blob: 6c44b0da45a9dfd98e306b4358c07b60f6238953 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000054// This optimization is known to cause performance regressions is some cases,
55// keep it under a temporary flag for now.
56static cl::opt<bool>
57DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58 cl::Hidden, cl::init(true));
59
Sanjay Patelaee84212014-11-04 16:27:42 +000060/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000063 if (unsigned BitWidth = Ty->getScalarSizeInBits())
64 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000065
Mehdi Aminia28d91d2015-03-10 02:37:25 +000066 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000067}
Chris Lattner965c7692008-06-02 01:18:21 +000068
Benjamin Kramercfd8d902014-09-12 08:56:53 +000069namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000070// Simplifying using an assume can only be done in a particular control-flow
71// context (the context instruction provides that context). If an assume and
72// the context instruction are not in the same block then the DT helps in
73// figuring out if we can use it.
74struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000075 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000076 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000077 const Instruction *CxtI;
78 const DominatorTree *DT;
79
Matthias Braun37e5d792016-01-28 06:29:33 +000080 /// Set of assumptions that should be excluded from further queries.
81 /// This is because of the potential for mutual recursion to cause
82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83 /// classic case of this is assume(x = y), which will attempt to determine
84 /// bits in x from bits in y, which will attempt to determine bits in y from
85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000089 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000090 unsigned NumExcluded;
91
Daniel Jasperaec2fa32016-12-19 08:22:17 +000092 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93 const DominatorTree *DT)
94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000095
96 Query(const Query &Q, const Value *NewExcl)
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +000098 Excluded = Q.Excluded;
99 Excluded[NumExcluded++] = NewExcl;
100 assert(NumExcluded <= Excluded.size());
101 }
102
103 bool isExcluded(const Value *Value) const {
104 if (NumExcluded == 0)
105 return false;
106 auto End = Excluded.begin() + NumExcluded;
107 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000108 }
109};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000110} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000111
Sanjay Patel547e9752014-11-04 16:09:50 +0000112// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000113// the preferred context instruction (if any).
114static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115 // If we've been provided with a context instruction, then use that (provided
116 // it has been inserted).
117 if (CxtI && CxtI->getParent())
118 return CxtI;
119
120 // If the value is really an already-inserted instruction, then use that.
121 CxtI = dyn_cast<Instruction>(V);
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 return nullptr;
126}
127
Pete Cooper35b00d52016-08-13 01:05:32 +0000128static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000130
Pete Cooper35b00d52016-08-13 01:05:32 +0000131void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000132 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000133 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000134 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000136 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000137}
138
Pete Cooper35b00d52016-08-13 01:05:32 +0000139bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000141 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000142 const DominatorTree *DT) {
143 assert(LHS->getType() == RHS->getType() &&
144 "LHS and RHS should have the same type");
145 assert(LHS->getType()->isIntOrIntVectorTy() &&
146 "LHS and RHS should be integers");
147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153}
154
Pete Cooper35b00d52016-08-13 01:05:32 +0000155static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000159 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000161 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000163 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000164}
165
Pete Cooper35b00d52016-08-13 01:05:32 +0000166static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000168
Pete Cooper35b00d52016-08-13 01:05:32 +0000169bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000171 unsigned Depth, AssumptionCache *AC,
172 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000175 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Pete Cooper35b00d52016-08-13 01:05:32 +0000178static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 AssumptionCache *AC, const Instruction *CxtI,
182 const DominatorTree *DT) {
183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000184}
185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 unsigned Depth,
188 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000189 const DominatorTree *DT) {
190 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000192 return NonNegative;
193}
194
Pete Cooper35b00d52016-08-13 01:05:32 +0000195bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 AssumptionCache *AC, const Instruction *CxtI,
197 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000198 if (auto *CI = dyn_cast<ConstantInt>(V))
199 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000200
Philip Reames8f12eba2016-03-09 21:31:47 +0000201 // TODO: We'd doing two recursive queries here. We should factor this such
202 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 AssumptionCache *AC, const Instruction *CxtI,
209 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000210 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000212 return Negative;
213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000216
Pete Cooper35b00d52016-08-13 01:05:32 +0000217bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 const DataLayout &DL,
219 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000220 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000221 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000224}
225
Pete Cooper35b00d52016-08-13 01:05:32 +0000226static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
Pete Cooper35b00d52016-08-13 01:05:32 +0000229bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000231 unsigned Depth, AssumptionCache *AC,
232 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239
Pete Cooper35b00d52016-08-13 01:05:32 +0000240unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000241 unsigned Depth, AssumptionCache *AC,
242 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000243 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000249 APInt &KnownZero, APInt &KnownOne,
250 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000251 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000252 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000254 // We know that the top bits of C-X are clear if X contains less bits
255 // than C (i.e. no wrap-around can happen). For example, 20-X is
256 // positive if we can prove that X is >= 0 and < 16.
257 if (!CLHS->getValue().isNegative()) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260 // NLZ can't be BitWidth with no sign bit
261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000263
264 // If all of the MaskV bits are known to be zero, then we know the
265 // output top bits are zero, because we now know that the output is
266 // from [0-C].
267 if ((KnownZero2 & MaskV) == MaskV) {
268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269 // Top bits known zero.
270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271 }
272 }
273 }
274 }
275
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000276 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // If an initial sequence of bits in the result is not needed, the
279 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Carry in a 1 for a subtract, rather than a 0.
285 APInt CarryIn(BitWidth, 0);
286 if (!Add) {
287 // Sum = LHS + ~RHS + 1
288 std::swap(KnownZero2, KnownOne2);
289 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 }
291
David Majnemer97ddca32014-08-22 00:40:43 +0000292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294
295 // Compute known bits of the carry.
296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298
299 // Compute set of known bits (where all three relevant bits are known).
300 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301 APInt RHSKnown = KnownZero2 | KnownOne2;
302 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303 APInt Known = LHSKnown & RHSKnown & CarryKnown;
304
305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306 "known bits of sum differ");
307
308 // Compute known bits of the result.
309 KnownZero = ~PossibleSumOne & Known;
310 KnownOne = PossibleSumOne & Known;
311
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000312 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000313 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000314 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000315 // Adding two non-negative numbers, or subtracting a negative number from
316 // a non-negative one, can't wrap into negative.
317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318 KnownZero |= APInt::getSignBit(BitWidth);
319 // Adding two negative numbers, or subtracting a non-negative number from
320 // a negative one, can't wrap into non-negative.
321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000323 }
324 }
325}
326
Pete Cooper35b00d52016-08-13 01:05:32 +0000327static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000328 APInt &KnownZero, APInt &KnownOne,
329 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000330 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334
335 bool isKnownNegative = false;
336 bool isKnownNonNegative = false;
337 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000338 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 if (Op0 == Op1) {
340 // The product of a number with itself is non-negative.
341 isKnownNonNegative = true;
342 } else {
343 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345 bool isKnownNegativeOp1 = KnownOne.isNegative();
346 bool isKnownNegativeOp0 = KnownOne2.isNegative();
347 // The product of two numbers with the same sign is non-negative.
348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350 // The product of a negative number and a non-negative number is either
351 // negative or zero.
352 if (!isKnownNonNegative)
353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000354 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000356 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357 }
358 }
359
360 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000361 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362 // More trickiness is possible, but this is sufficient for the
363 // interesting case of alignment computation.
364 KnownOne.clearAllBits();
365 unsigned TrailZ = KnownZero.countTrailingOnes() +
366 KnownZero2.countTrailingOnes();
367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
368 KnownZero2.countLeadingOnes(),
369 BitWidth) - BitWidth;
370
371 TrailZ = std::min(TrailZ, BitWidth);
372 LeadZ = std::min(LeadZ, BitWidth);
373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000375
376 // Only make use of no-wrap flags if we failed to compute the sign bit
377 // directly. This matters if the multiplication always overflows, in
378 // which case we prefer to follow the result of the direct computation,
379 // though as the program is invoking undefined behaviour we can choose
380 // whatever we like here.
381 if (isKnownNonNegative && !KnownOne.isNegative())
382 KnownZero.setBit(BitWidth - 1);
383 else if (isKnownNegative && !KnownZero.isNegative())
384 KnownOne.setBit(BitWidth - 1);
385}
386
Jingyue Wu37fcb592014-06-19 16:50:16 +0000387void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 APInt &KnownZero,
389 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000390 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000391 unsigned NumRanges = Ranges.getNumOperands() / 2;
392 assert(NumRanges >= 1);
393
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 KnownZero.setAllBits();
395 KnownOne.setAllBits();
396
Rafael Espindola53190532012-03-30 15:52:11 +0000397 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000398 ConstantInt *Lower =
399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400 ConstantInt *Upper =
401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000402 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000403
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000404 // The first CommonPrefixBits of all values in Range are equal.
405 unsigned CommonPrefixBits =
406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407
408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409 KnownOne &= Range.getUnsignedMax() & Mask;
410 KnownZero &= ~Range.getUnsignedMax() & Mask;
411 }
Rafael Espindola53190532012-03-30 15:52:11 +0000412}
Jay Foad5a29c362014-05-15 12:12:55 +0000413
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000414static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 SmallVector<const Value *, 16> WorkSet(1, I);
416 SmallPtrSet<const Value *, 32> Visited;
417 SmallPtrSet<const Value *, 16> EphValues;
418
Hal Finkelf2199b22015-10-23 20:37:08 +0000419 // The instruction defining an assumption's condition itself is always
420 // considered ephemeral to that assumption (even if it has other
421 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000422 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000423 return true;
424
Hal Finkel60db0582014-09-07 18:57:58 +0000425 while (!WorkSet.empty()) {
426 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000427 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000428 continue;
429
430 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000432 if (V == E)
433 return true;
434
435 EphValues.insert(V);
436 if (const User *U = dyn_cast<User>(V))
437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438 J != JE; ++J) {
439 if (isSafeToSpeculativelyExecute(*J))
440 WorkSet.push_back(*J);
441 }
442 }
443 }
444
445 return false;
446}
447
448// Is this an intrinsic that cannot be speculated but also cannot trap?
449static bool isAssumeLikeIntrinsic(const Instruction *I) {
450 if (const CallInst *CI = dyn_cast<CallInst>(I))
451 if (Function *F = CI->getCalledFunction())
452 switch (F->getIntrinsicID()) {
453 default: break;
454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455 case Intrinsic::assume:
456 case Intrinsic::dbg_declare:
457 case Intrinsic::dbg_value:
458 case Intrinsic::invariant_start:
459 case Intrinsic::invariant_end:
460 case Intrinsic::lifetime_start:
461 case Intrinsic::lifetime_end:
462 case Intrinsic::objectsize:
463 case Intrinsic::ptr_annotation:
464 case Intrinsic::var_annotation:
465 return true;
466 }
467
468 return false;
469}
470
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000471bool llvm::isValidAssumeForContext(const Instruction *Inv,
472 const Instruction *CxtI,
473 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474
475 // There are two restrictions on the use of an assume:
476 // 1. The assume must dominate the context (or the control flow must
477 // reach the assume whenever it reaches the context).
478 // 2. The context must not be in the assume's set of ephemeral values
479 // (otherwise we will use the assume to prove that the condition
480 // feeding the assume is trivially true, thus causing the removal of
481 // the assume).
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000484 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487 // We don't have a DT, but this trivially dominates.
488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // With or without a DT, the only remaining case we will check is if the
492 // instructions are in the same BB. Give up if that is not the case.
493 if (Inv->getParent() != CxtI->getParent())
494 return false;
495
496 // If we have a dom tree, then we now know that the assume doens't dominate
497 // the other instruction. If we don't have a dom tree then we can check if
498 // the assume is first in the BB.
499 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000500 // Search forward from the assume until we reach the context (or the end
501 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000502 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000504 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000506 }
507
Pete Cooper54a02552016-08-12 01:00:15 +0000508 // The context comes first, but they're both in the same block. Make sure
509 // there is nothing in between that might interrupt the control flow.
510 for (BasicBlock::const_iterator I =
511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512 I != IE; ++I)
513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514 return false;
515
516 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Pete Cooper35b00d52016-08-13 01:05:32 +0000519static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Hal Finkel8a9a7832017-01-11 13:24:24 +0000529 // Note that the patterns below need to be kept in sync with the code
530 // in AssumptionCache::updateAffectedValues.
531
532 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000533 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000535 CallInst *I = cast<CallInst>(AssumeVH);
536 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
537 "Got assumption for the wrong function!");
538 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000539 continue;
540
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000541 // Warning: This loop can end up being somewhat performance sensetive.
542 // We're running this loop for once for each value queried resulting in a
543 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000544
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000545 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
546 "must be an assume intrinsic");
547
548 Value *Arg = I->getArgOperand(0);
549
550 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000551 assert(BitWidth == 1 && "assume operand is not i1?");
552 KnownZero.clearAllBits();
553 KnownOne.setAllBits();
554 return;
555 }
Sanjay Patel96669962017-01-17 18:15:49 +0000556 if (match(Arg, m_Not(m_Specific(V))) &&
557 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
558 assert(BitWidth == 1 && "assume operand is not i1?");
559 KnownZero.setAllBits();
560 KnownOne.clearAllBits();
561 return;
562 }
Hal Finkel60db0582014-09-07 18:57:58 +0000563
David Majnemer9b609752014-12-12 23:59:29 +0000564 // The remaining tests are all recursive, so bail out if we hit the limit.
565 if (Depth == MaxDepth)
566 continue;
567
Hal Finkel60db0582014-09-07 18:57:58 +0000568 Value *A, *B;
569 auto m_V = m_CombineOr(m_Specific(V),
570 m_CombineOr(m_PtrToInt(m_Specific(V)),
571 m_BitCast(m_Specific(V))));
572
573 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000574 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000575 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000576 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000578 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000579 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000580 KnownZero |= RHSKnownZero;
581 KnownOne |= RHSKnownOne;
582 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000583 } else if (match(Arg,
584 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000585 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000586 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000587 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000588 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000589 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000590 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000591
592 // For those bits in the mask that are known to be one, we can propagate
593 // known bits from the RHS to V.
594 KnownZero |= RHSKnownZero & MaskKnownOne;
595 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000597 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
598 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000599 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000600 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000602 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000603 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000604 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605
606 // For those bits in the mask that are known to be one, we can propagate
607 // inverted known bits from the RHS to V.
608 KnownZero |= RHSKnownOne & MaskKnownOne;
609 KnownOne |= RHSKnownZero & MaskKnownOne;
610 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000611 } else if (match(Arg,
612 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000613 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000616 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000617 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000618 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619
620 // For those bits in B that are known to be zero, we can propagate known
621 // bits from the RHS to V.
622 KnownZero |= RHSKnownZero & BKnownZero;
623 KnownOne |= RHSKnownOne & BKnownZero;
624 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000625 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
626 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000627 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000628 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000630 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000631 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000632 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633
634 // For those bits in B that are known to be zero, we can propagate
635 // inverted known bits from the RHS to V.
636 KnownZero |= RHSKnownOne & BKnownZero;
637 KnownOne |= RHSKnownZero & BKnownZero;
638 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000639 } else if (match(Arg,
640 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647
648 // For those bits in B that are known to be zero, we can propagate known
649 // bits from the RHS to V. For those bits in B that are known to be one,
650 // we can propagate inverted known bits from the RHS to V.
651 KnownZero |= RHSKnownZero & BKnownZero;
652 KnownOne |= RHSKnownOne & BKnownZero;
653 KnownZero |= RHSKnownOne & BKnownOne;
654 KnownOne |= RHSKnownZero & BKnownOne;
655 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000656 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
657 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000658 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000663 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000664
665 // For those bits in B that are known to be zero, we can propagate
666 // inverted known bits from the RHS to V. For those bits in B that are
667 // known to be one, we can propagate known bits from the RHS to V.
668 KnownZero |= RHSKnownOne & BKnownZero;
669 KnownOne |= RHSKnownZero & BKnownZero;
670 KnownZero |= RHSKnownZero & BKnownOne;
671 KnownOne |= RHSKnownOne & BKnownOne;
672 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000673 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
674 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000675 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000679 // For those bits in RHS that are known, we can propagate them to known
680 // bits in V shifted to the right by C.
681 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
682 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
683 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000684 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
685 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000686 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 // For those bits in RHS that are known, we can propagate them inverted
691 // to known bits in V shifted to the right by C.
692 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
693 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
694 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000695 } else if (match(Arg,
696 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000697 m_AShr(m_V, m_ConstantInt(C))),
698 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 // For those bits in RHS that are known, we can propagate them to known
704 // bits in V shifted to the right by C.
705 KnownZero |= RHSKnownZero << C->getZExtValue();
706 KnownOne |= RHSKnownOne << C->getZExtValue();
707 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000709 m_LShr(m_V, m_ConstantInt(C)),
710 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000711 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716 // For those bits in RHS that are known, we can propagate them inverted
717 // to known bits in V shifted to the right by C.
718 KnownZero |= RHSKnownOne << C->getZExtValue();
719 KnownOne |= RHSKnownZero << C->getZExtValue();
720 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000722 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726
727 if (RHSKnownZero.isNegative()) {
728 // We know that the sign bit is zero.
729 KnownZero |= APInt::getSignBit(BitWidth);
730 }
731 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000733 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000736 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737
738 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
739 // We know that the sign bit is zero.
740 KnownZero |= APInt::getSignBit(BitWidth);
741 }
742 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000744 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000747 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000748
749 if (RHSKnownOne.isNegative()) {
750 // We know that the sign bit is one.
751 KnownOne |= APInt::getSignBit(BitWidth);
752 }
753 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000754 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000755 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000758 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000759
760 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
761 // We know that the sign bit is one.
762 KnownOne |= APInt::getSignBit(BitWidth);
763 }
764 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero.
772 KnownZero |=
773 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
774 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000775 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000776 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000780
781 // Whatever high bits in c are zero are known to be zero (if c is a power
782 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000783 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000784 KnownZero |=
785 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
786 else
787 KnownZero |=
788 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000789 }
790 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000791
792 // If assumptions conflict with each other or previous known bits, then we
793 // have a logical fallacy. This should only happen when a program has
794 // undefined behavior. We can't assert/crash, so clear out the known bits and
795 // hope for the best.
796
797 // FIXME: Publish a warning/remark that we have encountered UB or the compiler
798 // is broken.
799
800 // FIXME: Implement a stronger version of "I give up" by invalidating/clearing
801 // the assumption cache. This should indicate that the cache is corrupted so
802 // future callers will not waste time repopulating it with faulty assumptions.
803
804 if ((KnownZero & KnownOne) != 0) {
805 KnownZero.clearAllBits();
806 KnownOne.clearAllBits();
807 }
Hal Finkel60db0582014-09-07 18:57:58 +0000808}
809
Hal Finkelf2199b22015-10-23 20:37:08 +0000810// Compute known bits from a shift operator, including those with a
811// non-constant shift amount. KnownZero and KnownOne are the outputs of this
812// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
813// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
814// functors that, given the known-zero or known-one bits respectively, and a
815// shift amount, compute the implied known-zero or known-one bits of the shift
816// operator's result respectively for that shift amount. The results from calling
817// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000818static void computeKnownBitsFromShiftOperator(
819 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
820 APInt &KnownOne2, unsigned Depth, const Query &Q,
821 function_ref<APInt(const APInt &, unsigned)> KZF,
822 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000823 unsigned BitWidth = KnownZero.getBitWidth();
824
825 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
826 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
827
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000829 KnownZero = KZF(KnownZero, ShiftAmt);
830 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000831 // If there is conflict between KnownZero and KnownOne, this must be an
832 // overflowing left shift, so the shift result is undefined. Clear KnownZero
833 // and KnownOne bits so that other code could propagate this undef.
834 if ((KnownZero & KnownOne) != 0) {
835 KnownZero.clearAllBits();
836 KnownOne.clearAllBits();
837 }
838
Hal Finkelf2199b22015-10-23 20:37:08 +0000839 return;
840 }
841
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000842 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000843
844 // Note: We cannot use KnownZero.getLimitedValue() here, because if
845 // BitWidth > 64 and any upper bits are known, we'll end up returning the
846 // limit value (which implies all bits are known).
847 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
848 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
849
850 // It would be more-clearly correct to use the two temporaries for this
851 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000852 KnownZero.clearAllBits();
853 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000854
James Molloy493e57d2015-10-26 14:10:46 +0000855 // If we know the shifter operand is nonzero, we can sometimes infer more
856 // known bits. However this is expensive to compute, so be lazy about it and
857 // only compute it when absolutely necessary.
858 Optional<bool> ShifterOperandIsNonZero;
859
Hal Finkelf2199b22015-10-23 20:37:08 +0000860 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000861 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
862 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000863 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000864 if (!*ShifterOperandIsNonZero)
865 return;
866 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000867
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000868 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000869
870 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
871 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
872 // Combine the shifted known input bits only for those shift amounts
873 // compatible with its known constraints.
874 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
875 continue;
876 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
877 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000878 // If we know the shifter is nonzero, we may be able to infer more known
879 // bits. This check is sunk down as far as possible to avoid the expensive
880 // call to isKnownNonZero if the cheaper checks above fail.
881 if (ShiftAmt == 0) {
882 if (!ShifterOperandIsNonZero.hasValue())
883 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000884 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000885 if (*ShifterOperandIsNonZero)
886 continue;
887 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000888
889 KnownZero &= KZF(KnownZero2, ShiftAmt);
890 KnownOne &= KOF(KnownOne2, ShiftAmt);
891 }
892
893 // If there are no compatible shift amounts, then we've proven that the shift
894 // amount must be >= the BitWidth, and the result is undefined. We could
895 // return anything we'd like, but we need to make sure the sets of known bits
896 // stay disjoint (it should be better for some other code to actually
897 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000898 if ((KnownZero & KnownOne) != 0) {
899 KnownZero.clearAllBits();
900 KnownOne.clearAllBits();
901 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000902}
903
Pete Cooper35b00d52016-08-13 01:05:32 +0000904static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000905 APInt &KnownOne, unsigned Depth,
906 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000907 unsigned BitWidth = KnownZero.getBitWidth();
908
Chris Lattner965c7692008-06-02 01:18:21 +0000909 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000910 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000911 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000912 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000913 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000914 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000915 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000916 case Instruction::And: {
917 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000918 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
919 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000920
Chris Lattner965c7692008-06-02 01:18:21 +0000921 // Output known-1 bits are only known if set in both the LHS & RHS.
922 KnownOne &= KnownOne2;
923 // Output known-0 are known to be clear if zero in either the LHS | RHS.
924 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000925
926 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
927 // here we handle the more general case of adding any odd number by
928 // matching the form add(x, add(x, y)) where y is odd.
929 // TODO: This could be generalized to clearing any bit set in y where the
930 // following bit is known to be unset in y.
931 Value *Y = nullptr;
932 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
933 m_Value(Y))) ||
934 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
935 m_Value(Y)))) {
936 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000937 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000938 if (KnownOne3.countTrailingOnes() > 0)
939 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
940 }
Jay Foad5a29c362014-05-15 12:12:55 +0000941 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000942 }
943 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
945 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000946
Chris Lattner965c7692008-06-02 01:18:21 +0000947 // Output known-0 bits are only known if clear in both the LHS & RHS.
948 KnownZero &= KnownZero2;
949 // Output known-1 are known to be set if set in either the LHS | RHS.
950 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
953 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000956
Chris Lattner965c7692008-06-02 01:18:21 +0000957 // Output known-0 bits are known if clear or set in both the LHS & RHS.
958 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
959 // Output known-1 are known to be set if set in only one of the LHS, RHS.
960 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
961 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000962 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000963 }
964 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000965 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000966 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000967 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000968 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000969 }
970 case Instruction::UDiv: {
971 // For the purposes of computing leading zeros we can conservatively
972 // treat a udiv as a logical right shift by the power of 2 known to
973 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000974 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000975 unsigned LeadZ = KnownZero2.countLeadingOnes();
976
Jay Foad25a5e4c2010-12-01 08:53:58 +0000977 KnownOne2.clearAllBits();
978 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000980 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
981 if (RHSUnknownLeadingOnes != BitWidth)
982 LeadZ = std::min(BitWidth,
983 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
984
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000985 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000986 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000987 }
David Majnemera19d0f22016-08-06 08:16:00 +0000988 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000989 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
990 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000991
Pete Cooper35b00d52016-08-13 01:05:32 +0000992 const Value *LHS;
993 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000994 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
995 if (SelectPatternResult::isMinOrMax(SPF)) {
996 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
997 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
998 } else {
999 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1000 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1001 }
1002
1003 unsigned MaxHighOnes = 0;
1004 unsigned MaxHighZeros = 0;
1005 if (SPF == SPF_SMAX) {
1006 // If both sides are negative, the result is negative.
1007 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
1008 // We can derive a lower bound on the result by taking the max of the
1009 // leading one bits.
1010 MaxHighOnes =
1011 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1012 // If either side is non-negative, the result is non-negative.
1013 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
1014 MaxHighZeros = 1;
1015 } else if (SPF == SPF_SMIN) {
1016 // If both sides are non-negative, the result is non-negative.
1017 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
1018 // We can derive an upper bound on the result by taking the max of the
1019 // leading zero bits.
1020 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1021 KnownZero2.countLeadingOnes());
1022 // If either side is negative, the result is negative.
1023 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1024 MaxHighOnes = 1;
1025 } else if (SPF == SPF_UMAX) {
1026 // We can derive a lower bound on the result by taking the max of the
1027 // leading one bits.
1028 MaxHighOnes =
1029 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1030 } else if (SPF == SPF_UMIN) {
1031 // We can derive an upper bound on the result by taking the max of the
1032 // leading zero bits.
1033 MaxHighZeros =
1034 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1035 }
1036
Chris Lattner965c7692008-06-02 01:18:21 +00001037 // Only known if known in both the LHS and RHS.
1038 KnownOne &= KnownOne2;
1039 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001040 if (MaxHighOnes > 0)
1041 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1042 if (MaxHighZeros > 0)
1043 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001044 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001045 }
Chris Lattner965c7692008-06-02 01:18:21 +00001046 case Instruction::FPTrunc:
1047 case Instruction::FPExt:
1048 case Instruction::FPToUI:
1049 case Instruction::FPToSI:
1050 case Instruction::SIToFP:
1051 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001052 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001053 case Instruction::PtrToInt:
1054 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001055 // Fall through and handle them the same as zext/trunc.
1056 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001057 case Instruction::ZExt:
1058 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001059 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001060
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001061 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001062 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1063 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001064 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001065
1066 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001067 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1068 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001069 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001070 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1071 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001072 // Any top bits are known to be zero.
1073 if (BitWidth > SrcBitWidth)
1074 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001075 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001076 }
1077 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001078 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001079 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001080 // TODO: For now, not handling conversions like:
1081 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001082 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001083 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001084 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001085 }
1086 break;
1087 }
1088 case Instruction::SExt: {
1089 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001090 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001091
Jay Foad583abbc2010-12-07 08:25:19 +00001092 KnownZero = KnownZero.trunc(SrcBitWidth);
1093 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001094 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001095 KnownZero = KnownZero.zext(BitWidth);
1096 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001097
1098 // If the sign bit of the input is known set or clear, then we know the
1099 // top bits of the result.
1100 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1101 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1102 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1103 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001104 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001105 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001106 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001107 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001108 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1109 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1110 APInt KZResult =
1111 (KnownZero << ShiftAmt) |
1112 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1113 // If this shift has "nsw" keyword, then the result is either a poison
1114 // value or has the same sign bit as the first operand.
1115 if (NSW && KnownZero.isNegative())
1116 KZResult.setBit(BitWidth - 1);
1117 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001118 };
1119
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001120 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1121 APInt KOResult = KnownOne << ShiftAmt;
1122 if (NSW && KnownOne.isNegative())
1123 KOResult.setBit(BitWidth - 1);
1124 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001125 };
1126
1127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001128 KnownZero2, KnownOne2, Depth, Q, KZF,
1129 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001131 }
1132 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001133 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001134 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1135 return APIntOps::lshr(KnownZero, ShiftAmt) |
1136 // High bits known zero.
1137 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1138 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001139
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001140 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001141 return APIntOps::lshr(KnownOne, ShiftAmt);
1142 };
1143
1144 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001145 KnownZero2, KnownOne2, Depth, Q, KZF,
1146 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001147 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001148 }
1149 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001150 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001151 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001152 return APIntOps::ashr(KnownZero, ShiftAmt);
1153 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001154
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001155 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001156 return APIntOps::ashr(KnownOne, ShiftAmt);
1157 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001158
Hal Finkelf2199b22015-10-23 20:37:08 +00001159 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001160 KnownZero2, KnownOne2, Depth, Q, KZF,
1161 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001162 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001163 }
Chris Lattner965c7692008-06-02 01:18:21 +00001164 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001165 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001166 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001167 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1168 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001169 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001170 }
Chris Lattner965c7692008-06-02 01:18:21 +00001171 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001172 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001173 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001174 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1175 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001176 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001177 }
1178 case Instruction::SRem:
1179 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001180 APInt RA = Rem->getValue().abs();
1181 if (RA.isPowerOf2()) {
1182 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001183 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001184 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001185
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001186 // The low bits of the first operand are unchanged by the srem.
1187 KnownZero = KnownZero2 & LowBits;
1188 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001189
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001190 // If the first operand is non-negative or has all low bits zero, then
1191 // the upper bits are all zero.
1192 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1193 KnownZero |= ~LowBits;
1194
1195 // If the first operand is negative and not all low bits are zero, then
1196 // the upper bits are all one.
1197 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1198 KnownOne |= ~LowBits;
1199
Craig Topper1bef2c82012-12-22 19:15:35 +00001200 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001201 }
1202 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001203
1204 // The sign bit is the LHS's sign bit, except when the result of the
1205 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001206 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001207 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001208 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1209 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001210 // If it's known zero, our sign bit is also zero.
1211 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001212 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001213 }
1214
Chris Lattner965c7692008-06-02 01:18:21 +00001215 break;
1216 case Instruction::URem: {
1217 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001218 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001219 if (RA.isPowerOf2()) {
1220 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001221 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001222 KnownZero |= ~LowBits;
1223 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001224 break;
1225 }
1226 }
1227
1228 // Since the result is less than or equal to either operand, any leading
1229 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001230 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1231 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001232
Chris Lattner4612ae12009-01-20 18:22:57 +00001233 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001234 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001235 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001236 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001237 break;
1238 }
1239
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001240 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001241 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001242 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001243 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001244 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001245
Chris Lattner965c7692008-06-02 01:18:21 +00001246 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001247 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001248 break;
1249 }
1250 case Instruction::GetElementPtr: {
1251 // Analyze all of the subscripts of this getelementptr instruction
1252 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001253 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001254 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1255 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001256 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1257
1258 gep_type_iterator GTI = gep_type_begin(I);
1259 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1260 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001261 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001262 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001263
1264 // Handle case when index is vector zeroinitializer
1265 Constant *CIndex = cast<Constant>(Index);
1266 if (CIndex->isZeroValue())
1267 continue;
1268
1269 if (CIndex->getType()->isVectorTy())
1270 Index = CIndex->getSplatValue();
1271
Chris Lattner965c7692008-06-02 01:18:21 +00001272 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001273 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001274 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001275 TrailZ = std::min<unsigned>(TrailZ,
1276 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001277 } else {
1278 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001279 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001280 if (!IndexedTy->isSized()) {
1281 TrailZ = 0;
1282 break;
1283 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001284 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001285 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001286 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001287 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001288 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001289 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001290 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001291 }
1292 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001293
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001294 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001295 break;
1296 }
1297 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001298 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001299 // Handle the case of a simple two-predecessor recurrence PHI.
1300 // There's a lot more that could theoretically be done here, but
1301 // this is sufficient to catch some interesting cases.
1302 if (P->getNumIncomingValues() == 2) {
1303 for (unsigned i = 0; i != 2; ++i) {
1304 Value *L = P->getIncomingValue(i);
1305 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001306 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001307 if (!LU)
1308 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001309 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001310 // Check for operations that have the property that if
1311 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001312 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001313 if (Opcode == Instruction::Add ||
1314 Opcode == Instruction::Sub ||
1315 Opcode == Instruction::And ||
1316 Opcode == Instruction::Or ||
1317 Opcode == Instruction::Mul) {
1318 Value *LL = LU->getOperand(0);
1319 Value *LR = LU->getOperand(1);
1320 // Find a recurrence.
1321 if (LL == I)
1322 L = LR;
1323 else if (LR == I)
1324 L = LL;
1325 else
1326 break;
1327 // Ok, we have a PHI of the form L op= R. Check for low
1328 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001329 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001330
1331 // We need to take the minimum number of known bits
1332 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001333 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001334
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001335 KnownZero = APInt::getLowBitsSet(
1336 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1337 KnownZero3.countTrailingOnes()));
1338
1339 if (DontImproveNonNegativePhiBits)
1340 break;
1341
1342 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1343 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1344 // If initial value of recurrence is nonnegative, and we are adding
1345 // a nonnegative number with nsw, the result can only be nonnegative
1346 // or poison value regardless of the number of times we execute the
1347 // add in phi recurrence. If initial value is negative and we are
1348 // adding a negative number with nsw, the result can only be
1349 // negative or poison value. Similar arguments apply to sub and mul.
1350 //
1351 // (add non-negative, non-negative) --> non-negative
1352 // (add negative, negative) --> negative
1353 if (Opcode == Instruction::Add) {
1354 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1355 KnownZero.setBit(BitWidth - 1);
1356 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1357 KnownOne.setBit(BitWidth - 1);
1358 }
1359
1360 // (sub nsw non-negative, negative) --> non-negative
1361 // (sub nsw negative, non-negative) --> negative
1362 else if (Opcode == Instruction::Sub && LL == I) {
1363 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1364 KnownZero.setBit(BitWidth - 1);
1365 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1366 KnownOne.setBit(BitWidth - 1);
1367 }
1368
1369 // (mul nsw non-negative, non-negative) --> non-negative
1370 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1371 KnownZero3.isNegative())
1372 KnownZero.setBit(BitWidth - 1);
1373 }
1374
Chris Lattner965c7692008-06-02 01:18:21 +00001375 break;
1376 }
1377 }
1378 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001379
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001380 // Unreachable blocks may have zero-operand PHI nodes.
1381 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001382 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001383
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001384 // Otherwise take the unions of the known bit sets of the operands,
1385 // taking conservative care to avoid excessive recursion.
1386 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001387 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001388 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001389 break;
1390
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001391 KnownZero = APInt::getAllOnesValue(BitWidth);
1392 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001393 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001394 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001395 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001396
1397 KnownZero2 = APInt(BitWidth, 0);
1398 KnownOne2 = APInt(BitWidth, 0);
1399 // Recurse, but cap the recursion to one level, because we don't
1400 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001401 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001402 KnownZero &= KnownZero2;
1403 KnownOne &= KnownOne2;
1404 // If all bits have been ruled out, there's no need to check
1405 // more operands.
1406 if (!KnownZero && !KnownOne)
1407 break;
1408 }
1409 }
Chris Lattner965c7692008-06-02 01:18:21 +00001410 break;
1411 }
1412 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001413 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001414 // If range metadata is attached to this call, set known bits from that,
1415 // and then intersect with known bits based on other properties of the
1416 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001417 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001418 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001419 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001420 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1421 KnownZero |= KnownZero2;
1422 KnownOne |= KnownOne2;
1423 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001424 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001425 switch (II->getIntrinsicID()) {
1426 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001427 case Intrinsic::bitreverse:
1428 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1429 KnownZero = KnownZero2.reverseBits();
1430 KnownOne = KnownOne2.reverseBits();
1431 break;
Philip Reames675418e2015-10-06 20:20:45 +00001432 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001433 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001434 KnownZero |= KnownZero2.byteSwap();
1435 KnownOne |= KnownOne2.byteSwap();
1436 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001437 case Intrinsic::ctlz:
1438 case Intrinsic::cttz: {
1439 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001440 // If this call is undefined for 0, the result will be less than 2^n.
1441 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1442 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001443 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001444 break;
1445 }
1446 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001447 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001448 // We can bound the space the count needs. Also, bits known to be zero
1449 // can't contribute to the population.
1450 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1451 unsigned LeadingZeros =
1452 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001453 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001454 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1455 KnownOne &= ~KnownZero;
1456 // TODO: we could bound KnownOne using the lower bound on the number
1457 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001458 break;
1459 }
Chad Rosierb3628842011-05-26 23:13:19 +00001460 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001461 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001462 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001463 }
1464 }
1465 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001466 case Instruction::ExtractElement:
1467 // Look through extract element. At the moment we keep this simple and skip
1468 // tracking the specific element. But at least we might find information
1469 // valid for all elements of the vector (for example if vector is sign
1470 // extended, shifted, etc).
1471 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1472 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001473 case Instruction::ExtractValue:
1474 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001475 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001476 if (EVI->getNumIndices() != 1) break;
1477 if (EVI->getIndices()[0] == 0) {
1478 switch (II->getIntrinsicID()) {
1479 default: break;
1480 case Intrinsic::uadd_with_overflow:
1481 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001482 computeKnownBitsAddSub(true, II->getArgOperand(0),
1483 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001484 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001485 break;
1486 case Intrinsic::usub_with_overflow:
1487 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001488 computeKnownBitsAddSub(false, II->getArgOperand(0),
1489 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001490 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001491 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001492 case Intrinsic::umul_with_overflow:
1493 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001494 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001495 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1496 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001497 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001498 }
1499 }
1500 }
Chris Lattner965c7692008-06-02 01:18:21 +00001501 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001502}
1503
1504/// Determine which bits of V are known to be either zero or one and return
1505/// them in the KnownZero/KnownOne bit sets.
1506///
1507/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1508/// we cannot optimize based on the assumption that it is zero without changing
1509/// it to be an explicit zero. If we don't change it to zero, other code could
1510/// optimized based on the contradictory assumption that it is non-zero.
1511/// Because instcombine aggressively folds operations with undef args anyway,
1512/// this won't lose us code quality.
1513///
1514/// This function is defined on values with integer type, values with pointer
1515/// type, and vectors of integers. In the case
1516/// where V is a vector, known zero, and known one values are the
1517/// same width as the vector element, and the bit is set only if it is true
1518/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001519void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001520 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001521 assert(V && "No Value?");
1522 assert(Depth <= MaxDepth && "Limit Search Depth");
1523 unsigned BitWidth = KnownZero.getBitWidth();
1524
1525 assert((V->getType()->isIntOrIntVectorTy() ||
1526 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001527 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001528 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001529 (!V->getType()->isIntOrIntVectorTy() ||
1530 V->getType()->getScalarSizeInBits() == BitWidth) &&
1531 KnownZero.getBitWidth() == BitWidth &&
1532 KnownOne.getBitWidth() == BitWidth &&
1533 "V, KnownOne and KnownZero should have same BitWidth");
1534
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001535 const APInt *C;
1536 if (match(V, m_APInt(C))) {
1537 // We know all of the bits for a scalar constant or a splat vector constant!
1538 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001539 KnownZero = ~KnownOne;
1540 return;
1541 }
1542 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001543 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001544 KnownOne.clearAllBits();
1545 KnownZero = APInt::getAllOnesValue(BitWidth);
1546 return;
1547 }
1548 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001549 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001550 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001551 // We know that CDS must be a vector of integers. Take the intersection of
1552 // each element.
1553 KnownZero.setAllBits(); KnownOne.setAllBits();
1554 APInt Elt(KnownZero.getBitWidth(), 0);
1555 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1556 Elt = CDS->getElementAsInteger(i);
1557 KnownZero &= ~Elt;
1558 KnownOne &= Elt;
1559 }
1560 return;
1561 }
1562
Pete Cooper35b00d52016-08-13 01:05:32 +00001563 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001564 // We know that CV must be a vector of integers. Take the intersection of
1565 // each element.
1566 KnownZero.setAllBits(); KnownOne.setAllBits();
1567 APInt Elt(KnownZero.getBitWidth(), 0);
1568 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1569 Constant *Element = CV->getAggregateElement(i);
1570 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1571 if (!ElementCI) {
1572 KnownZero.clearAllBits();
1573 KnownOne.clearAllBits();
1574 return;
1575 }
1576 Elt = ElementCI->getValue();
1577 KnownZero &= ~Elt;
1578 KnownOne &= Elt;
1579 }
1580 return;
1581 }
1582
Jingyue Wu12b0c282015-06-15 05:46:29 +00001583 // Start out not knowing anything.
1584 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1585
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001586 // We can't imply anything about undefs.
1587 if (isa<UndefValue>(V))
1588 return;
1589
1590 // There's no point in looking through other users of ConstantData for
1591 // assumptions. Confirm that we've handled them all.
1592 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1593
Jingyue Wu12b0c282015-06-15 05:46:29 +00001594 // Limit search depth.
1595 // All recursive calls that increase depth must come after this.
1596 if (Depth == MaxDepth)
1597 return;
1598
1599 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1600 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001601 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001602 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001603 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001604 return;
1605 }
1606
Pete Cooper35b00d52016-08-13 01:05:32 +00001607 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001608 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001609
Artur Pilipenko029d8532015-09-30 11:55:45 +00001610 // Aligned pointers have trailing zeros - refine KnownZero set
1611 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001612 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001613 if (Align)
1614 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1615 }
1616
Philip Reames146307e2016-03-03 19:44:06 +00001617 // computeKnownBitsFromAssume strictly refines KnownZero and
1618 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001619
1620 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001621 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001622
Jay Foad5a29c362014-05-15 12:12:55 +00001623 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001624}
1625
Sanjay Patelaee84212014-11-04 16:27:42 +00001626/// Determine whether the sign bit is known to be zero or one.
1627/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001628void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001629 unsigned Depth, const Query &Q) {
1630 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001631 if (!BitWidth) {
1632 KnownZero = false;
1633 KnownOne = false;
1634 return;
1635 }
1636 APInt ZeroBits(BitWidth, 0);
1637 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001638 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001639 KnownOne = OneBits[BitWidth - 1];
1640 KnownZero = ZeroBits[BitWidth - 1];
1641}
1642
Sanjay Patelaee84212014-11-04 16:27:42 +00001643/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001644/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001645/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001646/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001647bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001648 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001649 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001650 if (C->isNullValue())
1651 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001652
1653 const APInt *ConstIntOrConstSplatInt;
1654 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1655 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001656 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001657
1658 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1659 // it is shifted off the end then the result is undefined.
1660 if (match(V, m_Shl(m_One(), m_Value())))
1661 return true;
1662
1663 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1664 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001665 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001666 return true;
1667
1668 // The remaining tests are all recursive, so bail out if we hit the limit.
1669 if (Depth++ == MaxDepth)
1670 return false;
1671
Craig Topper9f008862014-04-15 04:59:12 +00001672 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001673 // A shift left or a logical shift right of a power of two is a power of two
1674 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001675 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001676 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001677 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001678
Pete Cooper35b00d52016-08-13 01:05:32 +00001679 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001680 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001681
Pete Cooper35b00d52016-08-13 01:05:32 +00001682 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001683 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1684 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001685
Duncan Sandsba286d72011-10-26 20:55:21 +00001686 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1687 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001688 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1689 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001690 return true;
1691 // X & (-X) is always a power of two or zero.
1692 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1693 return true;
1694 return false;
1695 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001696
David Majnemerb7d54092013-07-30 21:01:36 +00001697 // Adding a power-of-two or zero to the same power-of-two or zero yields
1698 // either the original power-of-two, a larger power-of-two or zero.
1699 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001700 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001701 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1702 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1703 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001704 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001705 return true;
1706 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1707 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001708 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001709 return true;
1710
1711 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1712 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001713 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001714
1715 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001716 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001717 // If i8 V is a power of two or zero:
1718 // ZeroBits: 1 1 1 0 1 1 1 1
1719 // ~ZeroBits: 0 0 0 1 0 0 0 0
1720 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1721 // If OrZero isn't set, we cannot give back a zero result.
1722 // Make sure either the LHS or RHS has a bit set.
1723 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1724 return true;
1725 }
1726 }
David Majnemerbeab5672013-05-18 19:30:37 +00001727
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001728 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001729 // is a power of two only if the first operand is a power of two and not
1730 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001731 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1732 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001733 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001734 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001735 }
1736
Duncan Sandsd3951082011-01-25 09:38:29 +00001737 return false;
1738}
1739
Chandler Carruth80d3e562012-12-07 02:08:58 +00001740/// \brief Test whether a GEP's result is known to be non-null.
1741///
1742/// Uses properties inherent in a GEP to try to determine whether it is known
1743/// to be non-null.
1744///
1745/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001746static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001747 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001748 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1749 return false;
1750
1751 // FIXME: Support vector-GEPs.
1752 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1753
1754 // If the base pointer is non-null, we cannot walk to a null address with an
1755 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001756 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001757 return true;
1758
Chandler Carruth80d3e562012-12-07 02:08:58 +00001759 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1760 // If so, then the GEP cannot produce a null pointer, as doing so would
1761 // inherently violate the inbounds contract within address space zero.
1762 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1763 GTI != GTE; ++GTI) {
1764 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001765 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001766 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1767 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001768 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001769 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1770 if (ElementOffset > 0)
1771 return true;
1772 continue;
1773 }
1774
1775 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001776 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001777 continue;
1778
1779 // Fast path the constant operand case both for efficiency and so we don't
1780 // increment Depth when just zipping down an all-constant GEP.
1781 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1782 if (!OpC->isZero())
1783 return true;
1784 continue;
1785 }
1786
1787 // We post-increment Depth here because while isKnownNonZero increments it
1788 // as well, when we pop back up that increment won't persist. We don't want
1789 // to recurse 10k times just because we have 10k GEP operands. We don't
1790 // bail completely out because we want to handle constant GEPs regardless
1791 // of depth.
1792 if (Depth++ >= MaxDepth)
1793 continue;
1794
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001795 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001796 return true;
1797 }
1798
1799 return false;
1800}
1801
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001802/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1803/// ensure that the value it's attached to is never Value? 'RangeType' is
1804/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001805static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001806 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1807 assert(NumRanges >= 1);
1808 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001809 ConstantInt *Lower =
1810 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1811 ConstantInt *Upper =
1812 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001813 ConstantRange Range(Lower->getValue(), Upper->getValue());
1814 if (Range.contains(Value))
1815 return false;
1816 }
1817 return true;
1818}
1819
Sanjay Patelaee84212014-11-04 16:27:42 +00001820/// Return true if the given value is known to be non-zero when defined.
1821/// For vectors return true if every element is known to be non-zero when
1822/// defined. Supports values with integer or pointer type and vectors of
1823/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001824bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001825 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001826 if (C->isNullValue())
1827 return false;
1828 if (isa<ConstantInt>(C))
1829 // Must be non-zero due to null test above.
1830 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001831
1832 // For constant vectors, check that all elements are undefined or known
1833 // non-zero to determine that the whole vector is known non-zero.
1834 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1835 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1836 Constant *Elt = C->getAggregateElement(i);
1837 if (!Elt || Elt->isNullValue())
1838 return false;
1839 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1840 return false;
1841 }
1842 return true;
1843 }
1844
Duncan Sandsd3951082011-01-25 09:38:29 +00001845 return false;
1846 }
1847
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001848 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001849 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001850 // If the possible ranges don't contain zero, then the value is
1851 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001852 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001853 const APInt ZeroValue(Ty->getBitWidth(), 0);
1854 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1855 return true;
1856 }
1857 }
1858 }
1859
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001861 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001862 return false;
1863
Chandler Carruth80d3e562012-12-07 02:08:58 +00001864 // Check for pointer simplifications.
1865 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001866 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001867 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001868 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001869 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001870 return true;
1871 }
1872
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001874
1875 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001876 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001877 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001878 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001879
1880 // ext X != 0 if X != 0.
1881 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001882 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001883
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001884 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001885 // if the lowest bit is shifted off the end.
1886 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001887 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001888 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001889 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001890 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001891
Duncan Sandsd3951082011-01-25 09:38:29 +00001892 APInt KnownZero(BitWidth, 0);
1893 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001894 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001895 if (KnownOne[0])
1896 return true;
1897 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001898 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 // defined if the sign bit is shifted off the end.
1900 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001901 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001902 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001903 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001904 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001905
Duncan Sandsd3951082011-01-25 09:38:29 +00001906 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001907 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001908 if (XKnownNegative)
1909 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001910
1911 // If the shifter operand is a constant, and all of the bits shifted
1912 // out are known to be zero, and X is known non-zero then at least one
1913 // non-zero bit must remain.
1914 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1915 APInt KnownZero(BitWidth, 0);
1916 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001917 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001918
James Molloyb6be1eb2015-09-24 16:06:32 +00001919 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1920 // Is there a known one in the portion not shifted out?
1921 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1922 return true;
1923 // Are all the bits to be shifted out known zero?
1924 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001925 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001926 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001927 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001928 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001929 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001930 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001931 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001932 // X + Y.
1933 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1934 bool XKnownNonNegative, XKnownNegative;
1935 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1937 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001938
1939 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001940 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001941 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001942 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001943 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001944
1945 // If X and Y are both negative (as signed values) then their sum is not
1946 // zero unless both X and Y equal INT_MIN.
1947 if (BitWidth && XKnownNegative && YKnownNegative) {
1948 APInt KnownZero(BitWidth, 0);
1949 APInt KnownOne(BitWidth, 0);
1950 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1951 // The sign bit of X is set. If some other bit is set then X is not equal
1952 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001953 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001954 if ((KnownOne & Mask) != 0)
1955 return true;
1956 // The sign bit of Y is set. If some other bit is set then Y is not equal
1957 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001958 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001959 if ((KnownOne & Mask) != 0)
1960 return true;
1961 }
1962
1963 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001964 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001965 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001966 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001967 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001968 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001969 return true;
1970 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001971 // X * Y.
1972 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001973 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001974 // If X and Y are non-zero then so is X * Y as long as the multiplication
1975 // does not overflow.
1976 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001977 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001978 return true;
1979 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001980 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001981 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001982 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1983 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001984 return true;
1985 }
James Molloy897048b2015-09-29 14:08:45 +00001986 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001987 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001988 // Try and detect a recurrence that monotonically increases from a
1989 // starting value, as these are common as induction variables.
1990 if (PN->getNumIncomingValues() == 2) {
1991 Value *Start = PN->getIncomingValue(0);
1992 Value *Induction = PN->getIncomingValue(1);
1993 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1994 std::swap(Start, Induction);
1995 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1996 if (!C->isZero() && !C->isNegative()) {
1997 ConstantInt *X;
1998 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1999 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2000 !X->isNegative())
2001 return true;
2002 }
2003 }
2004 }
Jun Bum Limca832662016-02-01 17:03:07 +00002005 // Check if all incoming values are non-zero constant.
2006 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2007 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2008 });
2009 if (AllNonZeroConstants)
2010 return true;
James Molloy897048b2015-09-29 14:08:45 +00002011 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002012
2013 if (!BitWidth) return false;
2014 APInt KnownZero(BitWidth, 0);
2015 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002016 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002017 return KnownOne != 0;
2018}
2019
James Molloy1d88d6f2015-10-22 13:18:42 +00002020/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002021static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2022 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002023 if (!BO || BO->getOpcode() != Instruction::Add)
2024 return false;
2025 Value *Op = nullptr;
2026 if (V2 == BO->getOperand(0))
2027 Op = BO->getOperand(1);
2028 else if (V2 == BO->getOperand(1))
2029 Op = BO->getOperand(0);
2030 else
2031 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002032 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002033}
2034
2035/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002036static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002037 if (V1->getType()->isVectorTy() || V1 == V2)
2038 return false;
2039 if (V1->getType() != V2->getType())
2040 // We can't look through casts yet.
2041 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002042 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002043 return true;
2044
2045 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2046 // Are any known bits in V1 contradictory to known bits in V2? If V1
2047 // has a known zero where V2 has a known one, they must not be equal.
2048 auto BitWidth = Ty->getBitWidth();
2049 APInt KnownZero1(BitWidth, 0);
2050 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002052 APInt KnownZero2(BitWidth, 0);
2053 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002054 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002055
2056 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2057 if (OppositeBits.getBoolValue())
2058 return true;
2059 }
2060 return false;
2061}
2062
Sanjay Patelaee84212014-11-04 16:27:42 +00002063/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2064/// simplify operations downstream. Mask is known to be zero for bits that V
2065/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002066///
2067/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002068/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002069/// where V is a vector, the mask, known zero, and known one values are the
2070/// same width as the vector element, and the bit is set only if it is true
2071/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002072bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002073 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002074 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002075 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002076 return (KnownZero & Mask) == Mask;
2077}
2078
Sanjay Patela06d9892016-06-22 19:20:59 +00002079/// For vector constants, loop over the elements and find the constant with the
2080/// minimum number of sign bits. Return 0 if the value is not a vector constant
2081/// or if any element was not analyzed; otherwise, return the count for the
2082/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002083static unsigned computeNumSignBitsVectorConstant(const Value *V,
2084 unsigned TyBits) {
2085 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002086 if (!CV || !CV->getType()->isVectorTy())
2087 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002088
Sanjay Patela06d9892016-06-22 19:20:59 +00002089 unsigned MinSignBits = TyBits;
2090 unsigned NumElts = CV->getType()->getVectorNumElements();
2091 for (unsigned i = 0; i != NumElts; ++i) {
2092 // If we find a non-ConstantInt, bail out.
2093 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2094 if (!Elt)
2095 return 0;
2096
2097 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2098 APInt EltVal = Elt->getValue();
2099 if (EltVal.isNegative())
2100 EltVal = ~EltVal;
2101 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2102 }
2103
2104 return MinSignBits;
2105}
Chris Lattner965c7692008-06-02 01:18:21 +00002106
Sanjay Patelaee84212014-11-04 16:27:42 +00002107/// Return the number of times the sign bit of the register is replicated into
2108/// the other bits. We know that at least 1 bit is always equal to the sign bit
2109/// (itself), but other cases can give us information. For example, immediately
2110/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002111/// other, so we return 3. For vectors, return the number of sign bits for the
2112/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002113unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002114 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002115 unsigned Tmp, Tmp2;
2116 unsigned FirstAnswer = 1;
2117
Jay Foada0653a32014-05-14 21:14:37 +00002118 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002119 // below.
2120
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002121 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002122 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002123
Pete Cooper35b00d52016-08-13 01:05:32 +00002124 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002125 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002126 default: break;
2127 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002128 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002129 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002130
Nadav Rotemc99a3872015-03-06 00:23:58 +00002131 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002132 const APInt *Denominator;
2133 // sdiv X, C -> adds log(C) sign bits.
2134 if (match(U->getOperand(1), m_APInt(Denominator))) {
2135
2136 // Ignore non-positive denominator.
2137 if (!Denominator->isStrictlyPositive())
2138 break;
2139
2140 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002141 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002142
2143 // Add floor(log(C)) bits to the numerator bits.
2144 return std::min(TyBits, NumBits + Denominator->logBase2());
2145 }
2146 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002147 }
2148
2149 case Instruction::SRem: {
2150 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002151 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2152 // positive constant. This let us put a lower bound on the number of sign
2153 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002154 if (match(U->getOperand(1), m_APInt(Denominator))) {
2155
2156 // Ignore non-positive denominator.
2157 if (!Denominator->isStrictlyPositive())
2158 break;
2159
2160 // Calculate the incoming numerator bits. SRem by a positive constant
2161 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002162 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002163 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002164
2165 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002166 // denominator. Given that the denominator is positive, there are two
2167 // cases:
2168 //
2169 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2170 // (1 << ceilLogBase2(C)).
2171 //
2172 // 2. the numerator is negative. Then the result range is (-C,0] and
2173 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2174 //
2175 // Thus a lower bound on the number of sign bits is `TyBits -
2176 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002177
Sanjoy Dase561fee2015-03-25 22:33:53 +00002178 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002179 return std::max(NumrBits, ResBits);
2180 }
2181 break;
2182 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002183
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002184 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002185 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002186 // ashr X, C -> adds C sign bits. Vectors too.
2187 const APInt *ShAmt;
2188 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2189 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002190 if (Tmp > TyBits) Tmp = TyBits;
2191 }
2192 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002193 }
2194 case Instruction::Shl: {
2195 const APInt *ShAmt;
2196 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002197 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002198 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002199 Tmp2 = ShAmt->getZExtValue();
2200 if (Tmp2 >= TyBits || // Bad shift.
2201 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2202 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002203 }
2204 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002205 }
Chris Lattner965c7692008-06-02 01:18:21 +00002206 case Instruction::And:
2207 case Instruction::Or:
2208 case Instruction::Xor: // NOT is handled here.
2209 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002210 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002211 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002212 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002213 FirstAnswer = std::min(Tmp, Tmp2);
2214 // We computed what we know about the sign bits as our first
2215 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002216 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002217 }
2218 break;
2219
2220 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002221 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002222 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002223 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002224 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002225
Chris Lattner965c7692008-06-02 01:18:21 +00002226 case Instruction::Add:
2227 // Add can have at most one carry bit. Thus we know that the output
2228 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002229 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002230 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002231
Chris Lattner965c7692008-06-02 01:18:21 +00002232 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002233 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002234 if (CRHS->isAllOnesValue()) {
2235 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002236 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002237
Chris Lattner965c7692008-06-02 01:18:21 +00002238 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2239 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002240 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002241 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002242
Chris Lattner965c7692008-06-02 01:18:21 +00002243 // If we are subtracting one from a positive number, there is no carry
2244 // out of the result.
2245 if (KnownZero.isNegative())
2246 return Tmp;
2247 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002248
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002249 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002250 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002251 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002252
Chris Lattner965c7692008-06-02 01:18:21 +00002253 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002254 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002255 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002256
Chris Lattner965c7692008-06-02 01:18:21 +00002257 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002258 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002259 if (CLHS->isNullValue()) {
2260 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002261 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002262 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2263 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002264 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002265 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002266
Chris Lattner965c7692008-06-02 01:18:21 +00002267 // If the input is known to be positive (the sign bit is known clear),
2268 // the output of the NEG has the same number of sign bits as the input.
2269 if (KnownZero.isNegative())
2270 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002271
Chris Lattner965c7692008-06-02 01:18:21 +00002272 // Otherwise, we treat this like a SUB.
2273 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002274
Chris Lattner965c7692008-06-02 01:18:21 +00002275 // Sub can have at most one carry bit. Thus we know that the output
2276 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002277 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002278 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002279 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002280
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002281 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002282 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002283 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002284 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002285 if (NumIncomingValues > 4) break;
2286 // Unreachable blocks may have zero-operand PHI nodes.
2287 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002288
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002289 // Take the minimum of all incoming values. This can't infinitely loop
2290 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002291 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002292 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002293 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002294 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002295 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002296 }
2297 return Tmp;
2298 }
2299
Chris Lattner965c7692008-06-02 01:18:21 +00002300 case Instruction::Trunc:
2301 // FIXME: it's tricky to do anything useful for this, but it is an important
2302 // case for targets like X86.
2303 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002304
2305 case Instruction::ExtractElement:
2306 // Look through extract element. At the moment we keep this simple and skip
2307 // tracking the specific element. But at least we might find information
2308 // valid for all elements of the vector (for example if vector is sign
2309 // extended, shifted, etc).
2310 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002311 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002312
Chris Lattner965c7692008-06-02 01:18:21 +00002313 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2314 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002315
2316 // If we can examine all elements of a vector constant successfully, we're
2317 // done (we can't do any better than that). If not, keep trying.
2318 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2319 return VecSignBits;
2320
Chris Lattner965c7692008-06-02 01:18:21 +00002321 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002322 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002323
Sanjay Patele0536212016-06-23 17:41:59 +00002324 // If we know that the sign bit is either zero or one, determine the number of
2325 // identical bits in the top of the input value.
2326 if (KnownZero.isNegative())
2327 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002328
Sanjay Patele0536212016-06-23 17:41:59 +00002329 if (KnownOne.isNegative())
2330 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2331
2332 // computeKnownBits gave us no extra information about the top bits.
2333 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002334}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002335
Sanjay Patelaee84212014-11-04 16:27:42 +00002336/// This function computes the integer multiple of Base that equals V.
2337/// If successful, it returns true and returns the multiple in
2338/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002339/// through SExt instructions only if LookThroughSExt is true.
2340bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002341 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002342 const unsigned MaxDepth = 6;
2343
Dan Gohman6a976bb2009-11-18 00:58:27 +00002344 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002345 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002346 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002347
Chris Lattner229907c2011-07-18 04:54:35 +00002348 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002349
Dan Gohman6a976bb2009-11-18 00:58:27 +00002350 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002351
2352 if (Base == 0)
2353 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002354
Victor Hernandez47444882009-11-10 08:28:35 +00002355 if (Base == 1) {
2356 Multiple = V;
2357 return true;
2358 }
2359
2360 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2361 Constant *BaseVal = ConstantInt::get(T, Base);
2362 if (CO && CO == BaseVal) {
2363 // Multiple is 1.
2364 Multiple = ConstantInt::get(T, 1);
2365 return true;
2366 }
2367
2368 if (CI && CI->getZExtValue() % Base == 0) {
2369 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002370 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002371 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002372
Victor Hernandez47444882009-11-10 08:28:35 +00002373 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002374
Victor Hernandez47444882009-11-10 08:28:35 +00002375 Operator *I = dyn_cast<Operator>(V);
2376 if (!I) return false;
2377
2378 switch (I->getOpcode()) {
2379 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002380 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002381 if (!LookThroughSExt) return false;
2382 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002383 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002384 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2385 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002386 case Instruction::Shl:
2387 case Instruction::Mul: {
2388 Value *Op0 = I->getOperand(0);
2389 Value *Op1 = I->getOperand(1);
2390
2391 if (I->getOpcode() == Instruction::Shl) {
2392 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2393 if (!Op1CI) return false;
2394 // Turn Op0 << Op1 into Op0 * 2^Op1
2395 APInt Op1Int = Op1CI->getValue();
2396 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002397 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002398 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002399 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002400 }
2401
Craig Topper9f008862014-04-15 04:59:12 +00002402 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002403 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2404 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2405 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002406 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002407 MulC->getType()->getPrimitiveSizeInBits())
2408 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002409 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002410 MulC->getType()->getPrimitiveSizeInBits())
2411 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
Chris Lattner72d283c2010-09-05 17:20:46 +00002413 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2414 Multiple = ConstantExpr::getMul(MulC, Op1C);
2415 return true;
2416 }
Victor Hernandez47444882009-11-10 08:28:35 +00002417
2418 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2419 if (Mul0CI->getValue() == 1) {
2420 // V == Base * Op1, so return Op1
2421 Multiple = Op1;
2422 return true;
2423 }
2424 }
2425
Craig Topper9f008862014-04-15 04:59:12 +00002426 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002427 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2428 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2429 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002430 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002431 MulC->getType()->getPrimitiveSizeInBits())
2432 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002433 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002434 MulC->getType()->getPrimitiveSizeInBits())
2435 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Chris Lattner72d283c2010-09-05 17:20:46 +00002437 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2438 Multiple = ConstantExpr::getMul(MulC, Op0C);
2439 return true;
2440 }
Victor Hernandez47444882009-11-10 08:28:35 +00002441
2442 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2443 if (Mul1CI->getValue() == 1) {
2444 // V == Base * Op0, so return Op0
2445 Multiple = Op0;
2446 return true;
2447 }
2448 }
Victor Hernandez47444882009-11-10 08:28:35 +00002449 }
2450 }
2451
2452 // We could not determine if V is a multiple of Base.
2453 return false;
2454}
2455
David Majnemerb4b27232016-04-19 19:10:21 +00002456Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2457 const TargetLibraryInfo *TLI) {
2458 const Function *F = ICS.getCalledFunction();
2459 if (!F)
2460 return Intrinsic::not_intrinsic;
2461
2462 if (F->isIntrinsic())
2463 return F->getIntrinsicID();
2464
2465 if (!TLI)
2466 return Intrinsic::not_intrinsic;
2467
David L. Jonesd21529f2017-01-23 23:16:46 +00002468 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002469 // We're going to make assumptions on the semantics of the functions, check
2470 // that the target knows that it's available in this environment and it does
2471 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002472 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2473 return Intrinsic::not_intrinsic;
2474
2475 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002476 return Intrinsic::not_intrinsic;
2477
2478 // Otherwise check if we have a call to a function that can be turned into a
2479 // vector intrinsic.
2480 switch (Func) {
2481 default:
2482 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002483 case LibFunc_sin:
2484 case LibFunc_sinf:
2485 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002486 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002487 case LibFunc_cos:
2488 case LibFunc_cosf:
2489 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002490 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002491 case LibFunc_exp:
2492 case LibFunc_expf:
2493 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002494 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002495 case LibFunc_exp2:
2496 case LibFunc_exp2f:
2497 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002498 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002499 case LibFunc_log:
2500 case LibFunc_logf:
2501 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002502 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002503 case LibFunc_log10:
2504 case LibFunc_log10f:
2505 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002506 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002507 case LibFunc_log2:
2508 case LibFunc_log2f:
2509 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002510 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002511 case LibFunc_fabs:
2512 case LibFunc_fabsf:
2513 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002514 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002515 case LibFunc_fmin:
2516 case LibFunc_fminf:
2517 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002518 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002519 case LibFunc_fmax:
2520 case LibFunc_fmaxf:
2521 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002522 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002523 case LibFunc_copysign:
2524 case LibFunc_copysignf:
2525 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002526 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002527 case LibFunc_floor:
2528 case LibFunc_floorf:
2529 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002530 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002531 case LibFunc_ceil:
2532 case LibFunc_ceilf:
2533 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002534 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002535 case LibFunc_trunc:
2536 case LibFunc_truncf:
2537 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002538 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002539 case LibFunc_rint:
2540 case LibFunc_rintf:
2541 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002542 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002543 case LibFunc_nearbyint:
2544 case LibFunc_nearbyintf:
2545 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002546 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002547 case LibFunc_round:
2548 case LibFunc_roundf:
2549 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002550 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002551 case LibFunc_pow:
2552 case LibFunc_powf:
2553 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002554 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002555 case LibFunc_sqrt:
2556 case LibFunc_sqrtf:
2557 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002558 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002559 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002560 return Intrinsic::not_intrinsic;
2561 }
2562
2563 return Intrinsic::not_intrinsic;
2564}
2565
Sanjay Patelaee84212014-11-04 16:27:42 +00002566/// Return true if we can prove that the specified FP value is never equal to
2567/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002568///
2569/// NOTE: this function will need to be revisited when we support non-default
2570/// rounding modes!
2571///
David Majnemer3ee5f342016-04-13 06:55:52 +00002572bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2573 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002574 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2575 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002576
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002577 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002578 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002579
Dan Gohman80ca01c2009-07-17 20:47:02 +00002580 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002581 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002582
2583 // Check if the nsz fast-math flag is set
2584 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2585 if (FPO->hasNoSignedZeros())
2586 return true;
2587
Chris Lattnera12a6de2008-06-02 01:29:46 +00002588 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002589 if (I->getOpcode() == Instruction::FAdd)
2590 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2591 if (CFP->isNullValue())
2592 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002593
Chris Lattnera12a6de2008-06-02 01:29:46 +00002594 // sitofp and uitofp turn into +0.0 for zero.
2595 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2596 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002597
David Majnemer3ee5f342016-04-13 06:55:52 +00002598 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002599 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002600 switch (IID) {
2601 default:
2602 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002603 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002604 case Intrinsic::sqrt:
2605 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2606 // fabs(x) != -0.0
2607 case Intrinsic::fabs:
2608 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002609 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002610 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002611
Chris Lattnera12a6de2008-06-02 01:29:46 +00002612 return false;
2613}
2614
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002615/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2616/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2617/// bit despite comparing equal.
2618static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2619 const TargetLibraryInfo *TLI,
2620 bool SignBitOnly,
2621 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002622 // TODO: This function does not do the right thing when SignBitOnly is true
2623 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2624 // which flips the sign bits of NaNs. See
2625 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2626
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002627 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2628 return !CFP->getValueAPF().isNegative() ||
2629 (!SignBitOnly && CFP->getValueAPF().isZero());
2630 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002631
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002632 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002633 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002634
2635 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002636 if (!I)
2637 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002638
2639 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002640 default:
2641 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002642 // Unsigned integers are always nonnegative.
2643 case Instruction::UIToFP:
2644 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002645 case Instruction::FMul:
2646 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002647 if (I->getOperand(0) == I->getOperand(1) &&
2648 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002649 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002650
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002651 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002652 case Instruction::FAdd:
2653 case Instruction::FDiv:
2654 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002655 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2656 Depth + 1) &&
2657 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2658 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002659 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002660 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2661 Depth + 1) &&
2662 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2663 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002664 case Instruction::FPExt:
2665 case Instruction::FPTrunc:
2666 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002667 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2668 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002669 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002670 const auto *CI = cast<CallInst>(I);
2671 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002672 switch (IID) {
2673 default:
2674 break;
2675 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002676 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2677 Depth + 1) ||
2678 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2679 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002680 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002681 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2682 Depth + 1) &&
2683 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2684 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002685 case Intrinsic::exp:
2686 case Intrinsic::exp2:
2687 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002688 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002689
2690 case Intrinsic::sqrt:
2691 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2692 if (!SignBitOnly)
2693 return true;
2694 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2695 CannotBeNegativeZero(CI->getOperand(0), TLI));
2696
David Majnemer3ee5f342016-04-13 06:55:52 +00002697 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002698 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002699 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002700 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002701 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002702 }
Justin Lebar322c1272017-01-27 00:58:34 +00002703 // TODO: This is not correct. Given that exp is an integer, here are the
2704 // ways that pow can return a negative value:
2705 //
2706 // pow(x, exp) --> negative if exp is odd and x is negative.
2707 // pow(-0, exp) --> -inf if exp is negative odd.
2708 // pow(-0, exp) --> -0 if exp is positive odd.
2709 // pow(-inf, exp) --> -0 if exp is negative odd.
2710 // pow(-inf, exp) --> -inf if exp is positive odd.
2711 //
2712 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2713 // but we must return false if x == -0. Unfortunately we do not currently
2714 // have a way of expressing this constraint. See details in
2715 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002716 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2717 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002718
David Majnemer3ee5f342016-04-13 06:55:52 +00002719 case Intrinsic::fma:
2720 case Intrinsic::fmuladd:
2721 // x*x+y is non-negative if y is non-negative.
2722 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002723 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2724 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2725 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002726 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002727 break;
2728 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002729 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002730}
2731
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002732bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2733 const TargetLibraryInfo *TLI) {
2734 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2735}
2736
2737bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2738 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2739}
2740
Sanjay Patelaee84212014-11-04 16:27:42 +00002741/// If the specified value can be set by repeating the same byte in memory,
2742/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002743/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2744/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2745/// byte store (e.g. i16 0x1234), return null.
2746Value *llvm::isBytewiseValue(Value *V) {
2747 // All byte-wide stores are splatable, even of arbitrary variables.
2748 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002749
2750 // Handle 'null' ConstantArrayZero etc.
2751 if (Constant *C = dyn_cast<Constant>(V))
2752 if (C->isNullValue())
2753 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002754
Chris Lattner9cb10352010-12-26 20:15:01 +00002755 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002756 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002757 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2758 if (CFP->getType()->isFloatTy())
2759 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2760 if (CFP->getType()->isDoubleTy())
2761 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2762 // Don't handle long double formats, which have strange constraints.
2763 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002764
Benjamin Kramer17d90152015-02-07 19:29:02 +00002765 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002766 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002767 if (CI->getBitWidth() % 8 == 0) {
2768 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002769
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002770 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002771 return nullptr;
2772 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002773 }
2774 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002775
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002776 // A ConstantDataArray/Vector is splatable if all its members are equal and
2777 // also splatable.
2778 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2779 Value *Elt = CA->getElementAsConstant(0);
2780 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002781 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002782 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002783
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002784 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2785 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002786 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002787
Chris Lattner9cb10352010-12-26 20:15:01 +00002788 return Val;
2789 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002790
Chris Lattner9cb10352010-12-26 20:15:01 +00002791 // Conceptually, we could handle things like:
2792 // %a = zext i8 %X to i16
2793 // %b = shl i16 %a, 8
2794 // %c = or i16 %a, %b
2795 // but until there is an example that actually needs this, it doesn't seem
2796 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002797 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002798}
2799
2800
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002801// This is the recursive version of BuildSubAggregate. It takes a few different
2802// arguments. Idxs is the index within the nested struct From that we are
2803// looking at now (which is of type IndexedType). IdxSkip is the number of
2804// indices from Idxs that should be left out when inserting into the resulting
2805// struct. To is the result struct built so far, new insertvalue instructions
2806// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002807static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002808 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002809 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002810 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002811 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002812 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002813 // Save the original To argument so we can modify it
2814 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002815 // General case, the type indexed by Idxs is a struct
2816 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2817 // Process each struct element recursively
2818 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002819 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002820 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002821 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002822 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002823 if (!To) {
2824 // Couldn't find any inserted value for this index? Cleanup
2825 while (PrevTo != OrigTo) {
2826 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2827 PrevTo = Del->getAggregateOperand();
2828 Del->eraseFromParent();
2829 }
2830 // Stop processing elements
2831 break;
2832 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002833 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002834 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002835 if (To)
2836 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002837 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002838 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2839 // the struct's elements had a value that was inserted directly. In the latter
2840 // case, perhaps we can't determine each of the subelements individually, but
2841 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002842
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002843 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002844 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002845
2846 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002847 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002848
2849 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002850 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002851 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002852}
2853
2854// This helper takes a nested struct and extracts a part of it (which is again a
2855// struct) into a new value. For example, given the struct:
2856// { a, { b, { c, d }, e } }
2857// and the indices "1, 1" this returns
2858// { c, d }.
2859//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002860// It does this by inserting an insertvalue for each element in the resulting
2861// struct, as opposed to just inserting a single struct. This will only work if
2862// each of the elements of the substruct are known (ie, inserted into From by an
2863// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002864//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002865// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002866static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002867 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002868 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002869 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002870 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002871 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002872 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002873 unsigned IdxSkip = Idxs.size();
2874
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002875 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002876}
2877
Sanjay Patelaee84212014-11-04 16:27:42 +00002878/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002879/// the scalar value indexed is already around as a register, for example if it
2880/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002881///
2882/// If InsertBefore is not null, this function will duplicate (modified)
2883/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002884Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2885 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002886 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002887 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002888 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002889 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002890 // We have indices, so V should have an indexable type.
2891 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2892 "Not looking at a struct or array?");
2893 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2894 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002895
Chris Lattner67058832012-01-25 06:48:06 +00002896 if (Constant *C = dyn_cast<Constant>(V)) {
2897 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002898 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002899 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2900 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002901
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002902 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002903 // Loop the indices for the insertvalue instruction in parallel with the
2904 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002905 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002906 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2907 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002908 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002909 // We can't handle this without inserting insertvalues
2910 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002911 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002912
2913 // The requested index identifies a part of a nested aggregate. Handle
2914 // this specially. For example,
2915 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2916 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2917 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2918 // This can be changed into
2919 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2920 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2921 // which allows the unused 0,0 element from the nested struct to be
2922 // removed.
2923 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2924 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002925 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002926
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002927 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002928 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002929 // looking for, then.
2930 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002931 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002932 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002933 }
2934 // If we end up here, the indices of the insertvalue match with those
2935 // requested (though possibly only partially). Now we recursively look at
2936 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002937 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002938 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002939 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002940 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002941
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002942 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002943 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002944 // something else, we can extract from that something else directly instead.
2945 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002946
2947 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002948 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002949 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002950 SmallVector<unsigned, 5> Idxs;
2951 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002952 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002953 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002954
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002955 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002956 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002957
Craig Topper1bef2c82012-12-22 19:15:35 +00002958 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002959 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002960
Jay Foad57aa6362011-07-13 10:26:04 +00002961 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002962 }
2963 // Otherwise, we don't know (such as, extracting from a function return value
2964 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002965 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002966}
Evan Chengda3db112008-06-30 07:31:25 +00002967
Sanjay Patelaee84212014-11-04 16:27:42 +00002968/// Analyze the specified pointer to see if it can be expressed as a base
2969/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002970Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002971 const DataLayout &DL) {
2972 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002973 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002974
2975 // We walk up the defs but use a visited set to handle unreachable code. In
2976 // that case, we stop after accumulating the cycle once (not that it
2977 // matters).
2978 SmallPtrSet<Value *, 16> Visited;
2979 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002980 if (Ptr->getType()->isVectorTy())
2981 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002982
Nuno Lopes368c4d02012-12-31 20:48:35 +00002983 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002984 // If one of the values we have visited is an addrspacecast, then
2985 // the pointer type of this GEP may be different from the type
2986 // of the Ptr parameter which was passed to this function. This
2987 // means when we construct GEPOffset, we need to use the size
2988 // of GEP's pointer type rather than the size of the original
2989 // pointer type.
2990 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002991 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2992 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002993
Tom Stellard17eb3412016-10-07 14:23:29 +00002994 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002995
Nuno Lopes368c4d02012-12-31 20:48:35 +00002996 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002997 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2998 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002999 Ptr = cast<Operator>(Ptr)->getOperand(0);
3000 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003001 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003002 break;
3003 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003004 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003005 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003006 }
3007 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003008 Offset = ByteOffset.getSExtValue();
3009 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003010}
3011
David L Kreitzer752c1442016-04-13 14:31:06 +00003012bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3013 // Make sure the GEP has exactly three arguments.
3014 if (GEP->getNumOperands() != 3)
3015 return false;
3016
3017 // Make sure the index-ee is a pointer to array of i8.
3018 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3019 if (!AT || !AT->getElementType()->isIntegerTy(8))
3020 return false;
3021
3022 // Check to make sure that the first operand of the GEP is an integer and
3023 // has value 0 so that we are sure we're indexing into the initializer.
3024 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3025 if (!FirstIdx || !FirstIdx->isZero())
3026 return false;
3027
3028 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003029}
Chris Lattnere28618d2010-11-30 22:25:26 +00003030
Sanjay Patelaee84212014-11-04 16:27:42 +00003031/// This function computes the length of a null-terminated C string pointed to
3032/// by V. If successful, it returns true and returns the string in Str.
3033/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003034bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3035 uint64_t Offset, bool TrimAtNul) {
3036 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003037
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003038 // Look through bitcast instructions and geps.
3039 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003040
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003041 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003042 // offset.
3043 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003044 // The GEP operator should be based on a pointer to string constant, and is
3045 // indexing into the string constant.
3046 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003047 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003048
Evan Chengda3db112008-06-30 07:31:25 +00003049 // If the second index isn't a ConstantInt, then this is a variable index
3050 // into the array. If this occurs, we can't say anything meaningful about
3051 // the string.
3052 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003053 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003054 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003055 else
3056 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003057 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3058 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003059 }
Nick Lewycky46209882011-10-20 00:34:35 +00003060
Evan Chengda3db112008-06-30 07:31:25 +00003061 // The GEP instruction, constant or instruction, must reference a global
3062 // variable that is a constant and is initialized. The referenced constant
3063 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003064 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003065 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003066 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003067
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003068 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003069 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003070 // This is a degenerate case. The initializer is constant zero so the
3071 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003072 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003073 return true;
3074 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003075
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003076 // This must be a ConstantDataArray.
3077 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003078 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003079 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003080
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003081 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003082 uint64_t NumElts = Array->getType()->getArrayNumElements();
3083
3084 // Start out with the entire array in the StringRef.
3085 Str = Array->getAsString();
3086
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003087 if (Offset > NumElts)
3088 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003089
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003090 // Skip over 'offset' bytes.
3091 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003092
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003093 if (TrimAtNul) {
3094 // Trim off the \0 and anything after it. If the array is not nul
3095 // terminated, we just return the whole end of string. The client may know
3096 // some other way that the string is length-bound.
3097 Str = Str.substr(0, Str.find('\0'));
3098 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003099 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003100}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003101
3102// These next two are very similar to the above, but also look through PHI
3103// nodes.
3104// TODO: See if we can integrate these two together.
3105
Sanjay Patelaee84212014-11-04 16:27:42 +00003106/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003107/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003108static uint64_t GetStringLengthH(const Value *V,
3109 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003110 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003111 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003112
3113 // If this is a PHI node, there are two cases: either we have already seen it
3114 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003115 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003116 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003117 return ~0ULL; // already in the set.
3118
3119 // If it was new, see if all the input strings are the same length.
3120 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003121 for (Value *IncValue : PN->incoming_values()) {
3122 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003123 if (Len == 0) return 0; // Unknown length -> unknown.
3124
3125 if (Len == ~0ULL) continue;
3126
3127 if (Len != LenSoFar && LenSoFar != ~0ULL)
3128 return 0; // Disagree -> unknown.
3129 LenSoFar = Len;
3130 }
3131
3132 // Success, all agree.
3133 return LenSoFar;
3134 }
3135
3136 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003137 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003138 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3139 if (Len1 == 0) return 0;
3140 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3141 if (Len2 == 0) return 0;
3142 if (Len1 == ~0ULL) return Len2;
3143 if (Len2 == ~0ULL) return Len1;
3144 if (Len1 != Len2) return 0;
3145 return Len1;
3146 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003147
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003148 // Otherwise, see if we can read the string.
3149 StringRef StrData;
3150 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003151 return 0;
3152
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003153 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003154}
3155
Sanjay Patelaee84212014-11-04 16:27:42 +00003156/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003157/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003158uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003159 if (!V->getType()->isPointerTy()) return 0;
3160
Pete Cooper35b00d52016-08-13 01:05:32 +00003161 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003162 uint64_t Len = GetStringLengthH(V, PHIs);
3163 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3164 // an empty string as a length.
3165 return Len == ~0ULL ? 1 : Len;
3166}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003167
Adam Nemete2b885c2015-04-23 20:09:20 +00003168/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3169/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003170static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3171 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003172 // Find the loop-defined value.
3173 Loop *L = LI->getLoopFor(PN->getParent());
3174 if (PN->getNumIncomingValues() != 2)
3175 return true;
3176
3177 // Find the value from previous iteration.
3178 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3179 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3180 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3181 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3182 return true;
3183
3184 // If a new pointer is loaded in the loop, the pointer references a different
3185 // object in every iteration. E.g.:
3186 // for (i)
3187 // int *p = a[i];
3188 // ...
3189 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3190 if (!L->isLoopInvariant(Load->getPointerOperand()))
3191 return false;
3192 return true;
3193}
3194
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003195Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3196 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003197 if (!V->getType()->isPointerTy())
3198 return V;
3199 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3200 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3201 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003202 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3203 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003204 V = cast<Operator>(V)->getOperand(0);
3205 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003206 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003207 return V;
3208 V = GA->getAliasee();
3209 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003210 if (auto CS = CallSite(V))
3211 if (Value *RV = CS.getReturnedArgOperand()) {
3212 V = RV;
3213 continue;
3214 }
3215
Dan Gohman05b18f12010-12-15 20:49:55 +00003216 // See if InstructionSimplify knows any relevant tricks.
3217 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003218 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003219 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003220 V = Simplified;
3221 continue;
3222 }
3223
Dan Gohmana4fcd242010-12-15 20:02:24 +00003224 return V;
3225 }
3226 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3227 }
3228 return V;
3229}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003230
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003231void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003232 const DataLayout &DL, LoopInfo *LI,
3233 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003234 SmallPtrSet<Value *, 4> Visited;
3235 SmallVector<Value *, 4> Worklist;
3236 Worklist.push_back(V);
3237 do {
3238 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003239 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003240
David Blaikie70573dc2014-11-19 07:49:26 +00003241 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003242 continue;
3243
3244 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3245 Worklist.push_back(SI->getTrueValue());
3246 Worklist.push_back(SI->getFalseValue());
3247 continue;
3248 }
3249
3250 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003251 // If this PHI changes the underlying object in every iteration of the
3252 // loop, don't look through it. Consider:
3253 // int **A;
3254 // for (i) {
3255 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3256 // Curr = A[i];
3257 // *Prev, *Curr;
3258 //
3259 // Prev is tracking Curr one iteration behind so they refer to different
3260 // underlying objects.
3261 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3262 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003263 for (Value *IncValue : PN->incoming_values())
3264 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003265 continue;
3266 }
3267
3268 Objects.push_back(P);
3269 } while (!Worklist.empty());
3270}
3271
Sanjay Patelaee84212014-11-04 16:27:42 +00003272/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003273bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003274 for (const User *U : V->users()) {
3275 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003276 if (!II) return false;
3277
3278 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3279 II->getIntrinsicID() != Intrinsic::lifetime_end)
3280 return false;
3281 }
3282 return true;
3283}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003284
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003285bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3286 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003287 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003288 const Operator *Inst = dyn_cast<Operator>(V);
3289 if (!Inst)
3290 return false;
3291
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003292 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3293 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3294 if (C->canTrap())
3295 return false;
3296
3297 switch (Inst->getOpcode()) {
3298 default:
3299 return true;
3300 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003301 case Instruction::URem: {
3302 // x / y is undefined if y == 0.
3303 const APInt *V;
3304 if (match(Inst->getOperand(1), m_APInt(V)))
3305 return *V != 0;
3306 return false;
3307 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003308 case Instruction::SDiv:
3309 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003310 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003311 const APInt *Numerator, *Denominator;
3312 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3313 return false;
3314 // We cannot hoist this division if the denominator is 0.
3315 if (*Denominator == 0)
3316 return false;
3317 // It's safe to hoist if the denominator is not 0 or -1.
3318 if (*Denominator != -1)
3319 return true;
3320 // At this point we know that the denominator is -1. It is safe to hoist as
3321 // long we know that the numerator is not INT_MIN.
3322 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3323 return !Numerator->isMinSignedValue();
3324 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003325 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003326 }
3327 case Instruction::Load: {
3328 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003329 if (!LI->isUnordered() ||
3330 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003331 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003332 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003333 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003334 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003335 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003336 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3337 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003338 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003339 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003340 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3341 switch (II->getIntrinsicID()) {
3342 // These synthetic intrinsics have no side-effects and just mark
3343 // information about their operands.
3344 // FIXME: There are other no-op synthetic instructions that potentially
3345 // should be considered at least *safe* to speculate...
3346 case Intrinsic::dbg_declare:
3347 case Intrinsic::dbg_value:
3348 return true;
3349
Xin Tongc13a8e82017-01-09 17:57:08 +00003350 case Intrinsic::bitreverse:
David Majnemer0a92f862015-08-28 21:13:39 +00003351 case Intrinsic::bswap:
3352 case Intrinsic::ctlz:
3353 case Intrinsic::ctpop:
3354 case Intrinsic::cttz:
3355 case Intrinsic::objectsize:
3356 case Intrinsic::sadd_with_overflow:
3357 case Intrinsic::smul_with_overflow:
3358 case Intrinsic::ssub_with_overflow:
3359 case Intrinsic::uadd_with_overflow:
3360 case Intrinsic::umul_with_overflow:
3361 case Intrinsic::usub_with_overflow:
3362 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003363 // These intrinsics are defined to have the same behavior as libm
3364 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003365 case Intrinsic::sqrt:
3366 case Intrinsic::fma:
3367 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003368 return true;
3369 // These intrinsics are defined to have the same behavior as libm
3370 // functions, and the corresponding libm functions never set errno.
3371 case Intrinsic::trunc:
3372 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003373 case Intrinsic::fabs:
3374 case Intrinsic::minnum:
3375 case Intrinsic::maxnum:
3376 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003377 // These intrinsics are defined to have the same behavior as libm
3378 // functions, which never overflow when operating on the IEEE754 types
3379 // that we support, and never set errno otherwise.
3380 case Intrinsic::ceil:
3381 case Intrinsic::floor:
3382 case Intrinsic::nearbyint:
3383 case Intrinsic::rint:
3384 case Intrinsic::round:
3385 return true;
whitequark16f1e5f2017-01-25 09:32:30 +00003386 // These intrinsics do not correspond to any libm function, and
3387 // do not set errno.
3388 case Intrinsic::powi:
3389 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003390 // TODO: are convert_{from,to}_fp16 safe?
3391 // TODO: can we list target-specific intrinsics here?
3392 default: break;
3393 }
3394 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003395 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003396 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003397 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003398 case Instruction::VAArg:
3399 case Instruction::Alloca:
3400 case Instruction::Invoke:
3401 case Instruction::PHI:
3402 case Instruction::Store:
3403 case Instruction::Ret:
3404 case Instruction::Br:
3405 case Instruction::IndirectBr:
3406 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003407 case Instruction::Unreachable:
3408 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003409 case Instruction::AtomicRMW:
3410 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003411 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003412 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003413 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003414 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003415 case Instruction::CatchRet:
3416 case Instruction::CleanupPad:
3417 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003418 return false; // Misc instructions which have effects
3419 }
3420}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003421
Quentin Colombet6443cce2015-08-06 18:44:34 +00003422bool llvm::mayBeMemoryDependent(const Instruction &I) {
3423 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3424}
3425
Sanjay Patelaee84212014-11-04 16:27:42 +00003426/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003427bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003428 assert(V->getType()->isPointerTy() && "V must be pointer type");
3429
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003430 // Alloca never returns null, malloc might.
3431 if (isa<AllocaInst>(V)) return true;
3432
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003433 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003434 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003435 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003436
Peter Collingbourne235c2752016-12-08 19:01:00 +00003437 // A global variable in address space 0 is non null unless extern weak
3438 // or an absolute symbol reference. Other address spaces may have null as a
3439 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003440 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003441 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003442 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003443
Sanjoy Das5056e192016-05-07 02:08:22 +00003444 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003445 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003446 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003447
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003448 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003449 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003450 return true;
3451
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003452 return false;
3453}
David Majnemer491331a2015-01-02 07:29:43 +00003454
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003455static bool isKnownNonNullFromDominatingCondition(const Value *V,
3456 const Instruction *CtxI,
3457 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003458 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003459 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003460 assert(CtxI && "Context instruction required for analysis");
3461 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003462
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003463 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003464 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003465 // Avoid massive lists
3466 if (NumUsesExplored >= DomConditionsMaxUses)
3467 break;
3468 NumUsesExplored++;
3469 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003470 CmpInst::Predicate Pred;
3471 if (!match(const_cast<User *>(U),
3472 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3473 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003474 continue;
3475
Sanjoy Das987aaa12016-05-07 02:08:24 +00003476 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003477 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3478 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003479
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003480 BasicBlock *NonNullSuccessor =
3481 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3482 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3483 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3484 return true;
3485 } else if (Pred == ICmpInst::ICMP_NE &&
3486 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3487 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003488 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003489 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003490 }
3491 }
3492
3493 return false;
3494}
3495
3496bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003497 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003498 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3499 return false;
3500
Sean Silva45835e72016-07-02 23:47:27 +00003501 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003502 return true;
3503
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003504 if (!CtxI || !DT)
3505 return false;
3506
3507 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003508}
3509
Pete Cooper35b00d52016-08-13 01:05:32 +00003510OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3511 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003512 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003513 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003514 const Instruction *CxtI,
3515 const DominatorTree *DT) {
3516 // Multiplying n * m significant bits yields a result of n + m significant
3517 // bits. If the total number of significant bits does not exceed the
3518 // result bit width (minus 1), there is no overflow.
3519 // This means if we have enough leading zero bits in the operands
3520 // we can guarantee that the result does not overflow.
3521 // Ref: "Hacker's Delight" by Henry Warren
3522 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3523 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003524 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003525 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003526 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003527 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3528 DT);
3529 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3530 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003531 // Note that underestimating the number of zero bits gives a more
3532 // conservative answer.
3533 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3534 RHSKnownZero.countLeadingOnes();
3535 // First handle the easy case: if we have enough zero bits there's
3536 // definitely no overflow.
3537 if (ZeroBits >= BitWidth)
3538 return OverflowResult::NeverOverflows;
3539
3540 // Get the largest possible values for each operand.
3541 APInt LHSMax = ~LHSKnownZero;
3542 APInt RHSMax = ~RHSKnownZero;
3543
3544 // We know the multiply operation doesn't overflow if the maximum values for
3545 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003546 bool MaxOverflow;
3547 LHSMax.umul_ov(RHSMax, MaxOverflow);
3548 if (!MaxOverflow)
3549 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003550
David Majnemerc8a576b2015-01-02 07:29:47 +00003551 // We know it always overflows if multiplying the smallest possible values for
3552 // the operands also results in overflow.
3553 bool MinOverflow;
3554 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3555 if (MinOverflow)
3556 return OverflowResult::AlwaysOverflows;
3557
3558 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003559}
David Majnemer5310c1e2015-01-07 00:39:50 +00003560
Pete Cooper35b00d52016-08-13 01:05:32 +00003561OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3562 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003563 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003564 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003565 const Instruction *CxtI,
3566 const DominatorTree *DT) {
3567 bool LHSKnownNonNegative, LHSKnownNegative;
3568 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003569 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003570 if (LHSKnownNonNegative || LHSKnownNegative) {
3571 bool RHSKnownNonNegative, RHSKnownNegative;
3572 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003573 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003574
3575 if (LHSKnownNegative && RHSKnownNegative) {
3576 // The sign bit is set in both cases: this MUST overflow.
3577 // Create a simple add instruction, and insert it into the struct.
3578 return OverflowResult::AlwaysOverflows;
3579 }
3580
3581 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3582 // The sign bit is clear in both cases: this CANNOT overflow.
3583 // Create a simple add instruction, and insert it into the struct.
3584 return OverflowResult::NeverOverflows;
3585 }
3586 }
3587
3588 return OverflowResult::MayOverflow;
3589}
James Molloy71b91c22015-05-11 14:42:20 +00003590
Pete Cooper35b00d52016-08-13 01:05:32 +00003591static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3592 const Value *RHS,
3593 const AddOperator *Add,
3594 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003595 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003596 const Instruction *CxtI,
3597 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003598 if (Add && Add->hasNoSignedWrap()) {
3599 return OverflowResult::NeverOverflows;
3600 }
3601
3602 bool LHSKnownNonNegative, LHSKnownNegative;
3603 bool RHSKnownNonNegative, RHSKnownNegative;
3604 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003605 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003606 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003607 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003608
3609 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3610 (LHSKnownNegative && RHSKnownNonNegative)) {
3611 // The sign bits are opposite: this CANNOT overflow.
3612 return OverflowResult::NeverOverflows;
3613 }
3614
3615 // The remaining code needs Add to be available. Early returns if not so.
3616 if (!Add)
3617 return OverflowResult::MayOverflow;
3618
3619 // If the sign of Add is the same as at least one of the operands, this add
3620 // CANNOT overflow. This is particularly useful when the sum is
3621 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3622 // operands.
3623 bool LHSOrRHSKnownNonNegative =
3624 (LHSKnownNonNegative || RHSKnownNonNegative);
3625 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3626 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3627 bool AddKnownNonNegative, AddKnownNegative;
3628 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003629 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003630 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3631 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3632 return OverflowResult::NeverOverflows;
3633 }
3634 }
3635
3636 return OverflowResult::MayOverflow;
3637}
3638
Pete Cooper35b00d52016-08-13 01:05:32 +00003639bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3640 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003641#ifndef NDEBUG
3642 auto IID = II->getIntrinsicID();
3643 assert((IID == Intrinsic::sadd_with_overflow ||
3644 IID == Intrinsic::uadd_with_overflow ||
3645 IID == Intrinsic::ssub_with_overflow ||
3646 IID == Intrinsic::usub_with_overflow ||
3647 IID == Intrinsic::smul_with_overflow ||
3648 IID == Intrinsic::umul_with_overflow) &&
3649 "Not an overflow intrinsic!");
3650#endif
3651
Pete Cooper35b00d52016-08-13 01:05:32 +00003652 SmallVector<const BranchInst *, 2> GuardingBranches;
3653 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003654
Pete Cooper35b00d52016-08-13 01:05:32 +00003655 for (const User *U : II->users()) {
3656 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003657 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3658
3659 if (EVI->getIndices()[0] == 0)
3660 Results.push_back(EVI);
3661 else {
3662 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3663
Pete Cooper35b00d52016-08-13 01:05:32 +00003664 for (const auto *U : EVI->users())
3665 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003666 assert(B->isConditional() && "How else is it using an i1?");
3667 GuardingBranches.push_back(B);
3668 }
3669 }
3670 } else {
3671 // We are using the aggregate directly in a way we don't want to analyze
3672 // here (storing it to a global, say).
3673 return false;
3674 }
3675 }
3676
Pete Cooper35b00d52016-08-13 01:05:32 +00003677 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003678 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3679 if (!NoWrapEdge.isSingleEdge())
3680 return false;
3681
3682 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003683 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003684 // If the extractvalue itself is not executed on overflow, the we don't
3685 // need to check each use separately, since domination is transitive.
3686 if (DT.dominates(NoWrapEdge, Result->getParent()))
3687 continue;
3688
3689 for (auto &RU : Result->uses())
3690 if (!DT.dominates(NoWrapEdge, RU))
3691 return false;
3692 }
3693
3694 return true;
3695 };
3696
3697 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3698}
3699
3700
Pete Cooper35b00d52016-08-13 01:05:32 +00003701OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003702 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003703 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003704 const Instruction *CxtI,
3705 const DominatorTree *DT) {
3706 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003707 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003708}
3709
Pete Cooper35b00d52016-08-13 01:05:32 +00003710OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3711 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003712 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003713 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003714 const Instruction *CxtI,
3715 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003716 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003717}
3718
Jingyue Wu42f1d672015-07-28 18:22:40 +00003719bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003720 // A memory operation returns normally if it isn't volatile. A volatile
3721 // operation is allowed to trap.
3722 //
3723 // An atomic operation isn't guaranteed to return in a reasonable amount of
3724 // time because it's possible for another thread to interfere with it for an
3725 // arbitrary length of time, but programs aren't allowed to rely on that.
3726 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3727 return !LI->isVolatile();
3728 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3729 return !SI->isVolatile();
3730 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3731 return !CXI->isVolatile();
3732 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3733 return !RMWI->isVolatile();
3734 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3735 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003736
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003737 // If there is no successor, then execution can't transfer to it.
3738 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3739 return !CRI->unwindsToCaller();
3740 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3741 return !CatchSwitch->unwindsToCaller();
3742 if (isa<ResumeInst>(I))
3743 return false;
3744 if (isa<ReturnInst>(I))
3745 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003746
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003747 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003748 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003749 // Call sites that throw have implicit non-local control flow.
3750 if (!CS.doesNotThrow())
3751 return false;
3752
3753 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3754 // etc. and thus not return. However, LLVM already assumes that
3755 //
3756 // - Thread exiting actions are modeled as writes to memory invisible to
3757 // the program.
3758 //
3759 // - Loops that don't have side effects (side effects are volatile/atomic
3760 // stores and IO) always terminate (see http://llvm.org/PR965).
3761 // Furthermore IO itself is also modeled as writes to memory invisible to
3762 // the program.
3763 //
3764 // We rely on those assumptions here, and use the memory effects of the call
3765 // target as a proxy for checking that it always returns.
3766
3767 // FIXME: This isn't aggressive enough; a call which only writes to a global
3768 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003769 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3770 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003771 }
3772
3773 // Other instructions return normally.
3774 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003775}
3776
3777bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3778 const Loop *L) {
3779 // The loop header is guaranteed to be executed for every iteration.
3780 //
3781 // FIXME: Relax this constraint to cover all basic blocks that are
3782 // guaranteed to be executed at every iteration.
3783 if (I->getParent() != L->getHeader()) return false;
3784
3785 for (const Instruction &LI : *L->getHeader()) {
3786 if (&LI == I) return true;
3787 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3788 }
3789 llvm_unreachable("Instruction not contained in its own parent basic block.");
3790}
3791
3792bool llvm::propagatesFullPoison(const Instruction *I) {
3793 switch (I->getOpcode()) {
3794 case Instruction::Add:
3795 case Instruction::Sub:
3796 case Instruction::Xor:
3797 case Instruction::Trunc:
3798 case Instruction::BitCast:
3799 case Instruction::AddrSpaceCast:
3800 // These operations all propagate poison unconditionally. Note that poison
3801 // is not any particular value, so xor or subtraction of poison with
3802 // itself still yields poison, not zero.
3803 return true;
3804
3805 case Instruction::AShr:
3806 case Instruction::SExt:
3807 // For these operations, one bit of the input is replicated across
3808 // multiple output bits. A replicated poison bit is still poison.
3809 return true;
3810
3811 case Instruction::Shl: {
3812 // Left shift *by* a poison value is poison. The number of
3813 // positions to shift is unsigned, so no negative values are
3814 // possible there. Left shift by zero places preserves poison. So
3815 // it only remains to consider left shift of poison by a positive
3816 // number of places.
3817 //
3818 // A left shift by a positive number of places leaves the lowest order bit
3819 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3820 // make the poison operand violate that flag, yielding a fresh full-poison
3821 // value.
3822 auto *OBO = cast<OverflowingBinaryOperator>(I);
3823 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3824 }
3825
3826 case Instruction::Mul: {
3827 // A multiplication by zero yields a non-poison zero result, so we need to
3828 // rule out zero as an operand. Conservatively, multiplication by a
3829 // non-zero constant is not multiplication by zero.
3830 //
3831 // Multiplication by a non-zero constant can leave some bits
3832 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3833 // order bit unpoisoned. So we need to consider that.
3834 //
3835 // Multiplication by 1 preserves poison. If the multiplication has a
3836 // no-wrap flag, then we can make the poison operand violate that flag
3837 // when multiplied by any integer other than 0 and 1.
3838 auto *OBO = cast<OverflowingBinaryOperator>(I);
3839 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3840 for (Value *V : OBO->operands()) {
3841 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3842 // A ConstantInt cannot yield poison, so we can assume that it is
3843 // the other operand that is poison.
3844 return !CI->isZero();
3845 }
3846 }
3847 }
3848 return false;
3849 }
3850
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003851 case Instruction::ICmp:
3852 // Comparing poison with any value yields poison. This is why, for
3853 // instance, x s< (x +nsw 1) can be folded to true.
3854 return true;
3855
Jingyue Wu42f1d672015-07-28 18:22:40 +00003856 case Instruction::GetElementPtr:
3857 // A GEP implicitly represents a sequence of additions, subtractions,
3858 // truncations, sign extensions and multiplications. The multiplications
3859 // are by the non-zero sizes of some set of types, so we do not have to be
3860 // concerned with multiplication by zero. If the GEP is in-bounds, then
3861 // these operations are implicitly no-signed-wrap so poison is propagated
3862 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3863 return cast<GEPOperator>(I)->isInBounds();
3864
3865 default:
3866 return false;
3867 }
3868}
3869
3870const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3871 switch (I->getOpcode()) {
3872 case Instruction::Store:
3873 return cast<StoreInst>(I)->getPointerOperand();
3874
3875 case Instruction::Load:
3876 return cast<LoadInst>(I)->getPointerOperand();
3877
3878 case Instruction::AtomicCmpXchg:
3879 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3880
3881 case Instruction::AtomicRMW:
3882 return cast<AtomicRMWInst>(I)->getPointerOperand();
3883
3884 case Instruction::UDiv:
3885 case Instruction::SDiv:
3886 case Instruction::URem:
3887 case Instruction::SRem:
3888 return I->getOperand(1);
3889
3890 default:
3891 return nullptr;
3892 }
3893}
3894
3895bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3896 // We currently only look for uses of poison values within the same basic
3897 // block, as that makes it easier to guarantee that the uses will be
3898 // executed given that PoisonI is executed.
3899 //
3900 // FIXME: Expand this to consider uses beyond the same basic block. To do
3901 // this, look out for the distinction between post-dominance and strong
3902 // post-dominance.
3903 const BasicBlock *BB = PoisonI->getParent();
3904
3905 // Set of instructions that we have proved will yield poison if PoisonI
3906 // does.
3907 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003908 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003909 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003910 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003911
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003912 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003913
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003914 unsigned Iter = 0;
3915 while (Iter++ < MaxDepth) {
3916 for (auto &I : make_range(Begin, End)) {
3917 if (&I != PoisonI) {
3918 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3919 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3920 return true;
3921 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3922 return false;
3923 }
3924
3925 // Mark poison that propagates from I through uses of I.
3926 if (YieldsPoison.count(&I)) {
3927 for (const User *User : I.users()) {
3928 const Instruction *UserI = cast<Instruction>(User);
3929 if (propagatesFullPoison(UserI))
3930 YieldsPoison.insert(User);
3931 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003932 }
3933 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003934
3935 if (auto *NextBB = BB->getSingleSuccessor()) {
3936 if (Visited.insert(NextBB).second) {
3937 BB = NextBB;
3938 Begin = BB->getFirstNonPHI()->getIterator();
3939 End = BB->end();
3940 continue;
3941 }
3942 }
3943
3944 break;
3945 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003946 return false;
3947}
3948
Pete Cooper35b00d52016-08-13 01:05:32 +00003949static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003950 if (FMF.noNaNs())
3951 return true;
3952
3953 if (auto *C = dyn_cast<ConstantFP>(V))
3954 return !C->isNaN();
3955 return false;
3956}
3957
Pete Cooper35b00d52016-08-13 01:05:32 +00003958static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003959 if (auto *C = dyn_cast<ConstantFP>(V))
3960 return !C->isZero();
3961 return false;
3962}
3963
Sanjay Patel819f0962016-11-13 19:30:19 +00003964/// Match non-obvious integer minimum and maximum sequences.
3965static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3966 Value *CmpLHS, Value *CmpRHS,
3967 Value *TrueVal, Value *FalseVal,
3968 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003969 // Assume success. If there's no match, callers should not use these anyway.
3970 LHS = TrueVal;
3971 RHS = FalseVal;
3972
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003973 // Recognize variations of:
3974 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3975 const APInt *C1;
3976 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3977 const APInt *C2;
3978
3979 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3980 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003981 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003982 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003983
3984 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3985 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003986 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003987 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003988
3989 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3990 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003991 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003992 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003993
3994 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3995 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003996 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003997 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003998 }
3999
Sanjay Patel819f0962016-11-13 19:30:19 +00004000 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4001 return {SPF_UNKNOWN, SPNB_NA, false};
4002
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004003 // Z = X -nsw Y
4004 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4005 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4006 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004007 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004008 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004009
4010 // Z = X -nsw Y
4011 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4012 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4013 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004014 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004015 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004016
Sanjay Patel819f0962016-11-13 19:30:19 +00004017 if (!match(CmpRHS, m_APInt(C1)))
4018 return {SPF_UNKNOWN, SPNB_NA, false};
4019
4020 // An unsigned min/max can be written with a signed compare.
4021 const APInt *C2;
4022 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4023 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4024 // Is the sign bit set?
4025 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4026 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004027 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004028 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004029
4030 // Is the sign bit clear?
4031 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4032 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4033 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004034 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004035 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004036 }
4037
4038 // Look through 'not' ops to find disguised signed min/max.
4039 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4040 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4041 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004042 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004043 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004044
4045 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4046 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4047 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004048 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004049 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004050
4051 return {SPF_UNKNOWN, SPNB_NA, false};
4052}
4053
James Molloy134bec22015-08-11 09:12:57 +00004054static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4055 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004056 Value *CmpLHS, Value *CmpRHS,
4057 Value *TrueVal, Value *FalseVal,
4058 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004059 LHS = CmpLHS;
4060 RHS = CmpRHS;
4061
James Molloy134bec22015-08-11 09:12:57 +00004062 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4063 // return inconsistent results between implementations.
4064 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4065 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4066 // Therefore we behave conservatively and only proceed if at least one of the
4067 // operands is known to not be zero, or if we don't care about signed zeroes.
4068 switch (Pred) {
4069 default: break;
4070 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4071 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4072 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4073 !isKnownNonZero(CmpRHS))
4074 return {SPF_UNKNOWN, SPNB_NA, false};
4075 }
4076
4077 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4078 bool Ordered = false;
4079
4080 // When given one NaN and one non-NaN input:
4081 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4082 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4083 // ordered comparison fails), which could be NaN or non-NaN.
4084 // so here we discover exactly what NaN behavior is required/accepted.
4085 if (CmpInst::isFPPredicate(Pred)) {
4086 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4087 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4088
4089 if (LHSSafe && RHSSafe) {
4090 // Both operands are known non-NaN.
4091 NaNBehavior = SPNB_RETURNS_ANY;
4092 } else if (CmpInst::isOrdered(Pred)) {
4093 // An ordered comparison will return false when given a NaN, so it
4094 // returns the RHS.
4095 Ordered = true;
4096 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004097 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004098 NaNBehavior = SPNB_RETURNS_NAN;
4099 else if (RHSSafe)
4100 NaNBehavior = SPNB_RETURNS_OTHER;
4101 else
4102 // Completely unsafe.
4103 return {SPF_UNKNOWN, SPNB_NA, false};
4104 } else {
4105 Ordered = false;
4106 // An unordered comparison will return true when given a NaN, so it
4107 // returns the LHS.
4108 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004109 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004110 NaNBehavior = SPNB_RETURNS_OTHER;
4111 else if (RHSSafe)
4112 NaNBehavior = SPNB_RETURNS_NAN;
4113 else
4114 // Completely unsafe.
4115 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004116 }
4117 }
4118
James Molloy71b91c22015-05-11 14:42:20 +00004119 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004120 std::swap(CmpLHS, CmpRHS);
4121 Pred = CmpInst::getSwappedPredicate(Pred);
4122 if (NaNBehavior == SPNB_RETURNS_NAN)
4123 NaNBehavior = SPNB_RETURNS_OTHER;
4124 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4125 NaNBehavior = SPNB_RETURNS_NAN;
4126 Ordered = !Ordered;
4127 }
4128
4129 // ([if]cmp X, Y) ? X : Y
4130 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004131 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004132 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004133 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004134 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004135 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004136 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004137 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004138 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004139 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004140 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4141 case FCmpInst::FCMP_UGT:
4142 case FCmpInst::FCMP_UGE:
4143 case FCmpInst::FCMP_OGT:
4144 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4145 case FCmpInst::FCMP_ULT:
4146 case FCmpInst::FCMP_ULE:
4147 case FCmpInst::FCMP_OLT:
4148 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004149 }
4150 }
4151
Sanjay Patele372aec2016-10-27 15:26:10 +00004152 const APInt *C1;
4153 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004154 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4155 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4156
4157 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4158 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004159 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004160 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004161 }
4162
4163 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4164 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004165 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004166 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004167 }
4168 }
James Molloy71b91c22015-05-11 14:42:20 +00004169 }
4170
Sanjay Patel819f0962016-11-13 19:30:19 +00004171 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004172}
James Molloy270ef8c2015-05-15 16:04:50 +00004173
James Molloy569cea62015-09-02 17:25:25 +00004174static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4175 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004176 auto *Cast1 = dyn_cast<CastInst>(V1);
4177 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004178 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004179
Sanjay Patel14a4b812017-01-29 16:34:57 +00004180 *CastOp = Cast1->getOpcode();
4181 Type *SrcTy = Cast1->getSrcTy();
4182 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4183 // If V1 and V2 are both the same cast from the same type, look through V1.
4184 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4185 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004186 return nullptr;
4187 }
4188
Sanjay Patel14a4b812017-01-29 16:34:57 +00004189 auto *C = dyn_cast<Constant>(V2);
4190 if (!C)
4191 return nullptr;
4192
David Majnemerd2a074b2016-04-29 18:40:34 +00004193 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004194 switch (*CastOp) {
4195 case Instruction::ZExt:
4196 if (CmpI->isUnsigned())
4197 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4198 break;
4199 case Instruction::SExt:
4200 if (CmpI->isSigned())
4201 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4202 break;
4203 case Instruction::Trunc:
4204 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4205 break;
4206 case Instruction::FPTrunc:
4207 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4208 break;
4209 case Instruction::FPExt:
4210 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4211 break;
4212 case Instruction::FPToUI:
4213 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4214 break;
4215 case Instruction::FPToSI:
4216 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4217 break;
4218 case Instruction::UIToFP:
4219 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4220 break;
4221 case Instruction::SIToFP:
4222 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4223 break;
4224 default:
4225 break;
4226 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004227
4228 if (!CastedTo)
4229 return nullptr;
4230
David Majnemerd2a074b2016-04-29 18:40:34 +00004231 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004232 Constant *CastedBack =
4233 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004234 if (CastedBack != C)
4235 return nullptr;
4236
4237 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004238}
4239
Sanjay Patele8dc0902016-05-23 17:57:54 +00004240SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004241 Instruction::CastOps *CastOp) {
4242 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004243 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004244
James Molloy134bec22015-08-11 09:12:57 +00004245 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4246 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004247
James Molloy134bec22015-08-11 09:12:57 +00004248 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004249 Value *CmpLHS = CmpI->getOperand(0);
4250 Value *CmpRHS = CmpI->getOperand(1);
4251 Value *TrueVal = SI->getTrueValue();
4252 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004253 FastMathFlags FMF;
4254 if (isa<FPMathOperator>(CmpI))
4255 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004256
4257 // Bail out early.
4258 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004259 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004260
4261 // Deal with type mismatches.
4262 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004263 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004264 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004265 cast<CastInst>(TrueVal)->getOperand(0), C,
4266 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004267 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004268 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004269 C, cast<CastInst>(FalseVal)->getOperand(0),
4270 LHS, RHS);
4271 }
James Molloy134bec22015-08-11 09:12:57 +00004272 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004273 LHS, RHS);
4274}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004275
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004276/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004277static bool isTruePredicate(CmpInst::Predicate Pred,
4278 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004279 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004280 AssumptionCache *AC, const Instruction *CxtI,
4281 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004282 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004283 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4284 return true;
4285
4286 switch (Pred) {
4287 default:
4288 return false;
4289
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004290 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004291 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004292
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004293 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004294 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004295 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004296 return false;
4297 }
4298
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004299 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004300 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004301
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004302 // LHS u<= LHS +_{nuw} C for any C
4303 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004304 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004305
4306 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004307 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4308 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004309 const APInt *&CA, const APInt *&CB) {
4310 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4311 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4312 return true;
4313
4314 // If X & C == 0 then (X | C) == X +_{nuw} C
4315 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4316 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4317 unsigned BitWidth = CA->getBitWidth();
4318 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004319 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004320
4321 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4322 return true;
4323 }
4324
4325 return false;
4326 };
4327
Pete Cooper35b00d52016-08-13 01:05:32 +00004328 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004329 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004330 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4331 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004332
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004333 return false;
4334 }
4335 }
4336}
4337
4338/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004339/// ALHS ARHS" is true. Otherwise, return None.
4340static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004341isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4342 const Value *ARHS, const Value *BLHS,
4343 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004344 unsigned Depth, AssumptionCache *AC,
4345 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004346 switch (Pred) {
4347 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004348 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004349
4350 case CmpInst::ICMP_SLT:
4351 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004352 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004353 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004354 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004355 return true;
4356 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004357
4358 case CmpInst::ICMP_ULT:
4359 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004360 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4361 DT) &&
4362 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004363 return true;
4364 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004365 }
4366}
4367
Chad Rosier226a7342016-05-05 17:41:19 +00004368/// Return true if the operands of the two compares match. IsSwappedOps is true
4369/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004370static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4371 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004372 bool &IsSwappedOps) {
4373
4374 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4375 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4376 return IsMatchingOps || IsSwappedOps;
4377}
4378
Chad Rosier41dd31f2016-04-20 19:15:26 +00004379/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4380/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4381/// BRHS" is false. Otherwise, return None if we can't infer anything.
4382static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004383 const Value *ALHS,
4384 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004385 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004386 const Value *BLHS,
4387 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004388 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004389 // Canonicalize the operands so they're matching.
4390 if (IsSwappedOps) {
4391 std::swap(BLHS, BRHS);
4392 BPred = ICmpInst::getSwappedPredicate(BPred);
4393 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004394 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004395 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004396 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004397 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004398
Chad Rosier41dd31f2016-04-20 19:15:26 +00004399 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004400}
4401
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004402/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4403/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4404/// C2" is false. Otherwise, return None if we can't infer anything.
4405static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004406isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4407 const ConstantInt *C1,
4408 CmpInst::Predicate BPred,
4409 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004410 assert(ALHS == BLHS && "LHS operands must match.");
4411 ConstantRange DomCR =
4412 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4413 ConstantRange CR =
4414 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4415 ConstantRange Intersection = DomCR.intersectWith(CR);
4416 ConstantRange Difference = DomCR.difference(CR);
4417 if (Intersection.isEmptySet())
4418 return false;
4419 if (Difference.isEmptySet())
4420 return true;
4421 return None;
4422}
4423
Pete Cooper35b00d52016-08-13 01:05:32 +00004424Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004425 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004426 unsigned Depth, AssumptionCache *AC,
4427 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004428 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004429 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4430 if (LHS->getType() != RHS->getType())
4431 return None;
4432
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004433 Type *OpTy = LHS->getType();
4434 assert(OpTy->getScalarType()->isIntegerTy(1));
4435
4436 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004437 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004438 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004439
4440 if (OpTy->isVectorTy())
4441 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004442 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004443 assert(OpTy->isIntegerTy(1) && "implied by above");
4444
4445 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004446 Value *ALHS, *ARHS;
4447 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004448
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004449 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4450 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004451 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004452
Chad Rosiere2cbd132016-04-25 17:23:36 +00004453 if (InvertAPred)
4454 APred = CmpInst::getInversePredicate(APred);
4455
Chad Rosier226a7342016-05-05 17:41:19 +00004456 // Can we infer anything when the two compares have matching operands?
4457 bool IsSwappedOps;
4458 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4459 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4460 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004461 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004462 // No amount of additional analysis will infer the second condition, so
4463 // early exit.
4464 return None;
4465 }
4466
4467 // Can we infer anything when the LHS operands match and the RHS operands are
4468 // constants (not necessarily matching)?
4469 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4470 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4471 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4472 cast<ConstantInt>(BRHS)))
4473 return Implication;
4474 // No amount of additional analysis will infer the second condition, so
4475 // early exit.
4476 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004477 }
4478
Chad Rosier41dd31f2016-04-20 19:15:26 +00004479 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004480 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4481 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004482
Chad Rosier41dd31f2016-04-20 19:15:26 +00004483 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004484}