blob: e2ffa440c90d2df69cea59055feacbd529902877 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000029#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000030#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000031#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000038#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000039#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000040#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000041#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000042#include <algorithm>
43#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000044#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000045using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000046using namespace llvm::PatternMatch;
47
48const unsigned MaxDepth = 6;
49
Philip Reames1c292272015-03-10 22:43:20 +000050// Controls the number of uses of the value searched for possible
51// dominating comparisons.
52static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000053 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000054
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000055// This optimization is known to cause performance regressions is some cases,
56// keep it under a temporary flag for now.
57static cl::opt<bool>
58DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
59 cl::Hidden, cl::init(true));
60
Sanjay Patelaee84212014-11-04 16:27:42 +000061/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
62/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000063static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000064 if (unsigned BitWidth = Ty->getScalarSizeInBits())
65 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000066
Mehdi Aminia28d91d2015-03-10 02:37:25 +000067 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000068}
Chris Lattner965c7692008-06-02 01:18:21 +000069
Benjamin Kramercfd8d902014-09-12 08:56:53 +000070namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000071// Simplifying using an assume can only be done in a particular control-flow
72// context (the context instruction provides that context). If an assume and
73// the context instruction are not in the same block then the DT helps in
74// figuring out if we can use it.
75struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000076 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000077 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000078 const Instruction *CxtI;
79 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000080 // Unlike the other analyses, this may be a nullptr because not all clients
81 // provide it currently.
82 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000083
Matthias Braun37e5d792016-01-28 06:29:33 +000084 /// Set of assumptions that should be excluded from further queries.
85 /// This is because of the potential for mutual recursion to cause
86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
87 /// classic case of this is assume(x = y), which will attempt to determine
88 /// bits in x from bits in y, which will attempt to determine bits in y from
89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
92 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000093 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000094 unsigned NumExcluded;
95
Daniel Jasperaec2fa32016-12-19 08:22:17 +000096 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000097 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000099
100 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000103 Excluded = Q.Excluded;
104 Excluded[NumExcluded++] = NewExcl;
105 assert(NumExcluded <= Excluded.size());
106 }
107
108 bool isExcluded(const Value *Value) const {
109 if (NumExcluded == 0)
110 return false;
111 auto End = Excluded.begin() + NumExcluded;
112 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000113 }
114};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000115} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000116
Sanjay Patel547e9752014-11-04 16:09:50 +0000117// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000118// the preferred context instruction (if any).
119static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120 // If we've been provided with a context instruction, then use that (provided
121 // it has been inserted).
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 // If the value is really an already-inserted instruction, then use that.
126 CxtI = dyn_cast<Instruction>(V);
127 if (CxtI && CxtI->getParent())
128 return CxtI;
129
130 return nullptr;
131}
132
Pete Cooper35b00d52016-08-13 01:05:32 +0000133static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000134 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000135
Pete Cooper35b00d52016-08-13 01:05:32 +0000136void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000138 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000139 const DominatorTree *DT,
140 OptimizationRemarkEmitter *ORE) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000141 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000143}
144
Pete Cooper35b00d52016-08-13 01:05:32 +0000145bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
146 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000147 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000148 const DominatorTree *DT) {
149 assert(LHS->getType() == RHS->getType() &&
150 "LHS and RHS should have the same type");
151 assert(LHS->getType()->isIntOrIntVectorTy() &&
152 "LHS and RHS should be integers");
153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
159}
160
Pete Cooper35b00d52016-08-13 01:05:32 +0000161static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Pete Cooper35b00d52016-08-13 01:05:32 +0000164void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000167 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000169 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000170}
171
Pete Cooper35b00d52016-08-13 01:05:32 +0000172static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000173 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Pete Cooper35b00d52016-08-13 01:05:32 +0000175bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
176 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000179 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000182}
183
Pete Cooper35b00d52016-08-13 01:05:32 +0000184static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000190}
191
Pete Cooper35b00d52016-08-13 01:05:32 +0000192bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000193 unsigned Depth,
194 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000195 const DominatorTree *DT) {
196 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000198 return NonNegative;
199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000204 if (auto *CI = dyn_cast<ConstantInt>(V))
205 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000206
Philip Reames8f12eba2016-03-09 21:31:47 +0000207 // TODO: We'd doing two recursive queries here. We should factor this such
208 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000214 AssumptionCache *AC, const Instruction *CxtI,
215 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000216 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000218 return Negative;
219}
220
Pete Cooper35b00d52016-08-13 01:05:32 +0000221static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000222
Pete Cooper35b00d52016-08-13 01:05:32 +0000223bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000224 const DataLayout &DL,
225 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000226 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000227 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
228 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000229 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000230}
231
Pete Cooper35b00d52016-08-13 01:05:32 +0000232static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000234
Pete Cooper35b00d52016-08-13 01:05:32 +0000235bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
236 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 unsigned Depth, AssumptionCache *AC,
238 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000239 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000241}
242
Pete Cooper35b00d52016-08-13 01:05:32 +0000243static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
244 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000245
Pete Cooper35b00d52016-08-13 01:05:32 +0000246unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000247 unsigned Depth, AssumptionCache *AC,
248 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000249 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000251}
252
Craig Topper8fbb74b2017-03-24 22:12:10 +0000253static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
254 bool NSW,
255 APInt &KnownZero, APInt &KnownOne,
256 APInt &KnownZero2, APInt &KnownOne2,
257 unsigned Depth, const Query &Q) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259
260 // If an initial sequence of bits in the result is not needed, the
261 // corresponding bits in the operands are not needed.
262 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
263 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
264 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
265
David Majnemer97ddca32014-08-22 00:40:43 +0000266 // Carry in a 1 for a subtract, rather than a 0.
Craig Topper059b98e2017-03-24 05:38:09 +0000267 uint64_t CarryIn = 0;
David Majnemer97ddca32014-08-22 00:40:43 +0000268 if (!Add) {
269 // Sum = LHS + ~RHS + 1
Craig Topper8fbb74b2017-03-24 22:12:10 +0000270 std::swap(KnownZero2, KnownOne2);
Craig Topper059b98e2017-03-24 05:38:09 +0000271 CarryIn = 1;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000272 }
273
Craig Topper8fbb74b2017-03-24 22:12:10 +0000274 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
275 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
David Majnemer97ddca32014-08-22 00:40:43 +0000276
277 // Compute known bits of the carry.
Craig Topper8fbb74b2017-03-24 22:12:10 +0000278 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
279 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
David Majnemer97ddca32014-08-22 00:40:43 +0000280
281 // Compute set of known bits (where all three relevant bits are known).
282 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
Craig Topper8fbb74b2017-03-24 22:12:10 +0000283 APInt RHSKnown = KnownZero2 | KnownOne2;
David Majnemer97ddca32014-08-22 00:40:43 +0000284 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
285 APInt Known = LHSKnown & RHSKnown & CarryKnown;
286
287 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
288 "known bits of sum differ");
289
290 // Compute known bits of the result.
291 KnownZero = ~PossibleSumOne & Known;
292 KnownOne = PossibleSumOne & Known;
293
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000294 // Are we still trying to solve for the sign bit?
Craig Topperd23004c2017-04-17 16:38:20 +0000295 if (!Known.isSignBitSet()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000296 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000297 // Adding two non-negative numbers, or subtracting a negative number from
298 // a non-negative one, can't wrap into negative.
Craig Topperd23004c2017-04-17 16:38:20 +0000299 if (LHSKnownZero.isSignBitSet() && KnownZero2.isSignBitSet())
Craig Topper3eb0d802017-03-18 04:01:29 +0000300 KnownZero.setSignBit();
David Majnemer97ddca32014-08-22 00:40:43 +0000301 // Adding two negative numbers, or subtracting a non-negative number from
302 // a negative one, can't wrap into non-negative.
Craig Topperd23004c2017-04-17 16:38:20 +0000303 else if (LHSKnownOne.isSignBitSet() && KnownOne2.isSignBitSet())
Craig Topper3eb0d802017-03-18 04:01:29 +0000304 KnownOne.setSignBit();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000305 }
306 }
307}
308
Pete Cooper35b00d52016-08-13 01:05:32 +0000309static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000310 APInt &KnownZero, APInt &KnownOne,
311 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000312 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000313 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000314 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
315 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000316
317 bool isKnownNegative = false;
318 bool isKnownNonNegative = false;
319 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000320 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321 if (Op0 == Op1) {
322 // The product of a number with itself is non-negative.
323 isKnownNonNegative = true;
324 } else {
Craig Topperd23004c2017-04-17 16:38:20 +0000325 bool isKnownNonNegativeOp1 = KnownZero.isSignBitSet();
326 bool isKnownNonNegativeOp0 = KnownZero2.isSignBitSet();
327 bool isKnownNegativeOp1 = KnownOne.isSignBitSet();
328 bool isKnownNegativeOp0 = KnownOne2.isSignBitSet();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000329 // The product of two numbers with the same sign is non-negative.
330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
332 // The product of a negative number and a non-negative number is either
333 // negative or zero.
334 if (!isKnownNonNegative)
335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000336 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000338 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 }
340 }
341
342 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000343 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 // More trickiness is possible, but this is sufficient for the
345 // interesting case of alignment computation.
346 KnownOne.clearAllBits();
347 unsigned TrailZ = KnownZero.countTrailingOnes() +
348 KnownZero2.countTrailingOnes();
349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
350 KnownZero2.countLeadingOnes(),
351 BitWidth) - BitWidth;
352
353 TrailZ = std::min(TrailZ, BitWidth);
354 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperd73c6b42017-03-23 07:06:39 +0000355 KnownZero.clearAllBits();
356 KnownZero.setLowBits(TrailZ);
357 KnownZero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000358
359 // Only make use of no-wrap flags if we failed to compute the sign bit
360 // directly. This matters if the multiplication always overflows, in
361 // which case we prefer to follow the result of the direct computation,
362 // though as the program is invoking undefined behaviour we can choose
363 // whatever we like here.
Craig Topperd23004c2017-04-17 16:38:20 +0000364 if (isKnownNonNegative && !KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +0000365 KnownZero.setSignBit();
Craig Topperd23004c2017-04-17 16:38:20 +0000366 else if (isKnownNegative && !KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +0000367 KnownOne.setSignBit();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000368}
369
Jingyue Wu37fcb592014-06-19 16:50:16 +0000370void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000371 APInt &KnownZero,
372 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000373 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000374 unsigned NumRanges = Ranges.getNumOperands() / 2;
375 assert(NumRanges >= 1);
376
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000377 KnownZero.setAllBits();
378 KnownOne.setAllBits();
379
Rafael Espindola53190532012-03-30 15:52:11 +0000380 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000381 ConstantInt *Lower =
382 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
383 ConstantInt *Upper =
384 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000385 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000386
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000387 // The first CommonPrefixBits of all values in Range are equal.
388 unsigned CommonPrefixBits =
389 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
390
391 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
392 KnownOne &= Range.getUnsignedMax() & Mask;
393 KnownZero &= ~Range.getUnsignedMax() & Mask;
394 }
Rafael Espindola53190532012-03-30 15:52:11 +0000395}
Jay Foad5a29c362014-05-15 12:12:55 +0000396
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000397static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000398 SmallVector<const Value *, 16> WorkSet(1, I);
399 SmallPtrSet<const Value *, 32> Visited;
400 SmallPtrSet<const Value *, 16> EphValues;
401
Hal Finkelf2199b22015-10-23 20:37:08 +0000402 // The instruction defining an assumption's condition itself is always
403 // considered ephemeral to that assumption (even if it has other
404 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000405 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 return true;
407
Hal Finkel60db0582014-09-07 18:57:58 +0000408 while (!WorkSet.empty()) {
409 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000410 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000411 continue;
412
413 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000414 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 if (V == E)
416 return true;
417
418 EphValues.insert(V);
419 if (const User *U = dyn_cast<User>(V))
420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
421 J != JE; ++J) {
422 if (isSafeToSpeculativelyExecute(*J))
423 WorkSet.push_back(*J);
424 }
425 }
426 }
427
428 return false;
429}
430
431// Is this an intrinsic that cannot be speculated but also cannot trap?
432static bool isAssumeLikeIntrinsic(const Instruction *I) {
433 if (const CallInst *CI = dyn_cast<CallInst>(I))
434 if (Function *F = CI->getCalledFunction())
435 switch (F->getIntrinsicID()) {
436 default: break;
437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
438 case Intrinsic::assume:
439 case Intrinsic::dbg_declare:
440 case Intrinsic::dbg_value:
441 case Intrinsic::invariant_start:
442 case Intrinsic::invariant_end:
443 case Intrinsic::lifetime_start:
444 case Intrinsic::lifetime_end:
445 case Intrinsic::objectsize:
446 case Intrinsic::ptr_annotation:
447 case Intrinsic::var_annotation:
448 return true;
449 }
450
451 return false;
452}
453
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000454bool llvm::isValidAssumeForContext(const Instruction *Inv,
455 const Instruction *CxtI,
456 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000457
458 // There are two restrictions on the use of an assume:
459 // 1. The assume must dominate the context (or the control flow must
460 // reach the assume whenever it reaches the context).
461 // 2. The context must not be in the assume's set of ephemeral values
462 // (otherwise we will use the assume to prove that the condition
463 // feeding the assume is trivially true, thus causing the removal of
464 // the assume).
465
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000466 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000467 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000468 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000469 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
470 // We don't have a DT, but this trivially dominates.
471 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000472 }
473
Pete Cooper54a02552016-08-12 01:00:15 +0000474 // With or without a DT, the only remaining case we will check is if the
475 // instructions are in the same BB. Give up if that is not the case.
476 if (Inv->getParent() != CxtI->getParent())
477 return false;
478
479 // If we have a dom tree, then we now know that the assume doens't dominate
480 // the other instruction. If we don't have a dom tree then we can check if
481 // the assume is first in the BB.
482 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000483 // Search forward from the assume until we reach the context (or the end
484 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000485 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000486 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000487 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // The context comes first, but they're both in the same block. Make sure
492 // there is nothing in between that might interrupt the control flow.
493 for (BasicBlock::const_iterator I =
494 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
495 I != IE; ++I)
496 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
497 return false;
498
499 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000500}
501
Pete Cooper35b00d52016-08-13 01:05:32 +0000502static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000503 APInt &KnownOne, unsigned Depth,
504 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000505 // Use of assumptions is context-sensitive. If we don't have a context, we
506 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000507 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000508 return;
509
510 unsigned BitWidth = KnownZero.getBitWidth();
511
Hal Finkel8a9a7832017-01-11 13:24:24 +0000512 // Note that the patterns below need to be kept in sync with the code
513 // in AssumptionCache::updateAffectedValues.
514
515 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000516 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000517 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000518 CallInst *I = cast<CallInst>(AssumeVH);
519 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
520 "Got assumption for the wrong function!");
521 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000522 continue;
523
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 // Warning: This loop can end up being somewhat performance sensetive.
525 // We're running this loop for once for each value queried resulting in a
526 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000527
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000528 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
529 "must be an assume intrinsic");
530
531 Value *Arg = I->getArgOperand(0);
532
533 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000534 assert(BitWidth == 1 && "assume operand is not i1?");
535 KnownZero.clearAllBits();
536 KnownOne.setAllBits();
537 return;
538 }
Sanjay Patel96669962017-01-17 18:15:49 +0000539 if (match(Arg, m_Not(m_Specific(V))) &&
540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
541 assert(BitWidth == 1 && "assume operand is not i1?");
542 KnownZero.setAllBits();
543 KnownOne.clearAllBits();
544 return;
545 }
Hal Finkel60db0582014-09-07 18:57:58 +0000546
David Majnemer9b609752014-12-12 23:59:29 +0000547 // The remaining tests are all recursive, so bail out if we hit the limit.
548 if (Depth == MaxDepth)
549 continue;
550
Hal Finkel60db0582014-09-07 18:57:58 +0000551 Value *A, *B;
552 auto m_V = m_CombineOr(m_Specific(V),
553 m_CombineOr(m_PtrToInt(m_Specific(V)),
554 m_BitCast(m_Specific(V))));
555
556 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000557 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000558 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000559 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000560 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000561 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000562 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000563 KnownZero |= RHSKnownZero;
564 KnownOne |= RHSKnownOne;
565 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000566 } else if (match(Arg,
567 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000568 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000569 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000570 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000571 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000572 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000573 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000574
575 // For those bits in the mask that are known to be one, we can propagate
576 // known bits from the RHS to V.
577 KnownZero |= RHSKnownZero & MaskKnownOne;
578 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000579 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000580 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
581 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000582 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000587 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000588
589 // For those bits in the mask that are known to be one, we can propagate
590 // inverted known bits from the RHS to V.
591 KnownZero |= RHSKnownOne & MaskKnownOne;
592 KnownOne |= RHSKnownZero & MaskKnownOne;
593 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000594 } else if (match(Arg,
595 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000596 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000598 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000599 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000600 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000601 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000602
603 // For those bits in B that are known to be zero, we can propagate known
604 // bits from the RHS to V.
605 KnownZero |= RHSKnownZero & BKnownZero;
606 KnownOne |= RHSKnownOne & BKnownZero;
607 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000608 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
609 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000610 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000612 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000613 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000614 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000615 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000616
617 // For those bits in B that are known to be zero, we can propagate
618 // inverted known bits from the RHS to V.
619 KnownZero |= RHSKnownOne & BKnownZero;
620 KnownOne |= RHSKnownZero & BKnownZero;
621 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000622 } else if (match(Arg,
623 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000624 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000626 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000627 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000628 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000629 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000630
631 // For those bits in B that are known to be zero, we can propagate known
632 // bits from the RHS to V. For those bits in B that are known to be one,
633 // we can propagate inverted known bits from the RHS to V.
634 KnownZero |= RHSKnownZero & BKnownZero;
635 KnownOne |= RHSKnownOne & BKnownZero;
636 KnownZero |= RHSKnownOne & BKnownOne;
637 KnownOne |= RHSKnownZero & BKnownOne;
638 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
640 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647
648 // For those bits in B that are known to be zero, we can propagate
649 // inverted known bits from the RHS to V. For those bits in B that are
650 // known to be one, we can propagate known bits from the RHS to V.
651 KnownZero |= RHSKnownOne & BKnownZero;
652 KnownOne |= RHSKnownZero & BKnownZero;
653 KnownZero |= RHSKnownZero & BKnownOne;
654 KnownOne |= RHSKnownOne & BKnownOne;
655 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000656 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
657 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000658 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 // For those bits in RHS that are known, we can propagate them to known
663 // bits in V shifted to the right by C.
Craig Topperfc947bc2017-04-18 17:14:21 +0000664 RHSKnownZero.lshrInPlace(C->getZExtValue());
665 KnownZero |= RHSKnownZero;
666 RHSKnownOne.lshrInPlace(C->getZExtValue());
667 KnownOne |= RHSKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000669 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
670 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000671 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000673 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000674 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000675 // For those bits in RHS that are known, we can propagate them inverted
676 // to known bits in V shifted to the right by C.
Craig Topperfc947bc2017-04-18 17:14:21 +0000677 RHSKnownOne.lshrInPlace(C->getZExtValue());
678 KnownZero |= RHSKnownOne;
679 RHSKnownZero.lshrInPlace(C->getZExtValue());
680 KnownOne |= RHSKnownZero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000682 } else if (match(Arg,
683 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000684 m_AShr(m_V, m_ConstantInt(C))),
685 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000686 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 // For those bits in RHS that are known, we can propagate them to known
691 // bits in V shifted to the right by C.
692 KnownZero |= RHSKnownZero << C->getZExtValue();
693 KnownOne |= RHSKnownOne << C->getZExtValue();
694 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000695 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000696 m_LShr(m_V, m_ConstantInt(C)),
697 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000698 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 // For those bits in RHS that are known, we can propagate them inverted
704 // to known bits in V shifted to the right by C.
705 KnownZero |= RHSKnownOne << C->getZExtValue();
706 KnownOne |= RHSKnownZero << C->getZExtValue();
707 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000708 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000711 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000712 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713
Craig Topperd23004c2017-04-17 16:38:20 +0000714 if (RHSKnownZero.isSignBitSet()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000715 // We know that the sign bit is zero.
Craig Topper3eb0d802017-03-18 04:01:29 +0000716 KnownZero.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000717 }
718 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000719 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000720 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000721 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000722 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000723 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724
Craig Topperd23004c2017-04-17 16:38:20 +0000725 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isSignBitSet()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726 // We know that the sign bit is zero.
Craig Topper3eb0d802017-03-18 04:01:29 +0000727 KnownZero.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000728 }
729 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000730 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000731 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000732 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000733 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000734 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735
Craig Topperd23004c2017-04-17 16:38:20 +0000736 if (RHSKnownOne.isSignBitSet()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737 // We know that the sign bit is one.
Craig Topper3eb0d802017-03-18 04:01:29 +0000738 KnownOne.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000739 }
740 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000741 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000742 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000744 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000745 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746
Craig Topperd23004c2017-04-17 16:38:20 +0000747 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isSignBitSet()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000748 // We know that the sign bit is one.
Craig Topper3eb0d802017-03-18 04:01:29 +0000749 KnownOne.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000750 }
751 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000755 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000756 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757
758 // Whatever high bits in c are zero are known to be zero.
Craig Topper57d8ca72017-03-22 06:19:37 +0000759 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes());
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000761 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000762 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000763 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000764 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000765 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000766
767 // Whatever high bits in c are zero are known to be zero (if c is a power
768 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper57d8ca72017-03-22 06:19:37 +0000770 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()+1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000771 else
Craig Topper57d8ca72017-03-22 06:19:37 +0000772 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000773 }
774 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000775
776 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000777 // have a logical fallacy. It's possible that the assumption is not reachable,
778 // so this isn't a real bug. On the other hand, the program may have undefined
779 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
780 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topper72f31a82017-04-21 16:43:32 +0000781 if (KnownZero.intersects(KnownOne)) {
Sanjay Patel25f6d712017-02-01 15:41:32 +0000782 KnownZero.clearAllBits();
783 KnownOne.clearAllBits();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000784
785 if (Q.ORE) {
786 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
787 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
788 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
789 "have undefined behavior, or compiler may have "
790 "internal error.");
791 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000792 }
Hal Finkel60db0582014-09-07 18:57:58 +0000793}
794
Hal Finkelf2199b22015-10-23 20:37:08 +0000795// Compute known bits from a shift operator, including those with a
796// non-constant shift amount. KnownZero and KnownOne are the outputs of this
797// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
798// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
799// functors that, given the known-zero or known-one bits respectively, and a
800// shift amount, compute the implied known-zero or known-one bits of the shift
801// operator's result respectively for that shift amount. The results from calling
802// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000803static void computeKnownBitsFromShiftOperator(
804 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
805 APInt &KnownOne2, unsigned Depth, const Query &Q,
806 function_ref<APInt(const APInt &, unsigned)> KZF,
807 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000808 unsigned BitWidth = KnownZero.getBitWidth();
809
810 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
811 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
812
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000813 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000814 KnownZero = KZF(KnownZero, ShiftAmt);
815 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000816 // If there is conflict between KnownZero and KnownOne, this must be an
817 // overflowing left shift, so the shift result is undefined. Clear KnownZero
818 // and KnownOne bits so that other code could propagate this undef.
819 if ((KnownZero & KnownOne) != 0) {
820 KnownZero.clearAllBits();
821 KnownOne.clearAllBits();
822 }
823
Hal Finkelf2199b22015-10-23 20:37:08 +0000824 return;
825 }
826
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000827 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000828
Oliver Stannard06204112017-03-14 10:13:17 +0000829 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
830 // value could be undef, so we don't know anything about it.
831 if ((~KnownZero).uge(BitWidth)) {
832 KnownZero.clearAllBits();
833 KnownOne.clearAllBits();
834 return;
835 }
836
Hal Finkelf2199b22015-10-23 20:37:08 +0000837 // Note: We cannot use KnownZero.getLimitedValue() here, because if
838 // BitWidth > 64 and any upper bits are known, we'll end up returning the
839 // limit value (which implies all bits are known).
840 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
841 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
842
843 // It would be more-clearly correct to use the two temporaries for this
844 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000845 KnownZero.clearAllBits();
846 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000847
James Molloy493e57d2015-10-26 14:10:46 +0000848 // If we know the shifter operand is nonzero, we can sometimes infer more
849 // known bits. However this is expensive to compute, so be lazy about it and
850 // only compute it when absolutely necessary.
851 Optional<bool> ShifterOperandIsNonZero;
852
Hal Finkelf2199b22015-10-23 20:37:08 +0000853 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000854 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
855 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000856 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000857 if (!*ShifterOperandIsNonZero)
858 return;
859 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000860
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000861 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000862
Craig Topper72f31a82017-04-21 16:43:32 +0000863 KnownZero.setAllBits();
864 KnownOne.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000865 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
866 // Combine the shifted known input bits only for those shift amounts
867 // compatible with its known constraints.
868 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
869 continue;
870 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
871 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000872 // If we know the shifter is nonzero, we may be able to infer more known
873 // bits. This check is sunk down as far as possible to avoid the expensive
874 // call to isKnownNonZero if the cheaper checks above fail.
875 if (ShiftAmt == 0) {
876 if (!ShifterOperandIsNonZero.hasValue())
877 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000878 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000879 if (*ShifterOperandIsNonZero)
880 continue;
881 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000882
883 KnownZero &= KZF(KnownZero2, ShiftAmt);
884 KnownOne &= KOF(KnownOne2, ShiftAmt);
885 }
886
887 // If there are no compatible shift amounts, then we've proven that the shift
888 // amount must be >= the BitWidth, and the result is undefined. We could
889 // return anything we'd like, but we need to make sure the sets of known bits
890 // stay disjoint (it should be better for some other code to actually
891 // propagate the undef than to pick a value here using known bits).
Craig Topper72f31a82017-04-21 16:43:32 +0000892 if (KnownZero.intersects(KnownOne)) {
Richard Trieu7a083812016-02-18 22:09:30 +0000893 KnownZero.clearAllBits();
894 KnownOne.clearAllBits();
895 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000896}
897
Pete Cooper35b00d52016-08-13 01:05:32 +0000898static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000899 APInt &KnownOne, unsigned Depth,
900 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000901 unsigned BitWidth = KnownZero.getBitWidth();
902
Chris Lattner965c7692008-06-02 01:18:21 +0000903 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000904 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000905 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000906 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000907 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000908 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000909 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000910 case Instruction::And: {
911 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000912 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
913 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000914
Chris Lattner965c7692008-06-02 01:18:21 +0000915 // Output known-1 bits are only known if set in both the LHS & RHS.
916 KnownOne &= KnownOne2;
917 // Output known-0 are known to be clear if zero in either the LHS | RHS.
918 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000919
920 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
921 // here we handle the more general case of adding any odd number by
922 // matching the form add(x, add(x, y)) where y is odd.
923 // TODO: This could be generalized to clearing any bit set in y where the
924 // following bit is known to be unset in y.
925 Value *Y = nullptr;
Craig Toppera80f2042017-04-13 19:04:45 +0000926 if (!KnownZero[0] && !KnownOne[0] &&
927 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
928 m_Value(Y))) ||
929 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
930 m_Value(Y))))) {
931 KnownZero2.clearAllBits(); KnownOne2.clearAllBits();
932 computeKnownBits(Y, KnownZero2, KnownOne2, Depth + 1, Q);
933 if (KnownOne2.countTrailingOnes() > 0)
Craig Topper57d8ca72017-03-22 06:19:37 +0000934 KnownZero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000935 }
Jay Foad5a29c362014-05-15 12:12:55 +0000936 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000937 }
938 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
940 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000941
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // Output known-0 bits are only known if clear in both the LHS & RHS.
943 KnownZero &= KnownZero2;
944 // Output known-1 are known to be set if set in either the LHS | RHS.
945 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000946 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000947 }
948 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000949 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
950 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000951
Chris Lattner965c7692008-06-02 01:18:21 +0000952 // Output known-0 bits are known if clear or set in both the LHS & RHS.
953 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
954 // Output known-1 are known to be set if set in only one of the LHS, RHS.
955 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
Craig Topper9ce07b62017-04-13 18:25:53 +0000956 KnownZero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000957 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000958 }
959 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000960 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000961 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000962 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000963 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000964 }
965 case Instruction::UDiv: {
966 // For the purposes of computing leading zeros we can conservatively
967 // treat a udiv as a logical right shift by the power of 2 known to
968 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000969 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000970 unsigned LeadZ = KnownZero2.countLeadingOnes();
971
Jay Foad25a5e4c2010-12-01 08:53:58 +0000972 KnownOne2.clearAllBits();
973 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000974 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000975 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
976 if (RHSUnknownLeadingOnes != BitWidth)
977 LeadZ = std::min(BitWidth,
978 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
979
Craig Topper2bd95142017-03-24 03:57:24 +0000980 KnownZero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000981 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000982 }
David Majnemera19d0f22016-08-06 08:16:00 +0000983 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000984 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000985 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
986 if (SelectPatternResult::isMinOrMax(SPF)) {
987 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
988 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
989 } else {
990 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
991 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
992 }
993
994 unsigned MaxHighOnes = 0;
995 unsigned MaxHighZeros = 0;
996 if (SPF == SPF_SMAX) {
997 // If both sides are negative, the result is negative.
Craig Topperd23004c2017-04-17 16:38:20 +0000998 if (KnownOne.isSignBitSet() && KnownOne2.isSignBitSet())
David Majnemera19d0f22016-08-06 08:16:00 +0000999 // We can derive a lower bound on the result by taking the max of the
1000 // leading one bits.
1001 MaxHighOnes =
1002 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1003 // If either side is non-negative, the result is non-negative.
Craig Topperd23004c2017-04-17 16:38:20 +00001004 else if (KnownZero.isSignBitSet() || KnownZero2.isSignBitSet())
David Majnemera19d0f22016-08-06 08:16:00 +00001005 MaxHighZeros = 1;
1006 } else if (SPF == SPF_SMIN) {
1007 // If both sides are non-negative, the result is non-negative.
Craig Topperd23004c2017-04-17 16:38:20 +00001008 if (KnownZero.isSignBitSet() && KnownZero2.isSignBitSet())
David Majnemera19d0f22016-08-06 08:16:00 +00001009 // We can derive an upper bound on the result by taking the max of the
1010 // leading zero bits.
1011 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1012 KnownZero2.countLeadingOnes());
1013 // If either side is negative, the result is negative.
Craig Topperd23004c2017-04-17 16:38:20 +00001014 else if (KnownOne.isSignBitSet() || KnownOne2.isSignBitSet())
David Majnemera19d0f22016-08-06 08:16:00 +00001015 MaxHighOnes = 1;
1016 } else if (SPF == SPF_UMAX) {
1017 // We can derive a lower bound on the result by taking the max of the
1018 // leading one bits.
1019 MaxHighOnes =
1020 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1021 } else if (SPF == SPF_UMIN) {
1022 // We can derive an upper bound on the result by taking the max of the
1023 // leading zero bits.
1024 MaxHighZeros =
1025 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1026 }
1027
Chris Lattner965c7692008-06-02 01:18:21 +00001028 // Only known if known in both the LHS and RHS.
1029 KnownOne &= KnownOne2;
1030 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001031 if (MaxHighOnes > 0)
Craig Topper57d8ca72017-03-22 06:19:37 +00001032 KnownOne.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001033 if (MaxHighZeros > 0)
Craig Topper57d8ca72017-03-22 06:19:37 +00001034 KnownZero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001035 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001036 }
Chris Lattner965c7692008-06-02 01:18:21 +00001037 case Instruction::FPTrunc:
1038 case Instruction::FPExt:
1039 case Instruction::FPToUI:
1040 case Instruction::FPToSI:
1041 case Instruction::SIToFP:
1042 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001043 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001044 case Instruction::PtrToInt:
1045 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001046 // Fall through and handle them the same as zext/trunc.
1047 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001048 case Instruction::ZExt:
1049 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001050 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001051
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001052 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001053 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1054 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001055 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001056
1057 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001058 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1059 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001060 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001061 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1062 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001063 // Any top bits are known to be zero.
1064 if (BitWidth > SrcBitWidth)
Craig Topper57d8ca72017-03-22 06:19:37 +00001065 KnownZero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001066 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001067 }
1068 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001070 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001071 // TODO: For now, not handling conversions like:
1072 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001073 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001074 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001075 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001076 }
1077 break;
1078 }
1079 case Instruction::SExt: {
1080 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001081 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001082
Jay Foad583abbc2010-12-07 08:25:19 +00001083 KnownZero = KnownZero.trunc(SrcBitWidth);
1084 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001085 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001086 // If the sign bit of the input is known set or clear, then we know the
1087 // top bits of the result.
Craig Topperf8631cd2017-04-14 06:43:29 +00001088 KnownZero = KnownZero.sext(BitWidth);
1089 KnownOne = KnownOne.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001090 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001091 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001092 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001093 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001094 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001095 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1096 APInt KZResult = KnownZero << ShiftAmt;
1097 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001098 // If this shift has "nsw" keyword, then the result is either a poison
1099 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001100 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001101 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001102 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001103 };
1104
Craig Topperd73c6b42017-03-23 07:06:39 +00001105 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001106 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001107 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001108 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001109 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001110 };
1111
1112 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001113 KnownZero2, KnownOne2, Depth, Q, KZF,
1114 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001115 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001116 }
1117 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001118 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001119 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1120 APInt KZResult = KnownZero.lshr(ShiftAmt);
1121 // High bits known zero.
1122 KZResult.setHighBits(ShiftAmt);
1123 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001124 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001125
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001126 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001127 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001128 };
1129
1130 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001131 KnownZero2, KnownOne2, Depth, Q, KZF,
1132 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001133 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001134 }
1135 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001136 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001137 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001138 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001139 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001140
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001141 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001142 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001143 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001144
Hal Finkelf2199b22015-10-23 20:37:08 +00001145 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001146 KnownZero2, KnownOne2, Depth, Q, KZF,
1147 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001148 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001149 }
Chris Lattner965c7692008-06-02 01:18:21 +00001150 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001151 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001152 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001153 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1154 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001155 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001156 }
Chris Lattner965c7692008-06-02 01:18:21 +00001157 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001158 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001159 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001160 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1161 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001162 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001163 }
1164 case Instruction::SRem:
1165 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001166 APInt RA = Rem->getValue().abs();
1167 if (RA.isPowerOf2()) {
1168 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001169 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001170 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001171
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001172 // The low bits of the first operand are unchanged by the srem.
1173 KnownZero = KnownZero2 & LowBits;
1174 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001175
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001176 // If the first operand is non-negative or has all low bits zero, then
1177 // the upper bits are all zero.
Craig Topperd23004c2017-04-17 16:38:20 +00001178 if (KnownZero2.isSignBitSet() || ((KnownZero2 & LowBits) == LowBits))
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001179 KnownZero |= ~LowBits;
1180
1181 // If the first operand is negative and not all low bits are zero, then
1182 // the upper bits are all one.
Craig Topperd23004c2017-04-17 16:38:20 +00001183 if (KnownOne2.isSignBitSet() && ((KnownOne2 & LowBits) != 0))
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001184 KnownOne |= ~LowBits;
1185
Craig Topper1bef2c82012-12-22 19:15:35 +00001186 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001187 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001188 }
1189 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001190
1191 // The sign bit is the LHS's sign bit, except when the result of the
1192 // remainder is zero.
Craig Topperda886c62017-04-16 21:46:12 +00001193 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1194 // If it's known zero, our sign bit is also zero.
Craig Topperd23004c2017-04-17 16:38:20 +00001195 if (KnownZero2.isSignBitSet())
Craig Topperda886c62017-04-16 21:46:12 +00001196 KnownZero.setSignBit();
Nick Lewyckye4679792011-03-07 01:50:10 +00001197
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 case Instruction::URem: {
1200 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001201 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001202 if (RA.isPowerOf2()) {
1203 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001205 KnownZero |= ~LowBits;
1206 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001207 break;
1208 }
1209 }
1210
1211 // Since the result is less than or equal to either operand, any leading
1212 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001213 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1214 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001215
Chris Lattner4612ae12009-01-20 18:22:57 +00001216 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001217 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001218 KnownOne.clearAllBits();
Craig Topperd73c6b42017-03-23 07:06:39 +00001219 KnownZero.clearAllBits();
1220 KnownZero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001221 break;
1222 }
1223
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001224 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001225 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001226 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001227 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001228 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001229
Chris Lattner965c7692008-06-02 01:18:21 +00001230 if (Align > 0)
Craig Topper2bd95142017-03-24 03:57:24 +00001231 KnownZero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001232 break;
1233 }
1234 case Instruction::GetElementPtr: {
1235 // Analyze all of the subscripts of this getelementptr instruction
1236 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001237 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001238 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1239 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001240 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1241
1242 gep_type_iterator GTI = gep_type_begin(I);
1243 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1244 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001245 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001246 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001247
1248 // Handle case when index is vector zeroinitializer
1249 Constant *CIndex = cast<Constant>(Index);
1250 if (CIndex->isZeroValue())
1251 continue;
1252
1253 if (CIndex->getType()->isVectorTy())
1254 Index = CIndex->getSplatValue();
1255
Chris Lattner965c7692008-06-02 01:18:21 +00001256 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001257 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001258 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001259 TrailZ = std::min<unsigned>(TrailZ,
1260 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001261 } else {
1262 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001263 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001264 if (!IndexedTy->isSized()) {
1265 TrailZ = 0;
1266 break;
1267 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001268 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001269 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001270 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001271 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001272 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001273 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001274 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001275 }
1276 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001277
Craig Topper2bd95142017-03-24 03:57:24 +00001278 KnownZero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001279 break;
1280 }
1281 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001282 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001283 // Handle the case of a simple two-predecessor recurrence PHI.
1284 // There's a lot more that could theoretically be done here, but
1285 // this is sufficient to catch some interesting cases.
1286 if (P->getNumIncomingValues() == 2) {
1287 for (unsigned i = 0; i != 2; ++i) {
1288 Value *L = P->getIncomingValue(i);
1289 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001290 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001291 if (!LU)
1292 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001293 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001294 // Check for operations that have the property that if
1295 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001296 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001297 if (Opcode == Instruction::Add ||
1298 Opcode == Instruction::Sub ||
1299 Opcode == Instruction::And ||
1300 Opcode == Instruction::Or ||
1301 Opcode == Instruction::Mul) {
1302 Value *LL = LU->getOperand(0);
1303 Value *LR = LU->getOperand(1);
1304 // Find a recurrence.
1305 if (LL == I)
1306 L = LR;
1307 else if (LR == I)
1308 L = LL;
1309 else
1310 break;
1311 // Ok, we have a PHI of the form L op= R. Check for low
1312 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001313 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001314
1315 // We need to take the minimum number of known bits
1316 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001317 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001318
Craig Topper2bd95142017-03-24 03:57:24 +00001319 KnownZero.setLowBits(std::min(KnownZero2.countTrailingOnes(),
1320 KnownZero3.countTrailingOnes()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001321
1322 if (DontImproveNonNegativePhiBits)
1323 break;
1324
1325 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1326 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1327 // If initial value of recurrence is nonnegative, and we are adding
1328 // a nonnegative number with nsw, the result can only be nonnegative
1329 // or poison value regardless of the number of times we execute the
1330 // add in phi recurrence. If initial value is negative and we are
1331 // adding a negative number with nsw, the result can only be
1332 // negative or poison value. Similar arguments apply to sub and mul.
1333 //
1334 // (add non-negative, non-negative) --> non-negative
1335 // (add negative, negative) --> negative
1336 if (Opcode == Instruction::Add) {
Craig Topperd23004c2017-04-17 16:38:20 +00001337 if (KnownZero2.isSignBitSet() && KnownZero3.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001338 KnownZero.setSignBit();
Craig Topperd23004c2017-04-17 16:38:20 +00001339 else if (KnownOne2.isSignBitSet() && KnownOne3.isSignBitSet())
Craig Topper2bd95142017-03-24 03:57:24 +00001340 KnownOne.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001341 }
1342
1343 // (sub nsw non-negative, negative) --> non-negative
1344 // (sub nsw negative, non-negative) --> negative
1345 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperd23004c2017-04-17 16:38:20 +00001346 if (KnownZero2.isSignBitSet() && KnownOne3.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001347 KnownZero.setSignBit();
Craig Topperd23004c2017-04-17 16:38:20 +00001348 else if (KnownOne2.isSignBitSet() && KnownZero3.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001349 KnownOne.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001350 }
1351
1352 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperd23004c2017-04-17 16:38:20 +00001353 else if (Opcode == Instruction::Mul && KnownZero2.isSignBitSet() &&
1354 KnownZero3.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001355 KnownZero.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001356 }
1357
Chris Lattner965c7692008-06-02 01:18:21 +00001358 break;
1359 }
1360 }
1361 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001362
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001363 // Unreachable blocks may have zero-operand PHI nodes.
1364 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001365 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001366
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001367 // Otherwise take the unions of the known bit sets of the operands,
1368 // taking conservative care to avoid excessive recursion.
1369 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001370 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001371 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001372 break;
1373
Craig Topperd73c6b42017-03-23 07:06:39 +00001374 KnownZero.setAllBits();
1375 KnownOne.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001376 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001377 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001378 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001379
1380 KnownZero2 = APInt(BitWidth, 0);
1381 KnownOne2 = APInt(BitWidth, 0);
1382 // Recurse, but cap the recursion to one level, because we don't
1383 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001384 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001385 KnownZero &= KnownZero2;
1386 KnownOne &= KnownOne2;
1387 // If all bits have been ruled out, there's no need to check
1388 // more operands.
1389 if (!KnownZero && !KnownOne)
1390 break;
1391 }
1392 }
Chris Lattner965c7692008-06-02 01:18:21 +00001393 break;
1394 }
1395 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001396 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001397 // If range metadata is attached to this call, set known bits from that,
1398 // and then intersect with known bits based on other properties of the
1399 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001400 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001401 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001402 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001403 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1404 KnownZero |= KnownZero2;
1405 KnownOne |= KnownOne2;
1406 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001407 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001408 switch (II->getIntrinsicID()) {
1409 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001410 case Intrinsic::bitreverse:
1411 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topperad5c2d02017-03-22 07:22:49 +00001412 KnownZero |= KnownZero2.reverseBits();
1413 KnownOne |= KnownOne2.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001414 break;
Philip Reames675418e2015-10-06 20:20:45 +00001415 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001416 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001417 KnownZero |= KnownZero2.byteSwap();
1418 KnownOne |= KnownOne2.byteSwap();
1419 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001420 case Intrinsic::ctlz:
1421 case Intrinsic::cttz: {
1422 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001423 // If this call is undefined for 0, the result will be less than 2^n.
1424 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1425 LowBits -= 1;
Craig Topper57d8ca72017-03-22 06:19:37 +00001426 KnownZero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001427 break;
1428 }
1429 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001430 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001431 // We can bound the space the count needs. Also, bits known to be zero
1432 // can't contribute to the population.
1433 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001434 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1435 KnownZero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001436 // TODO: we could bound KnownOne using the lower bound on the number
1437 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001438 break;
1439 }
Chad Rosierb3628842011-05-26 23:13:19 +00001440 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topper57d8ca72017-03-22 06:19:37 +00001441 KnownZero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001442 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001443 }
1444 }
1445 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001446 case Instruction::ExtractElement:
1447 // Look through extract element. At the moment we keep this simple and skip
1448 // tracking the specific element. But at least we might find information
1449 // valid for all elements of the vector (for example if vector is sign
1450 // extended, shifted, etc).
1451 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1452 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001453 case Instruction::ExtractValue:
1454 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001455 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001456 if (EVI->getNumIndices() != 1) break;
1457 if (EVI->getIndices()[0] == 0) {
1458 switch (II->getIntrinsicID()) {
1459 default: break;
1460 case Intrinsic::uadd_with_overflow:
1461 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001462 computeKnownBitsAddSub(true, II->getArgOperand(0),
1463 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001464 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001465 break;
1466 case Intrinsic::usub_with_overflow:
1467 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001468 computeKnownBitsAddSub(false, II->getArgOperand(0),
1469 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001470 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001471 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001472 case Intrinsic::umul_with_overflow:
1473 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001474 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001475 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1476 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001477 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001478 }
1479 }
1480 }
Chris Lattner965c7692008-06-02 01:18:21 +00001481 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001482}
1483
1484/// Determine which bits of V are known to be either zero or one and return
1485/// them in the KnownZero/KnownOne bit sets.
1486///
1487/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1488/// we cannot optimize based on the assumption that it is zero without changing
1489/// it to be an explicit zero. If we don't change it to zero, other code could
1490/// optimized based on the contradictory assumption that it is non-zero.
1491/// Because instcombine aggressively folds operations with undef args anyway,
1492/// this won't lose us code quality.
1493///
1494/// This function is defined on values with integer type, values with pointer
1495/// type, and vectors of integers. In the case
1496/// where V is a vector, known zero, and known one values are the
1497/// same width as the vector element, and the bit is set only if it is true
1498/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001499void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001500 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001501 assert(V && "No Value?");
1502 assert(Depth <= MaxDepth && "Limit Search Depth");
1503 unsigned BitWidth = KnownZero.getBitWidth();
1504
1505 assert((V->getType()->isIntOrIntVectorTy() ||
1506 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001507 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001508 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509 (!V->getType()->isIntOrIntVectorTy() ||
1510 V->getType()->getScalarSizeInBits() == BitWidth) &&
1511 KnownZero.getBitWidth() == BitWidth &&
1512 KnownOne.getBitWidth() == BitWidth &&
1513 "V, KnownOne and KnownZero should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001514 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001515
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001516 const APInt *C;
1517 if (match(V, m_APInt(C))) {
1518 // We know all of the bits for a scalar constant or a splat vector constant!
1519 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001520 KnownZero = ~KnownOne;
1521 return;
1522 }
1523 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001524 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001525 KnownOne.clearAllBits();
Craig Topperd73c6b42017-03-23 07:06:39 +00001526 KnownZero.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001527 return;
1528 }
1529 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001530 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001531 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001532 // We know that CDS must be a vector of integers. Take the intersection of
1533 // each element.
1534 KnownZero.setAllBits(); KnownOne.setAllBits();
1535 APInt Elt(KnownZero.getBitWidth(), 0);
1536 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1537 Elt = CDS->getElementAsInteger(i);
1538 KnownZero &= ~Elt;
1539 KnownOne &= Elt;
1540 }
1541 return;
1542 }
1543
Pete Cooper35b00d52016-08-13 01:05:32 +00001544 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001545 // We know that CV must be a vector of integers. Take the intersection of
1546 // each element.
1547 KnownZero.setAllBits(); KnownOne.setAllBits();
1548 APInt Elt(KnownZero.getBitWidth(), 0);
1549 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1550 Constant *Element = CV->getAggregateElement(i);
1551 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1552 if (!ElementCI) {
1553 KnownZero.clearAllBits();
1554 KnownOne.clearAllBits();
1555 return;
1556 }
1557 Elt = ElementCI->getValue();
1558 KnownZero &= ~Elt;
1559 KnownOne &= Elt;
1560 }
1561 return;
1562 }
1563
Jingyue Wu12b0c282015-06-15 05:46:29 +00001564 // Start out not knowing anything.
1565 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1566
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001567 // We can't imply anything about undefs.
1568 if (isa<UndefValue>(V))
1569 return;
1570
1571 // There's no point in looking through other users of ConstantData for
1572 // assumptions. Confirm that we've handled them all.
1573 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1574
Jingyue Wu12b0c282015-06-15 05:46:29 +00001575 // Limit search depth.
1576 // All recursive calls that increase depth must come after this.
1577 if (Depth == MaxDepth)
1578 return;
1579
1580 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1581 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001582 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001583 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001585 return;
1586 }
1587
Pete Cooper35b00d52016-08-13 01:05:32 +00001588 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001589 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001590
Artur Pilipenko029d8532015-09-30 11:55:45 +00001591 // Aligned pointers have trailing zeros - refine KnownZero set
1592 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001593 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001594 if (Align)
Craig Topper57d8ca72017-03-22 06:19:37 +00001595 KnownZero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001596 }
1597
Philip Reames146307e2016-03-03 19:44:06 +00001598 // computeKnownBitsFromAssume strictly refines KnownZero and
1599 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001600
1601 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001602 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001603
Jay Foad5a29c362014-05-15 12:12:55 +00001604 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001605}
1606
Sanjay Patelaee84212014-11-04 16:27:42 +00001607/// Determine whether the sign bit is known to be zero or one.
1608/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001609void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001610 unsigned Depth, const Query &Q) {
1611 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001612 if (!BitWidth) {
1613 KnownZero = false;
1614 KnownOne = false;
1615 return;
1616 }
1617 APInt ZeroBits(BitWidth, 0);
1618 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001619 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Craig Topperd23004c2017-04-17 16:38:20 +00001620 KnownOne = OneBits.isSignBitSet();
1621 KnownZero = ZeroBits.isSignBitSet();
Duncan Sandsd3951082011-01-25 09:38:29 +00001622}
1623
Sanjay Patelaee84212014-11-04 16:27:42 +00001624/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001625/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001626/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001627/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001628bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001629 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001630 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001631 if (C->isNullValue())
1632 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001633
1634 const APInt *ConstIntOrConstSplatInt;
1635 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1636 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001637 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001638
1639 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1640 // it is shifted off the end then the result is undefined.
1641 if (match(V, m_Shl(m_One(), m_Value())))
1642 return true;
1643
Craig Topperbcfd2d12017-04-20 16:56:25 +00001644 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1645 // the bottom. If it is shifted off the bottom then the result is undefined.
1646 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001647 return true;
1648
1649 // The remaining tests are all recursive, so bail out if we hit the limit.
1650 if (Depth++ == MaxDepth)
1651 return false;
1652
Craig Topper9f008862014-04-15 04:59:12 +00001653 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001654 // A shift left or a logical shift right of a power of two is a power of two
1655 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001656 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001657 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001658 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001659
Pete Cooper35b00d52016-08-13 01:05:32 +00001660 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001661 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001662
Pete Cooper35b00d52016-08-13 01:05:32 +00001663 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001664 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1665 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001666
Duncan Sandsba286d72011-10-26 20:55:21 +00001667 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1668 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001669 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1670 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001671 return true;
1672 // X & (-X) is always a power of two or zero.
1673 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1674 return true;
1675 return false;
1676 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001677
David Majnemerb7d54092013-07-30 21:01:36 +00001678 // Adding a power-of-two or zero to the same power-of-two or zero yields
1679 // either the original power-of-two, a larger power-of-two or zero.
1680 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001681 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001682 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1683 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1684 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001685 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001686 return true;
1687 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1688 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001689 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001690 return true;
1691
1692 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1693 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001694 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001695
1696 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001697 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001698 // If i8 V is a power of two or zero:
1699 // ZeroBits: 1 1 1 0 1 1 1 1
1700 // ~ZeroBits: 0 0 0 1 0 0 0 0
1701 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1702 // If OrZero isn't set, we cannot give back a zero result.
1703 // Make sure either the LHS or RHS has a bit set.
1704 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1705 return true;
1706 }
1707 }
David Majnemerbeab5672013-05-18 19:30:37 +00001708
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001709 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001710 // is a power of two only if the first operand is a power of two and not
1711 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001712 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1713 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001714 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001715 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001716 }
1717
Duncan Sandsd3951082011-01-25 09:38:29 +00001718 return false;
1719}
1720
Chandler Carruth80d3e562012-12-07 02:08:58 +00001721/// \brief Test whether a GEP's result is known to be non-null.
1722///
1723/// Uses properties inherent in a GEP to try to determine whether it is known
1724/// to be non-null.
1725///
1726/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001727static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001728 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001729 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1730 return false;
1731
1732 // FIXME: Support vector-GEPs.
1733 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1734
1735 // If the base pointer is non-null, we cannot walk to a null address with an
1736 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001737 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001738 return true;
1739
Chandler Carruth80d3e562012-12-07 02:08:58 +00001740 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1741 // If so, then the GEP cannot produce a null pointer, as doing so would
1742 // inherently violate the inbounds contract within address space zero.
1743 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1744 GTI != GTE; ++GTI) {
1745 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001746 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001747 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1748 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001749 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001750 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1751 if (ElementOffset > 0)
1752 return true;
1753 continue;
1754 }
1755
1756 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001757 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001758 continue;
1759
1760 // Fast path the constant operand case both for efficiency and so we don't
1761 // increment Depth when just zipping down an all-constant GEP.
1762 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1763 if (!OpC->isZero())
1764 return true;
1765 continue;
1766 }
1767
1768 // We post-increment Depth here because while isKnownNonZero increments it
1769 // as well, when we pop back up that increment won't persist. We don't want
1770 // to recurse 10k times just because we have 10k GEP operands. We don't
1771 // bail completely out because we want to handle constant GEPs regardless
1772 // of depth.
1773 if (Depth++ >= MaxDepth)
1774 continue;
1775
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001776 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001777 return true;
1778 }
1779
1780 return false;
1781}
1782
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001783/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1784/// ensure that the value it's attached to is never Value? 'RangeType' is
1785/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001786static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001787 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1788 assert(NumRanges >= 1);
1789 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001790 ConstantInt *Lower =
1791 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1792 ConstantInt *Upper =
1793 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001794 ConstantRange Range(Lower->getValue(), Upper->getValue());
1795 if (Range.contains(Value))
1796 return false;
1797 }
1798 return true;
1799}
1800
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001801/// Return true if the given value is known to be non-zero when defined. For
1802/// vectors, return true if every element is known to be non-zero when
1803/// defined. For pointers, if the context instruction and dominator tree are
1804/// specified, perform context-sensitive analysis and return true if the
1805/// pointer couldn't possibly be null at the specified instruction.
1806/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001807bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001808 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001809 if (C->isNullValue())
1810 return false;
1811 if (isa<ConstantInt>(C))
1812 // Must be non-zero due to null test above.
1813 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001814
1815 // For constant vectors, check that all elements are undefined or known
1816 // non-zero to determine that the whole vector is known non-zero.
1817 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1818 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1819 Constant *Elt = C->getAggregateElement(i);
1820 if (!Elt || Elt->isNullValue())
1821 return false;
1822 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1823 return false;
1824 }
1825 return true;
1826 }
1827
Duncan Sandsd3951082011-01-25 09:38:29 +00001828 return false;
1829 }
1830
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001831 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001832 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001833 // If the possible ranges don't contain zero, then the value is
1834 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001835 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001836 const APInt ZeroValue(Ty->getBitWidth(), 0);
1837 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1838 return true;
1839 }
1840 }
1841 }
1842
Duncan Sandsd3951082011-01-25 09:38:29 +00001843 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001844 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001845 return false;
1846
Chandler Carruth80d3e562012-12-07 02:08:58 +00001847 // Check for pointer simplifications.
1848 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001849 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001850 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001851 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001852 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001853 return true;
1854 }
1855
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001856 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001857
1858 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001859 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001861 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001862
1863 // ext X != 0 if X != 0.
1864 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001865 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001866
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001867 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001868 // if the lowest bit is shifted off the end.
1869 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001870 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001871 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001872 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001874
Duncan Sandsd3951082011-01-25 09:38:29 +00001875 APInt KnownZero(BitWidth, 0);
1876 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001877 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001878 if (KnownOne[0])
1879 return true;
1880 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001881 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001882 // defined if the sign bit is shifted off the end.
1883 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001884 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001885 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001886 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001887 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001888
Duncan Sandsd3951082011-01-25 09:38:29 +00001889 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001890 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001891 if (XKnownNegative)
1892 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001893
1894 // If the shifter operand is a constant, and all of the bits shifted
1895 // out are known to be zero, and X is known non-zero then at least one
1896 // non-zero bit must remain.
1897 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1898 APInt KnownZero(BitWidth, 0);
1899 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001900 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001901
James Molloyb6be1eb2015-09-24 16:06:32 +00001902 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1903 // Is there a known one in the portion not shifted out?
1904 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1905 return true;
1906 // Are all the bits to be shifted out known zero?
1907 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001909 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001910 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001911 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001912 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001914 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001915 // X + Y.
1916 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1917 bool XKnownNonNegative, XKnownNegative;
1918 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001919 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1920 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001921
1922 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001923 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001924 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001925 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001926 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001927
1928 // If X and Y are both negative (as signed values) then their sum is not
1929 // zero unless both X and Y equal INT_MIN.
1930 if (BitWidth && XKnownNegative && YKnownNegative) {
1931 APInt KnownZero(BitWidth, 0);
1932 APInt KnownOne(BitWidth, 0);
1933 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1934 // The sign bit of X is set. If some other bit is set then X is not equal
1935 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001937 if ((KnownOne & Mask) != 0)
1938 return true;
1939 // The sign bit of Y is set. If some other bit is set then Y is not equal
1940 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001941 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001942 if ((KnownOne & Mask) != 0)
1943 return true;
1944 }
1945
1946 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001947 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001948 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001949 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001950 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001951 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001952 return true;
1953 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001954 // X * Y.
1955 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001956 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001957 // If X and Y are non-zero then so is X * Y as long as the multiplication
1958 // does not overflow.
1959 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001960 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001961 return true;
1962 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001963 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001964 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001965 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1966 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 return true;
1968 }
James Molloy897048b2015-09-29 14:08:45 +00001969 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001970 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001971 // Try and detect a recurrence that monotonically increases from a
1972 // starting value, as these are common as induction variables.
1973 if (PN->getNumIncomingValues() == 2) {
1974 Value *Start = PN->getIncomingValue(0);
1975 Value *Induction = PN->getIncomingValue(1);
1976 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1977 std::swap(Start, Induction);
1978 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1979 if (!C->isZero() && !C->isNegative()) {
1980 ConstantInt *X;
1981 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1982 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1983 !X->isNegative())
1984 return true;
1985 }
1986 }
1987 }
Jun Bum Limca832662016-02-01 17:03:07 +00001988 // Check if all incoming values are non-zero constant.
1989 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1990 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1991 });
1992 if (AllNonZeroConstants)
1993 return true;
James Molloy897048b2015-09-29 14:08:45 +00001994 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001995
1996 if (!BitWidth) return false;
1997 APInt KnownZero(BitWidth, 0);
1998 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001999 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002000 return KnownOne != 0;
2001}
2002
James Molloy1d88d6f2015-10-22 13:18:42 +00002003/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002004static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2005 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002006 if (!BO || BO->getOpcode() != Instruction::Add)
2007 return false;
2008 Value *Op = nullptr;
2009 if (V2 == BO->getOperand(0))
2010 Op = BO->getOperand(1);
2011 else if (V2 == BO->getOperand(1))
2012 Op = BO->getOperand(0);
2013 else
2014 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002015 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002016}
2017
2018/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002019static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002020 if (V1->getType()->isVectorTy() || V1 == V2)
2021 return false;
2022 if (V1->getType() != V2->getType())
2023 // We can't look through casts yet.
2024 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002026 return true;
2027
2028 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2029 // Are any known bits in V1 contradictory to known bits in V2? If V1
2030 // has a known zero where V2 has a known one, they must not be equal.
2031 auto BitWidth = Ty->getBitWidth();
2032 APInt KnownZero1(BitWidth, 0);
2033 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002034 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002035 APInt KnownZero2(BitWidth, 0);
2036 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002038
2039 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2040 if (OppositeBits.getBoolValue())
2041 return true;
2042 }
2043 return false;
2044}
2045
Sanjay Patelaee84212014-11-04 16:27:42 +00002046/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2047/// simplify operations downstream. Mask is known to be zero for bits that V
2048/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002049///
2050/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002051/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002052/// where V is a vector, the mask, known zero, and known one values are the
2053/// same width as the vector element, and the bit is set only if it is true
2054/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002055bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002056 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002057 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002058 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002059 return (KnownZero & Mask) == Mask;
2060}
2061
Sanjay Patela06d9892016-06-22 19:20:59 +00002062/// For vector constants, loop over the elements and find the constant with the
2063/// minimum number of sign bits. Return 0 if the value is not a vector constant
2064/// or if any element was not analyzed; otherwise, return the count for the
2065/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002066static unsigned computeNumSignBitsVectorConstant(const Value *V,
2067 unsigned TyBits) {
2068 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002069 if (!CV || !CV->getType()->isVectorTy())
2070 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002071
Sanjay Patela06d9892016-06-22 19:20:59 +00002072 unsigned MinSignBits = TyBits;
2073 unsigned NumElts = CV->getType()->getVectorNumElements();
2074 for (unsigned i = 0; i != NumElts; ++i) {
2075 // If we find a non-ConstantInt, bail out.
2076 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2077 if (!Elt)
2078 return 0;
2079
2080 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2081 APInt EltVal = Elt->getValue();
2082 if (EltVal.isNegative())
2083 EltVal = ~EltVal;
2084 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2085 }
2086
2087 return MinSignBits;
2088}
Chris Lattner965c7692008-06-02 01:18:21 +00002089
Sanjoy Das39a684d2017-02-25 20:30:45 +00002090static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2091 const Query &Q);
2092
2093static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2094 const Query &Q) {
2095 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2096 assert(Result > 0 && "At least one sign bit needs to be present!");
2097 return Result;
2098}
2099
Sanjay Patelaee84212014-11-04 16:27:42 +00002100/// Return the number of times the sign bit of the register is replicated into
2101/// the other bits. We know that at least 1 bit is always equal to the sign bit
2102/// (itself), but other cases can give us information. For example, immediately
2103/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002104/// other, so we return 3. For vectors, return the number of sign bits for the
2105/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002106static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2107 const Query &Q) {
2108
2109 // We return the minimum number of sign bits that are guaranteed to be present
2110 // in V, so for undef we have to conservatively return 1. We don't have the
2111 // same behavior for poison though -- that's a FIXME today.
2112
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002113 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002114 unsigned Tmp, Tmp2;
2115 unsigned FirstAnswer = 1;
2116
Jay Foada0653a32014-05-14 21:14:37 +00002117 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002118 // below.
2119
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002120 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002121 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002122
Pete Cooper35b00d52016-08-13 01:05:32 +00002123 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002124 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002125 default: break;
2126 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002127 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002128 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002129
Nadav Rotemc99a3872015-03-06 00:23:58 +00002130 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002131 const APInt *Denominator;
2132 // sdiv X, C -> adds log(C) sign bits.
2133 if (match(U->getOperand(1), m_APInt(Denominator))) {
2134
2135 // Ignore non-positive denominator.
2136 if (!Denominator->isStrictlyPositive())
2137 break;
2138
2139 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002140 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002141
2142 // Add floor(log(C)) bits to the numerator bits.
2143 return std::min(TyBits, NumBits + Denominator->logBase2());
2144 }
2145 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002146 }
2147
2148 case Instruction::SRem: {
2149 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002150 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2151 // positive constant. This let us put a lower bound on the number of sign
2152 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002153 if (match(U->getOperand(1), m_APInt(Denominator))) {
2154
2155 // Ignore non-positive denominator.
2156 if (!Denominator->isStrictlyPositive())
2157 break;
2158
2159 // Calculate the incoming numerator bits. SRem by a positive constant
2160 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002161 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002162 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002163
2164 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002165 // denominator. Given that the denominator is positive, there are two
2166 // cases:
2167 //
2168 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2169 // (1 << ceilLogBase2(C)).
2170 //
2171 // 2. the numerator is negative. Then the result range is (-C,0] and
2172 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2173 //
2174 // Thus a lower bound on the number of sign bits is `TyBits -
2175 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002176
Sanjoy Dase561fee2015-03-25 22:33:53 +00002177 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002178 return std::max(NumrBits, ResBits);
2179 }
2180 break;
2181 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002182
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002183 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002184 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002185 // ashr X, C -> adds C sign bits. Vectors too.
2186 const APInt *ShAmt;
2187 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002188 unsigned ShAmtLimited = ShAmt->getZExtValue();
2189 if (ShAmtLimited >= TyBits)
2190 break; // Bad shift.
2191 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002192 if (Tmp > TyBits) Tmp = TyBits;
2193 }
2194 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002195 }
2196 case Instruction::Shl: {
2197 const APInt *ShAmt;
2198 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002199 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002200 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002201 Tmp2 = ShAmt->getZExtValue();
2202 if (Tmp2 >= TyBits || // Bad shift.
2203 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2204 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002205 }
2206 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002207 }
Chris Lattner965c7692008-06-02 01:18:21 +00002208 case Instruction::And:
2209 case Instruction::Or:
2210 case Instruction::Xor: // NOT is handled here.
2211 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002212 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002213 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002214 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002215 FirstAnswer = std::min(Tmp, Tmp2);
2216 // We computed what we know about the sign bits as our first
2217 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002218 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002219 }
2220 break;
2221
2222 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002223 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002224 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002225 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002226 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002227
Chris Lattner965c7692008-06-02 01:18:21 +00002228 case Instruction::Add:
2229 // Add can have at most one carry bit. Thus we know that the output
2230 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002231 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002232 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002233
Chris Lattner965c7692008-06-02 01:18:21 +00002234 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002235 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002236 if (CRHS->isAllOnesValue()) {
2237 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002238 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002239
Chris Lattner965c7692008-06-02 01:18:21 +00002240 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2241 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002242 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002243 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002244
Chris Lattner965c7692008-06-02 01:18:21 +00002245 // If we are subtracting one from a positive number, there is no carry
2246 // out of the result.
Craig Topperd23004c2017-04-17 16:38:20 +00002247 if (KnownZero.isSignBitSet())
Chris Lattner965c7692008-06-02 01:18:21 +00002248 return Tmp;
2249 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002250
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002251 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002252 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002253 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002254
Chris Lattner965c7692008-06-02 01:18:21 +00002255 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002256 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002257 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002258
Chris Lattner965c7692008-06-02 01:18:21 +00002259 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002260 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002261 if (CLHS->isNullValue()) {
2262 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002263 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002264 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2265 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002266 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002267 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Chris Lattner965c7692008-06-02 01:18:21 +00002269 // If the input is known to be positive (the sign bit is known clear),
2270 // the output of the NEG has the same number of sign bits as the input.
Craig Topperd23004c2017-04-17 16:38:20 +00002271 if (KnownZero.isSignBitSet())
Chris Lattner965c7692008-06-02 01:18:21 +00002272 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002273
Chris Lattner965c7692008-06-02 01:18:21 +00002274 // Otherwise, we treat this like a SUB.
2275 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002276
Chris Lattner965c7692008-06-02 01:18:21 +00002277 // Sub can have at most one carry bit. Thus we know that the output
2278 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002279 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002280 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002281 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002282
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002283 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002284 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002285 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002286 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002287 if (NumIncomingValues > 4) break;
2288 // Unreachable blocks may have zero-operand PHI nodes.
2289 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002291 // Take the minimum of all incoming values. This can't infinitely loop
2292 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002293 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002294 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002295 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002296 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002297 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002298 }
2299 return Tmp;
2300 }
2301
Chris Lattner965c7692008-06-02 01:18:21 +00002302 case Instruction::Trunc:
2303 // FIXME: it's tricky to do anything useful for this, but it is an important
2304 // case for targets like X86.
2305 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002306
2307 case Instruction::ExtractElement:
2308 // Look through extract element. At the moment we keep this simple and skip
2309 // tracking the specific element. But at least we might find information
2310 // valid for all elements of the vector (for example if vector is sign
2311 // extended, shifted, etc).
2312 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002313 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002314
Chris Lattner965c7692008-06-02 01:18:21 +00002315 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2316 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002317
2318 // If we can examine all elements of a vector constant successfully, we're
2319 // done (we can't do any better than that). If not, keep trying.
2320 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2321 return VecSignBits;
2322
Chris Lattner965c7692008-06-02 01:18:21 +00002323 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002324 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002325
Sanjay Patele0536212016-06-23 17:41:59 +00002326 // If we know that the sign bit is either zero or one, determine the number of
2327 // identical bits in the top of the input value.
Craig Topperd23004c2017-04-17 16:38:20 +00002328 if (KnownZero.isSignBitSet())
Sanjay Patele0536212016-06-23 17:41:59 +00002329 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Craig Topperd23004c2017-04-17 16:38:20 +00002331 if (KnownOne.isSignBitSet())
Sanjay Patele0536212016-06-23 17:41:59 +00002332 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2333
2334 // computeKnownBits gave us no extra information about the top bits.
2335 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002336}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002337
Sanjay Patelaee84212014-11-04 16:27:42 +00002338/// This function computes the integer multiple of Base that equals V.
2339/// If successful, it returns true and returns the multiple in
2340/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002341/// through SExt instructions only if LookThroughSExt is true.
2342bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002343 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002344 const unsigned MaxDepth = 6;
2345
Dan Gohman6a976bb2009-11-18 00:58:27 +00002346 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002347 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002348 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002349
Chris Lattner229907c2011-07-18 04:54:35 +00002350 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002351
Dan Gohman6a976bb2009-11-18 00:58:27 +00002352 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002353
2354 if (Base == 0)
2355 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002356
Victor Hernandez47444882009-11-10 08:28:35 +00002357 if (Base == 1) {
2358 Multiple = V;
2359 return true;
2360 }
2361
2362 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2363 Constant *BaseVal = ConstantInt::get(T, Base);
2364 if (CO && CO == BaseVal) {
2365 // Multiple is 1.
2366 Multiple = ConstantInt::get(T, 1);
2367 return true;
2368 }
2369
2370 if (CI && CI->getZExtValue() % Base == 0) {
2371 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002372 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002373 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002374
Victor Hernandez47444882009-11-10 08:28:35 +00002375 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002376
Victor Hernandez47444882009-11-10 08:28:35 +00002377 Operator *I = dyn_cast<Operator>(V);
2378 if (!I) return false;
2379
2380 switch (I->getOpcode()) {
2381 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002382 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002383 if (!LookThroughSExt) return false;
2384 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002385 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002386 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2387 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002388 case Instruction::Shl:
2389 case Instruction::Mul: {
2390 Value *Op0 = I->getOperand(0);
2391 Value *Op1 = I->getOperand(1);
2392
2393 if (I->getOpcode() == Instruction::Shl) {
2394 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2395 if (!Op1CI) return false;
2396 // Turn Op0 << Op1 into Op0 * 2^Op1
2397 APInt Op1Int = Op1CI->getValue();
2398 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002399 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002400 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002401 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002402 }
2403
Craig Topper9f008862014-04-15 04:59:12 +00002404 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002405 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2406 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2407 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002408 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002409 MulC->getType()->getPrimitiveSizeInBits())
2410 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002411 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002412 MulC->getType()->getPrimitiveSizeInBits())
2413 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002414
Chris Lattner72d283c2010-09-05 17:20:46 +00002415 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2416 Multiple = ConstantExpr::getMul(MulC, Op1C);
2417 return true;
2418 }
Victor Hernandez47444882009-11-10 08:28:35 +00002419
2420 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2421 if (Mul0CI->getValue() == 1) {
2422 // V == Base * Op1, so return Op1
2423 Multiple = Op1;
2424 return true;
2425 }
2426 }
2427
Craig Topper9f008862014-04-15 04:59:12 +00002428 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002429 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2430 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2431 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002432 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002433 MulC->getType()->getPrimitiveSizeInBits())
2434 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002435 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002436 MulC->getType()->getPrimitiveSizeInBits())
2437 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002438
Chris Lattner72d283c2010-09-05 17:20:46 +00002439 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2440 Multiple = ConstantExpr::getMul(MulC, Op0C);
2441 return true;
2442 }
Victor Hernandez47444882009-11-10 08:28:35 +00002443
2444 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2445 if (Mul1CI->getValue() == 1) {
2446 // V == Base * Op0, so return Op0
2447 Multiple = Op0;
2448 return true;
2449 }
2450 }
Victor Hernandez47444882009-11-10 08:28:35 +00002451 }
2452 }
2453
2454 // We could not determine if V is a multiple of Base.
2455 return false;
2456}
2457
David Majnemerb4b27232016-04-19 19:10:21 +00002458Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2459 const TargetLibraryInfo *TLI) {
2460 const Function *F = ICS.getCalledFunction();
2461 if (!F)
2462 return Intrinsic::not_intrinsic;
2463
2464 if (F->isIntrinsic())
2465 return F->getIntrinsicID();
2466
2467 if (!TLI)
2468 return Intrinsic::not_intrinsic;
2469
David L. Jonesd21529f2017-01-23 23:16:46 +00002470 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002471 // We're going to make assumptions on the semantics of the functions, check
2472 // that the target knows that it's available in this environment and it does
2473 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002474 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2475 return Intrinsic::not_intrinsic;
2476
2477 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002478 return Intrinsic::not_intrinsic;
2479
2480 // Otherwise check if we have a call to a function that can be turned into a
2481 // vector intrinsic.
2482 switch (Func) {
2483 default:
2484 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002485 case LibFunc_sin:
2486 case LibFunc_sinf:
2487 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002488 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002489 case LibFunc_cos:
2490 case LibFunc_cosf:
2491 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002492 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002493 case LibFunc_exp:
2494 case LibFunc_expf:
2495 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002496 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002497 case LibFunc_exp2:
2498 case LibFunc_exp2f:
2499 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002500 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002501 case LibFunc_log:
2502 case LibFunc_logf:
2503 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002504 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002505 case LibFunc_log10:
2506 case LibFunc_log10f:
2507 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002508 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002509 case LibFunc_log2:
2510 case LibFunc_log2f:
2511 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002512 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002513 case LibFunc_fabs:
2514 case LibFunc_fabsf:
2515 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002516 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002517 case LibFunc_fmin:
2518 case LibFunc_fminf:
2519 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002520 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002521 case LibFunc_fmax:
2522 case LibFunc_fmaxf:
2523 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002524 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002525 case LibFunc_copysign:
2526 case LibFunc_copysignf:
2527 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002528 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002529 case LibFunc_floor:
2530 case LibFunc_floorf:
2531 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002532 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002533 case LibFunc_ceil:
2534 case LibFunc_ceilf:
2535 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002536 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002537 case LibFunc_trunc:
2538 case LibFunc_truncf:
2539 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002540 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002541 case LibFunc_rint:
2542 case LibFunc_rintf:
2543 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002544 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002545 case LibFunc_nearbyint:
2546 case LibFunc_nearbyintf:
2547 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002548 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002549 case LibFunc_round:
2550 case LibFunc_roundf:
2551 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002552 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002553 case LibFunc_pow:
2554 case LibFunc_powf:
2555 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002556 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002557 case LibFunc_sqrt:
2558 case LibFunc_sqrtf:
2559 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002560 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002561 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002562 return Intrinsic::not_intrinsic;
2563 }
2564
2565 return Intrinsic::not_intrinsic;
2566}
2567
Sanjay Patelaee84212014-11-04 16:27:42 +00002568/// Return true if we can prove that the specified FP value is never equal to
2569/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002570///
2571/// NOTE: this function will need to be revisited when we support non-default
2572/// rounding modes!
2573///
David Majnemer3ee5f342016-04-13 06:55:52 +00002574bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2575 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002576 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2577 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002578
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002579 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002580 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002581
Dan Gohman80ca01c2009-07-17 20:47:02 +00002582 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002583 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002584
2585 // Check if the nsz fast-math flag is set
2586 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2587 if (FPO->hasNoSignedZeros())
2588 return true;
2589
Chris Lattnera12a6de2008-06-02 01:29:46 +00002590 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002591 if (I->getOpcode() == Instruction::FAdd)
2592 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2593 if (CFP->isNullValue())
2594 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002595
Chris Lattnera12a6de2008-06-02 01:29:46 +00002596 // sitofp and uitofp turn into +0.0 for zero.
2597 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2598 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002599
David Majnemer3ee5f342016-04-13 06:55:52 +00002600 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002601 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002602 switch (IID) {
2603 default:
2604 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002605 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002606 case Intrinsic::sqrt:
2607 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2608 // fabs(x) != -0.0
2609 case Intrinsic::fabs:
2610 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002611 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002612 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002613
Chris Lattnera12a6de2008-06-02 01:29:46 +00002614 return false;
2615}
2616
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002617/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2618/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2619/// bit despite comparing equal.
2620static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2621 const TargetLibraryInfo *TLI,
2622 bool SignBitOnly,
2623 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002624 // TODO: This function does not do the right thing when SignBitOnly is true
2625 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2626 // which flips the sign bits of NaNs. See
2627 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2628
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002629 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2630 return !CFP->getValueAPF().isNegative() ||
2631 (!SignBitOnly && CFP->getValueAPF().isZero());
2632 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002633
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002634 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002635 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002636
2637 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002638 if (!I)
2639 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002640
2641 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002642 default:
2643 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002644 // Unsigned integers are always nonnegative.
2645 case Instruction::UIToFP:
2646 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002647 case Instruction::FMul:
2648 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002649 if (I->getOperand(0) == I->getOperand(1) &&
2650 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002651 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002652
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002653 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002654 case Instruction::FAdd:
2655 case Instruction::FDiv:
2656 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002657 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2658 Depth + 1) &&
2659 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2660 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002661 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002662 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2663 Depth + 1) &&
2664 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2665 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002666 case Instruction::FPExt:
2667 case Instruction::FPTrunc:
2668 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002669 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2670 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002671 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002672 const auto *CI = cast<CallInst>(I);
2673 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002674 switch (IID) {
2675 default:
2676 break;
2677 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002678 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2679 Depth + 1) ||
2680 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2681 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002682 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002683 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2684 Depth + 1) &&
2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2686 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002687 case Intrinsic::exp:
2688 case Intrinsic::exp2:
2689 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002690 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002691
2692 case Intrinsic::sqrt:
2693 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2694 if (!SignBitOnly)
2695 return true;
2696 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2697 CannotBeNegativeZero(CI->getOperand(0), TLI));
2698
David Majnemer3ee5f342016-04-13 06:55:52 +00002699 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002700 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002701 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002702 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002703 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002704 }
Justin Lebar322c1272017-01-27 00:58:34 +00002705 // TODO: This is not correct. Given that exp is an integer, here are the
2706 // ways that pow can return a negative value:
2707 //
2708 // pow(x, exp) --> negative if exp is odd and x is negative.
2709 // pow(-0, exp) --> -inf if exp is negative odd.
2710 // pow(-0, exp) --> -0 if exp is positive odd.
2711 // pow(-inf, exp) --> -0 if exp is negative odd.
2712 // pow(-inf, exp) --> -inf if exp is positive odd.
2713 //
2714 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2715 // but we must return false if x == -0. Unfortunately we do not currently
2716 // have a way of expressing this constraint. See details in
2717 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002718 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2719 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002720
David Majnemer3ee5f342016-04-13 06:55:52 +00002721 case Intrinsic::fma:
2722 case Intrinsic::fmuladd:
2723 // x*x+y is non-negative if y is non-negative.
2724 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002725 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2726 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2727 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002728 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002729 break;
2730 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002731 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002732}
2733
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002734bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2735 const TargetLibraryInfo *TLI) {
2736 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2737}
2738
2739bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2740 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2741}
2742
Sanjay Patelaee84212014-11-04 16:27:42 +00002743/// If the specified value can be set by repeating the same byte in memory,
2744/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002745/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2746/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2747/// byte store (e.g. i16 0x1234), return null.
2748Value *llvm::isBytewiseValue(Value *V) {
2749 // All byte-wide stores are splatable, even of arbitrary variables.
2750 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002751
2752 // Handle 'null' ConstantArrayZero etc.
2753 if (Constant *C = dyn_cast<Constant>(V))
2754 if (C->isNullValue())
2755 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002756
Chris Lattner9cb10352010-12-26 20:15:01 +00002757 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002758 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002759 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2760 if (CFP->getType()->isFloatTy())
2761 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2762 if (CFP->getType()->isDoubleTy())
2763 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2764 // Don't handle long double formats, which have strange constraints.
2765 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002766
Benjamin Kramer17d90152015-02-07 19:29:02 +00002767 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002768 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002769 if (CI->getBitWidth() % 8 == 0) {
2770 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002771
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002772 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002773 return nullptr;
2774 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002775 }
2776 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002777
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002778 // A ConstantDataArray/Vector is splatable if all its members are equal and
2779 // also splatable.
2780 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2781 Value *Elt = CA->getElementAsConstant(0);
2782 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002783 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002784 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002785
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002786 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2787 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002788 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002789
Chris Lattner9cb10352010-12-26 20:15:01 +00002790 return Val;
2791 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002792
Chris Lattner9cb10352010-12-26 20:15:01 +00002793 // Conceptually, we could handle things like:
2794 // %a = zext i8 %X to i16
2795 // %b = shl i16 %a, 8
2796 // %c = or i16 %a, %b
2797 // but until there is an example that actually needs this, it doesn't seem
2798 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002799 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002800}
2801
2802
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002803// This is the recursive version of BuildSubAggregate. It takes a few different
2804// arguments. Idxs is the index within the nested struct From that we are
2805// looking at now (which is of type IndexedType). IdxSkip is the number of
2806// indices from Idxs that should be left out when inserting into the resulting
2807// struct. To is the result struct built so far, new insertvalue instructions
2808// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002809static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002810 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002811 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002812 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002813 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002814 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002815 // Save the original To argument so we can modify it
2816 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002817 // General case, the type indexed by Idxs is a struct
2818 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2819 // Process each struct element recursively
2820 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002821 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002822 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002823 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002824 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002825 if (!To) {
2826 // Couldn't find any inserted value for this index? Cleanup
2827 while (PrevTo != OrigTo) {
2828 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2829 PrevTo = Del->getAggregateOperand();
2830 Del->eraseFromParent();
2831 }
2832 // Stop processing elements
2833 break;
2834 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002835 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002836 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002837 if (To)
2838 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002839 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002840 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2841 // the struct's elements had a value that was inserted directly. In the latter
2842 // case, perhaps we can't determine each of the subelements individually, but
2843 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002844
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002845 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002846 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002847
2848 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002849 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002850
2851 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002852 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002853 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002854}
2855
2856// This helper takes a nested struct and extracts a part of it (which is again a
2857// struct) into a new value. For example, given the struct:
2858// { a, { b, { c, d }, e } }
2859// and the indices "1, 1" this returns
2860// { c, d }.
2861//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002862// It does this by inserting an insertvalue for each element in the resulting
2863// struct, as opposed to just inserting a single struct. This will only work if
2864// each of the elements of the substruct are known (ie, inserted into From by an
2865// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002866//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002867// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002868static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002869 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002870 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002871 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002872 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002873 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002874 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002875 unsigned IdxSkip = Idxs.size();
2876
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002877 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002878}
2879
Sanjay Patelaee84212014-11-04 16:27:42 +00002880/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002881/// the scalar value indexed is already around as a register, for example if it
2882/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002883///
2884/// If InsertBefore is not null, this function will duplicate (modified)
2885/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002886Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2887 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002888 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002889 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002890 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002891 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002892 // We have indices, so V should have an indexable type.
2893 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2894 "Not looking at a struct or array?");
2895 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2896 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002897
Chris Lattner67058832012-01-25 06:48:06 +00002898 if (Constant *C = dyn_cast<Constant>(V)) {
2899 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002900 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002901 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2902 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002903
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002904 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002905 // Loop the indices for the insertvalue instruction in parallel with the
2906 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002907 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002908 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2909 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002910 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002911 // We can't handle this without inserting insertvalues
2912 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002913 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002914
2915 // The requested index identifies a part of a nested aggregate. Handle
2916 // this specially. For example,
2917 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2918 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2919 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2920 // This can be changed into
2921 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2922 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2923 // which allows the unused 0,0 element from the nested struct to be
2924 // removed.
2925 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2926 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002927 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002928
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002929 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002930 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002931 // looking for, then.
2932 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002933 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002934 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002935 }
2936 // If we end up here, the indices of the insertvalue match with those
2937 // requested (though possibly only partially). Now we recursively look at
2938 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002939 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002940 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002941 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002942 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002943
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002944 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002945 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002946 // something else, we can extract from that something else directly instead.
2947 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002948
2949 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002950 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002951 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002952 SmallVector<unsigned, 5> Idxs;
2953 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002954 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002955 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002956
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002957 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002958 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002959
Craig Topper1bef2c82012-12-22 19:15:35 +00002960 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002961 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002962
Jay Foad57aa6362011-07-13 10:26:04 +00002963 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002964 }
2965 // Otherwise, we don't know (such as, extracting from a function return value
2966 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002967 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002968}
Evan Chengda3db112008-06-30 07:31:25 +00002969
Sanjay Patelaee84212014-11-04 16:27:42 +00002970/// Analyze the specified pointer to see if it can be expressed as a base
2971/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002972Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002973 const DataLayout &DL) {
2974 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002975 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002976
2977 // We walk up the defs but use a visited set to handle unreachable code. In
2978 // that case, we stop after accumulating the cycle once (not that it
2979 // matters).
2980 SmallPtrSet<Value *, 16> Visited;
2981 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002982 if (Ptr->getType()->isVectorTy())
2983 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002984
Nuno Lopes368c4d02012-12-31 20:48:35 +00002985 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002986 // If one of the values we have visited is an addrspacecast, then
2987 // the pointer type of this GEP may be different from the type
2988 // of the Ptr parameter which was passed to this function. This
2989 // means when we construct GEPOffset, we need to use the size
2990 // of GEP's pointer type rather than the size of the original
2991 // pointer type.
2992 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002993 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2994 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002995
Tom Stellard17eb3412016-10-07 14:23:29 +00002996 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002997
Nuno Lopes368c4d02012-12-31 20:48:35 +00002998 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002999 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3000 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003001 Ptr = cast<Operator>(Ptr)->getOperand(0);
3002 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003003 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003004 break;
3005 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003006 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003007 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003008 }
3009 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003010 Offset = ByteOffset.getSExtValue();
3011 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003012}
3013
David L Kreitzer752c1442016-04-13 14:31:06 +00003014bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3015 // Make sure the GEP has exactly three arguments.
3016 if (GEP->getNumOperands() != 3)
3017 return false;
3018
3019 // Make sure the index-ee is a pointer to array of i8.
3020 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3021 if (!AT || !AT->getElementType()->isIntegerTy(8))
3022 return false;
3023
3024 // Check to make sure that the first operand of the GEP is an integer and
3025 // has value 0 so that we are sure we're indexing into the initializer.
3026 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3027 if (!FirstIdx || !FirstIdx->isZero())
3028 return false;
3029
3030 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003031}
Chris Lattnere28618d2010-11-30 22:25:26 +00003032
Sanjay Patelaee84212014-11-04 16:27:42 +00003033/// This function computes the length of a null-terminated C string pointed to
3034/// by V. If successful, it returns true and returns the string in Str.
3035/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003036bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3037 uint64_t Offset, bool TrimAtNul) {
3038 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003039
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003040 // Look through bitcast instructions and geps.
3041 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003042
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003043 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003044 // offset.
3045 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003046 // The GEP operator should be based on a pointer to string constant, and is
3047 // indexing into the string constant.
3048 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003049 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003050
Evan Chengda3db112008-06-30 07:31:25 +00003051 // If the second index isn't a ConstantInt, then this is a variable index
3052 // into the array. If this occurs, we can't say anything meaningful about
3053 // the string.
3054 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003055 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003056 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003057 else
3058 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003059 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3060 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003061 }
Nick Lewycky46209882011-10-20 00:34:35 +00003062
Evan Chengda3db112008-06-30 07:31:25 +00003063 // The GEP instruction, constant or instruction, must reference a global
3064 // variable that is a constant and is initialized. The referenced constant
3065 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003066 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003067 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003068 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003069
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003070 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003071 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003072 // This is a degenerate case. The initializer is constant zero so the
3073 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003074 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003075 return true;
3076 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003077
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003078 // This must be a ConstantDataArray.
3079 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003080 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003081 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003082
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003083 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003084 uint64_t NumElts = Array->getType()->getArrayNumElements();
3085
3086 // Start out with the entire array in the StringRef.
3087 Str = Array->getAsString();
3088
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003089 if (Offset > NumElts)
3090 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003091
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003092 // Skip over 'offset' bytes.
3093 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003094
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003095 if (TrimAtNul) {
3096 // Trim off the \0 and anything after it. If the array is not nul
3097 // terminated, we just return the whole end of string. The client may know
3098 // some other way that the string is length-bound.
3099 Str = Str.substr(0, Str.find('\0'));
3100 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003101 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003102}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003103
3104// These next two are very similar to the above, but also look through PHI
3105// nodes.
3106// TODO: See if we can integrate these two together.
3107
Sanjay Patelaee84212014-11-04 16:27:42 +00003108/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003109/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003110static uint64_t GetStringLengthH(const Value *V,
3111 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003112 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003113 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003114
3115 // If this is a PHI node, there are two cases: either we have already seen it
3116 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003117 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003118 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003119 return ~0ULL; // already in the set.
3120
3121 // If it was new, see if all the input strings are the same length.
3122 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003123 for (Value *IncValue : PN->incoming_values()) {
3124 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003125 if (Len == 0) return 0; // Unknown length -> unknown.
3126
3127 if (Len == ~0ULL) continue;
3128
3129 if (Len != LenSoFar && LenSoFar != ~0ULL)
3130 return 0; // Disagree -> unknown.
3131 LenSoFar = Len;
3132 }
3133
3134 // Success, all agree.
3135 return LenSoFar;
3136 }
3137
3138 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003139 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003140 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3141 if (Len1 == 0) return 0;
3142 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3143 if (Len2 == 0) return 0;
3144 if (Len1 == ~0ULL) return Len2;
3145 if (Len2 == ~0ULL) return Len1;
3146 if (Len1 != Len2) return 0;
3147 return Len1;
3148 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003149
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003150 // Otherwise, see if we can read the string.
3151 StringRef StrData;
3152 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003153 return 0;
3154
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003155 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003156}
3157
Sanjay Patelaee84212014-11-04 16:27:42 +00003158/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003159/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003160uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003161 if (!V->getType()->isPointerTy()) return 0;
3162
Pete Cooper35b00d52016-08-13 01:05:32 +00003163 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003164 uint64_t Len = GetStringLengthH(V, PHIs);
3165 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3166 // an empty string as a length.
3167 return Len == ~0ULL ? 1 : Len;
3168}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003169
Adam Nemete2b885c2015-04-23 20:09:20 +00003170/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3171/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003172static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3173 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003174 // Find the loop-defined value.
3175 Loop *L = LI->getLoopFor(PN->getParent());
3176 if (PN->getNumIncomingValues() != 2)
3177 return true;
3178
3179 // Find the value from previous iteration.
3180 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3181 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3182 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3183 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3184 return true;
3185
3186 // If a new pointer is loaded in the loop, the pointer references a different
3187 // object in every iteration. E.g.:
3188 // for (i)
3189 // int *p = a[i];
3190 // ...
3191 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3192 if (!L->isLoopInvariant(Load->getPointerOperand()))
3193 return false;
3194 return true;
3195}
3196
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003197Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3198 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003199 if (!V->getType()->isPointerTy())
3200 return V;
3201 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3202 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3203 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003204 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3205 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003206 V = cast<Operator>(V)->getOperand(0);
3207 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003208 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003209 return V;
3210 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003211 } else if (isa<AllocaInst>(V)) {
3212 // An alloca can't be further simplified.
3213 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003214 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003215 if (auto CS = CallSite(V))
3216 if (Value *RV = CS.getReturnedArgOperand()) {
3217 V = RV;
3218 continue;
3219 }
3220
Dan Gohman05b18f12010-12-15 20:49:55 +00003221 // See if InstructionSimplify knows any relevant tricks.
3222 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003223 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003224 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003225 V = Simplified;
3226 continue;
3227 }
3228
Dan Gohmana4fcd242010-12-15 20:02:24 +00003229 return V;
3230 }
3231 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3232 }
3233 return V;
3234}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003235
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003236void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003237 const DataLayout &DL, LoopInfo *LI,
3238 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003239 SmallPtrSet<Value *, 4> Visited;
3240 SmallVector<Value *, 4> Worklist;
3241 Worklist.push_back(V);
3242 do {
3243 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003244 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003245
David Blaikie70573dc2014-11-19 07:49:26 +00003246 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003247 continue;
3248
3249 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3250 Worklist.push_back(SI->getTrueValue());
3251 Worklist.push_back(SI->getFalseValue());
3252 continue;
3253 }
3254
3255 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003256 // If this PHI changes the underlying object in every iteration of the
3257 // loop, don't look through it. Consider:
3258 // int **A;
3259 // for (i) {
3260 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3261 // Curr = A[i];
3262 // *Prev, *Curr;
3263 //
3264 // Prev is tracking Curr one iteration behind so they refer to different
3265 // underlying objects.
3266 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3267 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003268 for (Value *IncValue : PN->incoming_values())
3269 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003270 continue;
3271 }
3272
3273 Objects.push_back(P);
3274 } while (!Worklist.empty());
3275}
3276
Sanjay Patelaee84212014-11-04 16:27:42 +00003277/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003278bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003279 for (const User *U : V->users()) {
3280 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003281 if (!II) return false;
3282
3283 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3284 II->getIntrinsicID() != Intrinsic::lifetime_end)
3285 return false;
3286 }
3287 return true;
3288}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003289
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003290bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3291 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003292 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003293 const Operator *Inst = dyn_cast<Operator>(V);
3294 if (!Inst)
3295 return false;
3296
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003297 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3298 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3299 if (C->canTrap())
3300 return false;
3301
3302 switch (Inst->getOpcode()) {
3303 default:
3304 return true;
3305 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003306 case Instruction::URem: {
3307 // x / y is undefined if y == 0.
3308 const APInt *V;
3309 if (match(Inst->getOperand(1), m_APInt(V)))
3310 return *V != 0;
3311 return false;
3312 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003313 case Instruction::SDiv:
3314 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003315 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003316 const APInt *Numerator, *Denominator;
3317 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3318 return false;
3319 // We cannot hoist this division if the denominator is 0.
3320 if (*Denominator == 0)
3321 return false;
3322 // It's safe to hoist if the denominator is not 0 or -1.
3323 if (*Denominator != -1)
3324 return true;
3325 // At this point we know that the denominator is -1. It is safe to hoist as
3326 // long we know that the numerator is not INT_MIN.
3327 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3328 return !Numerator->isMinSignedValue();
3329 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003330 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003331 }
3332 case Instruction::Load: {
3333 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003334 if (!LI->isUnordered() ||
3335 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003336 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003337 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003338 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003339 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003340 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003341 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3342 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003343 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003344 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003345 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3346 switch (II->getIntrinsicID()) {
3347 // These synthetic intrinsics have no side-effects and just mark
3348 // information about their operands.
3349 // FIXME: There are other no-op synthetic instructions that potentially
3350 // should be considered at least *safe* to speculate...
3351 case Intrinsic::dbg_declare:
3352 case Intrinsic::dbg_value:
3353 return true;
3354
Xin Tongc13a8e82017-01-09 17:57:08 +00003355 case Intrinsic::bitreverse:
David Majnemer0a92f862015-08-28 21:13:39 +00003356 case Intrinsic::bswap:
3357 case Intrinsic::ctlz:
3358 case Intrinsic::ctpop:
3359 case Intrinsic::cttz:
3360 case Intrinsic::objectsize:
3361 case Intrinsic::sadd_with_overflow:
3362 case Intrinsic::smul_with_overflow:
3363 case Intrinsic::ssub_with_overflow:
3364 case Intrinsic::uadd_with_overflow:
3365 case Intrinsic::umul_with_overflow:
3366 case Intrinsic::usub_with_overflow:
3367 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003368 // These intrinsics are defined to have the same behavior as libm
3369 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003370 case Intrinsic::sqrt:
3371 case Intrinsic::fma:
3372 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003373 return true;
3374 // These intrinsics are defined to have the same behavior as libm
3375 // functions, and the corresponding libm functions never set errno.
3376 case Intrinsic::trunc:
3377 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003378 case Intrinsic::fabs:
3379 case Intrinsic::minnum:
3380 case Intrinsic::maxnum:
3381 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003382 // These intrinsics are defined to have the same behavior as libm
3383 // functions, which never overflow when operating on the IEEE754 types
3384 // that we support, and never set errno otherwise.
3385 case Intrinsic::ceil:
3386 case Intrinsic::floor:
3387 case Intrinsic::nearbyint:
3388 case Intrinsic::rint:
3389 case Intrinsic::round:
3390 return true;
whitequark16f1e5f2017-01-25 09:32:30 +00003391 // These intrinsics do not correspond to any libm function, and
3392 // do not set errno.
3393 case Intrinsic::powi:
3394 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003395 // TODO: are convert_{from,to}_fp16 safe?
3396 // TODO: can we list target-specific intrinsics here?
3397 default: break;
3398 }
3399 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003400 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003401 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003402 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003403 case Instruction::VAArg:
3404 case Instruction::Alloca:
3405 case Instruction::Invoke:
3406 case Instruction::PHI:
3407 case Instruction::Store:
3408 case Instruction::Ret:
3409 case Instruction::Br:
3410 case Instruction::IndirectBr:
3411 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003412 case Instruction::Unreachable:
3413 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003414 case Instruction::AtomicRMW:
3415 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003416 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003417 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003418 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003419 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003420 case Instruction::CatchRet:
3421 case Instruction::CleanupPad:
3422 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003423 return false; // Misc instructions which have effects
3424 }
3425}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003426
Quentin Colombet6443cce2015-08-06 18:44:34 +00003427bool llvm::mayBeMemoryDependent(const Instruction &I) {
3428 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3429}
3430
Sanjay Patelaee84212014-11-04 16:27:42 +00003431/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003432bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003433 assert(V->getType()->isPointerTy() && "V must be pointer type");
3434
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003435 // Alloca never returns null, malloc might.
3436 if (isa<AllocaInst>(V)) return true;
3437
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003438 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003439 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003440 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003441
Peter Collingbourne235c2752016-12-08 19:01:00 +00003442 // A global variable in address space 0 is non null unless extern weak
3443 // or an absolute symbol reference. Other address spaces may have null as a
3444 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003445 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003446 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003447 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003448
Sanjoy Das5056e192016-05-07 02:08:22 +00003449 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003450 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003451 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003452
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003453 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003454 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003455 return true;
3456
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003457 return false;
3458}
David Majnemer491331a2015-01-02 07:29:43 +00003459
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003460static bool isKnownNonNullFromDominatingCondition(const Value *V,
3461 const Instruction *CtxI,
3462 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003463 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003464 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003465 assert(CtxI && "Context instruction required for analysis");
3466 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003467
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003468 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003469 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003470 // Avoid massive lists
3471 if (NumUsesExplored >= DomConditionsMaxUses)
3472 break;
3473 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003474
3475 // If the value is used as an argument to a call or invoke, then argument
3476 // attributes may provide an answer about null-ness.
3477 if (auto CS = ImmutableCallSite(U))
3478 if (auto *CalledFunc = CS.getCalledFunction())
3479 for (const Argument &Arg : CalledFunc->args())
3480 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3481 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3482 return true;
3483
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003484 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003485 CmpInst::Predicate Pred;
3486 if (!match(const_cast<User *>(U),
3487 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3488 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003489 continue;
3490
Sanjoy Das987aaa12016-05-07 02:08:24 +00003491 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003492 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3493 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003494
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003495 BasicBlock *NonNullSuccessor =
3496 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3497 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3498 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3499 return true;
3500 } else if (Pred == ICmpInst::ICMP_NE &&
3501 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3502 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003503 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003504 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003505 }
3506 }
3507
3508 return false;
3509}
3510
3511bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003512 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003513 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3514 return false;
3515
Sean Silva45835e72016-07-02 23:47:27 +00003516 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003517 return true;
3518
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003519 if (!CtxI || !DT)
3520 return false;
3521
3522 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003523}
3524
Pete Cooper35b00d52016-08-13 01:05:32 +00003525OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3526 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003527 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003528 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003529 const Instruction *CxtI,
3530 const DominatorTree *DT) {
3531 // Multiplying n * m significant bits yields a result of n + m significant
3532 // bits. If the total number of significant bits does not exceed the
3533 // result bit width (minus 1), there is no overflow.
3534 // This means if we have enough leading zero bits in the operands
3535 // we can guarantee that the result does not overflow.
3536 // Ref: "Hacker's Delight" by Henry Warren
3537 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3538 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003539 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003540 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003541 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003542 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3543 DT);
3544 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3545 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003546 // Note that underestimating the number of zero bits gives a more
3547 // conservative answer.
3548 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3549 RHSKnownZero.countLeadingOnes();
3550 // First handle the easy case: if we have enough zero bits there's
3551 // definitely no overflow.
3552 if (ZeroBits >= BitWidth)
3553 return OverflowResult::NeverOverflows;
3554
3555 // Get the largest possible values for each operand.
3556 APInt LHSMax = ~LHSKnownZero;
3557 APInt RHSMax = ~RHSKnownZero;
3558
3559 // We know the multiply operation doesn't overflow if the maximum values for
3560 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003561 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003562 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003563 if (!MaxOverflow)
3564 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003565
David Majnemerc8a576b2015-01-02 07:29:47 +00003566 // We know it always overflows if multiplying the smallest possible values for
3567 // the operands also results in overflow.
3568 bool MinOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003569 (void)LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003570 if (MinOverflow)
3571 return OverflowResult::AlwaysOverflows;
3572
3573 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003574}
David Majnemer5310c1e2015-01-07 00:39:50 +00003575
Pete Cooper35b00d52016-08-13 01:05:32 +00003576OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3577 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003578 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003579 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003580 const Instruction *CxtI,
3581 const DominatorTree *DT) {
3582 bool LHSKnownNonNegative, LHSKnownNegative;
3583 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003584 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003585 if (LHSKnownNonNegative || LHSKnownNegative) {
3586 bool RHSKnownNonNegative, RHSKnownNegative;
3587 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003588 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003589
3590 if (LHSKnownNegative && RHSKnownNegative) {
3591 // The sign bit is set in both cases: this MUST overflow.
3592 // Create a simple add instruction, and insert it into the struct.
3593 return OverflowResult::AlwaysOverflows;
3594 }
3595
3596 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3597 // The sign bit is clear in both cases: this CANNOT overflow.
3598 // Create a simple add instruction, and insert it into the struct.
3599 return OverflowResult::NeverOverflows;
3600 }
3601 }
3602
3603 return OverflowResult::MayOverflow;
3604}
James Molloy71b91c22015-05-11 14:42:20 +00003605
Pete Cooper35b00d52016-08-13 01:05:32 +00003606static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3607 const Value *RHS,
3608 const AddOperator *Add,
3609 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003610 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003611 const Instruction *CxtI,
3612 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003613 if (Add && Add->hasNoSignedWrap()) {
3614 return OverflowResult::NeverOverflows;
3615 }
3616
3617 bool LHSKnownNonNegative, LHSKnownNegative;
3618 bool RHSKnownNonNegative, RHSKnownNegative;
3619 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003620 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003621 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003622 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003623
3624 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3625 (LHSKnownNegative && RHSKnownNonNegative)) {
3626 // The sign bits are opposite: this CANNOT overflow.
3627 return OverflowResult::NeverOverflows;
3628 }
3629
3630 // The remaining code needs Add to be available. Early returns if not so.
3631 if (!Add)
3632 return OverflowResult::MayOverflow;
3633
3634 // If the sign of Add is the same as at least one of the operands, this add
3635 // CANNOT overflow. This is particularly useful when the sum is
3636 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3637 // operands.
3638 bool LHSOrRHSKnownNonNegative =
3639 (LHSKnownNonNegative || RHSKnownNonNegative);
3640 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3641 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3642 bool AddKnownNonNegative, AddKnownNegative;
3643 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003644 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003645 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3646 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3647 return OverflowResult::NeverOverflows;
3648 }
3649 }
3650
3651 return OverflowResult::MayOverflow;
3652}
3653
Pete Cooper35b00d52016-08-13 01:05:32 +00003654bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3655 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003656#ifndef NDEBUG
3657 auto IID = II->getIntrinsicID();
3658 assert((IID == Intrinsic::sadd_with_overflow ||
3659 IID == Intrinsic::uadd_with_overflow ||
3660 IID == Intrinsic::ssub_with_overflow ||
3661 IID == Intrinsic::usub_with_overflow ||
3662 IID == Intrinsic::smul_with_overflow ||
3663 IID == Intrinsic::umul_with_overflow) &&
3664 "Not an overflow intrinsic!");
3665#endif
3666
Pete Cooper35b00d52016-08-13 01:05:32 +00003667 SmallVector<const BranchInst *, 2> GuardingBranches;
3668 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003669
Pete Cooper35b00d52016-08-13 01:05:32 +00003670 for (const User *U : II->users()) {
3671 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003672 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3673
3674 if (EVI->getIndices()[0] == 0)
3675 Results.push_back(EVI);
3676 else {
3677 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3678
Pete Cooper35b00d52016-08-13 01:05:32 +00003679 for (const auto *U : EVI->users())
3680 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003681 assert(B->isConditional() && "How else is it using an i1?");
3682 GuardingBranches.push_back(B);
3683 }
3684 }
3685 } else {
3686 // We are using the aggregate directly in a way we don't want to analyze
3687 // here (storing it to a global, say).
3688 return false;
3689 }
3690 }
3691
Pete Cooper35b00d52016-08-13 01:05:32 +00003692 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003693 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3694 if (!NoWrapEdge.isSingleEdge())
3695 return false;
3696
3697 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003698 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003699 // If the extractvalue itself is not executed on overflow, the we don't
3700 // need to check each use separately, since domination is transitive.
3701 if (DT.dominates(NoWrapEdge, Result->getParent()))
3702 continue;
3703
3704 for (auto &RU : Result->uses())
3705 if (!DT.dominates(NoWrapEdge, RU))
3706 return false;
3707 }
3708
3709 return true;
3710 };
3711
3712 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3713}
3714
3715
Pete Cooper35b00d52016-08-13 01:05:32 +00003716OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003717 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003718 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003719 const Instruction *CxtI,
3720 const DominatorTree *DT) {
3721 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003722 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003723}
3724
Pete Cooper35b00d52016-08-13 01:05:32 +00003725OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3726 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003727 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003728 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003729 const Instruction *CxtI,
3730 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003731 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003732}
3733
Jingyue Wu42f1d672015-07-28 18:22:40 +00003734bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003735 // A memory operation returns normally if it isn't volatile. A volatile
3736 // operation is allowed to trap.
3737 //
3738 // An atomic operation isn't guaranteed to return in a reasonable amount of
3739 // time because it's possible for another thread to interfere with it for an
3740 // arbitrary length of time, but programs aren't allowed to rely on that.
3741 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3742 return !LI->isVolatile();
3743 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3744 return !SI->isVolatile();
3745 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3746 return !CXI->isVolatile();
3747 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3748 return !RMWI->isVolatile();
3749 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3750 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003751
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003752 // If there is no successor, then execution can't transfer to it.
3753 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3754 return !CRI->unwindsToCaller();
3755 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3756 return !CatchSwitch->unwindsToCaller();
3757 if (isa<ResumeInst>(I))
3758 return false;
3759 if (isa<ReturnInst>(I))
3760 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003761 if (isa<UnreachableInst>(I))
3762 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003763
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003764 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003765 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003766 // Call sites that throw have implicit non-local control flow.
3767 if (!CS.doesNotThrow())
3768 return false;
3769
3770 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3771 // etc. and thus not return. However, LLVM already assumes that
3772 //
3773 // - Thread exiting actions are modeled as writes to memory invisible to
3774 // the program.
3775 //
3776 // - Loops that don't have side effects (side effects are volatile/atomic
3777 // stores and IO) always terminate (see http://llvm.org/PR965).
3778 // Furthermore IO itself is also modeled as writes to memory invisible to
3779 // the program.
3780 //
3781 // We rely on those assumptions here, and use the memory effects of the call
3782 // target as a proxy for checking that it always returns.
3783
3784 // FIXME: This isn't aggressive enough; a call which only writes to a global
3785 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003786 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3787 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003788 }
3789
3790 // Other instructions return normally.
3791 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003792}
3793
3794bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3795 const Loop *L) {
3796 // The loop header is guaranteed to be executed for every iteration.
3797 //
3798 // FIXME: Relax this constraint to cover all basic blocks that are
3799 // guaranteed to be executed at every iteration.
3800 if (I->getParent() != L->getHeader()) return false;
3801
3802 for (const Instruction &LI : *L->getHeader()) {
3803 if (&LI == I) return true;
3804 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3805 }
3806 llvm_unreachable("Instruction not contained in its own parent basic block.");
3807}
3808
3809bool llvm::propagatesFullPoison(const Instruction *I) {
3810 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003811 case Instruction::Add:
3812 case Instruction::Sub:
3813 case Instruction::Xor:
3814 case Instruction::Trunc:
3815 case Instruction::BitCast:
3816 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003817 case Instruction::Mul:
3818 case Instruction::Shl:
3819 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003820 // These operations all propagate poison unconditionally. Note that poison
3821 // is not any particular value, so xor or subtraction of poison with
3822 // itself still yields poison, not zero.
3823 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003824
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003825 case Instruction::AShr:
3826 case Instruction::SExt:
3827 // For these operations, one bit of the input is replicated across
3828 // multiple output bits. A replicated poison bit is still poison.
3829 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003830
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003831 case Instruction::ICmp:
3832 // Comparing poison with any value yields poison. This is why, for
3833 // instance, x s< (x +nsw 1) can be folded to true.
3834 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003835
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003836 default:
3837 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003838 }
3839}
3840
3841const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3842 switch (I->getOpcode()) {
3843 case Instruction::Store:
3844 return cast<StoreInst>(I)->getPointerOperand();
3845
3846 case Instruction::Load:
3847 return cast<LoadInst>(I)->getPointerOperand();
3848
3849 case Instruction::AtomicCmpXchg:
3850 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3851
3852 case Instruction::AtomicRMW:
3853 return cast<AtomicRMWInst>(I)->getPointerOperand();
3854
3855 case Instruction::UDiv:
3856 case Instruction::SDiv:
3857 case Instruction::URem:
3858 case Instruction::SRem:
3859 return I->getOperand(1);
3860
3861 default:
3862 return nullptr;
3863 }
3864}
3865
3866bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3867 // We currently only look for uses of poison values within the same basic
3868 // block, as that makes it easier to guarantee that the uses will be
3869 // executed given that PoisonI is executed.
3870 //
3871 // FIXME: Expand this to consider uses beyond the same basic block. To do
3872 // this, look out for the distinction between post-dominance and strong
3873 // post-dominance.
3874 const BasicBlock *BB = PoisonI->getParent();
3875
3876 // Set of instructions that we have proved will yield poison if PoisonI
3877 // does.
3878 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003879 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003880 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003881 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003882
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003883 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003884
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003885 unsigned Iter = 0;
3886 while (Iter++ < MaxDepth) {
3887 for (auto &I : make_range(Begin, End)) {
3888 if (&I != PoisonI) {
3889 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3890 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3891 return true;
3892 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3893 return false;
3894 }
3895
3896 // Mark poison that propagates from I through uses of I.
3897 if (YieldsPoison.count(&I)) {
3898 for (const User *User : I.users()) {
3899 const Instruction *UserI = cast<Instruction>(User);
3900 if (propagatesFullPoison(UserI))
3901 YieldsPoison.insert(User);
3902 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003903 }
3904 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003905
3906 if (auto *NextBB = BB->getSingleSuccessor()) {
3907 if (Visited.insert(NextBB).second) {
3908 BB = NextBB;
3909 Begin = BB->getFirstNonPHI()->getIterator();
3910 End = BB->end();
3911 continue;
3912 }
3913 }
3914
3915 break;
3916 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003917 return false;
3918}
3919
Pete Cooper35b00d52016-08-13 01:05:32 +00003920static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003921 if (FMF.noNaNs())
3922 return true;
3923
3924 if (auto *C = dyn_cast<ConstantFP>(V))
3925 return !C->isNaN();
3926 return false;
3927}
3928
Pete Cooper35b00d52016-08-13 01:05:32 +00003929static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003930 if (auto *C = dyn_cast<ConstantFP>(V))
3931 return !C->isZero();
3932 return false;
3933}
3934
Sanjay Patel819f0962016-11-13 19:30:19 +00003935/// Match non-obvious integer minimum and maximum sequences.
3936static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3937 Value *CmpLHS, Value *CmpRHS,
3938 Value *TrueVal, Value *FalseVal,
3939 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003940 // Assume success. If there's no match, callers should not use these anyway.
3941 LHS = TrueVal;
3942 RHS = FalseVal;
3943
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003944 // Recognize variations of:
3945 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3946 const APInt *C1;
3947 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3948 const APInt *C2;
3949
3950 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3951 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003952 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003953 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003954
3955 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3956 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003957 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003958 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003959
3960 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3961 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003962 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003963 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003964
3965 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3966 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003967 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003968 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003969 }
3970
Sanjay Patel819f0962016-11-13 19:30:19 +00003971 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3972 return {SPF_UNKNOWN, SPNB_NA, false};
3973
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003974 // Z = X -nsw Y
3975 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3976 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3977 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003978 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003979 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003980
3981 // Z = X -nsw Y
3982 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3983 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3984 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003985 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003986 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003987
Sanjay Patel819f0962016-11-13 19:30:19 +00003988 if (!match(CmpRHS, m_APInt(C1)))
3989 return {SPF_UNKNOWN, SPNB_NA, false};
3990
3991 // An unsigned min/max can be written with a signed compare.
3992 const APInt *C2;
3993 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3994 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3995 // Is the sign bit set?
3996 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3997 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00003998 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00003999 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004000
4001 // Is the sign bit clear?
4002 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4003 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4004 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004005 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004006 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004007 }
4008
4009 // Look through 'not' ops to find disguised signed min/max.
4010 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4011 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4012 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004013 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004014 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004015
4016 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4017 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4018 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004019 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004020 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004021
4022 return {SPF_UNKNOWN, SPNB_NA, false};
4023}
4024
James Molloy134bec22015-08-11 09:12:57 +00004025static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4026 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004027 Value *CmpLHS, Value *CmpRHS,
4028 Value *TrueVal, Value *FalseVal,
4029 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004030 LHS = CmpLHS;
4031 RHS = CmpRHS;
4032
James Molloy134bec22015-08-11 09:12:57 +00004033 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4034 // return inconsistent results between implementations.
4035 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4036 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4037 // Therefore we behave conservatively and only proceed if at least one of the
4038 // operands is known to not be zero, or if we don't care about signed zeroes.
4039 switch (Pred) {
4040 default: break;
4041 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4042 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4043 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4044 !isKnownNonZero(CmpRHS))
4045 return {SPF_UNKNOWN, SPNB_NA, false};
4046 }
4047
4048 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4049 bool Ordered = false;
4050
4051 // When given one NaN and one non-NaN input:
4052 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4053 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4054 // ordered comparison fails), which could be NaN or non-NaN.
4055 // so here we discover exactly what NaN behavior is required/accepted.
4056 if (CmpInst::isFPPredicate(Pred)) {
4057 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4058 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4059
4060 if (LHSSafe && RHSSafe) {
4061 // Both operands are known non-NaN.
4062 NaNBehavior = SPNB_RETURNS_ANY;
4063 } else if (CmpInst::isOrdered(Pred)) {
4064 // An ordered comparison will return false when given a NaN, so it
4065 // returns the RHS.
4066 Ordered = true;
4067 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004068 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004069 NaNBehavior = SPNB_RETURNS_NAN;
4070 else if (RHSSafe)
4071 NaNBehavior = SPNB_RETURNS_OTHER;
4072 else
4073 // Completely unsafe.
4074 return {SPF_UNKNOWN, SPNB_NA, false};
4075 } else {
4076 Ordered = false;
4077 // An unordered comparison will return true when given a NaN, so it
4078 // returns the LHS.
4079 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004080 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004081 NaNBehavior = SPNB_RETURNS_OTHER;
4082 else if (RHSSafe)
4083 NaNBehavior = SPNB_RETURNS_NAN;
4084 else
4085 // Completely unsafe.
4086 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004087 }
4088 }
4089
James Molloy71b91c22015-05-11 14:42:20 +00004090 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004091 std::swap(CmpLHS, CmpRHS);
4092 Pred = CmpInst::getSwappedPredicate(Pred);
4093 if (NaNBehavior == SPNB_RETURNS_NAN)
4094 NaNBehavior = SPNB_RETURNS_OTHER;
4095 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4096 NaNBehavior = SPNB_RETURNS_NAN;
4097 Ordered = !Ordered;
4098 }
4099
4100 // ([if]cmp X, Y) ? X : Y
4101 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004102 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004103 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004104 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004105 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004106 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004107 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004108 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004109 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004110 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004111 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4112 case FCmpInst::FCMP_UGT:
4113 case FCmpInst::FCMP_UGE:
4114 case FCmpInst::FCMP_OGT:
4115 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4116 case FCmpInst::FCMP_ULT:
4117 case FCmpInst::FCMP_ULE:
4118 case FCmpInst::FCMP_OLT:
4119 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004120 }
4121 }
4122
Sanjay Patele372aec2016-10-27 15:26:10 +00004123 const APInt *C1;
4124 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004125 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4126 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4127
4128 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4129 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004130 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004131 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004132 }
4133
4134 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4135 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004136 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004137 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004138 }
4139 }
James Molloy71b91c22015-05-11 14:42:20 +00004140 }
4141
Sanjay Patel819f0962016-11-13 19:30:19 +00004142 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004143}
James Molloy270ef8c2015-05-15 16:04:50 +00004144
James Molloy569cea62015-09-02 17:25:25 +00004145static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4146 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004147 auto *Cast1 = dyn_cast<CastInst>(V1);
4148 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004149 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004150
Sanjay Patel14a4b812017-01-29 16:34:57 +00004151 *CastOp = Cast1->getOpcode();
4152 Type *SrcTy = Cast1->getSrcTy();
4153 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4154 // If V1 and V2 are both the same cast from the same type, look through V1.
4155 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4156 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004157 return nullptr;
4158 }
4159
Sanjay Patel14a4b812017-01-29 16:34:57 +00004160 auto *C = dyn_cast<Constant>(V2);
4161 if (!C)
4162 return nullptr;
4163
David Majnemerd2a074b2016-04-29 18:40:34 +00004164 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004165 switch (*CastOp) {
4166 case Instruction::ZExt:
4167 if (CmpI->isUnsigned())
4168 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4169 break;
4170 case Instruction::SExt:
4171 if (CmpI->isSigned())
4172 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4173 break;
4174 case Instruction::Trunc:
4175 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4176 break;
4177 case Instruction::FPTrunc:
4178 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4179 break;
4180 case Instruction::FPExt:
4181 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4182 break;
4183 case Instruction::FPToUI:
4184 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4185 break;
4186 case Instruction::FPToSI:
4187 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4188 break;
4189 case Instruction::UIToFP:
4190 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4191 break;
4192 case Instruction::SIToFP:
4193 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4194 break;
4195 default:
4196 break;
4197 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004198
4199 if (!CastedTo)
4200 return nullptr;
4201
David Majnemerd2a074b2016-04-29 18:40:34 +00004202 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004203 Constant *CastedBack =
4204 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004205 if (CastedBack != C)
4206 return nullptr;
4207
4208 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004209}
4210
Sanjay Patele8dc0902016-05-23 17:57:54 +00004211SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004212 Instruction::CastOps *CastOp) {
4213 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004214 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004215
James Molloy134bec22015-08-11 09:12:57 +00004216 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4217 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004218
James Molloy134bec22015-08-11 09:12:57 +00004219 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004220 Value *CmpLHS = CmpI->getOperand(0);
4221 Value *CmpRHS = CmpI->getOperand(1);
4222 Value *TrueVal = SI->getTrueValue();
4223 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004224 FastMathFlags FMF;
4225 if (isa<FPMathOperator>(CmpI))
4226 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004227
4228 // Bail out early.
4229 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004230 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004231
4232 // Deal with type mismatches.
4233 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004234 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004235 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004236 cast<CastInst>(TrueVal)->getOperand(0), C,
4237 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004238 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004239 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004240 C, cast<CastInst>(FalseVal)->getOperand(0),
4241 LHS, RHS);
4242 }
James Molloy134bec22015-08-11 09:12:57 +00004243 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004244 LHS, RHS);
4245}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004246
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004247/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004248static bool isTruePredicate(CmpInst::Predicate Pred,
4249 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004250 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004251 AssumptionCache *AC, const Instruction *CxtI,
4252 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004253 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004254 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4255 return true;
4256
4257 switch (Pred) {
4258 default:
4259 return false;
4260
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004261 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004262 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004263
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004264 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004265 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004266 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004267 return false;
4268 }
4269
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004270 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004271 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004272
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004273 // LHS u<= LHS +_{nuw} C for any C
4274 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004275 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004276
4277 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004278 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4279 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004280 const APInt *&CA, const APInt *&CB) {
4281 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4282 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4283 return true;
4284
4285 // If X & C == 0 then (X | C) == X +_{nuw} C
4286 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4287 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4288 unsigned BitWidth = CA->getBitWidth();
4289 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004290 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004291
4292 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4293 return true;
4294 }
4295
4296 return false;
4297 };
4298
Pete Cooper35b00d52016-08-13 01:05:32 +00004299 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004300 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004301 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4302 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004303
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004304 return false;
4305 }
4306 }
4307}
4308
4309/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004310/// ALHS ARHS" is true. Otherwise, return None.
4311static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004312isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4313 const Value *ARHS, const Value *BLHS,
4314 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004315 unsigned Depth, AssumptionCache *AC,
4316 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004317 switch (Pred) {
4318 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004319 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004320
4321 case CmpInst::ICMP_SLT:
4322 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004323 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004324 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004325 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004326 return true;
4327 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004328
4329 case CmpInst::ICMP_ULT:
4330 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004331 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4332 DT) &&
4333 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004334 return true;
4335 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004336 }
4337}
4338
Chad Rosier226a7342016-05-05 17:41:19 +00004339/// Return true if the operands of the two compares match. IsSwappedOps is true
4340/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004341static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4342 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004343 bool &IsSwappedOps) {
4344
4345 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4346 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4347 return IsMatchingOps || IsSwappedOps;
4348}
4349
Chad Rosier41dd31f2016-04-20 19:15:26 +00004350/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4351/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4352/// BRHS" is false. Otherwise, return None if we can't infer anything.
4353static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004354 const Value *ALHS,
4355 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004356 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004357 const Value *BLHS,
4358 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004359 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004360 // Canonicalize the operands so they're matching.
4361 if (IsSwappedOps) {
4362 std::swap(BLHS, BRHS);
4363 BPred = ICmpInst::getSwappedPredicate(BPred);
4364 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004365 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004366 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004367 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004368 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004369
Chad Rosier41dd31f2016-04-20 19:15:26 +00004370 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004371}
4372
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004373/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4374/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4375/// C2" is false. Otherwise, return None if we can't infer anything.
4376static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004377isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4378 const ConstantInt *C1,
4379 CmpInst::Predicate BPred,
4380 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004381 assert(ALHS == BLHS && "LHS operands must match.");
4382 ConstantRange DomCR =
4383 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4384 ConstantRange CR =
4385 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4386 ConstantRange Intersection = DomCR.intersectWith(CR);
4387 ConstantRange Difference = DomCR.difference(CR);
4388 if (Intersection.isEmptySet())
4389 return false;
4390 if (Difference.isEmptySet())
4391 return true;
4392 return None;
4393}
4394
Pete Cooper35b00d52016-08-13 01:05:32 +00004395Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004396 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004397 unsigned Depth, AssumptionCache *AC,
4398 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004399 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004400 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4401 if (LHS->getType() != RHS->getType())
4402 return None;
4403
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004404 Type *OpTy = LHS->getType();
4405 assert(OpTy->getScalarType()->isIntegerTy(1));
4406
4407 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004408 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004409 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004410
4411 if (OpTy->isVectorTy())
4412 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004413 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004414 assert(OpTy->isIntegerTy(1) && "implied by above");
4415
4416 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004417 Value *ALHS, *ARHS;
4418 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004419
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004420 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4421 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004422 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004423
Chad Rosiere2cbd132016-04-25 17:23:36 +00004424 if (InvertAPred)
4425 APred = CmpInst::getInversePredicate(APred);
4426
Chad Rosier226a7342016-05-05 17:41:19 +00004427 // Can we infer anything when the two compares have matching operands?
4428 bool IsSwappedOps;
4429 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4430 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4431 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004432 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004433 // No amount of additional analysis will infer the second condition, so
4434 // early exit.
4435 return None;
4436 }
4437
4438 // Can we infer anything when the LHS operands match and the RHS operands are
4439 // constants (not necessarily matching)?
4440 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4441 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4442 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4443 cast<ConstantInt>(BRHS)))
4444 return Implication;
4445 // No amount of additional analysis will infer the second condition, so
4446 // early exit.
4447 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004448 }
4449
Chad Rosier41dd31f2016-04-20 19:15:26 +00004450 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004451 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4452 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004453
Chad Rosier41dd31f2016-04-20 19:15:26 +00004454 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004455}