Andrew Trick9093e152013-03-26 03:14:53 +00005215bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5216 ScalarEvolution *SE) const {
5217 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5218 return true;
5219
5220 if (!ExitNotTaken.ExitingBlock)
5221 return false;
5222
5223 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005224 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005225
5226 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5227 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5228 return true;
5229 }
5230 }
5231 return false;
5232}
5233
Andrew Trick3ca3f982011-07-26 17:19:55 +00005234/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5235/// computable exit into a persistent ExitNotTakenInfo array.
5236ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5237 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5238 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5239
5240 if (!Complete)
5241 ExitNotTaken.setIncomplete();
5242
5243 unsigned NumExits = ExitCounts.size();
5244 if (NumExits == 0) return;
5245
Andrew Trick77c55422011-08-02 04:23:35 +00005246 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005247 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5248 if (NumExits == 1) return;
5249
5250 // Handle the rare case of multiple computable exits.
5251 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5252
5253 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5254 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5255 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005256 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005257 ENT->ExactNotTaken = ExitCounts[i].second;
5258 }
5259}
5260
5261/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5262void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005263 ExitNotTaken.ExitingBlock = nullptr;
5264 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005265 delete[] ExitNotTaken.getNextExit();
5266}
5267
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005268/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005269/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005270ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005271ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005272 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005273 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005274
Andrew Trick839e30b2014-05-23 19:47:13 +00005275 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005276 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005277 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005278 const SCEV *MustExitMaxBECount = nullptr;
5279 const SCEV *MayExitMaxBECount = nullptr;
5280
5281 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5282 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005283 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005284 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005285 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005286
5287 // 1. For each exit that can be computed, add an entry to ExitCounts.
5288 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005289 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005290 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005291 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005292 CouldComputeBECount = false;
5293 else
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00005294 ExitCounts.push_back({ExitBB, EL.Exact});
Andrew Trick3ca3f982011-07-26 17:19:55 +00005295
Andrew Trick839e30b2014-05-23 19:47:13 +00005296 // 2. Derive the loop's MaxBECount from each exit's max number of
5297 // non-exiting iterations. Partition the loop exits into two kinds:
5298 // LoopMustExits and LoopMayExits.
5299 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005300 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5301 // is a LoopMayExit. If any computable LoopMustExit is found, then
5302 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5303 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5304 // considered greater than any computable EL.Max.
5305 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005306 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005307 if (!MustExitMaxBECount)
5308 MustExitMaxBECount = EL.Max;
5309 else {
5310 MustExitMaxBECount =
5311 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005312 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005313 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5314 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5315 MayExitMaxBECount = EL.Max;
5316 else {
5317 MayExitMaxBECount =
5318 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5319 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005320 }
Dan Gohman96212b62009-06-22 00:31:57 +00005321 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005322 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5323 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005324 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005325}
5326
Andrew Trick3ca3f982011-07-26 17:19:55 +00005327ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005328ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005329
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005330 // Okay, we've chosen an exiting block. See what condition causes us to exit
5331 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005332 // lead to the loop header.
5333 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005334 BasicBlock *Exit = nullptr;
Sanjoy Das0ff07872016-01-19 20:53:46 +00005335 for (auto *SBB : successors(ExitingBlock))
5336 if (!L->contains(SBB)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005337 if (Exit) // Multiple exit successors.
5338 return getCouldNotCompute();
Sanjoy Das0ff07872016-01-19 20:53:46 +00005339 Exit = SBB;
5340 } else if (SBB != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005341 MustExecuteLoopHeader = false;
5342 }
Dan Gohmance973df2009-06-24 04:48:43 +00005343
Chris Lattner18954852007-01-07 02:24:26 +00005344 // At this point, we know we have a conditional branch that determines whether
5345 // the loop is exited. However, we don't know if the branch is executed each
5346 // time through the loop. If not, then the execution count of the branch will
5347 // not be equal to the trip count of the loop.
5348 //
5349 // Currently we check for this by checking to see if the Exit branch goes to
5350 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005351 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005352 // loop header. This is common for un-rotated loops.
5353 //
5354 // If both of those tests fail, walk up the unique predecessor chain to the
5355 // header, stopping if there is an edge that doesn't exit the loop. If the
5356 // header is reached, the execution count of the branch will be equal to the
5357 // trip count of the loop.
5358 //
5359 // More extensive analysis could be done to handle more cases here.
5360 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005361 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005362 // The simple checks failed, try climbing the unique predecessor chain
5363 // up to the header.
5364 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005365 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005366 BasicBlock *Pred = BB->getUniquePredecessor();
5367 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005368 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005369 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005370 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005371 if (PredSucc == BB)
5372 continue;
5373 // If the predecessor has a successor that isn't BB and isn't
5374 // outside the loop, assume the worst.
5375 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005376 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005377 }
5378 if (Pred == L->getHeader()) {
5379 Ok = true;
5380 break;
5381 }
5382 BB = Pred;
5383 }
5384 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005385 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005386 }
5387
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005388 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005389 TerminatorInst *Term = ExitingBlock->getTerminator();
5390 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5391 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5392 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005393 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005394 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005395 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005396 }
5397
5398 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005399 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005400 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005401
5402 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005403}
5404
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005405/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005406/// backedge of the specified loop will execute if its exit condition
5407/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005408///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005409/// @param ControlsExit is true if ExitCond directly controls the exit
5410/// branch. In this case, we can assume that the loop exits only if the
5411/// condition is true and can infer that failing to meet the condition prior to
5412/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005413ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005414ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005415 Value *ExitCond,
5416 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005417 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005418 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005419 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005420 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5421 if (BO->getOpcode() == Instruction::And) {
5422 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005423 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005424 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005425 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005426 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005427 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005428 const SCEV *BECount = getCouldNotCompute();
5429 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005430 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005431 // Both conditions must be true for the loop to continue executing.
5432 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005433 if (EL0.Exact == getCouldNotCompute() ||
5434 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005435 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005436 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005437 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5438 if (EL0.Max == getCouldNotCompute())
5439 MaxBECount = EL1.Max;
5440 else if (EL1.Max == getCouldNotCompute())
5441 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005442 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005443 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005444 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005445 // Both conditions must be true at the same time for the loop to exit.
5446 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005447 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005448 if (EL0.Max == EL1.Max)
5449 MaxBECount = EL0.Max;
5450 if (EL0.Exact == EL1.Exact)
5451 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005452 }
5453
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005454 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5455 // to be more aggressive when computing BECount than when computing
5456 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5457 // to match, but for EL0.Max and EL1.Max to not.
5458 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5459 !isa<SCEVCouldNotCompute>(BECount))
5460 MaxBECount = BECount;
5461
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005462 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005463 }
5464 if (BO->getOpcode() == Instruction::Or) {
5465 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005466 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005467 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005468 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005469 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005470 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005471 const SCEV *BECount = getCouldNotCompute();
5472 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005473 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005474 // Both conditions must be false for the loop to continue executing.
5475 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005476 if (EL0.Exact == getCouldNotCompute() ||
5477 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005478 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005479 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005480 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5481 if (EL0.Max == getCouldNotCompute())
5482 MaxBECount = EL1.Max;
5483 else if (EL1.Max == getCouldNotCompute())
5484 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005485 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005486 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005487 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005488 // Both conditions must be false at the same time for the loop to exit.
5489 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005490 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005491 if (EL0.Max == EL1.Max)
5492 MaxBECount = EL0.Max;
5493 if (EL0.Exact == EL1.Exact)
5494 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005495 }
5496
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005497 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005498 }
5499 }
5500
5501 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005502 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005503 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005504 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005505
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005506 // Check for a constant condition. These are normally stripped out by
5507 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5508 // preserve the CFG and is temporarily leaving constant conditions
5509 // in place.
5510 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5511 if (L->contains(FBB) == !CI->getZExtValue())
5512 // The backedge is always taken.
5513 return getCouldNotCompute();
5514 else
5515 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005516 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005517 }
5518
Eli Friedmanebf98b02009-05-09 12:32:42 +00005519 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005520 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005521}
5522
Andrew Trick3ca3f982011-07-26 17:19:55 +00005523ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005524ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005525 ICmpInst *ExitCond,
5526 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005527 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005528 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005529
Reid Spencer266e42b2006-12-23 06:05:41 +00005530 // If the condition was exit on true, convert the condition to exit on false
5531 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005532 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005533 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005534 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005535 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005536
5537 // Handle common loops like: for (X = "string"; *X; ++X)
5538 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5539 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005540 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005541 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005542 if (ItCnt.hasAnyInfo())
5543 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005544 }
5545
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005546 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5547 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5548 if (ShiftEL.hasAnyInfo())
5549 return ShiftEL;
5550
Dan Gohmanaf752342009-07-07 17:06:11 +00005551 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5552 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005553
5554 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005555 LHS = getSCEVAtScope(LHS, L);
5556 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005557
Dan Gohmance973df2009-06-24 04:48:43 +00005558 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005559 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005560 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005561 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005562 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005563 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005564 }
5565
Dan Gohman81585c12010-05-03 16:35:17 +00005566 // Simplify the operands before analyzing them.
5567 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5568
Chris Lattnerd934c702004-04-02 20:23:17 +00005569 // If we have a comparison of a chrec against a constant, try to use value
5570 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005571 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5572 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005573 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005574 // Form the constant range.
5575 ConstantRange CompRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00005576 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005577
Dan Gohmanaf752342009-07-07 17:06:11 +00005578 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005579 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005580 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005581
Chris Lattnerd934c702004-04-02 20:23:17 +00005582 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005583 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005584 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005585 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005586 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005587 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005588 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005589 case ICmpInst::ICMP_EQ: { // while (X == Y)
5590 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005591 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5592 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005593 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005594 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005595 case ICmpInst::ICMP_SLT:
5596 case ICmpInst::ICMP_ULT: { // while (X < Y)
5597 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005598 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005599 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005600 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005601 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005602 case ICmpInst::ICMP_SGT:
5603 case ICmpInst::ICMP_UGT: { // while (X > Y)
5604 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005605 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005606 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005607 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005608 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005609 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005610 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005611 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005612 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005613}
5614
Benjamin Kramer5a188542014-02-11 15:44:32 +00005615ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005616ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005617 SwitchInst *Switch,
5618 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005619 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005620 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5621
5622 // Give up if the exit is the default dest of a switch.
5623 if (Switch->getDefaultDest() == ExitingBlock)
5624 return getCouldNotCompute();
5625
5626 assert(L->contains(Switch->getDefaultDest()) &&
5627 "Default case must not exit the loop!");
5628 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5629 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5630
5631 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005632 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005633 if (EL.hasAnyInfo())
5634 return EL;
5635
5636 return getCouldNotCompute();
5637}
5638
Chris Lattnerec901cc2004-10-12 01:49:27 +00005639static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005640EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5641 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005642 const SCEV *InVal = SE.getConstant(C);
5643 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005644 assert(isa<SCEVConstant>(Val) &&
5645 "Evaluation of SCEV at constant didn't fold correctly?");
5646 return cast<SCEVConstant>(Val)->getValue();
5647}
5648
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005649/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005650/// 'icmp op load X, cst', try to see if we can compute the backedge
5651/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005652ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005653ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005654 LoadInst *LI,
5655 Constant *RHS,
5656 const Loop *L,
5657 ICmpInst::Predicate predicate) {
5658
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005659 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005660
5661 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005662 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005663 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005664 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005665
5666 // Make sure that it is really a constant global we are gepping, with an
5667 // initializer, and make sure the first IDX is really 0.
5668 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005669 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005670 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5671 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005672 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005673
5674 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005675 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005676 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005677 unsigned VarIdxNum = 0;
5678 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5679 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5680 Indexes.push_back(CI);
5681 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005682 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005683 VarIdx = GEP->getOperand(i);
5684 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005685 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005686 }
5687
Andrew Trick7004e4b2012-03-26 22:33:59 +00005688 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5689 if (!VarIdx)
5690 return getCouldNotCompute();
5691
Chris Lattnerec901cc2004-10-12 01:49:27 +00005692 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5693 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005694 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005695 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005696
5697 // We can only recognize very limited forms of loop index expressions, in
5698 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005699 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005700 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005701 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5702 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005703 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005704
5705 unsigned MaxSteps = MaxBruteForceIterations;
5706 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005707 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005708 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005709 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005710
5711 // Form the GEP offset.
5712 Indexes[VarIdxNum] = Val;
5713
Chris Lattnere166a852012-01-24 05:49:24 +00005714 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5715 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005716 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005717
5718 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005719 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005720 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005721 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005722 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005723 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005724 }
5725 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005726 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005727}
5728
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005729ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5730 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5731 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5732 if (!RHS)
5733 return getCouldNotCompute();
5734
5735 const BasicBlock *Latch = L->getLoopLatch();
5736 if (!Latch)
5737 return getCouldNotCompute();
5738
5739 const BasicBlock *Predecessor = L->getLoopPredecessor();
5740 if (!Predecessor)
5741 return getCouldNotCompute();
5742
5743 // Return true if V is of the form "LHS `shift_op` <positive constant>".
5744 // Return LHS in OutLHS and shift_opt in OutOpCode.
5745 auto MatchPositiveShift =
5746 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5747
5748 using namespace PatternMatch;
5749
5750 ConstantInt *ShiftAmt;
5751 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5752 OutOpCode = Instruction::LShr;
5753 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5754 OutOpCode = Instruction::AShr;
5755 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5756 OutOpCode = Instruction::Shl;
5757 else
5758 return false;
5759
5760 return ShiftAmt->getValue().isStrictlyPositive();
5761 };
5762
5763 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5764 //
5765 // loop:
5766 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5767 // %iv.shifted = lshr i32 %iv, <positive constant>
5768 //
5769 // Return true on a succesful match. Return the corresponding PHI node (%iv
5770 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5771 auto MatchShiftRecurrence =
5772 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5773 Optional<Instruction::BinaryOps> PostShiftOpCode;
5774
5775 {
5776 Instruction::BinaryOps OpC;
5777 Value *V;
5778
5779 // If we encounter a shift instruction, "peel off" the shift operation,
5780 // and remember that we did so. Later when we inspect %iv's backedge
5781 // value, we will make sure that the backedge value uses the same
5782 // operation.
5783 //
5784 // Note: the peeled shift operation does not have to be the same
5785 // instruction as the one feeding into the PHI's backedge value. We only
5786 // really care about it being the same *kind* of shift instruction --
5787 // that's all that is required for our later inferences to hold.
5788 if (MatchPositiveShift(LHS, V, OpC)) {
5789 PostShiftOpCode = OpC;
5790 LHS = V;
5791 }
5792 }
5793
5794 PNOut = dyn_cast<PHINode>(LHS);
5795 if (!PNOut || PNOut->getParent() != L->getHeader())
5796 return false;
5797
5798 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5799 Value *OpLHS;
5800
5801 return
5802 // The backedge value for the PHI node must be a shift by a positive
5803 // amount
5804 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5805
5806 // of the PHI node itself
5807 OpLHS == PNOut &&
5808
5809 // and the kind of shift should be match the kind of shift we peeled
5810 // off, if any.
5811 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5812 };
5813
5814 PHINode *PN;
5815 Instruction::BinaryOps OpCode;
5816 if (!MatchShiftRecurrence(LHS, PN, OpCode))
5817 return getCouldNotCompute();
5818
5819 const DataLayout &DL = getDataLayout();
5820
5821 // The key rationale for this optimization is that for some kinds of shift
5822 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5823 // within a finite number of iterations. If the condition guarding the
5824 // backedge (in the sense that the backedge is taken if the condition is true)
5825 // is false for the value the shift recurrence stabilizes to, then we know
5826 // that the backedge is taken only a finite number of times.
5827
5828 ConstantInt *StableValue = nullptr;
5829 switch (OpCode) {
5830 default:
5831 llvm_unreachable("Impossible case!");
5832
5833 case Instruction::AShr: {
5834 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5835 // bitwidth(K) iterations.
5836 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5837 bool KnownZero, KnownOne;
5838 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5839 Predecessor->getTerminator(), &DT);
5840 auto *Ty = cast<IntegerType>(RHS->getType());
5841 if (KnownZero)
5842 StableValue = ConstantInt::get(Ty, 0);
5843 else if (KnownOne)
5844 StableValue = ConstantInt::get(Ty, -1, true);
5845 else
5846 return getCouldNotCompute();
5847
5848 break;
5849 }
5850 case Instruction::LShr:
5851 case Instruction::Shl:
5852 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5853 // stabilize to 0 in at most bitwidth(K) iterations.
5854 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5855 break;
5856 }
5857
5858 auto *Result =
5859 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5860 assert(Result->getType()->isIntegerTy(1) &&
5861 "Otherwise cannot be an operand to a branch instruction");
5862
5863 if (Result->isZeroValue()) {
5864 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5865 const SCEV *UpperBound =
5866 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5867 return ExitLimit(getCouldNotCompute(), UpperBound);
5868 }
5869
5870 return getCouldNotCompute();
5871}
Chris Lattnerec901cc2004-10-12 01:49:27 +00005872
Chris Lattnerdd730472004-04-17 22:58:41 +00005873/// CanConstantFold - Return true if we can constant fold an instruction of the
5874/// specified type, assuming that all operands were constants.
5875static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005876 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005877 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5878 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005879 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005880
Chris Lattnerdd730472004-04-17 22:58:41 +00005881 if (const CallInst *CI = dyn_cast<CallInst>(I))
5882 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005883 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005884 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005885}
5886
Andrew Trick3a86ba72011-10-05 03:25:31 +00005887/// Determine whether this instruction can constant evolve within this loop
5888/// assuming its operands can all constant evolve.
5889static bool canConstantEvolve(Instruction *I, const Loop *L) {
5890 // An instruction outside of the loop can't be derived from a loop PHI.
5891 if (!L->contains(I)) return false;
5892
5893 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005894 // We don't currently keep track of the control flow needed to evaluate
5895 // PHIs, so we cannot handle PHIs inside of loops.
5896 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005897 }
5898
5899 // If we won't be able to constant fold this expression even if the operands
5900 // are constants, bail early.
5901 return CanConstantFold(I);
5902}
5903
5904/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5905/// recursing through each instruction operand until reaching a loop header phi.
5906static PHINode *
5907getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005908 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005909
5910 // Otherwise, we can evaluate this instruction if all of its operands are
5911 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005912 PHINode *PHI = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00005913 for (Value *Op : UseInst->operands()) {
5914 if (isa<Constant>(Op)) continue;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005915
Sanjoy Dasd87e4352015-12-08 22:53:36 +00005916 Instruction *OpInst = dyn_cast<Instruction>(Op);
Craig Topper9f008862014-04-15 04:59:12 +00005917 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005918
5919 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005920 if (!P)
5921 // If this operand is already visited, reuse the prior result.
5922 // We may have P != PHI if this is the deepest point at which the
5923 // inconsistent paths meet.
5924 P = PHIMap.lookup(OpInst);
5925 if (!P) {
5926 // Recurse and memoize the results, whether a phi is found or not.
5927 // This recursive call invalidates pointers into PHIMap.
5928 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5929 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005930 }
Craig Topper9f008862014-04-15 04:59:12 +00005931 if (!P)
5932 return nullptr; // Not evolving from PHI
5933 if (PHI && PHI != P)
5934 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005935 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005936 }
5937 // This is a expression evolving from a constant PHI!
5938 return PHI;
5939}
5940
Chris Lattnerdd730472004-04-17 22:58:41 +00005941/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5942/// in the loop that V is derived from. We allow arbitrary operations along the
5943/// way, but the operands of an operation must either be constants or a value
5944/// derived from a constant PHI. If this expression does not fit with these
5945/// constraints, return null.
5946static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005947 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005948 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005949
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005950 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005951 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005952
Andrew Trick3a86ba72011-10-05 03:25:31 +00005953 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005954 DenseMap<Instruction *, PHINode *> PHIMap;
5955 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005956}
5957
5958/// EvaluateExpression - Given an expression that passes the
5959/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5960/// in the loop has the value PHIVal. If we can't fold this expression for some
5961/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005962static Constant *EvaluateExpression(Value *V, const Loop *L,
5963 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005964 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005965 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005966 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005967 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005968 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005969 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005970
Andrew Trick3a86ba72011-10-05 03:25:31 +00005971 if (Constant *C = Vals.lookup(I)) return C;
5972
Nick Lewyckya6674c72011-10-22 19:58:20 +00005973 // An instruction inside the loop depends on a value outside the loop that we
5974 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005975 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005976
5977 // An unmapped PHI can be due to a branch or another loop inside this loop,
5978 // or due to this not being the initial iteration through a loop where we
5979 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005980 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005981
Dan Gohmanf820bd32010-06-22 13:15:46 +00005982 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005983
5984 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005985 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5986 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005987 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005988 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005989 continue;
5990 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005991 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005992 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005993 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005994 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005995 }
5996
Nick Lewyckya6674c72011-10-22 19:58:20 +00005997 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005998 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005999 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006000 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6001 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006002 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006003 }
Manuel Jacobe9024592016-01-21 06:33:22 +00006004 return ConstantFoldInstOperands(I, Operands, DL, TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00006005}
6006
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006007
6008// If every incoming value to PN except the one for BB is a specific Constant,
6009// return that, else return nullptr.
6010static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6011 Constant *IncomingVal = nullptr;
6012
6013 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6014 if (PN->getIncomingBlock(i) == BB)
6015 continue;
6016
6017 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6018 if (!CurrentVal)
6019 return nullptr;
6020
6021 if (IncomingVal != CurrentVal) {
6022 if (IncomingVal)
6023 return nullptr;
6024 IncomingVal = CurrentVal;
6025 }
6026 }
6027
6028 return IncomingVal;
6029}
6030
Chris Lattnerdd730472004-04-17 22:58:41 +00006031/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6032/// in the header of its containing loop, we know the loop executes a
6033/// constant number of times, and the PHI node is just a recurrence
6034/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00006035Constant *
6036ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00006037 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00006038 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00006039 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00006040 if (I != ConstantEvolutionLoopExitValue.end())
6041 return I->second;
6042
Dan Gohman4ce1fb12010-04-08 23:03:40 +00006043 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00006044 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00006045
6046 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6047
Andrew Trick3a86ba72011-10-05 03:25:31 +00006048 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006049 BasicBlock *Header = L->getHeader();
6050 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00006051
Sanjoy Dasdd709962015-10-08 18:28:36 +00006052 BasicBlock *Latch = L->getLoopLatch();
6053 if (!Latch)
6054 return nullptr;
6055
Sanjoy Das4493b402015-10-07 17:38:25 +00006056 for (auto &I : *Header) {
6057 PHINode *PHI = dyn_cast<PHINode>(&I);
6058 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006059 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006060 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006061 CurrentIterVals[PHI] = StartCST;
6062 }
6063 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00006064 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006065
Sanjoy Dasdd709962015-10-08 18:28:36 +00006066 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00006067
6068 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00006069 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00006070 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00006071
Dan Gohman0bddac12009-02-24 18:55:53 +00006072 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00006073 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006074 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006075 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006076 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006077 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006078
Nick Lewyckya6674c72011-10-22 19:58:20 +00006079 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006080 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006081 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006082 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006083 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006084 if (!NextPHI)
6085 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006086 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006087
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006088 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6089
Nick Lewyckya6674c72011-10-22 19:58:20 +00006090 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6091 // cease to be able to evaluate one of them or if they stop evolving,
6092 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006093 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006094 for (const auto &I : CurrentIterVals) {
6095 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006096 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006097 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006098 }
6099 // We use two distinct loops because EvaluateExpression may invalidate any
6100 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006101 for (const auto &I : PHIsToCompute) {
6102 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006103 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006104 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006105 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006106 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006107 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006108 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006109 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006110 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006111
6112 // If all entries in CurrentIterVals == NextIterVals then we can stop
6113 // iterating, the loop can't continue to change.
6114 if (StoppedEvolving)
6115 return RetVal = CurrentIterVals[PN];
6116
Andrew Trick3a86ba72011-10-05 03:25:31 +00006117 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006118 }
6119}
6120
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006121const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006122 Value *Cond,
6123 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006124 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006125 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006126
Dan Gohman866971e2010-06-19 14:17:24 +00006127 // If the loop is canonicalized, the PHI will have exactly two entries.
6128 // That's the only form we support here.
6129 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6130
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006131 DenseMap<Instruction *, Constant *> CurrentIterVals;
6132 BasicBlock *Header = L->getHeader();
6133 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6134
Sanjoy Dasdd709962015-10-08 18:28:36 +00006135 BasicBlock *Latch = L->getLoopLatch();
6136 assert(Latch && "Should follow from NumIncomingValues == 2!");
6137
Sanjoy Das4493b402015-10-07 17:38:25 +00006138 for (auto &I : *Header) {
6139 PHINode *PHI = dyn_cast<PHINode>(&I);
6140 if (!PHI)
6141 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006142 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006143 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006144 CurrentIterVals[PHI] = StartCST;
6145 }
6146 if (!CurrentIterVals.count(PN))
6147 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006148
6149 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6150 // the loop symbolically to determine when the condition gets a value of
6151 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006152 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006153 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006154 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006155 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006156 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006157
Zhou Sheng75b871f2007-01-11 12:24:14 +00006158 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006159 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006160
Reid Spencer983e3b32007-03-01 07:25:48 +00006161 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006162 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006163 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006164 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006165
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006166 // Update all the PHI nodes for the next iteration.
6167 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006168
6169 // Create a list of which PHIs we need to compute. We want to do this before
6170 // calling EvaluateExpression on them because that may invalidate iterators
6171 // into CurrentIterVals.
6172 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006173 for (const auto &I : CurrentIterVals) {
6174 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006175 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006176 PHIsToCompute.push_back(PHI);
6177 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006178 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006179 Constant *&NextPHI = NextIterVals[PHI];
6180 if (NextPHI) continue; // Already computed!
6181
Sanjoy Dasdd709962015-10-08 18:28:36 +00006182 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006183 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006184 }
6185 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006186 }
6187
6188 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006189 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006190}
6191
Dan Gohman237d9e52009-09-03 15:00:26 +00006192/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006193/// at the specified scope in the program. The L value specifies a loop
6194/// nest to evaluate the expression at, where null is the top-level or a
6195/// specified loop is immediately inside of the loop.
6196///
6197/// This method can be used to compute the exit value for a variable defined
6198/// in a loop by querying what the value will hold in the parent loop.
6199///
Dan Gohman8ca08852009-05-24 23:25:42 +00006200/// In the case that a relevant loop exit value cannot be computed, the
6201/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006202const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006203 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6204 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006205 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006206 for (auto &LS : Values)
6207 if (LS.first == L)
6208 return LS.second ? LS.second : V;
6209
6210 Values.emplace_back(L, nullptr);
6211
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006212 // Otherwise compute it.
6213 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006214 for (auto &LS : reverse(ValuesAtScopes[V]))
6215 if (LS.first == L) {
6216 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006217 break;
6218 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006219 return C;
6220}
6221
Nick Lewyckya6674c72011-10-22 19:58:20 +00006222/// This builds up a Constant using the ConstantExpr interface. That way, we
6223/// will return Constants for objects which aren't represented by a
6224/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6225/// Returns NULL if the SCEV isn't representable as a Constant.
6226static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006227 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006228 case scCouldNotCompute:
6229 case scAddRecExpr:
6230 break;
6231 case scConstant:
6232 return cast<SCEVConstant>(V)->getValue();
6233 case scUnknown:
6234 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6235 case scSignExtend: {
6236 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6237 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6238 return ConstantExpr::getSExt(CastOp, SS->getType());
6239 break;
6240 }
6241 case scZeroExtend: {
6242 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6243 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6244 return ConstantExpr::getZExt(CastOp, SZ->getType());
6245 break;
6246 }
6247 case scTruncate: {
6248 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6249 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6250 return ConstantExpr::getTrunc(CastOp, ST->getType());
6251 break;
6252 }
6253 case scAddExpr: {
6254 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6255 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006256 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6257 unsigned AS = PTy->getAddressSpace();
6258 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6259 C = ConstantExpr::getBitCast(C, DestPtrTy);
6260 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006261 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6262 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006263 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006264
6265 // First pointer!
6266 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006267 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006268 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006269 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006270 // The offsets have been converted to bytes. We can add bytes to an
6271 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006272 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006273 }
6274
6275 // Don't bother trying to sum two pointers. We probably can't
6276 // statically compute a load that results from it anyway.
6277 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006278 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006279
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006280 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6281 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006282 C2 = ConstantExpr::getIntegerCast(
6283 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006284 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006285 } else
6286 C = ConstantExpr::getAdd(C, C2);
6287 }
6288 return C;
6289 }
6290 break;
6291 }
6292 case scMulExpr: {
6293 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6294 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6295 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006296 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006297 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6298 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006299 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006300 C = ConstantExpr::getMul(C, C2);
6301 }
6302 return C;
6303 }
6304 break;
6305 }
6306 case scUDivExpr: {
6307 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6308 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6309 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6310 if (LHS->getType() == RHS->getType())
6311 return ConstantExpr::getUDiv(LHS, RHS);
6312 break;
6313 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006314 case scSMaxExpr:
6315 case scUMaxExpr:
6316 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006317 }
Craig Topper9f008862014-04-15 04:59:12 +00006318 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006319}
6320
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006321const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006322 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006323
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006324 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006325 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006326 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006327 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006328 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006329 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6330 if (PHINode *PN = dyn_cast<PHINode>(I))
6331 if (PN->getParent() == LI->getHeader()) {
6332 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006333 // to see if the loop that contains it has a known backedge-taken
6334 // count. If so, we may be able to force computation of the exit
6335 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006336 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006337 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006338 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006339 // Okay, we know how many times the containing loop executes. If
6340 // this is a constant evolving PHI node, get the final value at
6341 // the specified iteration number.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006342 Constant *RV =
6343 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006344 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006345 }
6346 }
6347
Reid Spencere6328ca2006-12-04 21:33:23 +00006348 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006349 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006350 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006351 // result. This is particularly useful for computing loop exit values.
6352 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006353 SmallVector<Constant *, 4> Operands;
6354 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006355 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006356 if (Constant *C = dyn_cast<Constant>(Op)) {
6357 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006358 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006359 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006360
6361 // If any of the operands is non-constant and if they are
6362 // non-integer and non-pointer, don't even try to analyze them
6363 // with scev techniques.
6364 if (!isSCEVable(Op->getType()))
6365 return V;
6366
6367 const SCEV *OrigV = getSCEV(Op);
6368 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6369 MadeImprovement |= OrigV != OpV;
6370
Nick Lewyckya6674c72011-10-22 19:58:20 +00006371 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006372 if (!C) return V;
6373 if (C->getType() != Op->getType())
6374 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6375 Op->getType(),
6376 false),
6377 C, Op->getType());
6378 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006379 }
Dan Gohmance973df2009-06-24 04:48:43 +00006380
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006381 // Check to see if getSCEVAtScope actually made an improvement.
6382 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006383 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006384 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006385 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006386 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006387 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006388 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6389 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006390 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006391 } else
Manuel Jacobe9024592016-01-21 06:33:22 +00006392 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006393 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006394 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006395 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006396 }
6397 }
6398
6399 // This is some other type of SCEVUnknown, just return it.
6400 return V;
6401 }
6402
Dan Gohmana30370b2009-05-04 22:02:23 +00006403 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006404 // Avoid performing the look-up in the common case where the specified
6405 // expression has no loop-variant portions.
6406 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006407 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006408 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006409 // Okay, at least one of these operands is loop variant but might be
6410 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006411 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6412 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006413 NewOps.push_back(OpAtScope);
6414
6415 for (++i; i != e; ++i) {
6416 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006417 NewOps.push_back(OpAtScope);
6418 }
6419 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006420 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006421 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006422 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006423 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006424 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006425 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006426 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006427 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006428 }
6429 }
6430 // If we got here, all operands are loop invariant.
6431 return Comm;
6432 }
6433
Dan Gohmana30370b2009-05-04 22:02:23 +00006434 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006435 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6436 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006437 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6438 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006439 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006440 }
6441
6442 // If this is a loop recurrence for a loop that does not contain L, then we
6443 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006444 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006445 // First, attempt to evaluate each operand.
6446 // Avoid performing the look-up in the common case where the specified
6447 // expression has no loop-variant portions.
6448 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6449 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6450 if (OpAtScope == AddRec->getOperand(i))
6451 continue;
6452
6453 // Okay, at least one of these operands is loop variant but might be
6454 // foldable. Build a new instance of the folded commutative expression.
6455 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6456 AddRec->op_begin()+i);
6457 NewOps.push_back(OpAtScope);
6458 for (++i; i != e; ++i)
6459 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6460
Andrew Trick759ba082011-04-27 01:21:25 +00006461 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006462 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006463 AddRec->getNoWrapFlags(SCEV::FlagNW));
6464 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006465 // The addrec may be folded to a nonrecurrence, for example, if the
6466 // induction variable is multiplied by zero after constant folding. Go
6467 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006468 if (!AddRec)
6469 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006470 break;
6471 }
6472
6473 // If the scope is outside the addrec's loop, evaluate it by using the
6474 // loop exit value of the addrec.
6475 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006476 // To evaluate this recurrence, we need to know how many times the AddRec
6477 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006478 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006479 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006480
Eli Friedman61f67622008-08-04 23:49:06 +00006481 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006482 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006483 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006484
Dan Gohman8ca08852009-05-24 23:25:42 +00006485 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006486 }
6487
Dan Gohmana30370b2009-05-04 22:02:23 +00006488 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006489 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006490 if (Op == Cast->getOperand())
6491 return Cast; // must be loop invariant
6492 return getZeroExtendExpr(Op, Cast->getType());
6493 }
6494
Dan Gohmana30370b2009-05-04 22:02:23 +00006495 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006496 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006497 if (Op == Cast->getOperand())
6498 return Cast; // must be loop invariant
6499 return getSignExtendExpr(Op, Cast->getType());
6500 }
6501
Dan Gohmana30370b2009-05-04 22:02:23 +00006502 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006503 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006504 if (Op == Cast->getOperand())
6505 return Cast; // must be loop invariant
6506 return getTruncateExpr(Op, Cast->getType());
6507 }
6508
Torok Edwinfbcc6632009-07-14 16:55:14 +00006509 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006510}
6511
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006512/// getSCEVAtScope - This is a convenience function which does
6513/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006514const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006515 return getSCEVAtScope(getSCEV(V), L);
6516}
6517
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006518/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6519/// following equation:
6520///
6521/// A * X = B (mod N)
6522///
6523/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6524/// A and B isn't important.
6525///
6526/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006527static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006528 ScalarEvolution &SE) {
6529 uint32_t BW = A.getBitWidth();
6530 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6531 assert(A != 0 && "A must be non-zero.");
6532
6533 // 1. D = gcd(A, N)
6534 //
6535 // The gcd of A and N may have only one prime factor: 2. The number of
6536 // trailing zeros in A is its multiplicity
6537 uint32_t Mult2 = A.countTrailingZeros();
6538 // D = 2^Mult2
6539
6540 // 2. Check if B is divisible by D.
6541 //
6542 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6543 // is not less than multiplicity of this prime factor for D.
6544 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006545 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006546
6547 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6548 // modulo (N / D).
6549 //
6550 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6551 // bit width during computations.
6552 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6553 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006554 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006555 APInt I = AD.multiplicativeInverse(Mod);
6556
6557 // 4. Compute the minimum unsigned root of the equation:
6558 // I * (B / D) mod (N / D)
6559 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6560
6561 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6562 // bits.
6563 return SE.getConstant(Result.trunc(BW));
6564}
Chris Lattnerd934c702004-04-02 20:23:17 +00006565
6566/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6567/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6568/// might be the same) or two SCEVCouldNotCompute objects.
6569///
Dan Gohmanaf752342009-07-07 17:06:11 +00006570static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006571SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006572 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006573 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6574 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6575 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006576
Chris Lattnerd934c702004-04-02 20:23:17 +00006577 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006578 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006579 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006580 return {CNC, CNC};
Chris Lattnerd934c702004-04-02 20:23:17 +00006581 }
6582
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006583 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6584 const APInt &L = LC->getAPInt();
6585 const APInt &M = MC->getAPInt();
6586 const APInt &N = NC->getAPInt();
Reid Spencer983e3b32007-03-01 07:25:48 +00006587 APInt Two(BitWidth, 2);
6588 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006589
Dan Gohmance973df2009-06-24 04:48:43 +00006590 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006591 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006592 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006593 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6594 // The B coefficient is M-N/2
6595 APInt B(M);
6596 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006597
Reid Spencer983e3b32007-03-01 07:25:48 +00006598 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006599 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006600
Reid Spencer983e3b32007-03-01 07:25:48 +00006601 // Compute the B^2-4ac term.
6602 APInt SqrtTerm(B);
6603 SqrtTerm *= B;
6604 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006605
Nick Lewyckyfb780832012-08-01 09:14:36 +00006606 if (SqrtTerm.isNegative()) {
6607 // The loop is provably infinite.
6608 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006609 return {CNC, CNC};
Nick Lewyckyfb780832012-08-01 09:14:36 +00006610 }
6611
Reid Spencer983e3b32007-03-01 07:25:48 +00006612 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6613 // integer value or else APInt::sqrt() will assert.
6614 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006615
Dan Gohmance973df2009-06-24 04:48:43 +00006616 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006617 // The divisions must be performed as signed divisions.
6618 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006619 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006620 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006621 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006622 return {CNC, CNC};
Nick Lewycky7b14e202008-11-03 02:43:49 +00006623 }
6624
Owen Anderson47db9412009-07-22 00:24:57 +00006625 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006626
6627 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006628 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006629 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006630 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006631
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006632 return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
Nick Lewycky31555522011-10-03 07:10:45 +00006633 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006634}
6635
6636/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006637/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006638///
6639/// This is only used for loops with a "x != y" exit test. The exit condition is
6640/// now expressed as a single expression, V = x-y. So the exit test is
6641/// effectively V != 0. We know and take advantage of the fact that this
6642/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006643ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006644ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006645 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006646 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006647 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006648 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006649 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006650 }
6651
Dan Gohman48f82222009-05-04 22:30:44 +00006652 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006653 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006654 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006655
Chris Lattnerdff679f2011-01-09 22:39:48 +00006656 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6657 // the quadratic equation to solve it.
6658 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6659 std::pair<const SCEV *,const SCEV *> Roots =
6660 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006661 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6662 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006663 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006664 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006665 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006666 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6667 R1->getValue(),
6668 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006669 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006670 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006671
Chris Lattnerd934c702004-04-02 20:23:17 +00006672 // We can only use this value if the chrec ends up with an exact zero
6673 // value at this index. When solving for "X*X != 5", for example, we
6674 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006675 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006676 if (Val->isZero())
6677 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006678 }
6679 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006680 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006681 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006682
Chris Lattnerdff679f2011-01-09 22:39:48 +00006683 // Otherwise we can only handle this if it is affine.
6684 if (!AddRec->isAffine())
6685 return getCouldNotCompute();
6686
6687 // If this is an affine expression, the execution count of this branch is
6688 // the minimum unsigned root of the following equation:
6689 //
6690 // Start + Step*N = 0 (mod 2^BW)
6691 //
6692 // equivalent to:
6693 //
6694 // Step*N = -Start (mod 2^BW)
6695 //
6696 // where BW is the common bit width of Start and Step.
6697
6698 // Get the initial value for the loop.
6699 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6700 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6701
6702 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006703 //
6704 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6705 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6706 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6707 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006708 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006709 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006710 return getCouldNotCompute();
6711
Andrew Trick8b55b732011-03-14 16:50:06 +00006712 // For positive steps (counting up until unsigned overflow):
6713 // N = -Start/Step (as unsigned)
6714 // For negative steps (counting down to zero):
6715 // N = Start/-Step
6716 // First compute the unsigned distance from zero in the direction of Step.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006717 bool CountDown = StepC->getAPInt().isNegative();
Andrew Trickf1781db2011-03-14 17:28:02 +00006718 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006719
6720 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006721 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6722 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006723 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6724 ConstantRange CR = getUnsignedRange(Start);
6725 const SCEV *MaxBECount;
6726 if (!CountDown && CR.getUnsignedMin().isMinValue())
6727 // When counting up, the worst starting value is 1, not 0.
6728 MaxBECount = CR.getUnsignedMax().isMinValue()
6729 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6730 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6731 else
6732 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6733 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006734 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006735 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006736
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006737 // As a special case, handle the instance where Step is a positive power of
6738 // two. In this case, determining whether Step divides Distance evenly can be
6739 // done by counting and comparing the number of trailing zeros of Step and
6740 // Distance.
6741 if (!CountDown) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006742 const APInt &StepV = StepC->getAPInt();
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006743 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6744 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6745 // case is not handled as this code is guarded by !CountDown.
6746 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006747 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6748 // Here we've constrained the equation to be of the form
6749 //
6750 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6751 //
6752 // where we're operating on a W bit wide integer domain and k is
6753 // non-negative. The smallest unsigned solution for X is the trip count.
6754 //
6755 // (0) is equivalent to:
6756 //
6757 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6758 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6759 // <=> 2^k * Distance' - X = L * 2^(W - N)
6760 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6761 //
6762 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6763 // by 2^(W - N).
6764 //
6765 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6766 //
6767 // E.g. say we're solving
6768 //
6769 // 2 * Val = 2 * X (in i8) ... (3)
6770 //
6771 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6772 //
6773 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6774 // necessarily the smallest unsigned value of X that satisfies (3).
6775 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6776 // is i8 1, not i8 -127
6777
6778 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6779
6780 // Since SCEV does not have a URem node, we construct one using a truncate
6781 // and a zero extend.
6782
6783 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6784 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6785 auto *WideTy = Distance->getType();
6786
6787 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6788 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006789 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006790
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006791 // If the condition controls loop exit (the loop exits only if the expression
6792 // is true) and the addition is no-wrap we can use unsigned divide to
6793 // compute the backedge count. In this case, the step may not divide the
6794 // distance, but we don't care because if the condition is "missed" the loop
6795 // will have undefined behavior due to wrapping.
Sanjoy Das76c48e02016-02-04 18:21:54 +00006796 if (ControlsExit && AddRec->hasNoSelfWrap()) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006797 const SCEV *Exact =
6798 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6799 return ExitLimit(Exact, Exact);
6800 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006801
Chris Lattnerdff679f2011-01-09 22:39:48 +00006802 // Then, try to solve the above equation provided that Start is constant.
6803 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006804 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
Chris Lattnerdff679f2011-01-09 22:39:48 +00006805 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006806 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006807}
6808
6809/// HowFarToNonZero - Return the number of times a backedge checking the
6810/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006811/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006812ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006813ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006814 // Loops that look like: while (X == 0) are very strange indeed. We don't
6815 // handle them yet except for the trivial case. This could be expanded in the
6816 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006817
Chris Lattnerd934c702004-04-02 20:23:17 +00006818 // If the value is a constant, check to see if it is known to be non-zero
6819 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006820 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006821 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006822 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006823 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006824 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006825
Chris Lattnerd934c702004-04-02 20:23:17 +00006826 // We could implement others, but I really doubt anyone writes loops like
6827 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006828 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006829}
6830
Dan Gohmanf9081a22008-09-15 22:18:04 +00006831/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6832/// (which may not be an immediate predecessor) which has exactly one
6833/// successor from which BB is reachable, or null if no such block is
6834/// found.
6835///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006836std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006837ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006838 // If the block has a unique predecessor, then there is no path from the
6839 // predecessor to the block that does not go through the direct edge
6840 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006841 if (BasicBlock *Pred = BB->getSinglePredecessor())
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006842 return {Pred, BB};
Dan Gohmanf9081a22008-09-15 22:18:04 +00006843
6844 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006845 // If the header has a unique predecessor outside the loop, it must be
6846 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006847 if (Loop *L = LI.getLoopFor(BB))
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006848 return {L->getLoopPredecessor(), L->getHeader()};
Dan Gohmanf9081a22008-09-15 22:18:04 +00006849
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006850 return {nullptr, nullptr};
Dan Gohmanf9081a22008-09-15 22:18:04 +00006851}
6852
Dan Gohman450f4e02009-06-20 00:35:32 +00006853/// HasSameValue - SCEV structural equivalence is usually sufficient for
6854/// testing whether two expressions are equal, however for the purposes of
6855/// looking for a condition guarding a loop, it can be useful to be a little
6856/// more general, since a front-end may have replicated the controlling
6857/// expression.
6858///
Dan Gohmanaf752342009-07-07 17:06:11 +00006859static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006860 // Quick check to see if they are the same SCEV.
6861 if (A == B) return true;
6862
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006863 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6864 // Not all instructions that are "identical" compute the same value. For
6865 // instance, two distinct alloca instructions allocating the same type are
6866 // identical and do not read memory; but compute distinct values.
6867 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6868 };
6869
Dan Gohman450f4e02009-06-20 00:35:32 +00006870 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6871 // two different instructions with the same value. Check for this case.
6872 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6873 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6874 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6875 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006876 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006877 return true;
6878
6879 // Otherwise assume they may have a different value.
6880 return false;
6881}
6882
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006883/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006884/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006885///
6886bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006887 const SCEV *&LHS, const SCEV *&RHS,
6888 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006889 bool Changed = false;
6890
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006891 // If we hit the max recursion limit bail out.
6892 if (Depth >= 3)
6893 return false;
6894
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006895 // Canonicalize a constant to the right side.
6896 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6897 // Check for both operands constant.
6898 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6899 if (ConstantExpr::getICmp(Pred,
6900 LHSC->getValue(),
6901 RHSC->getValue())->isNullValue())
6902 goto trivially_false;
6903 else
6904 goto trivially_true;
6905 }
6906 // Otherwise swap the operands to put the constant on the right.
6907 std::swap(LHS, RHS);
6908 Pred = ICmpInst::getSwappedPredicate(Pred);
6909 Changed = true;
6910 }
6911
6912 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006913 // addrec's loop, put the addrec on the left. Also make a dominance check,
6914 // as both operands could be addrecs loop-invariant in each other's loop.
6915 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6916 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006917 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006918 std::swap(LHS, RHS);
6919 Pred = ICmpInst::getSwappedPredicate(Pred);
6920 Changed = true;
6921 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006922 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006923
6924 // If there's a constant operand, canonicalize comparisons with boundary
6925 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6926 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006927 const APInt &RA = RC->getAPInt();
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006928 switch (Pred) {
6929 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6930 case ICmpInst::ICMP_EQ:
6931 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006932 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6933 if (!RA)
6934 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6935 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006936 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6937 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006938 RHS = AE->getOperand(1);
6939 LHS = ME->getOperand(1);
6940 Changed = true;
6941 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006942 break;
6943 case ICmpInst::ICMP_UGE:
6944 if ((RA - 1).isMinValue()) {
6945 Pred = ICmpInst::ICMP_NE;
6946 RHS = getConstant(RA - 1);
6947 Changed = true;
6948 break;
6949 }
6950 if (RA.isMaxValue()) {
6951 Pred = ICmpInst::ICMP_EQ;
6952 Changed = true;
6953 break;
6954 }
6955 if (RA.isMinValue()) goto trivially_true;
6956
6957 Pred = ICmpInst::ICMP_UGT;
6958 RHS = getConstant(RA - 1);
6959 Changed = true;
6960 break;
6961 case ICmpInst::ICMP_ULE:
6962 if ((RA + 1).isMaxValue()) {
6963 Pred = ICmpInst::ICMP_NE;
6964 RHS = getConstant(RA + 1);
6965 Changed = true;
6966 break;
6967 }
6968 if (RA.isMinValue()) {
6969 Pred = ICmpInst::ICMP_EQ;
6970 Changed = true;
6971 break;
6972 }
6973 if (RA.isMaxValue()) goto trivially_true;
6974
6975 Pred = ICmpInst::ICMP_ULT;
6976 RHS = getConstant(RA + 1);
6977 Changed = true;
6978 break;
6979 case ICmpInst::ICMP_SGE:
6980 if ((RA - 1).isMinSignedValue()) {
6981 Pred = ICmpInst::ICMP_NE;
6982 RHS = getConstant(RA - 1);
6983 Changed = true;
6984 break;
6985 }
6986 if (RA.isMaxSignedValue()) {
6987 Pred = ICmpInst::ICMP_EQ;
6988 Changed = true;
6989 break;
6990 }
6991 if (RA.isMinSignedValue()) goto trivially_true;
6992
6993 Pred = ICmpInst::ICMP_SGT;
6994 RHS = getConstant(RA - 1);
6995 Changed = true;
6996 break;
6997 case ICmpInst::ICMP_SLE:
6998 if ((RA + 1).isMaxSignedValue()) {
6999 Pred = ICmpInst::ICMP_NE;
7000 RHS = getConstant(RA + 1);
7001 Changed = true;
7002 break;
7003 }
7004 if (RA.isMinSignedValue()) {
7005 Pred = ICmpInst::ICMP_EQ;
7006 Changed = true;
7007 break;
7008 }
7009 if (RA.isMaxSignedValue()) goto trivially_true;
7010
7011 Pred = ICmpInst::ICMP_SLT;
7012 RHS = getConstant(RA + 1);
7013 Changed = true;
7014 break;
7015 case ICmpInst::ICMP_UGT:
7016 if (RA.isMinValue()) {
7017 Pred = ICmpInst::ICMP_NE;
7018 Changed = true;
7019 break;
7020 }
7021 if ((RA + 1).isMaxValue()) {
7022 Pred = ICmpInst::ICMP_EQ;
7023 RHS = getConstant(RA + 1);
7024 Changed = true;
7025 break;
7026 }
7027 if (RA.isMaxValue()) goto trivially_false;
7028 break;
7029 case ICmpInst::ICMP_ULT:
7030 if (RA.isMaxValue()) {
7031 Pred = ICmpInst::ICMP_NE;
7032 Changed = true;
7033 break;
7034 }
7035 if ((RA - 1).isMinValue()) {
7036 Pred = ICmpInst::ICMP_EQ;
7037 RHS = getConstant(RA - 1);
7038 Changed = true;
7039 break;
7040 }
7041 if (RA.isMinValue()) goto trivially_false;
7042 break;
7043 case ICmpInst::ICMP_SGT:
7044 if (RA.isMinSignedValue()) {
7045 Pred = ICmpInst::ICMP_NE;
7046 Changed = true;
7047 break;
7048 }
7049 if ((RA + 1).isMaxSignedValue()) {
7050 Pred = ICmpInst::ICMP_EQ;
7051 RHS = getConstant(RA + 1);
7052 Changed = true;
7053 break;
7054 }
7055 if (RA.isMaxSignedValue()) goto trivially_false;
7056 break;
7057 case ICmpInst::ICMP_SLT:
7058 if (RA.isMaxSignedValue()) {
7059 Pred = ICmpInst::ICMP_NE;
7060 Changed = true;
7061 break;
7062 }
7063 if ((RA - 1).isMinSignedValue()) {
7064 Pred = ICmpInst::ICMP_EQ;
7065 RHS = getConstant(RA - 1);
7066 Changed = true;
7067 break;
7068 }
7069 if (RA.isMinSignedValue()) goto trivially_false;
7070 break;
7071 }
7072 }
7073
7074 // Check for obvious equality.
7075 if (HasSameValue(LHS, RHS)) {
7076 if (ICmpInst::isTrueWhenEqual(Pred))
7077 goto trivially_true;
7078 if (ICmpInst::isFalseWhenEqual(Pred))
7079 goto trivially_false;
7080 }
7081
Dan Gohman81585c12010-05-03 16:35:17 +00007082 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7083 // adding or subtracting 1 from one of the operands.
7084 switch (Pred) {
7085 case ICmpInst::ICMP_SLE:
7086 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7087 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007088 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007089 Pred = ICmpInst::ICMP_SLT;
7090 Changed = true;
7091 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007092 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007093 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007094 Pred = ICmpInst::ICMP_SLT;
7095 Changed = true;
7096 }
7097 break;
7098 case ICmpInst::ICMP_SGE:
7099 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007100 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007101 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007102 Pred = ICmpInst::ICMP_SGT;
7103 Changed = true;
7104 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7105 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007106 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007107 Pred = ICmpInst::ICMP_SGT;
7108 Changed = true;
7109 }
7110 break;
7111 case ICmpInst::ICMP_ULE:
7112 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007113 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007114 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007115 Pred = ICmpInst::ICMP_ULT;
7116 Changed = true;
7117 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007118 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007119 Pred = ICmpInst::ICMP_ULT;
7120 Changed = true;
7121 }
7122 break;
7123 case ICmpInst::ICMP_UGE:
7124 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007125 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007126 Pred = ICmpInst::ICMP_UGT;
7127 Changed = true;
7128 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007129 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007130 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007131 Pred = ICmpInst::ICMP_UGT;
7132 Changed = true;
7133 }
7134 break;
7135 default:
7136 break;
7137 }
7138
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007139 // TODO: More simplifications are possible here.
7140
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007141 // Recursively simplify until we either hit a recursion limit or nothing
7142 // changes.
7143 if (Changed)
7144 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7145
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007146 return Changed;
7147
7148trivially_true:
7149 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007150 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007151 Pred = ICmpInst::ICMP_EQ;
7152 return true;
7153
7154trivially_false:
7155 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007156 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007157 Pred = ICmpInst::ICMP_NE;
7158 return true;
7159}
7160
Dan Gohmane65c9172009-07-13 21:35:55 +00007161bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7162 return getSignedRange(S).getSignedMax().isNegative();
7163}
7164
7165bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7166 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7167}
7168
7169bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7170 return !getSignedRange(S).getSignedMin().isNegative();
7171}
7172
7173bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7174 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7175}
7176
7177bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7178 return isKnownNegative(S) || isKnownPositive(S);
7179}
7180
7181bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7182 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007183 // Canonicalize the inputs first.
7184 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7185
Dan Gohman07591692010-04-11 22:16:48 +00007186 // If LHS or RHS is an addrec, check to see if the condition is true in
7187 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007188 // If LHS and RHS are both addrec, both conditions must be true in
7189 // every iteration of the loop.
7190 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7191 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7192 bool LeftGuarded = false;
7193 bool RightGuarded = false;
7194 if (LAR) {
7195 const Loop *L = LAR->getLoop();
7196 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7197 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7198 if (!RAR) return true;
7199 LeftGuarded = true;
7200 }
7201 }
7202 if (RAR) {
7203 const Loop *L = RAR->getLoop();
7204 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7205 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7206 if (!LAR) return true;
7207 RightGuarded = true;
7208 }
7209 }
7210 if (LeftGuarded && RightGuarded)
7211 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007212
Sanjoy Das7d910f22015-10-02 18:50:30 +00007213 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7214 return true;
7215
Dan Gohman07591692010-04-11 22:16:48 +00007216 // Otherwise see what can be done with known constant ranges.
Sanjoy Das401e6312016-02-01 20:48:10 +00007217 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
Dan Gohman07591692010-04-11 22:16:48 +00007218}
7219
Sanjoy Das5dab2052015-07-27 21:42:49 +00007220bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7221 ICmpInst::Predicate Pred,
7222 bool &Increasing) {
7223 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7224
7225#ifndef NDEBUG
7226 // Verify an invariant: inverting the predicate should turn a monotonically
7227 // increasing change to a monotonically decreasing one, and vice versa.
7228 bool IncreasingSwapped;
7229 bool ResultSwapped = isMonotonicPredicateImpl(
7230 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7231
7232 assert(Result == ResultSwapped && "should be able to analyze both!");
7233 if (ResultSwapped)
7234 assert(Increasing == !IncreasingSwapped &&
7235 "monotonicity should flip as we flip the predicate");
7236#endif
7237
7238 return Result;
7239}
7240
7241bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7242 ICmpInst::Predicate Pred,
7243 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007244
7245 // A zero step value for LHS means the induction variable is essentially a
7246 // loop invariant value. We don't really depend on the predicate actually
7247 // flipping from false to true (for increasing predicates, and the other way
7248 // around for decreasing predicates), all we care about is that *if* the
7249 // predicate changes then it only changes from false to true.
7250 //
7251 // A zero step value in itself is not very useful, but there may be places
7252 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7253 // as general as possible.
7254
Sanjoy Das366acc12015-08-06 20:43:41 +00007255 switch (Pred) {
7256 default:
7257 return false; // Conservative answer
7258
7259 case ICmpInst::ICMP_UGT:
7260 case ICmpInst::ICMP_UGE:
7261 case ICmpInst::ICMP_ULT:
7262 case ICmpInst::ICMP_ULE:
Sanjoy Das76c48e02016-02-04 18:21:54 +00007263 if (!LHS->hasNoUnsignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007264 return false;
7265
7266 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007267 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007268
7269 case ICmpInst::ICMP_SGT:
7270 case ICmpInst::ICMP_SGE:
7271 case ICmpInst::ICMP_SLT:
7272 case ICmpInst::ICMP_SLE: {
Sanjoy Das76c48e02016-02-04 18:21:54 +00007273 if (!LHS->hasNoSignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007274 return false;
7275
7276 const SCEV *Step = LHS->getStepRecurrence(*this);
7277
7278 if (isKnownNonNegative(Step)) {
7279 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7280 return true;
7281 }
7282
7283 if (isKnownNonPositive(Step)) {
7284 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7285 return true;
7286 }
7287
7288 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007289 }
7290
Sanjoy Das5dab2052015-07-27 21:42:49 +00007291 }
7292
Sanjoy Das366acc12015-08-06 20:43:41 +00007293 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007294}
7295
7296bool ScalarEvolution::isLoopInvariantPredicate(
7297 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7298 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7299 const SCEV *&InvariantRHS) {
7300
7301 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7302 if (!isLoopInvariant(RHS, L)) {
7303 if (!isLoopInvariant(LHS, L))
7304 return false;
7305
7306 std::swap(LHS, RHS);
7307 Pred = ICmpInst::getSwappedPredicate(Pred);
7308 }
7309
7310 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7311 if (!ArLHS || ArLHS->getLoop() != L)
7312 return false;
7313
7314 bool Increasing;
7315 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7316 return false;
7317
7318 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7319 // true as the loop iterates, and the backedge is control dependent on
7320 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7321 //
7322 // * if the predicate was false in the first iteration then the predicate
7323 // is never evaluated again, since the loop exits without taking the
7324 // backedge.
7325 // * if the predicate was true in the first iteration then it will
7326 // continue to be true for all future iterations since it is
7327 // monotonically increasing.
7328 //
7329 // For both the above possibilities, we can replace the loop varying
7330 // predicate with its value on the first iteration of the loop (which is
7331 // loop invariant).
7332 //
7333 // A similar reasoning applies for a monotonically decreasing predicate, by
7334 // replacing true with false and false with true in the above two bullets.
7335
7336 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7337
7338 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7339 return false;
7340
7341 InvariantPred = Pred;
7342 InvariantLHS = ArLHS->getStart();
7343 InvariantRHS = RHS;
7344 return true;
7345}
7346
Sanjoy Das401e6312016-02-01 20:48:10 +00007347bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7348 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007349 if (HasSameValue(LHS, RHS))
7350 return ICmpInst::isTrueWhenEqual(Pred);
7351
Dan Gohman07591692010-04-11 22:16:48 +00007352 // This code is split out from isKnownPredicate because it is called from
7353 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007354
Sanjoy Das4c7b6d72016-02-01 20:48:14 +00007355 auto CheckRanges =
7356 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7357 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7358 .contains(RangeLHS);
7359 };
7360
7361 // The check at the top of the function catches the case where the values are
7362 // known to be equal.
7363 if (Pred == CmpInst::ICMP_EQ)
7364 return false;
7365
7366 if (Pred == CmpInst::ICMP_NE)
7367 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7368 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7369 isKnownNonZero(getMinusSCEV(LHS, RHS));
7370
7371 if (CmpInst::isSigned(Pred))
7372 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7373
7374 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
Dan Gohmane65c9172009-07-13 21:35:55 +00007375}
7376
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007377bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7378 const SCEV *LHS,
7379 const SCEV *RHS) {
7380
7381 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7382 // Return Y via OutY.
7383 auto MatchBinaryAddToConst =
7384 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7385 SCEV::NoWrapFlags ExpectedFlags) {
7386 const SCEV *NonConstOp, *ConstOp;
7387 SCEV::NoWrapFlags FlagsPresent;
7388
7389 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7390 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7391 return false;
7392
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007393 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007394 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7395 };
7396
7397 APInt C;
7398
7399 switch (Pred) {
7400 default:
7401 break;
7402
7403 case ICmpInst::ICMP_SGE:
7404 std::swap(LHS, RHS);
7405 case ICmpInst::ICMP_SLE:
7406 // X s<= (X + C)<nsw> if C >= 0
7407 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7408 return true;
7409
7410 // (X + C)<nsw> s<= X if C <= 0
7411 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7412 !C.isStrictlyPositive())
7413 return true;
7414 break;
7415
7416 case ICmpInst::ICMP_SGT:
7417 std::swap(LHS, RHS);
7418 case ICmpInst::ICMP_SLT:
7419 // X s< (X + C)<nsw> if C > 0
7420 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7421 C.isStrictlyPositive())
7422 return true;
7423
7424 // (X + C)<nsw> s< X if C < 0
7425 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7426 return true;
7427 break;
7428 }
7429
7430 return false;
7431}
7432
Sanjoy Das7d910f22015-10-02 18:50:30 +00007433bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7434 const SCEV *LHS,
7435 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007436 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007437 return false;
7438
7439 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7440 // the stack can result in exponential time complexity.
7441 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7442
7443 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7444 //
7445 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7446 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7447 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7448 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7449 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007450 return isKnownNonNegative(RHS) &&
7451 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7452 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007453}
7454
Dan Gohmane65c9172009-07-13 21:35:55 +00007455/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7456/// protected by a conditional between LHS and RHS. This is used to
7457/// to eliminate casts.
7458bool
7459ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7460 ICmpInst::Predicate Pred,
7461 const SCEV *LHS, const SCEV *RHS) {
7462 // Interpret a null as meaning no loop, where there is obviously no guard
7463 // (interprocedural conditions notwithstanding).
7464 if (!L) return true;
7465
Sanjoy Das401e6312016-02-01 20:48:10 +00007466 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7467 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007468
Dan Gohmane65c9172009-07-13 21:35:55 +00007469 BasicBlock *Latch = L->getLoopLatch();
7470 if (!Latch)
7471 return false;
7472
7473 BranchInst *LoopContinuePredicate =
7474 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007475 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7476 isImpliedCond(Pred, LHS, RHS,
7477 LoopContinuePredicate->getCondition(),
7478 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7479 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007480
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007481 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007482 // -- that can lead to O(n!) time complexity.
7483 if (WalkingBEDominatingConds)
7484 return false;
7485
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007486 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007487
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007488 // See if we can exploit a trip count to prove the predicate.
7489 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7490 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7491 if (LatchBECount != getCouldNotCompute()) {
7492 // We know that Latch branches back to the loop header exactly
7493 // LatchBECount times. This means the backdege condition at Latch is
7494 // equivalent to "{0,+,1} u< LatchBECount".
7495 Type *Ty = LatchBECount->getType();
7496 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7497 const SCEV *LoopCounter =
7498 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7499 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7500 LatchBECount))
7501 return true;
7502 }
7503
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007504 // Check conditions due to any @llvm.assume intrinsics.
7505 for (auto &AssumeVH : AC.assumptions()) {
7506 if (!AssumeVH)
7507 continue;
7508 auto *CI = cast<CallInst>(AssumeVH);
7509 if (!DT.dominates(CI, Latch->getTerminator()))
7510 continue;
7511
7512 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7513 return true;
7514 }
7515
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007516 // If the loop is not reachable from the entry block, we risk running into an
7517 // infinite loop as we walk up into the dom tree. These loops do not matter
7518 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007519 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007520 return false;
7521
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007522 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7523 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007524
7525 assert(DTN && "should reach the loop header before reaching the root!");
7526
7527 BasicBlock *BB = DTN->getBlock();
7528 BasicBlock *PBB = BB->getSinglePredecessor();
7529 if (!PBB)
7530 continue;
7531
7532 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7533 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7534 continue;
7535
7536 Value *Condition = ContinuePredicate->getCondition();
7537
7538 // If we have an edge `E` within the loop body that dominates the only
7539 // latch, the condition guarding `E` also guards the backedge. This
7540 // reasoning works only for loops with a single latch.
7541
7542 BasicBlockEdge DominatingEdge(PBB, BB);
7543 if (DominatingEdge.isSingleEdge()) {
7544 // We're constructively (and conservatively) enumerating edges within the
7545 // loop body that dominate the latch. The dominator tree better agree
7546 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007547 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007548
7549 if (isImpliedCond(Pred, LHS, RHS, Condition,
7550 BB != ContinuePredicate->getSuccessor(0)))
7551 return true;
7552 }
7553 }
7554
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007555 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007556}
7557
Dan Gohmanb50349a2010-04-11 19:27:13 +00007558/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007559/// by a conditional between LHS and RHS. This is used to help avoid max
7560/// expressions in loop trip counts, and to eliminate casts.
7561bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007562ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7563 ICmpInst::Predicate Pred,
7564 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007565 // Interpret a null as meaning no loop, where there is obviously no guard
7566 // (interprocedural conditions notwithstanding).
7567 if (!L) return false;
7568
Sanjoy Das401e6312016-02-01 20:48:10 +00007569 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7570 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007571
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007572 // Starting at the loop predecessor, climb up the predecessor chain, as long
7573 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007574 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007575 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007576 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007577 Pair.first;
7578 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007579
7580 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007581 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007582 if (!LoopEntryPredicate ||
7583 LoopEntryPredicate->isUnconditional())
7584 continue;
7585
Dan Gohmane18c2d62010-08-10 23:46:30 +00007586 if (isImpliedCond(Pred, LHS, RHS,
7587 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007588 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007589 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007590 }
7591
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007592 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007593 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007594 if (!AssumeVH)
7595 continue;
7596 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007597 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007598 continue;
7599
7600 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7601 return true;
7602 }
7603
Dan Gohman2a62fd92008-08-12 20:17:31 +00007604 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007605}
7606
Benjamin Kramer039b1042015-10-28 13:54:36 +00007607namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007608/// RAII wrapper to prevent recursive application of isImpliedCond.
7609/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7610/// currently evaluating isImpliedCond.
7611struct MarkPendingLoopPredicate {
7612 Value *Cond;
7613 DenseSet<Value*> &LoopPreds;
7614 bool Pending;
7615
7616 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7617 : Cond(C), LoopPreds(LP) {
7618 Pending = !LoopPreds.insert(Cond).second;
7619 }
7620 ~MarkPendingLoopPredicate() {
7621 if (!Pending)
7622 LoopPreds.erase(Cond);
7623 }
7624};
Benjamin Kramer039b1042015-10-28 13:54:36 +00007625} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007626
Dan Gohman430f0cc2009-07-21 23:03:19 +00007627/// isImpliedCond - Test whether the condition described by Pred, LHS,
7628/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007629bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007630 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007631 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007632 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007633 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7634 if (Mark.Pending)
7635 return false;
7636
Dan Gohman8b0a4192010-03-01 17:49:51 +00007637 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007638 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007639 if (BO->getOpcode() == Instruction::And) {
7640 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007641 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7642 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007643 } else if (BO->getOpcode() == Instruction::Or) {
7644 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007645 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7646 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007647 }
7648 }
7649
Dan Gohmane18c2d62010-08-10 23:46:30 +00007650 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007651 if (!ICI) return false;
7652
Andrew Trickfa594032012-11-29 18:35:13 +00007653 // Now that we found a conditional branch that dominates the loop or controls
7654 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007655 ICmpInst::Predicate FoundPred;
7656 if (Inverse)
7657 FoundPred = ICI->getInversePredicate();
7658 else
7659 FoundPred = ICI->getPredicate();
7660
7661 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7662 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007663
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007664 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7665}
7666
7667bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7668 const SCEV *RHS,
7669 ICmpInst::Predicate FoundPred,
7670 const SCEV *FoundLHS,
7671 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007672 // Balance the types.
7673 if (getTypeSizeInBits(LHS->getType()) <
7674 getTypeSizeInBits(FoundLHS->getType())) {
7675 if (CmpInst::isSigned(Pred)) {
7676 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7677 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7678 } else {
7679 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7680 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7681 }
7682 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007683 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007684 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007685 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7686 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7687 } else {
7688 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7689 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7690 }
7691 }
7692
Dan Gohman430f0cc2009-07-21 23:03:19 +00007693 // Canonicalize the query to match the way instcombine will have
7694 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007695 if (SimplifyICmpOperands(Pred, LHS, RHS))
7696 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007697 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007698 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7699 if (FoundLHS == FoundRHS)
7700 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007701
7702 // Check to see if we can make the LHS or RHS match.
7703 if (LHS == FoundRHS || RHS == FoundLHS) {
7704 if (isa<SCEVConstant>(RHS)) {
7705 std::swap(FoundLHS, FoundRHS);
7706 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7707 } else {
7708 std::swap(LHS, RHS);
7709 Pred = ICmpInst::getSwappedPredicate(Pred);
7710 }
7711 }
7712
7713 // Check whether the found predicate is the same as the desired predicate.
7714 if (FoundPred == Pred)
7715 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7716
7717 // Check whether swapping the found predicate makes it the same as the
7718 // desired predicate.
7719 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7720 if (isa<SCEVConstant>(RHS))
7721 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7722 else
7723 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7724 RHS, LHS, FoundLHS, FoundRHS);
7725 }
7726
Sanjoy Das6e78b172015-10-22 19:57:34 +00007727 // Unsigned comparison is the same as signed comparison when both the operands
7728 // are non-negative.
7729 if (CmpInst::isUnsigned(FoundPred) &&
7730 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7731 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7732 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7733
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007734 // Check if we can make progress by sharpening ranges.
7735 if (FoundPred == ICmpInst::ICMP_NE &&
7736 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7737
7738 const SCEVConstant *C = nullptr;
7739 const SCEV *V = nullptr;
7740
7741 if (isa<SCEVConstant>(FoundLHS)) {
7742 C = cast<SCEVConstant>(FoundLHS);
7743 V = FoundRHS;
7744 } else {
7745 C = cast<SCEVConstant>(FoundRHS);
7746 V = FoundLHS;
7747 }
7748
7749 // The guarding predicate tells us that C != V. If the known range
7750 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7751 // range we consider has to correspond to same signedness as the
7752 // predicate we're interested in folding.
7753
7754 APInt Min = ICmpInst::isSigned(Pred) ?
7755 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7756
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007757 if (Min == C->getAPInt()) {
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007758 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7759 // This is true even if (Min + 1) wraps around -- in case of
7760 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7761
7762 APInt SharperMin = Min + 1;
7763
7764 switch (Pred) {
7765 case ICmpInst::ICMP_SGE:
7766 case ICmpInst::ICMP_UGE:
7767 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7768 // RHS, we're done.
7769 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7770 getConstant(SharperMin)))
7771 return true;
7772
7773 case ICmpInst::ICMP_SGT:
7774 case ICmpInst::ICMP_UGT:
7775 // We know from the range information that (V `Pred` Min ||
7776 // V == Min). We know from the guarding condition that !(V
7777 // == Min). This gives us
7778 //
7779 // V `Pred` Min || V == Min && !(V == Min)
7780 // => V `Pred` Min
7781 //
7782 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7783
7784 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7785 return true;
7786
7787 default:
7788 // No change
7789 break;
7790 }
7791 }
7792 }
7793
Dan Gohman430f0cc2009-07-21 23:03:19 +00007794 // Check whether the actual condition is beyond sufficient.
7795 if (FoundPred == ICmpInst::ICMP_EQ)
7796 if (ICmpInst::isTrueWhenEqual(Pred))
7797 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7798 return true;
7799 if (Pred == ICmpInst::ICMP_NE)
7800 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7801 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7802 return true;
7803
7804 // Otherwise assume the worst.
7805 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007806}
7807
Sanjoy Das1ed69102015-10-13 02:53:27 +00007808bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7809 const SCEV *&L, const SCEV *&R,
7810 SCEV::NoWrapFlags &Flags) {
7811 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7812 if (!AE || AE->getNumOperands() != 2)
7813 return false;
7814
7815 L = AE->getOperand(0);
7816 R = AE->getOperand(1);
7817 Flags = AE->getNoWrapFlags();
7818 return true;
7819}
7820
7821bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7822 const SCEV *More,
7823 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007824 // We avoid subtracting expressions here because this function is usually
7825 // fairly deep in the call stack (i.e. is called many times).
7826
Sanjoy Das96709c42015-09-25 23:53:45 +00007827 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7828 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7829 const auto *MAR = cast<SCEVAddRecExpr>(More);
7830
7831 if (LAR->getLoop() != MAR->getLoop())
7832 return false;
7833
7834 // We look at affine expressions only; not for correctness but to keep
7835 // getStepRecurrence cheap.
7836 if (!LAR->isAffine() || !MAR->isAffine())
7837 return false;
7838
Sanjoy Das1ed69102015-10-13 02:53:27 +00007839 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007840 return false;
7841
7842 Less = LAR->getStart();
7843 More = MAR->getStart();
7844
7845 // fall through
7846 }
7847
7848 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007849 const auto &M = cast<SCEVConstant>(More)->getAPInt();
7850 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00007851 C = M - L;
7852 return true;
7853 }
7854
7855 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007856 SCEV::NoWrapFlags Flags;
7857 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007858 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7859 if (R == More) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007860 C = -(LC->getAPInt());
Sanjoy Das96709c42015-09-25 23:53:45 +00007861 return true;
7862 }
7863
Sanjoy Das1ed69102015-10-13 02:53:27 +00007864 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007865 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7866 if (R == Less) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007867 C = LC->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00007868 return true;
7869 }
7870
7871 return false;
7872}
7873
7874bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7875 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7876 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7877 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7878 return false;
7879
7880 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7881 if (!AddRecLHS)
7882 return false;
7883
7884 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7885 if (!AddRecFoundLHS)
7886 return false;
7887
7888 // We'd like to let SCEV reason about control dependencies, so we constrain
7889 // both the inequalities to be about add recurrences on the same loop. This
7890 // way we can use isLoopEntryGuardedByCond later.
7891
7892 const Loop *L = AddRecFoundLHS->getLoop();
7893 if (L != AddRecLHS->getLoop())
7894 return false;
7895
7896 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7897 //
7898 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7899 // ... (2)
7900 //
7901 // Informal proof for (2), assuming (1) [*]:
7902 //
7903 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7904 //
7905 // Then
7906 //
7907 // FoundLHS s< FoundRHS s< INT_MIN - C
7908 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7909 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7910 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7911 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7912 // <=> FoundLHS + C s< FoundRHS + C
7913 //
7914 // [*]: (1) can be proved by ruling out overflow.
7915 //
7916 // [**]: This can be proved by analyzing all the four possibilities:
7917 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7918 // (A s>= 0, B s>= 0).
7919 //
7920 // Note:
7921 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7922 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7923 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7924 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7925 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7926 // C)".
7927
7928 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007929 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7930 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007931 LDiff != RDiff)
7932 return false;
7933
7934 if (LDiff == 0)
7935 return true;
7936
Sanjoy Das96709c42015-09-25 23:53:45 +00007937 APInt FoundRHSLimit;
7938
7939 if (Pred == CmpInst::ICMP_ULT) {
7940 FoundRHSLimit = -RDiff;
7941 } else {
7942 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007943 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007944 }
7945
7946 // Try to prove (1) or (2), as needed.
7947 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7948 getConstant(FoundRHSLimit));
7949}
7950
Dan Gohman430f0cc2009-07-21 23:03:19 +00007951/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007952/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007953/// and FoundRHS is true.
7954bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7955 const SCEV *LHS, const SCEV *RHS,
7956 const SCEV *FoundLHS,
7957 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007958 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7959 return true;
7960
Sanjoy Das96709c42015-09-25 23:53:45 +00007961 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7962 return true;
7963
Dan Gohman430f0cc2009-07-21 23:03:19 +00007964 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7965 FoundLHS, FoundRHS) ||
7966 // ~x < ~y --> x > y
7967 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7968 getNotSCEV(FoundRHS),
7969 getNotSCEV(FoundLHS));
7970}
7971
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007972
7973/// If Expr computes ~A, return A else return nullptr
7974static const SCEV *MatchNotExpr(const SCEV *Expr) {
7975 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007976 if (!Add || Add->getNumOperands() != 2 ||
7977 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007978 return nullptr;
7979
7980 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007981 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7982 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007983 return nullptr;
7984
7985 return AddRHS->getOperand(1);
7986}
7987
7988
7989/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7990template<typename MaxExprType>
7991static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7992 const SCEV *Candidate) {
7993 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7994 if (!MaxExpr) return false;
7995
Sanjoy Das347d2722015-12-01 07:49:27 +00007996 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007997}
7998
7999
8000/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8001template<typename MaxExprType>
8002static bool IsMinConsistingOf(ScalarEvolution &SE,
8003 const SCEV *MaybeMinExpr,
8004 const SCEV *Candidate) {
8005 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8006 if (!MaybeMaxExpr)
8007 return false;
8008
8009 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8010}
8011
Hal Finkela8d205f2015-08-19 01:51:51 +00008012static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8013 ICmpInst::Predicate Pred,
8014 const SCEV *LHS, const SCEV *RHS) {
8015
8016 // If both sides are affine addrecs for the same loop, with equal
8017 // steps, and we know the recurrences don't wrap, then we only
8018 // need to check the predicate on the starting values.
8019
8020 if (!ICmpInst::isRelational(Pred))
8021 return false;
8022
8023 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8024 if (!LAR)
8025 return false;
8026 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8027 if (!RAR)
8028 return false;
8029 if (LAR->getLoop() != RAR->getLoop())
8030 return false;
8031 if (!LAR->isAffine() || !RAR->isAffine())
8032 return false;
8033
8034 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8035 return false;
8036
Hal Finkelff08a2e2015-08-19 17:26:07 +00008037 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8038 SCEV::FlagNSW : SCEV::FlagNUW;
8039 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008040 return false;
8041
8042 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8043}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008044
8045/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8046/// expression?
8047static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8048 ICmpInst::Predicate Pred,
8049 const SCEV *LHS, const SCEV *RHS) {
8050 switch (Pred) {
8051 default:
8052 return false;
8053
8054 case ICmpInst::ICMP_SGE:
8055 std::swap(LHS, RHS);
8056 // fall through
8057 case ICmpInst::ICMP_SLE:
8058 return
8059 // min(A, ...) <= A
8060 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8061 // A <= max(A, ...)
8062 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8063
8064 case ICmpInst::ICMP_UGE:
8065 std::swap(LHS, RHS);
8066 // fall through
8067 case ICmpInst::ICMP_ULE:
8068 return
8069 // min(A, ...) <= A
8070 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8071 // A <= max(A, ...)
8072 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8073 }
8074
8075 llvm_unreachable("covered switch fell through?!");
8076}
8077
Dan Gohman430f0cc2009-07-21 23:03:19 +00008078/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008079/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008080/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008081bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008082ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8083 const SCEV *LHS, const SCEV *RHS,
8084 const SCEV *FoundLHS,
8085 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008086 auto IsKnownPredicateFull =
8087 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Sanjoy Das401e6312016-02-01 20:48:10 +00008088 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008089 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008090 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8091 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008092 };
8093
Dan Gohmane65c9172009-07-13 21:35:55 +00008094 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008095 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8096 case ICmpInst::ICMP_EQ:
8097 case ICmpInst::ICMP_NE:
8098 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8099 return true;
8100 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008101 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008102 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008103 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8104 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008105 return true;
8106 break;
8107 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008108 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008109 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8110 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008111 return true;
8112 break;
8113 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008114 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008115 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8116 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008117 return true;
8118 break;
8119 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008120 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008121 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8122 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008123 return true;
8124 break;
8125 }
8126
8127 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008128}
8129
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008130/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8131/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8132bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8133 const SCEV *LHS,
8134 const SCEV *RHS,
8135 const SCEV *FoundLHS,
8136 const SCEV *FoundRHS) {
8137 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8138 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8139 // reduce the compile time impact of this optimization.
8140 return false;
8141
8142 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8143 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8144 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8145 return false;
8146
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008147 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008148
8149 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8150 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8151 ConstantRange FoundLHSRange =
8152 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8153
8154 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8155 // for `LHS`:
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008156 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008157 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8158
8159 // We can also compute the range of values for `LHS` that satisfy the
8160 // consequent, "`LHS` `Pred` `RHS`":
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008161 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008162 ConstantRange SatisfyingLHSRange =
8163 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8164
8165 // The antecedent implies the consequent if every value of `LHS` that
8166 // satisfies the antecedent also satisfies the consequent.
8167 return SatisfyingLHSRange.contains(LHSRange);
8168}
8169
Johannes Doerfert2683e562015-02-09 12:34:23 +00008170// Verify if an linear IV with positive stride can overflow when in a
8171// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008172// stride and the knowledge of NSW/NUW flags on the recurrence.
8173bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8174 bool IsSigned, bool NoWrap) {
8175 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008176
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008177 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008178 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008179
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008180 if (IsSigned) {
8181 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8182 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8183 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8184 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008185
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008186 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8187 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008188 }
Dan Gohman01048422009-06-21 23:46:38 +00008189
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008190 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8191 APInt MaxValue = APInt::getMaxValue(BitWidth);
8192 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8193 .getUnsignedMax();
8194
8195 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8196 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8197}
8198
Johannes Doerfert2683e562015-02-09 12:34:23 +00008199// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008200// greater-than comparison, knowing the invariant term of the comparison,
8201// the stride and the knowledge of NSW/NUW flags on the recurrence.
8202bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8203 bool IsSigned, bool NoWrap) {
8204 if (NoWrap) return false;
8205
8206 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008207 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008208
8209 if (IsSigned) {
8210 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8211 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8212 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8213 .getSignedMax();
8214
8215 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8216 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8217 }
8218
8219 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8220 APInt MinValue = APInt::getMinValue(BitWidth);
8221 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8222 .getUnsignedMax();
8223
8224 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8225 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8226}
8227
8228// Compute the backedge taken count knowing the interval difference, the
8229// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008230const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008231 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008232 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008233 Delta = Equality ? getAddExpr(Delta, Step)
8234 : getAddExpr(Delta, getMinusSCEV(Step, One));
8235 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008236}
8237
Chris Lattner587a75b2005-08-15 23:33:51 +00008238/// HowManyLessThans - Return the number of times a backedge containing the
8239/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008240/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008241///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008242/// @param ControlsExit is true when the LHS < RHS condition directly controls
8243/// the branch (loops exits only if condition is true). In this case, we can use
8244/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008245ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008246ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008247 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008248 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008249 // We handle only IV < Invariant
8250 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008251 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008252
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008253 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008254
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008255 // Avoid weird loops
8256 if (!IV || IV->getLoop() != L || !IV->isAffine())
8257 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008258
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008259 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008260 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008261
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008262 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008263
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008264 // Avoid negative or zero stride values
8265 if (!isKnownPositive(Stride))
8266 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008267
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008268 // Avoid proven overflow cases: this will ensure that the backedge taken count
8269 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008270 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008271 // behaviors like the case of C language.
8272 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8273 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008274
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008275 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8276 : ICmpInst::ICMP_ULT;
8277 const SCEV *Start = IV->getStart();
8278 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008279 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8280 const SCEV *Diff = getMinusSCEV(RHS, Start);
8281 // If we have NoWrap set, then we can assume that the increment won't
8282 // overflow, in which case if RHS - Start is a constant, we don't need to
8283 // do a max operation since we can just figure it out statically
8284 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008285 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008286 if (D.isNegative())
8287 End = Start;
8288 } else
8289 End = IsSigned ? getSMaxExpr(RHS, Start)
8290 : getUMaxExpr(RHS, Start);
8291 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008292
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008293 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008294
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008295 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8296 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008297
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008298 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8299 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008300
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008301 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8302 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8303 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008304
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008305 // Although End can be a MAX expression we estimate MaxEnd considering only
8306 // the case End = RHS. This is safe because in the other case (End - Start)
8307 // is zero, leading to a zero maximum backedge taken count.
8308 APInt MaxEnd =
8309 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8310 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8311
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008312 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008313 if (isa<SCEVConstant>(BECount))
8314 MaxBECount = BECount;
8315 else
8316 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8317 getConstant(MinStride), false);
8318
8319 if (isa<SCEVCouldNotCompute>(MaxBECount))
8320 MaxBECount = BECount;
8321
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008322 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008323}
8324
8325ScalarEvolution::ExitLimit
8326ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8327 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008328 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008329 // We handle only IV > Invariant
8330 if (!isLoopInvariant(RHS, L))
8331 return getCouldNotCompute();
8332
8333 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8334
8335 // Avoid weird loops
8336 if (!IV || IV->getLoop() != L || !IV->isAffine())
8337 return getCouldNotCompute();
8338
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008339 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008340 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8341
8342 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8343
8344 // Avoid negative or zero stride values
8345 if (!isKnownPositive(Stride))
8346 return getCouldNotCompute();
8347
8348 // Avoid proven overflow cases: this will ensure that the backedge taken count
8349 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008350 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008351 // behaviors like the case of C language.
8352 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8353 return getCouldNotCompute();
8354
8355 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8356 : ICmpInst::ICMP_UGT;
8357
8358 const SCEV *Start = IV->getStart();
8359 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008360 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8361 const SCEV *Diff = getMinusSCEV(RHS, Start);
8362 // If we have NoWrap set, then we can assume that the increment won't
8363 // overflow, in which case if RHS - Start is a constant, we don't need to
8364 // do a max operation since we can just figure it out statically
8365 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008366 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008367 if (!D.isNegative())
8368 End = Start;
8369 } else
8370 End = IsSigned ? getSMinExpr(RHS, Start)
8371 : getUMinExpr(RHS, Start);
8372 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008373
8374 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8375
8376 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8377 : getUnsignedRange(Start).getUnsignedMax();
8378
8379 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8380 : getUnsignedRange(Stride).getUnsignedMin();
8381
8382 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8383 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8384 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8385
8386 // Although End can be a MIN expression we estimate MinEnd considering only
8387 // the case End = RHS. This is safe because in the other case (Start - End)
8388 // is zero, leading to a zero maximum backedge taken count.
8389 APInt MinEnd =
8390 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8391 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8392
8393
8394 const SCEV *MaxBECount = getCouldNotCompute();
8395 if (isa<SCEVConstant>(BECount))
8396 MaxBECount = BECount;
8397 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008398 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008399 getConstant(MinStride), false);
8400
8401 if (isa<SCEVCouldNotCompute>(MaxBECount))
8402 MaxBECount = BECount;
8403
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008404 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008405}
8406
Chris Lattnerd934c702004-04-02 20:23:17 +00008407/// getNumIterationsInRange - Return the number of iterations of this loop that
8408/// produce values in the specified constant range. Another way of looking at
8409/// this is that it returns the first iteration number where the value is not in
8410/// the condition, thus computing the exit count. If the iteration count can't
8411/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008412const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008413 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008414 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008415 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008416
8417 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008418 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008419 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008420 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008421 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008422 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008423 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008424 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008425 return ShiftedAddRec->getNumIterationsInRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008426 Range.subtract(SC->getAPInt()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008427 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008428 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008429 }
8430
8431 // The only time we can solve this is when we have all constant indices.
8432 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008433 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008434 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008435
8436 // Okay at this point we know that all elements of the chrec are constants and
8437 // that the start element is zero.
8438
8439 // First check to see if the range contains zero. If not, the first
8440 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008441 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008442 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008443 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008444
Chris Lattnerd934c702004-04-02 20:23:17 +00008445 if (isAffine()) {
8446 // If this is an affine expression then we have this situation:
8447 // Solve {0,+,A} in Range === Ax in Range
8448
Nick Lewycky52460262007-07-16 02:08:00 +00008449 // We know that zero is in the range. If A is positive then we know that
8450 // the upper value of the range must be the first possible exit value.
8451 // If A is negative then the lower of the range is the last possible loop
8452 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008453 APInt One(BitWidth,1);
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008454 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
Nick Lewycky52460262007-07-16 02:08:00 +00008455 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008456
Nick Lewycky52460262007-07-16 02:08:00 +00008457 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008458 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008459 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008460
8461 // Evaluate at the exit value. If we really did fall out of the valid
8462 // range, then we computed our trip count, otherwise wrap around or other
8463 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008464 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008465 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008466 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008467
8468 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008469 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008470 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008471 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008472 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008473 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008474 } else if (isQuadratic()) {
8475 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8476 // quadratic equation to solve it. To do this, we must frame our problem in
8477 // terms of figuring out when zero is crossed, instead of when
8478 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008479 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008480 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008481 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8482 // getNoWrapFlags(FlagNW)
8483 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008484
8485 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008486 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008487 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8488 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008489 if (R1) {
8490 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008491 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8492 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008493 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008494 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008495
Chris Lattnerd934c702004-04-02 20:23:17 +00008496 // Make sure the root is not off by one. The returned iteration should
8497 // not be in the range, but the previous one should be. When solving
8498 // for "X*X < 5", for example, we should not return a root of 2.
8499 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008500 R1->getValue(),
8501 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008502 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008503 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008504 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008505 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008506
Dan Gohmana37eaf22007-10-22 18:31:58 +00008507 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008508 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008509 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008510 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008511 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008512
Chris Lattnerd934c702004-04-02 20:23:17 +00008513 // If R1 was not in the range, then it is a good return value. Make
8514 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008515 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008516 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008517 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008518 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008519 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008520 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008521 }
8522 }
8523 }
8524
Dan Gohman31efa302009-04-18 17:58:19 +00008525 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008526}
8527
Sebastian Pop448712b2014-05-07 18:01:20 +00008528namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008529struct FindUndefs {
8530 bool Found;
8531 FindUndefs() : Found(false) {}
8532
8533 bool follow(const SCEV *S) {
8534 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8535 if (isa<UndefValue>(C->getValue()))
8536 Found = true;
8537 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8538 if (isa<UndefValue>(C->getValue()))
8539 Found = true;
8540 }
8541
8542 // Keep looking if we haven't found it yet.
8543 return !Found;
8544 }
8545 bool isDone() const {
8546 // Stop recursion if we have found an undef.
8547 return Found;
8548 }
8549};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008550}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008551
8552// Return true when S contains at least an undef value.
8553static inline bool
8554containsUndefs(const SCEV *S) {
8555 FindUndefs F;
8556 SCEVTraversal<FindUndefs> ST(F);
8557 ST.visitAll(S);
8558
8559 return F.Found;
8560}
8561
8562namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008563// Collect all steps of SCEV expressions.
8564struct SCEVCollectStrides {
8565 ScalarEvolution &SE;
8566 SmallVectorImpl<const SCEV *> &Strides;
8567
8568 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8569 : SE(SE), Strides(S) {}
8570
8571 bool follow(const SCEV *S) {
8572 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8573 Strides.push_back(AR->getStepRecurrence(SE));
8574 return true;
8575 }
8576 bool isDone() const { return false; }
8577};
8578
8579// Collect all SCEVUnknown and SCEVMulExpr expressions.
8580struct SCEVCollectTerms {
8581 SmallVectorImpl<const SCEV *> &Terms;
8582
8583 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8584 : Terms(T) {}
8585
8586 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008587 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008588 if (!containsUndefs(S))
8589 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008590
8591 // Stop recursion: once we collected a term, do not walk its operands.
8592 return false;
8593 }
8594
8595 // Keep looking.
8596 return true;
8597 }
8598 bool isDone() const { return false; }
8599};
Tobias Grosser374bce02015-10-12 08:02:00 +00008600
8601// Check if a SCEV contains an AddRecExpr.
8602struct SCEVHasAddRec {
8603 bool &ContainsAddRec;
8604
8605 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8606 ContainsAddRec = false;
8607 }
8608
8609 bool follow(const SCEV *S) {
8610 if (isa<SCEVAddRecExpr>(S)) {
8611 ContainsAddRec = true;
8612
8613 // Stop recursion: once we collected a term, do not walk its operands.
8614 return false;
8615 }
8616
8617 // Keep looking.
8618 return true;
8619 }
8620 bool isDone() const { return false; }
8621};
8622
8623// Find factors that are multiplied with an expression that (possibly as a
8624// subexpression) contains an AddRecExpr. In the expression:
8625//
8626// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8627//
8628// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8629// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8630// parameters as they form a product with an induction variable.
8631//
8632// This collector expects all array size parameters to be in the same MulExpr.
8633// It might be necessary to later add support for collecting parameters that are
8634// spread over different nested MulExpr.
8635struct SCEVCollectAddRecMultiplies {
8636 SmallVectorImpl<const SCEV *> &Terms;
8637 ScalarEvolution &SE;
8638
8639 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8640 : Terms(T), SE(SE) {}
8641
8642 bool follow(const SCEV *S) {
8643 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8644 bool HasAddRec = false;
8645 SmallVector<const SCEV *, 0> Operands;
8646 for (auto Op : Mul->operands()) {
8647 if (isa<SCEVUnknown>(Op)) {
8648 Operands.push_back(Op);
8649 } else {
8650 bool ContainsAddRec;
8651 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8652 visitAll(Op, ContiansAddRec);
8653 HasAddRec |= ContainsAddRec;
8654 }
8655 }
8656 if (Operands.size() == 0)
8657 return true;
8658
8659 if (!HasAddRec)
8660 return false;
8661
8662 Terms.push_back(SE.getMulExpr(Operands));
8663 // Stop recursion: once we collected a term, do not walk its operands.
8664 return false;
8665 }
8666
8667 // Keep looking.
8668 return true;
8669 }
8670 bool isDone() const { return false; }
8671};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008672}
Sebastian Pop448712b2014-05-07 18:01:20 +00008673
Tobias Grosser374bce02015-10-12 08:02:00 +00008674/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8675/// two places:
8676/// 1) The strides of AddRec expressions.
8677/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008678void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8679 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008680 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008681 SCEVCollectStrides StrideCollector(*this, Strides);
8682 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008683
8684 DEBUG({
8685 dbgs() << "Strides:\n";
8686 for (const SCEV *S : Strides)
8687 dbgs() << *S << "\n";
8688 });
8689
8690 for (const SCEV *S : Strides) {
8691 SCEVCollectTerms TermCollector(Terms);
8692 visitAll(S, TermCollector);
8693 }
8694
8695 DEBUG({
8696 dbgs() << "Terms:\n";
8697 for (const SCEV *T : Terms)
8698 dbgs() << *T << "\n";
8699 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008700
8701 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8702 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008703}
8704
Sebastian Popb1a548f2014-05-12 19:01:53 +00008705static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008706 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008707 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008708 int Last = Terms.size() - 1;
8709 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008710
Sebastian Pop448712b2014-05-07 18:01:20 +00008711 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008712 if (Last == 0) {
8713 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008714 SmallVector<const SCEV *, 2> Qs;
8715 for (const SCEV *Op : M->operands())
8716 if (!isa<SCEVConstant>(Op))
8717 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008718
Sebastian Pope30bd352014-05-27 22:41:56 +00008719 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008720 }
8721
Sebastian Pope30bd352014-05-27 22:41:56 +00008722 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008723 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008724 }
8725
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008726 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008727 // Normalize the terms before the next call to findArrayDimensionsRec.
8728 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008729 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008730
8731 // Bail out when GCD does not evenly divide one of the terms.
8732 if (!R->isZero())
8733 return false;
8734
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008735 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008736 }
8737
Tobias Grosser3080cf12014-05-08 07:55:34 +00008738 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008739 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8740 return isa<SCEVConstant>(E);
8741 }),
8742 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008743
Sebastian Pop448712b2014-05-07 18:01:20 +00008744 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008745 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8746 return false;
8747
Sebastian Pope30bd352014-05-27 22:41:56 +00008748 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008749 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008750}
Sebastian Popc62c6792013-11-12 22:47:20 +00008751
Sebastian Pop448712b2014-05-07 18:01:20 +00008752// Returns true when S contains at least a SCEVUnknown parameter.
8753static inline bool
8754containsParameters(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +00008755 struct FindParameter {
8756 bool FoundParameter;
8757 FindParameter() : FoundParameter(false) {}
8758
8759 bool follow(const SCEV *S) {
8760 if (isa<SCEVUnknown>(S)) {
8761 FoundParameter = true;
8762 // Stop recursion: we found a parameter.
8763 return false;
8764 }
8765 // Keep looking.
8766 return true;
8767 }
8768 bool isDone() const {
8769 // Stop recursion if we have found a parameter.
8770 return FoundParameter;
8771 }
8772 };
8773
Sebastian Pop448712b2014-05-07 18:01:20 +00008774 FindParameter F;
8775 SCEVTraversal<FindParameter> ST(F);
8776 ST.visitAll(S);
8777
8778 return F.FoundParameter;
8779}
8780
8781// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8782static inline bool
8783containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8784 for (const SCEV *T : Terms)
8785 if (containsParameters(T))
8786 return true;
8787 return false;
8788}
8789
8790// Return the number of product terms in S.
8791static inline int numberOfTerms(const SCEV *S) {
8792 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8793 return Expr->getNumOperands();
8794 return 1;
8795}
8796
Sebastian Popa6e58602014-05-27 22:41:45 +00008797static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8798 if (isa<SCEVConstant>(T))
8799 return nullptr;
8800
8801 if (isa<SCEVUnknown>(T))
8802 return T;
8803
8804 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8805 SmallVector<const SCEV *, 2> Factors;
8806 for (const SCEV *Op : M->operands())
8807 if (!isa<SCEVConstant>(Op))
8808 Factors.push_back(Op);
8809
8810 return SE.getMulExpr(Factors);
8811 }
8812
8813 return T;
8814}
8815
8816/// Return the size of an element read or written by Inst.
8817const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8818 Type *Ty;
8819 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8820 Ty = Store->getValueOperand()->getType();
8821 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008822 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008823 else
8824 return nullptr;
8825
8826 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8827 return getSizeOfExpr(ETy, Ty);
8828}
8829
Sebastian Pop448712b2014-05-07 18:01:20 +00008830/// Second step of delinearization: compute the array dimensions Sizes from the
8831/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008832void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8833 SmallVectorImpl<const SCEV *> &Sizes,
8834 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008835
Sebastian Pop53524082014-05-29 19:44:05 +00008836 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008837 return;
8838
8839 // Early return when Terms do not contain parameters: we do not delinearize
8840 // non parametric SCEVs.
8841 if (!containsParameters(Terms))
8842 return;
8843
8844 DEBUG({
8845 dbgs() << "Terms:\n";
8846 for (const SCEV *T : Terms)
8847 dbgs() << *T << "\n";
8848 });
8849
8850 // Remove duplicates.
8851 std::sort(Terms.begin(), Terms.end());
8852 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8853
8854 // Put larger terms first.
8855 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8856 return numberOfTerms(LHS) > numberOfTerms(RHS);
8857 });
8858
Sebastian Popa6e58602014-05-27 22:41:45 +00008859 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8860
Tobias Grosser374bce02015-10-12 08:02:00 +00008861 // Try to divide all terms by the element size. If term is not divisible by
8862 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008863 for (const SCEV *&Term : Terms) {
8864 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008865 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008866 if (!Q->isZero())
8867 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008868 }
8869
8870 SmallVector<const SCEV *, 4> NewTerms;
8871
8872 // Remove constant factors.
8873 for (const SCEV *T : Terms)
8874 if (const SCEV *NewT = removeConstantFactors(SE, T))
8875 NewTerms.push_back(NewT);
8876
Sebastian Pop448712b2014-05-07 18:01:20 +00008877 DEBUG({
8878 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008879 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008880 dbgs() << *T << "\n";
8881 });
8882
Sebastian Popa6e58602014-05-27 22:41:45 +00008883 if (NewTerms.empty() ||
8884 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008885 Sizes.clear();
8886 return;
8887 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008888
Sebastian Popa6e58602014-05-27 22:41:45 +00008889 // The last element to be pushed into Sizes is the size of an element.
8890 Sizes.push_back(ElementSize);
8891
Sebastian Pop448712b2014-05-07 18:01:20 +00008892 DEBUG({
8893 dbgs() << "Sizes:\n";
8894 for (const SCEV *S : Sizes)
8895 dbgs() << *S << "\n";
8896 });
8897}
8898
8899/// Third step of delinearization: compute the access functions for the
8900/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008901void ScalarEvolution::computeAccessFunctions(
8902 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8903 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008904
Sebastian Popb1a548f2014-05-12 19:01:53 +00008905 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008906 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008907 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008908
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008909 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008910 if (!AR->isAffine())
8911 return;
8912
8913 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008914 int Last = Sizes.size() - 1;
8915 for (int i = Last; i >= 0; i--) {
8916 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008917 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008918
8919 DEBUG({
8920 dbgs() << "Res: " << *Res << "\n";
8921 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8922 dbgs() << "Res divided by Sizes[i]:\n";
8923 dbgs() << "Quotient: " << *Q << "\n";
8924 dbgs() << "Remainder: " << *R << "\n";
8925 });
8926
8927 Res = Q;
8928
Sebastian Popa6e58602014-05-27 22:41:45 +00008929 // Do not record the last subscript corresponding to the size of elements in
8930 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008931 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008932
8933 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008934 if (isa<SCEVAddRecExpr>(R)) {
8935 Subscripts.clear();
8936 Sizes.clear();
8937 return;
8938 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008939
Sebastian Pop448712b2014-05-07 18:01:20 +00008940 continue;
8941 }
8942
8943 // Record the access function for the current subscript.
8944 Subscripts.push_back(R);
8945 }
8946
8947 // Also push in last position the remainder of the last division: it will be
8948 // the access function of the innermost dimension.
8949 Subscripts.push_back(Res);
8950
8951 std::reverse(Subscripts.begin(), Subscripts.end());
8952
8953 DEBUG({
8954 dbgs() << "Subscripts:\n";
8955 for (const SCEV *S : Subscripts)
8956 dbgs() << *S << "\n";
8957 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008958}
8959
Sebastian Popc62c6792013-11-12 22:47:20 +00008960/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8961/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008962/// is the offset start of the array. The SCEV->delinearize algorithm computes
8963/// the multiples of SCEV coefficients: that is a pattern matching of sub
8964/// expressions in the stride and base of a SCEV corresponding to the
8965/// computation of a GCD (greatest common divisor) of base and stride. When
8966/// SCEV->delinearize fails, it returns the SCEV unchanged.
8967///
8968/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8969///
8970/// void foo(long n, long m, long o, double A[n][m][o]) {
8971///
8972/// for (long i = 0; i < n; i++)
8973/// for (long j = 0; j < m; j++)
8974/// for (long k = 0; k < o; k++)
8975/// A[i][j][k] = 1.0;
8976/// }
8977///
8978/// the delinearization input is the following AddRec SCEV:
8979///
8980/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8981///
8982/// From this SCEV, we are able to say that the base offset of the access is %A
8983/// because it appears as an offset that does not divide any of the strides in
8984/// the loops:
8985///
8986/// CHECK: Base offset: %A
8987///
8988/// and then SCEV->delinearize determines the size of some of the dimensions of
8989/// the array as these are the multiples by which the strides are happening:
8990///
8991/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8992///
8993/// Note that the outermost dimension remains of UnknownSize because there are
8994/// no strides that would help identifying the size of the last dimension: when
8995/// the array has been statically allocated, one could compute the size of that
8996/// dimension by dividing the overall size of the array by the size of the known
8997/// dimensions: %m * %o * 8.
8998///
8999/// Finally delinearize provides the access functions for the array reference
9000/// that does correspond to A[i][j][k] of the above C testcase:
9001///
9002/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9003///
9004/// The testcases are checking the output of a function pass:
9005/// DelinearizationPass that walks through all loads and stores of a function
9006/// asking for the SCEV of the memory access with respect to all enclosing
9007/// loops, calling SCEV->delinearize on that and printing the results.
9008
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009009void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00009010 SmallVectorImpl<const SCEV *> &Subscripts,
9011 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009012 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009013 // First step: collect parametric terms.
9014 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009015 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00009016
Sebastian Popb1a548f2014-05-12 19:01:53 +00009017 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009018 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009019
Sebastian Pop448712b2014-05-07 18:01:20 +00009020 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009021 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00009022
Sebastian Popb1a548f2014-05-12 19:01:53 +00009023 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009024 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009025
Sebastian Pop448712b2014-05-07 18:01:20 +00009026 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009027 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009028
Sebastian Pop28e6b972014-05-27 22:41:51 +00009029 if (Subscripts.empty())
9030 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009031
Sebastian Pop448712b2014-05-07 18:01:20 +00009032 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009033 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009034 dbgs() << "ArrayDecl[UnknownSize]";
9035 for (const SCEV *S : Sizes)
9036 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009037
Sebastian Pop444621a2014-05-09 22:45:02 +00009038 dbgs() << "\nArrayRef";
9039 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009040 dbgs() << "[" << *S << "]";
9041 dbgs() << "\n";
9042 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009043}
Chris Lattnerd934c702004-04-02 20:23:17 +00009044
9045//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009046// SCEVCallbackVH Class Implementation
9047//===----------------------------------------------------------------------===//
9048
Dan Gohmand33a0902009-05-19 19:22:47 +00009049void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009050 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009051 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9052 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009053 SE->eraseValueFromMap(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009054 // this now dangles!
9055}
9056
Dan Gohman7a066722010-07-28 01:09:07 +00009057void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009058 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009059
Dan Gohman48f82222009-05-04 22:30:44 +00009060 // Forget all the expressions associated with users of the old value,
9061 // so that future queries will recompute the expressions using the new
9062 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009063 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009064 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009065 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009066 while (!Worklist.empty()) {
9067 User *U = Worklist.pop_back_val();
9068 // Deleting the Old value will cause this to dangle. Postpone
9069 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009070 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009071 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009072 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009073 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009074 if (PHINode *PN = dyn_cast<PHINode>(U))
9075 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009076 SE->eraseValueFromMap(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009077 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009078 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009079 // Delete the Old value.
9080 if (PHINode *PN = dyn_cast<PHINode>(Old))
9081 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009082 SE->eraseValueFromMap(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009083 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009084}
9085
Dan Gohmand33a0902009-05-19 19:22:47 +00009086ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009087 : CallbackVH(V), SE(se) {}
9088
9089//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009090// ScalarEvolution Class Implementation
9091//===----------------------------------------------------------------------===//
9092
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009093ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9094 AssumptionCache &AC, DominatorTree &DT,
9095 LoopInfo &LI)
9096 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9097 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009098 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9099 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9100 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009101
9102ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9103 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9104 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9105 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009106 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009107 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9108 ConstantEvolutionLoopExitValue(
9109 std::move(Arg.ConstantEvolutionLoopExitValue)),
9110 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9111 LoopDispositions(std::move(Arg.LoopDispositions)),
9112 BlockDispositions(std::move(Arg.BlockDispositions)),
9113 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9114 SignedRanges(std::move(Arg.SignedRanges)),
9115 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009116 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009117 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9118 FirstUnknown(Arg.FirstUnknown) {
9119 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009120}
9121
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009122ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009123 // Iterate through all the SCEVUnknown instances and call their
9124 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009125 for (SCEVUnknown *U = FirstUnknown; U;) {
9126 SCEVUnknown *Tmp = U;
9127 U = U->Next;
9128 Tmp->~SCEVUnknown();
9129 }
Craig Topper9f008862014-04-15 04:59:12 +00009130 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009131
Wei Mia49559b2016-02-04 01:27:38 +00009132 ExprValueMap.clear();
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009133 ValueExprMap.clear();
Wei Mia49559b2016-02-04 01:27:38 +00009134 HasRecMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009135
9136 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9137 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009138 for (auto &BTCI : BackedgeTakenCounts)
9139 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009140
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009141 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009142 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009143 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009144}
9145
Dan Gohmanc8e23622009-04-21 23:15:49 +00009146bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009147 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009148}
9149
Dan Gohmanc8e23622009-04-21 23:15:49 +00009150static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009151 const Loop *L) {
9152 // Print all inner loops first
9153 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9154 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009155
Dan Gohmanbc694912010-01-09 18:17:45 +00009156 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009157 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009158 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009159
Dan Gohmancb0efec2009-12-18 01:14:11 +00009160 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009161 L->getExitBlocks(ExitBlocks);
9162 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009163 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009164
Dan Gohman0bddac12009-02-24 18:55:53 +00009165 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9166 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009167 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009168 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009169 }
9170
Dan Gohmanbc694912010-01-09 18:17:45 +00009171 OS << "\n"
9172 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009173 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009174 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009175
9176 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9177 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9178 } else {
9179 OS << "Unpredictable max backedge-taken count. ";
9180 }
9181
9182 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009183}
9184
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009185void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009186 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009187 // out SCEV values of all instructions that are interesting. Doing
9188 // this potentially causes it to create new SCEV objects though,
9189 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009190 // observable from outside the class though, so casting away the
9191 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009192 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009193
Dan Gohmanbc694912010-01-09 18:17:45 +00009194 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009195 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009196 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009197 for (Instruction &I : instructions(F))
9198 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9199 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009200 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009201 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009202 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009203 if (!isa<SCEVCouldNotCompute>(SV)) {
9204 OS << " U: ";
9205 SE.getUnsignedRange(SV).print(OS);
9206 OS << " S: ";
9207 SE.getSignedRange(SV).print(OS);
9208 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009209
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009210 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009211
Dan Gohmanaf752342009-07-07 17:06:11 +00009212 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009213 if (AtUse != SV) {
9214 OS << " --> ";
9215 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009216 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9217 OS << " U: ";
9218 SE.getUnsignedRange(AtUse).print(OS);
9219 OS << " S: ";
9220 SE.getSignedRange(AtUse).print(OS);
9221 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009222 }
9223
9224 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009225 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009226 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009227 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009228 OS << "<<Unknown>>";
9229 } else {
9230 OS << *ExitValue;
9231 }
9232 }
9233
Chris Lattnerd934c702004-04-02 20:23:17 +00009234 OS << "\n";
9235 }
9236
Dan Gohmanbc694912010-01-09 18:17:45 +00009237 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009238 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009239 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009240 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009241 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009242}
Dan Gohmane20f8242009-04-21 00:47:46 +00009243
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009244ScalarEvolution::LoopDisposition
9245ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009246 auto &Values = LoopDispositions[S];
9247 for (auto &V : Values) {
9248 if (V.getPointer() == L)
9249 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009250 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009251 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009252 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009253 auto &Values2 = LoopDispositions[S];
9254 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9255 if (V.getPointer() == L) {
9256 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009257 break;
9258 }
9259 }
9260 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009261}
9262
9263ScalarEvolution::LoopDisposition
9264ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009265 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009266 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009267 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009268 case scTruncate:
9269 case scZeroExtend:
9270 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009271 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009272 case scAddRecExpr: {
9273 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9274
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009275 // If L is the addrec's loop, it's computable.
9276 if (AR->getLoop() == L)
9277 return LoopComputable;
9278
Dan Gohmanafd6db92010-11-17 21:23:15 +00009279 // Add recurrences are never invariant in the function-body (null loop).
9280 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009281 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009282
9283 // This recurrence is variant w.r.t. L if L contains AR's loop.
9284 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009285 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009286
9287 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9288 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009289 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009290
9291 // This recurrence is variant w.r.t. L if any of its operands
9292 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009293 for (auto *Op : AR->operands())
9294 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009295 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009296
9297 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009298 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009299 }
9300 case scAddExpr:
9301 case scMulExpr:
9302 case scUMaxExpr:
9303 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009304 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009305 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9306 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009307 if (D == LoopVariant)
9308 return LoopVariant;
9309 if (D == LoopComputable)
9310 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009311 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009312 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009313 }
9314 case scUDivExpr: {
9315 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009316 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9317 if (LD == LoopVariant)
9318 return LoopVariant;
9319 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9320 if (RD == LoopVariant)
9321 return LoopVariant;
9322 return (LD == LoopInvariant && RD == LoopInvariant) ?
9323 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009324 }
9325 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009326 // All non-instruction values are loop invariant. All instructions are loop
9327 // invariant if they are not contained in the specified loop.
9328 // Instructions are never considered invariant in the function body
9329 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009330 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009331 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9332 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009333 case scCouldNotCompute:
9334 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009335 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009336 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009337}
9338
9339bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9340 return getLoopDisposition(S, L) == LoopInvariant;
9341}
9342
9343bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9344 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009345}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009346
Dan Gohman8ea83d82010-11-18 00:34:22 +00009347ScalarEvolution::BlockDisposition
9348ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009349 auto &Values = BlockDispositions[S];
9350 for (auto &V : Values) {
9351 if (V.getPointer() == BB)
9352 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009353 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009354 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009355 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009356 auto &Values2 = BlockDispositions[S];
9357 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9358 if (V.getPointer() == BB) {
9359 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009360 break;
9361 }
9362 }
9363 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009364}
9365
Dan Gohman8ea83d82010-11-18 00:34:22 +00009366ScalarEvolution::BlockDisposition
9367ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009368 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009369 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009370 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009371 case scTruncate:
9372 case scZeroExtend:
9373 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009374 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009375 case scAddRecExpr: {
9376 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009377 // to test for proper dominance too, because the instruction which
9378 // produces the addrec's value is a PHI, and a PHI effectively properly
9379 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009380 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009381 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009382 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009383 }
9384 // FALL THROUGH into SCEVNAryExpr handling.
9385 case scAddExpr:
9386 case scMulExpr:
9387 case scUMaxExpr:
9388 case scSMaxExpr: {
9389 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009390 bool Proper = true;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00009391 for (const SCEV *NAryOp : NAry->operands()) {
9392 BlockDisposition D = getBlockDisposition(NAryOp, BB);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009393 if (D == DoesNotDominateBlock)
9394 return DoesNotDominateBlock;
9395 if (D == DominatesBlock)
9396 Proper = false;
9397 }
9398 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009399 }
9400 case scUDivExpr: {
9401 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009402 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9403 BlockDisposition LD = getBlockDisposition(LHS, BB);
9404 if (LD == DoesNotDominateBlock)
9405 return DoesNotDominateBlock;
9406 BlockDisposition RD = getBlockDisposition(RHS, BB);
9407 if (RD == DoesNotDominateBlock)
9408 return DoesNotDominateBlock;
9409 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9410 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009411 }
9412 case scUnknown:
9413 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009414 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9415 if (I->getParent() == BB)
9416 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009417 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009418 return ProperlyDominatesBlock;
9419 return DoesNotDominateBlock;
9420 }
9421 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009422 case scCouldNotCompute:
9423 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009424 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009425 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009426}
9427
9428bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9429 return getBlockDisposition(S, BB) >= DominatesBlock;
9430}
9431
9432bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9433 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009434}
Dan Gohman534749b2010-11-17 22:27:42 +00009435
9436bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das7d752672015-12-08 04:32:54 +00009437 // Search for a SCEV expression node within an expression tree.
9438 // Implements SCEVTraversal::Visitor.
9439 struct SCEVSearch {
9440 const SCEV *Node;
9441 bool IsFound;
9442
9443 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9444
9445 bool follow(const SCEV *S) {
9446 IsFound |= (S == Node);
9447 return !IsFound;
9448 }
9449 bool isDone() const { return IsFound; }
9450 };
9451
Andrew Trick365e31c2012-07-13 23:33:03 +00009452 SCEVSearch Search(Op);
9453 visitAll(S, Search);
9454 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009455}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009456
9457void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9458 ValuesAtScopes.erase(S);
9459 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009460 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009461 UnsignedRanges.erase(S);
9462 SignedRanges.erase(S);
Wei Mia49559b2016-02-04 01:27:38 +00009463 ExprValueMap.erase(S);
9464 HasRecMap.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009465
9466 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9467 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9468 BackedgeTakenInfo &BEInfo = I->second;
9469 if (BEInfo.hasOperand(S, this)) {
9470 BEInfo.clear();
9471 BackedgeTakenCounts.erase(I++);
9472 }
9473 else
9474 ++I;
9475 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009476}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009477
9478typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009479
Alp Tokercb402912014-01-24 17:20:08 +00009480/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009481static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9482 size_t Pos = 0;
9483 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9484 Str.replace(Pos, From.size(), To.data(), To.size());
9485 Pos += To.size();
9486 }
9487}
9488
Benjamin Kramer214935e2012-10-26 17:31:32 +00009489/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9490static void
9491getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009492 std::string &S = Map[L];
9493 if (S.empty()) {
9494 raw_string_ostream OS(S);
9495 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009496
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009497 // false and 0 are semantically equivalent. This can happen in dead loops.
9498 replaceSubString(OS.str(), "false", "0");
9499 // Remove wrap flags, their use in SCEV is highly fragile.
9500 // FIXME: Remove this when SCEV gets smarter about them.
9501 replaceSubString(OS.str(), "<nw>", "");
9502 replaceSubString(OS.str(), "<nsw>", "");
9503 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009504 }
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009505
JF Bastien61ad8b32015-12-23 18:18:53 +00009506 for (auto *R : reverse(*L))
9507 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
Benjamin Kramer214935e2012-10-26 17:31:32 +00009508}
9509
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009510void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009511 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9512
9513 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9514 // FIXME: It would be much better to store actual values instead of strings,
9515 // but SCEV pointers will change if we drop the caches.
9516 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009517 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009518 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9519
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009520 // Gather stringified backedge taken counts for all loops using a fresh
9521 // ScalarEvolution object.
9522 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9523 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9524 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009525
9526 // Now compare whether they're the same with and without caches. This allows
9527 // verifying that no pass changed the cache.
9528 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9529 "New loops suddenly appeared!");
9530
9531 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9532 OldE = BackedgeDumpsOld.end(),
9533 NewI = BackedgeDumpsNew.begin();
9534 OldI != OldE; ++OldI, ++NewI) {
9535 assert(OldI->first == NewI->first && "Loop order changed!");
9536
9537 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9538 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009539 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009540 // means that a pass is buggy or SCEV has to learn a new pattern but is
9541 // usually not harmful.
9542 if (OldI->second != NewI->second &&
9543 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009544 NewI->second.find("undef") == std::string::npos &&
9545 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009546 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009547 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009548 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009549 << "' changed from '" << OldI->second
9550 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009551 std::abort();
9552 }
9553 }
9554
9555 // TODO: Verify more things.
9556}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009557
9558char ScalarEvolutionAnalysis::PassID;
9559
9560ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9561 AnalysisManager<Function> *AM) {
9562 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9563 AM->getResult<AssumptionAnalysis>(F),
9564 AM->getResult<DominatorTreeAnalysis>(F),
9565 AM->getResult<LoopAnalysis>(F));
9566}
9567
9568PreservedAnalyses
9569ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9570 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9571 return PreservedAnalyses::all();
9572}
9573
9574INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9575 "Scalar Evolution Analysis", false, true)
9576INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9577INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9578INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9579INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9580INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9581 "Scalar Evolution Analysis", false, true)
9582char ScalarEvolutionWrapperPass::ID = 0;
9583
9584ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9585 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9586}
9587
9588bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9589 SE.reset(new ScalarEvolution(
9590 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9591 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9592 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9593 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9594 return false;
9595}
9596
9597void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9598
9599void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9600 SE->print(OS);
9601}
9602
9603void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9604 if (!VerifySCEV)
9605 return;
9606
9607 SE->verify();
9608}
9609
9610void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9611 AU.setPreservesAll();
9612 AU.addRequiredTransitive<AssumptionCacheTracker>();
9613 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9614 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9615 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9616}
Silviu Barangae3c05342015-11-02 14:41:02 +00009617
9618const SCEVPredicate *
9619ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9620 const SCEVConstant *RHS) {
9621 FoldingSetNodeID ID;
9622 // Unique this node based on the arguments
9623 ID.AddInteger(SCEVPredicate::P_Equal);
9624 ID.AddPointer(LHS);
9625 ID.AddPointer(RHS);
9626 void *IP = nullptr;
9627 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9628 return S;
9629 SCEVEqualPredicate *Eq = new (SCEVAllocator)
9630 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9631 UniquePreds.InsertNode(Eq, IP);
9632 return Eq;
9633}
9634
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009635const SCEVPredicate *ScalarEvolution::getWrapPredicate(
9636 const SCEVAddRecExpr *AR,
9637 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9638 FoldingSetNodeID ID;
9639 // Unique this node based on the arguments
9640 ID.AddInteger(SCEVPredicate::P_Wrap);
9641 ID.AddPointer(AR);
9642 ID.AddInteger(AddedFlags);
9643 void *IP = nullptr;
9644 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9645 return S;
9646 auto *OF = new (SCEVAllocator)
9647 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
9648 UniquePreds.InsertNode(OF, IP);
9649 return OF;
9650}
9651
Benjamin Kramer83709b12015-11-16 09:01:28 +00009652namespace {
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009653
Silviu Barangae3c05342015-11-02 14:41:02 +00009654class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9655public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00009656 // Rewrites \p S in the context of a loop L and the predicate A.
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009657 // If Assume is true, rewrite is free to add further predicates to A
9658 // such that the result will be an AddRecExpr.
Sanjoy Das807d33d2016-02-20 01:44:10 +00009659 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
9660 SCEVUnionPredicate &A, bool Assume) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009661 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
Sanjoy Das807d33d2016-02-20 01:44:10 +00009662 return Rewriter.visit(S);
Silviu Barangae3c05342015-11-02 14:41:02 +00009663 }
9664
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009665 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
9666 SCEVUnionPredicate &P, bool Assume)
9667 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
Silviu Barangae3c05342015-11-02 14:41:02 +00009668
9669 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9670 auto ExprPreds = P.getPredicatesForExpr(Expr);
9671 for (auto *Pred : ExprPreds)
9672 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9673 if (IPred->getLHS() == Expr)
9674 return IPred->getRHS();
9675
9676 return Expr;
9677 }
9678
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009679 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
9680 const SCEV *Operand = visit(Expr->getOperand());
9681 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9682 if (AR && AR->getLoop() == L && AR->isAffine()) {
9683 // This couldn't be folded because the operand didn't have the nuw
9684 // flag. Add the nusw flag as an assumption that we could make.
9685 const SCEV *Step = AR->getStepRecurrence(SE);
9686 Type *Ty = Expr->getType();
9687 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
9688 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
9689 SE.getSignExtendExpr(Step, Ty), L,
9690 AR->getNoWrapFlags());
9691 }
9692 return SE.getZeroExtendExpr(Operand, Expr->getType());
9693 }
9694
9695 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
9696 const SCEV *Operand = visit(Expr->getOperand());
9697 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9698 if (AR && AR->getLoop() == L && AR->isAffine()) {
9699 // This couldn't be folded because the operand didn't have the nsw
9700 // flag. Add the nssw flag as an assumption that we could make.
9701 const SCEV *Step = AR->getStepRecurrence(SE);
9702 Type *Ty = Expr->getType();
9703 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
9704 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
9705 SE.getSignExtendExpr(Step, Ty), L,
9706 AR->getNoWrapFlags());
9707 }
9708 return SE.getSignExtendExpr(Operand, Expr->getType());
9709 }
9710
Silviu Barangae3c05342015-11-02 14:41:02 +00009711private:
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009712 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
9713 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9714 auto *A = SE.getWrapPredicate(AR, AddedFlags);
9715 if (!Assume) {
9716 // Check if we've already made this assumption.
9717 if (P.implies(A))
9718 return true;
9719 return false;
9720 }
9721 P.add(A);
9722 return true;
9723 }
9724
Silviu Barangae3c05342015-11-02 14:41:02 +00009725 SCEVUnionPredicate &P;
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009726 const Loop *L;
9727 bool Assume;
Silviu Barangae3c05342015-11-02 14:41:02 +00009728};
Benjamin Kramer83709b12015-11-16 09:01:28 +00009729} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +00009730
Sanjoy Das807d33d2016-02-20 01:44:10 +00009731const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
Silviu Barangae3c05342015-11-02 14:41:02 +00009732 SCEVUnionPredicate &Preds) {
Sanjoy Das807d33d2016-02-20 01:44:10 +00009733 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009734}
9735
Sanjoy Das807d33d2016-02-20 01:44:10 +00009736const SCEV *
9737ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
9738 SCEVUnionPredicate &Preds) {
9739 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, true);
Silviu Barangae3c05342015-11-02 14:41:02 +00009740}
9741
9742/// SCEV predicates
9743SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9744 SCEVPredicateKind Kind)
9745 : FastID(ID), Kind(Kind) {}
9746
9747SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9748 const SCEVUnknown *LHS,
9749 const SCEVConstant *RHS)
9750 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9751
9752bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9753 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9754
9755 if (!Op)
9756 return false;
9757
9758 return Op->LHS == LHS && Op->RHS == RHS;
9759}
9760
9761bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9762
9763const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9764
9765void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9766 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9767}
9768
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009769SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
9770 const SCEVAddRecExpr *AR,
9771 IncrementWrapFlags Flags)
9772 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
9773
9774const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
9775
9776bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
9777 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
9778
9779 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
9780}
9781
9782bool SCEVWrapPredicate::isAlwaysTrue() const {
9783 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
9784 IncrementWrapFlags IFlags = Flags;
9785
9786 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
9787 IFlags = clearFlags(IFlags, IncrementNSSW);
9788
9789 return IFlags == IncrementAnyWrap;
9790}
9791
9792void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
9793 OS.indent(Depth) << *getExpr() << " Added Flags: ";
9794 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
9795 OS << "<nusw>";
9796 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
9797 OS << "<nssw>";
9798 OS << "\n";
9799}
9800
9801SCEVWrapPredicate::IncrementWrapFlags
9802SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
9803 ScalarEvolution &SE) {
9804 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
9805 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
9806
9807 // We can safely transfer the NSW flag as NSSW.
9808 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
9809 ImpliedFlags = IncrementNSSW;
9810
9811 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
9812 // If the increment is positive, the SCEV NUW flag will also imply the
9813 // WrapPredicate NUSW flag.
9814 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
9815 if (Step->getValue()->getValue().isNonNegative())
9816 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
9817 }
9818
9819 return ImpliedFlags;
9820}
9821
Silviu Barangae3c05342015-11-02 14:41:02 +00009822/// Union predicates don't get cached so create a dummy set ID for it.
9823SCEVUnionPredicate::SCEVUnionPredicate()
9824 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9825
9826bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +00009827 return all_of(Preds,
9828 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009829}
9830
9831ArrayRef<const SCEVPredicate *>
9832SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9833 auto I = SCEVToPreds.find(Expr);
9834 if (I == SCEVToPreds.end())
9835 return ArrayRef<const SCEVPredicate *>();
9836 return I->second;
9837}
9838
9839bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9840 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +00009841 return all_of(Set->Preds,
9842 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009843
9844 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9845 if (ScevPredsIt == SCEVToPreds.end())
9846 return false;
9847 auto &SCEVPreds = ScevPredsIt->second;
9848
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00009849 return any_of(SCEVPreds,
9850 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009851}
9852
9853const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9854
9855void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9856 for (auto Pred : Preds)
9857 Pred->print(OS, Depth);
9858}
9859
9860void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9861 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9862 for (auto Pred : Set->Preds)
9863 add(Pred);
9864 return;
9865 }
9866
9867 if (implies(N))
9868 return;
9869
9870 const SCEV *Key = N->getExpr();
9871 assert(Key && "Only SCEVUnionPredicate doesn't have an "
9872 " associated expression!");
9873
9874 SCEVToPreds[Key].push_back(N);
9875 Preds.push_back(N);
9876}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00009877
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009878PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
9879 Loop &L)
9880 : SE(SE), L(L), Generation(0) {}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00009881
9882const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9883 const SCEV *Expr = SE.getSCEV(V);
9884 RewriteEntry &Entry = RewriteMap[Expr];
9885
9886 // If we already have an entry and the version matches, return it.
9887 if (Entry.second && Generation == Entry.first)
9888 return Entry.second;
9889
9890 // We found an entry but it's stale. Rewrite the stale entry
9891 // acording to the current predicate.
9892 if (Entry.second)
9893 Expr = Entry.second;
9894
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009895 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00009896 Entry = {Generation, NewSCEV};
9897
9898 return NewSCEV;
9899}
9900
9901void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9902 if (Preds.implies(&Pred))
9903 return;
9904 Preds.add(&Pred);
9905 updateGeneration();
9906}
9907
9908const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9909 return Preds;
9910}
9911
9912void PredicatedScalarEvolution::updateGeneration() {
9913 // If the generation number wrapped recompute everything.
9914 if (++Generation == 0) {
9915 for (auto &II : RewriteMap) {
9916 const SCEV *Rewritten = II.second.second;
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009917 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00009918 }
9919 }
9920}
Silviu Barangaea63a7f2016-02-08 17:02:45 +00009921
9922void PredicatedScalarEvolution::setNoOverflow(
9923 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9924 const SCEV *Expr = getSCEV(V);
9925 const auto *AR = cast<SCEVAddRecExpr>(Expr);
9926
9927 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
9928
9929 // Clear the statically implied flags.
9930 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
9931 addPredicate(*SE.getWrapPredicate(AR, Flags));
9932
9933 auto II = FlagsMap.insert({V, Flags});
9934 if (!II.second)
9935 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
9936}
9937
9938bool PredicatedScalarEvolution::hasNoOverflow(
9939 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9940 const SCEV *Expr = getSCEV(V);
9941 const auto *AR = cast<SCEVAddRecExpr>(Expr);
9942
9943 Flags = SCEVWrapPredicate::clearFlags(
9944 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
9945
9946 auto II = FlagsMap.find(V);
9947
9948 if (II != FlagsMap.end())
9949 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
9950
9951 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
9952}
9953
9954const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) {
9955 const SCEV *Expr = this->getSCEV(V);
9956 const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
9957 updateGeneration();
9958 RewriteMap[SE.getSCEV(V)] = {Generation, New};
9959 return New;
9960}
9961
9962PredicatedScalarEvolution::
9963PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) :
9964 RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
9965 Generation(Init.Generation) {
9966 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
9967 FlagsMap.insert(*I);
9968}