blob: 3cf2815e7bc6d712895110960ef5d2addfb09c7e [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
Andrew Trick635f7182011-03-09 17:23:39 +0000206
Dan Gohman4ce32db2010-11-17 22:27:42 +0000207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
Andrew Trick635f7182011-03-09 17:23:39 +0000215
Dan Gohman4ce32db2010-11-17 22:27:42 +0000216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
831 }
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000834 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000835 }
836
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000837 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
838 // eliminate all the truncates.
839 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
840 SmallVector<const SCEV *, 4> Operands;
841 bool hasTrunc = false;
842 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
843 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
844 hasTrunc = isa<SCEVTruncateExpr>(S);
845 Operands.push_back(S);
846 }
847 if (!hasTrunc)
848 return getMulExpr(Operands, false, false);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000849 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000850 }
851
Dan Gohman6864db62009-06-18 16:24:47 +0000852 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000853 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000854 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000855 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000856 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
857 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000858 }
859
Dan Gohmanf53462d2010-07-15 20:02:11 +0000860 // As a special case, fold trunc(undef) to undef. We don't want to
861 // know too much about SCEVUnknowns, but this special case is handy
862 // and harmless.
863 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
864 if (isa<UndefValue>(U->getValue()))
865 return getSCEV(UndefValue::get(Ty));
866
Dan Gohman420ab912010-06-25 18:47:08 +0000867 // The cast wasn't folded; create an explicit cast node. We can reuse
868 // the existing insert position since if we get here, we won't have
869 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000870 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
871 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000872 UniqueSCEVs.InsertNode(S, IP);
873 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000874}
875
Dan Gohman0bba49c2009-07-07 17:06:11 +0000876const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000877 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000878 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000879 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000880 assert(isSCEVable(Ty) &&
881 "This is not a conversion to a SCEVable type!");
882 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000883
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000884 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000885 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
886 return getConstant(
887 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
888 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000889
Dan Gohman20900ca2009-04-22 16:20:48 +0000890 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000891 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000892 return getZeroExtendExpr(SZ->getOperand(), Ty);
893
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000894 // Before doing any expensive analysis, check to see if we've already
895 // computed a SCEV for this Op and Ty.
896 FoldingSetNodeID ID;
897 ID.AddInteger(scZeroExtend);
898 ID.AddPointer(Op);
899 ID.AddPointer(Ty);
900 void *IP = 0;
901 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
902
Nick Lewycky630d85a2011-01-23 06:20:19 +0000903 // zext(trunc(x)) --> zext(x) or x or trunc(x)
904 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
905 // It's possible the bits taken off by the truncate were all zero bits. If
906 // so, we should be able to simplify this further.
907 const SCEV *X = ST->getOperand();
908 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000909 unsigned TruncBits = getTypeSizeInBits(ST->getType());
910 unsigned NewBits = getTypeSizeInBits(Ty);
911 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000912 CR.zextOrTrunc(NewBits)))
913 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000914 }
915
Dan Gohman01ecca22009-04-27 20:16:15 +0000916 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000917 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000918 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000919 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000920 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000921 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000922 const SCEV *Start = AR->getStart();
923 const SCEV *Step = AR->getStepRecurrence(*this);
924 unsigned BitWidth = getTypeSizeInBits(AR->getType());
925 const Loop *L = AR->getLoop();
926
Dan Gohmaneb490a72009-07-25 01:22:26 +0000927 // If we have special knowledge that this addrec won't overflow,
928 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000929 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000930 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
931 getZeroExtendExpr(Step, Ty),
932 L);
933
Dan Gohman01ecca22009-04-27 20:16:15 +0000934 // Check whether the backedge-taken count is SCEVCouldNotCompute.
935 // Note that this serves two purposes: It filters out loops that are
936 // simply not analyzable, and it covers the case where this code is
937 // being called from within backedge-taken count analysis, such that
938 // attempting to ask for the backedge-taken count would likely result
939 // in infinite recursion. In the later case, the analysis code will
940 // cope with a conservative value, and it will take care to purge
941 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000942 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000943 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000944 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000945 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000946
947 // Check whether the backedge-taken count can be losslessly casted to
948 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000949 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000950 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000951 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000952 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
953 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000954 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000955 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000956 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000957 const SCEV *Add = getAddExpr(Start, ZMul);
958 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000959 getAddExpr(getZeroExtendExpr(Start, WideTy),
960 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
961 getZeroExtendExpr(Step, WideTy)));
962 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000963 // Return the expression with the addrec on the outside.
964 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000966 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000967
968 // Similar to above, only this time treat the step value as signed.
969 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000970 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000971 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 OperandExtendedAdd =
973 getAddExpr(getZeroExtendExpr(Start, WideTy),
974 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
975 getSignExtendExpr(Step, WideTy)));
976 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000977 // Return the expression with the addrec on the outside.
978 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
979 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000980 L);
981 }
982
983 // If the backedge is guarded by a comparison with the pre-inc value
984 // the addrec is safe. Also, if the entry is guarded by a comparison
985 // with the start value and the backedge is guarded by a comparison
986 // with the post-inc value, the addrec is safe.
987 if (isKnownPositive(Step)) {
988 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
989 getUnsignedRange(Step).getUnsignedMax());
990 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000991 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000992 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
993 AR->getPostIncExpr(*this), N)))
994 // Return the expression with the addrec on the outside.
995 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
996 getZeroExtendExpr(Step, Ty),
997 L);
998 } else if (isKnownNegative(Step)) {
999 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1000 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001001 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1002 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001003 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1004 AR->getPostIncExpr(*this), N)))
1005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getSignExtendExpr(Step, Ty),
1008 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001009 }
1010 }
1011 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001012
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001013 // The cast wasn't folded; create an explicit cast node.
1014 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001016 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1017 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001018 UniqueSCEVs.InsertNode(S, IP);
1019 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001020}
1021
Dan Gohman0bba49c2009-07-07 17:06:11 +00001022const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001023 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001024 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001025 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001026 assert(isSCEVable(Ty) &&
1027 "This is not a conversion to a SCEVable type!");
1028 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001029
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001030 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001031 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1032 return getConstant(
1033 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1034 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001035
Dan Gohman20900ca2009-04-22 16:20:48 +00001036 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001037 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001038 return getSignExtendExpr(SS->getOperand(), Ty);
1039
Nick Lewycky73f565e2011-01-19 15:56:12 +00001040 // sext(zext(x)) --> zext(x)
1041 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1042 return getZeroExtendExpr(SZ->getOperand(), Ty);
1043
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001044 // Before doing any expensive analysis, check to see if we've already
1045 // computed a SCEV for this Op and Ty.
1046 FoldingSetNodeID ID;
1047 ID.AddInteger(scSignExtend);
1048 ID.AddPointer(Op);
1049 ID.AddPointer(Ty);
1050 void *IP = 0;
1051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1052
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001053 // If the input value is provably positive, build a zext instead.
1054 if (isKnownNonNegative(Op))
1055 return getZeroExtendExpr(Op, Ty);
1056
Nick Lewycky630d85a2011-01-23 06:20:19 +00001057 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1058 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1059 // It's possible the bits taken off by the truncate were all sign bits. If
1060 // so, we should be able to simplify this further.
1061 const SCEV *X = ST->getOperand();
1062 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001063 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1064 unsigned NewBits = getTypeSizeInBits(Ty);
1065 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001066 CR.sextOrTrunc(NewBits)))
1067 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001068 }
1069
Dan Gohman01ecca22009-04-27 20:16:15 +00001070 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001071 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001072 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001073 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001074 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001075 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001076 const SCEV *Start = AR->getStart();
1077 const SCEV *Step = AR->getStepRecurrence(*this);
1078 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1079 const Loop *L = AR->getLoop();
1080
Dan Gohmaneb490a72009-07-25 01:22:26 +00001081 // If we have special knowledge that this addrec won't overflow,
1082 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001083 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001084 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1085 getSignExtendExpr(Step, Ty),
1086 L);
1087
Dan Gohman01ecca22009-04-27 20:16:15 +00001088 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1089 // Note that this serves two purposes: It filters out loops that are
1090 // simply not analyzable, and it covers the case where this code is
1091 // being called from within backedge-taken count analysis, such that
1092 // attempting to ask for the backedge-taken count would likely result
1093 // in infinite recursion. In the later case, the analysis code will
1094 // cope with a conservative value, and it will take care to purge
1095 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001096 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001097 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001098 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001099 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001100
1101 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001102 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001103 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001104 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001105 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001106 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1107 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001108 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001109 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001110 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001111 const SCEV *Add = getAddExpr(Start, SMul);
1112 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001113 getAddExpr(getSignExtendExpr(Start, WideTy),
1114 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1115 getSignExtendExpr(Step, WideTy)));
1116 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001117 // Return the expression with the addrec on the outside.
1118 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1119 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001120 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001121
1122 // Similar to above, only this time treat the step value as unsigned.
1123 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001124 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001125 Add = getAddExpr(Start, UMul);
1126 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001127 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001128 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1129 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001130 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001131 // Return the expression with the addrec on the outside.
1132 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1133 getZeroExtendExpr(Step, Ty),
1134 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001135 }
1136
1137 // If the backedge is guarded by a comparison with the pre-inc value
1138 // the addrec is safe. Also, if the entry is guarded by a comparison
1139 // with the start value and the backedge is guarded by a comparison
1140 // with the post-inc value, the addrec is safe.
1141 if (isKnownPositive(Step)) {
1142 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1143 getSignedRange(Step).getSignedMax());
1144 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001145 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001146 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1147 AR->getPostIncExpr(*this), N)))
1148 // Return the expression with the addrec on the outside.
1149 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1150 getSignExtendExpr(Step, Ty),
1151 L);
1152 } else if (isKnownNegative(Step)) {
1153 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1154 getSignedRange(Step).getSignedMin());
1155 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001156 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001157 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1158 AR->getPostIncExpr(*this), N)))
1159 // Return the expression with the addrec on the outside.
1160 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1161 getSignExtendExpr(Step, Ty),
1162 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001163 }
1164 }
1165 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001166
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001167 // The cast wasn't folded; create an explicit cast node.
1168 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001169 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001170 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1171 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001172 UniqueSCEVs.InsertNode(S, IP);
1173 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001174}
1175
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001176/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1177/// unspecified bits out to the given type.
1178///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001179const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001180 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001181 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1182 "This is not an extending conversion!");
1183 assert(isSCEVable(Ty) &&
1184 "This is not a conversion to a SCEVable type!");
1185 Ty = getEffectiveSCEVType(Ty);
1186
1187 // Sign-extend negative constants.
1188 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1189 if (SC->getValue()->getValue().isNegative())
1190 return getSignExtendExpr(Op, Ty);
1191
1192 // Peel off a truncate cast.
1193 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001194 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001195 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1196 return getAnyExtendExpr(NewOp, Ty);
1197 return getTruncateOrNoop(NewOp, Ty);
1198 }
1199
1200 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001201 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001202 if (!isa<SCEVZeroExtendExpr>(ZExt))
1203 return ZExt;
1204
1205 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001206 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001207 if (!isa<SCEVSignExtendExpr>(SExt))
1208 return SExt;
1209
Dan Gohmana10756e2010-01-21 02:09:26 +00001210 // Force the cast to be folded into the operands of an addrec.
1211 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1212 SmallVector<const SCEV *, 4> Ops;
1213 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1214 I != E; ++I)
1215 Ops.push_back(getAnyExtendExpr(*I, Ty));
1216 return getAddRecExpr(Ops, AR->getLoop());
1217 }
1218
Dan Gohmanf53462d2010-07-15 20:02:11 +00001219 // As a special case, fold anyext(undef) to undef. We don't want to
1220 // know too much about SCEVUnknowns, but this special case is handy
1221 // and harmless.
1222 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1223 if (isa<UndefValue>(U->getValue()))
1224 return getSCEV(UndefValue::get(Ty));
1225
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001226 // If the expression is obviously signed, use the sext cast value.
1227 if (isa<SCEVSMaxExpr>(Op))
1228 return SExt;
1229
1230 // Absent any other information, use the zext cast value.
1231 return ZExt;
1232}
1233
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001234/// CollectAddOperandsWithScales - Process the given Ops list, which is
1235/// a list of operands to be added under the given scale, update the given
1236/// map. This is a helper function for getAddRecExpr. As an example of
1237/// what it does, given a sequence of operands that would form an add
1238/// expression like this:
1239///
1240/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1241///
1242/// where A and B are constants, update the map with these values:
1243///
1244/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1245///
1246/// and add 13 + A*B*29 to AccumulatedConstant.
1247/// This will allow getAddRecExpr to produce this:
1248///
1249/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1250///
1251/// This form often exposes folding opportunities that are hidden in
1252/// the original operand list.
1253///
1254/// Return true iff it appears that any interesting folding opportunities
1255/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1256/// the common case where no interesting opportunities are present, and
1257/// is also used as a check to avoid infinite recursion.
1258///
1259static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001260CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1261 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001262 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001263 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001264 const APInt &Scale,
1265 ScalarEvolution &SE) {
1266 bool Interesting = false;
1267
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001268 // Iterate over the add operands. They are sorted, with constants first.
1269 unsigned i = 0;
1270 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1271 ++i;
1272 // Pull a buried constant out to the outside.
1273 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1274 Interesting = true;
1275 AccumulatedConstant += Scale * C->getValue()->getValue();
1276 }
1277
1278 // Next comes everything else. We're especially interested in multiplies
1279 // here, but they're in the middle, so just visit the rest with one loop.
1280 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001281 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1282 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1283 APInt NewScale =
1284 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1285 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1286 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001287 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001288 Interesting |=
1289 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001290 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001291 NewScale, SE);
1292 } else {
1293 // A multiplication of a constant with some other value. Update
1294 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001295 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1296 const SCEV *Key = SE.getMulExpr(MulOps);
1297 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001298 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001299 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001300 NewOps.push_back(Pair.first->first);
1301 } else {
1302 Pair.first->second += NewScale;
1303 // The map already had an entry for this value, which may indicate
1304 // a folding opportunity.
1305 Interesting = true;
1306 }
1307 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001308 } else {
1309 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001310 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001311 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001312 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001313 NewOps.push_back(Pair.first->first);
1314 } else {
1315 Pair.first->second += Scale;
1316 // The map already had an entry for this value, which may indicate
1317 // a folding opportunity.
1318 Interesting = true;
1319 }
1320 }
1321 }
1322
1323 return Interesting;
1324}
1325
1326namespace {
1327 struct APIntCompare {
1328 bool operator()(const APInt &LHS, const APInt &RHS) const {
1329 return LHS.ult(RHS);
1330 }
1331 };
1332}
1333
Dan Gohman6c0866c2009-05-24 23:45:28 +00001334/// getAddExpr - Get a canonical add expression, or something simpler if
1335/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001336const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1337 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001338 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001339 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001340#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001341 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001342 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001343 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001344 "SCEVAddExpr operand types don't match!");
1345#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001346
Dan Gohmana10756e2010-01-21 02:09:26 +00001347 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1348 if (!HasNUW && HasNSW) {
1349 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001350 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1351 E = Ops.end(); I != E; ++I)
1352 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001353 All = false;
1354 break;
1355 }
1356 if (All) HasNUW = true;
1357 }
1358
Chris Lattner53e677a2004-04-02 20:23:17 +00001359 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001360 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001361
1362 // If there are any constants, fold them together.
1363 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001364 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001365 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001366 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001367 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001368 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001369 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1370 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001371 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001372 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001373 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001374 }
1375
1376 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001377 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001378 Ops.erase(Ops.begin());
1379 --Idx;
1380 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001381
Dan Gohmanbca091d2010-04-12 23:08:18 +00001382 if (Ops.size() == 1) return Ops[0];
1383 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001384
Dan Gohman68ff7762010-08-27 21:39:59 +00001385 // Okay, check to see if the same value occurs in the operand list more than
1386 // once. If so, merge them together into an multiply expression. Since we
1387 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001388 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001389 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001390 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001391 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001392 // Scan ahead to count how many equal operands there are.
1393 unsigned Count = 2;
1394 while (i+Count != e && Ops[i+Count] == Ops[i])
1395 ++Count;
1396 // Merge the values into a multiply.
1397 const SCEV *Scale = getConstant(Ty, Count);
1398 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1399 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001400 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001401 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001402 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001403 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001404 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001406 if (FoundMatch)
1407 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001408
Dan Gohman728c7f32009-05-08 21:03:19 +00001409 // Check for truncates. If all the operands are truncated from the same
1410 // type, see if factoring out the truncate would permit the result to be
1411 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1412 // if the contents of the resulting outer trunc fold to something simple.
1413 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1414 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1415 const Type *DstType = Trunc->getType();
1416 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001417 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001418 bool Ok = true;
1419 // Check all the operands to see if they can be represented in the
1420 // source type of the truncate.
1421 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1422 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1423 if (T->getOperand()->getType() != SrcType) {
1424 Ok = false;
1425 break;
1426 }
1427 LargeOps.push_back(T->getOperand());
1428 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001429 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001430 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001431 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001432 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1433 if (const SCEVTruncateExpr *T =
1434 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1435 if (T->getOperand()->getType() != SrcType) {
1436 Ok = false;
1437 break;
1438 }
1439 LargeMulOps.push_back(T->getOperand());
1440 } else if (const SCEVConstant *C =
1441 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001442 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001443 } else {
1444 Ok = false;
1445 break;
1446 }
1447 }
1448 if (Ok)
1449 LargeOps.push_back(getMulExpr(LargeMulOps));
1450 } else {
1451 Ok = false;
1452 break;
1453 }
1454 }
1455 if (Ok) {
1456 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001457 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001458 // If it folds to something simple, use it. Otherwise, don't.
1459 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1460 return getTruncateExpr(Fold, DstType);
1461 }
1462 }
1463
1464 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001465 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1466 ++Idx;
1467
1468 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 if (Idx < Ops.size()) {
1470 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001471 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 // If we have an add, expand the add operands onto the end of the operands
1473 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001475 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 DeletedAdd = true;
1477 }
1478
1479 // If we deleted at least one add, we added operands to the end of the list,
1480 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001481 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001482 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001483 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 }
1485
1486 // Skip over the add expression until we get to a multiply.
1487 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1488 ++Idx;
1489
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001490 // Check to see if there are any folding opportunities present with
1491 // operands multiplied by constant values.
1492 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1493 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001494 DenseMap<const SCEV *, APInt> M;
1495 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001496 APInt AccumulatedConstant(BitWidth, 0);
1497 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001498 Ops.data(), Ops.size(),
1499 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001500 // Some interesting folding opportunity is present, so its worthwhile to
1501 // re-generate the operands list. Group the operands by constant scale,
1502 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001503 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001504 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001505 E = NewOps.end(); I != E; ++I)
1506 MulOpLists[M.find(*I)->second].push_back(*I);
1507 // Re-generate the operands list.
1508 Ops.clear();
1509 if (AccumulatedConstant != 0)
1510 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001511 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1512 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001513 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001514 Ops.push_back(getMulExpr(getConstant(I->first),
1515 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001516 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001517 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001518 if (Ops.size() == 1)
1519 return Ops[0];
1520 return getAddExpr(Ops);
1521 }
1522 }
1523
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 // If we are adding something to a multiply expression, make sure the
1525 // something is not already an operand of the multiply. If so, merge it into
1526 // the multiply.
1527 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001528 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001529 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001530 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001531 if (isa<SCEVConstant>(MulOpSCEV))
1532 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001534 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001536 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 if (Mul->getNumOperands() != 2) {
1538 // If the multiply has more than two operands, we must get the
1539 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001540 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1541 Mul->op_begin()+MulOp);
1542 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001543 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001544 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001545 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001546 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001547 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001548 if (Ops.size() == 2) return OuterMul;
1549 if (AddOp < Idx) {
1550 Ops.erase(Ops.begin()+AddOp);
1551 Ops.erase(Ops.begin()+Idx-1);
1552 } else {
1553 Ops.erase(Ops.begin()+Idx);
1554 Ops.erase(Ops.begin()+AddOp-1);
1555 }
1556 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001557 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001558 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001559
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 // Check this multiply against other multiplies being added together.
1561 for (unsigned OtherMulIdx = Idx+1;
1562 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1563 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001564 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 // If MulOp occurs in OtherMul, we can fold the two multiplies
1566 // together.
1567 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1568 OMulOp != e; ++OMulOp)
1569 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1570 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001571 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001573 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001574 Mul->op_begin()+MulOp);
1575 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001576 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001578 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001580 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001581 OtherMul->op_begin()+OMulOp);
1582 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001583 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001585 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1586 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001588 Ops.erase(Ops.begin()+Idx);
1589 Ops.erase(Ops.begin()+OtherMulIdx-1);
1590 Ops.push_back(OuterMul);
1591 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 }
1593 }
1594 }
1595 }
1596
1597 // If there are any add recurrences in the operands list, see if any other
1598 // added values are loop invariant. If so, we can fold them into the
1599 // recurrence.
1600 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1601 ++Idx;
1602
1603 // Scan over all recurrences, trying to fold loop invariants into them.
1604 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1605 // Scan all of the other operands to this add and add them to the vector if
1606 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001607 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001608 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001609 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001611 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 LIOps.push_back(Ops[i]);
1613 Ops.erase(Ops.begin()+i);
1614 --i; --e;
1615 }
1616
1617 // If we found some loop invariants, fold them into the recurrence.
1618 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001619 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001620 LIOps.push_back(AddRec->getStart());
1621
Dan Gohman0bba49c2009-07-07 17:06:11 +00001622 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001623 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001624 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001625
Dan Gohmanb9f96512010-06-30 07:16:37 +00001626 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001627 // outer add and the inner addrec are guaranteed to have no overflow.
1628 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1629 HasNUW && AddRec->hasNoUnsignedWrap(),
1630 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001631
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 // If all of the other operands were loop invariant, we are done.
1633 if (Ops.size() == 1) return NewRec;
1634
1635 // Otherwise, add the folded AddRec by the non-liv parts.
1636 for (unsigned i = 0;; ++i)
1637 if (Ops[i] == AddRec) {
1638 Ops[i] = NewRec;
1639 break;
1640 }
Dan Gohman246b2562007-10-22 18:31:58 +00001641 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001642 }
1643
1644 // Okay, if there weren't any loop invariants to be folded, check to see if
1645 // there are multiple AddRec's with the same loop induction variable being
1646 // added together. If so, we can fold them.
1647 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001648 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1649 ++OtherIdx)
1650 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1651 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1652 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1653 AddRec->op_end());
1654 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1655 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001656 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001657 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001658 if (OtherAddRec->getLoop() == AddRecLoop) {
1659 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1660 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001661 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001662 AddRecOps.append(OtherAddRec->op_begin()+i,
1663 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001664 break;
1665 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001666 AddRecOps[i] = getAddExpr(AddRecOps[i],
1667 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001668 }
1669 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 }
Dan Gohman32527152010-08-27 20:45:56 +00001671 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1672 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 }
1674
1675 // Otherwise couldn't fold anything into this recurrence. Move onto the
1676 // next one.
1677 }
1678
1679 // Okay, it looks like we really DO need an add expr. Check to see if we
1680 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001681 FoldingSetNodeID ID;
1682 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001683 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1684 ID.AddPointer(Ops[i]);
1685 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001686 SCEVAddExpr *S =
1687 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1688 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001689 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1690 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001691 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1692 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001693 UniqueSCEVs.InsertNode(S, IP);
1694 }
Dan Gohman3645b012009-10-09 00:10:36 +00001695 if (HasNUW) S->setHasNoUnsignedWrap(true);
1696 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001697 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001698}
1699
Dan Gohman6c0866c2009-05-24 23:45:28 +00001700/// getMulExpr - Get a canonical multiply expression, or something simpler if
1701/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001702const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1703 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001705 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001706#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001707 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001708 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001709 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001710 "SCEVMulExpr operand types don't match!");
1711#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001712
Dan Gohmana10756e2010-01-21 02:09:26 +00001713 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1714 if (!HasNUW && HasNSW) {
1715 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001716 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1717 E = Ops.end(); I != E; ++I)
1718 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001719 All = false;
1720 break;
1721 }
1722 if (All) HasNUW = true;
1723 }
1724
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001726 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001727
1728 // If there are any constants, fold them together.
1729 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001730 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001731
1732 // C1*(C2+V) -> C1*C2 + C1*V
1733 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 if (Add->getNumOperands() == 2 &&
1736 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001737 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1738 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001739
Chris Lattner53e677a2004-04-02 20:23:17 +00001740 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001741 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001742 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001743 ConstantInt *Fold = ConstantInt::get(getContext(),
1744 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001745 RHSC->getValue()->getValue());
1746 Ops[0] = getConstant(Fold);
1747 Ops.erase(Ops.begin()+1); // Erase the folded element
1748 if (Ops.size() == 1) return Ops[0];
1749 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 }
1751
1752 // If we are left with a constant one being multiplied, strip it off.
1753 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1754 Ops.erase(Ops.begin());
1755 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001756 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 // If we have a multiply of zero, it will always be zero.
1758 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001759 } else if (Ops[0]->isAllOnesValue()) {
1760 // If we have a mul by -1 of an add, try distributing the -1 among the
1761 // add operands.
1762 if (Ops.size() == 2)
1763 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1764 SmallVector<const SCEV *, 4> NewOps;
1765 bool AnyFolded = false;
1766 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1767 I != E; ++I) {
1768 const SCEV *Mul = getMulExpr(Ops[0], *I);
1769 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1770 NewOps.push_back(Mul);
1771 }
1772 if (AnyFolded)
1773 return getAddExpr(NewOps);
1774 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001776
1777 if (Ops.size() == 1)
1778 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 }
1780
1781 // Skip over the add expression until we get to a multiply.
1782 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1783 ++Idx;
1784
Chris Lattner53e677a2004-04-02 20:23:17 +00001785 // If there are mul operands inline them all into this expression.
1786 if (Idx < Ops.size()) {
1787 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001788 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 // If we have an mul, expand the mul operands onto the end of the operands
1790 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001792 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001793 DeletedMul = true;
1794 }
1795
1796 // If we deleted at least one mul, we added operands to the end of the list,
1797 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001798 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001800 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001801 }
1802
1803 // If there are any add recurrences in the operands list, see if any other
1804 // added values are loop invariant. If so, we can fold them into the
1805 // recurrence.
1806 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1807 ++Idx;
1808
1809 // Scan over all recurrences, trying to fold loop invariants into them.
1810 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1811 // Scan all of the other operands to this mul and add them to the vector if
1812 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001813 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001814 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001815 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001816 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001817 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001818 LIOps.push_back(Ops[i]);
1819 Ops.erase(Ops.begin()+i);
1820 --i; --e;
1821 }
1822
1823 // If we found some loop invariants, fold them into the recurrence.
1824 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001825 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001826 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001827 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001828 const SCEV *Scale = getMulExpr(LIOps);
1829 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1830 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001831
Dan Gohmanb9f96512010-06-30 07:16:37 +00001832 // Build the new addrec. Propagate the NUW and NSW flags if both the
1833 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001834 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001835 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001836 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001837
1838 // If all of the other operands were loop invariant, we are done.
1839 if (Ops.size() == 1) return NewRec;
1840
1841 // Otherwise, multiply the folded AddRec by the non-liv parts.
1842 for (unsigned i = 0;; ++i)
1843 if (Ops[i] == AddRec) {
1844 Ops[i] = NewRec;
1845 break;
1846 }
Dan Gohman246b2562007-10-22 18:31:58 +00001847 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 }
1849
1850 // Okay, if there weren't any loop invariants to be folded, check to see if
1851 // there are multiple AddRec's with the same loop induction variable being
1852 // multiplied together. If so, we can fold them.
1853 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001854 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1855 ++OtherIdx)
1856 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1857 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1858 // {A*C,+,F*D + G*B + B*D}<L>
1859 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1860 ++OtherIdx)
1861 if (const SCEVAddRecExpr *OtherAddRec =
1862 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1863 if (OtherAddRec->getLoop() == AddRecLoop) {
1864 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1865 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1866 const SCEV *B = F->getStepRecurrence(*this);
1867 const SCEV *D = G->getStepRecurrence(*this);
1868 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1869 getMulExpr(G, B),
1870 getMulExpr(B, D));
1871 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1872 F->getLoop());
1873 if (Ops.size() == 2) return NewAddRec;
1874 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1875 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1876 }
1877 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001878 }
1879
1880 // Otherwise couldn't fold anything into this recurrence. Move onto the
1881 // next one.
1882 }
1883
1884 // Okay, it looks like we really DO need an mul expr. Check to see if we
1885 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001886 FoldingSetNodeID ID;
1887 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001888 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1889 ID.AddPointer(Ops[i]);
1890 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001891 SCEVMulExpr *S =
1892 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1893 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001894 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1895 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001896 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1897 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001898 UniqueSCEVs.InsertNode(S, IP);
1899 }
Dan Gohman3645b012009-10-09 00:10:36 +00001900 if (HasNUW) S->setHasNoUnsignedWrap(true);
1901 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001902 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001903}
1904
Andreas Bolka8a11c982009-08-07 22:55:26 +00001905/// getUDivExpr - Get a canonical unsigned division expression, or something
1906/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001907const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1908 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001909 assert(getEffectiveSCEVType(LHS->getType()) ==
1910 getEffectiveSCEVType(RHS->getType()) &&
1911 "SCEVUDivExpr operand types don't match!");
1912
Dan Gohman622ed672009-05-04 22:02:23 +00001913 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001914 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001915 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001916 // If the denominator is zero, the result of the udiv is undefined. Don't
1917 // try to analyze it, because the resolution chosen here may differ from
1918 // the resolution chosen in other parts of the compiler.
1919 if (!RHSC->getValue()->isZero()) {
1920 // Determine if the division can be folded into the operands of
1921 // its operands.
1922 // TODO: Generalize this to non-constants by using known-bits information.
1923 const Type *Ty = LHS->getType();
1924 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001925 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001926 // For non-power-of-two values, effectively round the value up to the
1927 // nearest power of two.
1928 if (!RHSC->getValue()->getValue().isPowerOf2())
1929 ++MaxShiftAmt;
1930 const IntegerType *ExtTy =
1931 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1932 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1934 if (const SCEVConstant *Step =
1935 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1936 if (!Step->getValue()->getValue()
1937 .urem(RHSC->getValue()->getValue()) &&
1938 getZeroExtendExpr(AR, ExtTy) ==
1939 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1940 getZeroExtendExpr(Step, ExtTy),
1941 AR->getLoop())) {
1942 SmallVector<const SCEV *, 4> Operands;
1943 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1944 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1945 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001946 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001947 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1948 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1949 SmallVector<const SCEV *, 4> Operands;
1950 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1951 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1952 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1953 // Find an operand that's safely divisible.
1954 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1955 const SCEV *Op = M->getOperand(i);
1956 const SCEV *Div = getUDivExpr(Op, RHSC);
1957 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1958 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1959 M->op_end());
1960 Operands[i] = Div;
1961 return getMulExpr(Operands);
1962 }
1963 }
Dan Gohman185cf032009-05-08 20:18:49 +00001964 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001965 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1966 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1967 SmallVector<const SCEV *, 4> Operands;
1968 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1969 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1970 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1971 Operands.clear();
1972 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1973 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1974 if (isa<SCEVUDivExpr>(Op) ||
1975 getMulExpr(Op, RHS) != A->getOperand(i))
1976 break;
1977 Operands.push_back(Op);
1978 }
1979 if (Operands.size() == A->getNumOperands())
1980 return getAddExpr(Operands);
1981 }
1982 }
Dan Gohman185cf032009-05-08 20:18:49 +00001983
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001984 // Fold if both operands are constant.
1985 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1986 Constant *LHSCV = LHSC->getValue();
1987 Constant *RHSCV = RHSC->getValue();
1988 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1989 RHSCV)));
1990 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001991 }
1992 }
1993
Dan Gohman1c343752009-06-27 21:21:31 +00001994 FoldingSetNodeID ID;
1995 ID.AddInteger(scUDivExpr);
1996 ID.AddPointer(LHS);
1997 ID.AddPointer(RHS);
1998 void *IP = 0;
1999 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002000 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2001 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002002 UniqueSCEVs.InsertNode(S, IP);
2003 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002004}
2005
2006
Dan Gohman6c0866c2009-05-24 23:45:28 +00002007/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2008/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002009const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002010 const SCEV *Step, const Loop *L,
2011 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002012 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002013 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002014 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002015 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002016 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002017 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002018 }
2019
2020 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002021 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002022}
2023
Dan Gohman6c0866c2009-05-24 23:45:28 +00002024/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2025/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002026const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002027ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002028 const Loop *L,
2029 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002030 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002031#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002032 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002033 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002034 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002035 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002036 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002037 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002038 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002039#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002040
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002041 if (Operands.back()->isZero()) {
2042 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002043 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002044 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002045
Dan Gohmanbc028532010-02-19 18:49:22 +00002046 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2047 // use that information to infer NUW and NSW flags. However, computing a
2048 // BE count requires calling getAddRecExpr, so we may not yet have a
2049 // meaningful BE count at this point (and if we don't, we'd be stuck
2050 // with a SCEVCouldNotCompute as the cached BE count).
2051
Dan Gohmana10756e2010-01-21 02:09:26 +00002052 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2053 if (!HasNUW && HasNSW) {
2054 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002055 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2056 E = Operands.end(); I != E; ++I)
2057 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002058 All = false;
2059 break;
2060 }
2061 if (All) HasNUW = true;
2062 }
2063
Dan Gohmand9cc7492008-08-08 18:33:12 +00002064 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002065 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002066 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002067 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002068 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002069 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002070 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002071 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002072 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002073 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002074 // AddRecs require their operands be loop-invariant with respect to their
2075 // loops. Don't perform this transformation if it would break this
2076 // requirement.
2077 bool AllInvariant = true;
2078 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002079 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002080 AllInvariant = false;
2081 break;
2082 }
2083 if (AllInvariant) {
2084 NestedOperands[0] = getAddRecExpr(Operands, L);
2085 AllInvariant = true;
2086 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002087 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002088 AllInvariant = false;
2089 break;
2090 }
2091 if (AllInvariant)
2092 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002093 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002094 }
2095 // Reset Operands to its original state.
2096 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002097 }
2098 }
2099
Dan Gohman67847532010-01-19 22:27:22 +00002100 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2101 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002102 FoldingSetNodeID ID;
2103 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002104 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2105 ID.AddPointer(Operands[i]);
2106 ID.AddPointer(L);
2107 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002108 SCEVAddRecExpr *S =
2109 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2110 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2112 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002113 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2114 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002115 UniqueSCEVs.InsertNode(S, IP);
2116 }
Dan Gohman3645b012009-10-09 00:10:36 +00002117 if (HasNUW) S->setHasNoUnsignedWrap(true);
2118 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002119 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002120}
2121
Dan Gohman9311ef62009-06-24 14:49:00 +00002122const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2123 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002124 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002125 Ops.push_back(LHS);
2126 Ops.push_back(RHS);
2127 return getSMaxExpr(Ops);
2128}
2129
Dan Gohman0bba49c2009-07-07 17:06:11 +00002130const SCEV *
2131ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002132 assert(!Ops.empty() && "Cannot get empty smax!");
2133 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002134#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002135 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002136 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002137 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002138 "SCEVSMaxExpr operand types don't match!");
2139#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002140
2141 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002142 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002143
2144 // If there are any constants, fold them together.
2145 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002146 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002147 ++Idx;
2148 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002149 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002150 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002151 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002152 APIntOps::smax(LHSC->getValue()->getValue(),
2153 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002154 Ops[0] = getConstant(Fold);
2155 Ops.erase(Ops.begin()+1); // Erase the folded element
2156 if (Ops.size() == 1) return Ops[0];
2157 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002158 }
2159
Dan Gohmane5aceed2009-06-24 14:46:22 +00002160 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002161 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2162 Ops.erase(Ops.begin());
2163 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002164 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2165 // If we have an smax with a constant maximum-int, it will always be
2166 // maximum-int.
2167 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002168 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002169
Dan Gohman3ab13122010-04-13 16:49:23 +00002170 if (Ops.size() == 1) return Ops[0];
2171 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002172
2173 // Find the first SMax
2174 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2175 ++Idx;
2176
2177 // Check to see if one of the operands is an SMax. If so, expand its operands
2178 // onto our operand list, and recurse to simplify.
2179 if (Idx < Ops.size()) {
2180 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002181 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002182 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002183 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002184 DeletedSMax = true;
2185 }
2186
2187 if (DeletedSMax)
2188 return getSMaxExpr(Ops);
2189 }
2190
2191 // Okay, check to see if the same value occurs in the operand list twice. If
2192 // so, delete one. Since we sorted the list, these values are required to
2193 // be adjacent.
2194 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002195 // X smax Y smax Y --> X smax Y
2196 // X smax Y --> X, if X is always greater than Y
2197 if (Ops[i] == Ops[i+1] ||
2198 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2199 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2200 --i; --e;
2201 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002202 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2203 --i; --e;
2204 }
2205
2206 if (Ops.size() == 1) return Ops[0];
2207
2208 assert(!Ops.empty() && "Reduced smax down to nothing!");
2209
Nick Lewycky3e630762008-02-20 06:48:22 +00002210 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002211 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002212 FoldingSetNodeID ID;
2213 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002214 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2215 ID.AddPointer(Ops[i]);
2216 void *IP = 0;
2217 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002218 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2219 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002220 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2221 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002222 UniqueSCEVs.InsertNode(S, IP);
2223 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002224}
2225
Dan Gohman9311ef62009-06-24 14:49:00 +00002226const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2227 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002228 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002229 Ops.push_back(LHS);
2230 Ops.push_back(RHS);
2231 return getUMaxExpr(Ops);
2232}
2233
Dan Gohman0bba49c2009-07-07 17:06:11 +00002234const SCEV *
2235ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002236 assert(!Ops.empty() && "Cannot get empty umax!");
2237 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002238#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002239 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002240 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002241 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002242 "SCEVUMaxExpr operand types don't match!");
2243#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002244
2245 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002246 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002247
2248 // If there are any constants, fold them together.
2249 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002250 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002251 ++Idx;
2252 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002253 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002254 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002255 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002256 APIntOps::umax(LHSC->getValue()->getValue(),
2257 RHSC->getValue()->getValue()));
2258 Ops[0] = getConstant(Fold);
2259 Ops.erase(Ops.begin()+1); // Erase the folded element
2260 if (Ops.size() == 1) return Ops[0];
2261 LHSC = cast<SCEVConstant>(Ops[0]);
2262 }
2263
Dan Gohmane5aceed2009-06-24 14:46:22 +00002264 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002265 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2266 Ops.erase(Ops.begin());
2267 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002268 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2269 // If we have an umax with a constant maximum-int, it will always be
2270 // maximum-int.
2271 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002272 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002273
Dan Gohman3ab13122010-04-13 16:49:23 +00002274 if (Ops.size() == 1) return Ops[0];
2275 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002276
2277 // Find the first UMax
2278 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2279 ++Idx;
2280
2281 // Check to see if one of the operands is a UMax. If so, expand its operands
2282 // onto our operand list, and recurse to simplify.
2283 if (Idx < Ops.size()) {
2284 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002285 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002286 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002287 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002288 DeletedUMax = true;
2289 }
2290
2291 if (DeletedUMax)
2292 return getUMaxExpr(Ops);
2293 }
2294
2295 // Okay, check to see if the same value occurs in the operand list twice. If
2296 // so, delete one. Since we sorted the list, these values are required to
2297 // be adjacent.
2298 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002299 // X umax Y umax Y --> X umax Y
2300 // X umax Y --> X, if X is always greater than Y
2301 if (Ops[i] == Ops[i+1] ||
2302 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2303 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2304 --i; --e;
2305 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002306 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2307 --i; --e;
2308 }
2309
2310 if (Ops.size() == 1) return Ops[0];
2311
2312 assert(!Ops.empty() && "Reduced umax down to nothing!");
2313
2314 // Okay, it looks like we really DO need a umax expr. Check to see if we
2315 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002316 FoldingSetNodeID ID;
2317 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002318 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2319 ID.AddPointer(Ops[i]);
2320 void *IP = 0;
2321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002322 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2323 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002324 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2325 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002326 UniqueSCEVs.InsertNode(S, IP);
2327 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002328}
2329
Dan Gohman9311ef62009-06-24 14:49:00 +00002330const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2331 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002332 // ~smax(~x, ~y) == smin(x, y).
2333 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2334}
2335
Dan Gohman9311ef62009-06-24 14:49:00 +00002336const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2337 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002338 // ~umax(~x, ~y) == umin(x, y)
2339 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2340}
2341
Dan Gohman4f8eea82010-02-01 18:27:38 +00002342const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002343 // If we have TargetData, we can bypass creating a target-independent
2344 // constant expression and then folding it back into a ConstantInt.
2345 // This is just a compile-time optimization.
2346 if (TD)
2347 return getConstant(TD->getIntPtrType(getContext()),
2348 TD->getTypeAllocSize(AllocTy));
2349
Dan Gohman4f8eea82010-02-01 18:27:38 +00002350 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2351 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002352 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2353 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002354 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2355 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2356}
2357
2358const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2359 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002361 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2362 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002363 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2364 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2365}
2366
2367const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2368 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002369 // If we have TargetData, we can bypass creating a target-independent
2370 // constant expression and then folding it back into a ConstantInt.
2371 // This is just a compile-time optimization.
2372 if (TD)
2373 return getConstant(TD->getIntPtrType(getContext()),
2374 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2375
Dan Gohman0f5efe52010-01-28 02:15:55 +00002376 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002378 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2379 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002380 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002381 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002382}
2383
Dan Gohman4f8eea82010-02-01 18:27:38 +00002384const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2385 Constant *FieldNo) {
2386 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002388 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2389 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002390 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002391 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002392}
2393
Dan Gohman0bba49c2009-07-07 17:06:11 +00002394const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002395 // Don't attempt to do anything other than create a SCEVUnknown object
2396 // here. createSCEV only calls getUnknown after checking for all other
2397 // interesting possibilities, and any other code that calls getUnknown
2398 // is doing so in order to hide a value from SCEV canonicalization.
2399
Dan Gohman1c343752009-06-27 21:21:31 +00002400 FoldingSetNodeID ID;
2401 ID.AddInteger(scUnknown);
2402 ID.AddPointer(V);
2403 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002404 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2405 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2406 "Stale SCEVUnknown in uniquing map!");
2407 return S;
2408 }
2409 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2410 FirstUnknown);
2411 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002412 UniqueSCEVs.InsertNode(S, IP);
2413 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002414}
2415
Chris Lattner53e677a2004-04-02 20:23:17 +00002416//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002417// Basic SCEV Analysis and PHI Idiom Recognition Code
2418//
2419
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002420/// isSCEVable - Test if values of the given type are analyzable within
2421/// the SCEV framework. This primarily includes integer types, and it
2422/// can optionally include pointer types if the ScalarEvolution class
2423/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002424bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002425 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002426 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002427}
2428
2429/// getTypeSizeInBits - Return the size in bits of the specified type,
2430/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002431uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002432 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2433
2434 // If we have a TargetData, use it!
2435 if (TD)
2436 return TD->getTypeSizeInBits(Ty);
2437
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002438 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002439 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002440 return Ty->getPrimitiveSizeInBits();
2441
2442 // The only other support type is pointer. Without TargetData, conservatively
2443 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002444 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002445 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002446}
2447
2448/// getEffectiveSCEVType - Return a type with the same bitwidth as
2449/// the given type and which represents how SCEV will treat the given
2450/// type, for which isSCEVable must return true. For pointer types,
2451/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002452const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002453 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2454
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002455 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002456 return Ty;
2457
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002458 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002459 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002460 if (TD) return TD->getIntPtrType(getContext());
2461
2462 // Without TargetData, conservatively assume pointers are 64-bit.
2463 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002464}
Chris Lattner53e677a2004-04-02 20:23:17 +00002465
Dan Gohman0bba49c2009-07-07 17:06:11 +00002466const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002467 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002468}
2469
Chris Lattner53e677a2004-04-02 20:23:17 +00002470/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2471/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002472const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002473 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002474
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002475 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2476 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002477 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002478
2479 // The process of creating a SCEV for V may have caused other SCEVs
2480 // to have been created, so it's necessary to insert the new entry
2481 // from scratch, rather than trying to remember the insert position
2482 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002483 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002484 return S;
2485}
2486
Dan Gohman2d1be872009-04-16 03:18:22 +00002487/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2488///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002489const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002490 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002491 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002492 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002493
2494 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002495 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002496 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002497 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002498}
2499
2500/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002501const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002502 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002503 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002504 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002505
2506 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002507 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002508 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002509 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002510 return getMinusSCEV(AllOnes, V);
2511}
2512
Chris Lattner6038a632011-01-11 17:11:59 +00002513/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2514/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2515/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002516const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2517 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002518 // Fast path: X - X --> 0.
2519 if (LHS == RHS)
2520 return getConstant(LHS->getType(), 0);
2521
Dan Gohman2d1be872009-04-16 03:18:22 +00002522 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002523 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002524}
2525
2526/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2527/// input value to the specified type. If the type must be extended, it is zero
2528/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002529const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002530ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002531 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002532 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2533 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002534 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002535 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002536 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002537 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002538 return getTruncateExpr(V, Ty);
2539 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002540}
2541
2542/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2543/// input value to the specified type. If the type must be extended, it is sign
2544/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002545const SCEV *
2546ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002547 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002548 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002549 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2550 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002551 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002552 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002553 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002554 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002555 return getTruncateExpr(V, Ty);
2556 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002557}
2558
Dan Gohman467c4302009-05-13 03:46:30 +00002559/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2560/// input value to the specified type. If the type must be extended, it is zero
2561/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002562const SCEV *
2563ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002564 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2566 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002567 "Cannot noop or zero extend with non-integer arguments!");
2568 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2569 "getNoopOrZeroExtend cannot truncate!");
2570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2571 return V; // No conversion
2572 return getZeroExtendExpr(V, Ty);
2573}
2574
2575/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2576/// input value to the specified type. If the type must be extended, it is sign
2577/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002578const SCEV *
2579ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002580 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002583 "Cannot noop or sign extend with non-integer arguments!");
2584 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2585 "getNoopOrSignExtend cannot truncate!");
2586 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2587 return V; // No conversion
2588 return getSignExtendExpr(V, Ty);
2589}
2590
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002591/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2592/// the input value to the specified type. If the type must be extended,
2593/// it is extended with unspecified bits. The conversion must not be
2594/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002595const SCEV *
2596ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002597 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002598 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2599 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002600 "Cannot noop or any extend with non-integer arguments!");
2601 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2602 "getNoopOrAnyExtend cannot truncate!");
2603 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2604 return V; // No conversion
2605 return getAnyExtendExpr(V, Ty);
2606}
2607
Dan Gohman467c4302009-05-13 03:46:30 +00002608/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2609/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002610const SCEV *
2611ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002612 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002613 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2614 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002615 "Cannot truncate or noop with non-integer arguments!");
2616 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2617 "getTruncateOrNoop cannot extend!");
2618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2619 return V; // No conversion
2620 return getTruncateExpr(V, Ty);
2621}
2622
Dan Gohmana334aa72009-06-22 00:31:57 +00002623/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2624/// the types using zero-extension, and then perform a umax operation
2625/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002626const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2627 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002628 const SCEV *PromotedLHS = LHS;
2629 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002630
2631 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2632 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2633 else
2634 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2635
2636 return getUMaxExpr(PromotedLHS, PromotedRHS);
2637}
2638
Dan Gohmanc9759e82009-06-22 15:03:27 +00002639/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2640/// the types using zero-extension, and then perform a umin operation
2641/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002642const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2643 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002644 const SCEV *PromotedLHS = LHS;
2645 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002646
2647 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2648 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2649 else
2650 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2651
2652 return getUMinExpr(PromotedLHS, PromotedRHS);
2653}
2654
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002655/// PushDefUseChildren - Push users of the given Instruction
2656/// onto the given Worklist.
2657static void
2658PushDefUseChildren(Instruction *I,
2659 SmallVectorImpl<Instruction *> &Worklist) {
2660 // Push the def-use children onto the Worklist stack.
2661 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2662 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002663 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002664}
2665
2666/// ForgetSymbolicValue - This looks up computed SCEV values for all
2667/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002668/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002669/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002670void
Dan Gohman85669632010-02-25 06:57:05 +00002671ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002672 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002673 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002674
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002675 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002676 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002677 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002678 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002679 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002680
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002681 ValueExprMapType::iterator It =
2682 ValueExprMap.find(static_cast<Value *>(I));
2683 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002684 const SCEV *Old = It->second;
2685
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002686 // Short-circuit the def-use traversal if the symbolic name
2687 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002688 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002689 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002690
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002691 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002692 // structure, it's a PHI that's in the progress of being computed
2693 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2694 // additional loop trip count information isn't going to change anything.
2695 // In the second case, createNodeForPHI will perform the necessary
2696 // updates on its own when it gets to that point. In the third, we do
2697 // want to forget the SCEVUnknown.
2698 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002699 !isa<SCEVUnknown>(Old) ||
2700 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002701 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002702 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002703 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002704 }
2705
2706 PushDefUseChildren(I, Worklist);
2707 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002708}
Chris Lattner53e677a2004-04-02 20:23:17 +00002709
2710/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2711/// a loop header, making it a potential recurrence, or it doesn't.
2712///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002713const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002714 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2715 if (L->getHeader() == PN->getParent()) {
2716 // The loop may have multiple entrances or multiple exits; we can analyze
2717 // this phi as an addrec if it has a unique entry value and a unique
2718 // backedge value.
2719 Value *BEValueV = 0, *StartValueV = 0;
2720 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2721 Value *V = PN->getIncomingValue(i);
2722 if (L->contains(PN->getIncomingBlock(i))) {
2723 if (!BEValueV) {
2724 BEValueV = V;
2725 } else if (BEValueV != V) {
2726 BEValueV = 0;
2727 break;
2728 }
2729 } else if (!StartValueV) {
2730 StartValueV = V;
2731 } else if (StartValueV != V) {
2732 StartValueV = 0;
2733 break;
2734 }
2735 }
2736 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002737 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002738 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002739 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002740 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002741 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002742
2743 // Using this symbolic name for the PHI, analyze the value coming around
2744 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002745 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002746
2747 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2748 // has a special value for the first iteration of the loop.
2749
2750 // If the value coming around the backedge is an add with the symbolic
2751 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002752 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002753 // If there is a single occurrence of the symbolic value, replace it
2754 // with a recurrence.
2755 unsigned FoundIndex = Add->getNumOperands();
2756 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2757 if (Add->getOperand(i) == SymbolicName)
2758 if (FoundIndex == e) {
2759 FoundIndex = i;
2760 break;
2761 }
2762
2763 if (FoundIndex != Add->getNumOperands()) {
2764 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002765 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002766 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2767 if (i != FoundIndex)
2768 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002769 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002770
2771 // This is not a valid addrec if the step amount is varying each
2772 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002773 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002774 (isa<SCEVAddRecExpr>(Accum) &&
2775 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002776 bool HasNUW = false;
2777 bool HasNSW = false;
2778
2779 // If the increment doesn't overflow, then neither the addrec nor
2780 // the post-increment will overflow.
2781 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2782 if (OBO->hasNoUnsignedWrap())
2783 HasNUW = true;
2784 if (OBO->hasNoSignedWrap())
2785 HasNSW = true;
Andrew Trick635f7182011-03-09 17:23:39 +00002786 } else if (const GEPOperator *GEP =
Chris Lattner96518702011-01-11 06:44:41 +00002787 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner10212362011-02-11 21:43:33 +00002788 // If the increment is a GEP, then we know it won't perform a
2789 // signed overflow, because the address space cannot be
Chris Lattner6d5a2412011-01-09 02:28:48 +00002790 // wrapped around.
Chris Lattner10212362011-02-11 21:43:33 +00002791 //
2792 // NOTE: This isn't strictly true, because you could have an
2793 // object straddling the 2G address boundary in a 32-bit address
2794 // space (for example). We really want to model this as a "has
2795 // no signed/unsigned wrap" where the base pointer is treated as
2796 // unsigned and the increment is known to not have signed
2797 // wrapping.
2798 //
2799 // This is a highly theoretical concern though, and this is good
2800 // enough for all cases we know of at this point. :)
Andrew Trick635f7182011-03-09 17:23:39 +00002801 //
Chris Lattner10212362011-02-11 21:43:33 +00002802 HasNSW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002803 }
2804
Dan Gohman27dead42010-04-12 07:49:36 +00002805 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002806 const SCEV *PHISCEV =
2807 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002808
Dan Gohmana10756e2010-01-21 02:09:26 +00002809 // Since the no-wrap flags are on the increment, they apply to the
2810 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002811 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002812 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2813 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002814
2815 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002816 // to be symbolic. We now need to go back and purge all of the
2817 // entries for the scalars that use the symbolic expression.
2818 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002819 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002820 return PHISCEV;
2821 }
2822 }
Dan Gohman622ed672009-05-04 22:02:23 +00002823 } else if (const SCEVAddRecExpr *AddRec =
2824 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002825 // Otherwise, this could be a loop like this:
2826 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2827 // In this case, j = {1,+,1} and BEValue is j.
2828 // Because the other in-value of i (0) fits the evolution of BEValue
2829 // i really is an addrec evolution.
2830 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002831 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002832
2833 // If StartVal = j.start - j.stride, we can use StartVal as the
2834 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002835 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002836 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002837 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002838 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002839
2840 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002841 // to be symbolic. We now need to go back and purge all of the
2842 // entries for the scalars that use the symbolic expression.
2843 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002844 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002845 return PHISCEV;
2846 }
2847 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002848 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002849 }
Dan Gohman27dead42010-04-12 07:49:36 +00002850 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002851
Dan Gohman85669632010-02-25 06:57:05 +00002852 // If the PHI has a single incoming value, follow that value, unless the
2853 // PHI's incoming blocks are in a different loop, in which case doing so
2854 // risks breaking LCSSA form. Instcombine would normally zap these, but
2855 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002856 if (Value *V = SimplifyInstruction(PN, TD, DT))
2857 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002858 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002859
Chris Lattner53e677a2004-04-02 20:23:17 +00002860 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002861 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002862}
2863
Dan Gohman26466c02009-05-08 20:26:55 +00002864/// createNodeForGEP - Expand GEP instructions into add and multiply
2865/// operations. This allows them to be analyzed by regular SCEV code.
2866///
Dan Gohmand281ed22009-12-18 02:09:29 +00002867const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002868
Dan Gohmanb9f96512010-06-30 07:16:37 +00002869 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2870 // Add expression, because the Instruction may be guarded by control flow
2871 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002872 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00002873 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00002874
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002875 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002876 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002877 // Don't attempt to analyze GEPs over unsized objects.
2878 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2879 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002880 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002881 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002882 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002883 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002884 I != E; ++I) {
2885 Value *Index = *I;
2886 // Compute the (potentially symbolic) offset in bytes for this index.
2887 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2888 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002889 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002890 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2891
Dan Gohmanb9f96512010-06-30 07:16:37 +00002892 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002893 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002894 } else {
2895 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002896 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2897 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002898 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002899 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2900
Dan Gohmanb9f96512010-06-30 07:16:37 +00002901 // Multiply the index by the element size to compute the element offset.
Chris Lattner8ebaf902011-02-13 03:14:49 +00002902 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, /*NUW*/ false,
2903 /*NSW*/ isInBounds);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002904
2905 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002906 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002907 }
2908 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002909
2910 // Get the SCEV for the GEP base.
2911 const SCEV *BaseS = getSCEV(Base);
2912
Dan Gohmanb9f96512010-06-30 07:16:37 +00002913 // Add the total offset from all the GEP indices to the base.
Chris Lattner8ebaf902011-02-13 03:14:49 +00002914 return getAddExpr(BaseS, TotalOffset, /*NUW*/ false,
2915 /*NSW*/ isInBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002916}
2917
Nick Lewycky83bb0052007-11-22 07:59:40 +00002918/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2919/// guaranteed to end in (at every loop iteration). It is, at the same time,
2920/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2921/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002923ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002924 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002925 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002926
Dan Gohman622ed672009-05-04 22:02:23 +00002927 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002928 return std::min(GetMinTrailingZeros(T->getOperand()),
2929 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002930
Dan Gohman622ed672009-05-04 22:02:23 +00002931 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002932 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2933 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2934 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002935 }
2936
Dan Gohman622ed672009-05-04 22:02:23 +00002937 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002938 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2939 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2940 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002941 }
2942
Dan Gohman622ed672009-05-04 22:02:23 +00002943 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002944 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002945 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002946 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002947 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002948 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002949 }
2950
Dan Gohman622ed672009-05-04 22:02:23 +00002951 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002952 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002953 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2954 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002955 for (unsigned i = 1, e = M->getNumOperands();
2956 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002957 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002958 BitWidth);
2959 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002960 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002961
Dan Gohman622ed672009-05-04 22:02:23 +00002962 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002963 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002965 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002966 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002967 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002968 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002969
Dan Gohman622ed672009-05-04 22:02:23 +00002970 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002971 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002972 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002973 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002974 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002975 return MinOpRes;
2976 }
2977
Dan Gohman622ed672009-05-04 22:02:23 +00002978 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002979 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002980 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002981 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002982 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002983 return MinOpRes;
2984 }
2985
Dan Gohman2c364ad2009-06-19 23:29:04 +00002986 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2987 // For a SCEVUnknown, ask ValueTracking.
2988 unsigned BitWidth = getTypeSizeInBits(U->getType());
2989 APInt Mask = APInt::getAllOnesValue(BitWidth);
2990 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2991 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2992 return Zeros.countTrailingOnes();
2993 }
2994
2995 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002996 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002997}
Chris Lattner53e677a2004-04-02 20:23:17 +00002998
Dan Gohman85b05a22009-07-13 21:35:55 +00002999/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3000///
3001ConstantRange
3002ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003003 // See if we've computed this range already.
3004 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3005 if (I != UnsignedRanges.end())
3006 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003007
3008 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003009 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003010
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003011 unsigned BitWidth = getTypeSizeInBits(S->getType());
3012 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3013
3014 // If the value has known zeros, the maximum unsigned value will have those
3015 // known zeros as well.
3016 uint32_t TZ = GetMinTrailingZeros(S);
3017 if (TZ != 0)
3018 ConservativeResult =
3019 ConstantRange(APInt::getMinValue(BitWidth),
3020 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3021
Dan Gohman85b05a22009-07-13 21:35:55 +00003022 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3023 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3024 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3025 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003026 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003027 }
3028
3029 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3030 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3031 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3032 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003033 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003034 }
3035
3036 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3037 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3038 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3039 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003040 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 }
3042
3043 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3044 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3045 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3046 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003047 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003048 }
3049
3050 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3051 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3052 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003053 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003054 }
3055
3056 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3057 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003058 return setUnsignedRange(ZExt,
3059 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 }
3061
3062 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3063 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003064 return setUnsignedRange(SExt,
3065 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003066 }
3067
3068 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3069 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003070 return setUnsignedRange(Trunc,
3071 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003072 }
3073
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003075 // If there's no unsigned wrap, the value will never be less than its
3076 // initial value.
3077 if (AddRec->hasNoUnsignedWrap())
3078 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003079 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003080 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003081 ConservativeResult.intersectWith(
3082 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003083
3084 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003085 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003086 const Type *Ty = AddRec->getType();
3087 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003088 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3089 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003090 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3091
3092 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003093 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003094
3095 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003096 ConstantRange StepRange = getSignedRange(Step);
3097 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3098 ConstantRange EndRange =
3099 StartRange.add(MaxBECountRange.multiply(StepRange));
3100
3101 // Check for overflow. This must be done with ConstantRange arithmetic
3102 // because we could be called from within the ScalarEvolution overflow
3103 // checking code.
3104 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3105 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3106 ConstantRange ExtMaxBECountRange =
3107 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3108 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3109 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3110 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003111 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003112
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3114 EndRange.getUnsignedMin());
3115 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3116 EndRange.getUnsignedMax());
3117 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003118 return setUnsignedRange(AddRec, ConservativeResult);
3119 return setUnsignedRange(AddRec,
3120 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003121 }
3122 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003123
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003124 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003125 }
3126
3127 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3128 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003129 APInt Mask = APInt::getAllOnesValue(BitWidth);
3130 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3131 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003132 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003133 return setUnsignedRange(U, ConservativeResult);
3134 return setUnsignedRange(U,
3135 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003136 }
3137
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003138 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003139}
3140
Dan Gohman85b05a22009-07-13 21:35:55 +00003141/// getSignedRange - Determine the signed range for a particular SCEV.
3142///
3143ConstantRange
3144ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003145 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003146 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3147 if (I != SignedRanges.end())
3148 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149
Dan Gohman85b05a22009-07-13 21:35:55 +00003150 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003151 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003152
Dan Gohman52fddd32010-01-26 04:40:18 +00003153 unsigned BitWidth = getTypeSizeInBits(S->getType());
3154 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3155
3156 // If the value has known zeros, the maximum signed value will have those
3157 // known zeros as well.
3158 uint32_t TZ = GetMinTrailingZeros(S);
3159 if (TZ != 0)
3160 ConservativeResult =
3161 ConstantRange(APInt::getSignedMinValue(BitWidth),
3162 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3163
Dan Gohman85b05a22009-07-13 21:35:55 +00003164 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3165 ConstantRange X = getSignedRange(Add->getOperand(0));
3166 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3167 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003168 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003169 }
3170
Dan Gohman85b05a22009-07-13 21:35:55 +00003171 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3172 ConstantRange X = getSignedRange(Mul->getOperand(0));
3173 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3174 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003175 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003176 }
3177
Dan Gohman85b05a22009-07-13 21:35:55 +00003178 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3179 ConstantRange X = getSignedRange(SMax->getOperand(0));
3180 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3181 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003182 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003183 }
Dan Gohman62849c02009-06-24 01:05:09 +00003184
Dan Gohman85b05a22009-07-13 21:35:55 +00003185 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3186 ConstantRange X = getSignedRange(UMax->getOperand(0));
3187 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3188 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003189 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003190 }
Dan Gohman62849c02009-06-24 01:05:09 +00003191
Dan Gohman85b05a22009-07-13 21:35:55 +00003192 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3193 ConstantRange X = getSignedRange(UDiv->getLHS());
3194 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003195 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003196 }
Dan Gohman62849c02009-06-24 01:05:09 +00003197
Dan Gohman85b05a22009-07-13 21:35:55 +00003198 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3199 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003200 return setSignedRange(ZExt,
3201 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003202 }
3203
3204 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3205 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003206 return setSignedRange(SExt,
3207 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003208 }
3209
3210 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3211 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003212 return setSignedRange(Trunc,
3213 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003214 }
3215
Dan Gohman85b05a22009-07-13 21:35:55 +00003216 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003217 // If there's no signed wrap, and all the operands have the same sign or
3218 // zero, the value won't ever change sign.
3219 if (AddRec->hasNoSignedWrap()) {
3220 bool AllNonNeg = true;
3221 bool AllNonPos = true;
3222 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3223 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3224 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3225 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003226 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003227 ConservativeResult = ConservativeResult.intersectWith(
3228 ConstantRange(APInt(BitWidth, 0),
3229 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003230 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003231 ConservativeResult = ConservativeResult.intersectWith(
3232 ConstantRange(APInt::getSignedMinValue(BitWidth),
3233 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003234 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003235
3236 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003237 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003238 const Type *Ty = AddRec->getType();
3239 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003240 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3241 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003242 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3243
3244 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003245 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003246
3247 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003248 ConstantRange StepRange = getSignedRange(Step);
3249 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3250 ConstantRange EndRange =
3251 StartRange.add(MaxBECountRange.multiply(StepRange));
3252
3253 // Check for overflow. This must be done with ConstantRange arithmetic
3254 // because we could be called from within the ScalarEvolution overflow
3255 // checking code.
3256 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3257 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3258 ConstantRange ExtMaxBECountRange =
3259 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3260 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3261 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3262 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003263 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003264
Dan Gohman85b05a22009-07-13 21:35:55 +00003265 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3266 EndRange.getSignedMin());
3267 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3268 EndRange.getSignedMax());
3269 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003270 return setSignedRange(AddRec, ConservativeResult);
3271 return setSignedRange(AddRec,
3272 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003273 }
Dan Gohman62849c02009-06-24 01:05:09 +00003274 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003275
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003276 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003277 }
3278
Dan Gohman2c364ad2009-06-19 23:29:04 +00003279 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3280 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003281 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003282 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003283 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3284 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003285 return setSignedRange(U, ConservativeResult);
3286 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003287 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003288 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003289 }
3290
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003291 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003292}
3293
Chris Lattner53e677a2004-04-02 20:23:17 +00003294/// createSCEV - We know that there is no SCEV for the specified value.
3295/// Analyze the expression.
3296///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003297const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003298 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003299 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003300
Dan Gohman6c459a22008-06-22 19:56:46 +00003301 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003302 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003303 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003304
3305 // Don't attempt to analyze instructions in blocks that aren't
3306 // reachable. Such instructions don't matter, and they aren't required
3307 // to obey basic rules for definitions dominating uses which this
3308 // analysis depends on.
3309 if (!DT->isReachableFromEntry(I->getParent()))
3310 return getUnknown(V);
3311 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003312 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003313 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3314 return getConstant(CI);
3315 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003316 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003317 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3318 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003319 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003320 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003321
Dan Gohmanca178902009-07-17 20:47:02 +00003322 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003323 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003324 case Instruction::Add: {
3325 // The simple thing to do would be to just call getSCEV on both operands
3326 // and call getAddExpr with the result. However if we're looking at a
3327 // bunch of things all added together, this can be quite inefficient,
3328 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3329 // Instead, gather up all the operands and make a single getAddExpr call.
3330 // LLVM IR canonical form means we need only traverse the left operands.
3331 SmallVector<const SCEV *, 4> AddOps;
3332 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003333 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3334 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3335 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3336 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003337 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003338 const SCEV *Op1 = getSCEV(U->getOperand(1));
3339 if (Opcode == Instruction::Sub)
3340 AddOps.push_back(getNegativeSCEV(Op1));
3341 else
3342 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003343 }
3344 AddOps.push_back(getSCEV(U->getOperand(0)));
3345 return getAddExpr(AddOps);
3346 }
3347 case Instruction::Mul: {
3348 // See the Add code above.
3349 SmallVector<const SCEV *, 4> MulOps;
3350 MulOps.push_back(getSCEV(U->getOperand(1)));
3351 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003352 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003353 Op = U->getOperand(0)) {
3354 U = cast<Operator>(Op);
3355 MulOps.push_back(getSCEV(U->getOperand(1)));
3356 }
3357 MulOps.push_back(getSCEV(U->getOperand(0)));
3358 return getMulExpr(MulOps);
3359 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003360 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003361 return getUDivExpr(getSCEV(U->getOperand(0)),
3362 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003363 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003364 return getMinusSCEV(getSCEV(U->getOperand(0)),
3365 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003366 case Instruction::And:
3367 // For an expression like x&255 that merely masks off the high bits,
3368 // use zext(trunc(x)) as the SCEV expression.
3369 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003370 if (CI->isNullValue())
3371 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003372 if (CI->isAllOnesValue())
3373 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003374 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003375
3376 // Instcombine's ShrinkDemandedConstant may strip bits out of
3377 // constants, obscuring what would otherwise be a low-bits mask.
3378 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3379 // knew about to reconstruct a low-bits mask value.
3380 unsigned LZ = A.countLeadingZeros();
3381 unsigned BitWidth = A.getBitWidth();
3382 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3383 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3384 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3385
3386 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3387
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003388 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003389 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003390 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003391 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003392 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003393 }
3394 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003395
Dan Gohman6c459a22008-06-22 19:56:46 +00003396 case Instruction::Or:
3397 // If the RHS of the Or is a constant, we may have something like:
3398 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3399 // optimizations will transparently handle this case.
3400 //
3401 // In order for this transformation to be safe, the LHS must be of the
3402 // form X*(2^n) and the Or constant must be less than 2^n.
3403 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003404 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003405 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003406 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003407 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3408 // Build a plain add SCEV.
3409 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3410 // If the LHS of the add was an addrec and it has no-wrap flags,
3411 // transfer the no-wrap flags, since an or won't introduce a wrap.
3412 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3413 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3414 if (OldAR->hasNoUnsignedWrap())
3415 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3416 if (OldAR->hasNoSignedWrap())
3417 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3418 }
3419 return S;
3420 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003421 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003422 break;
3423 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003424 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003425 // If the RHS of the xor is a signbit, then this is just an add.
3426 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003427 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003428 return getAddExpr(getSCEV(U->getOperand(0)),
3429 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003430
3431 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003432 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003433 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003434
3435 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3436 // This is a variant of the check for xor with -1, and it handles
3437 // the case where instcombine has trimmed non-demanded bits out
3438 // of an xor with -1.
3439 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3440 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3441 if (BO->getOpcode() == Instruction::And &&
3442 LCI->getValue() == CI->getValue())
3443 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003444 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003445 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003446 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003447 const Type *Z0Ty = Z0->getType();
3448 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3449
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003450 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003451 // mask off the high bits. Complement the operand and
3452 // re-apply the zext.
3453 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3454 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3455
3456 // If C is a single bit, it may be in the sign-bit position
3457 // before the zero-extend. In this case, represent the xor
3458 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003459 APInt Trunc = CI->getValue().trunc(Z0TySize);
3460 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003461 Trunc.isSignBit())
3462 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3463 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003464 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003465 }
3466 break;
3467
3468 case Instruction::Shl:
3469 // Turn shift left of a constant amount into a multiply.
3470 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003471 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003472
3473 // If the shift count is not less than the bitwidth, the result of
3474 // the shift is undefined. Don't try to analyze it, because the
3475 // resolution chosen here may differ from the resolution chosen in
3476 // other parts of the compiler.
3477 if (SA->getValue().uge(BitWidth))
3478 break;
3479
Owen Andersoneed707b2009-07-24 23:12:02 +00003480 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003481 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003482 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003483 }
3484 break;
3485
Nick Lewycky01eaf802008-07-07 06:15:49 +00003486 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003487 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003488 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003489 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003490
3491 // If the shift count is not less than the bitwidth, the result of
3492 // the shift is undefined. Don't try to analyze it, because the
3493 // resolution chosen here may differ from the resolution chosen in
3494 // other parts of the compiler.
3495 if (SA->getValue().uge(BitWidth))
3496 break;
3497
Owen Andersoneed707b2009-07-24 23:12:02 +00003498 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003499 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003500 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003501 }
3502 break;
3503
Dan Gohman4ee29af2009-04-21 02:26:00 +00003504 case Instruction::AShr:
3505 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3506 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003507 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003508 if (L->getOpcode() == Instruction::Shl &&
3509 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003510 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3511
3512 // If the shift count is not less than the bitwidth, the result of
3513 // the shift is undefined. Don't try to analyze it, because the
3514 // resolution chosen here may differ from the resolution chosen in
3515 // other parts of the compiler.
3516 if (CI->getValue().uge(BitWidth))
3517 break;
3518
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003519 uint64_t Amt = BitWidth - CI->getZExtValue();
3520 if (Amt == BitWidth)
3521 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003522 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003523 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003524 IntegerType::get(getContext(),
3525 Amt)),
3526 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003527 }
3528 break;
3529
Dan Gohman6c459a22008-06-22 19:56:46 +00003530 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003531 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003532
3533 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003534 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003535
3536 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003537 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003538
3539 case Instruction::BitCast:
3540 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003541 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003542 return getSCEV(U->getOperand(0));
3543 break;
3544
Dan Gohman4f8eea82010-02-01 18:27:38 +00003545 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3546 // lead to pointer expressions which cannot safely be expanded to GEPs,
3547 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3548 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003549
Dan Gohman26466c02009-05-08 20:26:55 +00003550 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003551 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003552
Dan Gohman6c459a22008-06-22 19:56:46 +00003553 case Instruction::PHI:
3554 return createNodeForPHI(cast<PHINode>(U));
3555
3556 case Instruction::Select:
3557 // This could be a smax or umax that was lowered earlier.
3558 // Try to recover it.
3559 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3560 Value *LHS = ICI->getOperand(0);
3561 Value *RHS = ICI->getOperand(1);
3562 switch (ICI->getPredicate()) {
3563 case ICmpInst::ICMP_SLT:
3564 case ICmpInst::ICMP_SLE:
3565 std::swap(LHS, RHS);
3566 // fall through
3567 case ICmpInst::ICMP_SGT:
3568 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003569 // a >s b ? a+x : b+x -> smax(a, b)+x
3570 // a >s b ? b+x : a+x -> smin(a, b)+x
3571 if (LHS->getType() == U->getType()) {
3572 const SCEV *LS = getSCEV(LHS);
3573 const SCEV *RS = getSCEV(RHS);
3574 const SCEV *LA = getSCEV(U->getOperand(1));
3575 const SCEV *RA = getSCEV(U->getOperand(2));
3576 const SCEV *LDiff = getMinusSCEV(LA, LS);
3577 const SCEV *RDiff = getMinusSCEV(RA, RS);
3578 if (LDiff == RDiff)
3579 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3580 LDiff = getMinusSCEV(LA, RS);
3581 RDiff = getMinusSCEV(RA, LS);
3582 if (LDiff == RDiff)
3583 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3584 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003585 break;
3586 case ICmpInst::ICMP_ULT:
3587 case ICmpInst::ICMP_ULE:
3588 std::swap(LHS, RHS);
3589 // fall through
3590 case ICmpInst::ICMP_UGT:
3591 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003592 // a >u b ? a+x : b+x -> umax(a, b)+x
3593 // a >u b ? b+x : a+x -> umin(a, b)+x
3594 if (LHS->getType() == U->getType()) {
3595 const SCEV *LS = getSCEV(LHS);
3596 const SCEV *RS = getSCEV(RHS);
3597 const SCEV *LA = getSCEV(U->getOperand(1));
3598 const SCEV *RA = getSCEV(U->getOperand(2));
3599 const SCEV *LDiff = getMinusSCEV(LA, LS);
3600 const SCEV *RDiff = getMinusSCEV(RA, RS);
3601 if (LDiff == RDiff)
3602 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3603 LDiff = getMinusSCEV(LA, RS);
3604 RDiff = getMinusSCEV(RA, LS);
3605 if (LDiff == RDiff)
3606 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3607 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003608 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003609 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003610 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3611 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003612 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003613 cast<ConstantInt>(RHS)->isZero()) {
3614 const SCEV *One = getConstant(LHS->getType(), 1);
3615 const SCEV *LS = getSCEV(LHS);
3616 const SCEV *LA = getSCEV(U->getOperand(1));
3617 const SCEV *RA = getSCEV(U->getOperand(2));
3618 const SCEV *LDiff = getMinusSCEV(LA, LS);
3619 const SCEV *RDiff = getMinusSCEV(RA, One);
3620 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003621 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003622 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003623 break;
3624 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003625 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3626 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003627 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003628 cast<ConstantInt>(RHS)->isZero()) {
3629 const SCEV *One = getConstant(LHS->getType(), 1);
3630 const SCEV *LS = getSCEV(LHS);
3631 const SCEV *LA = getSCEV(U->getOperand(1));
3632 const SCEV *RA = getSCEV(U->getOperand(2));
3633 const SCEV *LDiff = getMinusSCEV(LA, One);
3634 const SCEV *RDiff = getMinusSCEV(RA, LS);
3635 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003636 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003637 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003638 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003639 default:
3640 break;
3641 }
3642 }
3643
3644 default: // We cannot analyze this expression.
3645 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003646 }
3647
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003648 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003649}
3650
3651
3652
3653//===----------------------------------------------------------------------===//
3654// Iteration Count Computation Code
3655//
3656
Dan Gohman46bdfb02009-02-24 18:55:53 +00003657/// getBackedgeTakenCount - If the specified loop has a predictable
3658/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3659/// object. The backedge-taken count is the number of times the loop header
3660/// will be branched to from within the loop. This is one less than the
3661/// trip count of the loop, since it doesn't count the first iteration,
3662/// when the header is branched to from outside the loop.
3663///
3664/// Note that it is not valid to call this method on a loop without a
3665/// loop-invariant backedge-taken count (see
3666/// hasLoopInvariantBackedgeTakenCount).
3667///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003668const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003669 return getBackedgeTakenInfo(L).Exact;
3670}
3671
3672/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3673/// return the least SCEV value that is known never to be less than the
3674/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003675const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003676 return getBackedgeTakenInfo(L).Max;
3677}
3678
Dan Gohman59ae6b92009-07-08 19:23:34 +00003679/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3680/// onto the given Worklist.
3681static void
3682PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3683 BasicBlock *Header = L->getHeader();
3684
3685 // Push all Loop-header PHIs onto the Worklist stack.
3686 for (BasicBlock::iterator I = Header->begin();
3687 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3688 Worklist.push_back(PN);
3689}
3690
Dan Gohmana1af7572009-04-30 20:47:05 +00003691const ScalarEvolution::BackedgeTakenInfo &
3692ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003693 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003694 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003695 // update the value. The temporary CouldNotCompute value tells SCEV
3696 // code elsewhere that it shouldn't attempt to request a new
3697 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003698 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003699 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003700 if (!Pair.second)
3701 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003702
Chris Lattnerf1859892011-01-09 02:16:18 +00003703 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3704 if (BECount.Exact != getCouldNotCompute()) {
3705 assert(isLoopInvariant(BECount.Exact, L) &&
3706 isLoopInvariant(BECount.Max, L) &&
3707 "Computed backedge-taken count isn't loop invariant for loop!");
3708 ++NumTripCountsComputed;
3709
3710 // Update the value in the map.
3711 Pair.first->second = BECount;
3712 } else {
3713 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003714 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003715 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003716 if (isa<PHINode>(L->getHeader()->begin()))
3717 // Only count loops that have phi nodes as not being computable.
3718 ++NumTripCountsNotComputed;
3719 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003720
Chris Lattnerf1859892011-01-09 02:16:18 +00003721 // Now that we know more about the trip count for this loop, forget any
3722 // existing SCEV values for PHI nodes in this loop since they are only
3723 // conservative estimates made without the benefit of trip count
3724 // information. This is similar to the code in forgetLoop, except that
3725 // it handles SCEVUnknown PHI nodes specially.
3726 if (BECount.hasAnyInfo()) {
3727 SmallVector<Instruction *, 16> Worklist;
3728 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003729
Chris Lattnerf1859892011-01-09 02:16:18 +00003730 SmallPtrSet<Instruction *, 8> Visited;
3731 while (!Worklist.empty()) {
3732 Instruction *I = Worklist.pop_back_val();
3733 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003734
Chris Lattnerf1859892011-01-09 02:16:18 +00003735 ValueExprMapType::iterator It =
3736 ValueExprMap.find(static_cast<Value *>(I));
3737 if (It != ValueExprMap.end()) {
3738 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003739
Chris Lattnerf1859892011-01-09 02:16:18 +00003740 // SCEVUnknown for a PHI either means that it has an unrecognized
3741 // structure, or it's a PHI that's in the progress of being computed
3742 // by createNodeForPHI. In the former case, additional loop trip
3743 // count information isn't going to change anything. In the later
3744 // case, createNodeForPHI will perform the necessary updates on its
3745 // own when it gets to that point.
3746 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3747 forgetMemoizedResults(Old);
3748 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003749 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003750 if (PHINode *PN = dyn_cast<PHINode>(I))
3751 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003752 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003753
3754 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003755 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003756 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003757 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003758}
3759
Dan Gohman4c7279a2009-10-31 15:04:55 +00003760/// forgetLoop - This method should be called by the client when it has
3761/// changed a loop in a way that may effect ScalarEvolution's ability to
3762/// compute a trip count, or if the loop is deleted.
3763void ScalarEvolution::forgetLoop(const Loop *L) {
3764 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003765 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003766
Dan Gohman4c7279a2009-10-31 15:04:55 +00003767 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003768 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003769 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003770
Dan Gohman59ae6b92009-07-08 19:23:34 +00003771 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003772 while (!Worklist.empty()) {
3773 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003774 if (!Visited.insert(I)) continue;
3775
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003776 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3777 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003778 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003779 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003780 if (PHINode *PN = dyn_cast<PHINode>(I))
3781 ConstantEvolutionLoopExitValue.erase(PN);
3782 }
3783
3784 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003785 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003786
3787 // Forget all contained loops too, to avoid dangling entries in the
3788 // ValuesAtScopes map.
3789 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3790 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003791}
3792
Eric Christophere6cbfa62010-07-29 01:25:38 +00003793/// forgetValue - This method should be called by the client when it has
3794/// changed a value in a way that may effect its value, or which may
3795/// disconnect it from a def-use chain linking it to a loop.
3796void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003797 Instruction *I = dyn_cast<Instruction>(V);
3798 if (!I) return;
3799
3800 // Drop information about expressions based on loop-header PHIs.
3801 SmallVector<Instruction *, 16> Worklist;
3802 Worklist.push_back(I);
3803
3804 SmallPtrSet<Instruction *, 8> Visited;
3805 while (!Worklist.empty()) {
3806 I = Worklist.pop_back_val();
3807 if (!Visited.insert(I)) continue;
3808
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003809 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3810 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003811 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003812 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003813 if (PHINode *PN = dyn_cast<PHINode>(I))
3814 ConstantEvolutionLoopExitValue.erase(PN);
3815 }
3816
3817 PushDefUseChildren(I, Worklist);
3818 }
3819}
3820
Dan Gohman46bdfb02009-02-24 18:55:53 +00003821/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3822/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003823ScalarEvolution::BackedgeTakenInfo
3824ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003825 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003826 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003827
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003829 const SCEV *BECount = getCouldNotCompute();
3830 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003831 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3833 BackedgeTakenInfo NewBTI =
3834 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003835
Dan Gohman1c343752009-06-27 21:21:31 +00003836 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003838 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003839 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003840 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003841 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003842 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003843 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003844 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003845 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 }
Dan Gohman1c343752009-06-27 21:21:31 +00003847 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003848 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003849 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003850 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003851 }
3852
3853 return BackedgeTakenInfo(BECount, MaxBECount);
3854}
3855
3856/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3857/// of the specified loop will execute if it exits via the specified block.
3858ScalarEvolution::BackedgeTakenInfo
3859ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3860 BasicBlock *ExitingBlock) {
3861
3862 // Okay, we've chosen an exiting block. See what condition causes us to
3863 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003864 //
3865 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003866 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003867 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003868 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003869
Chris Lattner8b0e3602007-01-07 02:24:26 +00003870 // At this point, we know we have a conditional branch that determines whether
3871 // the loop is exited. However, we don't know if the branch is executed each
3872 // time through the loop. If not, then the execution count of the branch will
3873 // not be equal to the trip count of the loop.
3874 //
3875 // Currently we check for this by checking to see if the Exit branch goes to
3876 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003877 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003878 // loop header. This is common for un-rotated loops.
3879 //
3880 // If both of those tests fail, walk up the unique predecessor chain to the
3881 // header, stopping if there is an edge that doesn't exit the loop. If the
3882 // header is reached, the execution count of the branch will be equal to the
3883 // trip count of the loop.
3884 //
3885 // More extensive analysis could be done to handle more cases here.
3886 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003887 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003888 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003889 ExitBr->getParent() != L->getHeader()) {
3890 // The simple checks failed, try climbing the unique predecessor chain
3891 // up to the header.
3892 bool Ok = false;
3893 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3894 BasicBlock *Pred = BB->getUniquePredecessor();
3895 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003896 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003897 TerminatorInst *PredTerm = Pred->getTerminator();
3898 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3899 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3900 if (PredSucc == BB)
3901 continue;
3902 // If the predecessor has a successor that isn't BB and isn't
3903 // outside the loop, assume the worst.
3904 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003905 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003906 }
3907 if (Pred == L->getHeader()) {
3908 Ok = true;
3909 break;
3910 }
3911 BB = Pred;
3912 }
3913 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003914 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 }
3916
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003917 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003918 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3919 ExitBr->getSuccessor(0),
3920 ExitBr->getSuccessor(1));
3921}
3922
3923/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3924/// backedge of the specified loop will execute if its exit condition
3925/// were a conditional branch of ExitCond, TBB, and FBB.
3926ScalarEvolution::BackedgeTakenInfo
3927ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3928 Value *ExitCond,
3929 BasicBlock *TBB,
3930 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003931 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003932 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3933 if (BO->getOpcode() == Instruction::And) {
3934 // Recurse on the operands of the and.
3935 BackedgeTakenInfo BTI0 =
3936 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3937 BackedgeTakenInfo BTI1 =
3938 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003939 const SCEV *BECount = getCouldNotCompute();
3940 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003941 if (L->contains(TBB)) {
3942 // Both conditions must be true for the loop to continue executing.
3943 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003944 if (BTI0.Exact == getCouldNotCompute() ||
3945 BTI1.Exact == getCouldNotCompute())
3946 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003947 else
3948 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003949 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003950 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003951 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003952 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003953 else
3954 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003955 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003956 // Both conditions must be true at the same time for the loop to exit.
3957 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003958 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003959 if (BTI0.Max == BTI1.Max)
3960 MaxBECount = BTI0.Max;
3961 if (BTI0.Exact == BTI1.Exact)
3962 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003963 }
3964
3965 return BackedgeTakenInfo(BECount, MaxBECount);
3966 }
3967 if (BO->getOpcode() == Instruction::Or) {
3968 // Recurse on the operands of the or.
3969 BackedgeTakenInfo BTI0 =
3970 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3971 BackedgeTakenInfo BTI1 =
3972 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003973 const SCEV *BECount = getCouldNotCompute();
3974 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003975 if (L->contains(FBB)) {
3976 // Both conditions must be false for the loop to continue executing.
3977 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003978 if (BTI0.Exact == getCouldNotCompute() ||
3979 BTI1.Exact == getCouldNotCompute())
3980 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003981 else
3982 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003983 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003984 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003985 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003986 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003987 else
3988 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003989 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003990 // Both conditions must be false at the same time for the loop to exit.
3991 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003992 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003993 if (BTI0.Max == BTI1.Max)
3994 MaxBECount = BTI0.Max;
3995 if (BTI0.Exact == BTI1.Exact)
3996 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003997 }
3998
3999 return BackedgeTakenInfo(BECount, MaxBECount);
4000 }
4001 }
4002
4003 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004004 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004005 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4006 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004007
Dan Gohman00cb5b72010-02-19 18:12:07 +00004008 // Check for a constant condition. These are normally stripped out by
4009 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4010 // preserve the CFG and is temporarily leaving constant conditions
4011 // in place.
4012 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4013 if (L->contains(FBB) == !CI->getZExtValue())
4014 // The backedge is always taken.
4015 return getCouldNotCompute();
4016 else
4017 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004018 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004019 }
4020
Eli Friedman361e54d2009-05-09 12:32:42 +00004021 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004022 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4023}
4024
Chris Lattner992efb02011-01-09 22:26:35 +00004025static const SCEVAddRecExpr *
4026isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
4027 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
Andrew Trick635f7182011-03-09 17:23:39 +00004028
Chris Lattner992efb02011-01-09 22:26:35 +00004029 // The SCEV must be an addrec of this loop.
4030 if (!SA || SA->getLoop() != L || !SA->isAffine())
4031 return 0;
Andrew Trick635f7182011-03-09 17:23:39 +00004032
Chris Lattner992efb02011-01-09 22:26:35 +00004033 // The SCEV must be known to not wrap in some way to be interesting.
4034 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
4035 return 0;
4036
4037 // The stride must be a constant so that we know if it is striding up or down.
4038 if (!isa<SCEVConstant>(SA->getOperand(1)))
4039 return 0;
4040 return SA;
4041}
4042
4043/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
4044/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
4045/// and this function returns the expression to use for x-y. We know and take
4046/// advantage of the fact that this subtraction is only being used in a
4047/// comparison by zero context.
4048///
4049static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4050 const Loop *L, ScalarEvolution &SE) {
4051 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4052 // wrap (either NSW or NUW), then we know that the value will either become
4053 // the other one (and thus the loop terminates), that the loop will terminate
4054 // through some other exit condition first, or that the loop has undefined
4055 // behavior. This information is useful when the addrec has a stride that is
4056 // != 1 or -1, because it means we can't "miss" the exit value.
4057 //
4058 // In any of these three cases, it is safe to turn the exit condition into a
4059 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4060 // but since we know that the "end cannot be missed" we can force the
4061 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4062 // that the AddRec *cannot* pass zero.
4063
4064 // See if LHS and RHS are addrec's we can handle.
4065 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4066 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
Andrew Trick635f7182011-03-09 17:23:39 +00004067
Chris Lattner992efb02011-01-09 22:26:35 +00004068 // If neither addrec is interesting, just return a minus.
4069 if (RHSA == 0 && LHSA == 0)
4070 return SE.getMinusSCEV(LHS, RHS);
Andrew Trick635f7182011-03-09 17:23:39 +00004071
Chris Lattner992efb02011-01-09 22:26:35 +00004072 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4073 if (RHSA && LHSA == 0) {
4074 // Safe because a-b === b-a for comparisons against zero.
4075 std::swap(LHS, RHS);
4076 std::swap(LHSA, RHSA);
4077 }
Andrew Trick635f7182011-03-09 17:23:39 +00004078
Chris Lattner992efb02011-01-09 22:26:35 +00004079 // Handle the case when only one is advancing in a non-overflowing way.
4080 if (RHSA == 0) {
4081 // If RHS is loop varying, then we can't predict when LHS will cross it.
4082 if (!SE.isLoopInvariant(RHS, L))
4083 return SE.getMinusSCEV(LHS, RHS);
Andrew Trick635f7182011-03-09 17:23:39 +00004084
Chris Lattner992efb02011-01-09 22:26:35 +00004085 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4086 // is counting up until it crosses RHS (which must be larger than LHS). If
4087 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4088 const ConstantInt *Stride =
4089 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4090 if (Stride->getValue().isNegative())
4091 std::swap(LHS, RHS);
4092
4093 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4094 }
Andrew Trick635f7182011-03-09 17:23:39 +00004095
Chris Lattner992efb02011-01-09 22:26:35 +00004096 // If both LHS and RHS are interesting, we have something like:
4097 // a+i*4 != b+i*8.
4098 const ConstantInt *LHSStride =
4099 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4100 const ConstantInt *RHSStride =
4101 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
Andrew Trick635f7182011-03-09 17:23:39 +00004102
Chris Lattner992efb02011-01-09 22:26:35 +00004103 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004104 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004105 if (LHSStride == RHSStride)
4106 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
Andrew Trick635f7182011-03-09 17:23:39 +00004107
Chris Lattner992efb02011-01-09 22:26:35 +00004108 // If the signs of the strides differ, then the negative stride is counting
4109 // down to the positive stride.
4110 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4111 if (RHSStride->getValue().isNegative())
4112 std::swap(LHS, RHS);
4113 } else {
4114 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4115 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4116 // whether the strides are positive or negative.
4117 if (RHSStride->getValue().slt(LHSStride->getValue()))
4118 std::swap(LHS, RHS);
4119 }
Andrew Trick635f7182011-03-09 17:23:39 +00004120
Chris Lattner992efb02011-01-09 22:26:35 +00004121 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4122}
4123
Dan Gohmana334aa72009-06-22 00:31:57 +00004124/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4125/// backedge of the specified loop will execute if its exit condition
4126/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4127ScalarEvolution::BackedgeTakenInfo
4128ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4129 ICmpInst *ExitCond,
4130 BasicBlock *TBB,
4131 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004132
Reid Spencere4d87aa2006-12-23 06:05:41 +00004133 // If the condition was exit on true, convert the condition to exit on false
4134 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004135 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004136 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004137 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004138 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004139
4140 // Handle common loops like: for (X = "string"; *X; ++X)
4141 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4142 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004143 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004144 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004145 if (ItCnt.hasAnyInfo())
4146 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004147 }
4148
Dan Gohman0bba49c2009-07-07 17:06:11 +00004149 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4150 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004151
4152 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004153 LHS = getSCEVAtScope(LHS, L);
4154 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004155
Dan Gohman64a845e2009-06-24 04:48:43 +00004156 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004157 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004158 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004159 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004160 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004161 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004162 }
4163
Dan Gohman03557dc2010-05-03 16:35:17 +00004164 // Simplify the operands before analyzing them.
4165 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4166
Chris Lattner53e677a2004-04-02 20:23:17 +00004167 // If we have a comparison of a chrec against a constant, try to use value
4168 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004169 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4170 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004171 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004172 // Form the constant range.
4173 ConstantRange CompRange(
4174 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004175
Dan Gohman0bba49c2009-07-07 17:06:11 +00004176 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004177 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004178 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004179
Chris Lattner53e677a2004-04-02 20:23:17 +00004180 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004181 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004182 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004183 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4184 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004185 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004186 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004187 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004188 case ICmpInst::ICMP_EQ: { // while (X == Y)
4189 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004190 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4191 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004192 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004193 }
4194 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004195 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4196 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004197 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004198 }
4199 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004200 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4201 getNotSCEV(RHS), L, true);
4202 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004203 break;
4204 }
4205 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004206 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4207 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004208 break;
4209 }
4210 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004211 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4212 getNotSCEV(RHS), L, false);
4213 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004214 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004215 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004216 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004217#if 0
David Greene25e0e872009-12-23 22:18:14 +00004218 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004219 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004220 dbgs() << "[unsigned] ";
4221 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004222 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004223 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004224#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004225 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004226 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004227 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004228 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004229}
4230
Chris Lattner673e02b2004-10-12 01:49:27 +00004231static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004232EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4233 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004234 const SCEV *InVal = SE.getConstant(C);
4235 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004236 assert(isa<SCEVConstant>(Val) &&
4237 "Evaluation of SCEV at constant didn't fold correctly?");
4238 return cast<SCEVConstant>(Val)->getValue();
4239}
4240
4241/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4242/// and a GEP expression (missing the pointer index) indexing into it, return
4243/// the addressed element of the initializer or null if the index expression is
4244/// invalid.
4245static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004246GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004247 const std::vector<ConstantInt*> &Indices) {
4248 Constant *Init = GV->getInitializer();
4249 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004250 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004251 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4252 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4253 Init = cast<Constant>(CS->getOperand(Idx));
4254 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4255 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4256 Init = cast<Constant>(CA->getOperand(Idx));
4257 } else if (isa<ConstantAggregateZero>(Init)) {
4258 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4259 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004260 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004261 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4262 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004263 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004264 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004265 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004266 }
4267 return 0;
4268 } else {
4269 return 0; // Unknown initializer type
4270 }
4271 }
4272 return Init;
4273}
4274
Dan Gohman46bdfb02009-02-24 18:55:53 +00004275/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4276/// 'icmp op load X, cst', try to see if we can compute the backedge
4277/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004278ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004279ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4280 LoadInst *LI,
4281 Constant *RHS,
4282 const Loop *L,
4283 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004284 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004285
4286 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004287 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004288 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004289 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004290
4291 // Make sure that it is really a constant global we are gepping, with an
4292 // initializer, and make sure the first IDX is really 0.
4293 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004294 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004295 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4296 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004297 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004298
4299 // Okay, we allow one non-constant index into the GEP instruction.
4300 Value *VarIdx = 0;
4301 std::vector<ConstantInt*> Indexes;
4302 unsigned VarIdxNum = 0;
4303 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4304 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4305 Indexes.push_back(CI);
4306 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004307 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004308 VarIdx = GEP->getOperand(i);
4309 VarIdxNum = i-2;
4310 Indexes.push_back(0);
4311 }
4312
4313 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4314 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004315 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004316 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004317
4318 // We can only recognize very limited forms of loop index expressions, in
4319 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004320 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004321 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004322 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4323 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004324 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004325
4326 unsigned MaxSteps = MaxBruteForceIterations;
4327 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004328 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004329 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004330 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004331
4332 // Form the GEP offset.
4333 Indexes[VarIdxNum] = Val;
4334
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004335 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004336 if (Result == 0) break; // Cannot compute!
4337
4338 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004339 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004340 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004341 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004342#if 0
David Greene25e0e872009-12-23 22:18:14 +00004343 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004344 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4345 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004346#endif
4347 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004348 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004349 }
4350 }
Dan Gohman1c343752009-06-27 21:21:31 +00004351 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004352}
4353
4354
Chris Lattner3221ad02004-04-17 22:58:41 +00004355/// CanConstantFold - Return true if we can constant fold an instruction of the
4356/// specified type, assuming that all operands were constants.
4357static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004358 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004359 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4360 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004361
Chris Lattner3221ad02004-04-17 22:58:41 +00004362 if (const CallInst *CI = dyn_cast<CallInst>(I))
4363 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004364 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004365 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004366}
4367
Chris Lattner3221ad02004-04-17 22:58:41 +00004368/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4369/// in the loop that V is derived from. We allow arbitrary operations along the
4370/// way, but the operands of an operation must either be constants or a value
4371/// derived from a constant PHI. If this expression does not fit with these
4372/// constraints, return null.
4373static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4374 // If this is not an instruction, or if this is an instruction outside of the
4375 // loop, it can't be derived from a loop PHI.
4376 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004377 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004378
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004379 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004380 if (L->getHeader() == I->getParent())
4381 return PN;
4382 else
4383 // We don't currently keep track of the control flow needed to evaluate
4384 // PHIs, so we cannot handle PHIs inside of loops.
4385 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004386 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004387
4388 // If we won't be able to constant fold this expression even if the operands
4389 // are constants, return early.
4390 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004391
Chris Lattner3221ad02004-04-17 22:58:41 +00004392 // Otherwise, we can evaluate this instruction if all of its operands are
4393 // constant or derived from a PHI node themselves.
4394 PHINode *PHI = 0;
4395 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004396 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004397 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4398 if (P == 0) return 0; // Not evolving from PHI
4399 if (PHI == 0)
4400 PHI = P;
4401 else if (PHI != P)
4402 return 0; // Evolving from multiple different PHIs.
4403 }
4404
4405 // This is a expression evolving from a constant PHI!
4406 return PHI;
4407}
4408
4409/// EvaluateExpression - Given an expression that passes the
4410/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4411/// in the loop has the value PHIVal. If we can't fold this expression for some
4412/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004413static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4414 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004415 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004416 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004417 Instruction *I = cast<Instruction>(V);
4418
Dan Gohman9d4588f2010-06-22 13:15:46 +00004419 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004420
4421 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004422 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004423 if (Operands[i] == 0) return 0;
4424 }
4425
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004426 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004427 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004428 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004429 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004430 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004431}
4432
4433/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4434/// in the header of its containing loop, we know the loop executes a
4435/// constant number of times, and the PHI node is just a recurrence
4436/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004437Constant *
4438ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004439 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004440 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004441 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004442 ConstantEvolutionLoopExitValue.find(PN);
4443 if (I != ConstantEvolutionLoopExitValue.end())
4444 return I->second;
4445
Dan Gohmane0567812010-04-08 23:03:40 +00004446 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004447 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4448
4449 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4450
4451 // Since the loop is canonicalized, the PHI node must have two entries. One
4452 // entry must be a constant (coming in from outside of the loop), and the
4453 // second must be derived from the same PHI.
4454 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4455 Constant *StartCST =
4456 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4457 if (StartCST == 0)
4458 return RetVal = 0; // Must be a constant.
4459
4460 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004461 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4462 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004463 return RetVal = 0; // Not derived from same PHI.
4464
4465 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004466 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004467 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004468
Dan Gohman46bdfb02009-02-24 18:55:53 +00004469 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004470 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004471 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4472 if (IterationNum == NumIterations)
4473 return RetVal = PHIVal; // Got exit value!
4474
4475 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004476 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004477 if (NextPHI == PHIVal)
4478 return RetVal = NextPHI; // Stopped evolving!
4479 if (NextPHI == 0)
4480 return 0; // Couldn't evaluate!
4481 PHIVal = NextPHI;
4482 }
4483}
4484
Dan Gohman07ad19b2009-07-27 16:09:48 +00004485/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004486/// constant number of times (the condition evolves only from constants),
4487/// try to evaluate a few iterations of the loop until we get the exit
4488/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004489/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004490const SCEV *
4491ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4492 Value *Cond,
4493 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004494 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004495 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004496
Dan Gohmanb92654d2010-06-19 14:17:24 +00004497 // If the loop is canonicalized, the PHI will have exactly two entries.
4498 // That's the only form we support here.
4499 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4500
4501 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004502 // second must be derived from the same PHI.
4503 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4504 Constant *StartCST =
4505 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004506 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004507
4508 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004509 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4510 !isa<Constant>(BEValue))
4511 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004512
4513 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4514 // the loop symbolically to determine when the condition gets a value of
4515 // "ExitWhen".
4516 unsigned IterationNum = 0;
4517 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4518 for (Constant *PHIVal = StartCST;
4519 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004520 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004521 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004522
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004523 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004524 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004525
Reid Spencere8019bb2007-03-01 07:25:48 +00004526 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004527 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004528 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004529 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004530
Chris Lattner3221ad02004-04-17 22:58:41 +00004531 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004532 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004533 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004534 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004535 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004536 }
4537
4538 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004539 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004540}
4541
Dan Gohmane7125f42009-09-03 15:00:26 +00004542/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004543/// at the specified scope in the program. The L value specifies a loop
4544/// nest to evaluate the expression at, where null is the top-level or a
4545/// specified loop is immediately inside of the loop.
4546///
4547/// This method can be used to compute the exit value for a variable defined
4548/// in a loop by querying what the value will hold in the parent loop.
4549///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004550/// In the case that a relevant loop exit value cannot be computed, the
4551/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004552const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004553 // Check to see if we've folded this expression at this loop before.
4554 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4555 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4556 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4557 if (!Pair.second)
4558 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004559
Dan Gohman42214892009-08-31 21:15:23 +00004560 // Otherwise compute it.
4561 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004562 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004563 return C;
4564}
4565
4566const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004567 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004568
Nick Lewycky3e630762008-02-20 06:48:22 +00004569 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004570 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004571 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004572 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004573 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004574 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4575 if (PHINode *PN = dyn_cast<PHINode>(I))
4576 if (PN->getParent() == LI->getHeader()) {
4577 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004578 // to see if the loop that contains it has a known backedge-taken
4579 // count. If so, we may be able to force computation of the exit
4580 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004581 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004582 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004583 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004584 // Okay, we know how many times the containing loop executes. If
4585 // this is a constant evolving PHI node, get the final value at
4586 // the specified iteration number.
4587 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004588 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004589 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004590 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004591 }
4592 }
4593
Reid Spencer09906f32006-12-04 21:33:23 +00004594 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004595 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004596 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004597 // result. This is particularly useful for computing loop exit values.
4598 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004599 SmallVector<Constant *, 4> Operands;
4600 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004601 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4602 Value *Op = I->getOperand(i);
4603 if (Constant *C = dyn_cast<Constant>(Op)) {
4604 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004605 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004606 }
Dan Gohman11046452010-06-29 23:43:06 +00004607
4608 // If any of the operands is non-constant and if they are
4609 // non-integer and non-pointer, don't even try to analyze them
4610 // with scev techniques.
4611 if (!isSCEVable(Op->getType()))
4612 return V;
4613
4614 const SCEV *OrigV = getSCEV(Op);
4615 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4616 MadeImprovement |= OrigV != OpV;
4617
4618 Constant *C = 0;
4619 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4620 C = SC->getValue();
4621 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4622 C = dyn_cast<Constant>(SU->getValue());
4623 if (!C) return V;
4624 if (C->getType() != Op->getType())
4625 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4626 Op->getType(),
4627 false),
4628 C, Op->getType());
4629 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004630 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004631
Dan Gohman11046452010-06-29 23:43:06 +00004632 // Check to see if getSCEVAtScope actually made an improvement.
4633 if (MadeImprovement) {
4634 Constant *C = 0;
4635 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4636 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4637 Operands[0], Operands[1], TD);
4638 else
4639 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4640 &Operands[0], Operands.size(), TD);
4641 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004642 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004643 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004644 }
4645 }
4646
4647 // This is some other type of SCEVUnknown, just return it.
4648 return V;
4649 }
4650
Dan Gohman622ed672009-05-04 22:02:23 +00004651 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004652 // Avoid performing the look-up in the common case where the specified
4653 // expression has no loop-variant portions.
4654 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004655 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004656 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004657 // Okay, at least one of these operands is loop variant but might be
4658 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004659 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4660 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004661 NewOps.push_back(OpAtScope);
4662
4663 for (++i; i != e; ++i) {
4664 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004665 NewOps.push_back(OpAtScope);
4666 }
4667 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004668 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004669 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004670 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004671 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004672 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004673 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004674 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004675 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004676 }
4677 }
4678 // If we got here, all operands are loop invariant.
4679 return Comm;
4680 }
4681
Dan Gohman622ed672009-05-04 22:02:23 +00004682 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004683 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4684 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004685 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4686 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004687 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004688 }
4689
4690 // If this is a loop recurrence for a loop that does not contain L, then we
4691 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004692 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004693 // First, attempt to evaluate each operand.
4694 // Avoid performing the look-up in the common case where the specified
4695 // expression has no loop-variant portions.
4696 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4697 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4698 if (OpAtScope == AddRec->getOperand(i))
4699 continue;
4700
4701 // Okay, at least one of these operands is loop variant but might be
4702 // foldable. Build a new instance of the folded commutative expression.
4703 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4704 AddRec->op_begin()+i);
4705 NewOps.push_back(OpAtScope);
4706 for (++i; i != e; ++i)
4707 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4708
4709 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4710 break;
4711 }
4712
4713 // If the scope is outside the addrec's loop, evaluate it by using the
4714 // loop exit value of the addrec.
4715 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004716 // To evaluate this recurrence, we need to know how many times the AddRec
4717 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004718 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004719 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004720
Eli Friedmanb42a6262008-08-04 23:49:06 +00004721 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004722 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004723 }
Dan Gohman11046452010-06-29 23:43:06 +00004724
Dan Gohmand594e6f2009-05-24 23:25:42 +00004725 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004726 }
4727
Dan Gohman622ed672009-05-04 22:02:23 +00004728 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004729 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004730 if (Op == Cast->getOperand())
4731 return Cast; // must be loop invariant
4732 return getZeroExtendExpr(Op, Cast->getType());
4733 }
4734
Dan Gohman622ed672009-05-04 22:02:23 +00004735 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004736 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004737 if (Op == Cast->getOperand())
4738 return Cast; // must be loop invariant
4739 return getSignExtendExpr(Op, Cast->getType());
4740 }
4741
Dan Gohman622ed672009-05-04 22:02:23 +00004742 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004743 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004744 if (Op == Cast->getOperand())
4745 return Cast; // must be loop invariant
4746 return getTruncateExpr(Op, Cast->getType());
4747 }
4748
Torok Edwinc23197a2009-07-14 16:55:14 +00004749 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004750 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004751}
4752
Dan Gohman66a7e852009-05-08 20:38:54 +00004753/// getSCEVAtScope - This is a convenience function which does
4754/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004755const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004756 return getSCEVAtScope(getSCEV(V), L);
4757}
4758
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004759/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4760/// following equation:
4761///
4762/// A * X = B (mod N)
4763///
4764/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4765/// A and B isn't important.
4766///
4767/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004768static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004769 ScalarEvolution &SE) {
4770 uint32_t BW = A.getBitWidth();
4771 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4772 assert(A != 0 && "A must be non-zero.");
4773
4774 // 1. D = gcd(A, N)
4775 //
4776 // The gcd of A and N may have only one prime factor: 2. The number of
4777 // trailing zeros in A is its multiplicity
4778 uint32_t Mult2 = A.countTrailingZeros();
4779 // D = 2^Mult2
4780
4781 // 2. Check if B is divisible by D.
4782 //
4783 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4784 // is not less than multiplicity of this prime factor for D.
4785 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004786 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004787
4788 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4789 // modulo (N / D).
4790 //
4791 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4792 // bit width during computations.
4793 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4794 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004795 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004796 APInt I = AD.multiplicativeInverse(Mod);
4797
4798 // 4. Compute the minimum unsigned root of the equation:
4799 // I * (B / D) mod (N / D)
4800 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4801
4802 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4803 // bits.
4804 return SE.getConstant(Result.trunc(BW));
4805}
Chris Lattner53e677a2004-04-02 20:23:17 +00004806
4807/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4808/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4809/// might be the same) or two SCEVCouldNotCompute objects.
4810///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004811static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004812SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004813 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004814 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4815 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4816 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004817
Chris Lattner53e677a2004-04-02 20:23:17 +00004818 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004819 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004820 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004821 return std::make_pair(CNC, CNC);
4822 }
4823
Reid Spencere8019bb2007-03-01 07:25:48 +00004824 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004825 const APInt &L = LC->getValue()->getValue();
4826 const APInt &M = MC->getValue()->getValue();
4827 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004828 APInt Two(BitWidth, 2);
4829 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004830
Dan Gohman64a845e2009-06-24 04:48:43 +00004831 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004832 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004833 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004834 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4835 // The B coefficient is M-N/2
4836 APInt B(M);
4837 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004838
Reid Spencere8019bb2007-03-01 07:25:48 +00004839 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004840 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004841
Reid Spencere8019bb2007-03-01 07:25:48 +00004842 // Compute the B^2-4ac term.
4843 APInt SqrtTerm(B);
4844 SqrtTerm *= B;
4845 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004846
Reid Spencere8019bb2007-03-01 07:25:48 +00004847 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4848 // integer value or else APInt::sqrt() will assert.
4849 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004850
Dan Gohman64a845e2009-06-24 04:48:43 +00004851 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004852 // The divisions must be performed as signed divisions.
4853 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004854 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004855 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004856 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004857 return std::make_pair(CNC, CNC);
4858 }
4859
Owen Andersone922c022009-07-22 00:24:57 +00004860 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004861
4862 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004863 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004864 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004865 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004866
Dan Gohman64a845e2009-06-24 04:48:43 +00004867 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004868 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004869 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004870}
4871
4872/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004873/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004874ScalarEvolution::BackedgeTakenInfo
4875ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004876 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004877 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004878 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004879 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004880 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004881 }
4882
Dan Gohman35738ac2009-05-04 22:30:44 +00004883 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004884 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004885 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004886
Chris Lattner7975e3e2011-01-09 22:39:48 +00004887 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4888 // the quadratic equation to solve it.
4889 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4890 std::pair<const SCEV *,const SCEV *> Roots =
4891 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004892 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4893 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004894 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004895#if 0
David Greene25e0e872009-12-23 22:18:14 +00004896 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004897 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004898#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004899 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004900 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004901 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4902 R1->getValue(),
4903 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004904 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004905 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00004906
Chris Lattner53e677a2004-04-02 20:23:17 +00004907 // We can only use this value if the chrec ends up with an exact zero
4908 // value at this index. When solving for "X*X != 5", for example, we
4909 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004910 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004911 if (Val->isZero())
4912 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004913 }
4914 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004915 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004916 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004917
Chris Lattner7975e3e2011-01-09 22:39:48 +00004918 // Otherwise we can only handle this if it is affine.
4919 if (!AddRec->isAffine())
4920 return getCouldNotCompute();
4921
4922 // If this is an affine expression, the execution count of this branch is
4923 // the minimum unsigned root of the following equation:
4924 //
4925 // Start + Step*N = 0 (mod 2^BW)
4926 //
4927 // equivalent to:
4928 //
4929 // Step*N = -Start (mod 2^BW)
4930 //
4931 // where BW is the common bit width of Start and Step.
4932
4933 // Get the initial value for the loop.
4934 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4935 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4936
Chris Lattner53e1d452011-01-09 22:58:47 +00004937 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4938 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4939 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4940 // the stride is. As such, NUW addrec's will always become zero in
4941 // "start / -stride" steps, and we know that the division is exact.
4942 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004943 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004944 return getUDivExpr(Start, getNegativeSCEV(Step));
Andrew Trick635f7182011-03-09 17:23:39 +00004945
Chris Lattner7975e3e2011-01-09 22:39:48 +00004946 // For now we handle only constant steps.
4947 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4948 if (StepC == 0)
4949 return getCouldNotCompute();
4950
4951 // First, handle unitary steps.
4952 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4953 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Andrew Trick635f7182011-03-09 17:23:39 +00004954
Chris Lattner7975e3e2011-01-09 22:39:48 +00004955 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4956 return Start; // N = Start (as unsigned)
4957
4958 // Then, try to solve the above equation provided that Start is constant.
4959 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4960 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4961 -StartC->getValue()->getValue(),
4962 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004963 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004964}
4965
4966/// HowFarToNonZero - Return the number of times a backedge checking the
4967/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004968/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004969ScalarEvolution::BackedgeTakenInfo
4970ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004971 // Loops that look like: while (X == 0) are very strange indeed. We don't
4972 // handle them yet except for the trivial case. This could be expanded in the
4973 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004974
Chris Lattner53e677a2004-04-02 20:23:17 +00004975 // If the value is a constant, check to see if it is known to be non-zero
4976 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004977 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004978 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004979 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004980 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004981 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004982
Chris Lattner53e677a2004-04-02 20:23:17 +00004983 // We could implement others, but I really doubt anyone writes loops like
4984 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004985 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004986}
4987
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004988/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4989/// (which may not be an immediate predecessor) which has exactly one
4990/// successor from which BB is reachable, or null if no such block is
4991/// found.
4992///
Dan Gohman005752b2010-04-15 16:19:08 +00004993std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004994ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004995 // If the block has a unique predecessor, then there is no path from the
4996 // predecessor to the block that does not go through the direct edge
4997 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004998 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004999 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005000
5001 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005002 // If the header has a unique predecessor outside the loop, it must be
5003 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005004 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005005 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005006
Dan Gohman005752b2010-04-15 16:19:08 +00005007 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005008}
5009
Dan Gohman763bad12009-06-20 00:35:32 +00005010/// HasSameValue - SCEV structural equivalence is usually sufficient for
5011/// testing whether two expressions are equal, however for the purposes of
5012/// looking for a condition guarding a loop, it can be useful to be a little
5013/// more general, since a front-end may have replicated the controlling
5014/// expression.
5015///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005016static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005017 // Quick check to see if they are the same SCEV.
5018 if (A == B) return true;
5019
5020 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5021 // two different instructions with the same value. Check for this case.
5022 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5023 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5024 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5025 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005026 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005027 return true;
5028
5029 // Otherwise assume they may have a different value.
5030 return false;
5031}
5032
Dan Gohmane9796502010-04-24 01:28:42 +00005033/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5034/// predicate Pred. Return true iff any changes were made.
5035///
5036bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5037 const SCEV *&LHS, const SCEV *&RHS) {
5038 bool Changed = false;
5039
5040 // Canonicalize a constant to the right side.
5041 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5042 // Check for both operands constant.
5043 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5044 if (ConstantExpr::getICmp(Pred,
5045 LHSC->getValue(),
5046 RHSC->getValue())->isNullValue())
5047 goto trivially_false;
5048 else
5049 goto trivially_true;
5050 }
5051 // Otherwise swap the operands to put the constant on the right.
5052 std::swap(LHS, RHS);
5053 Pred = ICmpInst::getSwappedPredicate(Pred);
5054 Changed = true;
5055 }
5056
5057 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005058 // addrec's loop, put the addrec on the left. Also make a dominance check,
5059 // as both operands could be addrecs loop-invariant in each other's loop.
5060 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5061 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005062 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005063 std::swap(LHS, RHS);
5064 Pred = ICmpInst::getSwappedPredicate(Pred);
5065 Changed = true;
5066 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005067 }
Dan Gohmane9796502010-04-24 01:28:42 +00005068
5069 // If there's a constant operand, canonicalize comparisons with boundary
5070 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5071 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5072 const APInt &RA = RC->getValue()->getValue();
5073 switch (Pred) {
5074 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5075 case ICmpInst::ICMP_EQ:
5076 case ICmpInst::ICMP_NE:
5077 break;
5078 case ICmpInst::ICMP_UGE:
5079 if ((RA - 1).isMinValue()) {
5080 Pred = ICmpInst::ICMP_NE;
5081 RHS = getConstant(RA - 1);
5082 Changed = true;
5083 break;
5084 }
5085 if (RA.isMaxValue()) {
5086 Pred = ICmpInst::ICMP_EQ;
5087 Changed = true;
5088 break;
5089 }
5090 if (RA.isMinValue()) goto trivially_true;
5091
5092 Pred = ICmpInst::ICMP_UGT;
5093 RHS = getConstant(RA - 1);
5094 Changed = true;
5095 break;
5096 case ICmpInst::ICMP_ULE:
5097 if ((RA + 1).isMaxValue()) {
5098 Pred = ICmpInst::ICMP_NE;
5099 RHS = getConstant(RA + 1);
5100 Changed = true;
5101 break;
5102 }
5103 if (RA.isMinValue()) {
5104 Pred = ICmpInst::ICMP_EQ;
5105 Changed = true;
5106 break;
5107 }
5108 if (RA.isMaxValue()) goto trivially_true;
5109
5110 Pred = ICmpInst::ICMP_ULT;
5111 RHS = getConstant(RA + 1);
5112 Changed = true;
5113 break;
5114 case ICmpInst::ICMP_SGE:
5115 if ((RA - 1).isMinSignedValue()) {
5116 Pred = ICmpInst::ICMP_NE;
5117 RHS = getConstant(RA - 1);
5118 Changed = true;
5119 break;
5120 }
5121 if (RA.isMaxSignedValue()) {
5122 Pred = ICmpInst::ICMP_EQ;
5123 Changed = true;
5124 break;
5125 }
5126 if (RA.isMinSignedValue()) goto trivially_true;
5127
5128 Pred = ICmpInst::ICMP_SGT;
5129 RHS = getConstant(RA - 1);
5130 Changed = true;
5131 break;
5132 case ICmpInst::ICMP_SLE:
5133 if ((RA + 1).isMaxSignedValue()) {
5134 Pred = ICmpInst::ICMP_NE;
5135 RHS = getConstant(RA + 1);
5136 Changed = true;
5137 break;
5138 }
5139 if (RA.isMinSignedValue()) {
5140 Pred = ICmpInst::ICMP_EQ;
5141 Changed = true;
5142 break;
5143 }
5144 if (RA.isMaxSignedValue()) goto trivially_true;
5145
5146 Pred = ICmpInst::ICMP_SLT;
5147 RHS = getConstant(RA + 1);
5148 Changed = true;
5149 break;
5150 case ICmpInst::ICMP_UGT:
5151 if (RA.isMinValue()) {
5152 Pred = ICmpInst::ICMP_NE;
5153 Changed = true;
5154 break;
5155 }
5156 if ((RA + 1).isMaxValue()) {
5157 Pred = ICmpInst::ICMP_EQ;
5158 RHS = getConstant(RA + 1);
5159 Changed = true;
5160 break;
5161 }
5162 if (RA.isMaxValue()) goto trivially_false;
5163 break;
5164 case ICmpInst::ICMP_ULT:
5165 if (RA.isMaxValue()) {
5166 Pred = ICmpInst::ICMP_NE;
5167 Changed = true;
5168 break;
5169 }
5170 if ((RA - 1).isMinValue()) {
5171 Pred = ICmpInst::ICMP_EQ;
5172 RHS = getConstant(RA - 1);
5173 Changed = true;
5174 break;
5175 }
5176 if (RA.isMinValue()) goto trivially_false;
5177 break;
5178 case ICmpInst::ICMP_SGT:
5179 if (RA.isMinSignedValue()) {
5180 Pred = ICmpInst::ICMP_NE;
5181 Changed = true;
5182 break;
5183 }
5184 if ((RA + 1).isMaxSignedValue()) {
5185 Pred = ICmpInst::ICMP_EQ;
5186 RHS = getConstant(RA + 1);
5187 Changed = true;
5188 break;
5189 }
5190 if (RA.isMaxSignedValue()) goto trivially_false;
5191 break;
5192 case ICmpInst::ICMP_SLT:
5193 if (RA.isMaxSignedValue()) {
5194 Pred = ICmpInst::ICMP_NE;
5195 Changed = true;
5196 break;
5197 }
5198 if ((RA - 1).isMinSignedValue()) {
5199 Pred = ICmpInst::ICMP_EQ;
5200 RHS = getConstant(RA - 1);
5201 Changed = true;
5202 break;
5203 }
5204 if (RA.isMinSignedValue()) goto trivially_false;
5205 break;
5206 }
5207 }
5208
5209 // Check for obvious equality.
5210 if (HasSameValue(LHS, RHS)) {
5211 if (ICmpInst::isTrueWhenEqual(Pred))
5212 goto trivially_true;
5213 if (ICmpInst::isFalseWhenEqual(Pred))
5214 goto trivially_false;
5215 }
5216
Dan Gohman03557dc2010-05-03 16:35:17 +00005217 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5218 // adding or subtracting 1 from one of the operands.
5219 switch (Pred) {
5220 case ICmpInst::ICMP_SLE:
5221 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5222 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5223 /*HasNUW=*/false, /*HasNSW=*/true);
5224 Pred = ICmpInst::ICMP_SLT;
5225 Changed = true;
5226 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005227 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005228 /*HasNUW=*/false, /*HasNSW=*/true);
5229 Pred = ICmpInst::ICMP_SLT;
5230 Changed = true;
5231 }
5232 break;
5233 case ICmpInst::ICMP_SGE:
5234 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005235 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005236 /*HasNUW=*/false, /*HasNSW=*/true);
5237 Pred = ICmpInst::ICMP_SGT;
5238 Changed = true;
5239 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5240 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5241 /*HasNUW=*/false, /*HasNSW=*/true);
5242 Pred = ICmpInst::ICMP_SGT;
5243 Changed = true;
5244 }
5245 break;
5246 case ICmpInst::ICMP_ULE:
5247 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005248 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005249 /*HasNUW=*/true, /*HasNSW=*/false);
5250 Pred = ICmpInst::ICMP_ULT;
5251 Changed = true;
5252 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005253 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005254 /*HasNUW=*/true, /*HasNSW=*/false);
5255 Pred = ICmpInst::ICMP_ULT;
5256 Changed = true;
5257 }
5258 break;
5259 case ICmpInst::ICMP_UGE:
5260 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005261 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005262 /*HasNUW=*/true, /*HasNSW=*/false);
5263 Pred = ICmpInst::ICMP_UGT;
5264 Changed = true;
5265 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005266 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005267 /*HasNUW=*/true, /*HasNSW=*/false);
5268 Pred = ICmpInst::ICMP_UGT;
5269 Changed = true;
5270 }
5271 break;
5272 default:
5273 break;
5274 }
5275
Dan Gohmane9796502010-04-24 01:28:42 +00005276 // TODO: More simplifications are possible here.
5277
5278 return Changed;
5279
5280trivially_true:
5281 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005282 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005283 Pred = ICmpInst::ICMP_EQ;
5284 return true;
5285
5286trivially_false:
5287 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005288 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005289 Pred = ICmpInst::ICMP_NE;
5290 return true;
5291}
5292
Dan Gohman85b05a22009-07-13 21:35:55 +00005293bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5294 return getSignedRange(S).getSignedMax().isNegative();
5295}
5296
5297bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5298 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5299}
5300
5301bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5302 return !getSignedRange(S).getSignedMin().isNegative();
5303}
5304
5305bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5306 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5307}
5308
5309bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5310 return isKnownNegative(S) || isKnownPositive(S);
5311}
5312
5313bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5314 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005315 // Canonicalize the inputs first.
5316 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5317
Dan Gohman53c66ea2010-04-11 22:16:48 +00005318 // If LHS or RHS is an addrec, check to see if the condition is true in
5319 // every iteration of the loop.
5320 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5321 if (isLoopEntryGuardedByCond(
5322 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5323 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005324 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005325 return true;
5326 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5327 if (isLoopEntryGuardedByCond(
5328 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5329 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005330 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005331 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005332
Dan Gohman53c66ea2010-04-11 22:16:48 +00005333 // Otherwise see what can be done with known constant ranges.
5334 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5335}
5336
5337bool
5338ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5339 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005340 if (HasSameValue(LHS, RHS))
5341 return ICmpInst::isTrueWhenEqual(Pred);
5342
Dan Gohman53c66ea2010-04-11 22:16:48 +00005343 // This code is split out from isKnownPredicate because it is called from
5344 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005345 switch (Pred) {
5346 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005347 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005348 break;
5349 case ICmpInst::ICMP_SGT:
5350 Pred = ICmpInst::ICMP_SLT;
5351 std::swap(LHS, RHS);
5352 case ICmpInst::ICMP_SLT: {
5353 ConstantRange LHSRange = getSignedRange(LHS);
5354 ConstantRange RHSRange = getSignedRange(RHS);
5355 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5356 return true;
5357 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5358 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005359 break;
5360 }
5361 case ICmpInst::ICMP_SGE:
5362 Pred = ICmpInst::ICMP_SLE;
5363 std::swap(LHS, RHS);
5364 case ICmpInst::ICMP_SLE: {
5365 ConstantRange LHSRange = getSignedRange(LHS);
5366 ConstantRange RHSRange = getSignedRange(RHS);
5367 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5368 return true;
5369 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5370 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005371 break;
5372 }
5373 case ICmpInst::ICMP_UGT:
5374 Pred = ICmpInst::ICMP_ULT;
5375 std::swap(LHS, RHS);
5376 case ICmpInst::ICMP_ULT: {
5377 ConstantRange LHSRange = getUnsignedRange(LHS);
5378 ConstantRange RHSRange = getUnsignedRange(RHS);
5379 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5380 return true;
5381 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5382 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005383 break;
5384 }
5385 case ICmpInst::ICMP_UGE:
5386 Pred = ICmpInst::ICMP_ULE;
5387 std::swap(LHS, RHS);
5388 case ICmpInst::ICMP_ULE: {
5389 ConstantRange LHSRange = getUnsignedRange(LHS);
5390 ConstantRange RHSRange = getUnsignedRange(RHS);
5391 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5392 return true;
5393 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5394 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005395 break;
5396 }
5397 case ICmpInst::ICMP_NE: {
5398 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5399 return true;
5400 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5401 return true;
5402
5403 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5404 if (isKnownNonZero(Diff))
5405 return true;
5406 break;
5407 }
5408 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005409 // The check at the top of the function catches the case where
5410 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005411 break;
5412 }
5413 return false;
5414}
5415
5416/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5417/// protected by a conditional between LHS and RHS. This is used to
5418/// to eliminate casts.
5419bool
5420ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5421 ICmpInst::Predicate Pred,
5422 const SCEV *LHS, const SCEV *RHS) {
5423 // Interpret a null as meaning no loop, where there is obviously no guard
5424 // (interprocedural conditions notwithstanding).
5425 if (!L) return true;
5426
5427 BasicBlock *Latch = L->getLoopLatch();
5428 if (!Latch)
5429 return false;
5430
5431 BranchInst *LoopContinuePredicate =
5432 dyn_cast<BranchInst>(Latch->getTerminator());
5433 if (!LoopContinuePredicate ||
5434 LoopContinuePredicate->isUnconditional())
5435 return false;
5436
Dan Gohmanaf08a362010-08-10 23:46:30 +00005437 return isImpliedCond(Pred, LHS, RHS,
5438 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005439 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005440}
5441
Dan Gohman3948d0b2010-04-11 19:27:13 +00005442/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005443/// by a conditional between LHS and RHS. This is used to help avoid max
5444/// expressions in loop trip counts, and to eliminate casts.
5445bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005446ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5447 ICmpInst::Predicate Pred,
5448 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005449 // Interpret a null as meaning no loop, where there is obviously no guard
5450 // (interprocedural conditions notwithstanding).
5451 if (!L) return false;
5452
Dan Gohman859b4822009-05-18 15:36:09 +00005453 // Starting at the loop predecessor, climb up the predecessor chain, as long
5454 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005455 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005456 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005457 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005458 Pair.first;
5459 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005460
5461 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005462 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005463 if (!LoopEntryPredicate ||
5464 LoopEntryPredicate->isUnconditional())
5465 continue;
5466
Dan Gohmanaf08a362010-08-10 23:46:30 +00005467 if (isImpliedCond(Pred, LHS, RHS,
5468 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005469 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005470 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005471 }
5472
Dan Gohman38372182008-08-12 20:17:31 +00005473 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005474}
5475
Dan Gohman0f4b2852009-07-21 23:03:19 +00005476/// isImpliedCond - Test whether the condition described by Pred, LHS,
5477/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005478bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005479 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005480 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005481 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005482 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005483 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005484 if (BO->getOpcode() == Instruction::And) {
5485 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005486 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5487 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005488 } else if (BO->getOpcode() == Instruction::Or) {
5489 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005490 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5491 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005492 }
5493 }
5494
Dan Gohmanaf08a362010-08-10 23:46:30 +00005495 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005496 if (!ICI) return false;
5497
Dan Gohman85b05a22009-07-13 21:35:55 +00005498 // Bail if the ICmp's operands' types are wider than the needed type
5499 // before attempting to call getSCEV on them. This avoids infinite
5500 // recursion, since the analysis of widening casts can require loop
5501 // exit condition information for overflow checking, which would
5502 // lead back here.
5503 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005504 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005505 return false;
5506
Dan Gohman0f4b2852009-07-21 23:03:19 +00005507 // Now that we found a conditional branch that dominates the loop, check to
5508 // see if it is the comparison we are looking for.
5509 ICmpInst::Predicate FoundPred;
5510 if (Inverse)
5511 FoundPred = ICI->getInversePredicate();
5512 else
5513 FoundPred = ICI->getPredicate();
5514
5515 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5516 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005517
5518 // Balance the types. The case where FoundLHS' type is wider than
5519 // LHS' type is checked for above.
5520 if (getTypeSizeInBits(LHS->getType()) >
5521 getTypeSizeInBits(FoundLHS->getType())) {
5522 if (CmpInst::isSigned(Pred)) {
5523 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5524 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5525 } else {
5526 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5527 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5528 }
5529 }
5530
Dan Gohman0f4b2852009-07-21 23:03:19 +00005531 // Canonicalize the query to match the way instcombine will have
5532 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005533 if (SimplifyICmpOperands(Pred, LHS, RHS))
5534 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005535 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005536 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5537 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005538 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005539
5540 // Check to see if we can make the LHS or RHS match.
5541 if (LHS == FoundRHS || RHS == FoundLHS) {
5542 if (isa<SCEVConstant>(RHS)) {
5543 std::swap(FoundLHS, FoundRHS);
5544 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5545 } else {
5546 std::swap(LHS, RHS);
5547 Pred = ICmpInst::getSwappedPredicate(Pred);
5548 }
5549 }
5550
5551 // Check whether the found predicate is the same as the desired predicate.
5552 if (FoundPred == Pred)
5553 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5554
5555 // Check whether swapping the found predicate makes it the same as the
5556 // desired predicate.
5557 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5558 if (isa<SCEVConstant>(RHS))
5559 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5560 else
5561 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5562 RHS, LHS, FoundLHS, FoundRHS);
5563 }
5564
5565 // Check whether the actual condition is beyond sufficient.
5566 if (FoundPred == ICmpInst::ICMP_EQ)
5567 if (ICmpInst::isTrueWhenEqual(Pred))
5568 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5569 return true;
5570 if (Pred == ICmpInst::ICMP_NE)
5571 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5572 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5573 return true;
5574
5575 // Otherwise assume the worst.
5576 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005577}
5578
Dan Gohman0f4b2852009-07-21 23:03:19 +00005579/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005580/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005581/// and FoundRHS is true.
5582bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5583 const SCEV *LHS, const SCEV *RHS,
5584 const SCEV *FoundLHS,
5585 const SCEV *FoundRHS) {
5586 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5587 FoundLHS, FoundRHS) ||
5588 // ~x < ~y --> x > y
5589 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5590 getNotSCEV(FoundRHS),
5591 getNotSCEV(FoundLHS));
5592}
5593
5594/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005595/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005596/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005597bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005598ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5599 const SCEV *LHS, const SCEV *RHS,
5600 const SCEV *FoundLHS,
5601 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005602 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005603 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5604 case ICmpInst::ICMP_EQ:
5605 case ICmpInst::ICMP_NE:
5606 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5607 return true;
5608 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005609 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005610 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005611 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5612 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005613 return true;
5614 break;
5615 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005616 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005617 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5618 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005619 return true;
5620 break;
5621 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005622 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005623 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5624 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005625 return true;
5626 break;
5627 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005628 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005629 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5630 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005631 return true;
5632 break;
5633 }
5634
5635 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005636}
5637
Dan Gohman51f53b72009-06-21 23:46:38 +00005638/// getBECount - Subtract the end and start values and divide by the step,
5639/// rounding up, to get the number of times the backedge is executed. Return
5640/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005641const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005642 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005643 const SCEV *Step,
5644 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005645 assert(!isKnownNegative(Step) &&
5646 "This code doesn't handle negative strides yet!");
5647
Dan Gohman51f53b72009-06-21 23:46:38 +00005648 const Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00005649
5650 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5651 // here because SCEV may not be able to determine that the unsigned division
5652 // after rounding is zero.
5653 if (Start == End)
5654 return getConstant(Ty, 0);
5655
Dan Gohmandeff6212010-05-03 22:09:21 +00005656 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005657 const SCEV *Diff = getMinusSCEV(End, Start);
5658 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005659
5660 // Add an adjustment to the difference between End and Start so that
5661 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005662 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005663
Dan Gohman1f96e672009-09-17 18:05:20 +00005664 if (!NoWrap) {
5665 // Check Add for unsigned overflow.
5666 // TODO: More sophisticated things could be done here.
5667 const Type *WideTy = IntegerType::get(getContext(),
5668 getTypeSizeInBits(Ty) + 1);
5669 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5670 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5671 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5672 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5673 return getCouldNotCompute();
5674 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005675
5676 return getUDivExpr(Add, Step);
5677}
5678
Chris Lattnerdb25de42005-08-15 23:33:51 +00005679/// HowManyLessThans - Return the number of times a backedge containing the
5680/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005681/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005682ScalarEvolution::BackedgeTakenInfo
5683ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5684 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005685 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005686 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005687
Dan Gohman35738ac2009-05-04 22:30:44 +00005688 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005689 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005690 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005691
Dan Gohman1f96e672009-09-17 18:05:20 +00005692 // Check to see if we have a flag which makes analysis easy.
5693 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5694 AddRec->hasNoUnsignedWrap();
5695
Chris Lattnerdb25de42005-08-15 23:33:51 +00005696 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005697 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005698 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005699
Dan Gohman52fddd32010-01-26 04:40:18 +00005700 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005701 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005702 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005703 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005704 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005705 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005706 // value and past the maximum value for its type in a single step.
5707 // Note that it's not sufficient to check NoWrap here, because even
5708 // though the value after a wrap is undefined, it's not undefined
5709 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005710 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005711 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005712 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005713 if (isSigned) {
5714 APInt Max = APInt::getSignedMaxValue(BitWidth);
5715 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5716 .slt(getSignedRange(RHS).getSignedMax()))
5717 return getCouldNotCompute();
5718 } else {
5719 APInt Max = APInt::getMaxValue(BitWidth);
5720 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5721 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5722 return getCouldNotCompute();
5723 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005724 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005725 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005726 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005727
Dan Gohmana1af7572009-04-30 20:47:05 +00005728 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5729 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5730 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005731 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005732
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005733 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005734 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005735
Dan Gohmana1af7572009-04-30 20:47:05 +00005736 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005737 const SCEV *MinStart = getConstant(isSigned ?
5738 getSignedRange(Start).getSignedMin() :
5739 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005740
Dan Gohmana1af7572009-04-30 20:47:05 +00005741 // If we know that the condition is true in order to enter the loop,
5742 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005743 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5744 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005745 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005746 if (!isLoopEntryGuardedByCond(L,
5747 isSigned ? ICmpInst::ICMP_SLT :
5748 ICmpInst::ICMP_ULT,
5749 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005750 End = isSigned ? getSMaxExpr(RHS, Start)
5751 : getUMaxExpr(RHS, Start);
5752
5753 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005754 const SCEV *MaxEnd = getConstant(isSigned ?
5755 getSignedRange(End).getSignedMax() :
5756 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005757
Dan Gohman52fddd32010-01-26 04:40:18 +00005758 // If MaxEnd is within a step of the maximum integer value in its type,
5759 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005760 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005761 // compute the correct value.
5762 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005763 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005764 MaxEnd = isSigned ?
5765 getSMinExpr(MaxEnd,
5766 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5767 StepMinusOne)) :
5768 getUMinExpr(MaxEnd,
5769 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5770 StepMinusOne));
5771
Dan Gohmana1af7572009-04-30 20:47:05 +00005772 // Finally, we subtract these two values and divide, rounding up, to get
5773 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005774 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005775
5776 // The maximum backedge count is similar, except using the minimum start
5777 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00005778 // If we already have an exact constant BECount, use it instead.
5779 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
5780 : getBECount(MinStart, MaxEnd, Step, NoWrap);
5781
5782 // If the stride is nonconstant, and NoWrap == true, then
5783 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
5784 // exact BECount and invalid MaxBECount, which should be avoided to catch
5785 // more optimization opportunities.
5786 if (isa<SCEVCouldNotCompute>(MaxBECount))
5787 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00005788
5789 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005790 }
5791
Dan Gohman1c343752009-06-27 21:21:31 +00005792 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005793}
5794
Chris Lattner53e677a2004-04-02 20:23:17 +00005795/// getNumIterationsInRange - Return the number of iterations of this loop that
5796/// produce values in the specified constant range. Another way of looking at
5797/// this is that it returns the first iteration number where the value is not in
5798/// the condition, thus computing the exit count. If the iteration count can't
5799/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005800const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005801 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005802 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005803 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005804
5805 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005806 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005807 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005808 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005809 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005810 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005811 if (const SCEVAddRecExpr *ShiftedAddRec =
5812 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005813 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005814 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005815 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005816 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005817 }
5818
5819 // The only time we can solve this is when we have all constant indices.
5820 // Otherwise, we cannot determine the overflow conditions.
5821 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5822 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005823 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005824
5825
5826 // Okay at this point we know that all elements of the chrec are constants and
5827 // that the start element is zero.
5828
5829 // First check to see if the range contains zero. If not, the first
5830 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005831 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005832 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005833 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005834
Chris Lattner53e677a2004-04-02 20:23:17 +00005835 if (isAffine()) {
5836 // If this is an affine expression then we have this situation:
5837 // Solve {0,+,A} in Range === Ax in Range
5838
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005839 // We know that zero is in the range. If A is positive then we know that
5840 // the upper value of the range must be the first possible exit value.
5841 // If A is negative then the lower of the range is the last possible loop
5842 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005843 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005844 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5845 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005846
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005847 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005848 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005849 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005850
5851 // Evaluate at the exit value. If we really did fall out of the valid
5852 // range, then we computed our trip count, otherwise wrap around or other
5853 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005854 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005855 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005856 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005857
5858 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005859 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005860 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005861 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005862 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005863 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005864 } else if (isQuadratic()) {
5865 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5866 // quadratic equation to solve it. To do this, we must frame our problem in
5867 // terms of figuring out when zero is crossed, instead of when
5868 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005869 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005870 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005871 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005872
5873 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005874 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005875 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005876 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5877 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005878 if (R1) {
5879 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005880 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005881 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005882 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005883 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005884 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005885
Chris Lattner53e677a2004-04-02 20:23:17 +00005886 // Make sure the root is not off by one. The returned iteration should
5887 // not be in the range, but the previous one should be. When solving
5888 // for "X*X < 5", for example, we should not return a root of 2.
5889 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005890 R1->getValue(),
5891 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005892 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005893 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005894 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005895 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005896
Dan Gohman246b2562007-10-22 18:31:58 +00005897 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005898 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005899 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005900 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005901 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005902
Chris Lattner53e677a2004-04-02 20:23:17 +00005903 // If R1 was not in the range, then it is a good return value. Make
5904 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005905 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005906 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005907 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005908 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005909 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005910 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005911 }
5912 }
5913 }
5914
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005915 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005916}
5917
5918
5919
5920//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005921// SCEVCallbackVH Class Implementation
5922//===----------------------------------------------------------------------===//
5923
Dan Gohman1959b752009-05-19 19:22:47 +00005924void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005925 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005926 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5927 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005928 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005929 // this now dangles!
5930}
5931
Dan Gohman81f91212010-07-28 01:09:07 +00005932void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005933 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005934
Dan Gohman35738ac2009-05-04 22:30:44 +00005935 // Forget all the expressions associated with users of the old value,
5936 // so that future queries will recompute the expressions using the new
5937 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005938 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005939 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005940 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005941 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5942 UI != UE; ++UI)
5943 Worklist.push_back(*UI);
5944 while (!Worklist.empty()) {
5945 User *U = Worklist.pop_back_val();
5946 // Deleting the Old value will cause this to dangle. Postpone
5947 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005948 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005949 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005950 if (!Visited.insert(U))
5951 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005952 if (PHINode *PN = dyn_cast<PHINode>(U))
5953 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005954 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005955 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5956 UI != UE; ++UI)
5957 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005958 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005959 // Delete the Old value.
5960 if (PHINode *PN = dyn_cast<PHINode>(Old))
5961 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005962 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005963 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005964}
5965
Dan Gohman1959b752009-05-19 19:22:47 +00005966ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005967 : CallbackVH(V), SE(se) {}
5968
5969//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005970// ScalarEvolution Class Implementation
5971//===----------------------------------------------------------------------===//
5972
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005973ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005974 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005975 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005976}
5977
Chris Lattner53e677a2004-04-02 20:23:17 +00005978bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005979 this->F = &F;
5980 LI = &getAnalysis<LoopInfo>();
5981 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005982 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005983 return false;
5984}
5985
5986void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005987 // Iterate through all the SCEVUnknown instances and call their
5988 // destructors, so that they release their references to their values.
5989 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5990 U->~SCEVUnknown();
5991 FirstUnknown = 0;
5992
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005993 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005994 BackedgeTakenCounts.clear();
5995 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005996 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005997 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005998 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005999 UnsignedRanges.clear();
6000 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006001 UniqueSCEVs.clear();
6002 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006003}
6004
6005void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6006 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006007 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006008 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006009}
6010
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006011bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006012 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006013}
6014
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006015static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006016 const Loop *L) {
6017 // Print all inner loops first
6018 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6019 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006020
Dan Gohman30733292010-01-09 18:17:45 +00006021 OS << "Loop ";
6022 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6023 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006024
Dan Gohman5d984912009-12-18 01:14:11 +00006025 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006026 L->getExitBlocks(ExitBlocks);
6027 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006028 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006029
Dan Gohman46bdfb02009-02-24 18:55:53 +00006030 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6031 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006032 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006033 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006034 }
6035
Dan Gohman30733292010-01-09 18:17:45 +00006036 OS << "\n"
6037 "Loop ";
6038 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6039 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006040
6041 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6042 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6043 } else {
6044 OS << "Unpredictable max backedge-taken count. ";
6045 }
6046
6047 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006048}
6049
Dan Gohman5d984912009-12-18 01:14:11 +00006050void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006051 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006052 // out SCEV values of all instructions that are interesting. Doing
6053 // this potentially causes it to create new SCEV objects though,
6054 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006055 // observable from outside the class though, so casting away the
6056 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006057 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006058
Dan Gohman30733292010-01-09 18:17:45 +00006059 OS << "Classifying expressions for: ";
6060 WriteAsOperand(OS, F, /*PrintType=*/false);
6061 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006062 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006063 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006064 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006065 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006066 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006067 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006068
Dan Gohman0c689c52009-06-19 17:49:54 +00006069 const Loop *L = LI->getLoopFor((*I).getParent());
6070
Dan Gohman0bba49c2009-07-07 17:06:11 +00006071 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006072 if (AtUse != SV) {
6073 OS << " --> ";
6074 AtUse->print(OS);
6075 }
6076
6077 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006078 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006079 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006080 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006081 OS << "<<Unknown>>";
6082 } else {
6083 OS << *ExitValue;
6084 }
6085 }
6086
Chris Lattner53e677a2004-04-02 20:23:17 +00006087 OS << "\n";
6088 }
6089
Dan Gohman30733292010-01-09 18:17:45 +00006090 OS << "Determining loop execution counts for: ";
6091 WriteAsOperand(OS, F, /*PrintType=*/false);
6092 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006093 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6094 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006095}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006096
Dan Gohman714b5292010-11-17 23:21:44 +00006097ScalarEvolution::LoopDisposition
6098ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6099 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6100 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6101 Values.insert(std::make_pair(L, LoopVariant));
6102 if (!Pair.second)
6103 return Pair.first->second;
6104
6105 LoopDisposition D = computeLoopDisposition(S, L);
6106 return LoopDispositions[S][L] = D;
6107}
6108
6109ScalarEvolution::LoopDisposition
6110ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006111 switch (S->getSCEVType()) {
6112 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006113 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006114 case scTruncate:
6115 case scZeroExtend:
6116 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006117 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006118 case scAddRecExpr: {
6119 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6120
Dan Gohman714b5292010-11-17 23:21:44 +00006121 // If L is the addrec's loop, it's computable.
6122 if (AR->getLoop() == L)
6123 return LoopComputable;
6124
Dan Gohman17ead4f2010-11-17 21:23:15 +00006125 // Add recurrences are never invariant in the function-body (null loop).
6126 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006127 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006128
6129 // This recurrence is variant w.r.t. L if L contains AR's loop.
6130 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006131 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006132
6133 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6134 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006135 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006136
6137 // This recurrence is variant w.r.t. L if any of its operands
6138 // are variant.
6139 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6140 I != E; ++I)
6141 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006142 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006143
6144 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006145 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006146 }
6147 case scAddExpr:
6148 case scMulExpr:
6149 case scUMaxExpr:
6150 case scSMaxExpr: {
6151 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006152 bool HasVarying = false;
6153 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6154 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006155 LoopDisposition D = getLoopDisposition(*I, L);
6156 if (D == LoopVariant)
6157 return LoopVariant;
6158 if (D == LoopComputable)
6159 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006160 }
Dan Gohman714b5292010-11-17 23:21:44 +00006161 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006162 }
6163 case scUDivExpr: {
6164 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006165 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6166 if (LD == LoopVariant)
6167 return LoopVariant;
6168 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6169 if (RD == LoopVariant)
6170 return LoopVariant;
6171 return (LD == LoopInvariant && RD == LoopInvariant) ?
6172 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006173 }
6174 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006175 // All non-instruction values are loop invariant. All instructions are loop
6176 // invariant if they are not contained in the specified loop.
6177 // Instructions are never considered invariant in the function body
6178 // (null loop) because they are defined within the "loop".
6179 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6180 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6181 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006182 case scCouldNotCompute:
6183 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006184 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006185 default: break;
6186 }
6187 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006188 return LoopVariant;
6189}
6190
6191bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6192 return getLoopDisposition(S, L) == LoopInvariant;
6193}
6194
6195bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6196 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006197}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006198
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006199ScalarEvolution::BlockDisposition
6200ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6201 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6202 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6203 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6204 if (!Pair.second)
6205 return Pair.first->second;
6206
6207 BlockDisposition D = computeBlockDisposition(S, BB);
6208 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006209}
6210
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006211ScalarEvolution::BlockDisposition
6212ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006213 switch (S->getSCEVType()) {
6214 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006215 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006216 case scTruncate:
6217 case scZeroExtend:
6218 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006219 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006220 case scAddRecExpr: {
6221 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006222 // to test for proper dominance too, because the instruction which
6223 // produces the addrec's value is a PHI, and a PHI effectively properly
6224 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006225 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6226 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006227 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006228 }
6229 // FALL THROUGH into SCEVNAryExpr handling.
6230 case scAddExpr:
6231 case scMulExpr:
6232 case scUMaxExpr:
6233 case scSMaxExpr: {
6234 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006235 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006236 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006237 I != E; ++I) {
6238 BlockDisposition D = getBlockDisposition(*I, BB);
6239 if (D == DoesNotDominateBlock)
6240 return DoesNotDominateBlock;
6241 if (D == DominatesBlock)
6242 Proper = false;
6243 }
6244 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006245 }
6246 case scUDivExpr: {
6247 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006248 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6249 BlockDisposition LD = getBlockDisposition(LHS, BB);
6250 if (LD == DoesNotDominateBlock)
6251 return DoesNotDominateBlock;
6252 BlockDisposition RD = getBlockDisposition(RHS, BB);
6253 if (RD == DoesNotDominateBlock)
6254 return DoesNotDominateBlock;
6255 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6256 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006257 }
6258 case scUnknown:
6259 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006260 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6261 if (I->getParent() == BB)
6262 return DominatesBlock;
6263 if (DT->properlyDominates(I->getParent(), BB))
6264 return ProperlyDominatesBlock;
6265 return DoesNotDominateBlock;
6266 }
6267 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006268 case scCouldNotCompute:
6269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006270 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006271 default: break;
6272 }
6273 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006274 return DoesNotDominateBlock;
6275}
6276
6277bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6278 return getBlockDisposition(S, BB) >= DominatesBlock;
6279}
6280
6281bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6282 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006283}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006284
6285bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6286 switch (S->getSCEVType()) {
6287 case scConstant:
6288 return false;
6289 case scTruncate:
6290 case scZeroExtend:
6291 case scSignExtend: {
6292 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6293 const SCEV *CastOp = Cast->getOperand();
6294 return Op == CastOp || hasOperand(CastOp, Op);
6295 }
6296 case scAddRecExpr:
6297 case scAddExpr:
6298 case scMulExpr:
6299 case scUMaxExpr:
6300 case scSMaxExpr: {
6301 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6302 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6303 I != E; ++I) {
6304 const SCEV *NAryOp = *I;
6305 if (NAryOp == Op || hasOperand(NAryOp, Op))
6306 return true;
6307 }
6308 return false;
6309 }
6310 case scUDivExpr: {
6311 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6312 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6313 return LHS == Op || hasOperand(LHS, Op) ||
6314 RHS == Op || hasOperand(RHS, Op);
6315 }
6316 case scUnknown:
6317 return false;
6318 case scCouldNotCompute:
6319 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6320 return false;
6321 default: break;
6322 }
6323 llvm_unreachable("Unknown SCEV kind!");
6324 return false;
6325}
Dan Gohman56a75682010-11-17 23:28:48 +00006326
6327void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6328 ValuesAtScopes.erase(S);
6329 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006330 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006331 UnsignedRanges.erase(S);
6332 SignedRanges.erase(S);
6333}