blob: 5444a54fbf2c8717674ab264b91285ccb99e61e6 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000034 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner9fc05222010-07-07 22:27:31 +000041 return 5;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000048 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000049 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
50 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000051 };
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000052
Chris Lattner8d31de62010-02-11 21:27:18 +000053 if (Kind < FirstTargetFixupKind)
54 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000055
Chris Lattner8d31de62010-02-11 21:27:18 +000056 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000057 "Invalid kind!");
58 return Infos[Kind - FirstTargetFixupKind];
59 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000060
Chris Lattner28249d92010-02-05 01:53:19 +000061 static unsigned GetX86RegNum(const MCOperand &MO) {
62 return X86RegisterInfo::getX86RegNum(MO.getReg());
63 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000064
65 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
66 // 0-7 and the difference between the 2 groups is given by the REX prefix.
67 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
68 // in 1's complement form, example:
69 //
70 // ModRM field => XMM9 => 1
71 // VEX.VVVV => XMM9 => ~9
72 //
73 // See table 4-35 of Intel AVX Programming Reference for details.
74 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
75 unsigned OpNum) {
76 unsigned SrcReg = MI.getOperand(OpNum).getReg();
77 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
78 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
79 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000080
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000081 // The registers represented through VEX_VVVV should
82 // be encoded in 1's complement form.
83 return (~SrcRegNum) & 0xf;
84 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000085
Chris Lattner37ce80e2010-02-10 06:41:02 +000086 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000087 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000088 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000089 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000090
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
92 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000093 // Output the constant in little endian byte order.
94 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000095 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000096 Val >>= 8;
97 }
98 }
Chris Lattner0e73c392010-02-05 06:16:07 +000099
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000100 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +0000101 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000102 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000103 SmallVectorImpl<MCFixup> &Fixups,
104 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000105
Chris Lattner28249d92010-02-05 01:53:19 +0000106 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
107 unsigned RM) {
108 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
109 return RM | (RegOpcode << 3) | (Mod << 6);
110 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000111
Chris Lattner28249d92010-02-05 01:53:19 +0000112 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000113 unsigned &CurByte, raw_ostream &OS) const {
114 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000115 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000116
Chris Lattner0e73c392010-02-05 06:16:07 +0000117 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000118 unsigned &CurByte, raw_ostream &OS) const {
119 // SIB byte is in the same format as the ModRMByte.
120 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000121 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000122
123
Chris Lattner1ac23b12010-02-05 02:18:40 +0000124 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000125 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000126 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000127 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000128
Daniel Dunbar73c55742010-02-09 22:59:55 +0000129 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
130 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000131
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000132 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
133 const MCInst &MI, const TargetInstrDesc &Desc,
134 raw_ostream &OS) const;
135
Chris Lattner834df192010-07-08 22:28:12 +0000136 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000137 const MCInst &MI, const TargetInstrDesc &Desc,
138 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000139};
140
141} // end anonymous namespace
142
143
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000144MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000145 TargetMachine &TM,
146 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000147 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000148}
149
150MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000151 TargetMachine &TM,
152 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000153 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000154}
155
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000156/// isDisp8 - Return true if this signed displacement fits in a 8-bit
157/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000158static bool isDisp8(int Value) {
159 return Value == (signed char)Value;
160}
161
Chris Lattnercf653392010-02-12 22:36:47 +0000162/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
163/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000164static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000165 unsigned Size = X86II::getSizeOfImm(TSFlags);
166 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000167
Chris Lattnercf653392010-02-12 22:36:47 +0000168 switch (Size) {
169 default: assert(0 && "Unknown immediate size");
170 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000171 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000172 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000173 case 8: assert(!isPCRel); return FK_Data_8;
174 }
175}
176
177
Chris Lattner0e73c392010-02-05 06:16:07 +0000178void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000179EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000180 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000181 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000182 // If this is a simple integer displacement that doesn't require a relocation,
183 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000184 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000185 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
186 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000187 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000188 return;
189 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000190
Chris Lattner835acab2010-02-12 23:00:36 +0000191 // If we have an immoffset, add it to the expression.
192 const MCExpr *Expr = DispOp.getExpr();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000193
Chris Lattnera08b5872010-02-16 05:03:17 +0000194 // If the fixup is pc-relative, we need to bias the value to be relative to
195 // the start of the field, not the end of the field.
196 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000197 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
198 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000199 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000200 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000201 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000202 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
203 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000204
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000205 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000206 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000207 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000208
Chris Lattner5dccfad2010-02-10 06:52:12 +0000209 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000210 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000211 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000212}
213
Chris Lattner1ac23b12010-02-05 02:18:40 +0000214void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
215 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000216 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000217 raw_ostream &OS,
218 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000219 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000221 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000222 const MCOperand &IndexReg = MI.getOperand(Op+2);
223 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000224
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000225 // Handle %rip relative addressing.
226 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000227 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
228 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000229 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000230
Chris Lattner0f53cf22010-03-18 18:10:56 +0000231 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000232
Chris Lattner0f53cf22010-03-18 18:10:56 +0000233 // movq loads are handled with a special relocation form which allows the
234 // linker to eliminate some loads for GOT references which end up in the
235 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000236 if (MI.getOpcode() == X86::MOV64rm ||
237 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000238 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000239
Chris Lattner835acab2010-02-12 23:00:36 +0000240 // rip-relative addressing is actually relative to the *next* instruction.
241 // Since an immediate can follow the mod/rm byte for an instruction, this
242 // means that we need to bias the immediate field of the instruction with
243 // the size of the immediate field. If we have this case, add it into the
244 // expression to emit.
245 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000246
Chris Lattner0f53cf22010-03-18 18:10:56 +0000247 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000248 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000249 return;
250 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000251
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000252 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000253
Chris Lattnera8168ec2010-02-09 21:57:34 +0000254 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000255 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000256 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
257 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000258
Chris Lattnera8168ec2010-02-09 21:57:34 +0000259 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000260 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000261 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
262 // encode to an R/M value of 4, which indicates that a SIB byte is
263 // present.
264 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000265 // If there is no base register and we're in 64-bit mode, we need a SIB
266 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
267 (!Is64BitMode || BaseReg != 0)) {
268
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000269 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000270 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000271 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000272 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000273 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000274
Chris Lattnera8168ec2010-02-09 21:57:34 +0000275 // If the base is not EBP/ESP and there is no displacement, use simple
276 // indirect register encoding, this handles addresses like [EAX]. The
277 // encoding for [EBP] with no displacement means [disp32] so we handle it
278 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000279 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000280 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000281 return;
282 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000283
Chris Lattnera8168ec2010-02-09 21:57:34 +0000284 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000285 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000286 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000287 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000288 return;
289 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000290
Chris Lattnera8168ec2010-02-09 21:57:34 +0000291 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000292 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000293 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000294 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000295 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000296
Chris Lattner0e73c392010-02-05 06:16:07 +0000297 // We need a SIB byte, so start by outputting the ModR/M byte first
298 assert(IndexReg.getReg() != X86::ESP &&
299 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000300
Chris Lattner0e73c392010-02-05 06:16:07 +0000301 bool ForceDisp32 = false;
302 bool ForceDisp8 = false;
303 if (BaseReg == 0) {
304 // If there is no base register, we emit the special case SIB byte with
305 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000306 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000307 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000308 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000309 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000310 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000311 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000312 } else if (Disp.getImm() == 0 &&
313 // Base reg can't be anything that ends up with '5' as the base
314 // reg, it is the magic [*] nomenclature that indicates no base.
315 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000316 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000317 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000318 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000319 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000320 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000321 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
322 } else {
323 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000324 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000325 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000326
Chris Lattner0e73c392010-02-05 06:16:07 +0000327 // Calculate what the SS field value should be...
328 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
329 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000330
Chris Lattner0e73c392010-02-05 06:16:07 +0000331 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000332 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000333 // Manual 2A, table 2-7. The displacement has already been output.
334 unsigned IndexRegNo;
335 if (IndexReg.getReg())
336 IndexRegNo = GetX86RegNum(IndexReg);
337 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
338 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000339 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 } else {
341 unsigned IndexRegNo;
342 if (IndexReg.getReg())
343 IndexRegNo = GetX86RegNum(IndexReg);
344 else
345 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000346 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000347 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000348
Chris Lattner0e73c392010-02-05 06:16:07 +0000349 // Do we need to output a displacement?
350 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000351 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000352 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000353 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000354}
355
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000356/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
357/// called VEX.
358void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
359 const MCInst &MI, const TargetInstrDesc &Desc,
360 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000361 bool HasVEX_4V = false;
362 if ((TSFlags >> 32) & X86II::VEX_4V)
363 HasVEX_4V = true;
364
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000365 // VEX_R: opcode externsion equivalent to REX.R in
366 // 1's complement (inverted) form
367 //
368 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
369 // 0: Same as REX_R=1 (64 bit mode only)
370 //
371 unsigned char VEX_R = 0x1;
372
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000373 // VEX_X: equivalent to REX.X, only used when a
374 // register is used for index in SIB Byte.
375 //
376 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
377 // 0: Same as REX.X=1 (64-bit mode only)
378 unsigned char VEX_X = 0x1;
379
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000380 // VEX_B:
381 //
382 // 1: Same as REX_B=0 (ignored in 32-bit mode)
383 // 0: Same as REX_B=1 (64 bit mode only)
384 //
385 unsigned char VEX_B = 0x1;
386
387 // VEX_W: opcode specific (use like REX.W, or used for
388 // opcode extension, or ignored, depending on the opcode byte)
389 unsigned char VEX_W = 0;
390
391 // VEX_5M (VEX m-mmmmm field):
392 //
393 // 0b00000: Reserved for future use
394 // 0b00001: implied 0F leading opcode
395 // 0b00010: implied 0F 38 leading opcode bytes
396 // 0b00011: implied 0F 3A leading opcode bytes
397 // 0b00100-0b11111: Reserved for future use
398 //
399 unsigned char VEX_5M = 0x1;
400
401 // VEX_4V (VEX vvvv field): a register specifier
402 // (in 1's complement form) or 1111 if unused.
403 unsigned char VEX_4V = 0xf;
404
405 // VEX_L (Vector Length):
406 //
407 // 0: scalar or 128-bit vector
408 // 1: 256-bit vector
409 //
410 unsigned char VEX_L = 0;
411
412 // VEX_PP: opcode extension providing equivalent
413 // functionality of a SIMD prefix
414 //
415 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000416 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000417 // 0b10: F3
418 // 0b11: F2
419 //
420 unsigned char VEX_PP = 0;
421
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000422 // Encode the operand size opcode prefix as needed.
423 if (TSFlags & X86II::OpSize)
424 VEX_PP = 0x01;
425
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000426 if ((TSFlags >> 32) & X86II::VEX_W)
427 VEX_W = 1;
428
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000429 switch (TSFlags & X86II::Op0Mask) {
430 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000431 case X86II::T8: // 0F 38
432 VEX_5M = 0x2;
433 break;
434 case X86II::TA: // 0F 3A
435 VEX_5M = 0x3;
436 break;
437 case X86II::TF: // F2 0F 38
438 VEX_PP = 0x3;
439 VEX_5M = 0x2;
440 break;
441 case X86II::XS: // F3 0F
442 VEX_PP = 0x2;
443 break;
444 case X86II::XD: // F2 0F
445 VEX_PP = 0x3;
446 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000447 case X86II::TB: // Bypass: Not used by VEX
448 case 0:
449 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000450 }
451
452 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000453 unsigned CurOp = 0;
454
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000455 switch (TSFlags & X86II::FormMask) {
456 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000457 case X86II::MRM0m: case X86II::MRM1m:
458 case X86II::MRM2m: case X86II::MRM3m:
459 case X86II::MRM4m: case X86II::MRM5m:
460 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000461 case X86II::MRMDestMem:
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000462 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000463 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000464 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000465 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000466 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000467 VEX_R = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000468
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000469 // CurOp and NumOps are equal when VEX_R represents a register used
470 // to index a memory destination (which is the last operand)
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000471 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000472
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000473 if (HasVEX_4V) {
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000474 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000475 CurOp++;
476 }
477
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000478 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000479 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000480 if ((TSFlags >> 32) & X86II::VEX_I8IMM)
481 NumOps--;
482
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000483 for (; CurOp != NumOps; ++CurOp) {
484 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000485 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
486 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000487 if (!VEX_B && MO.isReg() &&
488 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000489 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
490 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000491 }
492 break;
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000493 default: // MRMDestReg, MRM0r-MRM7r
494 if (MI.getOperand(CurOp).isReg() &&
495 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
496 VEX_B = 0;
497
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000498 if (HasVEX_4V)
499 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
500
501 CurOp++;
502 for (; CurOp != NumOps; ++CurOp) {
503 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000504 if (MO.isReg() && !HasVEX_4V &&
505 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
506 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000507 }
508 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000509 assert(0 && "Not implemented!");
510 }
511
512 // VEX opcode prefix can have 2 or 3 bytes
513 //
514 // 3 bytes:
515 // +-----+ +--------------+ +-------------------+
516 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
517 // +-----+ +--------------+ +-------------------+
518 // 2 bytes:
519 // +-----+ +-------------------+
520 // | C5h | | R | vvvv | L | pp |
521 // +-----+ +-------------------+
522 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000523 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
524
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000525 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000526 EmitByte(0xC5, CurByte, OS);
527 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
528 return;
529 }
530
531 // 3 byte VEX prefix
532 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000533 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000534 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
535}
536
Chris Lattner39a612e2010-02-05 22:10:22 +0000537/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
538/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
539/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000540static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000541 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000542 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000543 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000544 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000545
Chris Lattner39a612e2010-02-05 22:10:22 +0000546 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000547
Chris Lattner39a612e2010-02-05 22:10:22 +0000548 unsigned NumOps = MI.getNumOperands();
549 // FIXME: MCInst should explicitize the two-addrness.
550 bool isTwoAddr = NumOps > 1 &&
551 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000552
Chris Lattner39a612e2010-02-05 22:10:22 +0000553 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
554 unsigned i = isTwoAddr ? 1 : 0;
555 for (; i != NumOps; ++i) {
556 const MCOperand &MO = MI.getOperand(i);
557 if (!MO.isReg()) continue;
558 unsigned Reg = MO.getReg();
559 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000560 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
561 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000562 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000563 break;
564 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000565
Chris Lattner39a612e2010-02-05 22:10:22 +0000566 switch (TSFlags & X86II::FormMask) {
567 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
568 case X86II::MRMSrcReg:
569 if (MI.getOperand(0).isReg() &&
570 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000571 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000572 i = isTwoAddr ? 2 : 1;
573 for (; i != NumOps; ++i) {
574 const MCOperand &MO = MI.getOperand(i);
575 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000576 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000577 }
578 break;
579 case X86II::MRMSrcMem: {
580 if (MI.getOperand(0).isReg() &&
581 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000582 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000583 unsigned Bit = 0;
584 i = isTwoAddr ? 2 : 1;
585 for (; i != NumOps; ++i) {
586 const MCOperand &MO = MI.getOperand(i);
587 if (MO.isReg()) {
588 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000589 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000590 Bit++;
591 }
592 }
593 break;
594 }
595 case X86II::MRM0m: case X86II::MRM1m:
596 case X86II::MRM2m: case X86II::MRM3m:
597 case X86II::MRM4m: case X86II::MRM5m:
598 case X86II::MRM6m: case X86II::MRM7m:
599 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000600 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000601 i = isTwoAddr ? 1 : 0;
602 if (NumOps > e && MI.getOperand(e).isReg() &&
603 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000604 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000605 unsigned Bit = 0;
606 for (; i != e; ++i) {
607 const MCOperand &MO = MI.getOperand(i);
608 if (MO.isReg()) {
609 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000610 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000611 Bit++;
612 }
613 }
614 break;
615 }
616 default:
617 if (MI.getOperand(0).isReg() &&
618 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000619 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000620 i = isTwoAddr ? 2 : 1;
621 for (unsigned e = NumOps; i != e; ++i) {
622 const MCOperand &MO = MI.getOperand(i);
623 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000624 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000625 }
626 break;
627 }
628 return REX;
629}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000630
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000631/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
Chris Lattner834df192010-07-08 22:28:12 +0000632///
633/// MemOperand is the operand # of the start of a memory operand if present. If
634/// Not present, it is -1.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000635void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000636 int MemOperand, const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000637 const TargetInstrDesc &Desc,
638 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000639
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000640 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000641 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000642 EmitByte(0xF0, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000643
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000644 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000645 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000646 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000647 case 0:
648 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000649 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000650 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000651 default: assert(0 && "Unknown segment register!");
652 case 0: break;
653 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
654 case X86::SS: EmitByte(0x36, CurByte, OS); break;
655 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
656 case X86::ES: EmitByte(0x26, CurByte, OS); break;
657 case X86::FS: EmitByte(0x64, CurByte, OS); break;
658 case X86::GS: EmitByte(0x65, CurByte, OS); break;
659 }
660 }
661 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000662 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000663 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000664 break;
665 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000666 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000667 break;
668 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000669
Chris Lattner1e80f402010-02-03 21:57:59 +0000670 // Emit the repeat opcode prefix as needed.
671 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000672 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000673
Chris Lattner1e80f402010-02-03 21:57:59 +0000674 // Emit the operand size opcode prefix as needed.
675 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000676 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000677
Chris Lattner1e80f402010-02-03 21:57:59 +0000678 // Emit the address size opcode prefix as needed.
679 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000680 EmitByte(0x67, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000681
Chris Lattner1e80f402010-02-03 21:57:59 +0000682 bool Need0FPrefix = false;
683 switch (TSFlags & X86II::Op0Mask) {
684 default: assert(0 && "Invalid prefix!");
685 case 0: break; // No prefix!
686 case X86II::REP: break; // already handled.
687 case X86II::TB: // Two-byte opcode prefix
688 case X86II::T8: // 0F 38
689 case X86II::TA: // 0F 3A
690 Need0FPrefix = true;
691 break;
692 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000693 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000694 Need0FPrefix = true;
695 break;
696 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000697 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000698 Need0FPrefix = true;
699 break;
700 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000701 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000702 Need0FPrefix = true;
703 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000704 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
705 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
706 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
707 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
708 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
709 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
710 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
711 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000712 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000713
Chris Lattner1e80f402010-02-03 21:57:59 +0000714 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000715 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000716 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000717 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000718 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000719 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000720
Chris Lattner1e80f402010-02-03 21:57:59 +0000721 // 0x0F escape code must be emitted just before the opcode.
722 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000723 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000724
Chris Lattner1e80f402010-02-03 21:57:59 +0000725 // FIXME: Pull this up into previous switch if REX can be moved earlier.
726 switch (TSFlags & X86II::Op0Mask) {
727 case X86II::TF: // F2 0F 38
728 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000729 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000730 break;
731 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000732 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000733 break;
734 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000735}
736
737void X86MCCodeEmitter::
738EncodeInstruction(const MCInst &MI, raw_ostream &OS,
739 SmallVectorImpl<MCFixup> &Fixups) const {
740 unsigned Opcode = MI.getOpcode();
741 const TargetInstrDesc &Desc = TII.get(Opcode);
742 uint64_t TSFlags = Desc.TSFlags;
743
Chris Lattner757e8d62010-07-09 00:17:50 +0000744 // Pseudo instructions don't get encoded.
745 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
746 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000747
Chris Lattner834df192010-07-08 22:28:12 +0000748 // If this is a two-address instruction, skip one of the register operands.
749 // FIXME: This should be handled during MCInst lowering.
750 unsigned NumOps = Desc.getNumOperands();
751 unsigned CurOp = 0;
752 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
753 ++CurOp;
754 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
755 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
756 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000757
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000758 // Keep track of the current byte being emitted.
759 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000760
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000761 // Is this instruction encoded using the AVX VEX prefix?
762 bool HasVEXPrefix = false;
763
764 // It uses the VEX.VVVV field?
765 bool HasVEX_4V = false;
766
767 if ((TSFlags >> 32) & X86II::VEX)
768 HasVEXPrefix = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000769 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000770 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000771
Chris Lattner834df192010-07-08 22:28:12 +0000772 // Determine where the memory operand starts, if present.
773 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
774 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000775
Chris Lattner834df192010-07-08 22:28:12 +0000776 if (!HasVEXPrefix)
777 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
778 else
779 // FIXME: Segment overrides??
780 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000781
Chris Lattner74a21512010-02-05 19:24:13 +0000782 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000783 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000784 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000785 case X86II::MRMInitReg:
786 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000787 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000788 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000789 case X86II::Pseudo:
790 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000791 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000792 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000793 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000794
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000795 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000796 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000797 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000798
Chris Lattner28249d92010-02-05 01:53:19 +0000799 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000800 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000801 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000802 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000803 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000804 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000805
Chris Lattner1ac23b12010-02-05 02:18:40 +0000806 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000807 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000808 EmitMemModRMByte(MI, CurOp,
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000809 GetX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000810 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000811 CurOp += X86::AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000812 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000813
Chris Lattnerdaa45552010-02-05 19:04:37 +0000814 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000815 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000816 SrcRegNum = CurOp + 1;
817
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000818 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000819 SrcRegNum++;
820
821 EmitRegModRMByte(MI.getOperand(SrcRegNum),
822 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
823 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000824 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000825
Chris Lattnerdaa45552010-02-05 19:04:37 +0000826 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000827 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000828 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000829 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000830 ++AddrOperands;
831 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
832 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000833
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000834 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000835
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000836 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000837 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000838 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000839 break;
840 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000841
842 case X86II::MRM0r: case X86II::MRM1r:
843 case X86II::MRM2r: case X86II::MRM3r:
844 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000845 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000846 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
847 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000848 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000849 EmitRegModRMByte(MI.getOperand(CurOp++),
850 (TSFlags & X86II::FormMask)-X86II::MRM0r,
851 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000852 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000853 case X86II::MRM0m: case X86II::MRM1m:
854 case X86II::MRM2m: case X86II::MRM3m:
855 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000856 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000857 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000858 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000859 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000860 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000861 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000862 case X86II::MRM_C1:
863 EmitByte(BaseOpcode, CurByte, OS);
864 EmitByte(0xC1, CurByte, OS);
865 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000866 case X86II::MRM_C2:
867 EmitByte(BaseOpcode, CurByte, OS);
868 EmitByte(0xC2, CurByte, OS);
869 break;
870 case X86II::MRM_C3:
871 EmitByte(BaseOpcode, CurByte, OS);
872 EmitByte(0xC3, CurByte, OS);
873 break;
874 case X86II::MRM_C4:
875 EmitByte(BaseOpcode, CurByte, OS);
876 EmitByte(0xC4, CurByte, OS);
877 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000878 case X86II::MRM_C8:
879 EmitByte(BaseOpcode, CurByte, OS);
880 EmitByte(0xC8, CurByte, OS);
881 break;
882 case X86II::MRM_C9:
883 EmitByte(BaseOpcode, CurByte, OS);
884 EmitByte(0xC9, CurByte, OS);
885 break;
886 case X86II::MRM_E8:
887 EmitByte(BaseOpcode, CurByte, OS);
888 EmitByte(0xE8, CurByte, OS);
889 break;
890 case X86II::MRM_F0:
891 EmitByte(BaseOpcode, CurByte, OS);
892 EmitByte(0xF0, CurByte, OS);
893 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000894 case X86II::MRM_F8:
895 EmitByte(BaseOpcode, CurByte, OS);
896 EmitByte(0xF8, CurByte, OS);
897 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000898 case X86II::MRM_F9:
899 EmitByte(BaseOpcode, CurByte, OS);
900 EmitByte(0xF9, CurByte, OS);
901 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000902 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000903
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000904 // If there is a remaining operand, it must be a trailing immediate. Emit it
905 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000906 if (CurOp != NumOps) {
907 // The last source register of a 4 operand instruction in AVX is encoded
908 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
909 if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
910 const MCOperand &MO = MI.getOperand(CurOp++);
911 bool IsExtReg =
912 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
913 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
914 RegNum |= GetX86RegNum(MO) << 4;
915 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
916 Fixups);
917 } else
918 EmitImmediate(MI.getOperand(CurOp++),
919 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
920 CurByte, OS, Fixups);
921 }
922
923
Chris Lattner28249d92010-02-05 01:53:19 +0000924#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000925 // FIXME: Verify.
926 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000927 errs() << "Cannot encode all operands of: ";
928 MI.dump();
929 errs() << '\n';
930 abort();
931 }
932#endif
Chris Lattner45762472010-02-03 21:24:49 +0000933}