blob: ef390c5a3ee9012ae471be637a8e8b9d86cf5b46 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000160 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000161 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNW) &&
165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168 OS << ">";
169 return;
170 }
171 case scAddExpr:
172 case scMulExpr:
173 case scUMaxExpr:
174 case scSMaxExpr: {
175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000176 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 switch (NAry->getSCEVType()) {
178 case scAddExpr: OpStr = " + "; break;
179 case scMulExpr: OpStr = " * "; break;
180 case scUMaxExpr: OpStr = " umax "; break;
181 case scSMaxExpr: OpStr = " smax "; break;
182 }
183 OS << "(";
184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185 I != E; ++I) {
186 OS << **I;
187 if (llvm::next(I) != E)
188 OS << OpStr;
189 }
190 OS << ")";
191 return;
192 }
193 case scUDivExpr: {
194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196 return;
197 }
198 case scUnknown: {
199 const SCEVUnknown *U = cast<SCEVUnknown>(this);
200 const Type *AllocTy;
201 if (U->isSizeOf(AllocTy)) {
202 OS << "sizeof(" << *AllocTy << ")";
203 return;
204 }
205 if (U->isAlignOf(AllocTy)) {
206 OS << "alignof(" << *AllocTy << ")";
207 return;
208 }
Andrew Trick635f7182011-03-09 17:23:39 +0000209
Dan Gohman4ce32db2010-11-17 22:27:42 +0000210 const Type *CTy;
211 Constant *FieldNo;
212 if (U->isOffsetOf(CTy, FieldNo)) {
213 OS << "offsetof(" << *CTy << ", ";
214 WriteAsOperand(OS, FieldNo, false);
215 OS << ")";
216 return;
217 }
Andrew Trick635f7182011-03-09 17:23:39 +0000218
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 // Otherwise just print it normally.
220 WriteAsOperand(OS, U->getValue(), false);
221 return;
222 }
223 case scCouldNotCompute:
224 OS << "***COULDNOTCOMPUTE***";
225 return;
226 default: break;
227 }
228 llvm_unreachable("Unknown SCEV kind!");
229}
230
231const Type *SCEV::getType() const {
232 switch (getSCEVType()) {
233 case scConstant:
234 return cast<SCEVConstant>(this)->getType();
235 case scTruncate:
236 case scZeroExtend:
237 case scSignExtend:
238 return cast<SCEVCastExpr>(this)->getType();
239 case scAddRecExpr:
240 case scMulExpr:
241 case scUMaxExpr:
242 case scSMaxExpr:
243 return cast<SCEVNAryExpr>(this)->getType();
244 case scAddExpr:
245 return cast<SCEVAddExpr>(this)->getType();
246 case scUDivExpr:
247 return cast<SCEVUDivExpr>(this)->getType();
248 case scUnknown:
249 return cast<SCEVUnknown>(this)->getType();
250 case scCouldNotCompute:
251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252 return 0;
253 default: break;
254 }
255 llvm_unreachable("Unknown SCEV kind!");
256 return 0;
257}
258
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000259bool SCEV::isZero() const {
260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261 return SC->getValue()->isZero();
262 return false;
263}
264
Dan Gohman70a1fe72009-05-18 15:22:39 +0000265bool SCEV::isOne() const {
266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267 return SC->getValue()->isOne();
268 return false;
269}
Chris Lattner53e677a2004-04-02 20:23:17 +0000270
Dan Gohman4d289bf2009-06-24 00:30:26 +0000271bool SCEV::isAllOnesValue() const {
272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273 return SC->getValue()->isAllOnesValue();
274 return false;
275}
276
Owen Anderson753ad612009-06-22 21:57:23 +0000277SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000279
Chris Lattner53e677a2004-04-02 20:23:17 +0000280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281 return S->getSCEVType() == scCouldNotCompute;
282}
283
Dan Gohman0bba49c2009-07-07 17:06:11 +0000284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000285 FoldingSetNodeID ID;
286 ID.AddInteger(scConstant);
287 ID.AddPointer(V);
288 void *IP = 0;
289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000291 UniqueSCEVs.InsertNode(S, IP);
292 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
Chris Lattner53e677a2004-04-02 20:23:17 +0000294
Dan Gohman0bba49c2009-07-07 17:06:11 +0000295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000296 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000297}
298
Dan Gohman0bba49c2009-07-07 17:06:11 +0000299const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000300ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000301 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000303}
304
Dan Gohman3bf63762010-06-18 19:54:20 +0000305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000306 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000308
Dan Gohman3bf63762010-06-18 19:54:20 +0000309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000310 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000311 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000314 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman3bf63762010-06-18 19:54:20 +0000317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000318 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Dan Gohman3bf63762010-06-18 19:54:20 +0000325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000326 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000327 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000330 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000331}
332
Dan Gohmanab37f502010-08-02 23:49:30 +0000333void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000334 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000335 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000336
337 // Remove this SCEVUnknown from the uniquing map.
338 SE->UniqueSCEVs.RemoveNode(this);
339
340 // Release the value.
341 setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000345 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000346 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000347
348 // Remove this SCEVUnknown from the uniquing map.
349 SE->UniqueSCEVs.RemoveNode(this);
350
351 // Update this SCEVUnknown to point to the new value. This is needed
352 // because there may still be outstanding SCEVs which still point to
353 // this SCEVUnknown.
354 setValPtr(New);
355}
356
Dan Gohman0f5efe52010-01-28 02:15:55 +0000357bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000359 if (VCE->getOpcode() == Instruction::PtrToInt)
360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000361 if (CE->getOpcode() == Instruction::GetElementPtr &&
362 CE->getOperand(0)->isNullValue() &&
363 CE->getNumOperands() == 2)
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365 if (CI->isOne()) {
366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367 ->getElementType();
368 return true;
369 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000370
371 return false;
372}
373
374bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000376 if (VCE->getOpcode() == Instruction::PtrToInt)
377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000378 if (CE->getOpcode() == Instruction::GetElementPtr &&
379 CE->getOperand(0)->isNullValue()) {
380 const Type *Ty =
381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382 if (const StructType *STy = dyn_cast<StructType>(Ty))
383 if (!STy->isPacked() &&
384 CE->getNumOperands() == 3 &&
385 CE->getOperand(1)->isNullValue()) {
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387 if (CI->isOne() &&
388 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000389 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000390 AllocTy = STy->getElementType(1);
391 return true;
392 }
393 }
394 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000395
396 return false;
397}
398
Dan Gohman4f8eea82010-02-01 18:27:38 +0000399bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getNumOperands() == 3 &&
405 CE->getOperand(0)->isNullValue() &&
406 CE->getOperand(1)->isNullValue()) {
407 const Type *Ty =
408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409 // Ignore vector types here so that ScalarEvolutionExpander doesn't
410 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000411 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000412 CTy = Ty;
413 FieldNo = CE->getOperand(2);
414 return true;
415 }
416 }
417
418 return false;
419}
420
Chris Lattner8d741b82004-06-20 06:23:15 +0000421//===----------------------------------------------------------------------===//
422// SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427 /// than the complexity of the RHS. This comparator is used to canonicalize
428 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000429 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000430 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000431 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000433
Dan Gohman67ef74e2010-08-27 15:26:01 +0000434 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000435 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000436 return compare(LHS, RHS) < 0;
437 }
438
439 // Return negative, zero, or positive, if LHS is less than, equal to, or
440 // greater than RHS, respectively. A three-way result allows recursive
441 // comparisons to be more efficient.
442 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000443 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000445 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000446
Dan Gohman72861302009-05-07 14:39:04 +0000447 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000450 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000451
Dan Gohman3bf63762010-06-18 19:54:20 +0000452 // Aside from the getSCEVType() ordering, the particular ordering
453 // isn't very important except that it's beneficial to be consistent,
454 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000455 switch (LType) {
456 case scUnknown: {
457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000459
460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000462 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000463
464 // Order pointer values after integer values. This helps SCEVExpander
465 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000466 bool LIsPointer = LV->getType()->isPointerTy(),
467 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000468 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000470
471 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000472 unsigned LID = LV->getValueID(),
473 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000474 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000476
477 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000478 if (const Argument *LA = dyn_cast<Argument>(LV)) {
479 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 }
483
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 // For instructions, compare their loop depth, and their operand
485 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488
489 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 const BasicBlock *LParent = LInst->getParent(),
491 *RParent = RInst->getParent();
492 if (LParent != RParent) {
493 unsigned LDepth = LI->getLoopDepth(LParent),
494 RDepth = LI->getLoopDepth(RParent);
495 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000496 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 unsigned LNumOps = LInst->getNumOperands(),
501 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 case scConstant: {
509 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000511
512 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000513 const APInt &LA = LC->getValue()->getValue();
514 const APInt &RA = RC->getValue()->getValue();
515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000516 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000517 return (int)LBitWidth - (int)RBitWidth;
518 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000519 }
520
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521 case scAddRecExpr: {
522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524
525 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527 if (LLoop != RLoop) {
528 unsigned LDepth = LLoop->getLoopDepth(),
529 RDepth = RLoop->getLoopDepth();
530 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000532 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Addrec complexity grows with operand count.
535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536 if (LNumOps != RNumOps)
537 return (int)LNumOps - (int)RNumOps;
538
539 // Lexicographically compare.
540 for (unsigned i = 0; i != LNumOps; ++i) {
541 long X = compare(LA->getOperand(i), RA->getOperand(i));
542 if (X != 0)
543 return X;
544 }
545
546 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 }
548
Dan Gohman67ef74e2010-08-27 15:26:01 +0000549 case scAddExpr:
550 case scMulExpr:
551 case scSMaxExpr:
552 case scUMaxExpr: {
553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558 for (unsigned i = 0; i != LNumOps; ++i) {
559 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560 return 1;
561 long X = compare(LC->getOperand(i), RC->getOperand(i));
562 if (X != 0)
563 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000564 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000566 }
567
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568 case scUDivExpr: {
569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571
572 // Lexicographically compare udiv expressions.
573 long X = compare(LC->getLHS(), RC->getLHS());
574 if (X != 0)
575 return X;
576 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scTruncate:
580 case scZeroExtend:
581 case scSignExtend: {
582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584
585 // Compare cast expressions by operand.
586 return compare(LC->getOperand(), RC->getOperand());
587 }
588
589 default:
590 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000591 }
592
593 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000595 }
596 };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000604/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000605/// results from this routine. In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000610 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 if (Ops.size() < 2) return; // Noop
612 if (Ops.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
614 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616 if (SCEVComplexityCompare(LI)(RHS, LHS))
617 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000618 return;
619 }
620
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 // Do the rough sort by complexity.
622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624 // Now that we are sorted by complexity, group elements of the same
625 // complexity. Note that this is, at worst, N^2, but the vector is likely to
626 // be extremely short in practice. Note that we take this approach because we
627 // do not want to depend on the addresses of the objects we are grouping.
628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629 const SCEV *S = Ops[i];
630 unsigned Complexity = S->getSCEVType();
631
632 // If there are any objects of the same complexity and same value as this
633 // one, group them.
634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635 if (Ops[j] == S) { // Found a duplicate.
636 // Move it to immediately after i'th element.
637 std::swap(Ops[i+1], Ops[j]);
638 ++i; // no need to rescan it.
639 if (i == e-2) return; // Done!
640 }
641 }
642 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000643}
644
Chris Lattner53e677a2004-04-02 20:23:17 +0000645
Chris Lattner53e677a2004-04-02 20:23:17 +0000646
647//===----------------------------------------------------------------------===//
648// Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
Eli Friedmanb42a6262008-08-04 23:49:06 +0000651/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000652/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000654 ScalarEvolution &SE,
655 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 // Handle the simplest case efficiently.
657 if (K == 1)
658 return SE.getTruncateOrZeroExtend(It, ResultTy);
659
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000660 // We are using the following formula for BC(It, K):
661 //
662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // Suppose, W is the bitwidth of the return value. We must be prepared for
665 // overflow. Hence, we must assure that the result of our computation is
666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
667 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000670 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676 // This formula is trivially equivalent to the previous formula. However,
677 // this formula can be implemented much more efficiently. The trick is that
678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679 // arithmetic. To do exact division in modular arithmetic, all we have
680 // to do is multiply by the inverse. Therefore, this step can be done at
681 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // The next issue is how to safely do the division by 2^T. The way this
684 // is done is by doing the multiplication step at a width of at least W + T
685 // bits. This way, the bottom W+T bits of the product are accurate. Then,
686 // when we perform the division by 2^T (which is equivalent to a right shift
687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
688 // truncated out after the division by 2^T.
689 //
690 // In comparison to just directly using the first formula, this technique
691 // is much more efficient; using the first formula requires W * K bits,
692 // but this formula less than W + K bits. Also, the first formula requires
693 // a division step, whereas this formula only requires multiplies and shifts.
694 //
695 // It doesn't matter whether the subtraction step is done in the calculation
696 // width or the input iteration count's width; if the subtraction overflows,
697 // the result must be zero anyway. We prefer here to do it in the width of
698 // the induction variable because it helps a lot for certain cases; CodeGen
699 // isn't smart enough to ignore the overflow, which leads to much less
700 // efficient code if the width of the subtraction is wider than the native
701 // register width.
702 //
703 // (It's possible to not widen at all by pulling out factors of 2 before
704 // the multiplication; for example, K=2 can be calculated as
705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706 // extra arithmetic, so it's not an obvious win, and it gets
707 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000708
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Protection from insane SCEVs; this bound is conservative,
710 // but it probably doesn't matter.
711 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000712 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000714 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000715
Eli Friedmanb42a6262008-08-04 23:49:06 +0000716 // Calculate K! / 2^T and T; we divide out the factors of two before
717 // multiplying for calculating K! / 2^T to avoid overflow.
718 // Other overflow doesn't matter because we only care about the bottom
719 // W bits of the result.
720 APInt OddFactorial(W, 1);
721 unsigned T = 1;
722 for (unsigned i = 3; i <= K; ++i) {
723 APInt Mult(W, i);
724 unsigned TwoFactors = Mult.countTrailingZeros();
725 T += TwoFactors;
726 Mult = Mult.lshr(TwoFactors);
727 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000728 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000731 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000732
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000733 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000734 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736 // Calculate the multiplicative inverse of K! / 2^T;
737 // this multiplication factor will perform the exact division by
738 // K! / 2^T.
739 APInt Mod = APInt::getSignedMinValue(W+1);
740 APInt MultiplyFactor = OddFactorial.zext(W+1);
741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742 MultiplyFactor = MultiplyFactor.trunc(W);
743
744 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000745 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000750 Dividend = SE.getMulExpr(Dividend,
751 SE.getTruncateOrZeroExtend(S, CalculationTy));
752 }
753
754 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756
757 // Truncate the result, and divide by K! / 2^T.
758
759 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000761}
762
Chris Lattner53e677a2004-04-02 20:23:17 +0000763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number. We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000769///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000770/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000771///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000773 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 // The computation is correct in the face of overflow provided that the
777 // multiplication is performed _after_ the evaluation of the binomial
778 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000780 if (isa<SCEVCouldNotCompute>(Coeff))
781 return Coeff;
782
783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000784 }
785 return Result;
786}
787
Chris Lattner53e677a2004-04-02 20:23:17 +0000788//===----------------------------------------------------------------------===//
789// SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000793 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000795 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000796 assert(isSCEVable(Ty) &&
797 "This is not a conversion to a SCEVable type!");
798 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000799
Dan Gohmanc050fd92009-07-13 20:50:19 +0000800 FoldingSetNodeID ID;
801 ID.AddInteger(scTruncate);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000807 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000809 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000812
Dan Gohman20900ca2009-04-22 16:20:48 +0000813 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000815 return getTruncateExpr(ST->getOperand(), Ty);
816
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000819 return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826 // eliminate all the truncates.
827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828 SmallVector<const SCEV *, 4> Operands;
829 bool hasTrunc = false;
830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832 hasTrunc = isa<SCEVTruncateExpr>(S);
833 Operands.push_back(S);
834 }
835 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000836 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000838 }
839
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841 // eliminate all the truncates.
842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843 SmallVector<const SCEV *, 4> Operands;
844 bool hasTrunc = false;
845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847 hasTrunc = isa<SCEVTruncateExpr>(S);
848 Operands.push_back(S);
849 }
850 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000851 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000853 }
854
Dan Gohman6864db62009-06-18 16:24:47 +0000855 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000861 }
862
Dan Gohmanf53462d2010-07-15 20:02:11 +0000863 // As a special case, fold trunc(undef) to undef. We don't want to
864 // know too much about SCEVUnknowns, but this special case is handy
865 // and harmless.
866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867 if (isa<UndefValue>(U->getValue()))
868 return getSCEV(UndefValue::get(Ty));
869
Dan Gohman420ab912010-06-25 18:47:08 +0000870 // The cast wasn't folded; create an explicit cast node. We can reuse
871 // the existing insert position since if we get here, we won't have
872 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000875 UniqueSCEVs.InsertNode(S, IP);
876 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877}
878
Dan Gohman0bba49c2009-07-07 17:06:11 +0000879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000880 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000882 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000883 assert(isSCEVable(Ty) &&
884 "This is not a conversion to a SCEVable type!");
885 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000886
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000887 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889 return getConstant(
890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000892
Dan Gohman20900ca2009-04-22 16:20:48 +0000893 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000895 return getZeroExtendExpr(SZ->getOperand(), Ty);
896
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000897 // Before doing any expensive analysis, check to see if we've already
898 // computed a SCEV for this Op and Ty.
899 FoldingSetNodeID ID;
900 ID.AddInteger(scZeroExtend);
901 ID.AddPointer(Op);
902 ID.AddPointer(Ty);
903 void *IP = 0;
904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
Nick Lewycky630d85a2011-01-23 06:20:19 +0000906 // zext(trunc(x)) --> zext(x) or x or trunc(x)
907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908 // It's possible the bits taken off by the truncate were all zero bits. If
909 // so, we should be able to simplify this further.
910 const SCEV *X = ST->getOperand();
911 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000912 unsigned TruncBits = getTypeSizeInBits(ST->getType());
913 unsigned NewBits = getTypeSizeInBits(Ty);
914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000915 CR.zextOrTrunc(NewBits)))
916 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000917 }
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000921 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000924 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000925 const SCEV *Start = AR->getStart();
926 const SCEV *Step = AR->getStepRecurrence(*this);
927 unsigned BitWidth = getTypeSizeInBits(AR->getType());
928 const Loop *L = AR->getLoop();
929
Dan Gohmaneb490a72009-07-25 01:22:26 +0000930 // If we have special knowledge that this addrec won't overflow,
931 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000932 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000935 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // Check whether the backedge-taken count is SCEVCouldNotCompute.
938 // Note that this serves two purposes: It filters out loops that are
939 // simply not analyzable, and it covers the case where this code is
940 // being called from within backedge-taken count analysis, such that
941 // attempting to ask for the backedge-taken count would likely result
942 // in infinite recursion. In the later case, the analysis code will
943 // cope with a conservative value, and it will take care to purge
944 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000947 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000949
950 // Check whether the backedge-taken count can be losslessly casted to
951 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000952 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000953 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000957 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *Add = getAddExpr(Start, ZMul);
961 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000962 getAddExpr(getZeroExtendExpr(Start, WideTy),
963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966 // Cache knowledge of AR NUW, which is propagated to this AddRec.
967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000968 // Return the expression with the addrec on the outside.
969 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000971 L, AR->getNoWrapFlags());
972 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 // Similar to above, only this time treat the step value as signed.
974 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000977 OperandExtendedAdd =
978 getAddExpr(getZeroExtendExpr(Start, WideTy),
979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982 // Cache knowledge of AR NW, which is propagated to this AddRec.
983 // Negative step causes unsigned wrap, but it still can't self-wrap.
984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000988 L, AR->getNoWrapFlags());
989 }
Dan Gohman85b05a22009-07-13 21:35:55 +0000990 }
991
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step)) {
997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998 getUnsignedRange(Step).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001002 AR->getPostIncExpr(*this), N))) {
1003 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001010 } else if (isKnownNegative(Step)) {
1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001016 AR->getPostIncExpr(*this), N))) {
1017 // Cache knowledge of AR NW, which is propagated to this AddRec.
1018 // Negative step causes unsigned wrap, but it still can't self-wrap.
1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001021 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001023 L, AR->getNoWrapFlags());
1024 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 }
1026 }
1027 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // The cast wasn't folded; create an explicit cast node.
1030 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001034 UniqueSCEVs.InsertNode(S, IP);
1035 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001036}
1037
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042 ICmpInst::Predicate *Pred,
1043 ScalarEvolution *SE) {
1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045 if (SE->isKnownPositive(Step)) {
1046 *Pred = ICmpInst::ICMP_SLT;
1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048 SE->getSignedRange(Step).getSignedMax());
1049 }
1050 if (SE->isKnownNegative(Step)) {
1051 *Pred = ICmpInst::ICMP_SGT;
1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053 SE->getSignedRange(Step).getSignedMin());
1054 }
1055 return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1065 const Type *Ty,
1066 ScalarEvolution *SE) {
1067 const Loop *L = AR->getLoop();
1068 const SCEV *Start = AR->getStart();
1069 const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071 // Check for a simple looking step prior to loop entry.
1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074 return 0;
1075
1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077 // same three conditions that getSignExtendedExpr checks.
1078
1079 // 1. NSW flags on the step increment.
1080 const SCEV *PreStart = SA->getOperand(1);
1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
1084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) {
1085 return PreStart;
1086 }
1087
1088 // 2. Direct overflow check on the step operation's expression.
1089 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1090 const Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1091 const SCEV *OperandExtendedStart =
1092 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1093 SE->getSignExtendExpr(Step, WideTy));
1094 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1095 // Cache knowledge of PreAR NSW.
1096 if (PreAR)
1097 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1098 // FIXME: this optimization needs a unit test
1099 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1100 return PreStart;
1101 }
1102
1103 // 3. Loop precondition.
1104 ICmpInst::Predicate Pred;
1105 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1106
1107 if (SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1108 return PreStart;
1109 }
1110 return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1115 const Type *Ty,
1116 ScalarEvolution *SE) {
1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118 if (!PreStart)
1119 return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122 SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
Dan Gohman0bba49c2009-07-07 17:06:11 +00001125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001126 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001128 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001129 assert(isSCEVable(Ty) &&
1130 "This is not a conversion to a SCEVable type!");
1131 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001132
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001133 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135 return getConstant(
1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001138
Dan Gohman20900ca2009-04-22 16:20:48 +00001139 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001141 return getSignExtendExpr(SS->getOperand(), Ty);
1142
Nick Lewycky73f565e2011-01-19 15:56:12 +00001143 // sext(zext(x)) --> zext(x)
1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145 return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001147 // Before doing any expensive analysis, check to see if we've already
1148 // computed a SCEV for this Op and Ty.
1149 FoldingSetNodeID ID;
1150 ID.AddInteger(scSignExtend);
1151 ID.AddPointer(Op);
1152 ID.AddPointer(Ty);
1153 void *IP = 0;
1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001156 // If the input value is provably positive, build a zext instead.
1157 if (isKnownNonNegative(Op))
1158 return getZeroExtendExpr(Op, Ty);
1159
Nick Lewycky630d85a2011-01-23 06:20:19 +00001160 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162 // It's possible the bits taken off by the truncate were all sign bits. If
1163 // so, we should be able to simplify this further.
1164 const SCEV *X = ST->getOperand();
1165 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001166 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167 unsigned NewBits = getTypeSizeInBits(Ty);
1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001169 CR.sextOrTrunc(NewBits)))
1170 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001171 }
1172
Dan Gohman01ecca22009-04-27 20:16:15 +00001173 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001174 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001175 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001178 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001179 const SCEV *Start = AR->getStart();
1180 const SCEV *Step = AR->getStepRecurrence(*this);
1181 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182 const Loop *L = AR->getLoop();
1183
Dan Gohmaneb490a72009-07-25 01:22:26 +00001184 // If we have special knowledge that this addrec won't overflow,
1185 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001186 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001188 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001189 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001190
Dan Gohman01ecca22009-04-27 20:16:15 +00001191 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192 // Note that this serves two purposes: It filters out loops that are
1193 // simply not analyzable, and it covers the case where this code is
1194 // being called from within backedge-taken count analysis, such that
1195 // attempting to ask for the backedge-taken count would likely result
1196 // in infinite recursion. In the later case, the analysis code will
1197 // cope with a conservative value, and it will take care to purge
1198 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001201 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001202 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001203
1204 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001205 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001206 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001207 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001208 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001211 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001212 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214 const SCEV *Add = getAddExpr(Start, SMul);
1215 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001216 getAddExpr(getSignExtendExpr(Start, WideTy),
1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001222 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001224 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001225 L, AR->getNoWrapFlags());
1226 }
Dan Gohman850f7912009-07-16 17:34:36 +00001227 // Similar to above, only this time treat the step value as unsigned.
1228 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001230 Add = getAddExpr(Start, UMul);
1231 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001232 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001238 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001240 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001241 L, AR->getNoWrapFlags());
1242 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001243 }
1244
1245 // If the backedge is guarded by a comparison with the pre-inc value
1246 // the addrec is safe. Also, if the entry is guarded by a comparison
1247 // with the start value and the backedge is guarded by a comparison
1248 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001249 ICmpInst::Predicate Pred;
1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251 if (OverflowLimit &&
1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255 OverflowLimit)))) {
1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259 getSignExtendExpr(Step, Ty),
1260 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001261 }
1262 }
1263 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001264
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001265 // The cast wasn't folded; create an explicit cast node.
1266 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001270 UniqueSCEVs.InsertNode(S, IP);
1271 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001272}
1273
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001278 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280 "This is not an extending conversion!");
1281 assert(isSCEVable(Ty) &&
1282 "This is not a conversion to a SCEVable type!");
1283 Ty = getEffectiveSCEVType(Ty);
1284
1285 // Sign-extend negative constants.
1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287 if (SC->getValue()->getValue().isNegative())
1288 return getSignExtendExpr(Op, Ty);
1289
1290 // Peel off a truncate cast.
1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001292 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294 return getAnyExtendExpr(NewOp, Ty);
1295 return getTruncateOrNoop(NewOp, Ty);
1296 }
1297
1298 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001300 if (!isa<SCEVZeroExtendExpr>(ZExt))
1301 return ZExt;
1302
1303 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001304 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305 if (!isa<SCEVSignExtendExpr>(SExt))
1306 return SExt;
1307
Dan Gohmana10756e2010-01-21 02:09:26 +00001308 // Force the cast to be folded into the operands of an addrec.
1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310 SmallVector<const SCEV *, 4> Ops;
1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312 I != E; ++I)
1313 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001315 }
1316
Dan Gohmanf53462d2010-07-15 20:02:11 +00001317 // As a special case, fold anyext(undef) to undef. We don't want to
1318 // know too much about SCEVUnknowns, but this special case is handy
1319 // and harmless.
1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321 if (isa<UndefValue>(U->getValue()))
1322 return getSCEV(UndefValue::get(Ty));
1323
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 // If the expression is obviously signed, use the sext cast value.
1325 if (isa<SCEVSMaxExpr>(Op))
1326 return SExt;
1327
1328 // Absent any other information, use the zext cast value.
1329 return ZExt;
1330}
1331
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001360 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001361 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001362 const APInt &Scale,
1363 ScalarEvolution &SE) {
1364 bool Interesting = false;
1365
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001366 // Iterate over the add operands. They are sorted, with constants first.
1367 unsigned i = 0;
1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369 ++i;
1370 // Pull a buried constant out to the outside.
1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372 Interesting = true;
1373 AccumulatedConstant += Scale * C->getValue()->getValue();
1374 }
1375
1376 // Next comes everything else. We're especially interested in multiplies
1377 // here, but they're in the middle, so just visit the rest with one loop.
1378 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381 APInt NewScale =
1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001386 Interesting |=
1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 NewScale, SE);
1390 } else {
1391 // A multiplication of a constant with some other value. Update
1392 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394 const SCEV *Key = SE.getMulExpr(MulOps);
1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001396 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001397 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001398 NewOps.push_back(Pair.first->first);
1399 } else {
1400 Pair.first->second += NewScale;
1401 // The map already had an entry for this value, which may indicate
1402 // a folding opportunity.
1403 Interesting = true;
1404 }
1405 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 } else {
1407 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001409 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001411 NewOps.push_back(Pair.first->first);
1412 } else {
1413 Pair.first->second += Scale;
1414 // The map already had an entry for this value, which may indicate
1415 // a folding opportunity.
1416 Interesting = true;
1417 }
1418 }
1419 }
1420
1421 return Interesting;
1422}
1423
1424namespace {
1425 struct APIntCompare {
1426 bool operator()(const APInt &LHS, const APInt &RHS) const {
1427 return LHS.ult(RHS);
1428 }
1429 };
1430}
1431
Dan Gohman6c0866c2009-05-24 23:45:28 +00001432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001435 SCEV::NoWrapFlags Flags) {
1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001438 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001439 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001440#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001441 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001442 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001444 "SCEVAddExpr operand types don't match!");
1445#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001446
Andrew Trick3228cc22011-03-14 16:50:06 +00001447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001448 // And vice-versa.
1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001452 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454 E = Ops.end(); I != E; ++I)
1455 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001456 All = false;
1457 break;
1458 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001460 }
1461
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001463 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464
1465 // If there are any constants, fold them together.
1466 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001469 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001472 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001474 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001475 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001476 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 }
1478
1479 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001480 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001481 Ops.erase(Ops.begin());
1482 --Idx;
1483 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001484
Dan Gohmanbca091d2010-04-12 23:08:18 +00001485 if (Ops.size() == 1) return Ops[0];
1486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Dan Gohman68ff7762010-08-27 21:39:59 +00001488 // Okay, check to see if the same value occurs in the operand list more than
1489 // once. If so, merge them together into an multiply expression. Since we
1490 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001492 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001495 // Scan ahead to count how many equal operands there are.
1496 unsigned Count = 2;
1497 while (i+Count != e && Ops[i+Count] == Ops[i])
1498 ++Count;
1499 // Merge the values into a multiply.
1500 const SCEV *Scale = getConstant(Ty, Count);
1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001504 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001506 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001507 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001509 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001510 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohman728c7f32009-05-08 21:03:19 +00001512 // Check for truncates. If all the operands are truncated from the same
1513 // type, see if factoring out the truncate would permit the result to be
1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515 // if the contents of the resulting outer trunc fold to something simple.
1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1518 const Type *DstType = Trunc->getType();
1519 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001520 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001521 bool Ok = true;
1522 // Check all the operands to see if they can be represented in the
1523 // source type of the truncate.
1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526 if (T->getOperand()->getType() != SrcType) {
1527 Ok = false;
1528 break;
1529 }
1530 LargeOps.push_back(T->getOperand());
1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001532 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536 if (const SCEVTruncateExpr *T =
1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538 if (T->getOperand()->getType() != SrcType) {
1539 Ok = false;
1540 break;
1541 }
1542 LargeMulOps.push_back(T->getOperand());
1543 } else if (const SCEVConstant *C =
1544 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001546 } else {
1547 Ok = false;
1548 break;
1549 }
1550 }
1551 if (Ok)
1552 LargeOps.push_back(getMulExpr(LargeMulOps));
1553 } else {
1554 Ok = false;
1555 break;
1556 }
1557 }
1558 if (Ok) {
1559 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001560 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001561 // If it folds to something simple, use it. Otherwise, don't.
1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563 return getTruncateExpr(Fold, DstType);
1564 }
1565 }
1566
1567 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569 ++Idx;
1570
1571 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 if (Idx < Ops.size()) {
1573 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // If we have an add, expand the add operands onto the end of the operands
1576 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001578 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 DeletedAdd = true;
1580 }
1581
1582 // If we deleted at least one add, we added operands to the end of the list,
1583 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001584 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001586 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
1588
1589 // Skip over the add expression until we get to a multiply.
1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591 ++Idx;
1592
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001593 // Check to see if there are any folding opportunities present with
1594 // operands multiplied by constant values.
1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001597 DenseMap<const SCEV *, APInt> M;
1598 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001599 APInt AccumulatedConstant(BitWidth, 0);
1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001601 Ops.data(), Ops.size(),
1602 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001603 // Some interesting folding opportunity is present, so its worthwhile to
1604 // re-generate the operands list. Group the operands by constant scale,
1605 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001608 E = NewOps.end(); I != E; ++I)
1609 MulOpLists[M.find(*I)->second].push_back(*I);
1610 // Re-generate the operands list.
1611 Ops.clear();
1612 if (AccumulatedConstant != 0)
1613 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001616 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001617 Ops.push_back(getMulExpr(getConstant(I->first),
1618 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001619 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001620 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 if (Ops.size() == 1)
1622 return Ops[0];
1623 return getAddExpr(Ops);
1624 }
1625 }
1626
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 // If we are adding something to a multiply expression, make sure the
1628 // something is not already an operand of the multiply. If so, merge it into
1629 // the multiply.
1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001634 if (isa<SCEVConstant>(MulOpSCEV))
1635 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001637 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 if (Mul->getNumOperands() != 2) {
1641 // If the multiply has more than two operands, we must get the
1642 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644 Mul->op_begin()+MulOp);
1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001646 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001648 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001649 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 if (Ops.size() == 2) return OuterMul;
1652 if (AddOp < Idx) {
1653 Ops.erase(Ops.begin()+AddOp);
1654 Ops.erase(Ops.begin()+Idx-1);
1655 } else {
1656 Ops.erase(Ops.begin()+Idx);
1657 Ops.erase(Ops.begin()+AddOp-1);
1658 }
1659 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 // Check this multiply against other multiplies being added together.
1664 for (unsigned OtherMulIdx = Idx+1;
1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // If MulOp occurs in OtherMul, we can fold the two multiplies
1669 // together.
1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671 OMulOp != e; ++OMulOp)
1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001677 Mul->op_begin()+MulOp);
1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001679 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001684 OtherMul->op_begin()+OMulOp);
1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001686 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001691 Ops.erase(Ops.begin()+Idx);
1692 Ops.erase(Ops.begin()+OtherMulIdx-1);
1693 Ops.push_back(OuterMul);
1694 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 }
1696 }
1697 }
1698 }
1699
1700 // If there are any add recurrences in the operands list, see if any other
1701 // added values are loop invariant. If so, we can fold them into the
1702 // recurrence.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704 ++Idx;
1705
1706 // Scan over all recurrences, trying to fold loop invariants into them.
1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708 // Scan all of the other operands to this add and add them to the vector if
1709 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001710 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001712 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001714 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 LIOps.push_back(Ops[i]);
1716 Ops.erase(Ops.begin()+i);
1717 --i; --e;
1718 }
1719
1720 // If we found some loop invariants, fold them into the recurrence.
1721 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 LIOps.push_back(AddRec->getStart());
1724
Dan Gohman0bba49c2009-07-07 17:06:11 +00001725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001726 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001727 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001728
Dan Gohmanb9f96512010-06-30 07:16:37 +00001729 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001730 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001731 // Always propagate NW.
1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001734
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 // If all of the other operands were loop invariant, we are done.
1736 if (Ops.size() == 1) return NewRec;
1737
1738 // Otherwise, add the folded AddRec by the non-liv parts.
1739 for (unsigned i = 0;; ++i)
1740 if (Ops[i] == AddRec) {
1741 Ops[i] = NewRec;
1742 break;
1743 }
Dan Gohman246b2562007-10-22 18:31:58 +00001744 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 }
1746
1747 // Okay, if there weren't any loop invariants to be folded, check to see if
1748 // there are multiple AddRec's with the same loop induction variable being
1749 // added together. If so, we can fold them.
1750 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752 ++OtherIdx)
1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756 AddRec->op_end());
1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001759 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001761 if (OtherAddRec->getLoop() == AddRecLoop) {
1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001764 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001765 AddRecOps.append(OtherAddRec->op_begin()+i,
1766 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001767 break;
1768 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001769 AddRecOps[i] = getAddExpr(AddRecOps[i],
1770 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001771 }
1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001774 // Step size has changed, so we cannot guarantee no self-wraparound.
1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001776 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 }
1778
1779 // Otherwise couldn't fold anything into this recurrence. Move onto the
1780 // next one.
1781 }
1782
1783 // Okay, it looks like we really DO need an add expr. Check to see if we
1784 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001785 FoldingSetNodeID ID;
1786 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001787 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788 ID.AddPointer(Ops[i]);
1789 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001790 SCEVAddExpr *S =
1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001797 UniqueSCEVs.InsertNode(S, IP);
1798 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001799 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001800 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001801}
1802
Dan Gohman6c0866c2009-05-24 23:45:28 +00001803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001806 SCEV::NoWrapFlags Flags) {
1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001810 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001811#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001812 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001813 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001815 "SCEVMulExpr operand types don't match!");
1816#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001817
Andrew Trick3228cc22011-03-14 16:50:06 +00001818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001819 // And vice-versa.
1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001823 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825 E = Ops.end(); I != E; ++I)
1826 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 All = false;
1828 break;
1829 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001831 }
1832
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001834 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
1836 // If there are any constants, fold them together.
1837 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001839
1840 // C1*(C2+V) -> C1*C2 + C1*V
1841 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (Add->getNumOperands() == 2 &&
1844 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001847
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001851 ConstantInt *Fold = ConstantInt::get(getContext(),
1852 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001853 RHSC->getValue()->getValue());
1854 Ops[0] = getConstant(Fold);
1855 Ops.erase(Ops.begin()+1); // Erase the folded element
1856 if (Ops.size() == 1) return Ops[0];
1857 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001858 }
1859
1860 // If we are left with a constant one being multiplied, strip it off.
1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862 Ops.erase(Ops.begin());
1863 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001865 // If we have a multiply of zero, it will always be zero.
1866 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001867 } else if (Ops[0]->isAllOnesValue()) {
1868 // If we have a mul by -1 of an add, try distributing the -1 among the
1869 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001870 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872 SmallVector<const SCEV *, 4> NewOps;
1873 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001876 const SCEV *Mul = getMulExpr(Ops[0], *I);
1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878 NewOps.push_back(Mul);
1879 }
1880 if (AnyFolded)
1881 return getAddExpr(NewOps);
1882 }
Andrew Tricka053b212011-03-14 17:38:54 +00001883 else if (const SCEVAddRecExpr *
1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885 // Negation preserves a recurrence's no self-wrap property.
1886 SmallVector<const SCEV *, 4> Operands;
1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888 E = AddRec->op_end(); I != E; ++I) {
1889 Operands.push_back(getMulExpr(Ops[0], *I));
1890 }
1891 return getAddRecExpr(Operands, AddRec->getLoop(),
1892 AddRec->getNoWrapFlags(SCEV::FlagNW));
1893 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001894 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001896
1897 if (Ops.size() == 1)
1898 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001899 }
1900
1901 // Skip over the add expression until we get to a multiply.
1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903 ++Idx;
1904
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 // If there are mul operands inline them all into this expression.
1906 if (Idx < Ops.size()) {
1907 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // If we have an mul, expand the mul operands onto the end of the operands
1910 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001912 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 DeletedMul = true;
1914 }
1915
1916 // If we deleted at least one mul, we added operands to the end of the list,
1917 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001918 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001919 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001920 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 }
1922
1923 // If there are any add recurrences in the operands list, see if any other
1924 // added values are loop invariant. If so, we can fold them into the
1925 // recurrence.
1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927 ++Idx;
1928
1929 // Scan over all recurrences, trying to fold loop invariants into them.
1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931 // Scan all of the other operands to this mul and add them to the vector if
1932 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001933 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001935 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001936 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001937 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001938 LIOps.push_back(Ops[i]);
1939 Ops.erase(Ops.begin()+i);
1940 --i; --e;
1941 }
1942
1943 // If we found some loop invariants, fold them into the recurrence.
1944 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001946 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001948 const SCEV *Scale = getMulExpr(LIOps);
1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001951
Dan Gohmanb9f96512010-06-30 07:16:37 +00001952 // Build the new addrec. Propagate the NUW and NSW flags if both the
1953 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00001954 //
1955 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001956 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00001957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001959
1960 // If all of the other operands were loop invariant, we are done.
1961 if (Ops.size() == 1) return NewRec;
1962
1963 // Otherwise, multiply the folded AddRec by the non-liv parts.
1964 for (unsigned i = 0;; ++i)
1965 if (Ops[i] == AddRec) {
1966 Ops[i] = NewRec;
1967 break;
1968 }
Dan Gohman246b2562007-10-22 18:31:58 +00001969 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 }
1971
1972 // Okay, if there weren't any loop invariants to be folded, check to see if
1973 // there are multiple AddRec's with the same loop induction variable being
1974 // multiplied together. If so, we can fold them.
1975 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1977 ++OtherIdx)
1978 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1979 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1980 // {A*C,+,F*D + G*B + B*D}<L>
1981 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1982 ++OtherIdx)
1983 if (const SCEVAddRecExpr *OtherAddRec =
1984 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1985 if (OtherAddRec->getLoop() == AddRecLoop) {
1986 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1987 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1988 const SCEV *B = F->getStepRecurrence(*this);
1989 const SCEV *D = G->getStepRecurrence(*this);
1990 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1991 getMulExpr(G, B),
1992 getMulExpr(B, D));
1993 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Andrew Trick3228cc22011-03-14 16:50:06 +00001994 F->getLoop(),
1995 SCEV::FlagAnyWrap);
Dan Gohman6a0c1252010-08-31 22:52:12 +00001996 if (Ops.size() == 2) return NewAddRec;
1997 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1998 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1999 }
2000 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002001 }
2002
2003 // Otherwise couldn't fold anything into this recurrence. Move onto the
2004 // next one.
2005 }
2006
2007 // Okay, it looks like we really DO need an mul expr. Check to see if we
2008 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002009 FoldingSetNodeID ID;
2010 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002011 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2012 ID.AddPointer(Ops[i]);
2013 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002014 SCEVMulExpr *S =
2015 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2016 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002017 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2018 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002019 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2020 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002021 UniqueSCEVs.InsertNode(S, IP);
2022 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002023 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002024 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002025}
2026
Andreas Bolka8a11c982009-08-07 22:55:26 +00002027/// getUDivExpr - Get a canonical unsigned division expression, or something
2028/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002029const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2030 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002031 assert(getEffectiveSCEVType(LHS->getType()) ==
2032 getEffectiveSCEVType(RHS->getType()) &&
2033 "SCEVUDivExpr operand types don't match!");
2034
Dan Gohman622ed672009-05-04 22:02:23 +00002035 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002036 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002037 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002038 // If the denominator is zero, the result of the udiv is undefined. Don't
2039 // try to analyze it, because the resolution chosen here may differ from
2040 // the resolution chosen in other parts of the compiler.
2041 if (!RHSC->getValue()->isZero()) {
2042 // Determine if the division can be folded into the operands of
2043 // its operands.
2044 // TODO: Generalize this to non-constants by using known-bits information.
2045 const Type *Ty = LHS->getType();
2046 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002047 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002048 // For non-power-of-two values, effectively round the value up to the
2049 // nearest power of two.
2050 if (!RHSC->getValue()->getValue().isPowerOf2())
2051 ++MaxShiftAmt;
2052 const IntegerType *ExtTy =
2053 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2054 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2055 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2056 if (const SCEVConstant *Step =
2057 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
2058 if (!Step->getValue()->getValue()
2059 .urem(RHSC->getValue()->getValue()) &&
2060 getZeroExtendExpr(AR, ExtTy) ==
2061 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2062 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002063 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002064 SmallVector<const SCEV *, 4> Operands;
2065 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2066 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002067 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002068 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002069 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002070 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2071 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2072 SmallVector<const SCEV *, 4> Operands;
2073 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2074 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2075 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2076 // Find an operand that's safely divisible.
2077 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2078 const SCEV *Op = M->getOperand(i);
2079 const SCEV *Div = getUDivExpr(Op, RHSC);
2080 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2081 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2082 M->op_end());
2083 Operands[i] = Div;
2084 return getMulExpr(Operands);
2085 }
2086 }
Dan Gohman185cf032009-05-08 20:18:49 +00002087 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002088 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002089 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002090 SmallVector<const SCEV *, 4> Operands;
2091 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2092 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2093 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2094 Operands.clear();
2095 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2096 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2097 if (isa<SCEVUDivExpr>(Op) ||
2098 getMulExpr(Op, RHS) != A->getOperand(i))
2099 break;
2100 Operands.push_back(Op);
2101 }
2102 if (Operands.size() == A->getNumOperands())
2103 return getAddExpr(Operands);
2104 }
2105 }
Dan Gohman185cf032009-05-08 20:18:49 +00002106
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002107 // Fold if both operands are constant.
2108 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2109 Constant *LHSCV = LHSC->getValue();
2110 Constant *RHSCV = RHSC->getValue();
2111 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2112 RHSCV)));
2113 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002114 }
2115 }
2116
Dan Gohman1c343752009-06-27 21:21:31 +00002117 FoldingSetNodeID ID;
2118 ID.AddInteger(scUDivExpr);
2119 ID.AddPointer(LHS);
2120 ID.AddPointer(RHS);
2121 void *IP = 0;
2122 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002123 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2124 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002125 UniqueSCEVs.InsertNode(S, IP);
2126 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002127}
2128
2129
Dan Gohman6c0866c2009-05-24 23:45:28 +00002130/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2131/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002132const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2133 const Loop *L,
2134 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002135 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002136 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002137 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002138 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002139 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002140 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002141 }
2142
2143 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002144 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002145}
2146
Dan Gohman6c0866c2009-05-24 23:45:28 +00002147/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2148/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002149const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002150ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002151 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002152 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002153#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002154 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002155 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002156 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002157 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002158 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002159 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002160 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002161#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002162
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002163 if (Operands.back()->isZero()) {
2164 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002165 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002166 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002167
Dan Gohmanbc028532010-02-19 18:49:22 +00002168 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2169 // use that information to infer NUW and NSW flags. However, computing a
2170 // BE count requires calling getAddRecExpr, so we may not yet have a
2171 // meaningful BE count at this point (and if we don't, we'd be stuck
2172 // with a SCEVCouldNotCompute as the cached BE count).
2173
Andrew Trick3228cc22011-03-14 16:50:06 +00002174 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002175 // And vice-versa.
2176 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2177 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2178 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002179 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002180 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2181 E = Operands.end(); I != E; ++I)
2182 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002183 All = false;
2184 break;
2185 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002186 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002187 }
2188
Dan Gohmand9cc7492008-08-08 18:33:12 +00002189 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002190 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002191 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002192 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002193 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002194 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002195 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002196 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002197 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002198 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002199 // AddRecs require their operands be loop-invariant with respect to their
2200 // loops. Don't perform this transformation if it would break this
2201 // requirement.
2202 bool AllInvariant = true;
2203 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002204 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002205 AllInvariant = false;
2206 break;
2207 }
2208 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002209 // Create a recurrence for the outer loop with the same step size.
2210 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002211 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2212 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002213 SCEV::NoWrapFlags OuterFlags =
2214 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002215
2216 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002217 AllInvariant = true;
2218 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002219 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002220 AllInvariant = false;
2221 break;
2222 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002223 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002224 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002225 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002226 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2227 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002228 SCEV::NoWrapFlags InnerFlags =
2229 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002230 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2231 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002232 }
2233 // Reset Operands to its original state.
2234 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002235 }
2236 }
2237
Dan Gohman67847532010-01-19 22:27:22 +00002238 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2239 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002240 FoldingSetNodeID ID;
2241 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002242 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2243 ID.AddPointer(Operands[i]);
2244 ID.AddPointer(L);
2245 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002246 SCEVAddRecExpr *S =
2247 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2248 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002249 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2250 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002251 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2252 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002253 UniqueSCEVs.InsertNode(S, IP);
2254 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002255 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002256 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002257}
2258
Dan Gohman9311ef62009-06-24 14:49:00 +00002259const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2260 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002261 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002262 Ops.push_back(LHS);
2263 Ops.push_back(RHS);
2264 return getSMaxExpr(Ops);
2265}
2266
Dan Gohman0bba49c2009-07-07 17:06:11 +00002267const SCEV *
2268ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002269 assert(!Ops.empty() && "Cannot get empty smax!");
2270 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002272 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002273 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002274 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275 "SCEVSMaxExpr operand types don't match!");
2276#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002277
2278 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002279 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002280
2281 // If there are any constants, fold them together.
2282 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002283 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002284 ++Idx;
2285 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002286 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002287 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002288 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002289 APIntOps::smax(LHSC->getValue()->getValue(),
2290 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002291 Ops[0] = getConstant(Fold);
2292 Ops.erase(Ops.begin()+1); // Erase the folded element
2293 if (Ops.size() == 1) return Ops[0];
2294 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002295 }
2296
Dan Gohmane5aceed2009-06-24 14:46:22 +00002297 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002298 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2299 Ops.erase(Ops.begin());
2300 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002301 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2302 // If we have an smax with a constant maximum-int, it will always be
2303 // maximum-int.
2304 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002305 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002306
Dan Gohman3ab13122010-04-13 16:49:23 +00002307 if (Ops.size() == 1) return Ops[0];
2308 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002309
2310 // Find the first SMax
2311 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2312 ++Idx;
2313
2314 // Check to see if one of the operands is an SMax. If so, expand its operands
2315 // onto our operand list, and recurse to simplify.
2316 if (Idx < Ops.size()) {
2317 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002318 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002319 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002320 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002321 DeletedSMax = true;
2322 }
2323
2324 if (DeletedSMax)
2325 return getSMaxExpr(Ops);
2326 }
2327
2328 // Okay, check to see if the same value occurs in the operand list twice. If
2329 // so, delete one. Since we sorted the list, these values are required to
2330 // be adjacent.
2331 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002332 // X smax Y smax Y --> X smax Y
2333 // X smax Y --> X, if X is always greater than Y
2334 if (Ops[i] == Ops[i+1] ||
2335 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2336 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2337 --i; --e;
2338 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002339 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2340 --i; --e;
2341 }
2342
2343 if (Ops.size() == 1) return Ops[0];
2344
2345 assert(!Ops.empty() && "Reduced smax down to nothing!");
2346
Nick Lewycky3e630762008-02-20 06:48:22 +00002347 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002348 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002349 FoldingSetNodeID ID;
2350 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002351 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2352 ID.AddPointer(Ops[i]);
2353 void *IP = 0;
2354 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002355 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2356 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002357 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2358 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002359 UniqueSCEVs.InsertNode(S, IP);
2360 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002361}
2362
Dan Gohman9311ef62009-06-24 14:49:00 +00002363const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2364 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002365 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002366 Ops.push_back(LHS);
2367 Ops.push_back(RHS);
2368 return getUMaxExpr(Ops);
2369}
2370
Dan Gohman0bba49c2009-07-07 17:06:11 +00002371const SCEV *
2372ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002373 assert(!Ops.empty() && "Cannot get empty umax!");
2374 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002375#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002376 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002377 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002378 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002379 "SCEVUMaxExpr operand types don't match!");
2380#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002381
2382 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002383 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002384
2385 // If there are any constants, fold them together.
2386 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002387 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002388 ++Idx;
2389 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002390 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002391 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002392 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002393 APIntOps::umax(LHSC->getValue()->getValue(),
2394 RHSC->getValue()->getValue()));
2395 Ops[0] = getConstant(Fold);
2396 Ops.erase(Ops.begin()+1); // Erase the folded element
2397 if (Ops.size() == 1) return Ops[0];
2398 LHSC = cast<SCEVConstant>(Ops[0]);
2399 }
2400
Dan Gohmane5aceed2009-06-24 14:46:22 +00002401 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002402 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2403 Ops.erase(Ops.begin());
2404 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002405 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2406 // If we have an umax with a constant maximum-int, it will always be
2407 // maximum-int.
2408 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002409 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002410
Dan Gohman3ab13122010-04-13 16:49:23 +00002411 if (Ops.size() == 1) return Ops[0];
2412 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002413
2414 // Find the first UMax
2415 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2416 ++Idx;
2417
2418 // Check to see if one of the operands is a UMax. If so, expand its operands
2419 // onto our operand list, and recurse to simplify.
2420 if (Idx < Ops.size()) {
2421 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002422 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002423 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002424 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002425 DeletedUMax = true;
2426 }
2427
2428 if (DeletedUMax)
2429 return getUMaxExpr(Ops);
2430 }
2431
2432 // Okay, check to see if the same value occurs in the operand list twice. If
2433 // so, delete one. Since we sorted the list, these values are required to
2434 // be adjacent.
2435 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002436 // X umax Y umax Y --> X umax Y
2437 // X umax Y --> X, if X is always greater than Y
2438 if (Ops[i] == Ops[i+1] ||
2439 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2440 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2441 --i; --e;
2442 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002443 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2444 --i; --e;
2445 }
2446
2447 if (Ops.size() == 1) return Ops[0];
2448
2449 assert(!Ops.empty() && "Reduced umax down to nothing!");
2450
2451 // Okay, it looks like we really DO need a umax expr. Check to see if we
2452 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002453 FoldingSetNodeID ID;
2454 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002455 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2456 ID.AddPointer(Ops[i]);
2457 void *IP = 0;
2458 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002459 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2460 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002461 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2462 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002463 UniqueSCEVs.InsertNode(S, IP);
2464 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002465}
2466
Dan Gohman9311ef62009-06-24 14:49:00 +00002467const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2468 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002469 // ~smax(~x, ~y) == smin(x, y).
2470 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2471}
2472
Dan Gohman9311ef62009-06-24 14:49:00 +00002473const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2474 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002475 // ~umax(~x, ~y) == umin(x, y)
2476 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2477}
2478
Dan Gohman4f8eea82010-02-01 18:27:38 +00002479const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002480 // If we have TargetData, we can bypass creating a target-independent
2481 // constant expression and then folding it back into a ConstantInt.
2482 // This is just a compile-time optimization.
2483 if (TD)
2484 return getConstant(TD->getIntPtrType(getContext()),
2485 TD->getTypeAllocSize(AllocTy));
2486
Dan Gohman4f8eea82010-02-01 18:27:38 +00002487 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2488 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002489 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2490 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002491 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2492 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2493}
2494
2495const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2496 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002498 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2499 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002500 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2501 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2502}
2503
2504const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2505 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002506 // If we have TargetData, we can bypass creating a target-independent
2507 // constant expression and then folding it back into a ConstantInt.
2508 // This is just a compile-time optimization.
2509 if (TD)
2510 return getConstant(TD->getIntPtrType(getContext()),
2511 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2512
Dan Gohman0f5efe52010-01-28 02:15:55 +00002513 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002515 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2516 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002517 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002518 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002519}
2520
Dan Gohman4f8eea82010-02-01 18:27:38 +00002521const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2522 Constant *FieldNo) {
2523 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002524 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002525 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2526 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002527 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002528 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002529}
2530
Dan Gohman0bba49c2009-07-07 17:06:11 +00002531const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002532 // Don't attempt to do anything other than create a SCEVUnknown object
2533 // here. createSCEV only calls getUnknown after checking for all other
2534 // interesting possibilities, and any other code that calls getUnknown
2535 // is doing so in order to hide a value from SCEV canonicalization.
2536
Dan Gohman1c343752009-06-27 21:21:31 +00002537 FoldingSetNodeID ID;
2538 ID.AddInteger(scUnknown);
2539 ID.AddPointer(V);
2540 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002541 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2542 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2543 "Stale SCEVUnknown in uniquing map!");
2544 return S;
2545 }
2546 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2547 FirstUnknown);
2548 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002549 UniqueSCEVs.InsertNode(S, IP);
2550 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002551}
2552
Chris Lattner53e677a2004-04-02 20:23:17 +00002553//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002554// Basic SCEV Analysis and PHI Idiom Recognition Code
2555//
2556
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002557/// isSCEVable - Test if values of the given type are analyzable within
2558/// the SCEV framework. This primarily includes integer types, and it
2559/// can optionally include pointer types if the ScalarEvolution class
2560/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002561bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002562 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002563 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002564}
2565
2566/// getTypeSizeInBits - Return the size in bits of the specified type,
2567/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002568uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002569 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2570
2571 // If we have a TargetData, use it!
2572 if (TD)
2573 return TD->getTypeSizeInBits(Ty);
2574
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002575 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002576 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002577 return Ty->getPrimitiveSizeInBits();
2578
2579 // The only other support type is pointer. Without TargetData, conservatively
2580 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002581 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002582 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002583}
2584
2585/// getEffectiveSCEVType - Return a type with the same bitwidth as
2586/// the given type and which represents how SCEV will treat the given
2587/// type, for which isSCEVable must return true. For pointer types,
2588/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002589const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002590 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2591
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002592 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002593 return Ty;
2594
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002595 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002596 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002597 if (TD) return TD->getIntPtrType(getContext());
2598
2599 // Without TargetData, conservatively assume pointers are 64-bit.
2600 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002601}
Chris Lattner53e677a2004-04-02 20:23:17 +00002602
Dan Gohman0bba49c2009-07-07 17:06:11 +00002603const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002604 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002605}
2606
Chris Lattner53e677a2004-04-02 20:23:17 +00002607/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2608/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002609const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002610 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002611
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002612 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2613 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002614 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002615
2616 // The process of creating a SCEV for V may have caused other SCEVs
2617 // to have been created, so it's necessary to insert the new entry
2618 // from scratch, rather than trying to remember the insert position
2619 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002620 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002621 return S;
2622}
2623
Dan Gohman2d1be872009-04-16 03:18:22 +00002624/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2625///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002626const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002627 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002628 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002629 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002630
2631 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002632 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002633 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002634 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002635}
2636
2637/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002638const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002639 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002640 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002641 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002642
2643 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002644 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002645 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002646 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002647 return getMinusSCEV(AllOnes, V);
2648}
2649
Andrew Trick3228cc22011-03-14 16:50:06 +00002650/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002651const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002652 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002653 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2654
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002655 // Fast path: X - X --> 0.
2656 if (LHS == RHS)
2657 return getConstant(LHS->getType(), 0);
2658
Dan Gohman2d1be872009-04-16 03:18:22 +00002659 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002660 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002661}
2662
2663/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2664/// input value to the specified type. If the type must be extended, it is zero
2665/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002666const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002667ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002668 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002669 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2670 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002671 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002672 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002673 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002674 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002675 return getTruncateExpr(V, Ty);
2676 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002677}
2678
2679/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2680/// input value to the specified type. If the type must be extended, it is sign
2681/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002682const SCEV *
2683ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002684 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002685 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002686 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2687 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002688 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002689 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002690 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002691 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002692 return getTruncateExpr(V, Ty);
2693 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002694}
2695
Dan Gohman467c4302009-05-13 03:46:30 +00002696/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2697/// input value to the specified type. If the type must be extended, it is zero
2698/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002699const SCEV *
2700ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002701 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002702 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2703 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002704 "Cannot noop or zero extend with non-integer arguments!");
2705 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2706 "getNoopOrZeroExtend cannot truncate!");
2707 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2708 return V; // No conversion
2709 return getZeroExtendExpr(V, Ty);
2710}
2711
2712/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2713/// input value to the specified type. If the type must be extended, it is sign
2714/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002715const SCEV *
2716ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002717 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002718 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2719 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002720 "Cannot noop or sign extend with non-integer arguments!");
2721 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2722 "getNoopOrSignExtend cannot truncate!");
2723 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2724 return V; // No conversion
2725 return getSignExtendExpr(V, Ty);
2726}
2727
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002728/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2729/// the input value to the specified type. If the type must be extended,
2730/// it is extended with unspecified bits. The conversion must not be
2731/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002732const SCEV *
2733ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002734 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002735 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2736 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002737 "Cannot noop or any extend with non-integer arguments!");
2738 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2739 "getNoopOrAnyExtend cannot truncate!");
2740 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2741 return V; // No conversion
2742 return getAnyExtendExpr(V, Ty);
2743}
2744
Dan Gohman467c4302009-05-13 03:46:30 +00002745/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2746/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002747const SCEV *
2748ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002749 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002750 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2751 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002752 "Cannot truncate or noop with non-integer arguments!");
2753 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2754 "getTruncateOrNoop cannot extend!");
2755 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2756 return V; // No conversion
2757 return getTruncateExpr(V, Ty);
2758}
2759
Dan Gohmana334aa72009-06-22 00:31:57 +00002760/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2761/// the types using zero-extension, and then perform a umax operation
2762/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002763const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2764 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002765 const SCEV *PromotedLHS = LHS;
2766 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002767
2768 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2769 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2770 else
2771 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2772
2773 return getUMaxExpr(PromotedLHS, PromotedRHS);
2774}
2775
Dan Gohmanc9759e82009-06-22 15:03:27 +00002776/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2777/// the types using zero-extension, and then perform a umin operation
2778/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002779const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2780 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002781 const SCEV *PromotedLHS = LHS;
2782 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002783
2784 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2785 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2786 else
2787 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2788
2789 return getUMinExpr(PromotedLHS, PromotedRHS);
2790}
2791
Andrew Trickb12a7542011-03-17 23:51:11 +00002792/// getPointerBase - Transitively follow the chain of pointer-type operands
2793/// until reaching a SCEV that does not have a single pointer operand. This
2794/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2795/// but corner cases do exist.
2796const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2797 // A pointer operand may evaluate to a nonpointer expression, such as null.
2798 if (!V->getType()->isPointerTy())
2799 return V;
2800
2801 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2802 return getPointerBase(Cast->getOperand());
2803 }
2804 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2805 const SCEV *PtrOp = 0;
2806 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2807 I != E; ++I) {
2808 if ((*I)->getType()->isPointerTy()) {
2809 // Cannot find the base of an expression with multiple pointer operands.
2810 if (PtrOp)
2811 return V;
2812 PtrOp = *I;
2813 }
2814 }
2815 if (!PtrOp)
2816 return V;
2817 return getPointerBase(PtrOp);
2818 }
2819 return V;
2820}
2821
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002822/// PushDefUseChildren - Push users of the given Instruction
2823/// onto the given Worklist.
2824static void
2825PushDefUseChildren(Instruction *I,
2826 SmallVectorImpl<Instruction *> &Worklist) {
2827 // Push the def-use children onto the Worklist stack.
2828 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2829 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002830 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002831}
2832
2833/// ForgetSymbolicValue - This looks up computed SCEV values for all
2834/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002835/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002836/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002837void
Dan Gohman85669632010-02-25 06:57:05 +00002838ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002839 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002840 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002841
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002842 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002843 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002844 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002845 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002846 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002847
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002848 ValueExprMapType::iterator It =
2849 ValueExprMap.find(static_cast<Value *>(I));
2850 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002851 const SCEV *Old = It->second;
2852
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002853 // Short-circuit the def-use traversal if the symbolic name
2854 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002855 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002856 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002857
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002858 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002859 // structure, it's a PHI that's in the progress of being computed
2860 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2861 // additional loop trip count information isn't going to change anything.
2862 // In the second case, createNodeForPHI will perform the necessary
2863 // updates on its own when it gets to that point. In the third, we do
2864 // want to forget the SCEVUnknown.
2865 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002866 !isa<SCEVUnknown>(Old) ||
2867 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002868 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002869 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002870 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002871 }
2872
2873 PushDefUseChildren(I, Worklist);
2874 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002875}
Chris Lattner53e677a2004-04-02 20:23:17 +00002876
2877/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2878/// a loop header, making it a potential recurrence, or it doesn't.
2879///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002880const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002881 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2882 if (L->getHeader() == PN->getParent()) {
2883 // The loop may have multiple entrances or multiple exits; we can analyze
2884 // this phi as an addrec if it has a unique entry value and a unique
2885 // backedge value.
2886 Value *BEValueV = 0, *StartValueV = 0;
2887 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2888 Value *V = PN->getIncomingValue(i);
2889 if (L->contains(PN->getIncomingBlock(i))) {
2890 if (!BEValueV) {
2891 BEValueV = V;
2892 } else if (BEValueV != V) {
2893 BEValueV = 0;
2894 break;
2895 }
2896 } else if (!StartValueV) {
2897 StartValueV = V;
2898 } else if (StartValueV != V) {
2899 StartValueV = 0;
2900 break;
2901 }
2902 }
2903 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002904 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002905 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002906 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002907 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002908 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002909
2910 // Using this symbolic name for the PHI, analyze the value coming around
2911 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002912 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002913
2914 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2915 // has a special value for the first iteration of the loop.
2916
2917 // If the value coming around the backedge is an add with the symbolic
2918 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002920 // If there is a single occurrence of the symbolic value, replace it
2921 // with a recurrence.
2922 unsigned FoundIndex = Add->getNumOperands();
2923 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2924 if (Add->getOperand(i) == SymbolicName)
2925 if (FoundIndex == e) {
2926 FoundIndex = i;
2927 break;
2928 }
2929
2930 if (FoundIndex != Add->getNumOperands()) {
2931 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002932 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002933 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2934 if (i != FoundIndex)
2935 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002936 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002937
2938 // This is not a valid addrec if the step amount is varying each
2939 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002940 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002941 (isa<SCEVAddRecExpr>(Accum) &&
2942 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002943 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00002944
2945 // If the increment doesn't overflow, then neither the addrec nor
2946 // the post-increment will overflow.
2947 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2948 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002949 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002950 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002951 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00002952 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00002953 dyn_cast<GEPOperator>(BEValueV)) {
2954 // If the increment is an inbounds GEP, then we know the address
2955 // space cannot be wrapped around. We cannot make any guarantee
2956 // about signed or unsigned overflow because pointers are
2957 // unsigned but we may have a negative index from the base
2958 // pointer.
2959 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00002960 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002961 }
2962
Dan Gohman27dead42010-04-12 07:49:36 +00002963 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00002964 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002965
Dan Gohmana10756e2010-01-21 02:09:26 +00002966 // Since the no-wrap flags are on the increment, they apply to the
2967 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002968 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002969 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00002970 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002971
2972 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002973 // to be symbolic. We now need to go back and purge all of the
2974 // entries for the scalars that use the symbolic expression.
2975 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002976 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002977 return PHISCEV;
2978 }
2979 }
Dan Gohman622ed672009-05-04 22:02:23 +00002980 } else if (const SCEVAddRecExpr *AddRec =
2981 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002982 // Otherwise, this could be a loop like this:
2983 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2984 // In this case, j = {1,+,1} and BEValue is j.
2985 // Because the other in-value of i (0) fits the evolution of BEValue
2986 // i really is an addrec evolution.
2987 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002988 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002989
2990 // If StartVal = j.start - j.stride, we can use StartVal as the
2991 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002992 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002993 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002994 // FIXME: For constant StartVal, we should be able to infer
2995 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002996 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00002997 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
2998 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00002999
3000 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003001 // to be symbolic. We now need to go back and purge all of the
3002 // entries for the scalars that use the symbolic expression.
3003 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003004 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003005 return PHISCEV;
3006 }
3007 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003008 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003009 }
Dan Gohman27dead42010-04-12 07:49:36 +00003010 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003011
Dan Gohman85669632010-02-25 06:57:05 +00003012 // If the PHI has a single incoming value, follow that value, unless the
3013 // PHI's incoming blocks are in a different loop, in which case doing so
3014 // risks breaking LCSSA form. Instcombine would normally zap these, but
3015 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003016 if (Value *V = SimplifyInstruction(PN, TD, DT))
3017 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003018 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003019
Chris Lattner53e677a2004-04-02 20:23:17 +00003020 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003021 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003022}
3023
Dan Gohman26466c02009-05-08 20:26:55 +00003024/// createNodeForGEP - Expand GEP instructions into add and multiply
3025/// operations. This allows them to be analyzed by regular SCEV code.
3026///
Dan Gohmand281ed22009-12-18 02:09:29 +00003027const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003028
Dan Gohmanb9f96512010-06-30 07:16:37 +00003029 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3030 // Add expression, because the Instruction may be guarded by control flow
3031 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003032 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003033 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003034
Dan Gohmanc40f17b2009-08-18 16:46:41 +00003035 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003036 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003037 // Don't attempt to analyze GEPs over unsized objects.
3038 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3039 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003040 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003041 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003042 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003043 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003044 I != E; ++I) {
3045 Value *Index = *I;
3046 // Compute the (potentially symbolic) offset in bytes for this index.
3047 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
3048 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003049 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003050 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3051
Dan Gohmanb9f96512010-06-30 07:16:37 +00003052 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003053 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003054 } else {
3055 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003056 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3057 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003058 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003059 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3060
Dan Gohmanb9f96512010-06-30 07:16:37 +00003061 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003062 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3063 isInBounds ? SCEV::FlagNSW :
3064 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003065
3066 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003067 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003068 }
3069 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003070
3071 // Get the SCEV for the GEP base.
3072 const SCEV *BaseS = getSCEV(Base);
3073
Dan Gohmanb9f96512010-06-30 07:16:37 +00003074 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003075 return getAddExpr(BaseS, TotalOffset,
3076 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003077}
3078
Nick Lewycky83bb0052007-11-22 07:59:40 +00003079/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3080/// guaranteed to end in (at every loop iteration). It is, at the same time,
3081/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3082/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003083uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003084ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003085 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003086 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003087
Dan Gohman622ed672009-05-04 22:02:23 +00003088 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003089 return std::min(GetMinTrailingZeros(T->getOperand()),
3090 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003091
Dan Gohman622ed672009-05-04 22:02:23 +00003092 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003093 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3094 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3095 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003096 }
3097
Dan Gohman622ed672009-05-04 22:02:23 +00003098 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003099 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3100 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3101 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003102 }
3103
Dan Gohman622ed672009-05-04 22:02:23 +00003104 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003105 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003106 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003107 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003108 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003109 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003110 }
3111
Dan Gohman622ed672009-05-04 22:02:23 +00003112 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003113 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003114 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3115 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003116 for (unsigned i = 1, e = M->getNumOperands();
3117 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003118 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003119 BitWidth);
3120 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003121 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003122
Dan Gohman622ed672009-05-04 22:02:23 +00003123 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003124 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003125 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003126 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003127 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003128 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003129 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003130
Dan Gohman622ed672009-05-04 22:02:23 +00003131 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003132 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003133 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003134 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003135 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003136 return MinOpRes;
3137 }
3138
Dan Gohman622ed672009-05-04 22:02:23 +00003139 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003140 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003141 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003142 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003143 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003144 return MinOpRes;
3145 }
3146
Dan Gohman2c364ad2009-06-19 23:29:04 +00003147 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3148 // For a SCEVUnknown, ask ValueTracking.
3149 unsigned BitWidth = getTypeSizeInBits(U->getType());
3150 APInt Mask = APInt::getAllOnesValue(BitWidth);
3151 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3152 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3153 return Zeros.countTrailingOnes();
3154 }
3155
3156 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003157 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003158}
Chris Lattner53e677a2004-04-02 20:23:17 +00003159
Dan Gohman85b05a22009-07-13 21:35:55 +00003160/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3161///
3162ConstantRange
3163ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003164 // See if we've computed this range already.
3165 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3166 if (I != UnsignedRanges.end())
3167 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003168
3169 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003170 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003171
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003172 unsigned BitWidth = getTypeSizeInBits(S->getType());
3173 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3174
3175 // If the value has known zeros, the maximum unsigned value will have those
3176 // known zeros as well.
3177 uint32_t TZ = GetMinTrailingZeros(S);
3178 if (TZ != 0)
3179 ConservativeResult =
3180 ConstantRange(APInt::getMinValue(BitWidth),
3181 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3182
Dan Gohman85b05a22009-07-13 21:35:55 +00003183 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3184 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3185 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3186 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003187 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003188 }
3189
3190 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3191 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3192 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3193 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003194 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003195 }
3196
3197 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3198 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3199 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3200 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003201 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003202 }
3203
3204 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3205 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3206 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3207 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003208 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003209 }
3210
3211 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3212 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3213 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003214 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003215 }
3216
3217 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3218 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003219 return setUnsignedRange(ZExt,
3220 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003221 }
3222
3223 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3224 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003225 return setUnsignedRange(SExt,
3226 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003227 }
3228
3229 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3230 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003231 return setUnsignedRange(Trunc,
3232 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003233 }
3234
Dan Gohman85b05a22009-07-13 21:35:55 +00003235 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003236 // If there's no unsigned wrap, the value will never be less than its
3237 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003238 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003239 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003240 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003241 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003242 ConservativeResult.intersectWith(
3243 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003244
3245 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003246 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003247 const Type *Ty = AddRec->getType();
3248 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003249 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3250 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003251 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3252
3253 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003254 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003255
3256 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003257 ConstantRange StepRange = getSignedRange(Step);
3258 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3259 ConstantRange EndRange =
3260 StartRange.add(MaxBECountRange.multiply(StepRange));
3261
3262 // Check for overflow. This must be done with ConstantRange arithmetic
3263 // because we could be called from within the ScalarEvolution overflow
3264 // checking code.
3265 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3266 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3267 ConstantRange ExtMaxBECountRange =
3268 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3269 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3270 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3271 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003272 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003273
Dan Gohman85b05a22009-07-13 21:35:55 +00003274 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3275 EndRange.getUnsignedMin());
3276 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3277 EndRange.getUnsignedMax());
3278 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003279 return setUnsignedRange(AddRec, ConservativeResult);
3280 return setUnsignedRange(AddRec,
3281 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003282 }
3283 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003284
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003285 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003286 }
3287
3288 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3289 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003290 APInt Mask = APInt::getAllOnesValue(BitWidth);
3291 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3292 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003293 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003294 return setUnsignedRange(U, ConservativeResult);
3295 return setUnsignedRange(U,
3296 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003297 }
3298
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003299 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003300}
3301
Dan Gohman85b05a22009-07-13 21:35:55 +00003302/// getSignedRange - Determine the signed range for a particular SCEV.
3303///
3304ConstantRange
3305ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003306 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003307 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3308 if (I != SignedRanges.end())
3309 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003310
Dan Gohman85b05a22009-07-13 21:35:55 +00003311 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003312 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003313
Dan Gohman52fddd32010-01-26 04:40:18 +00003314 unsigned BitWidth = getTypeSizeInBits(S->getType());
3315 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3316
3317 // If the value has known zeros, the maximum signed value will have those
3318 // known zeros as well.
3319 uint32_t TZ = GetMinTrailingZeros(S);
3320 if (TZ != 0)
3321 ConservativeResult =
3322 ConstantRange(APInt::getSignedMinValue(BitWidth),
3323 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3324
Dan Gohman85b05a22009-07-13 21:35:55 +00003325 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3326 ConstantRange X = getSignedRange(Add->getOperand(0));
3327 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3328 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003329 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003330 }
3331
Dan Gohman85b05a22009-07-13 21:35:55 +00003332 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3333 ConstantRange X = getSignedRange(Mul->getOperand(0));
3334 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3335 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003336 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003337 }
3338
Dan Gohman85b05a22009-07-13 21:35:55 +00003339 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3340 ConstantRange X = getSignedRange(SMax->getOperand(0));
3341 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3342 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003343 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003344 }
Dan Gohman62849c02009-06-24 01:05:09 +00003345
Dan Gohman85b05a22009-07-13 21:35:55 +00003346 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3347 ConstantRange X = getSignedRange(UMax->getOperand(0));
3348 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3349 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003350 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003351 }
Dan Gohman62849c02009-06-24 01:05:09 +00003352
Dan Gohman85b05a22009-07-13 21:35:55 +00003353 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3354 ConstantRange X = getSignedRange(UDiv->getLHS());
3355 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003356 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003357 }
Dan Gohman62849c02009-06-24 01:05:09 +00003358
Dan Gohman85b05a22009-07-13 21:35:55 +00003359 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3360 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003361 return setSignedRange(ZExt,
3362 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003363 }
3364
3365 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3366 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003367 return setSignedRange(SExt,
3368 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003369 }
3370
3371 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3372 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003373 return setSignedRange(Trunc,
3374 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003375 }
3376
Dan Gohman85b05a22009-07-13 21:35:55 +00003377 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003378 // If there's no signed wrap, and all the operands have the same sign or
3379 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003380 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003381 bool AllNonNeg = true;
3382 bool AllNonPos = true;
3383 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3384 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3385 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3386 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003387 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003388 ConservativeResult = ConservativeResult.intersectWith(
3389 ConstantRange(APInt(BitWidth, 0),
3390 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003391 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003392 ConservativeResult = ConservativeResult.intersectWith(
3393 ConstantRange(APInt::getSignedMinValue(BitWidth),
3394 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003395 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003396
3397 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003398 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003399 const Type *Ty = AddRec->getType();
3400 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003401 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3402 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003403 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3404
3405 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003406 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003407
3408 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003409 ConstantRange StepRange = getSignedRange(Step);
3410 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3411 ConstantRange EndRange =
3412 StartRange.add(MaxBECountRange.multiply(StepRange));
3413
3414 // Check for overflow. This must be done with ConstantRange arithmetic
3415 // because we could be called from within the ScalarEvolution overflow
3416 // checking code.
3417 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3418 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3419 ConstantRange ExtMaxBECountRange =
3420 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3421 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3422 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3423 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003424 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003425
Dan Gohman85b05a22009-07-13 21:35:55 +00003426 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3427 EndRange.getSignedMin());
3428 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3429 EndRange.getSignedMax());
3430 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003431 return setSignedRange(AddRec, ConservativeResult);
3432 return setSignedRange(AddRec,
3433 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003434 }
Dan Gohman62849c02009-06-24 01:05:09 +00003435 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003436
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003437 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003438 }
3439
Dan Gohman2c364ad2009-06-19 23:29:04 +00003440 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3441 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003442 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003443 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003444 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3445 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003446 return setSignedRange(U, ConservativeResult);
3447 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003448 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003449 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003450 }
3451
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003452 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003453}
3454
Chris Lattner53e677a2004-04-02 20:23:17 +00003455/// createSCEV - We know that there is no SCEV for the specified value.
3456/// Analyze the expression.
3457///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003458const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003459 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003460 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003461
Dan Gohman6c459a22008-06-22 19:56:46 +00003462 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003463 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003464 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003465
3466 // Don't attempt to analyze instructions in blocks that aren't
3467 // reachable. Such instructions don't matter, and they aren't required
3468 // to obey basic rules for definitions dominating uses which this
3469 // analysis depends on.
3470 if (!DT->isReachableFromEntry(I->getParent()))
3471 return getUnknown(V);
3472 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003473 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003474 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3475 return getConstant(CI);
3476 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003477 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003478 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3479 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003480 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003481 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003482
Dan Gohmanca178902009-07-17 20:47:02 +00003483 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003484 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003485 case Instruction::Add: {
3486 // The simple thing to do would be to just call getSCEV on both operands
3487 // and call getAddExpr with the result. However if we're looking at a
3488 // bunch of things all added together, this can be quite inefficient,
3489 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3490 // Instead, gather up all the operands and make a single getAddExpr call.
3491 // LLVM IR canonical form means we need only traverse the left operands.
3492 SmallVector<const SCEV *, 4> AddOps;
3493 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003494 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3495 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3496 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3497 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003498 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003499 const SCEV *Op1 = getSCEV(U->getOperand(1));
3500 if (Opcode == Instruction::Sub)
3501 AddOps.push_back(getNegativeSCEV(Op1));
3502 else
3503 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003504 }
3505 AddOps.push_back(getSCEV(U->getOperand(0)));
3506 return getAddExpr(AddOps);
3507 }
3508 case Instruction::Mul: {
3509 // See the Add code above.
3510 SmallVector<const SCEV *, 4> MulOps;
3511 MulOps.push_back(getSCEV(U->getOperand(1)));
3512 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003513 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003514 Op = U->getOperand(0)) {
3515 U = cast<Operator>(Op);
3516 MulOps.push_back(getSCEV(U->getOperand(1)));
3517 }
3518 MulOps.push_back(getSCEV(U->getOperand(0)));
3519 return getMulExpr(MulOps);
3520 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003521 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003522 return getUDivExpr(getSCEV(U->getOperand(0)),
3523 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003524 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003525 return getMinusSCEV(getSCEV(U->getOperand(0)),
3526 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003527 case Instruction::And:
3528 // For an expression like x&255 that merely masks off the high bits,
3529 // use zext(trunc(x)) as the SCEV expression.
3530 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003531 if (CI->isNullValue())
3532 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003533 if (CI->isAllOnesValue())
3534 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003535 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003536
3537 // Instcombine's ShrinkDemandedConstant may strip bits out of
3538 // constants, obscuring what would otherwise be a low-bits mask.
3539 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3540 // knew about to reconstruct a low-bits mask value.
3541 unsigned LZ = A.countLeadingZeros();
3542 unsigned BitWidth = A.getBitWidth();
3543 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3544 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3545 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3546
3547 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3548
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003549 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003550 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003551 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003552 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003553 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003554 }
3555 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003556
Dan Gohman6c459a22008-06-22 19:56:46 +00003557 case Instruction::Or:
3558 // If the RHS of the Or is a constant, we may have something like:
3559 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3560 // optimizations will transparently handle this case.
3561 //
3562 // In order for this transformation to be safe, the LHS must be of the
3563 // form X*(2^n) and the Or constant must be less than 2^n.
3564 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003565 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003566 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003567 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003568 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3569 // Build a plain add SCEV.
3570 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3571 // If the LHS of the add was an addrec and it has no-wrap flags,
3572 // transfer the no-wrap flags, since an or won't introduce a wrap.
3573 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3574 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003575 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3576 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003577 }
3578 return S;
3579 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003580 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003581 break;
3582 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003583 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003584 // If the RHS of the xor is a signbit, then this is just an add.
3585 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003586 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003587 return getAddExpr(getSCEV(U->getOperand(0)),
3588 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003589
3590 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003591 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003592 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003593
3594 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3595 // This is a variant of the check for xor with -1, and it handles
3596 // the case where instcombine has trimmed non-demanded bits out
3597 // of an xor with -1.
3598 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3599 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3600 if (BO->getOpcode() == Instruction::And &&
3601 LCI->getValue() == CI->getValue())
3602 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003603 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003604 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003605 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003606 const Type *Z0Ty = Z0->getType();
3607 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3608
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003609 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003610 // mask off the high bits. Complement the operand and
3611 // re-apply the zext.
3612 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3613 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3614
3615 // If C is a single bit, it may be in the sign-bit position
3616 // before the zero-extend. In this case, represent the xor
3617 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003618 APInt Trunc = CI->getValue().trunc(Z0TySize);
3619 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003620 Trunc.isSignBit())
3621 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3622 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003623 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003624 }
3625 break;
3626
3627 case Instruction::Shl:
3628 // Turn shift left of a constant amount into a multiply.
3629 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003630 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003631
3632 // If the shift count is not less than the bitwidth, the result of
3633 // the shift is undefined. Don't try to analyze it, because the
3634 // resolution chosen here may differ from the resolution chosen in
3635 // other parts of the compiler.
3636 if (SA->getValue().uge(BitWidth))
3637 break;
3638
Owen Andersoneed707b2009-07-24 23:12:02 +00003639 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003640 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003641 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003642 }
3643 break;
3644
Nick Lewycky01eaf802008-07-07 06:15:49 +00003645 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003646 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003647 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003648 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003649
3650 // If the shift count is not less than the bitwidth, the result of
3651 // the shift is undefined. Don't try to analyze it, because the
3652 // resolution chosen here may differ from the resolution chosen in
3653 // other parts of the compiler.
3654 if (SA->getValue().uge(BitWidth))
3655 break;
3656
Owen Andersoneed707b2009-07-24 23:12:02 +00003657 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003658 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003659 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003660 }
3661 break;
3662
Dan Gohman4ee29af2009-04-21 02:26:00 +00003663 case Instruction::AShr:
3664 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3665 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003666 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003667 if (L->getOpcode() == Instruction::Shl &&
3668 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003669 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3670
3671 // If the shift count is not less than the bitwidth, the result of
3672 // the shift is undefined. Don't try to analyze it, because the
3673 // resolution chosen here may differ from the resolution chosen in
3674 // other parts of the compiler.
3675 if (CI->getValue().uge(BitWidth))
3676 break;
3677
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003678 uint64_t Amt = BitWidth - CI->getZExtValue();
3679 if (Amt == BitWidth)
3680 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003681 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003682 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003683 IntegerType::get(getContext(),
3684 Amt)),
3685 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003686 }
3687 break;
3688
Dan Gohman6c459a22008-06-22 19:56:46 +00003689 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003690 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003691
3692 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003693 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003694
3695 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003696 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003697
3698 case Instruction::BitCast:
3699 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003700 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003701 return getSCEV(U->getOperand(0));
3702 break;
3703
Dan Gohman4f8eea82010-02-01 18:27:38 +00003704 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3705 // lead to pointer expressions which cannot safely be expanded to GEPs,
3706 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3707 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003708
Dan Gohman26466c02009-05-08 20:26:55 +00003709 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003710 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003711
Dan Gohman6c459a22008-06-22 19:56:46 +00003712 case Instruction::PHI:
3713 return createNodeForPHI(cast<PHINode>(U));
3714
3715 case Instruction::Select:
3716 // This could be a smax or umax that was lowered earlier.
3717 // Try to recover it.
3718 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3719 Value *LHS = ICI->getOperand(0);
3720 Value *RHS = ICI->getOperand(1);
3721 switch (ICI->getPredicate()) {
3722 case ICmpInst::ICMP_SLT:
3723 case ICmpInst::ICMP_SLE:
3724 std::swap(LHS, RHS);
3725 // fall through
3726 case ICmpInst::ICMP_SGT:
3727 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003728 // a >s b ? a+x : b+x -> smax(a, b)+x
3729 // a >s b ? b+x : a+x -> smin(a, b)+x
3730 if (LHS->getType() == U->getType()) {
3731 const SCEV *LS = getSCEV(LHS);
3732 const SCEV *RS = getSCEV(RHS);
3733 const SCEV *LA = getSCEV(U->getOperand(1));
3734 const SCEV *RA = getSCEV(U->getOperand(2));
3735 const SCEV *LDiff = getMinusSCEV(LA, LS);
3736 const SCEV *RDiff = getMinusSCEV(RA, RS);
3737 if (LDiff == RDiff)
3738 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3739 LDiff = getMinusSCEV(LA, RS);
3740 RDiff = getMinusSCEV(RA, LS);
3741 if (LDiff == RDiff)
3742 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3743 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003744 break;
3745 case ICmpInst::ICMP_ULT:
3746 case ICmpInst::ICMP_ULE:
3747 std::swap(LHS, RHS);
3748 // fall through
3749 case ICmpInst::ICMP_UGT:
3750 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003751 // a >u b ? a+x : b+x -> umax(a, b)+x
3752 // a >u b ? b+x : a+x -> umin(a, b)+x
3753 if (LHS->getType() == U->getType()) {
3754 const SCEV *LS = getSCEV(LHS);
3755 const SCEV *RS = getSCEV(RHS);
3756 const SCEV *LA = getSCEV(U->getOperand(1));
3757 const SCEV *RA = getSCEV(U->getOperand(2));
3758 const SCEV *LDiff = getMinusSCEV(LA, LS);
3759 const SCEV *RDiff = getMinusSCEV(RA, RS);
3760 if (LDiff == RDiff)
3761 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3762 LDiff = getMinusSCEV(LA, RS);
3763 RDiff = getMinusSCEV(RA, LS);
3764 if (LDiff == RDiff)
3765 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3766 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003767 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003768 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003769 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3770 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003771 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003772 cast<ConstantInt>(RHS)->isZero()) {
3773 const SCEV *One = getConstant(LHS->getType(), 1);
3774 const SCEV *LS = getSCEV(LHS);
3775 const SCEV *LA = getSCEV(U->getOperand(1));
3776 const SCEV *RA = getSCEV(U->getOperand(2));
3777 const SCEV *LDiff = getMinusSCEV(LA, LS);
3778 const SCEV *RDiff = getMinusSCEV(RA, One);
3779 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003780 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003781 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003782 break;
3783 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003784 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3785 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003786 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003787 cast<ConstantInt>(RHS)->isZero()) {
3788 const SCEV *One = getConstant(LHS->getType(), 1);
3789 const SCEV *LS = getSCEV(LHS);
3790 const SCEV *LA = getSCEV(U->getOperand(1));
3791 const SCEV *RA = getSCEV(U->getOperand(2));
3792 const SCEV *LDiff = getMinusSCEV(LA, One);
3793 const SCEV *RDiff = getMinusSCEV(RA, LS);
3794 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003795 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003796 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003797 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003798 default:
3799 break;
3800 }
3801 }
3802
3803 default: // We cannot analyze this expression.
3804 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003805 }
3806
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003807 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003808}
3809
3810
3811
3812//===----------------------------------------------------------------------===//
3813// Iteration Count Computation Code
3814//
3815
Dan Gohman46bdfb02009-02-24 18:55:53 +00003816/// getBackedgeTakenCount - If the specified loop has a predictable
3817/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3818/// object. The backedge-taken count is the number of times the loop header
3819/// will be branched to from within the loop. This is one less than the
3820/// trip count of the loop, since it doesn't count the first iteration,
3821/// when the header is branched to from outside the loop.
3822///
3823/// Note that it is not valid to call this method on a loop without a
3824/// loop-invariant backedge-taken count (see
3825/// hasLoopInvariantBackedgeTakenCount).
3826///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003827const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003828 return getBackedgeTakenInfo(L).Exact;
3829}
3830
3831/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3832/// return the least SCEV value that is known never to be less than the
3833/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003834const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003835 return getBackedgeTakenInfo(L).Max;
3836}
3837
Dan Gohman59ae6b92009-07-08 19:23:34 +00003838/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3839/// onto the given Worklist.
3840static void
3841PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3842 BasicBlock *Header = L->getHeader();
3843
3844 // Push all Loop-header PHIs onto the Worklist stack.
3845 for (BasicBlock::iterator I = Header->begin();
3846 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3847 Worklist.push_back(PN);
3848}
3849
Dan Gohmana1af7572009-04-30 20:47:05 +00003850const ScalarEvolution::BackedgeTakenInfo &
3851ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003852 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003853 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003854 // update the value. The temporary CouldNotCompute value tells SCEV
3855 // code elsewhere that it shouldn't attempt to request a new
3856 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00003857 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003858 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003859 if (!Pair.second)
3860 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003861
Dan Gohman308bec32011-04-25 22:48:29 +00003862 BackedgeTakenInfo Result = getCouldNotCompute();
3863 BackedgeTakenInfo Computed = ComputeBackedgeTakenCount(L);
3864 if (Computed.Exact != getCouldNotCompute()) {
3865 assert(isLoopInvariant(Computed.Exact, L) &&
3866 isLoopInvariant(Computed.Max, L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00003867 "Computed backedge-taken count isn't loop invariant for loop!");
3868 ++NumTripCountsComputed;
3869
3870 // Update the value in the map.
Dan Gohman308bec32011-04-25 22:48:29 +00003871 Result = Computed;
Chris Lattnerf1859892011-01-09 02:16:18 +00003872 } else {
Dan Gohman308bec32011-04-25 22:48:29 +00003873 if (Computed.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003874 // Update the value in the map.
Dan Gohman308bec32011-04-25 22:48:29 +00003875 Result = Computed;
Chris Lattnerf1859892011-01-09 02:16:18 +00003876 if (isa<PHINode>(L->getHeader()->begin()))
3877 // Only count loops that have phi nodes as not being computable.
3878 ++NumTripCountsNotComputed;
3879 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003880
Chris Lattnerf1859892011-01-09 02:16:18 +00003881 // Now that we know more about the trip count for this loop, forget any
3882 // existing SCEV values for PHI nodes in this loop since they are only
3883 // conservative estimates made without the benefit of trip count
3884 // information. This is similar to the code in forgetLoop, except that
3885 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman308bec32011-04-25 22:48:29 +00003886 if (Computed.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00003887 SmallVector<Instruction *, 16> Worklist;
3888 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003889
Chris Lattnerf1859892011-01-09 02:16:18 +00003890 SmallPtrSet<Instruction *, 8> Visited;
3891 while (!Worklist.empty()) {
3892 Instruction *I = Worklist.pop_back_val();
3893 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003894
Chris Lattnerf1859892011-01-09 02:16:18 +00003895 ValueExprMapType::iterator It =
3896 ValueExprMap.find(static_cast<Value *>(I));
3897 if (It != ValueExprMap.end()) {
3898 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003899
Chris Lattnerf1859892011-01-09 02:16:18 +00003900 // SCEVUnknown for a PHI either means that it has an unrecognized
3901 // structure, or it's a PHI that's in the progress of being computed
3902 // by createNodeForPHI. In the former case, additional loop trip
3903 // count information isn't going to change anything. In the later
3904 // case, createNodeForPHI will perform the necessary updates on its
3905 // own when it gets to that point.
3906 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3907 forgetMemoizedResults(Old);
3908 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003909 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003910 if (PHINode *PN = dyn_cast<PHINode>(I))
3911 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003912 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003913
3914 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003915 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003916 }
Dan Gohman308bec32011-04-25 22:48:29 +00003917
3918 // Re-lookup the insert position, since the call to
3919 // ComputeBackedgeTakenCount above could result in a
3920 // recusive call to getBackedgeTakenInfo (on a different
3921 // loop), which would invalidate the iterator computed
3922 // earlier.
3923 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00003924}
3925
Dan Gohman4c7279a2009-10-31 15:04:55 +00003926/// forgetLoop - This method should be called by the client when it has
3927/// changed a loop in a way that may effect ScalarEvolution's ability to
3928/// compute a trip count, or if the loop is deleted.
3929void ScalarEvolution::forgetLoop(const Loop *L) {
3930 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003931 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003932
Dan Gohman4c7279a2009-10-31 15:04:55 +00003933 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003934 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003935 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003936
Dan Gohman59ae6b92009-07-08 19:23:34 +00003937 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003938 while (!Worklist.empty()) {
3939 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003940 if (!Visited.insert(I)) continue;
3941
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003942 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3943 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003944 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003945 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003946 if (PHINode *PN = dyn_cast<PHINode>(I))
3947 ConstantEvolutionLoopExitValue.erase(PN);
3948 }
3949
3950 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003951 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003952
3953 // Forget all contained loops too, to avoid dangling entries in the
3954 // ValuesAtScopes map.
3955 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3956 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003957}
3958
Eric Christophere6cbfa62010-07-29 01:25:38 +00003959/// forgetValue - This method should be called by the client when it has
3960/// changed a value in a way that may effect its value, or which may
3961/// disconnect it from a def-use chain linking it to a loop.
3962void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003963 Instruction *I = dyn_cast<Instruction>(V);
3964 if (!I) return;
3965
3966 // Drop information about expressions based on loop-header PHIs.
3967 SmallVector<Instruction *, 16> Worklist;
3968 Worklist.push_back(I);
3969
3970 SmallPtrSet<Instruction *, 8> Visited;
3971 while (!Worklist.empty()) {
3972 I = Worklist.pop_back_val();
3973 if (!Visited.insert(I)) continue;
3974
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003975 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3976 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003977 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003978 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003979 if (PHINode *PN = dyn_cast<PHINode>(I))
3980 ConstantEvolutionLoopExitValue.erase(PN);
3981 }
3982
3983 PushDefUseChildren(I, Worklist);
3984 }
3985}
3986
Dan Gohman46bdfb02009-02-24 18:55:53 +00003987/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3988/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003989ScalarEvolution::BackedgeTakenInfo
3990ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003991 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003992 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003993
Dan Gohmana334aa72009-06-22 00:31:57 +00003994 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003995 const SCEV *BECount = getCouldNotCompute();
3996 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003997 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003998 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3999 BackedgeTakenInfo NewBTI =
4000 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00004001
Dan Gohman1c343752009-06-27 21:21:31 +00004002 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004003 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004004 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00004005 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00004006 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004007 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00004008 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004009 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004010 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004011 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00004012 }
Dan Gohman1c343752009-06-27 21:21:31 +00004013 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004014 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00004015 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004016 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004017 }
4018
4019 return BackedgeTakenInfo(BECount, MaxBECount);
4020}
4021
4022/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
4023/// of the specified loop will execute if it exits via the specified block.
4024ScalarEvolution::BackedgeTakenInfo
4025ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
4026 BasicBlock *ExitingBlock) {
4027
4028 // Okay, we've chosen an exiting block. See what condition causes us to
4029 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004030 //
4031 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004032 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004033 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004034 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004035
Chris Lattner8b0e3602007-01-07 02:24:26 +00004036 // At this point, we know we have a conditional branch that determines whether
4037 // the loop is exited. However, we don't know if the branch is executed each
4038 // time through the loop. If not, then the execution count of the branch will
4039 // not be equal to the trip count of the loop.
4040 //
4041 // Currently we check for this by checking to see if the Exit branch goes to
4042 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004043 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004044 // loop header. This is common for un-rotated loops.
4045 //
4046 // If both of those tests fail, walk up the unique predecessor chain to the
4047 // header, stopping if there is an edge that doesn't exit the loop. If the
4048 // header is reached, the execution count of the branch will be equal to the
4049 // trip count of the loop.
4050 //
4051 // More extensive analysis could be done to handle more cases here.
4052 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004053 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004054 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004055 ExitBr->getParent() != L->getHeader()) {
4056 // The simple checks failed, try climbing the unique predecessor chain
4057 // up to the header.
4058 bool Ok = false;
4059 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4060 BasicBlock *Pred = BB->getUniquePredecessor();
4061 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004062 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004063 TerminatorInst *PredTerm = Pred->getTerminator();
4064 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4065 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4066 if (PredSucc == BB)
4067 continue;
4068 // If the predecessor has a successor that isn't BB and isn't
4069 // outside the loop, assume the worst.
4070 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004071 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004072 }
4073 if (Pred == L->getHeader()) {
4074 Ok = true;
4075 break;
4076 }
4077 BB = Pred;
4078 }
4079 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004080 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004081 }
4082
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004083 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00004084 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
4085 ExitBr->getSuccessor(0),
4086 ExitBr->getSuccessor(1));
4087}
4088
4089/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
4090/// backedge of the specified loop will execute if its exit condition
4091/// were a conditional branch of ExitCond, TBB, and FBB.
4092ScalarEvolution::BackedgeTakenInfo
4093ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
4094 Value *ExitCond,
4095 BasicBlock *TBB,
4096 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004097 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004098 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4099 if (BO->getOpcode() == Instruction::And) {
4100 // Recurse on the operands of the and.
4101 BackedgeTakenInfo BTI0 =
4102 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4103 BackedgeTakenInfo BTI1 =
4104 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004105 const SCEV *BECount = getCouldNotCompute();
4106 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004107 if (L->contains(TBB)) {
4108 // Both conditions must be true for the loop to continue executing.
4109 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00004110 if (BTI0.Exact == getCouldNotCompute() ||
4111 BTI1.Exact == getCouldNotCompute())
4112 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004113 else
4114 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00004115 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004116 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00004117 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004118 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004119 else
4120 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004121 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004122 // Both conditions must be true at the same time for the loop to exit.
4123 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004124 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00004125 if (BTI0.Max == BTI1.Max)
4126 MaxBECount = BTI0.Max;
4127 if (BTI0.Exact == BTI1.Exact)
4128 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004129 }
4130
4131 return BackedgeTakenInfo(BECount, MaxBECount);
4132 }
4133 if (BO->getOpcode() == Instruction::Or) {
4134 // Recurse on the operands of the or.
4135 BackedgeTakenInfo BTI0 =
4136 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4137 BackedgeTakenInfo BTI1 =
4138 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004139 const SCEV *BECount = getCouldNotCompute();
4140 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004141 if (L->contains(FBB)) {
4142 // Both conditions must be false for the loop to continue executing.
4143 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00004144 if (BTI0.Exact == getCouldNotCompute() ||
4145 BTI1.Exact == getCouldNotCompute())
4146 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004147 else
4148 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00004149 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004150 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00004151 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004152 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004153 else
4154 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004155 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004156 // Both conditions must be false at the same time for the loop to exit.
4157 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004158 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00004159 if (BTI0.Max == BTI1.Max)
4160 MaxBECount = BTI0.Max;
4161 if (BTI0.Exact == BTI1.Exact)
4162 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004163 }
4164
4165 return BackedgeTakenInfo(BECount, MaxBECount);
4166 }
4167 }
4168
4169 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004170 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004171 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4172 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004173
Dan Gohman00cb5b72010-02-19 18:12:07 +00004174 // Check for a constant condition. These are normally stripped out by
4175 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4176 // preserve the CFG and is temporarily leaving constant conditions
4177 // in place.
4178 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4179 if (L->contains(FBB) == !CI->getZExtValue())
4180 // The backedge is always taken.
4181 return getCouldNotCompute();
4182 else
4183 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004184 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004185 }
4186
Eli Friedman361e54d2009-05-09 12:32:42 +00004187 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004188 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4189}
4190
4191/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4192/// backedge of the specified loop will execute if its exit condition
4193/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4194ScalarEvolution::BackedgeTakenInfo
4195ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4196 ICmpInst *ExitCond,
4197 BasicBlock *TBB,
4198 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004199
Reid Spencere4d87aa2006-12-23 06:05:41 +00004200 // If the condition was exit on true, convert the condition to exit on false
4201 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004202 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004203 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004204 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004205 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004206
4207 // Handle common loops like: for (X = "string"; *X; ++X)
4208 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4209 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004210 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004211 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004212 if (ItCnt.hasAnyInfo())
4213 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004214 }
4215
Dan Gohman0bba49c2009-07-07 17:06:11 +00004216 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4217 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004218
4219 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004220 LHS = getSCEVAtScope(LHS, L);
4221 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004222
Dan Gohman64a845e2009-06-24 04:48:43 +00004223 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004224 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004225 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004226 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004227 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004228 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004229 }
4230
Dan Gohman03557dc2010-05-03 16:35:17 +00004231 // Simplify the operands before analyzing them.
4232 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4233
Chris Lattner53e677a2004-04-02 20:23:17 +00004234 // If we have a comparison of a chrec against a constant, try to use value
4235 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004236 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4237 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004238 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004239 // Form the constant range.
4240 ConstantRange CompRange(
4241 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004242
Dan Gohman0bba49c2009-07-07 17:06:11 +00004243 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004244 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004245 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004246
Chris Lattner53e677a2004-04-02 20:23:17 +00004247 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004248 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004249 // Convert to: while (X-Y != 0)
Andrew Trick4dbe2002011-03-15 01:16:14 +00004250 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004251 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004252 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004253 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004254 case ICmpInst::ICMP_EQ: { // while (X == Y)
4255 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004256 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4257 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004258 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004259 }
4260 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004261 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4262 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004263 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004264 }
4265 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004266 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4267 getNotSCEV(RHS), L, true);
4268 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004269 break;
4270 }
4271 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004272 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4273 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004274 break;
4275 }
4276 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004277 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4278 getNotSCEV(RHS), L, false);
4279 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004280 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004281 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004282 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004283#if 0
David Greene25e0e872009-12-23 22:18:14 +00004284 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004285 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004286 dbgs() << "[unsigned] ";
4287 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004288 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004289 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004290#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004291 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004292 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004293 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004294 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004295}
4296
Chris Lattner673e02b2004-10-12 01:49:27 +00004297static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004298EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4299 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004300 const SCEV *InVal = SE.getConstant(C);
4301 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004302 assert(isa<SCEVConstant>(Val) &&
4303 "Evaluation of SCEV at constant didn't fold correctly?");
4304 return cast<SCEVConstant>(Val)->getValue();
4305}
4306
4307/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4308/// and a GEP expression (missing the pointer index) indexing into it, return
4309/// the addressed element of the initializer or null if the index expression is
4310/// invalid.
4311static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004312GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004313 const std::vector<ConstantInt*> &Indices) {
4314 Constant *Init = GV->getInitializer();
4315 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004316 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004317 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4318 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4319 Init = cast<Constant>(CS->getOperand(Idx));
4320 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4321 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4322 Init = cast<Constant>(CA->getOperand(Idx));
4323 } else if (isa<ConstantAggregateZero>(Init)) {
4324 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4325 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004326 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004327 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4328 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004329 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004330 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004331 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004332 }
4333 return 0;
4334 } else {
4335 return 0; // Unknown initializer type
4336 }
4337 }
4338 return Init;
4339}
4340
Dan Gohman46bdfb02009-02-24 18:55:53 +00004341/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4342/// 'icmp op load X, cst', try to see if we can compute the backedge
4343/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004344ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004345ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4346 LoadInst *LI,
4347 Constant *RHS,
4348 const Loop *L,
4349 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004350 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004351
4352 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004353 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004354 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004355 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004356
4357 // Make sure that it is really a constant global we are gepping, with an
4358 // initializer, and make sure the first IDX is really 0.
4359 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004360 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004361 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4362 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004363 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004364
4365 // Okay, we allow one non-constant index into the GEP instruction.
4366 Value *VarIdx = 0;
4367 std::vector<ConstantInt*> Indexes;
4368 unsigned VarIdxNum = 0;
4369 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4370 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4371 Indexes.push_back(CI);
4372 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004373 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004374 VarIdx = GEP->getOperand(i);
4375 VarIdxNum = i-2;
4376 Indexes.push_back(0);
4377 }
4378
4379 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4380 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004381 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004382 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004383
4384 // We can only recognize very limited forms of loop index expressions, in
4385 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004386 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004387 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004388 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4389 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004390 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004391
4392 unsigned MaxSteps = MaxBruteForceIterations;
4393 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004394 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004395 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004396 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004397
4398 // Form the GEP offset.
4399 Indexes[VarIdxNum] = Val;
4400
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004401 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004402 if (Result == 0) break; // Cannot compute!
4403
4404 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004405 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004406 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004407 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004408#if 0
David Greene25e0e872009-12-23 22:18:14 +00004409 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004410 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4411 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004412#endif
4413 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004414 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004415 }
4416 }
Dan Gohman1c343752009-06-27 21:21:31 +00004417 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004418}
4419
4420
Chris Lattner3221ad02004-04-17 22:58:41 +00004421/// CanConstantFold - Return true if we can constant fold an instruction of the
4422/// specified type, assuming that all operands were constants.
4423static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004424 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004425 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4426 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004427
Chris Lattner3221ad02004-04-17 22:58:41 +00004428 if (const CallInst *CI = dyn_cast<CallInst>(I))
4429 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004430 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004431 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004432}
4433
Chris Lattner3221ad02004-04-17 22:58:41 +00004434/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4435/// in the loop that V is derived from. We allow arbitrary operations along the
4436/// way, but the operands of an operation must either be constants or a value
4437/// derived from a constant PHI. If this expression does not fit with these
4438/// constraints, return null.
4439static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4440 // If this is not an instruction, or if this is an instruction outside of the
4441 // loop, it can't be derived from a loop PHI.
4442 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004443 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004444
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004445 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004446 if (L->getHeader() == I->getParent())
4447 return PN;
4448 else
4449 // We don't currently keep track of the control flow needed to evaluate
4450 // PHIs, so we cannot handle PHIs inside of loops.
4451 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004452 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004453
4454 // If we won't be able to constant fold this expression even if the operands
4455 // are constants, return early.
4456 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004457
Chris Lattner3221ad02004-04-17 22:58:41 +00004458 // Otherwise, we can evaluate this instruction if all of its operands are
4459 // constant or derived from a PHI node themselves.
4460 PHINode *PHI = 0;
4461 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004462 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004463 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4464 if (P == 0) return 0; // Not evolving from PHI
4465 if (PHI == 0)
4466 PHI = P;
4467 else if (PHI != P)
4468 return 0; // Evolving from multiple different PHIs.
4469 }
4470
4471 // This is a expression evolving from a constant PHI!
4472 return PHI;
4473}
4474
4475/// EvaluateExpression - Given an expression that passes the
4476/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4477/// in the loop has the value PHIVal. If we can't fold this expression for some
4478/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004479static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4480 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004481 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004482 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004483 Instruction *I = cast<Instruction>(V);
4484
Dan Gohman9d4588f2010-06-22 13:15:46 +00004485 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004486
4487 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004488 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004489 if (Operands[i] == 0) return 0;
4490 }
4491
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004492 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004493 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004494 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004495 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004496 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004497}
4498
4499/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4500/// in the header of its containing loop, we know the loop executes a
4501/// constant number of times, and the PHI node is just a recurrence
4502/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004503Constant *
4504ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004505 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004506 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004507 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004508 ConstantEvolutionLoopExitValue.find(PN);
4509 if (I != ConstantEvolutionLoopExitValue.end())
4510 return I->second;
4511
Dan Gohmane0567812010-04-08 23:03:40 +00004512 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004513 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4514
4515 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4516
4517 // Since the loop is canonicalized, the PHI node must have two entries. One
4518 // entry must be a constant (coming in from outside of the loop), and the
4519 // second must be derived from the same PHI.
4520 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4521 Constant *StartCST =
4522 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4523 if (StartCST == 0)
4524 return RetVal = 0; // Must be a constant.
4525
4526 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004527 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4528 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004529 return RetVal = 0; // Not derived from same PHI.
4530
4531 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004532 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004533 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004534
Dan Gohman46bdfb02009-02-24 18:55:53 +00004535 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004536 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004537 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4538 if (IterationNum == NumIterations)
4539 return RetVal = PHIVal; // Got exit value!
4540
4541 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004542 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004543 if (NextPHI == PHIVal)
4544 return RetVal = NextPHI; // Stopped evolving!
4545 if (NextPHI == 0)
4546 return 0; // Couldn't evaluate!
4547 PHIVal = NextPHI;
4548 }
4549}
4550
Dan Gohman07ad19b2009-07-27 16:09:48 +00004551/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004552/// constant number of times (the condition evolves only from constants),
4553/// try to evaluate a few iterations of the loop until we get the exit
4554/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004555/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004556const SCEV *
4557ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4558 Value *Cond,
4559 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004560 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004561 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004562
Dan Gohmanb92654d2010-06-19 14:17:24 +00004563 // If the loop is canonicalized, the PHI will have exactly two entries.
4564 // That's the only form we support here.
4565 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4566
4567 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004568 // second must be derived from the same PHI.
4569 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4570 Constant *StartCST =
4571 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004572 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004573
4574 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004575 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4576 !isa<Constant>(BEValue))
4577 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004578
4579 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4580 // the loop symbolically to determine when the condition gets a value of
4581 // "ExitWhen".
4582 unsigned IterationNum = 0;
4583 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4584 for (Constant *PHIVal = StartCST;
4585 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004586 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004587 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004588
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004589 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004590 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004591
Reid Spencere8019bb2007-03-01 07:25:48 +00004592 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004593 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004594 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004595 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004596
Chris Lattner3221ad02004-04-17 22:58:41 +00004597 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004598 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004599 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004600 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004601 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004602 }
4603
4604 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004605 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004606}
4607
Dan Gohmane7125f42009-09-03 15:00:26 +00004608/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004609/// at the specified scope in the program. The L value specifies a loop
4610/// nest to evaluate the expression at, where null is the top-level or a
4611/// specified loop is immediately inside of the loop.
4612///
4613/// This method can be used to compute the exit value for a variable defined
4614/// in a loop by querying what the value will hold in the parent loop.
4615///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004616/// In the case that a relevant loop exit value cannot be computed, the
4617/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004618const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004619 // Check to see if we've folded this expression at this loop before.
4620 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4621 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4622 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4623 if (!Pair.second)
4624 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004625
Dan Gohman42214892009-08-31 21:15:23 +00004626 // Otherwise compute it.
4627 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004628 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004629 return C;
4630}
4631
4632const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004633 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004634
Nick Lewycky3e630762008-02-20 06:48:22 +00004635 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004636 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004637 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004638 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004639 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004640 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4641 if (PHINode *PN = dyn_cast<PHINode>(I))
4642 if (PN->getParent() == LI->getHeader()) {
4643 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004644 // to see if the loop that contains it has a known backedge-taken
4645 // count. If so, we may be able to force computation of the exit
4646 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004647 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004648 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004649 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004650 // Okay, we know how many times the containing loop executes. If
4651 // this is a constant evolving PHI node, get the final value at
4652 // the specified iteration number.
4653 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004654 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004655 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004656 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004657 }
4658 }
4659
Reid Spencer09906f32006-12-04 21:33:23 +00004660 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004661 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004662 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004663 // result. This is particularly useful for computing loop exit values.
4664 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004665 SmallVector<Constant *, 4> Operands;
4666 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004667 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4668 Value *Op = I->getOperand(i);
4669 if (Constant *C = dyn_cast<Constant>(Op)) {
4670 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004671 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004672 }
Dan Gohman11046452010-06-29 23:43:06 +00004673
4674 // If any of the operands is non-constant and if they are
4675 // non-integer and non-pointer, don't even try to analyze them
4676 // with scev techniques.
4677 if (!isSCEVable(Op->getType()))
4678 return V;
4679
4680 const SCEV *OrigV = getSCEV(Op);
4681 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4682 MadeImprovement |= OrigV != OpV;
4683
4684 Constant *C = 0;
4685 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4686 C = SC->getValue();
4687 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4688 C = dyn_cast<Constant>(SU->getValue());
4689 if (!C) return V;
4690 if (C->getType() != Op->getType())
4691 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4692 Op->getType(),
4693 false),
4694 C, Op->getType());
4695 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004696 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004697
Dan Gohman11046452010-06-29 23:43:06 +00004698 // Check to see if getSCEVAtScope actually made an improvement.
4699 if (MadeImprovement) {
4700 Constant *C = 0;
4701 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4702 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4703 Operands[0], Operands[1], TD);
4704 else
4705 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4706 &Operands[0], Operands.size(), TD);
4707 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004708 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004709 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004710 }
4711 }
4712
4713 // This is some other type of SCEVUnknown, just return it.
4714 return V;
4715 }
4716
Dan Gohman622ed672009-05-04 22:02:23 +00004717 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004718 // Avoid performing the look-up in the common case where the specified
4719 // expression has no loop-variant portions.
4720 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004721 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004722 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004723 // Okay, at least one of these operands is loop variant but might be
4724 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004725 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4726 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004727 NewOps.push_back(OpAtScope);
4728
4729 for (++i; i != e; ++i) {
4730 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004731 NewOps.push_back(OpAtScope);
4732 }
4733 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004734 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004735 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004736 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004737 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004738 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004739 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004740 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004741 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004742 }
4743 }
4744 // If we got here, all operands are loop invariant.
4745 return Comm;
4746 }
4747
Dan Gohman622ed672009-05-04 22:02:23 +00004748 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004749 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4750 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004751 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4752 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004753 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004754 }
4755
4756 // If this is a loop recurrence for a loop that does not contain L, then we
4757 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004758 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004759 // First, attempt to evaluate each operand.
4760 // Avoid performing the look-up in the common case where the specified
4761 // expression has no loop-variant portions.
4762 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4763 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4764 if (OpAtScope == AddRec->getOperand(i))
4765 continue;
4766
4767 // Okay, at least one of these operands is loop variant but might be
4768 // foldable. Build a new instance of the folded commutative expression.
4769 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4770 AddRec->op_begin()+i);
4771 NewOps.push_back(OpAtScope);
4772 for (++i; i != e; ++i)
4773 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4774
Andrew Trick3f95c882011-04-27 01:21:25 +00004775 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00004776 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00004777 AddRec->getNoWrapFlags(SCEV::FlagNW));
4778 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00004779 // The addrec may be folded to a nonrecurrence, for example, if the
4780 // induction variable is multiplied by zero after constant folding. Go
4781 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00004782 if (!AddRec)
4783 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00004784 break;
4785 }
4786
4787 // If the scope is outside the addrec's loop, evaluate it by using the
4788 // loop exit value of the addrec.
4789 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004790 // To evaluate this recurrence, we need to know how many times the AddRec
4791 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004792 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004793 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004794
Eli Friedmanb42a6262008-08-04 23:49:06 +00004795 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004796 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004797 }
Dan Gohman11046452010-06-29 23:43:06 +00004798
Dan Gohmand594e6f2009-05-24 23:25:42 +00004799 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004800 }
4801
Dan Gohman622ed672009-05-04 22:02:23 +00004802 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004803 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004804 if (Op == Cast->getOperand())
4805 return Cast; // must be loop invariant
4806 return getZeroExtendExpr(Op, Cast->getType());
4807 }
4808
Dan Gohman622ed672009-05-04 22:02:23 +00004809 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004810 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004811 if (Op == Cast->getOperand())
4812 return Cast; // must be loop invariant
4813 return getSignExtendExpr(Op, Cast->getType());
4814 }
4815
Dan Gohman622ed672009-05-04 22:02:23 +00004816 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004817 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004818 if (Op == Cast->getOperand())
4819 return Cast; // must be loop invariant
4820 return getTruncateExpr(Op, Cast->getType());
4821 }
4822
Torok Edwinc23197a2009-07-14 16:55:14 +00004823 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004824 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004825}
4826
Dan Gohman66a7e852009-05-08 20:38:54 +00004827/// getSCEVAtScope - This is a convenience function which does
4828/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004829const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004830 return getSCEVAtScope(getSCEV(V), L);
4831}
4832
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004833/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4834/// following equation:
4835///
4836/// A * X = B (mod N)
4837///
4838/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4839/// A and B isn't important.
4840///
4841/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004842static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004843 ScalarEvolution &SE) {
4844 uint32_t BW = A.getBitWidth();
4845 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4846 assert(A != 0 && "A must be non-zero.");
4847
4848 // 1. D = gcd(A, N)
4849 //
4850 // The gcd of A and N may have only one prime factor: 2. The number of
4851 // trailing zeros in A is its multiplicity
4852 uint32_t Mult2 = A.countTrailingZeros();
4853 // D = 2^Mult2
4854
4855 // 2. Check if B is divisible by D.
4856 //
4857 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4858 // is not less than multiplicity of this prime factor for D.
4859 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004860 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004861
4862 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4863 // modulo (N / D).
4864 //
4865 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4866 // bit width during computations.
4867 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4868 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004869 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004870 APInt I = AD.multiplicativeInverse(Mod);
4871
4872 // 4. Compute the minimum unsigned root of the equation:
4873 // I * (B / D) mod (N / D)
4874 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4875
4876 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4877 // bits.
4878 return SE.getConstant(Result.trunc(BW));
4879}
Chris Lattner53e677a2004-04-02 20:23:17 +00004880
4881/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4882/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4883/// might be the same) or two SCEVCouldNotCompute objects.
4884///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004885static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004886SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004887 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004888 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4889 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4890 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004891
Chris Lattner53e677a2004-04-02 20:23:17 +00004892 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004893 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004894 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004895 return std::make_pair(CNC, CNC);
4896 }
4897
Reid Spencere8019bb2007-03-01 07:25:48 +00004898 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004899 const APInt &L = LC->getValue()->getValue();
4900 const APInt &M = MC->getValue()->getValue();
4901 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004902 APInt Two(BitWidth, 2);
4903 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004904
Dan Gohman64a845e2009-06-24 04:48:43 +00004905 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004906 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004907 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004908 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4909 // The B coefficient is M-N/2
4910 APInt B(M);
4911 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004912
Reid Spencere8019bb2007-03-01 07:25:48 +00004913 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004914 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004915
Reid Spencere8019bb2007-03-01 07:25:48 +00004916 // Compute the B^2-4ac term.
4917 APInt SqrtTerm(B);
4918 SqrtTerm *= B;
4919 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004920
Reid Spencere8019bb2007-03-01 07:25:48 +00004921 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4922 // integer value or else APInt::sqrt() will assert.
4923 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004924
Dan Gohman64a845e2009-06-24 04:48:43 +00004925 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004926 // The divisions must be performed as signed divisions.
4927 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004928 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004929 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004930 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004931 return std::make_pair(CNC, CNC);
4932 }
4933
Owen Andersone922c022009-07-22 00:24:57 +00004934 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004935
4936 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004937 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004938 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004939 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004940
Dan Gohman64a845e2009-06-24 04:48:43 +00004941 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004942 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004943 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004944}
4945
4946/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004947/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00004948///
4949/// This is only used for loops with a "x != y" exit test. The exit condition is
4950/// now expressed as a single expression, V = x-y. So the exit test is
4951/// effectively V != 0. We know and take advantage of the fact that this
4952/// expression only being used in a comparison by zero context.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004953ScalarEvolution::BackedgeTakenInfo
4954ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004955 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004956 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004957 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004958 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004959 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004960 }
4961
Dan Gohman35738ac2009-05-04 22:30:44 +00004962 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004963 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004964 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004965
Chris Lattner7975e3e2011-01-09 22:39:48 +00004966 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4967 // the quadratic equation to solve it.
4968 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4969 std::pair<const SCEV *,const SCEV *> Roots =
4970 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004971 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4972 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004973 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004974#if 0
David Greene25e0e872009-12-23 22:18:14 +00004975 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004976 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004977#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004978 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004979 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004980 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4981 R1->getValue(),
4982 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004983 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004984 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00004985
Chris Lattner53e677a2004-04-02 20:23:17 +00004986 // We can only use this value if the chrec ends up with an exact zero
4987 // value at this index. When solving for "X*X != 5", for example, we
4988 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004989 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004990 if (Val->isZero())
4991 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004992 }
4993 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004994 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004995 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004996
Chris Lattner7975e3e2011-01-09 22:39:48 +00004997 // Otherwise we can only handle this if it is affine.
4998 if (!AddRec->isAffine())
4999 return getCouldNotCompute();
5000
5001 // If this is an affine expression, the execution count of this branch is
5002 // the minimum unsigned root of the following equation:
5003 //
5004 // Start + Step*N = 0 (mod 2^BW)
5005 //
5006 // equivalent to:
5007 //
5008 // Step*N = -Start (mod 2^BW)
5009 //
5010 // where BW is the common bit width of Start and Step.
5011
5012 // Get the initial value for the loop.
5013 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5014 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5015
5016 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005017 //
5018 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5019 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5020 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5021 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005022 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5023 if (StepC == 0)
5024 return getCouldNotCompute();
5025
Andrew Trick3228cc22011-03-14 16:50:06 +00005026 // For positive steps (counting up until unsigned overflow):
5027 // N = -Start/Step (as unsigned)
5028 // For negative steps (counting down to zero):
5029 // N = Start/-Step
5030 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005031 bool CountDown = StepC->getValue()->getValue().isNegative();
5032 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005033
5034 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005035 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5036 // N = Distance (as unsigned)
5037 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5038 return Distance;
Andrew Trick635f7182011-03-09 17:23:39 +00005039
Andrew Trickdcfd4042011-03-14 17:28:02 +00005040 // If the recurrence is known not to wraparound, unsigned divide computes the
5041 // back edge count. We know that the value will either become zero (and thus
5042 // the loop terminates), that the loop will terminate through some other exit
5043 // condition first, or that the loop has undefined behavior. This means
5044 // we can't "miss" the exit value, even with nonunit stride.
5045 //
5046 // FIXME: Prove that loops always exhibits *acceptable* undefined
5047 // behavior. Loops must exhibit defined behavior until a wrapped value is
5048 // actually used. So the trip count computed by udiv could be smaller than the
5049 // number of well-defined iterations.
5050 if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5051 // FIXME: We really want an "isexact" bit for udiv.
5052 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005053
5054 // Then, try to solve the above equation provided that Start is constant.
5055 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5056 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5057 -StartC->getValue()->getValue(),
5058 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005059 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005060}
5061
5062/// HowFarToNonZero - Return the number of times a backedge checking the
5063/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005064/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005065ScalarEvolution::BackedgeTakenInfo
5066ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005067 // Loops that look like: while (X == 0) are very strange indeed. We don't
5068 // handle them yet except for the trivial case. This could be expanded in the
5069 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005070
Chris Lattner53e677a2004-04-02 20:23:17 +00005071 // If the value is a constant, check to see if it is known to be non-zero
5072 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005073 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005074 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005075 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005076 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005077 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005078
Chris Lattner53e677a2004-04-02 20:23:17 +00005079 // We could implement others, but I really doubt anyone writes loops like
5080 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005081 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005082}
5083
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005084/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5085/// (which may not be an immediate predecessor) which has exactly one
5086/// successor from which BB is reachable, or null if no such block is
5087/// found.
5088///
Dan Gohman005752b2010-04-15 16:19:08 +00005089std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005090ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005091 // If the block has a unique predecessor, then there is no path from the
5092 // predecessor to the block that does not go through the direct edge
5093 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005094 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005095 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005096
5097 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005098 // If the header has a unique predecessor outside the loop, it must be
5099 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005100 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005101 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005102
Dan Gohman005752b2010-04-15 16:19:08 +00005103 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005104}
5105
Dan Gohman763bad12009-06-20 00:35:32 +00005106/// HasSameValue - SCEV structural equivalence is usually sufficient for
5107/// testing whether two expressions are equal, however for the purposes of
5108/// looking for a condition guarding a loop, it can be useful to be a little
5109/// more general, since a front-end may have replicated the controlling
5110/// expression.
5111///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005112static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005113 // Quick check to see if they are the same SCEV.
5114 if (A == B) return true;
5115
5116 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5117 // two different instructions with the same value. Check for this case.
5118 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5119 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5120 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5121 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005122 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005123 return true;
5124
5125 // Otherwise assume they may have a different value.
5126 return false;
5127}
5128
Dan Gohmane9796502010-04-24 01:28:42 +00005129/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5130/// predicate Pred. Return true iff any changes were made.
5131///
5132bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5133 const SCEV *&LHS, const SCEV *&RHS) {
5134 bool Changed = false;
5135
5136 // Canonicalize a constant to the right side.
5137 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5138 // Check for both operands constant.
5139 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5140 if (ConstantExpr::getICmp(Pred,
5141 LHSC->getValue(),
5142 RHSC->getValue())->isNullValue())
5143 goto trivially_false;
5144 else
5145 goto trivially_true;
5146 }
5147 // Otherwise swap the operands to put the constant on the right.
5148 std::swap(LHS, RHS);
5149 Pred = ICmpInst::getSwappedPredicate(Pred);
5150 Changed = true;
5151 }
5152
5153 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005154 // addrec's loop, put the addrec on the left. Also make a dominance check,
5155 // as both operands could be addrecs loop-invariant in each other's loop.
5156 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5157 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005158 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005159 std::swap(LHS, RHS);
5160 Pred = ICmpInst::getSwappedPredicate(Pred);
5161 Changed = true;
5162 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005163 }
Dan Gohmane9796502010-04-24 01:28:42 +00005164
5165 // If there's a constant operand, canonicalize comparisons with boundary
5166 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5167 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5168 const APInt &RA = RC->getValue()->getValue();
5169 switch (Pred) {
5170 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5171 case ICmpInst::ICMP_EQ:
5172 case ICmpInst::ICMP_NE:
5173 break;
5174 case ICmpInst::ICMP_UGE:
5175 if ((RA - 1).isMinValue()) {
5176 Pred = ICmpInst::ICMP_NE;
5177 RHS = getConstant(RA - 1);
5178 Changed = true;
5179 break;
5180 }
5181 if (RA.isMaxValue()) {
5182 Pred = ICmpInst::ICMP_EQ;
5183 Changed = true;
5184 break;
5185 }
5186 if (RA.isMinValue()) goto trivially_true;
5187
5188 Pred = ICmpInst::ICMP_UGT;
5189 RHS = getConstant(RA - 1);
5190 Changed = true;
5191 break;
5192 case ICmpInst::ICMP_ULE:
5193 if ((RA + 1).isMaxValue()) {
5194 Pred = ICmpInst::ICMP_NE;
5195 RHS = getConstant(RA + 1);
5196 Changed = true;
5197 break;
5198 }
5199 if (RA.isMinValue()) {
5200 Pred = ICmpInst::ICMP_EQ;
5201 Changed = true;
5202 break;
5203 }
5204 if (RA.isMaxValue()) goto trivially_true;
5205
5206 Pred = ICmpInst::ICMP_ULT;
5207 RHS = getConstant(RA + 1);
5208 Changed = true;
5209 break;
5210 case ICmpInst::ICMP_SGE:
5211 if ((RA - 1).isMinSignedValue()) {
5212 Pred = ICmpInst::ICMP_NE;
5213 RHS = getConstant(RA - 1);
5214 Changed = true;
5215 break;
5216 }
5217 if (RA.isMaxSignedValue()) {
5218 Pred = ICmpInst::ICMP_EQ;
5219 Changed = true;
5220 break;
5221 }
5222 if (RA.isMinSignedValue()) goto trivially_true;
5223
5224 Pred = ICmpInst::ICMP_SGT;
5225 RHS = getConstant(RA - 1);
5226 Changed = true;
5227 break;
5228 case ICmpInst::ICMP_SLE:
5229 if ((RA + 1).isMaxSignedValue()) {
5230 Pred = ICmpInst::ICMP_NE;
5231 RHS = getConstant(RA + 1);
5232 Changed = true;
5233 break;
5234 }
5235 if (RA.isMinSignedValue()) {
5236 Pred = ICmpInst::ICMP_EQ;
5237 Changed = true;
5238 break;
5239 }
5240 if (RA.isMaxSignedValue()) goto trivially_true;
5241
5242 Pred = ICmpInst::ICMP_SLT;
5243 RHS = getConstant(RA + 1);
5244 Changed = true;
5245 break;
5246 case ICmpInst::ICMP_UGT:
5247 if (RA.isMinValue()) {
5248 Pred = ICmpInst::ICMP_NE;
5249 Changed = true;
5250 break;
5251 }
5252 if ((RA + 1).isMaxValue()) {
5253 Pred = ICmpInst::ICMP_EQ;
5254 RHS = getConstant(RA + 1);
5255 Changed = true;
5256 break;
5257 }
5258 if (RA.isMaxValue()) goto trivially_false;
5259 break;
5260 case ICmpInst::ICMP_ULT:
5261 if (RA.isMaxValue()) {
5262 Pred = ICmpInst::ICMP_NE;
5263 Changed = true;
5264 break;
5265 }
5266 if ((RA - 1).isMinValue()) {
5267 Pred = ICmpInst::ICMP_EQ;
5268 RHS = getConstant(RA - 1);
5269 Changed = true;
5270 break;
5271 }
5272 if (RA.isMinValue()) goto trivially_false;
5273 break;
5274 case ICmpInst::ICMP_SGT:
5275 if (RA.isMinSignedValue()) {
5276 Pred = ICmpInst::ICMP_NE;
5277 Changed = true;
5278 break;
5279 }
5280 if ((RA + 1).isMaxSignedValue()) {
5281 Pred = ICmpInst::ICMP_EQ;
5282 RHS = getConstant(RA + 1);
5283 Changed = true;
5284 break;
5285 }
5286 if (RA.isMaxSignedValue()) goto trivially_false;
5287 break;
5288 case ICmpInst::ICMP_SLT:
5289 if (RA.isMaxSignedValue()) {
5290 Pred = ICmpInst::ICMP_NE;
5291 Changed = true;
5292 break;
5293 }
5294 if ((RA - 1).isMinSignedValue()) {
5295 Pred = ICmpInst::ICMP_EQ;
5296 RHS = getConstant(RA - 1);
5297 Changed = true;
5298 break;
5299 }
5300 if (RA.isMinSignedValue()) goto trivially_false;
5301 break;
5302 }
5303 }
5304
5305 // Check for obvious equality.
5306 if (HasSameValue(LHS, RHS)) {
5307 if (ICmpInst::isTrueWhenEqual(Pred))
5308 goto trivially_true;
5309 if (ICmpInst::isFalseWhenEqual(Pred))
5310 goto trivially_false;
5311 }
5312
Dan Gohman03557dc2010-05-03 16:35:17 +00005313 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5314 // adding or subtracting 1 from one of the operands.
5315 switch (Pred) {
5316 case ICmpInst::ICMP_SLE:
5317 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5318 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005319 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005320 Pred = ICmpInst::ICMP_SLT;
5321 Changed = true;
5322 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005323 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005324 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005325 Pred = ICmpInst::ICMP_SLT;
5326 Changed = true;
5327 }
5328 break;
5329 case ICmpInst::ICMP_SGE:
5330 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005331 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005332 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005333 Pred = ICmpInst::ICMP_SGT;
5334 Changed = true;
5335 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5336 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005337 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005338 Pred = ICmpInst::ICMP_SGT;
5339 Changed = true;
5340 }
5341 break;
5342 case ICmpInst::ICMP_ULE:
5343 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005344 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005345 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005346 Pred = ICmpInst::ICMP_ULT;
5347 Changed = true;
5348 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005349 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005350 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005351 Pred = ICmpInst::ICMP_ULT;
5352 Changed = true;
5353 }
5354 break;
5355 case ICmpInst::ICMP_UGE:
5356 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005357 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005358 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005359 Pred = ICmpInst::ICMP_UGT;
5360 Changed = true;
5361 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005362 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005363 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005364 Pred = ICmpInst::ICMP_UGT;
5365 Changed = true;
5366 }
5367 break;
5368 default:
5369 break;
5370 }
5371
Dan Gohmane9796502010-04-24 01:28:42 +00005372 // TODO: More simplifications are possible here.
5373
5374 return Changed;
5375
5376trivially_true:
5377 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005378 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005379 Pred = ICmpInst::ICMP_EQ;
5380 return true;
5381
5382trivially_false:
5383 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005384 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005385 Pred = ICmpInst::ICMP_NE;
5386 return true;
5387}
5388
Dan Gohman85b05a22009-07-13 21:35:55 +00005389bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5390 return getSignedRange(S).getSignedMax().isNegative();
5391}
5392
5393bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5394 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5395}
5396
5397bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5398 return !getSignedRange(S).getSignedMin().isNegative();
5399}
5400
5401bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5402 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5403}
5404
5405bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5406 return isKnownNegative(S) || isKnownPositive(S);
5407}
5408
5409bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5410 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005411 // Canonicalize the inputs first.
5412 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5413
Dan Gohman53c66ea2010-04-11 22:16:48 +00005414 // If LHS or RHS is an addrec, check to see if the condition is true in
5415 // every iteration of the loop.
5416 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5417 if (isLoopEntryGuardedByCond(
5418 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5419 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005420 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005421 return true;
5422 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5423 if (isLoopEntryGuardedByCond(
5424 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5425 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005426 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005427 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005428
Dan Gohman53c66ea2010-04-11 22:16:48 +00005429 // Otherwise see what can be done with known constant ranges.
5430 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5431}
5432
5433bool
5434ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5435 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005436 if (HasSameValue(LHS, RHS))
5437 return ICmpInst::isTrueWhenEqual(Pred);
5438
Dan Gohman53c66ea2010-04-11 22:16:48 +00005439 // This code is split out from isKnownPredicate because it is called from
5440 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005441 switch (Pred) {
5442 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005443 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005444 break;
5445 case ICmpInst::ICMP_SGT:
5446 Pred = ICmpInst::ICMP_SLT;
5447 std::swap(LHS, RHS);
5448 case ICmpInst::ICMP_SLT: {
5449 ConstantRange LHSRange = getSignedRange(LHS);
5450 ConstantRange RHSRange = getSignedRange(RHS);
5451 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5452 return true;
5453 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5454 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005455 break;
5456 }
5457 case ICmpInst::ICMP_SGE:
5458 Pred = ICmpInst::ICMP_SLE;
5459 std::swap(LHS, RHS);
5460 case ICmpInst::ICMP_SLE: {
5461 ConstantRange LHSRange = getSignedRange(LHS);
5462 ConstantRange RHSRange = getSignedRange(RHS);
5463 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5464 return true;
5465 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5466 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005467 break;
5468 }
5469 case ICmpInst::ICMP_UGT:
5470 Pred = ICmpInst::ICMP_ULT;
5471 std::swap(LHS, RHS);
5472 case ICmpInst::ICMP_ULT: {
5473 ConstantRange LHSRange = getUnsignedRange(LHS);
5474 ConstantRange RHSRange = getUnsignedRange(RHS);
5475 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5476 return true;
5477 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5478 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005479 break;
5480 }
5481 case ICmpInst::ICMP_UGE:
5482 Pred = ICmpInst::ICMP_ULE;
5483 std::swap(LHS, RHS);
5484 case ICmpInst::ICMP_ULE: {
5485 ConstantRange LHSRange = getUnsignedRange(LHS);
5486 ConstantRange RHSRange = getUnsignedRange(RHS);
5487 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5488 return true;
5489 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5490 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005491 break;
5492 }
5493 case ICmpInst::ICMP_NE: {
5494 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5495 return true;
5496 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5497 return true;
5498
5499 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5500 if (isKnownNonZero(Diff))
5501 return true;
5502 break;
5503 }
5504 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005505 // The check at the top of the function catches the case where
5506 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005507 break;
5508 }
5509 return false;
5510}
5511
5512/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5513/// protected by a conditional between LHS and RHS. This is used to
5514/// to eliminate casts.
5515bool
5516ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5517 ICmpInst::Predicate Pred,
5518 const SCEV *LHS, const SCEV *RHS) {
5519 // Interpret a null as meaning no loop, where there is obviously no guard
5520 // (interprocedural conditions notwithstanding).
5521 if (!L) return true;
5522
5523 BasicBlock *Latch = L->getLoopLatch();
5524 if (!Latch)
5525 return false;
5526
5527 BranchInst *LoopContinuePredicate =
5528 dyn_cast<BranchInst>(Latch->getTerminator());
5529 if (!LoopContinuePredicate ||
5530 LoopContinuePredicate->isUnconditional())
5531 return false;
5532
Dan Gohmanaf08a362010-08-10 23:46:30 +00005533 return isImpliedCond(Pred, LHS, RHS,
5534 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005535 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005536}
5537
Dan Gohman3948d0b2010-04-11 19:27:13 +00005538/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005539/// by a conditional between LHS and RHS. This is used to help avoid max
5540/// expressions in loop trip counts, and to eliminate casts.
5541bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005542ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5543 ICmpInst::Predicate Pred,
5544 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005545 // Interpret a null as meaning no loop, where there is obviously no guard
5546 // (interprocedural conditions notwithstanding).
5547 if (!L) return false;
5548
Dan Gohman859b4822009-05-18 15:36:09 +00005549 // Starting at the loop predecessor, climb up the predecessor chain, as long
5550 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005551 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005552 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005553 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005554 Pair.first;
5555 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005556
5557 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005558 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005559 if (!LoopEntryPredicate ||
5560 LoopEntryPredicate->isUnconditional())
5561 continue;
5562
Dan Gohmanaf08a362010-08-10 23:46:30 +00005563 if (isImpliedCond(Pred, LHS, RHS,
5564 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005565 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005566 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005567 }
5568
Dan Gohman38372182008-08-12 20:17:31 +00005569 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005570}
5571
Dan Gohman0f4b2852009-07-21 23:03:19 +00005572/// isImpliedCond - Test whether the condition described by Pred, LHS,
5573/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005574bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005575 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005576 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005577 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005578 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005579 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005580 if (BO->getOpcode() == Instruction::And) {
5581 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005582 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5583 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005584 } else if (BO->getOpcode() == Instruction::Or) {
5585 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005586 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5587 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005588 }
5589 }
5590
Dan Gohmanaf08a362010-08-10 23:46:30 +00005591 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005592 if (!ICI) return false;
5593
Dan Gohman85b05a22009-07-13 21:35:55 +00005594 // Bail if the ICmp's operands' types are wider than the needed type
5595 // before attempting to call getSCEV on them. This avoids infinite
5596 // recursion, since the analysis of widening casts can require loop
5597 // exit condition information for overflow checking, which would
5598 // lead back here.
5599 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005600 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005601 return false;
5602
Dan Gohman0f4b2852009-07-21 23:03:19 +00005603 // Now that we found a conditional branch that dominates the loop, check to
5604 // see if it is the comparison we are looking for.
5605 ICmpInst::Predicate FoundPred;
5606 if (Inverse)
5607 FoundPred = ICI->getInversePredicate();
5608 else
5609 FoundPred = ICI->getPredicate();
5610
5611 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5612 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005613
5614 // Balance the types. The case where FoundLHS' type is wider than
5615 // LHS' type is checked for above.
5616 if (getTypeSizeInBits(LHS->getType()) >
5617 getTypeSizeInBits(FoundLHS->getType())) {
5618 if (CmpInst::isSigned(Pred)) {
5619 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5620 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5621 } else {
5622 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5623 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5624 }
5625 }
5626
Dan Gohman0f4b2852009-07-21 23:03:19 +00005627 // Canonicalize the query to match the way instcombine will have
5628 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005629 if (SimplifyICmpOperands(Pred, LHS, RHS))
5630 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005631 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005632 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5633 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005634 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005635
5636 // Check to see if we can make the LHS or RHS match.
5637 if (LHS == FoundRHS || RHS == FoundLHS) {
5638 if (isa<SCEVConstant>(RHS)) {
5639 std::swap(FoundLHS, FoundRHS);
5640 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5641 } else {
5642 std::swap(LHS, RHS);
5643 Pred = ICmpInst::getSwappedPredicate(Pred);
5644 }
5645 }
5646
5647 // Check whether the found predicate is the same as the desired predicate.
5648 if (FoundPred == Pred)
5649 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5650
5651 // Check whether swapping the found predicate makes it the same as the
5652 // desired predicate.
5653 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5654 if (isa<SCEVConstant>(RHS))
5655 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5656 else
5657 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5658 RHS, LHS, FoundLHS, FoundRHS);
5659 }
5660
5661 // Check whether the actual condition is beyond sufficient.
5662 if (FoundPred == ICmpInst::ICMP_EQ)
5663 if (ICmpInst::isTrueWhenEqual(Pred))
5664 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5665 return true;
5666 if (Pred == ICmpInst::ICMP_NE)
5667 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5668 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5669 return true;
5670
5671 // Otherwise assume the worst.
5672 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005673}
5674
Dan Gohman0f4b2852009-07-21 23:03:19 +00005675/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005676/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005677/// and FoundRHS is true.
5678bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5679 const SCEV *LHS, const SCEV *RHS,
5680 const SCEV *FoundLHS,
5681 const SCEV *FoundRHS) {
5682 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5683 FoundLHS, FoundRHS) ||
5684 // ~x < ~y --> x > y
5685 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5686 getNotSCEV(FoundRHS),
5687 getNotSCEV(FoundLHS));
5688}
5689
5690/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005691/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005692/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005693bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005694ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5695 const SCEV *LHS, const SCEV *RHS,
5696 const SCEV *FoundLHS,
5697 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005698 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005699 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5700 case ICmpInst::ICMP_EQ:
5701 case ICmpInst::ICMP_NE:
5702 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5703 return true;
5704 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005705 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005706 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005707 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5708 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005709 return true;
5710 break;
5711 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005712 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005713 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5714 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005715 return true;
5716 break;
5717 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005718 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005719 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5720 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005721 return true;
5722 break;
5723 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005724 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005725 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5726 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005727 return true;
5728 break;
5729 }
5730
5731 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005732}
5733
Dan Gohman51f53b72009-06-21 23:46:38 +00005734/// getBECount - Subtract the end and start values and divide by the step,
5735/// rounding up, to get the number of times the backedge is executed. Return
5736/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005737const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005738 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005739 const SCEV *Step,
5740 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005741 assert(!isKnownNegative(Step) &&
5742 "This code doesn't handle negative strides yet!");
5743
Dan Gohman51f53b72009-06-21 23:46:38 +00005744 const Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00005745
5746 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5747 // here because SCEV may not be able to determine that the unsigned division
5748 // after rounding is zero.
5749 if (Start == End)
5750 return getConstant(Ty, 0);
5751
Dan Gohmandeff6212010-05-03 22:09:21 +00005752 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005753 const SCEV *Diff = getMinusSCEV(End, Start);
5754 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005755
5756 // Add an adjustment to the difference between End and Start so that
5757 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005758 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005759
Dan Gohman1f96e672009-09-17 18:05:20 +00005760 if (!NoWrap) {
5761 // Check Add for unsigned overflow.
5762 // TODO: More sophisticated things could be done here.
5763 const Type *WideTy = IntegerType::get(getContext(),
5764 getTypeSizeInBits(Ty) + 1);
5765 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5766 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5767 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5768 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5769 return getCouldNotCompute();
5770 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005771
5772 return getUDivExpr(Add, Step);
5773}
5774
Chris Lattnerdb25de42005-08-15 23:33:51 +00005775/// HowManyLessThans - Return the number of times a backedge containing the
5776/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005777/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005778ScalarEvolution::BackedgeTakenInfo
5779ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5780 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005781 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005782 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005783
Dan Gohman35738ac2009-05-04 22:30:44 +00005784 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005785 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005786 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005787
Dan Gohman1f96e672009-09-17 18:05:20 +00005788 // Check to see if we have a flag which makes analysis easy.
Andrew Trick3228cc22011-03-14 16:50:06 +00005789 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5790 AddRec->getNoWrapFlags(SCEV::FlagNUW);
Dan Gohman1f96e672009-09-17 18:05:20 +00005791
Chris Lattnerdb25de42005-08-15 23:33:51 +00005792 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005793 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005794 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005795
Dan Gohman52fddd32010-01-26 04:40:18 +00005796 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005797 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005798 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005799 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005800 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005801 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005802 // value and past the maximum value for its type in a single step.
5803 // Note that it's not sufficient to check NoWrap here, because even
5804 // though the value after a wrap is undefined, it's not undefined
5805 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005806 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005807 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005808 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005809 if (isSigned) {
5810 APInt Max = APInt::getSignedMaxValue(BitWidth);
5811 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5812 .slt(getSignedRange(RHS).getSignedMax()))
5813 return getCouldNotCompute();
5814 } else {
5815 APInt Max = APInt::getMaxValue(BitWidth);
5816 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5817 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5818 return getCouldNotCompute();
5819 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005820 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005821 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005822 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005823
Dan Gohmana1af7572009-04-30 20:47:05 +00005824 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5825 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5826 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005827 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005828
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005829 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005830 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005831
Dan Gohmana1af7572009-04-30 20:47:05 +00005832 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005833 const SCEV *MinStart = getConstant(isSigned ?
5834 getSignedRange(Start).getSignedMin() :
5835 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005836
Dan Gohmana1af7572009-04-30 20:47:05 +00005837 // If we know that the condition is true in order to enter the loop,
5838 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005839 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5840 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005841 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005842 if (!isLoopEntryGuardedByCond(L,
5843 isSigned ? ICmpInst::ICMP_SLT :
5844 ICmpInst::ICMP_ULT,
5845 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005846 End = isSigned ? getSMaxExpr(RHS, Start)
5847 : getUMaxExpr(RHS, Start);
5848
5849 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005850 const SCEV *MaxEnd = getConstant(isSigned ?
5851 getSignedRange(End).getSignedMax() :
5852 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005853
Dan Gohman52fddd32010-01-26 04:40:18 +00005854 // If MaxEnd is within a step of the maximum integer value in its type,
5855 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005856 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005857 // compute the correct value.
5858 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005859 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005860 MaxEnd = isSigned ?
5861 getSMinExpr(MaxEnd,
5862 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5863 StepMinusOne)) :
5864 getUMinExpr(MaxEnd,
5865 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5866 StepMinusOne));
5867
Dan Gohmana1af7572009-04-30 20:47:05 +00005868 // Finally, we subtract these two values and divide, rounding up, to get
5869 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005870 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005871
5872 // The maximum backedge count is similar, except using the minimum start
5873 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00005874 // If we already have an exact constant BECount, use it instead.
5875 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
5876 : getBECount(MinStart, MaxEnd, Step, NoWrap);
5877
5878 // If the stride is nonconstant, and NoWrap == true, then
5879 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
5880 // exact BECount and invalid MaxBECount, which should be avoided to catch
5881 // more optimization opportunities.
5882 if (isa<SCEVCouldNotCompute>(MaxBECount))
5883 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00005884
5885 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005886 }
5887
Dan Gohman1c343752009-06-27 21:21:31 +00005888 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005889}
5890
Chris Lattner53e677a2004-04-02 20:23:17 +00005891/// getNumIterationsInRange - Return the number of iterations of this loop that
5892/// produce values in the specified constant range. Another way of looking at
5893/// this is that it returns the first iteration number where the value is not in
5894/// the condition, thus computing the exit count. If the iteration count can't
5895/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005896const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005897 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005898 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005899 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005900
5901 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005902 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005903 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005904 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005905 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00005906 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00005907 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00005908 if (const SCEVAddRecExpr *ShiftedAddRec =
5909 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005910 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005911 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005912 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005913 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005914 }
5915
5916 // The only time we can solve this is when we have all constant indices.
5917 // Otherwise, we cannot determine the overflow conditions.
5918 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5919 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005920 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005921
5922
5923 // Okay at this point we know that all elements of the chrec are constants and
5924 // that the start element is zero.
5925
5926 // First check to see if the range contains zero. If not, the first
5927 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005928 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005929 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005930 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005931
Chris Lattner53e677a2004-04-02 20:23:17 +00005932 if (isAffine()) {
5933 // If this is an affine expression then we have this situation:
5934 // Solve {0,+,A} in Range === Ax in Range
5935
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005936 // We know that zero is in the range. If A is positive then we know that
5937 // the upper value of the range must be the first possible exit value.
5938 // If A is negative then the lower of the range is the last possible loop
5939 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005940 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005941 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5942 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005943
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005944 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005945 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005946 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005947
5948 // Evaluate at the exit value. If we really did fall out of the valid
5949 // range, then we computed our trip count, otherwise wrap around or other
5950 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005951 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005952 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005953 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005954
5955 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005956 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005957 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005958 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005959 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005960 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005961 } else if (isQuadratic()) {
5962 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5963 // quadratic equation to solve it. To do this, we must frame our problem in
5964 // terms of figuring out when zero is crossed, instead of when
5965 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005966 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005967 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00005968 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
5969 // getNoWrapFlags(FlagNW)
5970 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00005971
5972 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005973 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005974 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005975 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5976 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005977 if (R1) {
5978 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005979 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005980 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005981 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005982 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005983 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005984
Chris Lattner53e677a2004-04-02 20:23:17 +00005985 // Make sure the root is not off by one. The returned iteration should
5986 // not be in the range, but the previous one should be. When solving
5987 // for "X*X < 5", for example, we should not return a root of 2.
5988 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005989 R1->getValue(),
5990 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005991 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005992 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005993 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005994 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005995
Dan Gohman246b2562007-10-22 18:31:58 +00005996 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005997 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005998 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005999 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006000 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006001
Chris Lattner53e677a2004-04-02 20:23:17 +00006002 // If R1 was not in the range, then it is a good return value. Make
6003 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006004 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006005 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006006 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006007 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006008 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006009 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006010 }
6011 }
6012 }
6013
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006014 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006015}
6016
6017
6018
6019//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006020// SCEVCallbackVH Class Implementation
6021//===----------------------------------------------------------------------===//
6022
Dan Gohman1959b752009-05-19 19:22:47 +00006023void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006024 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006025 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6026 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006027 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006028 // this now dangles!
6029}
6030
Dan Gohman81f91212010-07-28 01:09:07 +00006031void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006032 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006033
Dan Gohman35738ac2009-05-04 22:30:44 +00006034 // Forget all the expressions associated with users of the old value,
6035 // so that future queries will recompute the expressions using the new
6036 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006037 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006038 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006039 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006040 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6041 UI != UE; ++UI)
6042 Worklist.push_back(*UI);
6043 while (!Worklist.empty()) {
6044 User *U = Worklist.pop_back_val();
6045 // Deleting the Old value will cause this to dangle. Postpone
6046 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006047 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006048 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006049 if (!Visited.insert(U))
6050 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006051 if (PHINode *PN = dyn_cast<PHINode>(U))
6052 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006053 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006054 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6055 UI != UE; ++UI)
6056 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006057 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006058 // Delete the Old value.
6059 if (PHINode *PN = dyn_cast<PHINode>(Old))
6060 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006061 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006062 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006063}
6064
Dan Gohman1959b752009-05-19 19:22:47 +00006065ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006066 : CallbackVH(V), SE(se) {}
6067
6068//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006069// ScalarEvolution Class Implementation
6070//===----------------------------------------------------------------------===//
6071
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006072ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006073 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006074 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006075}
6076
Chris Lattner53e677a2004-04-02 20:23:17 +00006077bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006078 this->F = &F;
6079 LI = &getAnalysis<LoopInfo>();
6080 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006081 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006082 return false;
6083}
6084
6085void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006086 // Iterate through all the SCEVUnknown instances and call their
6087 // destructors, so that they release their references to their values.
6088 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6089 U->~SCEVUnknown();
6090 FirstUnknown = 0;
6091
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006092 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006093 BackedgeTakenCounts.clear();
6094 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006095 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006096 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006097 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006098 UnsignedRanges.clear();
6099 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006100 UniqueSCEVs.clear();
6101 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006102}
6103
6104void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6105 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006106 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006107 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006108}
6109
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006110bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006111 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006112}
6113
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006114static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006115 const Loop *L) {
6116 // Print all inner loops first
6117 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6118 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006119
Dan Gohman30733292010-01-09 18:17:45 +00006120 OS << "Loop ";
6121 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6122 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006123
Dan Gohman5d984912009-12-18 01:14:11 +00006124 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006125 L->getExitBlocks(ExitBlocks);
6126 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006127 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006128
Dan Gohman46bdfb02009-02-24 18:55:53 +00006129 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6130 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006131 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006132 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006133 }
6134
Dan Gohman30733292010-01-09 18:17:45 +00006135 OS << "\n"
6136 "Loop ";
6137 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6138 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006139
6140 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6141 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6142 } else {
6143 OS << "Unpredictable max backedge-taken count. ";
6144 }
6145
6146 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006147}
6148
Dan Gohman5d984912009-12-18 01:14:11 +00006149void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006150 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006151 // out SCEV values of all instructions that are interesting. Doing
6152 // this potentially causes it to create new SCEV objects though,
6153 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006154 // observable from outside the class though, so casting away the
6155 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006156 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006157
Dan Gohman30733292010-01-09 18:17:45 +00006158 OS << "Classifying expressions for: ";
6159 WriteAsOperand(OS, F, /*PrintType=*/false);
6160 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006161 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006162 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006163 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006164 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006165 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006166 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006167
Dan Gohman0c689c52009-06-19 17:49:54 +00006168 const Loop *L = LI->getLoopFor((*I).getParent());
6169
Dan Gohman0bba49c2009-07-07 17:06:11 +00006170 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006171 if (AtUse != SV) {
6172 OS << " --> ";
6173 AtUse->print(OS);
6174 }
6175
6176 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006177 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006178 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006179 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006180 OS << "<<Unknown>>";
6181 } else {
6182 OS << *ExitValue;
6183 }
6184 }
6185
Chris Lattner53e677a2004-04-02 20:23:17 +00006186 OS << "\n";
6187 }
6188
Dan Gohman30733292010-01-09 18:17:45 +00006189 OS << "Determining loop execution counts for: ";
6190 WriteAsOperand(OS, F, /*PrintType=*/false);
6191 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006192 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6193 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006194}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006195
Dan Gohman714b5292010-11-17 23:21:44 +00006196ScalarEvolution::LoopDisposition
6197ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6198 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6199 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6200 Values.insert(std::make_pair(L, LoopVariant));
6201 if (!Pair.second)
6202 return Pair.first->second;
6203
6204 LoopDisposition D = computeLoopDisposition(S, L);
6205 return LoopDispositions[S][L] = D;
6206}
6207
6208ScalarEvolution::LoopDisposition
6209ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006210 switch (S->getSCEVType()) {
6211 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006212 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006213 case scTruncate:
6214 case scZeroExtend:
6215 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006216 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006217 case scAddRecExpr: {
6218 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6219
Dan Gohman714b5292010-11-17 23:21:44 +00006220 // If L is the addrec's loop, it's computable.
6221 if (AR->getLoop() == L)
6222 return LoopComputable;
6223
Dan Gohman17ead4f2010-11-17 21:23:15 +00006224 // Add recurrences are never invariant in the function-body (null loop).
6225 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006226 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006227
6228 // This recurrence is variant w.r.t. L if L contains AR's loop.
6229 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006230 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006231
6232 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6233 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006234 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006235
6236 // This recurrence is variant w.r.t. L if any of its operands
6237 // are variant.
6238 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6239 I != E; ++I)
6240 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006241 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006242
6243 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006244 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006245 }
6246 case scAddExpr:
6247 case scMulExpr:
6248 case scUMaxExpr:
6249 case scSMaxExpr: {
6250 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006251 bool HasVarying = false;
6252 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6253 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006254 LoopDisposition D = getLoopDisposition(*I, L);
6255 if (D == LoopVariant)
6256 return LoopVariant;
6257 if (D == LoopComputable)
6258 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006259 }
Dan Gohman714b5292010-11-17 23:21:44 +00006260 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006261 }
6262 case scUDivExpr: {
6263 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006264 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6265 if (LD == LoopVariant)
6266 return LoopVariant;
6267 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6268 if (RD == LoopVariant)
6269 return LoopVariant;
6270 return (LD == LoopInvariant && RD == LoopInvariant) ?
6271 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006272 }
6273 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006274 // All non-instruction values are loop invariant. All instructions are loop
6275 // invariant if they are not contained in the specified loop.
6276 // Instructions are never considered invariant in the function body
6277 // (null loop) because they are defined within the "loop".
6278 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6279 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6280 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006281 case scCouldNotCompute:
6282 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006283 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006284 default: break;
6285 }
6286 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006287 return LoopVariant;
6288}
6289
6290bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6291 return getLoopDisposition(S, L) == LoopInvariant;
6292}
6293
6294bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6295 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006296}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006297
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006298ScalarEvolution::BlockDisposition
6299ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6300 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6301 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6302 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6303 if (!Pair.second)
6304 return Pair.first->second;
6305
6306 BlockDisposition D = computeBlockDisposition(S, BB);
6307 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006308}
6309
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006310ScalarEvolution::BlockDisposition
6311ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006312 switch (S->getSCEVType()) {
6313 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006314 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006315 case scTruncate:
6316 case scZeroExtend:
6317 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006318 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006319 case scAddRecExpr: {
6320 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006321 // to test for proper dominance too, because the instruction which
6322 // produces the addrec's value is a PHI, and a PHI effectively properly
6323 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006324 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6325 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006326 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006327 }
6328 // FALL THROUGH into SCEVNAryExpr handling.
6329 case scAddExpr:
6330 case scMulExpr:
6331 case scUMaxExpr:
6332 case scSMaxExpr: {
6333 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006334 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006335 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006336 I != E; ++I) {
6337 BlockDisposition D = getBlockDisposition(*I, BB);
6338 if (D == DoesNotDominateBlock)
6339 return DoesNotDominateBlock;
6340 if (D == DominatesBlock)
6341 Proper = false;
6342 }
6343 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006344 }
6345 case scUDivExpr: {
6346 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006347 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6348 BlockDisposition LD = getBlockDisposition(LHS, BB);
6349 if (LD == DoesNotDominateBlock)
6350 return DoesNotDominateBlock;
6351 BlockDisposition RD = getBlockDisposition(RHS, BB);
6352 if (RD == DoesNotDominateBlock)
6353 return DoesNotDominateBlock;
6354 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6355 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006356 }
6357 case scUnknown:
6358 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006359 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6360 if (I->getParent() == BB)
6361 return DominatesBlock;
6362 if (DT->properlyDominates(I->getParent(), BB))
6363 return ProperlyDominatesBlock;
6364 return DoesNotDominateBlock;
6365 }
6366 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006367 case scCouldNotCompute:
6368 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006369 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006370 default: break;
6371 }
6372 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006373 return DoesNotDominateBlock;
6374}
6375
6376bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6377 return getBlockDisposition(S, BB) >= DominatesBlock;
6378}
6379
6380bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6381 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006382}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006383
6384bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6385 switch (S->getSCEVType()) {
6386 case scConstant:
6387 return false;
6388 case scTruncate:
6389 case scZeroExtend:
6390 case scSignExtend: {
6391 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6392 const SCEV *CastOp = Cast->getOperand();
6393 return Op == CastOp || hasOperand(CastOp, Op);
6394 }
6395 case scAddRecExpr:
6396 case scAddExpr:
6397 case scMulExpr:
6398 case scUMaxExpr:
6399 case scSMaxExpr: {
6400 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6401 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6402 I != E; ++I) {
6403 const SCEV *NAryOp = *I;
6404 if (NAryOp == Op || hasOperand(NAryOp, Op))
6405 return true;
6406 }
6407 return false;
6408 }
6409 case scUDivExpr: {
6410 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6411 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6412 return LHS == Op || hasOperand(LHS, Op) ||
6413 RHS == Op || hasOperand(RHS, Op);
6414 }
6415 case scUnknown:
6416 return false;
6417 case scCouldNotCompute:
6418 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6419 return false;
6420 default: break;
6421 }
6422 llvm_unreachable("Unknown SCEV kind!");
6423 return false;
6424}
Dan Gohman56a75682010-11-17 23:28:48 +00006425
6426void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6427 ValuesAtScopes.erase(S);
6428 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006429 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006430 UnsignedRanges.erase(S);
6431 SignedRanges.erase(S);
6432}