blob: 7258feca6c7453c4a6e5cdc0fb939257fadd41a2 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
831 }
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
834 }
835
Dan Gohman6864db62009-06-18 16:24:47 +0000836 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000837 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000838 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000839 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000840 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
841 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000842 }
843
Dan Gohmanf53462d2010-07-15 20:02:11 +0000844 // As a special case, fold trunc(undef) to undef. We don't want to
845 // know too much about SCEVUnknowns, but this special case is handy
846 // and harmless.
847 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
848 if (isa<UndefValue>(U->getValue()))
849 return getSCEV(UndefValue::get(Ty));
850
Dan Gohman420ab912010-06-25 18:47:08 +0000851 // The cast wasn't folded; create an explicit cast node. We can reuse
852 // the existing insert position since if we get here, we won't have
853 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000854 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
855 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000856 UniqueSCEVs.InsertNode(S, IP);
857 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000858}
859
Dan Gohman0bba49c2009-07-07 17:06:11 +0000860const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000861 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000862 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000863 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000864 assert(isSCEVable(Ty) &&
865 "This is not a conversion to a SCEVable type!");
866 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000867
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000868 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000869 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
870 return getConstant(
871 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
872 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000873
Dan Gohman20900ca2009-04-22 16:20:48 +0000874 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000875 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000876 return getZeroExtendExpr(SZ->getOperand(), Ty);
877
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000878 // Before doing any expensive analysis, check to see if we've already
879 // computed a SCEV for this Op and Ty.
880 FoldingSetNodeID ID;
881 ID.AddInteger(scZeroExtend);
882 ID.AddPointer(Op);
883 ID.AddPointer(Ty);
884 void *IP = 0;
885 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
886
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000888 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000889 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000890 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000892 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000893 const SCEV *Start = AR->getStart();
894 const SCEV *Step = AR->getStepRecurrence(*this);
895 unsigned BitWidth = getTypeSizeInBits(AR->getType());
896 const Loop *L = AR->getLoop();
897
Dan Gohmaneb490a72009-07-25 01:22:26 +0000898 // If we have special knowledge that this addrec won't overflow,
899 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000900 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000901 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
902 getZeroExtendExpr(Step, Ty),
903 L);
904
Dan Gohman01ecca22009-04-27 20:16:15 +0000905 // Check whether the backedge-taken count is SCEVCouldNotCompute.
906 // Note that this serves two purposes: It filters out loops that are
907 // simply not analyzable, and it covers the case where this code is
908 // being called from within backedge-taken count analysis, such that
909 // attempting to ask for the backedge-taken count would likely result
910 // in infinite recursion. In the later case, the analysis code will
911 // cope with a conservative value, and it will take care to purge
912 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000913 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000914 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000915 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000916 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000917
918 // Check whether the backedge-taken count can be losslessly casted to
919 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000920 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000921 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000922 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000923 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
924 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000925 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000926 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000927 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000928 const SCEV *Add = getAddExpr(Start, ZMul);
929 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000930 getAddExpr(getZeroExtendExpr(Start, WideTy),
931 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932 getZeroExtendExpr(Step, WideTy)));
933 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000934 // Return the expression with the addrec on the outside.
935 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000937 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000938
939 // Similar to above, only this time treat the step value as signed.
940 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000941 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000942 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000943 OperandExtendedAdd =
944 getAddExpr(getZeroExtendExpr(Start, WideTy),
945 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
946 getSignExtendExpr(Step, WideTy)));
947 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // Return the expression with the addrec on the outside.
949 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
950 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000951 L);
952 }
953
954 // If the backedge is guarded by a comparison with the pre-inc value
955 // the addrec is safe. Also, if the entry is guarded by a comparison
956 // with the start value and the backedge is guarded by a comparison
957 // with the post-inc value, the addrec is safe.
958 if (isKnownPositive(Step)) {
959 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
960 getUnsignedRange(Step).getUnsignedMax());
961 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000962 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000963 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
964 AR->getPostIncExpr(*this), N)))
965 // Return the expression with the addrec on the outside.
966 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
967 getZeroExtendExpr(Step, Ty),
968 L);
969 } else if (isKnownNegative(Step)) {
970 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
971 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000972 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
973 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000974 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
975 AR->getPostIncExpr(*this), N)))
976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
978 getSignExtendExpr(Step, Ty),
979 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000980 }
981 }
982 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000983
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000984 // The cast wasn't folded; create an explicit cast node.
985 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000986 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000987 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
988 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000989 UniqueSCEVs.InsertNode(S, IP);
990 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000991}
992
Dan Gohman0bba49c2009-07-07 17:06:11 +0000993const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000994 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000995 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000996 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000997 assert(isSCEVable(Ty) &&
998 "This is not a conversion to a SCEVable type!");
999 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001000
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001001 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001002 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1003 return getConstant(
1004 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1005 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001006
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001008 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001009 return getSignExtendExpr(SS->getOperand(), Ty);
1010
Nick Lewycky73f565e2011-01-19 15:56:12 +00001011 // sext(zext(x)) --> zext(x)
1012 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1013 return getZeroExtendExpr(SZ->getOperand(), Ty);
1014
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001015 // Before doing any expensive analysis, check to see if we've already
1016 // computed a SCEV for this Op and Ty.
1017 FoldingSetNodeID ID;
1018 ID.AddInteger(scSignExtend);
1019 ID.AddPointer(Op);
1020 ID.AddPointer(Ty);
1021 void *IP = 0;
1022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1023
Dan Gohman01ecca22009-04-27 20:16:15 +00001024 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001025 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001026 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001027 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001028 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001029 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001030 const SCEV *Start = AR->getStart();
1031 const SCEV *Step = AR->getStepRecurrence(*this);
1032 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1033 const Loop *L = AR->getLoop();
1034
Dan Gohmaneb490a72009-07-25 01:22:26 +00001035 // If we have special knowledge that this addrec won't overflow,
1036 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001037 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001038 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1039 getSignExtendExpr(Step, Ty),
1040 L);
1041
Dan Gohman01ecca22009-04-27 20:16:15 +00001042 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1043 // Note that this serves two purposes: It filters out loops that are
1044 // simply not analyzable, and it covers the case where this code is
1045 // being called from within backedge-taken count analysis, such that
1046 // attempting to ask for the backedge-taken count would likely result
1047 // in infinite recursion. In the later case, the analysis code will
1048 // cope with a conservative value, and it will take care to purge
1049 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001050 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001051 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001052 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001053 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001054
1055 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001056 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001057 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001058 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001060 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1061 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001062 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001063 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001064 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001065 const SCEV *Add = getAddExpr(Start, SMul);
1066 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001067 getAddExpr(getSignExtendExpr(Start, WideTy),
1068 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1069 getSignExtendExpr(Step, WideTy)));
1070 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001071 // Return the expression with the addrec on the outside.
1072 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1073 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001074 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001075
1076 // Similar to above, only this time treat the step value as unsigned.
1077 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001078 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001079 Add = getAddExpr(Start, UMul);
1080 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001081 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001082 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1083 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001084 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001085 // Return the expression with the addrec on the outside.
1086 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1087 getZeroExtendExpr(Step, Ty),
1088 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001089 }
1090
1091 // If the backedge is guarded by a comparison with the pre-inc value
1092 // the addrec is safe. Also, if the entry is guarded by a comparison
1093 // with the start value and the backedge is guarded by a comparison
1094 // with the post-inc value, the addrec is safe.
1095 if (isKnownPositive(Step)) {
1096 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1097 getSignedRange(Step).getSignedMax());
1098 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001099 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001100 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1101 AR->getPostIncExpr(*this), N)))
1102 // Return the expression with the addrec on the outside.
1103 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1104 getSignExtendExpr(Step, Ty),
1105 L);
1106 } else if (isKnownNegative(Step)) {
1107 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1108 getSignedRange(Step).getSignedMin());
1109 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001110 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001111 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1112 AR->getPostIncExpr(*this), N)))
1113 // Return the expression with the addrec on the outside.
1114 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1115 getSignExtendExpr(Step, Ty),
1116 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001117 }
1118 }
1119 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001120
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001121 // The cast wasn't folded; create an explicit cast node.
1122 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001123 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001124 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1125 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001126 UniqueSCEVs.InsertNode(S, IP);
1127 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001128}
1129
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001130/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1131/// unspecified bits out to the given type.
1132///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001133const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001134 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001135 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1136 "This is not an extending conversion!");
1137 assert(isSCEVable(Ty) &&
1138 "This is not a conversion to a SCEVable type!");
1139 Ty = getEffectiveSCEVType(Ty);
1140
1141 // Sign-extend negative constants.
1142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1143 if (SC->getValue()->getValue().isNegative())
1144 return getSignExtendExpr(Op, Ty);
1145
1146 // Peel off a truncate cast.
1147 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001149 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1150 return getAnyExtendExpr(NewOp, Ty);
1151 return getTruncateOrNoop(NewOp, Ty);
1152 }
1153
1154 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001155 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001156 if (!isa<SCEVZeroExtendExpr>(ZExt))
1157 return ZExt;
1158
1159 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001160 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001161 if (!isa<SCEVSignExtendExpr>(SExt))
1162 return SExt;
1163
Dan Gohmana10756e2010-01-21 02:09:26 +00001164 // Force the cast to be folded into the operands of an addrec.
1165 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1166 SmallVector<const SCEV *, 4> Ops;
1167 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1168 I != E; ++I)
1169 Ops.push_back(getAnyExtendExpr(*I, Ty));
1170 return getAddRecExpr(Ops, AR->getLoop());
1171 }
1172
Dan Gohmanf53462d2010-07-15 20:02:11 +00001173 // As a special case, fold anyext(undef) to undef. We don't want to
1174 // know too much about SCEVUnknowns, but this special case is handy
1175 // and harmless.
1176 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1177 if (isa<UndefValue>(U->getValue()))
1178 return getSCEV(UndefValue::get(Ty));
1179
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001180 // If the expression is obviously signed, use the sext cast value.
1181 if (isa<SCEVSMaxExpr>(Op))
1182 return SExt;
1183
1184 // Absent any other information, use the zext cast value.
1185 return ZExt;
1186}
1187
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001188/// CollectAddOperandsWithScales - Process the given Ops list, which is
1189/// a list of operands to be added under the given scale, update the given
1190/// map. This is a helper function for getAddRecExpr. As an example of
1191/// what it does, given a sequence of operands that would form an add
1192/// expression like this:
1193///
1194/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1195///
1196/// where A and B are constants, update the map with these values:
1197///
1198/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1199///
1200/// and add 13 + A*B*29 to AccumulatedConstant.
1201/// This will allow getAddRecExpr to produce this:
1202///
1203/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1204///
1205/// This form often exposes folding opportunities that are hidden in
1206/// the original operand list.
1207///
1208/// Return true iff it appears that any interesting folding opportunities
1209/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1210/// the common case where no interesting opportunities are present, and
1211/// is also used as a check to avoid infinite recursion.
1212///
1213static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1215 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001216 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001217 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001218 const APInt &Scale,
1219 ScalarEvolution &SE) {
1220 bool Interesting = false;
1221
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001222 // Iterate over the add operands. They are sorted, with constants first.
1223 unsigned i = 0;
1224 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1225 ++i;
1226 // Pull a buried constant out to the outside.
1227 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1228 Interesting = true;
1229 AccumulatedConstant += Scale * C->getValue()->getValue();
1230 }
1231
1232 // Next comes everything else. We're especially interested in multiplies
1233 // here, but they're in the middle, so just visit the rest with one loop.
1234 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001235 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1236 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1237 APInt NewScale =
1238 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1239 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1240 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001241 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001242 Interesting |=
1243 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001244 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001245 NewScale, SE);
1246 } else {
1247 // A multiplication of a constant with some other value. Update
1248 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001249 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1250 const SCEV *Key = SE.getMulExpr(MulOps);
1251 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001252 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001253 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001254 NewOps.push_back(Pair.first->first);
1255 } else {
1256 Pair.first->second += NewScale;
1257 // The map already had an entry for this value, which may indicate
1258 // a folding opportunity.
1259 Interesting = true;
1260 }
1261 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001262 } else {
1263 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001264 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001265 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001266 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001267 NewOps.push_back(Pair.first->first);
1268 } else {
1269 Pair.first->second += Scale;
1270 // The map already had an entry for this value, which may indicate
1271 // a folding opportunity.
1272 Interesting = true;
1273 }
1274 }
1275 }
1276
1277 return Interesting;
1278}
1279
1280namespace {
1281 struct APIntCompare {
1282 bool operator()(const APInt &LHS, const APInt &RHS) const {
1283 return LHS.ult(RHS);
1284 }
1285 };
1286}
1287
Dan Gohman6c0866c2009-05-24 23:45:28 +00001288/// getAddExpr - Get a canonical add expression, or something simpler if
1289/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001290const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1291 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001292 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001293 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001294#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001295 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001296 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001297 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001298 "SCEVAddExpr operand types don't match!");
1299#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001300
Dan Gohmana10756e2010-01-21 02:09:26 +00001301 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1302 if (!HasNUW && HasNSW) {
1303 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001304 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1305 E = Ops.end(); I != E; ++I)
1306 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001307 All = false;
1308 break;
1309 }
1310 if (All) HasNUW = true;
1311 }
1312
Chris Lattner53e677a2004-04-02 20:23:17 +00001313 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001314 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001315
1316 // If there are any constants, fold them together.
1317 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001318 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001319 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001320 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001321 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001322 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001323 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1324 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001325 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001326 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001327 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001328 }
1329
1330 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001331 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001332 Ops.erase(Ops.begin());
1333 --Idx;
1334 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001335
Dan Gohmanbca091d2010-04-12 23:08:18 +00001336 if (Ops.size() == 1) return Ops[0];
1337 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001338
Dan Gohman68ff7762010-08-27 21:39:59 +00001339 // Okay, check to see if the same value occurs in the operand list more than
1340 // once. If so, merge them together into an multiply expression. Since we
1341 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001342 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001343 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001344 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001345 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001346 // Scan ahead to count how many equal operands there are.
1347 unsigned Count = 2;
1348 while (i+Count != e && Ops[i+Count] == Ops[i])
1349 ++Count;
1350 // Merge the values into a multiply.
1351 const SCEV *Scale = getConstant(Ty, Count);
1352 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1353 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001354 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001355 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001356 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001357 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001358 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001359 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001360 if (FoundMatch)
1361 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001362
Dan Gohman728c7f32009-05-08 21:03:19 +00001363 // Check for truncates. If all the operands are truncated from the same
1364 // type, see if factoring out the truncate would permit the result to be
1365 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1366 // if the contents of the resulting outer trunc fold to something simple.
1367 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1368 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1369 const Type *DstType = Trunc->getType();
1370 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001371 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001372 bool Ok = true;
1373 // Check all the operands to see if they can be represented in the
1374 // source type of the truncate.
1375 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1376 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1377 if (T->getOperand()->getType() != SrcType) {
1378 Ok = false;
1379 break;
1380 }
1381 LargeOps.push_back(T->getOperand());
1382 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001383 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001384 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001385 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001386 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1387 if (const SCEVTruncateExpr *T =
1388 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1389 if (T->getOperand()->getType() != SrcType) {
1390 Ok = false;
1391 break;
1392 }
1393 LargeMulOps.push_back(T->getOperand());
1394 } else if (const SCEVConstant *C =
1395 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001396 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001397 } else {
1398 Ok = false;
1399 break;
1400 }
1401 }
1402 if (Ok)
1403 LargeOps.push_back(getMulExpr(LargeMulOps));
1404 } else {
1405 Ok = false;
1406 break;
1407 }
1408 }
1409 if (Ok) {
1410 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001411 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001412 // If it folds to something simple, use it. Otherwise, don't.
1413 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1414 return getTruncateExpr(Fold, DstType);
1415 }
1416 }
1417
1418 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1420 ++Idx;
1421
1422 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001423 if (Idx < Ops.size()) {
1424 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001425 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001426 // If we have an add, expand the add operands onto the end of the operands
1427 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001428 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001429 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 DeletedAdd = true;
1431 }
1432
1433 // If we deleted at least one add, we added operands to the end of the list,
1434 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001435 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001436 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001437 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001438 }
1439
1440 // Skip over the add expression until we get to a multiply.
1441 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1442 ++Idx;
1443
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001444 // Check to see if there are any folding opportunities present with
1445 // operands multiplied by constant values.
1446 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1447 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001448 DenseMap<const SCEV *, APInt> M;
1449 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001450 APInt AccumulatedConstant(BitWidth, 0);
1451 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001452 Ops.data(), Ops.size(),
1453 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001454 // Some interesting folding opportunity is present, so its worthwhile to
1455 // re-generate the operands list. Group the operands by constant scale,
1456 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001457 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001458 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001459 E = NewOps.end(); I != E; ++I)
1460 MulOpLists[M.find(*I)->second].push_back(*I);
1461 // Re-generate the operands list.
1462 Ops.clear();
1463 if (AccumulatedConstant != 0)
1464 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001465 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1466 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001467 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001468 Ops.push_back(getMulExpr(getConstant(I->first),
1469 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001470 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001471 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001472 if (Ops.size() == 1)
1473 return Ops[0];
1474 return getAddExpr(Ops);
1475 }
1476 }
1477
Chris Lattner53e677a2004-04-02 20:23:17 +00001478 // If we are adding something to a multiply expression, make sure the
1479 // something is not already an operand of the multiply. If so, merge it into
1480 // the multiply.
1481 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001482 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001483 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001484 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001485 if (isa<SCEVConstant>(MulOpSCEV))
1486 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001488 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001490 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 if (Mul->getNumOperands() != 2) {
1492 // If the multiply has more than two operands, we must get the
1493 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001494 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1495 Mul->op_begin()+MulOp);
1496 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001497 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001499 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001500 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001501 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001502 if (Ops.size() == 2) return OuterMul;
1503 if (AddOp < Idx) {
1504 Ops.erase(Ops.begin()+AddOp);
1505 Ops.erase(Ops.begin()+Idx-1);
1506 } else {
1507 Ops.erase(Ops.begin()+Idx);
1508 Ops.erase(Ops.begin()+AddOp-1);
1509 }
1510 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001511 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001513
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 // Check this multiply against other multiplies being added together.
1515 for (unsigned OtherMulIdx = Idx+1;
1516 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1517 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001518 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 // If MulOp occurs in OtherMul, we can fold the two multiplies
1520 // together.
1521 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1522 OMulOp != e; ++OMulOp)
1523 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1524 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001525 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001527 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001528 Mul->op_begin()+MulOp);
1529 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001530 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001532 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001534 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001535 OtherMul->op_begin()+OMulOp);
1536 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001537 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001539 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1540 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001542 Ops.erase(Ops.begin()+Idx);
1543 Ops.erase(Ops.begin()+OtherMulIdx-1);
1544 Ops.push_back(OuterMul);
1545 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 }
1547 }
1548 }
1549 }
1550
1551 // If there are any add recurrences in the operands list, see if any other
1552 // added values are loop invariant. If so, we can fold them into the
1553 // recurrence.
1554 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1555 ++Idx;
1556
1557 // Scan over all recurrences, trying to fold loop invariants into them.
1558 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1559 // Scan all of the other operands to this add and add them to the vector if
1560 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001561 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001562 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001563 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001565 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 LIOps.push_back(Ops[i]);
1567 Ops.erase(Ops.begin()+i);
1568 --i; --e;
1569 }
1570
1571 // If we found some loop invariants, fold them into the recurrence.
1572 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001573 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001574 LIOps.push_back(AddRec->getStart());
1575
Dan Gohman0bba49c2009-07-07 17:06:11 +00001576 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001577 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001578 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001579
Dan Gohmanb9f96512010-06-30 07:16:37 +00001580 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001581 // outer add and the inner addrec are guaranteed to have no overflow.
1582 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1583 HasNUW && AddRec->hasNoUnsignedWrap(),
1584 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001585
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 // If all of the other operands were loop invariant, we are done.
1587 if (Ops.size() == 1) return NewRec;
1588
1589 // Otherwise, add the folded AddRec by the non-liv parts.
1590 for (unsigned i = 0;; ++i)
1591 if (Ops[i] == AddRec) {
1592 Ops[i] = NewRec;
1593 break;
1594 }
Dan Gohman246b2562007-10-22 18:31:58 +00001595 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 }
1597
1598 // Okay, if there weren't any loop invariants to be folded, check to see if
1599 // there are multiple AddRec's with the same loop induction variable being
1600 // added together. If so, we can fold them.
1601 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001602 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1603 ++OtherIdx)
1604 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1605 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1606 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1607 AddRec->op_end());
1608 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1609 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001610 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001611 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001612 if (OtherAddRec->getLoop() == AddRecLoop) {
1613 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1614 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001615 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001616 AddRecOps.append(OtherAddRec->op_begin()+i,
1617 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001618 break;
1619 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001620 AddRecOps[i] = getAddExpr(AddRecOps[i],
1621 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001622 }
1623 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001624 }
Dan Gohman32527152010-08-27 20:45:56 +00001625 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1626 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 }
1628
1629 // Otherwise couldn't fold anything into this recurrence. Move onto the
1630 // next one.
1631 }
1632
1633 // Okay, it looks like we really DO need an add expr. Check to see if we
1634 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001635 FoldingSetNodeID ID;
1636 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001637 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1638 ID.AddPointer(Ops[i]);
1639 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001640 SCEVAddExpr *S =
1641 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1642 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001643 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1644 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001645 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1646 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001647 UniqueSCEVs.InsertNode(S, IP);
1648 }
Dan Gohman3645b012009-10-09 00:10:36 +00001649 if (HasNUW) S->setHasNoUnsignedWrap(true);
1650 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001651 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001652}
1653
Dan Gohman6c0866c2009-05-24 23:45:28 +00001654/// getMulExpr - Get a canonical multiply expression, or something simpler if
1655/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001656const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1657 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001659 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001660#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001661 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001662 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001663 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001664 "SCEVMulExpr operand types don't match!");
1665#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001666
Dan Gohmana10756e2010-01-21 02:09:26 +00001667 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1668 if (!HasNUW && HasNSW) {
1669 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001670 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1671 E = Ops.end(); I != E; ++I)
1672 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001673 All = false;
1674 break;
1675 }
1676 if (All) HasNUW = true;
1677 }
1678
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001680 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001681
1682 // If there are any constants, fold them together.
1683 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001684 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001685
1686 // C1*(C2+V) -> C1*C2 + C1*V
1687 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001688 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001689 if (Add->getNumOperands() == 2 &&
1690 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001691 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1692 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001693
Chris Lattner53e677a2004-04-02 20:23:17 +00001694 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001695 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001696 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001697 ConstantInt *Fold = ConstantInt::get(getContext(),
1698 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001699 RHSC->getValue()->getValue());
1700 Ops[0] = getConstant(Fold);
1701 Ops.erase(Ops.begin()+1); // Erase the folded element
1702 if (Ops.size() == 1) return Ops[0];
1703 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
1705
1706 // If we are left with a constant one being multiplied, strip it off.
1707 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1708 Ops.erase(Ops.begin());
1709 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001710 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 // If we have a multiply of zero, it will always be zero.
1712 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001713 } else if (Ops[0]->isAllOnesValue()) {
1714 // If we have a mul by -1 of an add, try distributing the -1 among the
1715 // add operands.
1716 if (Ops.size() == 2)
1717 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1718 SmallVector<const SCEV *, 4> NewOps;
1719 bool AnyFolded = false;
1720 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1721 I != E; ++I) {
1722 const SCEV *Mul = getMulExpr(Ops[0], *I);
1723 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1724 NewOps.push_back(Mul);
1725 }
1726 if (AnyFolded)
1727 return getAddExpr(NewOps);
1728 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001730
1731 if (Ops.size() == 1)
1732 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 }
1734
1735 // Skip over the add expression until we get to a multiply.
1736 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1737 ++Idx;
1738
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 // If there are mul operands inline them all into this expression.
1740 if (Idx < Ops.size()) {
1741 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001742 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 // If we have an mul, expand the mul operands onto the end of the operands
1744 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001746 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001747 DeletedMul = true;
1748 }
1749
1750 // If we deleted at least one mul, we added operands to the end of the list,
1751 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001752 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001754 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 }
1756
1757 // If there are any add recurrences in the operands list, see if any other
1758 // added values are loop invariant. If so, we can fold them into the
1759 // recurrence.
1760 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1761 ++Idx;
1762
1763 // Scan over all recurrences, trying to fold loop invariants into them.
1764 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1765 // Scan all of the other operands to this mul and add them to the vector if
1766 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001767 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001768 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001769 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001770 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001771 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001772 LIOps.push_back(Ops[i]);
1773 Ops.erase(Ops.begin()+i);
1774 --i; --e;
1775 }
1776
1777 // If we found some loop invariants, fold them into the recurrence.
1778 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001779 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001780 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001781 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001782 const SCEV *Scale = getMulExpr(LIOps);
1783 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1784 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001785
Dan Gohmanb9f96512010-06-30 07:16:37 +00001786 // Build the new addrec. Propagate the NUW and NSW flags if both the
1787 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001788 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001789 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001790 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001791
1792 // If all of the other operands were loop invariant, we are done.
1793 if (Ops.size() == 1) return NewRec;
1794
1795 // Otherwise, multiply the folded AddRec by the non-liv parts.
1796 for (unsigned i = 0;; ++i)
1797 if (Ops[i] == AddRec) {
1798 Ops[i] = NewRec;
1799 break;
1800 }
Dan Gohman246b2562007-10-22 18:31:58 +00001801 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001802 }
1803
1804 // Okay, if there weren't any loop invariants to be folded, check to see if
1805 // there are multiple AddRec's with the same loop induction variable being
1806 // multiplied together. If so, we can fold them.
1807 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001808 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1809 ++OtherIdx)
1810 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1811 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1812 // {A*C,+,F*D + G*B + B*D}<L>
1813 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1814 ++OtherIdx)
1815 if (const SCEVAddRecExpr *OtherAddRec =
1816 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1817 if (OtherAddRec->getLoop() == AddRecLoop) {
1818 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1819 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1820 const SCEV *B = F->getStepRecurrence(*this);
1821 const SCEV *D = G->getStepRecurrence(*this);
1822 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1823 getMulExpr(G, B),
1824 getMulExpr(B, D));
1825 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1826 F->getLoop());
1827 if (Ops.size() == 2) return NewAddRec;
1828 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1829 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1830 }
1831 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001832 }
1833
1834 // Otherwise couldn't fold anything into this recurrence. Move onto the
1835 // next one.
1836 }
1837
1838 // Okay, it looks like we really DO need an mul expr. Check to see if we
1839 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001840 FoldingSetNodeID ID;
1841 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001842 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1843 ID.AddPointer(Ops[i]);
1844 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001845 SCEVMulExpr *S =
1846 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1847 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001848 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1849 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001850 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1851 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001852 UniqueSCEVs.InsertNode(S, IP);
1853 }
Dan Gohman3645b012009-10-09 00:10:36 +00001854 if (HasNUW) S->setHasNoUnsignedWrap(true);
1855 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001856 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001857}
1858
Andreas Bolka8a11c982009-08-07 22:55:26 +00001859/// getUDivExpr - Get a canonical unsigned division expression, or something
1860/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001861const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1862 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001863 assert(getEffectiveSCEVType(LHS->getType()) ==
1864 getEffectiveSCEVType(RHS->getType()) &&
1865 "SCEVUDivExpr operand types don't match!");
1866
Dan Gohman622ed672009-05-04 22:02:23 +00001867 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001868 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001869 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001870 // If the denominator is zero, the result of the udiv is undefined. Don't
1871 // try to analyze it, because the resolution chosen here may differ from
1872 // the resolution chosen in other parts of the compiler.
1873 if (!RHSC->getValue()->isZero()) {
1874 // Determine if the division can be folded into the operands of
1875 // its operands.
1876 // TODO: Generalize this to non-constants by using known-bits information.
1877 const Type *Ty = LHS->getType();
1878 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001879 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001880 // For non-power-of-two values, effectively round the value up to the
1881 // nearest power of two.
1882 if (!RHSC->getValue()->getValue().isPowerOf2())
1883 ++MaxShiftAmt;
1884 const IntegerType *ExtTy =
1885 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1886 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1888 if (const SCEVConstant *Step =
1889 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1890 if (!Step->getValue()->getValue()
1891 .urem(RHSC->getValue()->getValue()) &&
1892 getZeroExtendExpr(AR, ExtTy) ==
1893 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1894 getZeroExtendExpr(Step, ExtTy),
1895 AR->getLoop())) {
1896 SmallVector<const SCEV *, 4> Operands;
1897 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1898 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1899 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001900 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001901 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1902 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1903 SmallVector<const SCEV *, 4> Operands;
1904 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1905 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1906 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1907 // Find an operand that's safely divisible.
1908 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1909 const SCEV *Op = M->getOperand(i);
1910 const SCEV *Div = getUDivExpr(Op, RHSC);
1911 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1912 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1913 M->op_end());
1914 Operands[i] = Div;
1915 return getMulExpr(Operands);
1916 }
1917 }
Dan Gohman185cf032009-05-08 20:18:49 +00001918 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001919 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1920 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1921 SmallVector<const SCEV *, 4> Operands;
1922 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1923 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1924 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1925 Operands.clear();
1926 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1927 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1928 if (isa<SCEVUDivExpr>(Op) ||
1929 getMulExpr(Op, RHS) != A->getOperand(i))
1930 break;
1931 Operands.push_back(Op);
1932 }
1933 if (Operands.size() == A->getNumOperands())
1934 return getAddExpr(Operands);
1935 }
1936 }
Dan Gohman185cf032009-05-08 20:18:49 +00001937
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001938 // Fold if both operands are constant.
1939 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1940 Constant *LHSCV = LHSC->getValue();
1941 Constant *RHSCV = RHSC->getValue();
1942 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1943 RHSCV)));
1944 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 }
1946 }
1947
Dan Gohman1c343752009-06-27 21:21:31 +00001948 FoldingSetNodeID ID;
1949 ID.AddInteger(scUDivExpr);
1950 ID.AddPointer(LHS);
1951 ID.AddPointer(RHS);
1952 void *IP = 0;
1953 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001954 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1955 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001956 UniqueSCEVs.InsertNode(S, IP);
1957 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001958}
1959
1960
Dan Gohman6c0866c2009-05-24 23:45:28 +00001961/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1962/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001963const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001964 const SCEV *Step, const Loop *L,
1965 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001966 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001968 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001970 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001971 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001972 }
1973
1974 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001975 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001976}
1977
Dan Gohman6c0866c2009-05-24 23:45:28 +00001978/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1979/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001980const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001981ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001982 const Loop *L,
1983 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001984 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001985#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001986 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001987 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001988 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001989 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00001990 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001991 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00001992 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001993#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001994
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001995 if (Operands.back()->isZero()) {
1996 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001997 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001998 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001999
Dan Gohmanbc028532010-02-19 18:49:22 +00002000 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2001 // use that information to infer NUW and NSW flags. However, computing a
2002 // BE count requires calling getAddRecExpr, so we may not yet have a
2003 // meaningful BE count at this point (and if we don't, we'd be stuck
2004 // with a SCEVCouldNotCompute as the cached BE count).
2005
Dan Gohmana10756e2010-01-21 02:09:26 +00002006 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2007 if (!HasNUW && HasNSW) {
2008 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002009 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2010 E = Operands.end(); I != E; ++I)
2011 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002012 All = false;
2013 break;
2014 }
2015 if (All) HasNUW = true;
2016 }
2017
Dan Gohmand9cc7492008-08-08 18:33:12 +00002018 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002019 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002020 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002021 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002022 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002023 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002024 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002025 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002026 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002027 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002028 // AddRecs require their operands be loop-invariant with respect to their
2029 // loops. Don't perform this transformation if it would break this
2030 // requirement.
2031 bool AllInvariant = true;
2032 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002033 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002034 AllInvariant = false;
2035 break;
2036 }
2037 if (AllInvariant) {
2038 NestedOperands[0] = getAddRecExpr(Operands, L);
2039 AllInvariant = true;
2040 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002041 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002042 AllInvariant = false;
2043 break;
2044 }
2045 if (AllInvariant)
2046 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002047 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002048 }
2049 // Reset Operands to its original state.
2050 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002051 }
2052 }
2053
Dan Gohman67847532010-01-19 22:27:22 +00002054 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2055 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002056 FoldingSetNodeID ID;
2057 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002058 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2059 ID.AddPointer(Operands[i]);
2060 ID.AddPointer(L);
2061 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002062 SCEVAddRecExpr *S =
2063 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2064 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002065 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2066 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002067 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2068 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002069 UniqueSCEVs.InsertNode(S, IP);
2070 }
Dan Gohman3645b012009-10-09 00:10:36 +00002071 if (HasNUW) S->setHasNoUnsignedWrap(true);
2072 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002073 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002074}
2075
Dan Gohman9311ef62009-06-24 14:49:00 +00002076const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2077 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002078 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079 Ops.push_back(LHS);
2080 Ops.push_back(RHS);
2081 return getSMaxExpr(Ops);
2082}
2083
Dan Gohman0bba49c2009-07-07 17:06:11 +00002084const SCEV *
2085ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002086 assert(!Ops.empty() && "Cannot get empty smax!");
2087 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002088#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002089 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002090 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002091 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002092 "SCEVSMaxExpr operand types don't match!");
2093#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002094
2095 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002096 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002097
2098 // If there are any constants, fold them together.
2099 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002100 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002101 ++Idx;
2102 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002103 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002104 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002105 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002106 APIntOps::smax(LHSC->getValue()->getValue(),
2107 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002108 Ops[0] = getConstant(Fold);
2109 Ops.erase(Ops.begin()+1); // Erase the folded element
2110 if (Ops.size() == 1) return Ops[0];
2111 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002112 }
2113
Dan Gohmane5aceed2009-06-24 14:46:22 +00002114 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002115 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2116 Ops.erase(Ops.begin());
2117 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002118 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2119 // If we have an smax with a constant maximum-int, it will always be
2120 // maximum-int.
2121 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002122 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002123
Dan Gohman3ab13122010-04-13 16:49:23 +00002124 if (Ops.size() == 1) return Ops[0];
2125 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002126
2127 // Find the first SMax
2128 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2129 ++Idx;
2130
2131 // Check to see if one of the operands is an SMax. If so, expand its operands
2132 // onto our operand list, and recurse to simplify.
2133 if (Idx < Ops.size()) {
2134 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002135 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002136 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002137 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138 DeletedSMax = true;
2139 }
2140
2141 if (DeletedSMax)
2142 return getSMaxExpr(Ops);
2143 }
2144
2145 // Okay, check to see if the same value occurs in the operand list twice. If
2146 // so, delete one. Since we sorted the list, these values are required to
2147 // be adjacent.
2148 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002149 // X smax Y smax Y --> X smax Y
2150 // X smax Y --> X, if X is always greater than Y
2151 if (Ops[i] == Ops[i+1] ||
2152 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2153 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2154 --i; --e;
2155 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2157 --i; --e;
2158 }
2159
2160 if (Ops.size() == 1) return Ops[0];
2161
2162 assert(!Ops.empty() && "Reduced smax down to nothing!");
2163
Nick Lewycky3e630762008-02-20 06:48:22 +00002164 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002165 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002166 FoldingSetNodeID ID;
2167 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002168 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2169 ID.AddPointer(Ops[i]);
2170 void *IP = 0;
2171 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002172 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2173 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002174 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2175 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002176 UniqueSCEVs.InsertNode(S, IP);
2177 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002178}
2179
Dan Gohman9311ef62009-06-24 14:49:00 +00002180const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2181 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002182 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002183 Ops.push_back(LHS);
2184 Ops.push_back(RHS);
2185 return getUMaxExpr(Ops);
2186}
2187
Dan Gohman0bba49c2009-07-07 17:06:11 +00002188const SCEV *
2189ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002190 assert(!Ops.empty() && "Cannot get empty umax!");
2191 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002192#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002193 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002194 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002195 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002196 "SCEVUMaxExpr operand types don't match!");
2197#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002198
2199 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002200 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002201
2202 // If there are any constants, fold them together.
2203 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002204 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002205 ++Idx;
2206 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002207 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002208 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002209 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002210 APIntOps::umax(LHSC->getValue()->getValue(),
2211 RHSC->getValue()->getValue()));
2212 Ops[0] = getConstant(Fold);
2213 Ops.erase(Ops.begin()+1); // Erase the folded element
2214 if (Ops.size() == 1) return Ops[0];
2215 LHSC = cast<SCEVConstant>(Ops[0]);
2216 }
2217
Dan Gohmane5aceed2009-06-24 14:46:22 +00002218 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002219 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2220 Ops.erase(Ops.begin());
2221 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002222 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2223 // If we have an umax with a constant maximum-int, it will always be
2224 // maximum-int.
2225 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002226 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002227
Dan Gohman3ab13122010-04-13 16:49:23 +00002228 if (Ops.size() == 1) return Ops[0];
2229 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002230
2231 // Find the first UMax
2232 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2233 ++Idx;
2234
2235 // Check to see if one of the operands is a UMax. If so, expand its operands
2236 // onto our operand list, and recurse to simplify.
2237 if (Idx < Ops.size()) {
2238 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002239 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002240 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002241 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002242 DeletedUMax = true;
2243 }
2244
2245 if (DeletedUMax)
2246 return getUMaxExpr(Ops);
2247 }
2248
2249 // Okay, check to see if the same value occurs in the operand list twice. If
2250 // so, delete one. Since we sorted the list, these values are required to
2251 // be adjacent.
2252 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002253 // X umax Y umax Y --> X umax Y
2254 // X umax Y --> X, if X is always greater than Y
2255 if (Ops[i] == Ops[i+1] ||
2256 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2257 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2258 --i; --e;
2259 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002260 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2261 --i; --e;
2262 }
2263
2264 if (Ops.size() == 1) return Ops[0];
2265
2266 assert(!Ops.empty() && "Reduced umax down to nothing!");
2267
2268 // Okay, it looks like we really DO need a umax expr. Check to see if we
2269 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002270 FoldingSetNodeID ID;
2271 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002272 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2273 ID.AddPointer(Ops[i]);
2274 void *IP = 0;
2275 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002276 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2277 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002278 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2279 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002280 UniqueSCEVs.InsertNode(S, IP);
2281 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002282}
2283
Dan Gohman9311ef62009-06-24 14:49:00 +00002284const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2285 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002286 // ~smax(~x, ~y) == smin(x, y).
2287 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2288}
2289
Dan Gohman9311ef62009-06-24 14:49:00 +00002290const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2291 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002292 // ~umax(~x, ~y) == umin(x, y)
2293 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2294}
2295
Dan Gohman4f8eea82010-02-01 18:27:38 +00002296const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002297 // If we have TargetData, we can bypass creating a target-independent
2298 // constant expression and then folding it back into a ConstantInt.
2299 // This is just a compile-time optimization.
2300 if (TD)
2301 return getConstant(TD->getIntPtrType(getContext()),
2302 TD->getTypeAllocSize(AllocTy));
2303
Dan Gohman4f8eea82010-02-01 18:27:38 +00002304 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2305 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002306 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2307 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002308 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2309 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2310}
2311
2312const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2313 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2314 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002315 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2316 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002317 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2318 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2319}
2320
2321const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2322 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002323 // If we have TargetData, we can bypass creating a target-independent
2324 // constant expression and then folding it back into a ConstantInt.
2325 // This is just a compile-time optimization.
2326 if (TD)
2327 return getConstant(TD->getIntPtrType(getContext()),
2328 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2329
Dan Gohman0f5efe52010-01-28 02:15:55 +00002330 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2331 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002332 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2333 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002334 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002335 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002336}
2337
Dan Gohman4f8eea82010-02-01 18:27:38 +00002338const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2339 Constant *FieldNo) {
2340 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002341 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002342 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2343 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002344 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002345 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002346}
2347
Dan Gohman0bba49c2009-07-07 17:06:11 +00002348const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002349 // Don't attempt to do anything other than create a SCEVUnknown object
2350 // here. createSCEV only calls getUnknown after checking for all other
2351 // interesting possibilities, and any other code that calls getUnknown
2352 // is doing so in order to hide a value from SCEV canonicalization.
2353
Dan Gohman1c343752009-06-27 21:21:31 +00002354 FoldingSetNodeID ID;
2355 ID.AddInteger(scUnknown);
2356 ID.AddPointer(V);
2357 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002358 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2359 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2360 "Stale SCEVUnknown in uniquing map!");
2361 return S;
2362 }
2363 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2364 FirstUnknown);
2365 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002366 UniqueSCEVs.InsertNode(S, IP);
2367 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002368}
2369
Chris Lattner53e677a2004-04-02 20:23:17 +00002370//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002371// Basic SCEV Analysis and PHI Idiom Recognition Code
2372//
2373
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002374/// isSCEVable - Test if values of the given type are analyzable within
2375/// the SCEV framework. This primarily includes integer types, and it
2376/// can optionally include pointer types if the ScalarEvolution class
2377/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002378bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002379 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002380 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002381}
2382
2383/// getTypeSizeInBits - Return the size in bits of the specified type,
2384/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002385uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002386 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2387
2388 // If we have a TargetData, use it!
2389 if (TD)
2390 return TD->getTypeSizeInBits(Ty);
2391
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002392 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002393 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002394 return Ty->getPrimitiveSizeInBits();
2395
2396 // The only other support type is pointer. Without TargetData, conservatively
2397 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002398 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002399 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002400}
2401
2402/// getEffectiveSCEVType - Return a type with the same bitwidth as
2403/// the given type and which represents how SCEV will treat the given
2404/// type, for which isSCEVable must return true. For pointer types,
2405/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002406const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002407 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2408
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002409 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002410 return Ty;
2411
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002412 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002413 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002414 if (TD) return TD->getIntPtrType(getContext());
2415
2416 // Without TargetData, conservatively assume pointers are 64-bit.
2417 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002418}
Chris Lattner53e677a2004-04-02 20:23:17 +00002419
Dan Gohman0bba49c2009-07-07 17:06:11 +00002420const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002421 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002422}
2423
Chris Lattner53e677a2004-04-02 20:23:17 +00002424/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2425/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002426const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002427 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002428
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002429 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2430 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002431 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002432
2433 // The process of creating a SCEV for V may have caused other SCEVs
2434 // to have been created, so it's necessary to insert the new entry
2435 // from scratch, rather than trying to remember the insert position
2436 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002437 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002438 return S;
2439}
2440
Dan Gohman2d1be872009-04-16 03:18:22 +00002441/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2442///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002443const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002444 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002445 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002446 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002447
2448 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002449 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002450 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002451 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002452}
2453
2454/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002455const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002456 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002457 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002458 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002459
2460 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002461 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002462 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002463 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002464 return getMinusSCEV(AllOnes, V);
2465}
2466
Chris Lattner6038a632011-01-11 17:11:59 +00002467/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2468/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2469/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002470const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2471 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002472 // Fast path: X - X --> 0.
2473 if (LHS == RHS)
2474 return getConstant(LHS->getType(), 0);
2475
Dan Gohman2d1be872009-04-16 03:18:22 +00002476 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002477 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002478}
2479
2480/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2481/// input value to the specified type. If the type must be extended, it is zero
2482/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002484ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002485 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002486 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2487 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002488 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002489 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002490 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002491 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002492 return getTruncateExpr(V, Ty);
2493 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002494}
2495
2496/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2497/// input value to the specified type. If the type must be extended, it is sign
2498/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002499const SCEV *
2500ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002501 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002502 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002503 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2504 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002505 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002506 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002507 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002508 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002509 return getTruncateExpr(V, Ty);
2510 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002511}
2512
Dan Gohman467c4302009-05-13 03:46:30 +00002513/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2514/// input value to the specified type. If the type must be extended, it is zero
2515/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002516const SCEV *
2517ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002518 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002519 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2520 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002521 "Cannot noop or zero extend with non-integer arguments!");
2522 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2523 "getNoopOrZeroExtend cannot truncate!");
2524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2525 return V; // No conversion
2526 return getZeroExtendExpr(V, Ty);
2527}
2528
2529/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2530/// input value to the specified type. If the type must be extended, it is sign
2531/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002532const SCEV *
2533ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002534 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002535 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2536 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002537 "Cannot noop or sign extend with non-integer arguments!");
2538 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2539 "getNoopOrSignExtend cannot truncate!");
2540 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2541 return V; // No conversion
2542 return getSignExtendExpr(V, Ty);
2543}
2544
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002545/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2546/// the input value to the specified type. If the type must be extended,
2547/// it is extended with unspecified bits. The conversion must not be
2548/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002549const SCEV *
2550ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002551 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002552 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2553 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002554 "Cannot noop or any extend with non-integer arguments!");
2555 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2556 "getNoopOrAnyExtend cannot truncate!");
2557 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2558 return V; // No conversion
2559 return getAnyExtendExpr(V, Ty);
2560}
2561
Dan Gohman467c4302009-05-13 03:46:30 +00002562/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2563/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002564const SCEV *
2565ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002566 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002567 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2568 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002569 "Cannot truncate or noop with non-integer arguments!");
2570 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2571 "getTruncateOrNoop cannot extend!");
2572 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2573 return V; // No conversion
2574 return getTruncateExpr(V, Ty);
2575}
2576
Dan Gohmana334aa72009-06-22 00:31:57 +00002577/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2578/// the types using zero-extension, and then perform a umax operation
2579/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002580const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2581 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002582 const SCEV *PromotedLHS = LHS;
2583 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002584
2585 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2586 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2587 else
2588 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2589
2590 return getUMaxExpr(PromotedLHS, PromotedRHS);
2591}
2592
Dan Gohmanc9759e82009-06-22 15:03:27 +00002593/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2594/// the types using zero-extension, and then perform a umin operation
2595/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002596const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2597 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002598 const SCEV *PromotedLHS = LHS;
2599 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002600
2601 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2602 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2603 else
2604 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2605
2606 return getUMinExpr(PromotedLHS, PromotedRHS);
2607}
2608
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002609/// PushDefUseChildren - Push users of the given Instruction
2610/// onto the given Worklist.
2611static void
2612PushDefUseChildren(Instruction *I,
2613 SmallVectorImpl<Instruction *> &Worklist) {
2614 // Push the def-use children onto the Worklist stack.
2615 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2616 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002617 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002618}
2619
2620/// ForgetSymbolicValue - This looks up computed SCEV values for all
2621/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002622/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002623/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002624void
Dan Gohman85669632010-02-25 06:57:05 +00002625ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002626 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002627 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002628
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002629 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002630 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002631 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002632 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002633 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002634
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002635 ValueExprMapType::iterator It =
2636 ValueExprMap.find(static_cast<Value *>(I));
2637 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002638 const SCEV *Old = It->second;
2639
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002640 // Short-circuit the def-use traversal if the symbolic name
2641 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002642 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002643 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002644
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002645 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002646 // structure, it's a PHI that's in the progress of being computed
2647 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2648 // additional loop trip count information isn't going to change anything.
2649 // In the second case, createNodeForPHI will perform the necessary
2650 // updates on its own when it gets to that point. In the third, we do
2651 // want to forget the SCEVUnknown.
2652 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002653 !isa<SCEVUnknown>(Old) ||
2654 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002655 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002656 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002657 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002658 }
2659
2660 PushDefUseChildren(I, Worklist);
2661 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002662}
Chris Lattner53e677a2004-04-02 20:23:17 +00002663
2664/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2665/// a loop header, making it a potential recurrence, or it doesn't.
2666///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002667const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002668 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2669 if (L->getHeader() == PN->getParent()) {
2670 // The loop may have multiple entrances or multiple exits; we can analyze
2671 // this phi as an addrec if it has a unique entry value and a unique
2672 // backedge value.
2673 Value *BEValueV = 0, *StartValueV = 0;
2674 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2675 Value *V = PN->getIncomingValue(i);
2676 if (L->contains(PN->getIncomingBlock(i))) {
2677 if (!BEValueV) {
2678 BEValueV = V;
2679 } else if (BEValueV != V) {
2680 BEValueV = 0;
2681 break;
2682 }
2683 } else if (!StartValueV) {
2684 StartValueV = V;
2685 } else if (StartValueV != V) {
2686 StartValueV = 0;
2687 break;
2688 }
2689 }
2690 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002691 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002692 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002693 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002694 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002695 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002696
2697 // Using this symbolic name for the PHI, analyze the value coming around
2698 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002699 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002700
2701 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2702 // has a special value for the first iteration of the loop.
2703
2704 // If the value coming around the backedge is an add with the symbolic
2705 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002706 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002707 // If there is a single occurrence of the symbolic value, replace it
2708 // with a recurrence.
2709 unsigned FoundIndex = Add->getNumOperands();
2710 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2711 if (Add->getOperand(i) == SymbolicName)
2712 if (FoundIndex == e) {
2713 FoundIndex = i;
2714 break;
2715 }
2716
2717 if (FoundIndex != Add->getNumOperands()) {
2718 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002719 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002720 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2721 if (i != FoundIndex)
2722 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002723 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002724
2725 // This is not a valid addrec if the step amount is varying each
2726 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002727 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002728 (isa<SCEVAddRecExpr>(Accum) &&
2729 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002730 bool HasNUW = false;
2731 bool HasNSW = false;
2732
2733 // If the increment doesn't overflow, then neither the addrec nor
2734 // the post-increment will overflow.
2735 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2736 if (OBO->hasNoUnsignedWrap())
2737 HasNUW = true;
2738 if (OBO->hasNoSignedWrap())
2739 HasNSW = true;
Chris Lattner96518702011-01-11 06:44:41 +00002740 } else if (const GEPOperator *GEP =
2741 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner6d5a2412011-01-09 02:28:48 +00002742 // If the increment is a GEP, then we know it won't perform an
2743 // unsigned overflow, because the address space cannot be
2744 // wrapped around.
Chris Lattner96518702011-01-11 06:44:41 +00002745 HasNUW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002746 }
2747
Dan Gohman27dead42010-04-12 07:49:36 +00002748 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002749 const SCEV *PHISCEV =
2750 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002751
Dan Gohmana10756e2010-01-21 02:09:26 +00002752 // Since the no-wrap flags are on the increment, they apply to the
2753 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002754 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002755 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2756 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002757
2758 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002759 // to be symbolic. We now need to go back and purge all of the
2760 // entries for the scalars that use the symbolic expression.
2761 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002762 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002763 return PHISCEV;
2764 }
2765 }
Dan Gohman622ed672009-05-04 22:02:23 +00002766 } else if (const SCEVAddRecExpr *AddRec =
2767 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002768 // Otherwise, this could be a loop like this:
2769 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2770 // In this case, j = {1,+,1} and BEValue is j.
2771 // Because the other in-value of i (0) fits the evolution of BEValue
2772 // i really is an addrec evolution.
2773 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002774 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002775
2776 // If StartVal = j.start - j.stride, we can use StartVal as the
2777 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002778 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002779 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002780 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002781 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002782
2783 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002784 // to be symbolic. We now need to go back and purge all of the
2785 // entries for the scalars that use the symbolic expression.
2786 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002787 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002788 return PHISCEV;
2789 }
2790 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002791 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002792 }
Dan Gohman27dead42010-04-12 07:49:36 +00002793 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002794
Dan Gohman85669632010-02-25 06:57:05 +00002795 // If the PHI has a single incoming value, follow that value, unless the
2796 // PHI's incoming blocks are in a different loop, in which case doing so
2797 // risks breaking LCSSA form. Instcombine would normally zap these, but
2798 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002799 if (Value *V = SimplifyInstruction(PN, TD, DT))
2800 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002801 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002802
Chris Lattner53e677a2004-04-02 20:23:17 +00002803 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002804 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002805}
2806
Dan Gohman26466c02009-05-08 20:26:55 +00002807/// createNodeForGEP - Expand GEP instructions into add and multiply
2808/// operations. This allows them to be analyzed by regular SCEV code.
2809///
Dan Gohmand281ed22009-12-18 02:09:29 +00002810const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002811
Dan Gohmanb9f96512010-06-30 07:16:37 +00002812 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2813 // Add expression, because the Instruction may be guarded by control flow
2814 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002815 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002816
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002817 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002818 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002819 // Don't attempt to analyze GEPs over unsized objects.
2820 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2821 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002822 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002823 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002824 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002825 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002826 I != E; ++I) {
2827 Value *Index = *I;
2828 // Compute the (potentially symbolic) offset in bytes for this index.
2829 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2830 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002831 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002832 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2833
Dan Gohmanb9f96512010-06-30 07:16:37 +00002834 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002835 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002836 } else {
2837 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002838 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2839 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002840 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002841 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2842
Dan Gohmanb9f96512010-06-30 07:16:37 +00002843 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002844 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002845
2846 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002847 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002848 }
2849 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002850
2851 // Get the SCEV for the GEP base.
2852 const SCEV *BaseS = getSCEV(Base);
2853
Dan Gohmanb9f96512010-06-30 07:16:37 +00002854 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002855 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002856}
2857
Nick Lewycky83bb0052007-11-22 07:59:40 +00002858/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2859/// guaranteed to end in (at every loop iteration). It is, at the same time,
2860/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2861/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002862uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002863ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002864 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002865 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002866
Dan Gohman622ed672009-05-04 22:02:23 +00002867 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002868 return std::min(GetMinTrailingZeros(T->getOperand()),
2869 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002870
Dan Gohman622ed672009-05-04 22:02:23 +00002871 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002872 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2873 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2874 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002875 }
2876
Dan Gohman622ed672009-05-04 22:02:23 +00002877 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002878 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2879 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2880 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002881 }
2882
Dan Gohman622ed672009-05-04 22:02:23 +00002883 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002884 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002885 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002886 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002887 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002888 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002889 }
2890
Dan Gohman622ed672009-05-04 22:02:23 +00002891 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002892 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002893 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2894 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002895 for (unsigned i = 1, e = M->getNumOperands();
2896 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002897 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002898 BitWidth);
2899 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002900 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002901
Dan Gohman622ed672009-05-04 22:02:23 +00002902 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002903 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002904 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002905 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002906 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002907 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002908 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002909
Dan Gohman622ed672009-05-04 22:02:23 +00002910 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002911 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002912 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002913 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002914 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002915 return MinOpRes;
2916 }
2917
Dan Gohman622ed672009-05-04 22:02:23 +00002918 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002919 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002920 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002921 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002923 return MinOpRes;
2924 }
2925
Dan Gohman2c364ad2009-06-19 23:29:04 +00002926 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2927 // For a SCEVUnknown, ask ValueTracking.
2928 unsigned BitWidth = getTypeSizeInBits(U->getType());
2929 APInt Mask = APInt::getAllOnesValue(BitWidth);
2930 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2931 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2932 return Zeros.countTrailingOnes();
2933 }
2934
2935 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002936 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002937}
Chris Lattner53e677a2004-04-02 20:23:17 +00002938
Dan Gohman85b05a22009-07-13 21:35:55 +00002939/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2940///
2941ConstantRange
2942ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002943 // See if we've computed this range already.
2944 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2945 if (I != UnsignedRanges.end())
2946 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002947
2948 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002949 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002951 unsigned BitWidth = getTypeSizeInBits(S->getType());
2952 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2953
2954 // If the value has known zeros, the maximum unsigned value will have those
2955 // known zeros as well.
2956 uint32_t TZ = GetMinTrailingZeros(S);
2957 if (TZ != 0)
2958 ConservativeResult =
2959 ConstantRange(APInt::getMinValue(BitWidth),
2960 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2961
Dan Gohman85b05a22009-07-13 21:35:55 +00002962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2963 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2964 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2965 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002966 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002967 }
2968
2969 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2970 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2971 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2972 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002973 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002974 }
2975
2976 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2977 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2978 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2979 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002980 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002981 }
2982
2983 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2984 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2985 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2986 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002987 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002988 }
2989
2990 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2991 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2992 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002993 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002994 }
2995
2996 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2997 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002998 return setUnsignedRange(ZExt,
2999 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003000 }
3001
3002 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3003 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003004 return setUnsignedRange(SExt,
3005 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003006 }
3007
3008 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3009 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003010 return setUnsignedRange(Trunc,
3011 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003012 }
3013
Dan Gohman85b05a22009-07-13 21:35:55 +00003014 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003015 // If there's no unsigned wrap, the value will never be less than its
3016 // initial value.
3017 if (AddRec->hasNoUnsignedWrap())
3018 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003019 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003020 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003021 ConservativeResult.intersectWith(
3022 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003023
3024 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003025 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003026 const Type *Ty = AddRec->getType();
3027 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003028 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3029 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003030 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3031
3032 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003033 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003034
3035 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003036 ConstantRange StepRange = getSignedRange(Step);
3037 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3038 ConstantRange EndRange =
3039 StartRange.add(MaxBECountRange.multiply(StepRange));
3040
3041 // Check for overflow. This must be done with ConstantRange arithmetic
3042 // because we could be called from within the ScalarEvolution overflow
3043 // checking code.
3044 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3045 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3046 ConstantRange ExtMaxBECountRange =
3047 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3048 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3049 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3050 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003051 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003052
Dan Gohman85b05a22009-07-13 21:35:55 +00003053 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3054 EndRange.getUnsignedMin());
3055 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3056 EndRange.getUnsignedMax());
3057 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003058 return setUnsignedRange(AddRec, ConservativeResult);
3059 return setUnsignedRange(AddRec,
3060 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 }
3062 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003063
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003064 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003065 }
3066
3067 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3068 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003069 APInt Mask = APInt::getAllOnesValue(BitWidth);
3070 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3071 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003072 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003073 return setUnsignedRange(U, ConservativeResult);
3074 return setUnsignedRange(U,
3075 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003076 }
3077
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003078 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003079}
3080
Dan Gohman85b05a22009-07-13 21:35:55 +00003081/// getSignedRange - Determine the signed range for a particular SCEV.
3082///
3083ConstantRange
3084ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003085 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3086 if (I != SignedRanges.end())
3087 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003088
Dan Gohman85b05a22009-07-13 21:35:55 +00003089 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003090 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003091
Dan Gohman52fddd32010-01-26 04:40:18 +00003092 unsigned BitWidth = getTypeSizeInBits(S->getType());
3093 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3094
3095 // If the value has known zeros, the maximum signed value will have those
3096 // known zeros as well.
3097 uint32_t TZ = GetMinTrailingZeros(S);
3098 if (TZ != 0)
3099 ConservativeResult =
3100 ConstantRange(APInt::getSignedMinValue(BitWidth),
3101 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3102
Dan Gohman85b05a22009-07-13 21:35:55 +00003103 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3104 ConstantRange X = getSignedRange(Add->getOperand(0));
3105 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3106 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003107 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003108 }
3109
Dan Gohman85b05a22009-07-13 21:35:55 +00003110 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3111 ConstantRange X = getSignedRange(Mul->getOperand(0));
3112 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3113 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003114 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003115 }
3116
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3118 ConstantRange X = getSignedRange(SMax->getOperand(0));
3119 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3120 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003121 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003122 }
Dan Gohman62849c02009-06-24 01:05:09 +00003123
Dan Gohman85b05a22009-07-13 21:35:55 +00003124 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3125 ConstantRange X = getSignedRange(UMax->getOperand(0));
3126 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3127 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003128 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003129 }
Dan Gohman62849c02009-06-24 01:05:09 +00003130
Dan Gohman85b05a22009-07-13 21:35:55 +00003131 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3132 ConstantRange X = getSignedRange(UDiv->getLHS());
3133 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003134 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 }
Dan Gohman62849c02009-06-24 01:05:09 +00003136
Dan Gohman85b05a22009-07-13 21:35:55 +00003137 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3138 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003139 return setSignedRange(ZExt,
3140 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003141 }
3142
3143 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3144 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003145 return setSignedRange(SExt,
3146 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003147 }
3148
3149 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3150 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003151 return setSignedRange(Trunc,
3152 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003153 }
3154
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003156 // If there's no signed wrap, and all the operands have the same sign or
3157 // zero, the value won't ever change sign.
3158 if (AddRec->hasNoSignedWrap()) {
3159 bool AllNonNeg = true;
3160 bool AllNonPos = true;
3161 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3162 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3163 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3164 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003165 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003166 ConservativeResult = ConservativeResult.intersectWith(
3167 ConstantRange(APInt(BitWidth, 0),
3168 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003169 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003170 ConservativeResult = ConservativeResult.intersectWith(
3171 ConstantRange(APInt::getSignedMinValue(BitWidth),
3172 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003173 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003174
3175 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003176 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003177 const Type *Ty = AddRec->getType();
3178 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003179 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3180 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003181 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3182
3183 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003184 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003185
3186 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003187 ConstantRange StepRange = getSignedRange(Step);
3188 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3189 ConstantRange EndRange =
3190 StartRange.add(MaxBECountRange.multiply(StepRange));
3191
3192 // Check for overflow. This must be done with ConstantRange arithmetic
3193 // because we could be called from within the ScalarEvolution overflow
3194 // checking code.
3195 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3196 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3197 ConstantRange ExtMaxBECountRange =
3198 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3199 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3200 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3201 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003202 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003203
Dan Gohman85b05a22009-07-13 21:35:55 +00003204 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3205 EndRange.getSignedMin());
3206 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3207 EndRange.getSignedMax());
3208 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003209 return setSignedRange(AddRec, ConservativeResult);
3210 return setSignedRange(AddRec,
3211 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003212 }
Dan Gohman62849c02009-06-24 01:05:09 +00003213 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003214
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003215 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003216 }
3217
Dan Gohman2c364ad2009-06-19 23:29:04 +00003218 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3219 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003220 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003221 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003222 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3223 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003224 return setSignedRange(U, ConservativeResult);
3225 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003226 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003227 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003228 }
3229
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003230 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003231}
3232
Chris Lattner53e677a2004-04-02 20:23:17 +00003233/// createSCEV - We know that there is no SCEV for the specified value.
3234/// Analyze the expression.
3235///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003236const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003237 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003238 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003239
Dan Gohman6c459a22008-06-22 19:56:46 +00003240 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003241 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003242 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003243
3244 // Don't attempt to analyze instructions in blocks that aren't
3245 // reachable. Such instructions don't matter, and they aren't required
3246 // to obey basic rules for definitions dominating uses which this
3247 // analysis depends on.
3248 if (!DT->isReachableFromEntry(I->getParent()))
3249 return getUnknown(V);
3250 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003251 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003252 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3253 return getConstant(CI);
3254 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003255 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003256 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3257 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003258 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003259 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003260
Dan Gohmanca178902009-07-17 20:47:02 +00003261 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003262 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003263 case Instruction::Add: {
3264 // The simple thing to do would be to just call getSCEV on both operands
3265 // and call getAddExpr with the result. However if we're looking at a
3266 // bunch of things all added together, this can be quite inefficient,
3267 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3268 // Instead, gather up all the operands and make a single getAddExpr call.
3269 // LLVM IR canonical form means we need only traverse the left operands.
3270 SmallVector<const SCEV *, 4> AddOps;
3271 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003272 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3273 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3274 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3275 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003276 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003277 const SCEV *Op1 = getSCEV(U->getOperand(1));
3278 if (Opcode == Instruction::Sub)
3279 AddOps.push_back(getNegativeSCEV(Op1));
3280 else
3281 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003282 }
3283 AddOps.push_back(getSCEV(U->getOperand(0)));
3284 return getAddExpr(AddOps);
3285 }
3286 case Instruction::Mul: {
3287 // See the Add code above.
3288 SmallVector<const SCEV *, 4> MulOps;
3289 MulOps.push_back(getSCEV(U->getOperand(1)));
3290 for (Value *Op = U->getOperand(0);
3291 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3292 Op = U->getOperand(0)) {
3293 U = cast<Operator>(Op);
3294 MulOps.push_back(getSCEV(U->getOperand(1)));
3295 }
3296 MulOps.push_back(getSCEV(U->getOperand(0)));
3297 return getMulExpr(MulOps);
3298 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003299 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003300 return getUDivExpr(getSCEV(U->getOperand(0)),
3301 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003302 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003303 return getMinusSCEV(getSCEV(U->getOperand(0)),
3304 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003305 case Instruction::And:
3306 // For an expression like x&255 that merely masks off the high bits,
3307 // use zext(trunc(x)) as the SCEV expression.
3308 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003309 if (CI->isNullValue())
3310 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003311 if (CI->isAllOnesValue())
3312 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003313 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003314
3315 // Instcombine's ShrinkDemandedConstant may strip bits out of
3316 // constants, obscuring what would otherwise be a low-bits mask.
3317 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3318 // knew about to reconstruct a low-bits mask value.
3319 unsigned LZ = A.countLeadingZeros();
3320 unsigned BitWidth = A.getBitWidth();
3321 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3322 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3323 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3324
3325 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3326
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003327 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003328 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003329 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003330 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003331 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003332 }
3333 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003334
Dan Gohman6c459a22008-06-22 19:56:46 +00003335 case Instruction::Or:
3336 // If the RHS of the Or is a constant, we may have something like:
3337 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3338 // optimizations will transparently handle this case.
3339 //
3340 // In order for this transformation to be safe, the LHS must be of the
3341 // form X*(2^n) and the Or constant must be less than 2^n.
3342 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003343 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003344 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003345 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003346 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3347 // Build a plain add SCEV.
3348 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3349 // If the LHS of the add was an addrec and it has no-wrap flags,
3350 // transfer the no-wrap flags, since an or won't introduce a wrap.
3351 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3352 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3353 if (OldAR->hasNoUnsignedWrap())
3354 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3355 if (OldAR->hasNoSignedWrap())
3356 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3357 }
3358 return S;
3359 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003360 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003361 break;
3362 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003363 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003364 // If the RHS of the xor is a signbit, then this is just an add.
3365 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003366 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003367 return getAddExpr(getSCEV(U->getOperand(0)),
3368 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003369
3370 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003371 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003372 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003373
3374 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3375 // This is a variant of the check for xor with -1, and it handles
3376 // the case where instcombine has trimmed non-demanded bits out
3377 // of an xor with -1.
3378 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3379 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3380 if (BO->getOpcode() == Instruction::And &&
3381 LCI->getValue() == CI->getValue())
3382 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003383 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003384 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003385 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003386 const Type *Z0Ty = Z0->getType();
3387 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3388
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003389 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003390 // mask off the high bits. Complement the operand and
3391 // re-apply the zext.
3392 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3393 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3394
3395 // If C is a single bit, it may be in the sign-bit position
3396 // before the zero-extend. In this case, represent the xor
3397 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003398 APInt Trunc = CI->getValue().trunc(Z0TySize);
3399 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003400 Trunc.isSignBit())
3401 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3402 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003403 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003404 }
3405 break;
3406
3407 case Instruction::Shl:
3408 // Turn shift left of a constant amount into a multiply.
3409 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003410 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003411
3412 // If the shift count is not less than the bitwidth, the result of
3413 // the shift is undefined. Don't try to analyze it, because the
3414 // resolution chosen here may differ from the resolution chosen in
3415 // other parts of the compiler.
3416 if (SA->getValue().uge(BitWidth))
3417 break;
3418
Owen Andersoneed707b2009-07-24 23:12:02 +00003419 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003420 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003421 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003422 }
3423 break;
3424
Nick Lewycky01eaf802008-07-07 06:15:49 +00003425 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003426 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003427 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003428 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003429
3430 // If the shift count is not less than the bitwidth, the result of
3431 // the shift is undefined. Don't try to analyze it, because the
3432 // resolution chosen here may differ from the resolution chosen in
3433 // other parts of the compiler.
3434 if (SA->getValue().uge(BitWidth))
3435 break;
3436
Owen Andersoneed707b2009-07-24 23:12:02 +00003437 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003438 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003439 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003440 }
3441 break;
3442
Dan Gohman4ee29af2009-04-21 02:26:00 +00003443 case Instruction::AShr:
3444 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3445 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003446 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003447 if (L->getOpcode() == Instruction::Shl &&
3448 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003449 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3450
3451 // If the shift count is not less than the bitwidth, the result of
3452 // the shift is undefined. Don't try to analyze it, because the
3453 // resolution chosen here may differ from the resolution chosen in
3454 // other parts of the compiler.
3455 if (CI->getValue().uge(BitWidth))
3456 break;
3457
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003458 uint64_t Amt = BitWidth - CI->getZExtValue();
3459 if (Amt == BitWidth)
3460 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003461 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003462 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003463 IntegerType::get(getContext(),
3464 Amt)),
3465 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003466 }
3467 break;
3468
Dan Gohman6c459a22008-06-22 19:56:46 +00003469 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003470 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003471
3472 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003473 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003474
3475 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003476 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003477
3478 case Instruction::BitCast:
3479 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003480 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003481 return getSCEV(U->getOperand(0));
3482 break;
3483
Dan Gohman4f8eea82010-02-01 18:27:38 +00003484 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3485 // lead to pointer expressions which cannot safely be expanded to GEPs,
3486 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3487 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003488
Dan Gohman26466c02009-05-08 20:26:55 +00003489 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003490 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003491
Dan Gohman6c459a22008-06-22 19:56:46 +00003492 case Instruction::PHI:
3493 return createNodeForPHI(cast<PHINode>(U));
3494
3495 case Instruction::Select:
3496 // This could be a smax or umax that was lowered earlier.
3497 // Try to recover it.
3498 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3499 Value *LHS = ICI->getOperand(0);
3500 Value *RHS = ICI->getOperand(1);
3501 switch (ICI->getPredicate()) {
3502 case ICmpInst::ICMP_SLT:
3503 case ICmpInst::ICMP_SLE:
3504 std::swap(LHS, RHS);
3505 // fall through
3506 case ICmpInst::ICMP_SGT:
3507 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003508 // a >s b ? a+x : b+x -> smax(a, b)+x
3509 // a >s b ? b+x : a+x -> smin(a, b)+x
3510 if (LHS->getType() == U->getType()) {
3511 const SCEV *LS = getSCEV(LHS);
3512 const SCEV *RS = getSCEV(RHS);
3513 const SCEV *LA = getSCEV(U->getOperand(1));
3514 const SCEV *RA = getSCEV(U->getOperand(2));
3515 const SCEV *LDiff = getMinusSCEV(LA, LS);
3516 const SCEV *RDiff = getMinusSCEV(RA, RS);
3517 if (LDiff == RDiff)
3518 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3519 LDiff = getMinusSCEV(LA, RS);
3520 RDiff = getMinusSCEV(RA, LS);
3521 if (LDiff == RDiff)
3522 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3523 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003524 break;
3525 case ICmpInst::ICMP_ULT:
3526 case ICmpInst::ICMP_ULE:
3527 std::swap(LHS, RHS);
3528 // fall through
3529 case ICmpInst::ICMP_UGT:
3530 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003531 // a >u b ? a+x : b+x -> umax(a, b)+x
3532 // a >u b ? b+x : a+x -> umin(a, b)+x
3533 if (LHS->getType() == U->getType()) {
3534 const SCEV *LS = getSCEV(LHS);
3535 const SCEV *RS = getSCEV(RHS);
3536 const SCEV *LA = getSCEV(U->getOperand(1));
3537 const SCEV *RA = getSCEV(U->getOperand(2));
3538 const SCEV *LDiff = getMinusSCEV(LA, LS);
3539 const SCEV *RDiff = getMinusSCEV(RA, RS);
3540 if (LDiff == RDiff)
3541 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3542 LDiff = getMinusSCEV(LA, RS);
3543 RDiff = getMinusSCEV(RA, LS);
3544 if (LDiff == RDiff)
3545 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3546 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003547 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003548 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003549 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3550 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003551 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003552 cast<ConstantInt>(RHS)->isZero()) {
3553 const SCEV *One = getConstant(LHS->getType(), 1);
3554 const SCEV *LS = getSCEV(LHS);
3555 const SCEV *LA = getSCEV(U->getOperand(1));
3556 const SCEV *RA = getSCEV(U->getOperand(2));
3557 const SCEV *LDiff = getMinusSCEV(LA, LS);
3558 const SCEV *RDiff = getMinusSCEV(RA, One);
3559 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003560 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003561 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003562 break;
3563 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003564 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3565 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003566 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003567 cast<ConstantInt>(RHS)->isZero()) {
3568 const SCEV *One = getConstant(LHS->getType(), 1);
3569 const SCEV *LS = getSCEV(LHS);
3570 const SCEV *LA = getSCEV(U->getOperand(1));
3571 const SCEV *RA = getSCEV(U->getOperand(2));
3572 const SCEV *LDiff = getMinusSCEV(LA, One);
3573 const SCEV *RDiff = getMinusSCEV(RA, LS);
3574 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003575 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003576 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003577 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003578 default:
3579 break;
3580 }
3581 }
3582
3583 default: // We cannot analyze this expression.
3584 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003585 }
3586
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003587 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003588}
3589
3590
3591
3592//===----------------------------------------------------------------------===//
3593// Iteration Count Computation Code
3594//
3595
Dan Gohman46bdfb02009-02-24 18:55:53 +00003596/// getBackedgeTakenCount - If the specified loop has a predictable
3597/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3598/// object. The backedge-taken count is the number of times the loop header
3599/// will be branched to from within the loop. This is one less than the
3600/// trip count of the loop, since it doesn't count the first iteration,
3601/// when the header is branched to from outside the loop.
3602///
3603/// Note that it is not valid to call this method on a loop without a
3604/// loop-invariant backedge-taken count (see
3605/// hasLoopInvariantBackedgeTakenCount).
3606///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003607const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003608 return getBackedgeTakenInfo(L).Exact;
3609}
3610
3611/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3612/// return the least SCEV value that is known never to be less than the
3613/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003614const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003615 return getBackedgeTakenInfo(L).Max;
3616}
3617
Dan Gohman59ae6b92009-07-08 19:23:34 +00003618/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3619/// onto the given Worklist.
3620static void
3621PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3622 BasicBlock *Header = L->getHeader();
3623
3624 // Push all Loop-header PHIs onto the Worklist stack.
3625 for (BasicBlock::iterator I = Header->begin();
3626 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3627 Worklist.push_back(PN);
3628}
3629
Dan Gohmana1af7572009-04-30 20:47:05 +00003630const ScalarEvolution::BackedgeTakenInfo &
3631ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003632 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003633 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003634 // update the value. The temporary CouldNotCompute value tells SCEV
3635 // code elsewhere that it shouldn't attempt to request a new
3636 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003637 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003638 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003639 if (!Pair.second)
3640 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003641
Chris Lattnerf1859892011-01-09 02:16:18 +00003642 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3643 if (BECount.Exact != getCouldNotCompute()) {
3644 assert(isLoopInvariant(BECount.Exact, L) &&
3645 isLoopInvariant(BECount.Max, L) &&
3646 "Computed backedge-taken count isn't loop invariant for loop!");
3647 ++NumTripCountsComputed;
3648
3649 // Update the value in the map.
3650 Pair.first->second = BECount;
3651 } else {
3652 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003653 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003654 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003655 if (isa<PHINode>(L->getHeader()->begin()))
3656 // Only count loops that have phi nodes as not being computable.
3657 ++NumTripCountsNotComputed;
3658 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003659
Chris Lattnerf1859892011-01-09 02:16:18 +00003660 // Now that we know more about the trip count for this loop, forget any
3661 // existing SCEV values for PHI nodes in this loop since they are only
3662 // conservative estimates made without the benefit of trip count
3663 // information. This is similar to the code in forgetLoop, except that
3664 // it handles SCEVUnknown PHI nodes specially.
3665 if (BECount.hasAnyInfo()) {
3666 SmallVector<Instruction *, 16> Worklist;
3667 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003668
Chris Lattnerf1859892011-01-09 02:16:18 +00003669 SmallPtrSet<Instruction *, 8> Visited;
3670 while (!Worklist.empty()) {
3671 Instruction *I = Worklist.pop_back_val();
3672 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003673
Chris Lattnerf1859892011-01-09 02:16:18 +00003674 ValueExprMapType::iterator It =
3675 ValueExprMap.find(static_cast<Value *>(I));
3676 if (It != ValueExprMap.end()) {
3677 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003678
Chris Lattnerf1859892011-01-09 02:16:18 +00003679 // SCEVUnknown for a PHI either means that it has an unrecognized
3680 // structure, or it's a PHI that's in the progress of being computed
3681 // by createNodeForPHI. In the former case, additional loop trip
3682 // count information isn't going to change anything. In the later
3683 // case, createNodeForPHI will perform the necessary updates on its
3684 // own when it gets to that point.
3685 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3686 forgetMemoizedResults(Old);
3687 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003688 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003689 if (PHINode *PN = dyn_cast<PHINode>(I))
3690 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003691 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003692
3693 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003694 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003695 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003696 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003697}
3698
Dan Gohman4c7279a2009-10-31 15:04:55 +00003699/// forgetLoop - This method should be called by the client when it has
3700/// changed a loop in a way that may effect ScalarEvolution's ability to
3701/// compute a trip count, or if the loop is deleted.
3702void ScalarEvolution::forgetLoop(const Loop *L) {
3703 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003704 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003705
Dan Gohman4c7279a2009-10-31 15:04:55 +00003706 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003707 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003708 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003709
Dan Gohman59ae6b92009-07-08 19:23:34 +00003710 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003711 while (!Worklist.empty()) {
3712 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003713 if (!Visited.insert(I)) continue;
3714
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003715 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3716 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003717 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003718 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003719 if (PHINode *PN = dyn_cast<PHINode>(I))
3720 ConstantEvolutionLoopExitValue.erase(PN);
3721 }
3722
3723 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003724 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003725
3726 // Forget all contained loops too, to avoid dangling entries in the
3727 // ValuesAtScopes map.
3728 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3729 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003730}
3731
Eric Christophere6cbfa62010-07-29 01:25:38 +00003732/// forgetValue - This method should be called by the client when it has
3733/// changed a value in a way that may effect its value, or which may
3734/// disconnect it from a def-use chain linking it to a loop.
3735void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003736 Instruction *I = dyn_cast<Instruction>(V);
3737 if (!I) return;
3738
3739 // Drop information about expressions based on loop-header PHIs.
3740 SmallVector<Instruction *, 16> Worklist;
3741 Worklist.push_back(I);
3742
3743 SmallPtrSet<Instruction *, 8> Visited;
3744 while (!Worklist.empty()) {
3745 I = Worklist.pop_back_val();
3746 if (!Visited.insert(I)) continue;
3747
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003748 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3749 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003750 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003751 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003752 if (PHINode *PN = dyn_cast<PHINode>(I))
3753 ConstantEvolutionLoopExitValue.erase(PN);
3754 }
3755
3756 PushDefUseChildren(I, Worklist);
3757 }
3758}
3759
Dan Gohman46bdfb02009-02-24 18:55:53 +00003760/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3761/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003762ScalarEvolution::BackedgeTakenInfo
3763ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003764 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003766
Dan Gohmana334aa72009-06-22 00:31:57 +00003767 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003768 const SCEV *BECount = getCouldNotCompute();
3769 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003770 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003771 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3772 BackedgeTakenInfo NewBTI =
3773 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003774
Dan Gohman1c343752009-06-27 21:21:31 +00003775 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003776 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003777 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003778 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003779 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003780 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003781 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003782 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003783 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003784 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003785 }
Dan Gohman1c343752009-06-27 21:21:31 +00003786 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003787 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003788 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003789 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003790 }
3791
3792 return BackedgeTakenInfo(BECount, MaxBECount);
3793}
3794
3795/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3796/// of the specified loop will execute if it exits via the specified block.
3797ScalarEvolution::BackedgeTakenInfo
3798ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3799 BasicBlock *ExitingBlock) {
3800
3801 // Okay, we've chosen an exiting block. See what condition causes us to
3802 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003803 //
3804 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003805 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003806 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003807 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003808
Chris Lattner8b0e3602007-01-07 02:24:26 +00003809 // At this point, we know we have a conditional branch that determines whether
3810 // the loop is exited. However, we don't know if the branch is executed each
3811 // time through the loop. If not, then the execution count of the branch will
3812 // not be equal to the trip count of the loop.
3813 //
3814 // Currently we check for this by checking to see if the Exit branch goes to
3815 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003816 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003817 // loop header. This is common for un-rotated loops.
3818 //
3819 // If both of those tests fail, walk up the unique predecessor chain to the
3820 // header, stopping if there is an edge that doesn't exit the loop. If the
3821 // header is reached, the execution count of the branch will be equal to the
3822 // trip count of the loop.
3823 //
3824 // More extensive analysis could be done to handle more cases here.
3825 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003826 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003827 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 ExitBr->getParent() != L->getHeader()) {
3829 // The simple checks failed, try climbing the unique predecessor chain
3830 // up to the header.
3831 bool Ok = false;
3832 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3833 BasicBlock *Pred = BB->getUniquePredecessor();
3834 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003835 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003836 TerminatorInst *PredTerm = Pred->getTerminator();
3837 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3838 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3839 if (PredSucc == BB)
3840 continue;
3841 // If the predecessor has a successor that isn't BB and isn't
3842 // outside the loop, assume the worst.
3843 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003844 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003845 }
3846 if (Pred == L->getHeader()) {
3847 Ok = true;
3848 break;
3849 }
3850 BB = Pred;
3851 }
3852 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003853 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003854 }
3855
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003856 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003857 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3858 ExitBr->getSuccessor(0),
3859 ExitBr->getSuccessor(1));
3860}
3861
3862/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3863/// backedge of the specified loop will execute if its exit condition
3864/// were a conditional branch of ExitCond, TBB, and FBB.
3865ScalarEvolution::BackedgeTakenInfo
3866ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3867 Value *ExitCond,
3868 BasicBlock *TBB,
3869 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003870 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003871 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3872 if (BO->getOpcode() == Instruction::And) {
3873 // Recurse on the operands of the and.
3874 BackedgeTakenInfo BTI0 =
3875 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3876 BackedgeTakenInfo BTI1 =
3877 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003878 const SCEV *BECount = getCouldNotCompute();
3879 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003880 if (L->contains(TBB)) {
3881 // Both conditions must be true for the loop to continue executing.
3882 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003883 if (BTI0.Exact == getCouldNotCompute() ||
3884 BTI1.Exact == getCouldNotCompute())
3885 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003886 else
3887 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003888 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003889 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003890 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003891 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003892 else
3893 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003895 // Both conditions must be true at the same time for the loop to exit.
3896 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003897 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003898 if (BTI0.Max == BTI1.Max)
3899 MaxBECount = BTI0.Max;
3900 if (BTI0.Exact == BTI1.Exact)
3901 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003902 }
3903
3904 return BackedgeTakenInfo(BECount, MaxBECount);
3905 }
3906 if (BO->getOpcode() == Instruction::Or) {
3907 // Recurse on the operands of the or.
3908 BackedgeTakenInfo BTI0 =
3909 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3910 BackedgeTakenInfo BTI1 =
3911 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003912 const SCEV *BECount = getCouldNotCompute();
3913 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003914 if (L->contains(FBB)) {
3915 // Both conditions must be false for the loop to continue executing.
3916 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003917 if (BTI0.Exact == getCouldNotCompute() ||
3918 BTI1.Exact == getCouldNotCompute())
3919 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003920 else
3921 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003922 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003923 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003924 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003925 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003926 else
3927 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003928 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003929 // Both conditions must be false at the same time for the loop to exit.
3930 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003931 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003932 if (BTI0.Max == BTI1.Max)
3933 MaxBECount = BTI0.Max;
3934 if (BTI0.Exact == BTI1.Exact)
3935 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003936 }
3937
3938 return BackedgeTakenInfo(BECount, MaxBECount);
3939 }
3940 }
3941
3942 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003943 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003944 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3945 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003946
Dan Gohman00cb5b72010-02-19 18:12:07 +00003947 // Check for a constant condition. These are normally stripped out by
3948 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3949 // preserve the CFG and is temporarily leaving constant conditions
3950 // in place.
3951 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3952 if (L->contains(FBB) == !CI->getZExtValue())
3953 // The backedge is always taken.
3954 return getCouldNotCompute();
3955 else
3956 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003957 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003958 }
3959
Eli Friedman361e54d2009-05-09 12:32:42 +00003960 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003961 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3962}
3963
Chris Lattner992efb02011-01-09 22:26:35 +00003964static const SCEVAddRecExpr *
3965isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3966 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3967
3968 // The SCEV must be an addrec of this loop.
3969 if (!SA || SA->getLoop() != L || !SA->isAffine())
3970 return 0;
3971
3972 // The SCEV must be known to not wrap in some way to be interesting.
3973 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3974 return 0;
3975
3976 // The stride must be a constant so that we know if it is striding up or down.
3977 if (!isa<SCEVConstant>(SA->getOperand(1)))
3978 return 0;
3979 return SA;
3980}
3981
3982/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3983/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3984/// and this function returns the expression to use for x-y. We know and take
3985/// advantage of the fact that this subtraction is only being used in a
3986/// comparison by zero context.
3987///
3988static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
3989 const Loop *L, ScalarEvolution &SE) {
3990 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
3991 // wrap (either NSW or NUW), then we know that the value will either become
3992 // the other one (and thus the loop terminates), that the loop will terminate
3993 // through some other exit condition first, or that the loop has undefined
3994 // behavior. This information is useful when the addrec has a stride that is
3995 // != 1 or -1, because it means we can't "miss" the exit value.
3996 //
3997 // In any of these three cases, it is safe to turn the exit condition into a
3998 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
3999 // but since we know that the "end cannot be missed" we can force the
4000 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4001 // that the AddRec *cannot* pass zero.
4002
4003 // See if LHS and RHS are addrec's we can handle.
4004 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4005 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4006
4007 // If neither addrec is interesting, just return a minus.
4008 if (RHSA == 0 && LHSA == 0)
4009 return SE.getMinusSCEV(LHS, RHS);
4010
4011 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4012 if (RHSA && LHSA == 0) {
4013 // Safe because a-b === b-a for comparisons against zero.
4014 std::swap(LHS, RHS);
4015 std::swap(LHSA, RHSA);
4016 }
4017
4018 // Handle the case when only one is advancing in a non-overflowing way.
4019 if (RHSA == 0) {
4020 // If RHS is loop varying, then we can't predict when LHS will cross it.
4021 if (!SE.isLoopInvariant(RHS, L))
4022 return SE.getMinusSCEV(LHS, RHS);
4023
4024 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4025 // is counting up until it crosses RHS (which must be larger than LHS). If
4026 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4027 const ConstantInt *Stride =
4028 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4029 if (Stride->getValue().isNegative())
4030 std::swap(LHS, RHS);
4031
4032 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4033 }
4034
4035 // If both LHS and RHS are interesting, we have something like:
4036 // a+i*4 != b+i*8.
4037 const ConstantInt *LHSStride =
4038 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4039 const ConstantInt *RHSStride =
4040 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4041
4042 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004043 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004044 if (LHSStride == RHSStride)
4045 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4046
4047 // If the signs of the strides differ, then the negative stride is counting
4048 // down to the positive stride.
4049 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4050 if (RHSStride->getValue().isNegative())
4051 std::swap(LHS, RHS);
4052 } else {
4053 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4054 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4055 // whether the strides are positive or negative.
4056 if (RHSStride->getValue().slt(LHSStride->getValue()))
4057 std::swap(LHS, RHS);
4058 }
4059
4060 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4061}
4062
Dan Gohmana334aa72009-06-22 00:31:57 +00004063/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4064/// backedge of the specified loop will execute if its exit condition
4065/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4066ScalarEvolution::BackedgeTakenInfo
4067ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4068 ICmpInst *ExitCond,
4069 BasicBlock *TBB,
4070 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004071
Reid Spencere4d87aa2006-12-23 06:05:41 +00004072 // If the condition was exit on true, convert the condition to exit on false
4073 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004074 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004075 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004076 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004077 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004078
4079 // Handle common loops like: for (X = "string"; *X; ++X)
4080 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4081 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004082 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004083 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004084 if (ItCnt.hasAnyInfo())
4085 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004086 }
4087
Dan Gohman0bba49c2009-07-07 17:06:11 +00004088 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4089 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004090
4091 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004092 LHS = getSCEVAtScope(LHS, L);
4093 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004094
Dan Gohman64a845e2009-06-24 04:48:43 +00004095 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004096 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004097 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004098 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004099 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004100 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 }
4102
Dan Gohman03557dc2010-05-03 16:35:17 +00004103 // Simplify the operands before analyzing them.
4104 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4105
Chris Lattner53e677a2004-04-02 20:23:17 +00004106 // If we have a comparison of a chrec against a constant, try to use value
4107 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004108 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4109 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004110 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004111 // Form the constant range.
4112 ConstantRange CompRange(
4113 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004114
Dan Gohman0bba49c2009-07-07 17:06:11 +00004115 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004116 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004117 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004118
Chris Lattner53e677a2004-04-02 20:23:17 +00004119 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004120 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004121 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004122 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4123 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004124 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004125 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004126 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004127 case ICmpInst::ICMP_EQ: { // while (X == Y)
4128 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004129 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4130 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004131 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004132 }
4133 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004134 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4135 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004136 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004137 }
4138 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004139 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4140 getNotSCEV(RHS), L, true);
4141 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004142 break;
4143 }
4144 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004145 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4146 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004147 break;
4148 }
4149 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004150 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4151 getNotSCEV(RHS), L, false);
4152 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004153 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004154 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004155 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004156#if 0
David Greene25e0e872009-12-23 22:18:14 +00004157 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004158 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004159 dbgs() << "[unsigned] ";
4160 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004161 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004162 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004163#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004164 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004165 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004166 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004167 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004168}
4169
Chris Lattner673e02b2004-10-12 01:49:27 +00004170static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004171EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4172 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004173 const SCEV *InVal = SE.getConstant(C);
4174 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004175 assert(isa<SCEVConstant>(Val) &&
4176 "Evaluation of SCEV at constant didn't fold correctly?");
4177 return cast<SCEVConstant>(Val)->getValue();
4178}
4179
4180/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4181/// and a GEP expression (missing the pointer index) indexing into it, return
4182/// the addressed element of the initializer or null if the index expression is
4183/// invalid.
4184static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004185GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004186 const std::vector<ConstantInt*> &Indices) {
4187 Constant *Init = GV->getInitializer();
4188 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004189 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004190 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4191 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4192 Init = cast<Constant>(CS->getOperand(Idx));
4193 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4194 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4195 Init = cast<Constant>(CA->getOperand(Idx));
4196 } else if (isa<ConstantAggregateZero>(Init)) {
4197 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4198 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004199 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004200 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4201 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004202 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004203 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004204 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004205 }
4206 return 0;
4207 } else {
4208 return 0; // Unknown initializer type
4209 }
4210 }
4211 return Init;
4212}
4213
Dan Gohman46bdfb02009-02-24 18:55:53 +00004214/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4215/// 'icmp op load X, cst', try to see if we can compute the backedge
4216/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004217ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004218ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4219 LoadInst *LI,
4220 Constant *RHS,
4221 const Loop *L,
4222 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004223 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004224
4225 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004226 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004227 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004228 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004229
4230 // Make sure that it is really a constant global we are gepping, with an
4231 // initializer, and make sure the first IDX is really 0.
4232 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004233 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004234 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4235 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004236 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004237
4238 // Okay, we allow one non-constant index into the GEP instruction.
4239 Value *VarIdx = 0;
4240 std::vector<ConstantInt*> Indexes;
4241 unsigned VarIdxNum = 0;
4242 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4243 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4244 Indexes.push_back(CI);
4245 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004246 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004247 VarIdx = GEP->getOperand(i);
4248 VarIdxNum = i-2;
4249 Indexes.push_back(0);
4250 }
4251
4252 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4253 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004254 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004255 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004256
4257 // We can only recognize very limited forms of loop index expressions, in
4258 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004259 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004260 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004261 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4262 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004263 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004264
4265 unsigned MaxSteps = MaxBruteForceIterations;
4266 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004267 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004268 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004269 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004270
4271 // Form the GEP offset.
4272 Indexes[VarIdxNum] = Val;
4273
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004274 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004275 if (Result == 0) break; // Cannot compute!
4276
4277 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004278 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004279 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004280 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004281#if 0
David Greene25e0e872009-12-23 22:18:14 +00004282 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004283 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4284 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004285#endif
4286 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004287 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004288 }
4289 }
Dan Gohman1c343752009-06-27 21:21:31 +00004290 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004291}
4292
4293
Chris Lattner3221ad02004-04-17 22:58:41 +00004294/// CanConstantFold - Return true if we can constant fold an instruction of the
4295/// specified type, assuming that all operands were constants.
4296static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004297 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004298 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4299 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004300
Chris Lattner3221ad02004-04-17 22:58:41 +00004301 if (const CallInst *CI = dyn_cast<CallInst>(I))
4302 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004303 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004304 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004305}
4306
Chris Lattner3221ad02004-04-17 22:58:41 +00004307/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4308/// in the loop that V is derived from. We allow arbitrary operations along the
4309/// way, but the operands of an operation must either be constants or a value
4310/// derived from a constant PHI. If this expression does not fit with these
4311/// constraints, return null.
4312static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4313 // If this is not an instruction, or if this is an instruction outside of the
4314 // loop, it can't be derived from a loop PHI.
4315 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004316 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004317
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004318 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004319 if (L->getHeader() == I->getParent())
4320 return PN;
4321 else
4322 // We don't currently keep track of the control flow needed to evaluate
4323 // PHIs, so we cannot handle PHIs inside of loops.
4324 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004325 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004326
4327 // If we won't be able to constant fold this expression even if the operands
4328 // are constants, return early.
4329 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004330
Chris Lattner3221ad02004-04-17 22:58:41 +00004331 // Otherwise, we can evaluate this instruction if all of its operands are
4332 // constant or derived from a PHI node themselves.
4333 PHINode *PHI = 0;
4334 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004335 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4337 if (P == 0) return 0; // Not evolving from PHI
4338 if (PHI == 0)
4339 PHI = P;
4340 else if (PHI != P)
4341 return 0; // Evolving from multiple different PHIs.
4342 }
4343
4344 // This is a expression evolving from a constant PHI!
4345 return PHI;
4346}
4347
4348/// EvaluateExpression - Given an expression that passes the
4349/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4350/// in the loop has the value PHIVal. If we can't fold this expression for some
4351/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004352static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4353 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004354 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004355 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004356 Instruction *I = cast<Instruction>(V);
4357
Dan Gohman9d4588f2010-06-22 13:15:46 +00004358 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004359
4360 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004361 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004362 if (Operands[i] == 0) return 0;
4363 }
4364
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004365 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004366 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004367 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004368 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004369 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004370}
4371
4372/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4373/// in the header of its containing loop, we know the loop executes a
4374/// constant number of times, and the PHI node is just a recurrence
4375/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004376Constant *
4377ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004378 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004379 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004380 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004381 ConstantEvolutionLoopExitValue.find(PN);
4382 if (I != ConstantEvolutionLoopExitValue.end())
4383 return I->second;
4384
Dan Gohmane0567812010-04-08 23:03:40 +00004385 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004386 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4387
4388 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4389
4390 // Since the loop is canonicalized, the PHI node must have two entries. One
4391 // entry must be a constant (coming in from outside of the loop), and the
4392 // second must be derived from the same PHI.
4393 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4394 Constant *StartCST =
4395 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4396 if (StartCST == 0)
4397 return RetVal = 0; // Must be a constant.
4398
4399 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004400 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4401 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004402 return RetVal = 0; // Not derived from same PHI.
4403
4404 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004405 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004406 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004407
Dan Gohman46bdfb02009-02-24 18:55:53 +00004408 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004409 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004410 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4411 if (IterationNum == NumIterations)
4412 return RetVal = PHIVal; // Got exit value!
4413
4414 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004415 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004416 if (NextPHI == PHIVal)
4417 return RetVal = NextPHI; // Stopped evolving!
4418 if (NextPHI == 0)
4419 return 0; // Couldn't evaluate!
4420 PHIVal = NextPHI;
4421 }
4422}
4423
Dan Gohman07ad19b2009-07-27 16:09:48 +00004424/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004425/// constant number of times (the condition evolves only from constants),
4426/// try to evaluate a few iterations of the loop until we get the exit
4427/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004428/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004429const SCEV *
4430ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4431 Value *Cond,
4432 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004433 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004434 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004435
Dan Gohmanb92654d2010-06-19 14:17:24 +00004436 // If the loop is canonicalized, the PHI will have exactly two entries.
4437 // That's the only form we support here.
4438 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4439
4440 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004441 // second must be derived from the same PHI.
4442 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4443 Constant *StartCST =
4444 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004445 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004446
4447 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004448 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4449 !isa<Constant>(BEValue))
4450 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004451
4452 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4453 // the loop symbolically to determine when the condition gets a value of
4454 // "ExitWhen".
4455 unsigned IterationNum = 0;
4456 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4457 for (Constant *PHIVal = StartCST;
4458 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004459 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004460 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004461
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004462 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004463 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004464
Reid Spencere8019bb2007-03-01 07:25:48 +00004465 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004466 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004467 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004468 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004469
Chris Lattner3221ad02004-04-17 22:58:41 +00004470 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004471 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004472 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004473 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004474 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004475 }
4476
4477 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004478 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004479}
4480
Dan Gohmane7125f42009-09-03 15:00:26 +00004481/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004482/// at the specified scope in the program. The L value specifies a loop
4483/// nest to evaluate the expression at, where null is the top-level or a
4484/// specified loop is immediately inside of the loop.
4485///
4486/// This method can be used to compute the exit value for a variable defined
4487/// in a loop by querying what the value will hold in the parent loop.
4488///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004489/// In the case that a relevant loop exit value cannot be computed, the
4490/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004491const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004492 // Check to see if we've folded this expression at this loop before.
4493 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4494 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4495 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4496 if (!Pair.second)
4497 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004498
Dan Gohman42214892009-08-31 21:15:23 +00004499 // Otherwise compute it.
4500 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004501 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004502 return C;
4503}
4504
4505const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004506 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004507
Nick Lewycky3e630762008-02-20 06:48:22 +00004508 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004509 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004510 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004511 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004512 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004513 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4514 if (PHINode *PN = dyn_cast<PHINode>(I))
4515 if (PN->getParent() == LI->getHeader()) {
4516 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004517 // to see if the loop that contains it has a known backedge-taken
4518 // count. If so, we may be able to force computation of the exit
4519 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004520 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004521 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004522 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004523 // Okay, we know how many times the containing loop executes. If
4524 // this is a constant evolving PHI node, get the final value at
4525 // the specified iteration number.
4526 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004527 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004528 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004529 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004530 }
4531 }
4532
Reid Spencer09906f32006-12-04 21:33:23 +00004533 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004534 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004535 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004536 // result. This is particularly useful for computing loop exit values.
4537 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004538 SmallVector<Constant *, 4> Operands;
4539 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004540 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4541 Value *Op = I->getOperand(i);
4542 if (Constant *C = dyn_cast<Constant>(Op)) {
4543 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004544 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004545 }
Dan Gohman11046452010-06-29 23:43:06 +00004546
4547 // If any of the operands is non-constant and if they are
4548 // non-integer and non-pointer, don't even try to analyze them
4549 // with scev techniques.
4550 if (!isSCEVable(Op->getType()))
4551 return V;
4552
4553 const SCEV *OrigV = getSCEV(Op);
4554 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4555 MadeImprovement |= OrigV != OpV;
4556
4557 Constant *C = 0;
4558 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4559 C = SC->getValue();
4560 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4561 C = dyn_cast<Constant>(SU->getValue());
4562 if (!C) return V;
4563 if (C->getType() != Op->getType())
4564 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4565 Op->getType(),
4566 false),
4567 C, Op->getType());
4568 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004569 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004570
Dan Gohman11046452010-06-29 23:43:06 +00004571 // Check to see if getSCEVAtScope actually made an improvement.
4572 if (MadeImprovement) {
4573 Constant *C = 0;
4574 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4575 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4576 Operands[0], Operands[1], TD);
4577 else
4578 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4579 &Operands[0], Operands.size(), TD);
4580 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004581 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004582 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004583 }
4584 }
4585
4586 // This is some other type of SCEVUnknown, just return it.
4587 return V;
4588 }
4589
Dan Gohman622ed672009-05-04 22:02:23 +00004590 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004591 // Avoid performing the look-up in the common case where the specified
4592 // expression has no loop-variant portions.
4593 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004594 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004596 // Okay, at least one of these operands is loop variant but might be
4597 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004598 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4599 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004600 NewOps.push_back(OpAtScope);
4601
4602 for (++i; i != e; ++i) {
4603 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004604 NewOps.push_back(OpAtScope);
4605 }
4606 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004607 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004608 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004609 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004610 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004611 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004612 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004613 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004614 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004615 }
4616 }
4617 // If we got here, all operands are loop invariant.
4618 return Comm;
4619 }
4620
Dan Gohman622ed672009-05-04 22:02:23 +00004621 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004622 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4623 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004624 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4625 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004626 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004627 }
4628
4629 // If this is a loop recurrence for a loop that does not contain L, then we
4630 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004631 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004632 // First, attempt to evaluate each operand.
4633 // Avoid performing the look-up in the common case where the specified
4634 // expression has no loop-variant portions.
4635 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4636 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4637 if (OpAtScope == AddRec->getOperand(i))
4638 continue;
4639
4640 // Okay, at least one of these operands is loop variant but might be
4641 // foldable. Build a new instance of the folded commutative expression.
4642 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4643 AddRec->op_begin()+i);
4644 NewOps.push_back(OpAtScope);
4645 for (++i; i != e; ++i)
4646 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4647
4648 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4649 break;
4650 }
4651
4652 // If the scope is outside the addrec's loop, evaluate it by using the
4653 // loop exit value of the addrec.
4654 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004655 // To evaluate this recurrence, we need to know how many times the AddRec
4656 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004657 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004658 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004659
Eli Friedmanb42a6262008-08-04 23:49:06 +00004660 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004661 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004662 }
Dan Gohman11046452010-06-29 23:43:06 +00004663
Dan Gohmand594e6f2009-05-24 23:25:42 +00004664 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004665 }
4666
Dan Gohman622ed672009-05-04 22:02:23 +00004667 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004668 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004669 if (Op == Cast->getOperand())
4670 return Cast; // must be loop invariant
4671 return getZeroExtendExpr(Op, Cast->getType());
4672 }
4673
Dan Gohman622ed672009-05-04 22:02:23 +00004674 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004675 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004676 if (Op == Cast->getOperand())
4677 return Cast; // must be loop invariant
4678 return getSignExtendExpr(Op, Cast->getType());
4679 }
4680
Dan Gohman622ed672009-05-04 22:02:23 +00004681 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004682 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004683 if (Op == Cast->getOperand())
4684 return Cast; // must be loop invariant
4685 return getTruncateExpr(Op, Cast->getType());
4686 }
4687
Torok Edwinc23197a2009-07-14 16:55:14 +00004688 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004689 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004690}
4691
Dan Gohman66a7e852009-05-08 20:38:54 +00004692/// getSCEVAtScope - This is a convenience function which does
4693/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004694const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004695 return getSCEVAtScope(getSCEV(V), L);
4696}
4697
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004698/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4699/// following equation:
4700///
4701/// A * X = B (mod N)
4702///
4703/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4704/// A and B isn't important.
4705///
4706/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004707static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004708 ScalarEvolution &SE) {
4709 uint32_t BW = A.getBitWidth();
4710 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4711 assert(A != 0 && "A must be non-zero.");
4712
4713 // 1. D = gcd(A, N)
4714 //
4715 // The gcd of A and N may have only one prime factor: 2. The number of
4716 // trailing zeros in A is its multiplicity
4717 uint32_t Mult2 = A.countTrailingZeros();
4718 // D = 2^Mult2
4719
4720 // 2. Check if B is divisible by D.
4721 //
4722 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4723 // is not less than multiplicity of this prime factor for D.
4724 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004725 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004726
4727 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4728 // modulo (N / D).
4729 //
4730 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4731 // bit width during computations.
4732 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4733 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004734 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004735 APInt I = AD.multiplicativeInverse(Mod);
4736
4737 // 4. Compute the minimum unsigned root of the equation:
4738 // I * (B / D) mod (N / D)
4739 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4740
4741 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4742 // bits.
4743 return SE.getConstant(Result.trunc(BW));
4744}
Chris Lattner53e677a2004-04-02 20:23:17 +00004745
4746/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4747/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4748/// might be the same) or two SCEVCouldNotCompute objects.
4749///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004750static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004751SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004752 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004753 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4754 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4755 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004756
Chris Lattner53e677a2004-04-02 20:23:17 +00004757 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004758 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004759 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004760 return std::make_pair(CNC, CNC);
4761 }
4762
Reid Spencere8019bb2007-03-01 07:25:48 +00004763 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004764 const APInt &L = LC->getValue()->getValue();
4765 const APInt &M = MC->getValue()->getValue();
4766 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004767 APInt Two(BitWidth, 2);
4768 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004769
Dan Gohman64a845e2009-06-24 04:48:43 +00004770 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004771 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004772 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004773 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4774 // The B coefficient is M-N/2
4775 APInt B(M);
4776 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004777
Reid Spencere8019bb2007-03-01 07:25:48 +00004778 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004779 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004780
Reid Spencere8019bb2007-03-01 07:25:48 +00004781 // Compute the B^2-4ac term.
4782 APInt SqrtTerm(B);
4783 SqrtTerm *= B;
4784 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004785
Reid Spencere8019bb2007-03-01 07:25:48 +00004786 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4787 // integer value or else APInt::sqrt() will assert.
4788 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004789
Dan Gohman64a845e2009-06-24 04:48:43 +00004790 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004791 // The divisions must be performed as signed divisions.
4792 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004793 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004794 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004795 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004796 return std::make_pair(CNC, CNC);
4797 }
4798
Owen Andersone922c022009-07-22 00:24:57 +00004799 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004800
4801 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004802 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004803 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004804 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004805
Dan Gohman64a845e2009-06-24 04:48:43 +00004806 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004807 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004808 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004809}
4810
4811/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004812/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004813ScalarEvolution::BackedgeTakenInfo
4814ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004815 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004816 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004817 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004818 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004819 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004820 }
4821
Dan Gohman35738ac2009-05-04 22:30:44 +00004822 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004823 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004824 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004825
Chris Lattner7975e3e2011-01-09 22:39:48 +00004826 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4827 // the quadratic equation to solve it.
4828 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4829 std::pair<const SCEV *,const SCEV *> Roots =
4830 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004831 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4832 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004833 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004834#if 0
David Greene25e0e872009-12-23 22:18:14 +00004835 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004836 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004837#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004838 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004839 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004840 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4841 R1->getValue(),
4842 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004843 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004844 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004845
Chris Lattner53e677a2004-04-02 20:23:17 +00004846 // We can only use this value if the chrec ends up with an exact zero
4847 // value at this index. When solving for "X*X != 5", for example, we
4848 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004849 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004850 if (Val->isZero())
4851 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004852 }
4853 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004854 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004855 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004856
Chris Lattner7975e3e2011-01-09 22:39:48 +00004857 // Otherwise we can only handle this if it is affine.
4858 if (!AddRec->isAffine())
4859 return getCouldNotCompute();
4860
4861 // If this is an affine expression, the execution count of this branch is
4862 // the minimum unsigned root of the following equation:
4863 //
4864 // Start + Step*N = 0 (mod 2^BW)
4865 //
4866 // equivalent to:
4867 //
4868 // Step*N = -Start (mod 2^BW)
4869 //
4870 // where BW is the common bit width of Start and Step.
4871
4872 // Get the initial value for the loop.
4873 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4874 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4875
Chris Lattner53e1d452011-01-09 22:58:47 +00004876 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4877 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4878 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4879 // the stride is. As such, NUW addrec's will always become zero in
4880 // "start / -stride" steps, and we know that the division is exact.
4881 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004882 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004883 return getUDivExpr(Start, getNegativeSCEV(Step));
4884
Chris Lattner7975e3e2011-01-09 22:39:48 +00004885 // For now we handle only constant steps.
4886 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4887 if (StepC == 0)
4888 return getCouldNotCompute();
4889
4890 // First, handle unitary steps.
4891 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4892 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4893
4894 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4895 return Start; // N = Start (as unsigned)
4896
4897 // Then, try to solve the above equation provided that Start is constant.
4898 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4899 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4900 -StartC->getValue()->getValue(),
4901 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004902 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004903}
4904
4905/// HowFarToNonZero - Return the number of times a backedge checking the
4906/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004907/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004908ScalarEvolution::BackedgeTakenInfo
4909ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004910 // Loops that look like: while (X == 0) are very strange indeed. We don't
4911 // handle them yet except for the trivial case. This could be expanded in the
4912 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004913
Chris Lattner53e677a2004-04-02 20:23:17 +00004914 // If the value is a constant, check to see if it is known to be non-zero
4915 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004916 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004917 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004918 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004919 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004920 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004921
Chris Lattner53e677a2004-04-02 20:23:17 +00004922 // We could implement others, but I really doubt anyone writes loops like
4923 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004924 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004925}
4926
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004927/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4928/// (which may not be an immediate predecessor) which has exactly one
4929/// successor from which BB is reachable, or null if no such block is
4930/// found.
4931///
Dan Gohman005752b2010-04-15 16:19:08 +00004932std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004933ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004934 // If the block has a unique predecessor, then there is no path from the
4935 // predecessor to the block that does not go through the direct edge
4936 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004937 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004938 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004939
4940 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004941 // If the header has a unique predecessor outside the loop, it must be
4942 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004943 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004944 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004945
Dan Gohman005752b2010-04-15 16:19:08 +00004946 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004947}
4948
Dan Gohman763bad12009-06-20 00:35:32 +00004949/// HasSameValue - SCEV structural equivalence is usually sufficient for
4950/// testing whether two expressions are equal, however for the purposes of
4951/// looking for a condition guarding a loop, it can be useful to be a little
4952/// more general, since a front-end may have replicated the controlling
4953/// expression.
4954///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004955static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004956 // Quick check to see if they are the same SCEV.
4957 if (A == B) return true;
4958
4959 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4960 // two different instructions with the same value. Check for this case.
4961 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4962 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4963 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4964 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004965 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004966 return true;
4967
4968 // Otherwise assume they may have a different value.
4969 return false;
4970}
4971
Dan Gohmane9796502010-04-24 01:28:42 +00004972/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4973/// predicate Pred. Return true iff any changes were made.
4974///
4975bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4976 const SCEV *&LHS, const SCEV *&RHS) {
4977 bool Changed = false;
4978
4979 // Canonicalize a constant to the right side.
4980 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4981 // Check for both operands constant.
4982 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4983 if (ConstantExpr::getICmp(Pred,
4984 LHSC->getValue(),
4985 RHSC->getValue())->isNullValue())
4986 goto trivially_false;
4987 else
4988 goto trivially_true;
4989 }
4990 // Otherwise swap the operands to put the constant on the right.
4991 std::swap(LHS, RHS);
4992 Pred = ICmpInst::getSwappedPredicate(Pred);
4993 Changed = true;
4994 }
4995
4996 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004997 // addrec's loop, put the addrec on the left. Also make a dominance check,
4998 // as both operands could be addrecs loop-invariant in each other's loop.
4999 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5000 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005001 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005002 std::swap(LHS, RHS);
5003 Pred = ICmpInst::getSwappedPredicate(Pred);
5004 Changed = true;
5005 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005006 }
Dan Gohmane9796502010-04-24 01:28:42 +00005007
5008 // If there's a constant operand, canonicalize comparisons with boundary
5009 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5010 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5011 const APInt &RA = RC->getValue()->getValue();
5012 switch (Pred) {
5013 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5014 case ICmpInst::ICMP_EQ:
5015 case ICmpInst::ICMP_NE:
5016 break;
5017 case ICmpInst::ICMP_UGE:
5018 if ((RA - 1).isMinValue()) {
5019 Pred = ICmpInst::ICMP_NE;
5020 RHS = getConstant(RA - 1);
5021 Changed = true;
5022 break;
5023 }
5024 if (RA.isMaxValue()) {
5025 Pred = ICmpInst::ICMP_EQ;
5026 Changed = true;
5027 break;
5028 }
5029 if (RA.isMinValue()) goto trivially_true;
5030
5031 Pred = ICmpInst::ICMP_UGT;
5032 RHS = getConstant(RA - 1);
5033 Changed = true;
5034 break;
5035 case ICmpInst::ICMP_ULE:
5036 if ((RA + 1).isMaxValue()) {
5037 Pred = ICmpInst::ICMP_NE;
5038 RHS = getConstant(RA + 1);
5039 Changed = true;
5040 break;
5041 }
5042 if (RA.isMinValue()) {
5043 Pred = ICmpInst::ICMP_EQ;
5044 Changed = true;
5045 break;
5046 }
5047 if (RA.isMaxValue()) goto trivially_true;
5048
5049 Pred = ICmpInst::ICMP_ULT;
5050 RHS = getConstant(RA + 1);
5051 Changed = true;
5052 break;
5053 case ICmpInst::ICMP_SGE:
5054 if ((RA - 1).isMinSignedValue()) {
5055 Pred = ICmpInst::ICMP_NE;
5056 RHS = getConstant(RA - 1);
5057 Changed = true;
5058 break;
5059 }
5060 if (RA.isMaxSignedValue()) {
5061 Pred = ICmpInst::ICMP_EQ;
5062 Changed = true;
5063 break;
5064 }
5065 if (RA.isMinSignedValue()) goto trivially_true;
5066
5067 Pred = ICmpInst::ICMP_SGT;
5068 RHS = getConstant(RA - 1);
5069 Changed = true;
5070 break;
5071 case ICmpInst::ICMP_SLE:
5072 if ((RA + 1).isMaxSignedValue()) {
5073 Pred = ICmpInst::ICMP_NE;
5074 RHS = getConstant(RA + 1);
5075 Changed = true;
5076 break;
5077 }
5078 if (RA.isMinSignedValue()) {
5079 Pred = ICmpInst::ICMP_EQ;
5080 Changed = true;
5081 break;
5082 }
5083 if (RA.isMaxSignedValue()) goto trivially_true;
5084
5085 Pred = ICmpInst::ICMP_SLT;
5086 RHS = getConstant(RA + 1);
5087 Changed = true;
5088 break;
5089 case ICmpInst::ICMP_UGT:
5090 if (RA.isMinValue()) {
5091 Pred = ICmpInst::ICMP_NE;
5092 Changed = true;
5093 break;
5094 }
5095 if ((RA + 1).isMaxValue()) {
5096 Pred = ICmpInst::ICMP_EQ;
5097 RHS = getConstant(RA + 1);
5098 Changed = true;
5099 break;
5100 }
5101 if (RA.isMaxValue()) goto trivially_false;
5102 break;
5103 case ICmpInst::ICMP_ULT:
5104 if (RA.isMaxValue()) {
5105 Pred = ICmpInst::ICMP_NE;
5106 Changed = true;
5107 break;
5108 }
5109 if ((RA - 1).isMinValue()) {
5110 Pred = ICmpInst::ICMP_EQ;
5111 RHS = getConstant(RA - 1);
5112 Changed = true;
5113 break;
5114 }
5115 if (RA.isMinValue()) goto trivially_false;
5116 break;
5117 case ICmpInst::ICMP_SGT:
5118 if (RA.isMinSignedValue()) {
5119 Pred = ICmpInst::ICMP_NE;
5120 Changed = true;
5121 break;
5122 }
5123 if ((RA + 1).isMaxSignedValue()) {
5124 Pred = ICmpInst::ICMP_EQ;
5125 RHS = getConstant(RA + 1);
5126 Changed = true;
5127 break;
5128 }
5129 if (RA.isMaxSignedValue()) goto trivially_false;
5130 break;
5131 case ICmpInst::ICMP_SLT:
5132 if (RA.isMaxSignedValue()) {
5133 Pred = ICmpInst::ICMP_NE;
5134 Changed = true;
5135 break;
5136 }
5137 if ((RA - 1).isMinSignedValue()) {
5138 Pred = ICmpInst::ICMP_EQ;
5139 RHS = getConstant(RA - 1);
5140 Changed = true;
5141 break;
5142 }
5143 if (RA.isMinSignedValue()) goto trivially_false;
5144 break;
5145 }
5146 }
5147
5148 // Check for obvious equality.
5149 if (HasSameValue(LHS, RHS)) {
5150 if (ICmpInst::isTrueWhenEqual(Pred))
5151 goto trivially_true;
5152 if (ICmpInst::isFalseWhenEqual(Pred))
5153 goto trivially_false;
5154 }
5155
Dan Gohman03557dc2010-05-03 16:35:17 +00005156 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5157 // adding or subtracting 1 from one of the operands.
5158 switch (Pred) {
5159 case ICmpInst::ICMP_SLE:
5160 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5161 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5162 /*HasNUW=*/false, /*HasNSW=*/true);
5163 Pred = ICmpInst::ICMP_SLT;
5164 Changed = true;
5165 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005166 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005167 /*HasNUW=*/false, /*HasNSW=*/true);
5168 Pred = ICmpInst::ICMP_SLT;
5169 Changed = true;
5170 }
5171 break;
5172 case ICmpInst::ICMP_SGE:
5173 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005174 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005175 /*HasNUW=*/false, /*HasNSW=*/true);
5176 Pred = ICmpInst::ICMP_SGT;
5177 Changed = true;
5178 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5179 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5180 /*HasNUW=*/false, /*HasNSW=*/true);
5181 Pred = ICmpInst::ICMP_SGT;
5182 Changed = true;
5183 }
5184 break;
5185 case ICmpInst::ICMP_ULE:
5186 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005187 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005188 /*HasNUW=*/true, /*HasNSW=*/false);
5189 Pred = ICmpInst::ICMP_ULT;
5190 Changed = true;
5191 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005192 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005193 /*HasNUW=*/true, /*HasNSW=*/false);
5194 Pred = ICmpInst::ICMP_ULT;
5195 Changed = true;
5196 }
5197 break;
5198 case ICmpInst::ICMP_UGE:
5199 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005200 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005201 /*HasNUW=*/true, /*HasNSW=*/false);
5202 Pred = ICmpInst::ICMP_UGT;
5203 Changed = true;
5204 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005205 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005206 /*HasNUW=*/true, /*HasNSW=*/false);
5207 Pred = ICmpInst::ICMP_UGT;
5208 Changed = true;
5209 }
5210 break;
5211 default:
5212 break;
5213 }
5214
Dan Gohmane9796502010-04-24 01:28:42 +00005215 // TODO: More simplifications are possible here.
5216
5217 return Changed;
5218
5219trivially_true:
5220 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005221 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005222 Pred = ICmpInst::ICMP_EQ;
5223 return true;
5224
5225trivially_false:
5226 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005227 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005228 Pred = ICmpInst::ICMP_NE;
5229 return true;
5230}
5231
Dan Gohman85b05a22009-07-13 21:35:55 +00005232bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5233 return getSignedRange(S).getSignedMax().isNegative();
5234}
5235
5236bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5237 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5238}
5239
5240bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5241 return !getSignedRange(S).getSignedMin().isNegative();
5242}
5243
5244bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5245 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5246}
5247
5248bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5249 return isKnownNegative(S) || isKnownPositive(S);
5250}
5251
5252bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5253 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005254 // Canonicalize the inputs first.
5255 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5256
Dan Gohman53c66ea2010-04-11 22:16:48 +00005257 // If LHS or RHS is an addrec, check to see if the condition is true in
5258 // every iteration of the loop.
5259 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5260 if (isLoopEntryGuardedByCond(
5261 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5262 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005263 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005264 return true;
5265 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5266 if (isLoopEntryGuardedByCond(
5267 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5268 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005269 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005270 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005271
Dan Gohman53c66ea2010-04-11 22:16:48 +00005272 // Otherwise see what can be done with known constant ranges.
5273 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5274}
5275
5276bool
5277ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5278 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005279 if (HasSameValue(LHS, RHS))
5280 return ICmpInst::isTrueWhenEqual(Pred);
5281
Dan Gohman53c66ea2010-04-11 22:16:48 +00005282 // This code is split out from isKnownPredicate because it is called from
5283 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005284 switch (Pred) {
5285 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005286 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005287 break;
5288 case ICmpInst::ICMP_SGT:
5289 Pred = ICmpInst::ICMP_SLT;
5290 std::swap(LHS, RHS);
5291 case ICmpInst::ICMP_SLT: {
5292 ConstantRange LHSRange = getSignedRange(LHS);
5293 ConstantRange RHSRange = getSignedRange(RHS);
5294 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5295 return true;
5296 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5297 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005298 break;
5299 }
5300 case ICmpInst::ICMP_SGE:
5301 Pred = ICmpInst::ICMP_SLE;
5302 std::swap(LHS, RHS);
5303 case ICmpInst::ICMP_SLE: {
5304 ConstantRange LHSRange = getSignedRange(LHS);
5305 ConstantRange RHSRange = getSignedRange(RHS);
5306 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5307 return true;
5308 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5309 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005310 break;
5311 }
5312 case ICmpInst::ICMP_UGT:
5313 Pred = ICmpInst::ICMP_ULT;
5314 std::swap(LHS, RHS);
5315 case ICmpInst::ICMP_ULT: {
5316 ConstantRange LHSRange = getUnsignedRange(LHS);
5317 ConstantRange RHSRange = getUnsignedRange(RHS);
5318 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5319 return true;
5320 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5321 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005322 break;
5323 }
5324 case ICmpInst::ICMP_UGE:
5325 Pred = ICmpInst::ICMP_ULE;
5326 std::swap(LHS, RHS);
5327 case ICmpInst::ICMP_ULE: {
5328 ConstantRange LHSRange = getUnsignedRange(LHS);
5329 ConstantRange RHSRange = getUnsignedRange(RHS);
5330 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5331 return true;
5332 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5333 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005334 break;
5335 }
5336 case ICmpInst::ICMP_NE: {
5337 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5338 return true;
5339 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5340 return true;
5341
5342 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5343 if (isKnownNonZero(Diff))
5344 return true;
5345 break;
5346 }
5347 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005348 // The check at the top of the function catches the case where
5349 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005350 break;
5351 }
5352 return false;
5353}
5354
5355/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5356/// protected by a conditional between LHS and RHS. This is used to
5357/// to eliminate casts.
5358bool
5359ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5360 ICmpInst::Predicate Pred,
5361 const SCEV *LHS, const SCEV *RHS) {
5362 // Interpret a null as meaning no loop, where there is obviously no guard
5363 // (interprocedural conditions notwithstanding).
5364 if (!L) return true;
5365
5366 BasicBlock *Latch = L->getLoopLatch();
5367 if (!Latch)
5368 return false;
5369
5370 BranchInst *LoopContinuePredicate =
5371 dyn_cast<BranchInst>(Latch->getTerminator());
5372 if (!LoopContinuePredicate ||
5373 LoopContinuePredicate->isUnconditional())
5374 return false;
5375
Dan Gohmanaf08a362010-08-10 23:46:30 +00005376 return isImpliedCond(Pred, LHS, RHS,
5377 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005378 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005379}
5380
Dan Gohman3948d0b2010-04-11 19:27:13 +00005381/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005382/// by a conditional between LHS and RHS. This is used to help avoid max
5383/// expressions in loop trip counts, and to eliminate casts.
5384bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005385ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5386 ICmpInst::Predicate Pred,
5387 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005388 // Interpret a null as meaning no loop, where there is obviously no guard
5389 // (interprocedural conditions notwithstanding).
5390 if (!L) return false;
5391
Dan Gohman859b4822009-05-18 15:36:09 +00005392 // Starting at the loop predecessor, climb up the predecessor chain, as long
5393 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005394 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005395 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005396 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005397 Pair.first;
5398 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005399
5400 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005401 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005402 if (!LoopEntryPredicate ||
5403 LoopEntryPredicate->isUnconditional())
5404 continue;
5405
Dan Gohmanaf08a362010-08-10 23:46:30 +00005406 if (isImpliedCond(Pred, LHS, RHS,
5407 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005408 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005409 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005410 }
5411
Dan Gohman38372182008-08-12 20:17:31 +00005412 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005413}
5414
Dan Gohman0f4b2852009-07-21 23:03:19 +00005415/// isImpliedCond - Test whether the condition described by Pred, LHS,
5416/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005417bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005418 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005419 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005420 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005421 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005422 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005423 if (BO->getOpcode() == Instruction::And) {
5424 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005425 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5426 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005427 } else if (BO->getOpcode() == Instruction::Or) {
5428 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005429 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5430 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005431 }
5432 }
5433
Dan Gohmanaf08a362010-08-10 23:46:30 +00005434 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005435 if (!ICI) return false;
5436
Dan Gohman85b05a22009-07-13 21:35:55 +00005437 // Bail if the ICmp's operands' types are wider than the needed type
5438 // before attempting to call getSCEV on them. This avoids infinite
5439 // recursion, since the analysis of widening casts can require loop
5440 // exit condition information for overflow checking, which would
5441 // lead back here.
5442 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005443 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005444 return false;
5445
Dan Gohman0f4b2852009-07-21 23:03:19 +00005446 // Now that we found a conditional branch that dominates the loop, check to
5447 // see if it is the comparison we are looking for.
5448 ICmpInst::Predicate FoundPred;
5449 if (Inverse)
5450 FoundPred = ICI->getInversePredicate();
5451 else
5452 FoundPred = ICI->getPredicate();
5453
5454 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5455 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005456
5457 // Balance the types. The case where FoundLHS' type is wider than
5458 // LHS' type is checked for above.
5459 if (getTypeSizeInBits(LHS->getType()) >
5460 getTypeSizeInBits(FoundLHS->getType())) {
5461 if (CmpInst::isSigned(Pred)) {
5462 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5463 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5464 } else {
5465 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5466 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5467 }
5468 }
5469
Dan Gohman0f4b2852009-07-21 23:03:19 +00005470 // Canonicalize the query to match the way instcombine will have
5471 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005472 if (SimplifyICmpOperands(Pred, LHS, RHS))
5473 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005474 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005475 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5476 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005477 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005478
5479 // Check to see if we can make the LHS or RHS match.
5480 if (LHS == FoundRHS || RHS == FoundLHS) {
5481 if (isa<SCEVConstant>(RHS)) {
5482 std::swap(FoundLHS, FoundRHS);
5483 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5484 } else {
5485 std::swap(LHS, RHS);
5486 Pred = ICmpInst::getSwappedPredicate(Pred);
5487 }
5488 }
5489
5490 // Check whether the found predicate is the same as the desired predicate.
5491 if (FoundPred == Pred)
5492 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5493
5494 // Check whether swapping the found predicate makes it the same as the
5495 // desired predicate.
5496 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5497 if (isa<SCEVConstant>(RHS))
5498 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5499 else
5500 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5501 RHS, LHS, FoundLHS, FoundRHS);
5502 }
5503
5504 // Check whether the actual condition is beyond sufficient.
5505 if (FoundPred == ICmpInst::ICMP_EQ)
5506 if (ICmpInst::isTrueWhenEqual(Pred))
5507 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5508 return true;
5509 if (Pred == ICmpInst::ICMP_NE)
5510 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5511 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5512 return true;
5513
5514 // Otherwise assume the worst.
5515 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005516}
5517
Dan Gohman0f4b2852009-07-21 23:03:19 +00005518/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005519/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005520/// and FoundRHS is true.
5521bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5522 const SCEV *LHS, const SCEV *RHS,
5523 const SCEV *FoundLHS,
5524 const SCEV *FoundRHS) {
5525 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5526 FoundLHS, FoundRHS) ||
5527 // ~x < ~y --> x > y
5528 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5529 getNotSCEV(FoundRHS),
5530 getNotSCEV(FoundLHS));
5531}
5532
5533/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005534/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005535/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005536bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005537ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5538 const SCEV *LHS, const SCEV *RHS,
5539 const SCEV *FoundLHS,
5540 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005541 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005542 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5543 case ICmpInst::ICMP_EQ:
5544 case ICmpInst::ICMP_NE:
5545 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5546 return true;
5547 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005548 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005549 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005550 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5551 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005552 return true;
5553 break;
5554 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005555 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005556 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5557 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005558 return true;
5559 break;
5560 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005561 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005562 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5563 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005564 return true;
5565 break;
5566 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005567 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005568 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5569 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005570 return true;
5571 break;
5572 }
5573
5574 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005575}
5576
Dan Gohman51f53b72009-06-21 23:46:38 +00005577/// getBECount - Subtract the end and start values and divide by the step,
5578/// rounding up, to get the number of times the backedge is executed. Return
5579/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005580const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005581 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005582 const SCEV *Step,
5583 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005584 assert(!isKnownNegative(Step) &&
5585 "This code doesn't handle negative strides yet!");
5586
Dan Gohman51f53b72009-06-21 23:46:38 +00005587 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005588 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005589 const SCEV *Diff = getMinusSCEV(End, Start);
5590 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005591
5592 // Add an adjustment to the difference between End and Start so that
5593 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005594 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005595
Dan Gohman1f96e672009-09-17 18:05:20 +00005596 if (!NoWrap) {
5597 // Check Add for unsigned overflow.
5598 // TODO: More sophisticated things could be done here.
5599 const Type *WideTy = IntegerType::get(getContext(),
5600 getTypeSizeInBits(Ty) + 1);
5601 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5602 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5603 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5604 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5605 return getCouldNotCompute();
5606 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005607
5608 return getUDivExpr(Add, Step);
5609}
5610
Chris Lattnerdb25de42005-08-15 23:33:51 +00005611/// HowManyLessThans - Return the number of times a backedge containing the
5612/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005613/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005614ScalarEvolution::BackedgeTakenInfo
5615ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5616 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005617 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005618 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005619
Dan Gohman35738ac2009-05-04 22:30:44 +00005620 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005621 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005622 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005623
Dan Gohman1f96e672009-09-17 18:05:20 +00005624 // Check to see if we have a flag which makes analysis easy.
5625 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5626 AddRec->hasNoUnsignedWrap();
5627
Chris Lattnerdb25de42005-08-15 23:33:51 +00005628 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005629 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005630 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005631
Dan Gohman52fddd32010-01-26 04:40:18 +00005632 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005633 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005634 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005635 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005636 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005637 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005638 // value and past the maximum value for its type in a single step.
5639 // Note that it's not sufficient to check NoWrap here, because even
5640 // though the value after a wrap is undefined, it's not undefined
5641 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005642 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005643 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005644 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005645 if (isSigned) {
5646 APInt Max = APInt::getSignedMaxValue(BitWidth);
5647 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5648 .slt(getSignedRange(RHS).getSignedMax()))
5649 return getCouldNotCompute();
5650 } else {
5651 APInt Max = APInt::getMaxValue(BitWidth);
5652 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5653 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5654 return getCouldNotCompute();
5655 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005656 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005657 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005658 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005659
Dan Gohmana1af7572009-04-30 20:47:05 +00005660 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5661 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5662 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005663 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005664
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005665 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005666 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005667
Dan Gohmana1af7572009-04-30 20:47:05 +00005668 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005669 const SCEV *MinStart = getConstant(isSigned ?
5670 getSignedRange(Start).getSignedMin() :
5671 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005672
Dan Gohmana1af7572009-04-30 20:47:05 +00005673 // If we know that the condition is true in order to enter the loop,
5674 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005675 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5676 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005677 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005678 if (!isLoopEntryGuardedByCond(L,
5679 isSigned ? ICmpInst::ICMP_SLT :
5680 ICmpInst::ICMP_ULT,
5681 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005682 End = isSigned ? getSMaxExpr(RHS, Start)
5683 : getUMaxExpr(RHS, Start);
5684
5685 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005686 const SCEV *MaxEnd = getConstant(isSigned ?
5687 getSignedRange(End).getSignedMax() :
5688 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005689
Dan Gohman52fddd32010-01-26 04:40:18 +00005690 // If MaxEnd is within a step of the maximum integer value in its type,
5691 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005692 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005693 // compute the correct value.
5694 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005695 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005696 MaxEnd = isSigned ?
5697 getSMinExpr(MaxEnd,
5698 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5699 StepMinusOne)) :
5700 getUMinExpr(MaxEnd,
5701 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5702 StepMinusOne));
5703
Dan Gohmana1af7572009-04-30 20:47:05 +00005704 // Finally, we subtract these two values and divide, rounding up, to get
5705 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005706 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005707
5708 // The maximum backedge count is similar, except using the minimum start
5709 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005710 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005711
5712 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005713 }
5714
Dan Gohman1c343752009-06-27 21:21:31 +00005715 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005716}
5717
Chris Lattner53e677a2004-04-02 20:23:17 +00005718/// getNumIterationsInRange - Return the number of iterations of this loop that
5719/// produce values in the specified constant range. Another way of looking at
5720/// this is that it returns the first iteration number where the value is not in
5721/// the condition, thus computing the exit count. If the iteration count can't
5722/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005723const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005724 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005725 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005726 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005727
5728 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005729 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005730 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005731 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005732 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005733 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005734 if (const SCEVAddRecExpr *ShiftedAddRec =
5735 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005736 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005737 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005738 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005739 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005740 }
5741
5742 // The only time we can solve this is when we have all constant indices.
5743 // Otherwise, we cannot determine the overflow conditions.
5744 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5745 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005746 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005747
5748
5749 // Okay at this point we know that all elements of the chrec are constants and
5750 // that the start element is zero.
5751
5752 // First check to see if the range contains zero. If not, the first
5753 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005754 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005755 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005756 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005757
Chris Lattner53e677a2004-04-02 20:23:17 +00005758 if (isAffine()) {
5759 // If this is an affine expression then we have this situation:
5760 // Solve {0,+,A} in Range === Ax in Range
5761
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005762 // We know that zero is in the range. If A is positive then we know that
5763 // the upper value of the range must be the first possible exit value.
5764 // If A is negative then the lower of the range is the last possible loop
5765 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005766 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005767 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5768 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005769
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005770 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005771 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005772 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005773
5774 // Evaluate at the exit value. If we really did fall out of the valid
5775 // range, then we computed our trip count, otherwise wrap around or other
5776 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005777 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005778 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005779 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005780
5781 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005782 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005783 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005784 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005785 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005786 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005787 } else if (isQuadratic()) {
5788 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5789 // quadratic equation to solve it. To do this, we must frame our problem in
5790 // terms of figuring out when zero is crossed, instead of when
5791 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005792 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005793 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005794 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005795
5796 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005797 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005798 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005799 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5800 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005801 if (R1) {
5802 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005803 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005804 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005805 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005806 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005807 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005808
Chris Lattner53e677a2004-04-02 20:23:17 +00005809 // Make sure the root is not off by one. The returned iteration should
5810 // not be in the range, but the previous one should be. When solving
5811 // for "X*X < 5", for example, we should not return a root of 2.
5812 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005813 R1->getValue(),
5814 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005815 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005816 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005817 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005818 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005819
Dan Gohman246b2562007-10-22 18:31:58 +00005820 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005821 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005822 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005823 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005824 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005825
Chris Lattner53e677a2004-04-02 20:23:17 +00005826 // If R1 was not in the range, then it is a good return value. Make
5827 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005828 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005829 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005830 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005831 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005832 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005833 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005834 }
5835 }
5836 }
5837
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005838 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005839}
5840
5841
5842
5843//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005844// SCEVCallbackVH Class Implementation
5845//===----------------------------------------------------------------------===//
5846
Dan Gohman1959b752009-05-19 19:22:47 +00005847void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005848 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005849 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5850 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005851 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005852 // this now dangles!
5853}
5854
Dan Gohman81f91212010-07-28 01:09:07 +00005855void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005856 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005857
Dan Gohman35738ac2009-05-04 22:30:44 +00005858 // Forget all the expressions associated with users of the old value,
5859 // so that future queries will recompute the expressions using the new
5860 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005861 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005862 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005863 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005864 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5865 UI != UE; ++UI)
5866 Worklist.push_back(*UI);
5867 while (!Worklist.empty()) {
5868 User *U = Worklist.pop_back_val();
5869 // Deleting the Old value will cause this to dangle. Postpone
5870 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005871 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005872 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005873 if (!Visited.insert(U))
5874 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005875 if (PHINode *PN = dyn_cast<PHINode>(U))
5876 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005877 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005878 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5879 UI != UE; ++UI)
5880 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005881 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005882 // Delete the Old value.
5883 if (PHINode *PN = dyn_cast<PHINode>(Old))
5884 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005885 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005886 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005887}
5888
Dan Gohman1959b752009-05-19 19:22:47 +00005889ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005890 : CallbackVH(V), SE(se) {}
5891
5892//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005893// ScalarEvolution Class Implementation
5894//===----------------------------------------------------------------------===//
5895
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005896ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005897 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005898 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005899}
5900
Chris Lattner53e677a2004-04-02 20:23:17 +00005901bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005902 this->F = &F;
5903 LI = &getAnalysis<LoopInfo>();
5904 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005905 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005906 return false;
5907}
5908
5909void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005910 // Iterate through all the SCEVUnknown instances and call their
5911 // destructors, so that they release their references to their values.
5912 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5913 U->~SCEVUnknown();
5914 FirstUnknown = 0;
5915
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005916 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005917 BackedgeTakenCounts.clear();
5918 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005919 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005920 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005921 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005922 UnsignedRanges.clear();
5923 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005924 UniqueSCEVs.clear();
5925 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005926}
5927
5928void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5929 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005930 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005931 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005932}
5933
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005934bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005935 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005936}
5937
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005938static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005939 const Loop *L) {
5940 // Print all inner loops first
5941 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5942 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005943
Dan Gohman30733292010-01-09 18:17:45 +00005944 OS << "Loop ";
5945 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5946 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005947
Dan Gohman5d984912009-12-18 01:14:11 +00005948 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005949 L->getExitBlocks(ExitBlocks);
5950 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005951 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005952
Dan Gohman46bdfb02009-02-24 18:55:53 +00005953 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5954 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005955 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005956 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005957 }
5958
Dan Gohman30733292010-01-09 18:17:45 +00005959 OS << "\n"
5960 "Loop ";
5961 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5962 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005963
5964 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5965 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5966 } else {
5967 OS << "Unpredictable max backedge-taken count. ";
5968 }
5969
5970 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005971}
5972
Dan Gohman5d984912009-12-18 01:14:11 +00005973void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005974 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005975 // out SCEV values of all instructions that are interesting. Doing
5976 // this potentially causes it to create new SCEV objects though,
5977 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005978 // observable from outside the class though, so casting away the
5979 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005980 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005981
Dan Gohman30733292010-01-09 18:17:45 +00005982 OS << "Classifying expressions for: ";
5983 WriteAsOperand(OS, F, /*PrintType=*/false);
5984 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005985 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005986 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005987 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005988 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005989 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005990 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005991
Dan Gohman0c689c52009-06-19 17:49:54 +00005992 const Loop *L = LI->getLoopFor((*I).getParent());
5993
Dan Gohman0bba49c2009-07-07 17:06:11 +00005994 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005995 if (AtUse != SV) {
5996 OS << " --> ";
5997 AtUse->print(OS);
5998 }
5999
6000 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006001 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006002 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006003 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006004 OS << "<<Unknown>>";
6005 } else {
6006 OS << *ExitValue;
6007 }
6008 }
6009
Chris Lattner53e677a2004-04-02 20:23:17 +00006010 OS << "\n";
6011 }
6012
Dan Gohman30733292010-01-09 18:17:45 +00006013 OS << "Determining loop execution counts for: ";
6014 WriteAsOperand(OS, F, /*PrintType=*/false);
6015 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006016 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6017 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006018}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006019
Dan Gohman714b5292010-11-17 23:21:44 +00006020ScalarEvolution::LoopDisposition
6021ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6022 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6023 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6024 Values.insert(std::make_pair(L, LoopVariant));
6025 if (!Pair.second)
6026 return Pair.first->second;
6027
6028 LoopDisposition D = computeLoopDisposition(S, L);
6029 return LoopDispositions[S][L] = D;
6030}
6031
6032ScalarEvolution::LoopDisposition
6033ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006034 switch (S->getSCEVType()) {
6035 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006036 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006037 case scTruncate:
6038 case scZeroExtend:
6039 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006040 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006041 case scAddRecExpr: {
6042 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6043
Dan Gohman714b5292010-11-17 23:21:44 +00006044 // If L is the addrec's loop, it's computable.
6045 if (AR->getLoop() == L)
6046 return LoopComputable;
6047
Dan Gohman17ead4f2010-11-17 21:23:15 +00006048 // Add recurrences are never invariant in the function-body (null loop).
6049 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006050 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006051
6052 // This recurrence is variant w.r.t. L if L contains AR's loop.
6053 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006054 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006055
6056 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6057 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006058 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006059
6060 // This recurrence is variant w.r.t. L if any of its operands
6061 // are variant.
6062 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6063 I != E; ++I)
6064 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006065 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006066
6067 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006068 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006069 }
6070 case scAddExpr:
6071 case scMulExpr:
6072 case scUMaxExpr:
6073 case scSMaxExpr: {
6074 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006075 bool HasVarying = false;
6076 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6077 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006078 LoopDisposition D = getLoopDisposition(*I, L);
6079 if (D == LoopVariant)
6080 return LoopVariant;
6081 if (D == LoopComputable)
6082 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006083 }
Dan Gohman714b5292010-11-17 23:21:44 +00006084 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006085 }
6086 case scUDivExpr: {
6087 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006088 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6089 if (LD == LoopVariant)
6090 return LoopVariant;
6091 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6092 if (RD == LoopVariant)
6093 return LoopVariant;
6094 return (LD == LoopInvariant && RD == LoopInvariant) ?
6095 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006096 }
6097 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006098 // All non-instruction values are loop invariant. All instructions are loop
6099 // invariant if they are not contained in the specified loop.
6100 // Instructions are never considered invariant in the function body
6101 // (null loop) because they are defined within the "loop".
6102 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6103 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6104 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006105 case scCouldNotCompute:
6106 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006107 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006108 default: break;
6109 }
6110 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006111 return LoopVariant;
6112}
6113
6114bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6115 return getLoopDisposition(S, L) == LoopInvariant;
6116}
6117
6118bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6119 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006120}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006121
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006122ScalarEvolution::BlockDisposition
6123ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6124 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6125 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6126 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6127 if (!Pair.second)
6128 return Pair.first->second;
6129
6130 BlockDisposition D = computeBlockDisposition(S, BB);
6131 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006132}
6133
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006134ScalarEvolution::BlockDisposition
6135ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006136 switch (S->getSCEVType()) {
6137 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006138 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006139 case scTruncate:
6140 case scZeroExtend:
6141 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006142 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006143 case scAddRecExpr: {
6144 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006145 // to test for proper dominance too, because the instruction which
6146 // produces the addrec's value is a PHI, and a PHI effectively properly
6147 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006148 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6149 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006150 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006151 }
6152 // FALL THROUGH into SCEVNAryExpr handling.
6153 case scAddExpr:
6154 case scMulExpr:
6155 case scUMaxExpr:
6156 case scSMaxExpr: {
6157 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006158 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006159 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006160 I != E; ++I) {
6161 BlockDisposition D = getBlockDisposition(*I, BB);
6162 if (D == DoesNotDominateBlock)
6163 return DoesNotDominateBlock;
6164 if (D == DominatesBlock)
6165 Proper = false;
6166 }
6167 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006168 }
6169 case scUDivExpr: {
6170 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006171 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6172 BlockDisposition LD = getBlockDisposition(LHS, BB);
6173 if (LD == DoesNotDominateBlock)
6174 return DoesNotDominateBlock;
6175 BlockDisposition RD = getBlockDisposition(RHS, BB);
6176 if (RD == DoesNotDominateBlock)
6177 return DoesNotDominateBlock;
6178 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6179 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006180 }
6181 case scUnknown:
6182 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006183 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6184 if (I->getParent() == BB)
6185 return DominatesBlock;
6186 if (DT->properlyDominates(I->getParent(), BB))
6187 return ProperlyDominatesBlock;
6188 return DoesNotDominateBlock;
6189 }
6190 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006191 case scCouldNotCompute:
6192 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006193 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006194 default: break;
6195 }
6196 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006197 return DoesNotDominateBlock;
6198}
6199
6200bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6201 return getBlockDisposition(S, BB) >= DominatesBlock;
6202}
6203
6204bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6205 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006206}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006207
6208bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6209 switch (S->getSCEVType()) {
6210 case scConstant:
6211 return false;
6212 case scTruncate:
6213 case scZeroExtend:
6214 case scSignExtend: {
6215 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6216 const SCEV *CastOp = Cast->getOperand();
6217 return Op == CastOp || hasOperand(CastOp, Op);
6218 }
6219 case scAddRecExpr:
6220 case scAddExpr:
6221 case scMulExpr:
6222 case scUMaxExpr:
6223 case scSMaxExpr: {
6224 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6225 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6226 I != E; ++I) {
6227 const SCEV *NAryOp = *I;
6228 if (NAryOp == Op || hasOperand(NAryOp, Op))
6229 return true;
6230 }
6231 return false;
6232 }
6233 case scUDivExpr: {
6234 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6235 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6236 return LHS == Op || hasOperand(LHS, Op) ||
6237 RHS == Op || hasOperand(RHS, Op);
6238 }
6239 case scUnknown:
6240 return false;
6241 case scCouldNotCompute:
6242 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6243 return false;
6244 default: break;
6245 }
6246 llvm_unreachable("Unknown SCEV kind!");
6247 return false;
6248}
Dan Gohman56a75682010-11-17 23:28:48 +00006249
6250void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6251 ValuesAtScopes.erase(S);
6252 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006253 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006254 UnsignedRanges.erase(S);
6255 SignedRanges.erase(S);
6256}