blob: 5814796982794fea9c116453ad62a7d1a4620eb5 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000156 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000200 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000219 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000220 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000221 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
222 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
223 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
224 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
225 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
226 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
227 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
228 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
229 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
230 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000231 </ol>
232 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000233 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000234 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000235 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000236 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000237 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000238 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000239 <li><a href="#int_trap">
240 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000241 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000242 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000243 </ol>
244 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000245</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
247<div class="doc_author">
248 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
249 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000250</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000251
Chris Lattner00950542001-06-06 20:29:01 +0000252<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000253<div class="doc_section"> <a name="abstract">Abstract </a></div>
254<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Misha Brukman9d0919f2003-11-08 01:05:38 +0000256<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000257<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000258LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000259type safety, low-level operations, flexibility, and the capability of
260representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000261representation used throughout all phases of the LLVM compilation
262strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000263</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000264
Chris Lattner00950542001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000266<div class="doc_section"> <a name="introduction">Introduction</a> </div>
267<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Misha Brukman9d0919f2003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Chris Lattner261efe92003-11-25 01:02:51 +0000271<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000272different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000273representation (suitable for fast loading by a Just-In-Time compiler),
274and as a human readable assembly language representation. This allows
275LLVM to provide a powerful intermediate representation for efficient
276compiler transformations and analysis, while providing a natural means
277to debug and visualize the transformations. The three different forms
278of LLVM are all equivalent. This document describes the human readable
279representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000280
John Criswellc1f786c2005-05-13 22:25:59 +0000281<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000282while being expressive, typed, and extensible at the same time. It
283aims to be a "universal IR" of sorts, by being at a low enough level
284that high-level ideas may be cleanly mapped to it (similar to how
285microprocessors are "universal IR's", allowing many source languages to
286be mapped to them). By providing type information, LLVM can be used as
287the target of optimizations: for example, through pointer analysis, it
288can be proven that a C automatic variable is never accessed outside of
289the current function... allowing it to be promoted to a simple SSA
290value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000291
Misha Brukman9d0919f2003-11-08 01:05:38 +0000292</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000293
Chris Lattner00950542001-06-06 20:29:01 +0000294<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000295<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Misha Brukman9d0919f2003-11-08 01:05:38 +0000297<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000298
Chris Lattner261efe92003-11-25 01:02:51 +0000299<p>It is important to note that this document describes 'well formed'
300LLVM assembly language. There is a difference between what the parser
301accepts and what is considered 'well formed'. For example, the
302following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000303
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000304<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000305<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000306%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000307</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattner261efe92003-11-25 01:02:51 +0000310<p>...because the definition of <tt>%x</tt> does not dominate all of
311its uses. The LLVM infrastructure provides a verification pass that may
312be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000313automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000314the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000315by the verifier pass indicate bugs in transformation passes or input to
316the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000317</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattnercc689392007-10-03 17:34:29 +0000319<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000320
Chris Lattner00950542001-06-06 20:29:01 +0000321<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000322<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Misha Brukman9d0919f2003-11-08 01:05:38 +0000325<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
Reid Spencer2c452282007-08-07 14:34:28 +0000327 <p>LLVM identifiers come in two basic types: global and local. Global
328 identifiers (functions, global variables) begin with the @ character. Local
329 identifiers (register names, types) begin with the % character. Additionally,
330 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000331
Chris Lattner00950542001-06-06 20:29:01 +0000332<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000333 <li>Named values are represented as a string of characters with their prefix.
334 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
335 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000336 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000337 with quotes. In this way, anything except a <tt>&quot;</tt> character can
338 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339
Reid Spencer2c452282007-08-07 14:34:28 +0000340 <li>Unnamed values are represented as an unsigned numeric value with their
341 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342
Reid Spencercc16dc32004-12-09 18:02:53 +0000343 <li>Constants, which are described in a <a href="#constants">section about
344 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348don't need to worry about name clashes with reserved words, and the set of
349reserved words may be expanded in the future without penalty. Additionally,
350unnamed identifiers allow a compiler to quickly come up with a temporary
351variable without having to avoid symbol table conflicts.</p>
352
Chris Lattner261efe92003-11-25 01:02:51 +0000353<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000354languages. There are keywords for different opcodes
355('<tt><a href="#i_add">add</a></tt>',
356 '<tt><a href="#i_bitcast">bitcast</a></tt>',
357 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000358href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000360none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361
362<p>Here is an example of LLVM code to multiply the integer variable
363'<tt>%X</tt>' by 8:</p>
364
Misha Brukman9d0919f2003-11-08 01:05:38 +0000365<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000367<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000368<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000369%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372
Misha Brukman9d0919f2003-11-08 01:05:38 +0000373<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000377%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380
Misha Brukman9d0919f2003-11-08 01:05:38 +0000381<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
386<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
387%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Chris Lattner261efe92003-11-25 01:02:51 +0000391<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
392important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Chris Lattner00950542001-06-06 20:29:01 +0000394<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
396 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
397 line.</li>
398
399 <li>Unnamed temporaries are created when the result of a computation is not
400 assigned to a named value.</li>
401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Misha Brukman9d0919f2003-11-08 01:05:38 +0000404</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405
John Criswelle4c57cc2005-05-12 16:52:32 +0000406<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407demonstrating instructions, we will follow an instruction with a comment that
408defines the type and name of value produced. Comments are shown in italic
409text.</p>
410
Misha Brukman9d0919f2003-11-08 01:05:38 +0000411</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000412
413<!-- *********************************************************************** -->
414<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
415<!-- *********************************************************************** -->
416
417<!-- ======================================================================= -->
418<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
419</div>
420
421<div class="doc_text">
422
423<p>LLVM programs are composed of "Module"s, each of which is a
424translation unit of the input programs. Each module consists of
425functions, global variables, and symbol table entries. Modules may be
426combined together with the LLVM linker, which merges function (and
427global variable) definitions, resolves forward declarations, and merges
428symbol table entries. Here is an example of the "hello world" module:</p>
429
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000430<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000431<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000432<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
433 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
435<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000436<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000437
438<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000439define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000440 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000441 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000442 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000443
444 <i>; Call puts function to write out the string to stdout...</i>
445 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000446 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000448 href="#i_ret">ret</a> i32 0<br>}<br>
449</pre>
450</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451
452<p>This example is made up of a <a href="#globalvars">global variable</a>
453named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
454function, and a <a href="#functionstructure">function definition</a>
455for "<tt>main</tt>".</p>
456
Chris Lattnere5d947b2004-12-09 16:36:40 +0000457<p>In general, a module is made up of a list of global values,
458where both functions and global variables are global values. Global values are
459represented by a pointer to a memory location (in this case, a pointer to an
460array of char, and a pointer to a function), and have one of the following <a
461href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462
Chris Lattnere5d947b2004-12-09 16:36:40 +0000463</div>
464
465<!-- ======================================================================= -->
466<div class="doc_subsection">
467 <a name="linkage">Linkage Types</a>
468</div>
469
470<div class="doc_text">
471
472<p>
473All Global Variables and Functions have one of the following types of linkage:
474</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000475
476<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000477
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000478 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479
480 <dd>Global values with internal linkage are only directly accessible by
481 objects in the current module. In particular, linking code into a module with
482 an internal global value may cause the internal to be renamed as necessary to
483 avoid collisions. Because the symbol is internal to the module, all
484 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000485 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
Chris Lattner4887bd82007-01-14 06:51:48 +0000490 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
491 the same name when linkage occurs. This is typically used to implement
492 inline functions, templates, or other code which must be generated in each
493 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
494 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000495 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000496
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000497 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
498
499 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
500 linkage, except that unreferenced <tt>common</tt> globals may not be
501 discarded. This is used for globals that may be emitted in multiple
502 translation units, but that are not guaranteed to be emitted into every
503 translation unit that uses them. One example of this is tentative
504 definitions in C, such as "<tt>int X;</tt>" at global scope.
505 </dd>
506
Chris Lattnerfa730212004-12-09 16:11:40 +0000507 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
510 that some targets may choose to emit different assembly sequences for them
511 for target-dependent reasons. This is used for globals that are declared
512 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000513 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000514
Chris Lattnerfa730212004-12-09 16:11:40 +0000515 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000516
517 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
518 pointer to array type. When two global variables with appending linkage are
519 linked together, the two global arrays are appended together. This is the
520 LLVM, typesafe, equivalent of having the system linker append together
521 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000522 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000523
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000524 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000525 <dd>The semantics of this linkage follow the ELF object file model: the
526 symbol is weak until linked, if not linked, the symbol becomes null instead
527 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
532 <dd>If none of the above identifiers are used, the global is externally
533 visible, meaning that it participates in linkage and can be used to resolve
534 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000535 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000536</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000537
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538 <p>
539 The next two types of linkage are targeted for Microsoft Windows platform
540 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000541 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000542 </p>
543
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000544 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000545 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
546
547 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
548 or variable via a global pointer to a pointer that is set up by the DLL
549 exporting the symbol. On Microsoft Windows targets, the pointer name is
550 formed by combining <code>_imp__</code> and the function or variable name.
551 </dd>
552
553 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
554
555 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
556 pointer to a pointer in a DLL, so that it can be referenced with the
557 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
558 name is formed by combining <code>_imp__</code> and the function or variable
559 name.
560 </dd>
561
Chris Lattnerfa730212004-12-09 16:11:40 +0000562</dl>
563
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000564<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000565variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
566variable and was linked with this one, one of the two would be renamed,
567preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
568external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000569outside of the current module.</p>
570<p>It is illegal for a function <i>declaration</i>
571to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000572or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000573<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
574linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000575</div>
576
577<!-- ======================================================================= -->
578<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000579 <a name="callingconv">Calling Conventions</a>
580</div>
581
582<div class="doc_text">
583
584<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
585and <a href="#i_invoke">invokes</a> can all have an optional calling convention
586specified for the call. The calling convention of any pair of dynamic
587caller/callee must match, or the behavior of the program is undefined. The
588following calling conventions are supported by LLVM, and more may be added in
589the future:</p>
590
591<dl>
592 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
593
594 <dd>This calling convention (the default if no other calling convention is
595 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000596 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000597 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000598 </dd>
599
600 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
601
602 <dd>This calling convention attempts to make calls as fast as possible
603 (e.g. by passing things in registers). This calling convention allows the
604 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000605 without having to conform to an externally specified ABI (Application Binary
606 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000607 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
608 supported. This calling convention does not support varargs and requires the
609 prototype of all callees to exactly match the prototype of the function
610 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000611 </dd>
612
613 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
614
615 <dd>This calling convention attempts to make code in the caller as efficient
616 as possible under the assumption that the call is not commonly executed. As
617 such, these calls often preserve all registers so that the call does not break
618 any live ranges in the caller side. This calling convention does not support
619 varargs and requires the prototype of all callees to exactly match the
620 prototype of the function definition.
621 </dd>
622
Chris Lattnercfe6b372005-05-07 01:46:40 +0000623 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000624
625 <dd>Any calling convention may be specified by number, allowing
626 target-specific calling conventions to be used. Target specific calling
627 conventions start at 64.
628 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000629</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630
631<p>More calling conventions can be added/defined on an as-needed basis, to
632support pascal conventions or any other well-known target-independent
633convention.</p>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000639 <a name="visibility">Visibility Styles</a>
640</div>
641
642<div class="doc_text">
643
644<p>
645All Global Variables and Functions have one of the following visibility styles:
646</p>
647
648<dl>
649 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
650
Chris Lattnerd3eda892008-08-05 18:29:16 +0000651 <dd>On targets that use the ELF object file format, default visibility means
652 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000653 modules and, in shared libraries, means that the declared entity may be
654 overridden. On Darwin, default visibility means that the declaration is
655 visible to other modules. Default visibility corresponds to "external
656 linkage" in the language.
657 </dd>
658
659 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
660
661 <dd>Two declarations of an object with hidden visibility refer to the same
662 object if they are in the same shared object. Usually, hidden visibility
663 indicates that the symbol will not be placed into the dynamic symbol table,
664 so no other module (executable or shared library) can reference it
665 directly.
666 </dd>
667
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000668 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
669
670 <dd>On ELF, protected visibility indicates that the symbol will be placed in
671 the dynamic symbol table, but that references within the defining module will
672 bind to the local symbol. That is, the symbol cannot be overridden by another
673 module.
674 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000675</dl>
676
677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000681 <a name="globalvars">Global Variables</a>
682</div>
683
684<div class="doc_text">
685
Chris Lattner3689a342005-02-12 19:30:21 +0000686<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000687instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000688an explicit section to be placed in, and may have an optional explicit alignment
689specified. A variable may be defined as "thread_local", which means that it
690will not be shared by threads (each thread will have a separated copy of the
691variable). A variable may be defined as a global "constant," which indicates
692that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000693optimization, allowing the global data to be placed in the read-only section of
694an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000695cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000696
697<p>
698LLVM explicitly allows <em>declarations</em> of global variables to be marked
699constant, even if the final definition of the global is not. This capability
700can be used to enable slightly better optimization of the program, but requires
701the language definition to guarantee that optimizations based on the
702'constantness' are valid for the translation units that do not include the
703definition.
704</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000705
706<p>As SSA values, global variables define pointer values that are in
707scope (i.e. they dominate) all basic blocks in the program. Global
708variables always define a pointer to their "content" type because they
709describe a region of memory, and all memory objects in LLVM are
710accessed through pointers.</p>
711
Christopher Lamb284d9922007-12-11 09:31:00 +0000712<p>A global variable may be declared to reside in a target-specifc numbered
713address space. For targets that support them, address spaces may affect how
714optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000715the variable. The default address space is zero. The address space qualifier
716must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000717
Chris Lattner88f6c462005-11-12 00:45:07 +0000718<p>LLVM allows an explicit section to be specified for globals. If the target
719supports it, it will emit globals to the section specified.</p>
720
Chris Lattner2cbdc452005-11-06 08:02:57 +0000721<p>An explicit alignment may be specified for a global. If not present, or if
722the alignment is set to zero, the alignment of the global is set by the target
723to whatever it feels convenient. If an explicit alignment is specified, the
724global is forced to have at least that much alignment. All alignments must be
725a power of 2.</p>
726
Christopher Lamb284d9922007-12-11 09:31:00 +0000727<p>For example, the following defines a global in a numbered address space with
728an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000729
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000730<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000731<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000732@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000733</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000734</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000735
Chris Lattnerfa730212004-12-09 16:11:40 +0000736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="functionstructure">Functions</a>
742</div>
743
744<div class="doc_text">
745
Reid Spencerca86e162006-12-31 07:07:53 +0000746<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
747an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000748<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000749<a href="#callingconv">calling convention</a>, a return type, an optional
750<a href="#paramattrs">parameter attribute</a> for the return type, a function
751name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000752<a href="#paramattrs">parameter attributes</a>), optional
753<a href="#fnattrs">function attributes</a>, an optional section,
754an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000764
Chris Lattnerd3eda892008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
Chris Lattner4a3c9012007-06-08 16:52:14 +0000772<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
Chris Lattner88f6c462005-11-12 00:45:07 +0000778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
Chris Lattner2cbdc452005-11-06 08:02:57 +0000781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
Chris Lattnerfa730212004-12-09 16:11:40 +0000787</div>
788
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="aliasstructure">Aliases</a>
793</div>
794<div class="doc_text">
795 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000796 function, global variable, another alias or bitcast of global value). Aliases
797 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000798 optional <a href="#visibility">visibility style</a>.</p>
799
800 <h5>Syntax:</h5>
801
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000802<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000803<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000804@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000805</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000806</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000807
808</div>
809
810
811
Chris Lattner4e9aba72006-01-23 23:23:47 +0000812<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000813<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
814<div class="doc_text">
815 <p>The return type and each parameter of a function type may have a set of
816 <i>parameter attributes</i> associated with them. Parameter attributes are
817 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000818 a function. Parameter attributes are considered to be part of the function,
819 not of the function type, so functions with different parameter attributes
820 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000821
Reid Spencer950e9f82007-01-15 18:27:39 +0000822 <p>Parameter attributes are simple keywords that follow the type specified. If
823 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000824 example:</p>
825
826<div class="doc_code">
827<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000828declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000829declare i32 @atoi(i8 zeroext)
830declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000831</pre>
832</div>
833
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000836
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000837 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000838 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000840 <dd>This indicates to the code generator that the parameter or return value
841 should be zero-extended to a 32-bit value by the caller (for a parameter)
842 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000843
Reid Spencer9445e9a2007-07-19 23:13:04 +0000844 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000845 <dd>This indicates to the code generator that the parameter or return value
846 should be sign-extended to a 32-bit value by the caller (for a parameter)
847 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000848
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000849 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000850 <dd>This indicates that this parameter or return value should be treated
851 in a special target-dependent fashion during while emitting code for a
852 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000853 to memory, though some targets use it to distinguish between two different
854 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000855
Duncan Sandsedb05df2008-10-06 08:14:18 +0000856 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000857 <dd>This indicates that the pointer parameter should really be passed by
858 value to the function. The attribute implies that a hidden copy of the
859 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000860 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000861 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000862 value, but is also valid on pointers to scalars. The copy is considered to
863 belong to the caller not the callee (for example,
864 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000865 <tt>byval</tt> parameters). This is not a valid attribute for return
866 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000867
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000868 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000869 <dd>This indicates that the pointer parameter specifies the address of a
870 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000871 This pointer must be guaranteed by the caller to be valid: loads and stores
872 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000873 be applied to the first parameter. This is not a valid attribute for
874 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000875
Zhou Shengfebca342007-06-05 05:28:26 +0000876 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000877 <dd>This indicates that the parameter does not alias any global or any other
878 parameter. The caller is responsible for ensuring that this is the case,
Devang Patelf642f472008-10-06 18:50:38 +0000879 usually by placing the value in a stack allocation. This is not a valid
880 attribute for return values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000881
Duncan Sands50f19f52007-07-27 19:57:41 +0000882 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000883 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000884 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
885 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000886 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000887
Reid Spencerca86e162006-12-31 07:07:53 +0000888</div>
889
890<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000891<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000892 <a name="gc">Garbage Collector Names</a>
893</div>
894
895<div class="doc_text">
896<p>Each function may specify a garbage collector name, which is simply a
897string.</p>
898
899<div class="doc_code"><pre
900>define void @f() gc "name" { ...</pre></div>
901
902<p>The compiler declares the supported values of <i>name</i>. Specifying a
903collector which will cause the compiler to alter its output in order to support
904the named garbage collection algorithm.</p>
905</div>
906
907<!-- ======================================================================= -->
908<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000909 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000910</div>
911
912<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000913
914<p>Function attributes are set to communicate additional information about
915 a function. Function attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
918
919 <p>Function attributes are simple keywords that follow the type specified. If
920 multiple attributes are needed, they are space separated. For
921 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000922
923<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000924<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000925define void @f() noinline { ... }
926define void @f() alwaysinline { ... }
927define void @f() alwaysinline optsize { ... }
928define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000929</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000930</div>
931
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000932<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000933<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000934<dd>This attribute indicates that the inliner should attempt to inline this
935function into callers whenever possible, ignoring any active inlining size
936threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000937
Devang Patel2c9c3e72008-09-26 23:51:19 +0000938<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000939<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +0000940in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +0000941<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000942
Devang Patel2c9c3e72008-09-26 23:51:19 +0000943<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000944<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000945make choices that keep the code size of this function low, and otherwise do
946optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000947
Devang Patel2c9c3e72008-09-26 23:51:19 +0000948<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000949<dd>This function attribute indicates that the function never returns normally.
950This produces undefined behavior at runtime if the function ever does
951dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000952
953<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000954<dd>This function attribute indicates that the function never returns with an
955unwind or exceptional control flow. If the function does unwind, its runtime
956behavior is undefined.</dd>
957
958<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +0000959<dd>This attribute indicates that the function computes its result (or the
960exception it throws) based strictly on its arguments, without dereferencing any
961pointer arguments or otherwise accessing any mutable state (e.g. memory, control
962registers, etc) visible to caller functions. It does not write through any
963pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
964never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000965
Duncan Sandsedb05df2008-10-06 08:14:18 +0000966<dt><tt><a name="readonly">readonly</a></tt></dt>
967<dd>This attribute indicates that the function does not write through any
968pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
969or otherwise modify any state (e.g. memory, control registers, etc) visible to
970caller functions. It may dereference pointer arguments and read state that may
971be set in the caller. A readonly function always returns the same value (or
972throws the same exception) when called with the same set of arguments and global
973state.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000974</dl>
975
Devang Patelf8b94812008-09-04 23:05:13 +0000976</div>
977
978<!-- ======================================================================= -->
979<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000980 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000981</div>
982
983<div class="doc_text">
984<p>
985Modules may contain "module-level inline asm" blocks, which corresponds to the
986GCC "file scope inline asm" blocks. These blocks are internally concatenated by
987LLVM and treated as a single unit, but may be separated in the .ll file if
988desired. The syntax is very simple:
989</p>
990
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000991<div class="doc_code">
992<pre>
993module asm "inline asm code goes here"
994module asm "more can go here"
995</pre>
996</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000997
998<p>The strings can contain any character by escaping non-printable characters.
999 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1000 for the number.
1001</p>
1002
1003<p>
1004 The inline asm code is simply printed to the machine code .s file when
1005 assembly code is generated.
1006</p>
1007</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001008
Reid Spencerde151942007-02-19 23:54:10 +00001009<!-- ======================================================================= -->
1010<div class="doc_subsection">
1011 <a name="datalayout">Data Layout</a>
1012</div>
1013
1014<div class="doc_text">
1015<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001016data is to be laid out in memory. The syntax for the data layout is simply:</p>
1017<pre> target datalayout = "<i>layout specification</i>"</pre>
1018<p>The <i>layout specification</i> consists of a list of specifications
1019separated by the minus sign character ('-'). Each specification starts with a
1020letter and may include other information after the letter to define some
1021aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001022<dl>
1023 <dt><tt>E</tt></dt>
1024 <dd>Specifies that the target lays out data in big-endian form. That is, the
1025 bits with the most significance have the lowest address location.</dd>
1026 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001027 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001028 the bits with the least significance have the lowest address location.</dd>
1029 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1030 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1031 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1032 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1033 too.</dd>
1034 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1035 <dd>This specifies the alignment for an integer type of a given bit
1036 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1037 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1038 <dd>This specifies the alignment for a vector type of a given bit
1039 <i>size</i>.</dd>
1040 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1041 <dd>This specifies the alignment for a floating point type of a given bit
1042 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1043 (double).</dd>
1044 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1045 <dd>This specifies the alignment for an aggregate type of a given bit
1046 <i>size</i>.</dd>
1047</dl>
1048<p>When constructing the data layout for a given target, LLVM starts with a
1049default set of specifications which are then (possibly) overriden by the
1050specifications in the <tt>datalayout</tt> keyword. The default specifications
1051are given in this list:</p>
1052<ul>
1053 <li><tt>E</tt> - big endian</li>
1054 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1055 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1056 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1057 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1058 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001059 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001060 alignment of 64-bits</li>
1061 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1062 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1063 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1064 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1065 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1066</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001067<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001068following rules:
1069<ol>
1070 <li>If the type sought is an exact match for one of the specifications, that
1071 specification is used.</li>
1072 <li>If no match is found, and the type sought is an integer type, then the
1073 smallest integer type that is larger than the bitwidth of the sought type is
1074 used. If none of the specifications are larger than the bitwidth then the the
1075 largest integer type is used. For example, given the default specifications
1076 above, the i7 type will use the alignment of i8 (next largest) while both
1077 i65 and i256 will use the alignment of i64 (largest specified).</li>
1078 <li>If no match is found, and the type sought is a vector type, then the
1079 largest vector type that is smaller than the sought vector type will be used
1080 as a fall back. This happens because <128 x double> can be implemented in
1081 terms of 64 <2 x double>, for example.</li>
1082</ol>
1083</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001084
Chris Lattner00950542001-06-06 20:29:01 +00001085<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001086<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1087<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001088
Misha Brukman9d0919f2003-11-08 01:05:38 +00001089<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001090
Misha Brukman9d0919f2003-11-08 01:05:38 +00001091<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001092intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001093optimizations to be performed on the intermediate representation directly,
1094without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001095extra analyses on the side before the transformation. A strong type
1096system makes it easier to read the generated code and enables novel
1097analyses and transformations that are not feasible to perform on normal
1098three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001099
1100</div>
1101
Chris Lattner00950542001-06-06 20:29:01 +00001102<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001103<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001104Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001105<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001106<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001107classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001108
1109<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001110 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001111 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001112 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001113 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001114 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001115 </tr>
1116 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001117 <td><a href="#t_floating">floating point</a></td>
1118 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001119 </tr>
1120 <tr>
1121 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001122 <td><a href="#t_integer">integer</a>,
1123 <a href="#t_floating">floating point</a>,
1124 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001125 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001126 <a href="#t_struct">structure</a>,
1127 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001128 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001129 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001130 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001131 <tr>
1132 <td><a href="#t_primitive">primitive</a></td>
1133 <td><a href="#t_label">label</a>,
1134 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001135 <a href="#t_floating">floating point</a>.</td>
1136 </tr>
1137 <tr>
1138 <td><a href="#t_derived">derived</a></td>
1139 <td><a href="#t_integer">integer</a>,
1140 <a href="#t_array">array</a>,
1141 <a href="#t_function">function</a>,
1142 <a href="#t_pointer">pointer</a>,
1143 <a href="#t_struct">structure</a>,
1144 <a href="#t_pstruct">packed structure</a>,
1145 <a href="#t_vector">vector</a>,
1146 <a href="#t_opaque">opaque</a>.
1147 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001148 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001149</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001150
Chris Lattner261efe92003-11-25 01:02:51 +00001151<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1152most important. Values of these types are the only ones which can be
1153produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001154instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001155</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001156
Chris Lattner00950542001-06-06 20:29:01 +00001157<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001158<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001159
Chris Lattner4f69f462008-01-04 04:32:38 +00001160<div class="doc_text">
1161<p>The primitive types are the fundamental building blocks of the LLVM
1162system.</p>
1163
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001164</div>
1165
Chris Lattner4f69f462008-01-04 04:32:38 +00001166<!-- _______________________________________________________________________ -->
1167<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1168
1169<div class="doc_text">
1170 <table>
1171 <tbody>
1172 <tr><th>Type</th><th>Description</th></tr>
1173 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1174 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1175 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1176 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1177 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1178 </tbody>
1179 </table>
1180</div>
1181
1182<!-- _______________________________________________________________________ -->
1183<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1184
1185<div class="doc_text">
1186<h5>Overview:</h5>
1187<p>The void type does not represent any value and has no size.</p>
1188
1189<h5>Syntax:</h5>
1190
1191<pre>
1192 void
1193</pre>
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1198
1199<div class="doc_text">
1200<h5>Overview:</h5>
1201<p>The label type represents code labels.</p>
1202
1203<h5>Syntax:</h5>
1204
1205<pre>
1206 label
1207</pre>
1208</div>
1209
1210
1211<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001212<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001213
Misha Brukman9d0919f2003-11-08 01:05:38 +00001214<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001215
Chris Lattner261efe92003-11-25 01:02:51 +00001216<p>The real power in LLVM comes from the derived types in the system.
1217This is what allows a programmer to represent arrays, functions,
1218pointers, and other useful types. Note that these derived types may be
1219recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001220
Misha Brukman9d0919f2003-11-08 01:05:38 +00001221</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001222
Chris Lattner00950542001-06-06 20:29:01 +00001223<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001224<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1225
1226<div class="doc_text">
1227
1228<h5>Overview:</h5>
1229<p>The integer type is a very simple derived type that simply specifies an
1230arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12312^23-1 (about 8 million) can be specified.</p>
1232
1233<h5>Syntax:</h5>
1234
1235<pre>
1236 iN
1237</pre>
1238
1239<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1240value.</p>
1241
1242<h5>Examples:</h5>
1243<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001244 <tbody>
1245 <tr>
1246 <td><tt>i1</tt></td>
1247 <td>a single-bit integer.</td>
1248 </tr><tr>
1249 <td><tt>i32</tt></td>
1250 <td>a 32-bit integer.</td>
1251 </tr><tr>
1252 <td><tt>i1942652</tt></td>
1253 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001254 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001255 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001256</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001257</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001258
1259<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001260<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001261
Misha Brukman9d0919f2003-11-08 01:05:38 +00001262<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001263
Chris Lattner00950542001-06-06 20:29:01 +00001264<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001265
Misha Brukman9d0919f2003-11-08 01:05:38 +00001266<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001267sequentially in memory. The array type requires a size (number of
1268elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001269
Chris Lattner7faa8832002-04-14 06:13:44 +00001270<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001271
1272<pre>
1273 [&lt;# elements&gt; x &lt;elementtype&gt;]
1274</pre>
1275
John Criswelle4c57cc2005-05-12 16:52:32 +00001276<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001277be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001278
Chris Lattner7faa8832002-04-14 06:13:44 +00001279<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001280<table class="layout">
1281 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001282 <td class="left"><tt>[40 x i32]</tt></td>
1283 <td class="left">Array of 40 32-bit integer values.</td>
1284 </tr>
1285 <tr class="layout">
1286 <td class="left"><tt>[41 x i32]</tt></td>
1287 <td class="left">Array of 41 32-bit integer values.</td>
1288 </tr>
1289 <tr class="layout">
1290 <td class="left"><tt>[4 x i8]</tt></td>
1291 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001292 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001293</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001294<p>Here are some examples of multidimensional arrays:</p>
1295<table class="layout">
1296 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001297 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1298 <td class="left">3x4 array of 32-bit integer values.</td>
1299 </tr>
1300 <tr class="layout">
1301 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1302 <td class="left">12x10 array of single precision floating point values.</td>
1303 </tr>
1304 <tr class="layout">
1305 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1306 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001307 </tr>
1308</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001309
John Criswell0ec250c2005-10-24 16:17:18 +00001310<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1311length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001312LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1313As a special case, however, zero length arrays are recognized to be variable
1314length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001315type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001316
Misha Brukman9d0919f2003-11-08 01:05:38 +00001317</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001318
Chris Lattner00950542001-06-06 20:29:01 +00001319<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001320<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001321<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001322
Chris Lattner00950542001-06-06 20:29:01 +00001323<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001324
Chris Lattner261efe92003-11-25 01:02:51 +00001325<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001326consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001327return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001328If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001329class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001330
Chris Lattner00950542001-06-06 20:29:01 +00001331<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001332
1333<pre>
1334 &lt;returntype list&gt; (&lt;parameter list&gt;)
1335</pre>
1336
John Criswell0ec250c2005-10-24 16:17:18 +00001337<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001338specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001339which indicates that the function takes a variable number of arguments.
1340Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001341 href="#int_varargs">variable argument handling intrinsic</a> functions.
1342'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1343<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001344
Chris Lattner00950542001-06-06 20:29:01 +00001345<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001346<table class="layout">
1347 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001348 <td class="left"><tt>i32 (i32)</tt></td>
1349 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001350 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001351 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001352 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001353 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001354 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1355 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001356 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001357 <tt>float</tt>.
1358 </td>
1359 </tr><tr class="layout">
1360 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1361 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001362 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001363 which returns an integer. This is the signature for <tt>printf</tt> in
1364 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001365 </td>
Devang Patela582f402008-03-24 05:35:41 +00001366 </tr><tr class="layout">
1367 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001368 <td class="left">A function taking an <tt>i32></tt>, returning two
1369 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001370 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001371 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001372</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001373
Misha Brukman9d0919f2003-11-08 01:05:38 +00001374</div>
Chris Lattner00950542001-06-06 20:29:01 +00001375<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001376<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001377<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001378<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001379<p>The structure type is used to represent a collection of data members
1380together in memory. The packing of the field types is defined to match
1381the ABI of the underlying processor. The elements of a structure may
1382be any type that has a size.</p>
1383<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1384and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1385field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1386instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001387<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001388<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001389<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001390<table class="layout">
1391 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001392 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1393 <td class="left">A triple of three <tt>i32</tt> values</td>
1394 </tr><tr class="layout">
1395 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1396 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1397 second element is a <a href="#t_pointer">pointer</a> to a
1398 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1399 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001400 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001401</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001402</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001403
Chris Lattner00950542001-06-06 20:29:01 +00001404<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001405<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1406</div>
1407<div class="doc_text">
1408<h5>Overview:</h5>
1409<p>The packed structure type is used to represent a collection of data members
1410together in memory. There is no padding between fields. Further, the alignment
1411of a packed structure is 1 byte. The elements of a packed structure may
1412be any type that has a size.</p>
1413<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1414and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1415field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1416instruction.</p>
1417<h5>Syntax:</h5>
1418<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1419<h5>Examples:</h5>
1420<table class="layout">
1421 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001422 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1423 <td class="left">A triple of three <tt>i32</tt> values</td>
1424 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001425 <td class="left">
1426<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001427 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1428 second element is a <a href="#t_pointer">pointer</a> to a
1429 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1430 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001431 </tr>
1432</table>
1433</div>
1434
1435<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001436<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001437<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001438<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001439<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001440reference to another object, which must live in memory. Pointer types may have
1441an optional address space attribute defining the target-specific numbered
1442address space where the pointed-to object resides. The default address space is
1443zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001444<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001445<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001446<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001447<table class="layout">
1448 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001449 <td class="left"><tt>[4x i32]*</tt></td>
1450 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1451 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1452 </tr>
1453 <tr class="layout">
1454 <td class="left"><tt>i32 (i32 *) *</tt></td>
1455 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001456 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001457 <tt>i32</tt>.</td>
1458 </tr>
1459 <tr class="layout">
1460 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1461 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1462 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001463 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001464</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001465</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001466
Chris Lattnera58561b2004-08-12 19:12:28 +00001467<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001468<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001469<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001470
Chris Lattnera58561b2004-08-12 19:12:28 +00001471<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001472
Reid Spencer485bad12007-02-15 03:07:05 +00001473<p>A vector type is a simple derived type that represents a vector
1474of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001475are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001476A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001477elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001478of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001479considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001480
Chris Lattnera58561b2004-08-12 19:12:28 +00001481<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001482
1483<pre>
1484 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1485</pre>
1486
John Criswellc1f786c2005-05-13 22:25:59 +00001487<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001488be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001489
Chris Lattnera58561b2004-08-12 19:12:28 +00001490<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001491
Reid Spencerd3f876c2004-11-01 08:19:36 +00001492<table class="layout">
1493 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001494 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1495 <td class="left">Vector of 4 32-bit integer values.</td>
1496 </tr>
1497 <tr class="layout">
1498 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1499 <td class="left">Vector of 8 32-bit floating-point values.</td>
1500 </tr>
1501 <tr class="layout">
1502 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1503 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001504 </tr>
1505</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001506</div>
1507
Chris Lattner69c11bb2005-04-25 17:34:15 +00001508<!-- _______________________________________________________________________ -->
1509<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1510<div class="doc_text">
1511
1512<h5>Overview:</h5>
1513
1514<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001515corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001516In LLVM, opaque types can eventually be resolved to any type (not just a
1517structure type).</p>
1518
1519<h5>Syntax:</h5>
1520
1521<pre>
1522 opaque
1523</pre>
1524
1525<h5>Examples:</h5>
1526
1527<table class="layout">
1528 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001529 <td class="left"><tt>opaque</tt></td>
1530 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001531 </tr>
1532</table>
1533</div>
1534
1535
Chris Lattnerc3f59762004-12-09 17:30:23 +00001536<!-- *********************************************************************** -->
1537<div class="doc_section"> <a name="constants">Constants</a> </div>
1538<!-- *********************************************************************** -->
1539
1540<div class="doc_text">
1541
1542<p>LLVM has several different basic types of constants. This section describes
1543them all and their syntax.</p>
1544
1545</div>
1546
1547<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001548<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001549
1550<div class="doc_text">
1551
1552<dl>
1553 <dt><b>Boolean constants</b></dt>
1554
1555 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001556 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001557 </dd>
1558
1559 <dt><b>Integer constants</b></dt>
1560
Reid Spencercc16dc32004-12-09 18:02:53 +00001561 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001562 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001563 integer types.
1564 </dd>
1565
1566 <dt><b>Floating point constants</b></dt>
1567
1568 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1569 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001570 notation (see below). The assembler requires the exact decimal value of
1571 a floating-point constant. For example, the assembler accepts 1.25 but
1572 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1573 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001574
1575 <dt><b>Null pointer constants</b></dt>
1576
John Criswell9e2485c2004-12-10 15:51:16 +00001577 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001578 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1579
1580</dl>
1581
John Criswell9e2485c2004-12-10 15:51:16 +00001582<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001583of floating point constants. For example, the form '<tt>double
15840x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15854.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001586(and the only time that they are generated by the disassembler) is when a
1587floating point constant must be emitted but it cannot be represented as a
1588decimal floating point number. For example, NaN's, infinities, and other
1589special values are represented in their IEEE hexadecimal format so that
1590assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001591
1592</div>
1593
1594<!-- ======================================================================= -->
1595<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1596</div>
1597
1598<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001599<p>Aggregate constants arise from aggregation of simple constants
1600and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001601
1602<dl>
1603 <dt><b>Structure constants</b></dt>
1604
1605 <dd>Structure constants are represented with notation similar to structure
1606 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001607 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1608 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001609 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001610 types of elements must match those specified by the type.
1611 </dd>
1612
1613 <dt><b>Array constants</b></dt>
1614
1615 <dd>Array constants are represented with notation similar to array type
1616 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001617 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001618 constants must have <a href="#t_array">array type</a>, and the number and
1619 types of elements must match those specified by the type.
1620 </dd>
1621
Reid Spencer485bad12007-02-15 03:07:05 +00001622 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001623
Reid Spencer485bad12007-02-15 03:07:05 +00001624 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001625 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001626 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001627 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001628 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001629 match those specified by the type.
1630 </dd>
1631
1632 <dt><b>Zero initialization</b></dt>
1633
1634 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1635 value to zero of <em>any</em> type, including scalar and aggregate types.
1636 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001637 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001638 initializers.
1639 </dd>
1640</dl>
1641
1642</div>
1643
1644<!-- ======================================================================= -->
1645<div class="doc_subsection">
1646 <a name="globalconstants">Global Variable and Function Addresses</a>
1647</div>
1648
1649<div class="doc_text">
1650
1651<p>The addresses of <a href="#globalvars">global variables</a> and <a
1652href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001653constants. These constants are explicitly referenced when the <a
1654href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001655href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1656file:</p>
1657
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001658<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001659<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001660@X = global i32 17
1661@Y = global i32 42
1662@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001663</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001664</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001665
1666</div>
1667
1668<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001669<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001670<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001671 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001672 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001673 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001674
Reid Spencer2dc45b82004-12-09 18:13:12 +00001675 <p>Undefined values indicate to the compiler that the program is well defined
1676 no matter what value is used, giving the compiler more freedom to optimize.
1677 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001678</div>
1679
1680<!-- ======================================================================= -->
1681<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1682</div>
1683
1684<div class="doc_text">
1685
1686<p>Constant expressions are used to allow expressions involving other constants
1687to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001688href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001689that does not have side effects (e.g. load and call are not supported). The
1690following is the syntax for constant expressions:</p>
1691
1692<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001693 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1694 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001695 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001696
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001697 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1698 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001699 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001700
1701 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1702 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001703 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001704
1705 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1706 <dd>Truncate a floating point constant to another floating point type. The
1707 size of CST must be larger than the size of TYPE. Both types must be
1708 floating point.</dd>
1709
1710 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1711 <dd>Floating point extend a constant to another type. The size of CST must be
1712 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1713
Reid Spencer1539a1c2007-07-31 14:40:14 +00001714 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001715 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001716 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1717 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1718 of the same number of elements. If the value won't fit in the integer type,
1719 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001720
Reid Spencerd4448792006-11-09 23:03:26 +00001721 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001722 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001723 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1724 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1725 of the same number of elements. If the value won't fit in the integer type,
1726 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001727
Reid Spencerd4448792006-11-09 23:03:26 +00001728 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001729 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001730 constant. TYPE must be a scalar or vector floating point type. CST must be of
1731 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1732 of the same number of elements. If the value won't fit in the floating point
1733 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001734
Reid Spencerd4448792006-11-09 23:03:26 +00001735 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001736 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001737 constant. TYPE must be a scalar or vector floating point type. CST must be of
1738 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1739 of the same number of elements. If the value won't fit in the floating point
1740 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001741
Reid Spencer5c0ef472006-11-11 23:08:07 +00001742 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1743 <dd>Convert a pointer typed constant to the corresponding integer constant
1744 TYPE must be an integer type. CST must be of pointer type. The CST value is
1745 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1746
1747 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1748 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1749 pointer type. CST must be of integer type. The CST value is zero extended,
1750 truncated, or unchanged to make it fit in a pointer size. This one is
1751 <i>really</i> dangerous!</dd>
1752
1753 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001754 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1755 identical (same number of bits). The conversion is done as if the CST value
1756 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001757 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001758 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001759 pointers it is only valid to cast to another pointer type. It is not valid
1760 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001761 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001762
1763 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1764
1765 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1766 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1767 instruction, the index list may have zero or more indexes, which are required
1768 to make sense for the type of "CSTPTR".</dd>
1769
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001770 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1771
1772 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001773 constants.</dd>
1774
1775 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1776 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1777
1778 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1779 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001780
Nate Begemanac80ade2008-05-12 19:01:56 +00001781 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1782 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1783
1784 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1785 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1786
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001787 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1788
1789 <dd>Perform the <a href="#i_extractelement">extractelement
1790 operation</a> on constants.
1791
Robert Bocchino05ccd702006-01-15 20:48:27 +00001792 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1793
1794 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001795 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001796
Chris Lattnerc1989542006-04-08 00:13:41 +00001797
1798 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1799
1800 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001801 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001802
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1804
Reid Spencer2dc45b82004-12-09 18:13:12 +00001805 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1806 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001807 binary</a> operations. The constraints on operands are the same as those for
1808 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001809 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001810</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001811</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001812
Chris Lattner00950542001-06-06 20:29:01 +00001813<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001814<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1815<!-- *********************************************************************** -->
1816
1817<!-- ======================================================================= -->
1818<div class="doc_subsection">
1819<a name="inlineasm">Inline Assembler Expressions</a>
1820</div>
1821
1822<div class="doc_text">
1823
1824<p>
1825LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1826Module-Level Inline Assembly</a>) through the use of a special value. This
1827value represents the inline assembler as a string (containing the instructions
1828to emit), a list of operand constraints (stored as a string), and a flag that
1829indicates whether or not the inline asm expression has side effects. An example
1830inline assembler expression is:
1831</p>
1832
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001833<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001834<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001835i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001836</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001837</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001838
1839<p>
1840Inline assembler expressions may <b>only</b> be used as the callee operand of
1841a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1842</p>
1843
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001844<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001845<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001846%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001847</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001848</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001849
1850<p>
1851Inline asms with side effects not visible in the constraint list must be marked
1852as having side effects. This is done through the use of the
1853'<tt>sideeffect</tt>' keyword, like so:
1854</p>
1855
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001856<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001857<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001858call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001859</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001860</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001861
1862<p>TODO: The format of the asm and constraints string still need to be
1863documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001864need to be documented). This is probably best done by reference to another
1865document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001866</p>
1867
1868</div>
1869
1870<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001871<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1872<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001873
Misha Brukman9d0919f2003-11-08 01:05:38 +00001874<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001875
Chris Lattner261efe92003-11-25 01:02:51 +00001876<p>The LLVM instruction set consists of several different
1877classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001878instructions</a>, <a href="#binaryops">binary instructions</a>,
1879<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001880 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1881instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001882
Misha Brukman9d0919f2003-11-08 01:05:38 +00001883</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001884
Chris Lattner00950542001-06-06 20:29:01 +00001885<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001886<div class="doc_subsection"> <a name="terminators">Terminator
1887Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001888
Misha Brukman9d0919f2003-11-08 01:05:38 +00001889<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001890
Chris Lattner261efe92003-11-25 01:02:51 +00001891<p>As mentioned <a href="#functionstructure">previously</a>, every
1892basic block in a program ends with a "Terminator" instruction, which
1893indicates which block should be executed after the current block is
1894finished. These terminator instructions typically yield a '<tt>void</tt>'
1895value: they produce control flow, not values (the one exception being
1896the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001897<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001898 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1899instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001900the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1901 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1902 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001903
Misha Brukman9d0919f2003-11-08 01:05:38 +00001904</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001905
Chris Lattner00950542001-06-06 20:29:01 +00001906<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001907<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1908Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001909<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001910<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001911<pre>
1912 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001913 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001914</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001915
Chris Lattner00950542001-06-06 20:29:01 +00001916<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001917
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001918<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1919optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001920<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001921returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001922control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001923
Chris Lattner00950542001-06-06 20:29:01 +00001924<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001925
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001926<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1927the return value. The type of the return value must be a
1928'<a href="#t_firstclass">first class</a>' type.</p>
1929
1930<p>A function is not <a href="#wellformed">well formed</a> if
1931it it has a non-void return type and contains a '<tt>ret</tt>'
1932instruction with no return value or a return value with a type that
1933does not match its type, or if it has a void return type and contains
1934a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001935
Chris Lattner00950542001-06-06 20:29:01 +00001936<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001937
Chris Lattner261efe92003-11-25 01:02:51 +00001938<p>When the '<tt>ret</tt>' instruction is executed, control flow
1939returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001940 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001941the instruction after the call. If the caller was an "<a
1942 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001943at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001944returns a value, that value shall set the call or invoke instruction's
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001945return value.
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001946
Chris Lattner00950542001-06-06 20:29:01 +00001947<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001948
1949<pre>
1950 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001951 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001952 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001953</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001954</div>
Chris Lattner00950542001-06-06 20:29:01 +00001955<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001956<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001957<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001958<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001959<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001960</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001961<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001962<p>The '<tt>br</tt>' instruction is used to cause control flow to
1963transfer to a different basic block in the current function. There are
1964two forms of this instruction, corresponding to a conditional branch
1965and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001966<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001967<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001968single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001969unconditional form of the '<tt>br</tt>' instruction takes a single
1970'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001971<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001972<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001973argument is evaluated. If the value is <tt>true</tt>, control flows
1974to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1975control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001976<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001977<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001978 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001979</div>
Chris Lattner00950542001-06-06 20:29:01 +00001980<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001981<div class="doc_subsubsection">
1982 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1983</div>
1984
Misha Brukman9d0919f2003-11-08 01:05:38 +00001985<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001986<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001987
1988<pre>
1989 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1990</pre>
1991
Chris Lattner00950542001-06-06 20:29:01 +00001992<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001993
1994<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1995several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001996instruction, allowing a branch to occur to one of many possible
1997destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001998
1999
Chris Lattner00950542001-06-06 20:29:01 +00002000<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002001
2002<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2003comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2004an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2005table is not allowed to contain duplicate constant entries.</p>
2006
Chris Lattner00950542001-06-06 20:29:01 +00002007<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002008
Chris Lattner261efe92003-11-25 01:02:51 +00002009<p>The <tt>switch</tt> instruction specifies a table of values and
2010destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002011table is searched for the given value. If the value is found, control flow is
2012transfered to the corresponding destination; otherwise, control flow is
2013transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002014
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002015<h5>Implementation:</h5>
2016
2017<p>Depending on properties of the target machine and the particular
2018<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002019ways. For example, it could be generated as a series of chained conditional
2020branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002021
2022<h5>Example:</h5>
2023
2024<pre>
2025 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002026 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002027 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002028
2029 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002030 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002031
2032 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002033 switch i32 %val, label %otherwise [ i32 0, label %onzero
2034 i32 1, label %onone
2035 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002036</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002037</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002038
Chris Lattner00950542001-06-06 20:29:01 +00002039<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002040<div class="doc_subsubsection">
2041 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2042</div>
2043
Misha Brukman9d0919f2003-11-08 01:05:38 +00002044<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002045
Chris Lattner00950542001-06-06 20:29:01 +00002046<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002047
2048<pre>
Devang Patelf642f472008-10-06 18:50:38 +00002049 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#pa\
2050ramattrs">RetAttrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00002051 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002052</pre>
2053
Chris Lattner6536cfe2002-05-06 22:08:29 +00002054<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002055
2056<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2057function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002058'<tt>normal</tt>' label or the
2059'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002060"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2061"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002062href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002063continued at the dynamically nearest "exception" label.
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002064
Chris Lattner00950542001-06-06 20:29:01 +00002065<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002066
Misha Brukman9d0919f2003-11-08 01:05:38 +00002067<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002068
Chris Lattner00950542001-06-06 20:29:01 +00002069<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002070 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002071 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002072 convention</a> the call should use. If none is specified, the call defaults
2073 to using C calling conventions.
2074 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002075
2076 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2077 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2078 and '<tt>inreg</tt>' attributes are valid here.</li>
2079
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002080 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2081 function value being invoked. In most cases, this is a direct function
2082 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2083 an arbitrary pointer to function value.
2084 </li>
2085
2086 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2087 function to be invoked. </li>
2088
2089 <li>'<tt>function args</tt>': argument list whose types match the function
2090 signature argument types. If the function signature indicates the function
2091 accepts a variable number of arguments, the extra arguments can be
2092 specified. </li>
2093
2094 <li>'<tt>normal label</tt>': the label reached when the called function
2095 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2096
2097 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2098 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2099
Devang Patelf642f472008-10-06 18:50:38 +00002100 <li>The optional <a href="fnattrs">function attributes</a> list. Only
2101 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2102 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002103</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002104
Chris Lattner00950542001-06-06 20:29:01 +00002105<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002106
Misha Brukman9d0919f2003-11-08 01:05:38 +00002107<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002108href="#i_call">call</a></tt>' instruction in most regards. The primary
2109difference is that it establishes an association with a label, which is used by
2110the runtime library to unwind the stack.</p>
2111
2112<p>This instruction is used in languages with destructors to ensure that proper
2113cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2114exception. Additionally, this is important for implementation of
2115'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2116
Chris Lattner00950542001-06-06 20:29:01 +00002117<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002118<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002119 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002120 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002121 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002122 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002123</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002124</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002125
2126
Chris Lattner27f71f22003-09-03 00:41:47 +00002127<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002128
Chris Lattner261efe92003-11-25 01:02:51 +00002129<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2130Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002131
Misha Brukman9d0919f2003-11-08 01:05:38 +00002132<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002133
Chris Lattner27f71f22003-09-03 00:41:47 +00002134<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002135<pre>
2136 unwind
2137</pre>
2138
Chris Lattner27f71f22003-09-03 00:41:47 +00002139<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002140
2141<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2142at the first callee in the dynamic call stack which used an <a
2143href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2144primarily used to implement exception handling.</p>
2145
Chris Lattner27f71f22003-09-03 00:41:47 +00002146<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002147
Chris Lattner72ed2002008-04-19 21:01:16 +00002148<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002149immediately halt. The dynamic call stack is then searched for the first <a
2150href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2151execution continues at the "exceptional" destination block specified by the
2152<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2153dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002154</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002155
2156<!-- _______________________________________________________________________ -->
2157
2158<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2159Instruction</a> </div>
2160
2161<div class="doc_text">
2162
2163<h5>Syntax:</h5>
2164<pre>
2165 unreachable
2166</pre>
2167
2168<h5>Overview:</h5>
2169
2170<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2171instruction is used to inform the optimizer that a particular portion of the
2172code is not reachable. This can be used to indicate that the code after a
2173no-return function cannot be reached, and other facts.</p>
2174
2175<h5>Semantics:</h5>
2176
2177<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2178</div>
2179
2180
2181
Chris Lattner00950542001-06-06 20:29:01 +00002182<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002183<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002184<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002185<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002186program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002187produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002188multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002189The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002190<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002191</div>
Chris Lattner00950542001-06-06 20:29:01 +00002192<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002193<div class="doc_subsubsection">
2194 <a name="i_add">'<tt>add</tt>' Instruction</a>
2195</div>
2196
Misha Brukman9d0919f2003-11-08 01:05:38 +00002197<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002198
Chris Lattner00950542001-06-06 20:29:01 +00002199<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002200
2201<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002202 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002203</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002204
Chris Lattner00950542001-06-06 20:29:01 +00002205<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002206
Misha Brukman9d0919f2003-11-08 01:05:38 +00002207<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002208
Chris Lattner00950542001-06-06 20:29:01 +00002209<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002210
2211<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2212 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2213 <a href="#t_vector">vector</a> values. Both arguments must have identical
2214 types.</p>
2215
Chris Lattner00950542001-06-06 20:29:01 +00002216<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002217
Misha Brukman9d0919f2003-11-08 01:05:38 +00002218<p>The value produced is the integer or floating point sum of the two
2219operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002220
Chris Lattner5ec89832008-01-28 00:36:27 +00002221<p>If an integer sum has unsigned overflow, the result returned is the
2222mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2223the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002224
Chris Lattner5ec89832008-01-28 00:36:27 +00002225<p>Because LLVM integers use a two's complement representation, this
2226instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002227
Chris Lattner00950542001-06-06 20:29:01 +00002228<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002229
2230<pre>
2231 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002232</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002233</div>
Chris Lattner00950542001-06-06 20:29:01 +00002234<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002235<div class="doc_subsubsection">
2236 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2237</div>
2238
Misha Brukman9d0919f2003-11-08 01:05:38 +00002239<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002240
Chris Lattner00950542001-06-06 20:29:01 +00002241<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002242
2243<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002244 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002245</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
Chris Lattner00950542001-06-06 20:29:01 +00002247<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002248
Misha Brukman9d0919f2003-11-08 01:05:38 +00002249<p>The '<tt>sub</tt>' instruction returns the difference of its two
2250operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002251
2252<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2253'<tt>neg</tt>' instruction present in most other intermediate
2254representations.</p>
2255
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002257
2258<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2259 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2260 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2261 types.</p>
2262
Chris Lattner00950542001-06-06 20:29:01 +00002263<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002264
Chris Lattner261efe92003-11-25 01:02:51 +00002265<p>The value produced is the integer or floating point difference of
2266the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002267
Chris Lattner5ec89832008-01-28 00:36:27 +00002268<p>If an integer difference has unsigned overflow, the result returned is the
2269mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2270the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002271
Chris Lattner5ec89832008-01-28 00:36:27 +00002272<p>Because LLVM integers use a two's complement representation, this
2273instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002274
Chris Lattner00950542001-06-06 20:29:01 +00002275<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002276<pre>
2277 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002278 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002279</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002280</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002281
Chris Lattner00950542001-06-06 20:29:01 +00002282<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002283<div class="doc_subsubsection">
2284 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2285</div>
2286
Misha Brukman9d0919f2003-11-08 01:05:38 +00002287<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002288
Chris Lattner00950542001-06-06 20:29:01 +00002289<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002290<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002291</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002292<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002293<p>The '<tt>mul</tt>' instruction returns the product of its two
2294operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002295
Chris Lattner00950542001-06-06 20:29:01 +00002296<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002297
2298<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2299href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2300or <a href="#t_vector">vector</a> values. Both arguments must have identical
2301types.</p>
2302
Chris Lattner00950542001-06-06 20:29:01 +00002303<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Chris Lattner261efe92003-11-25 01:02:51 +00002305<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002306two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002307
Chris Lattner5ec89832008-01-28 00:36:27 +00002308<p>If the result of an integer multiplication has unsigned overflow,
2309the result returned is the mathematical result modulo
23102<sup>n</sup>, where n is the bit width of the result.</p>
2311<p>Because LLVM integers use a two's complement representation, and the
2312result is the same width as the operands, this instruction returns the
2313correct result for both signed and unsigned integers. If a full product
2314(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2315should be sign-extended or zero-extended as appropriate to the
2316width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002317<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002318<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002319</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002320</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Chris Lattner00950542001-06-06 20:29:01 +00002322<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002323<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2324</a></div>
2325<div class="doc_text">
2326<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002327<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002328</pre>
2329<h5>Overview:</h5>
2330<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2331operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002332
Reid Spencer1628cec2006-10-26 06:15:43 +00002333<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002334
Reid Spencer1628cec2006-10-26 06:15:43 +00002335<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002336<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2337values. Both arguments must have identical types.</p>
2338
Reid Spencer1628cec2006-10-26 06:15:43 +00002339<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002340
Chris Lattner5ec89832008-01-28 00:36:27 +00002341<p>The value produced is the unsigned integer quotient of the two operands.</p>
2342<p>Note that unsigned integer division and signed integer division are distinct
2343operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2344<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002345<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002346<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002347</pre>
2348</div>
2349<!-- _______________________________________________________________________ -->
2350<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2351</a> </div>
2352<div class="doc_text">
2353<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002354<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002355 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002356</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002357
Reid Spencer1628cec2006-10-26 06:15:43 +00002358<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002359
Reid Spencer1628cec2006-10-26 06:15:43 +00002360<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2361operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002362
Reid Spencer1628cec2006-10-26 06:15:43 +00002363<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002364
2365<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2366<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2367values. Both arguments must have identical types.</p>
2368
Reid Spencer1628cec2006-10-26 06:15:43 +00002369<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002370<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002371<p>Note that signed integer division and unsigned integer division are distinct
2372operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2373<p>Division by zero leads to undefined behavior. Overflow also leads to
2374undefined behavior; this is a rare case, but can occur, for example,
2375by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002376<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002377<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002378</pre>
2379</div>
2380<!-- _______________________________________________________________________ -->
2381<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002382Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002383<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002384<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002385<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002386 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002387</pre>
2388<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002389
Reid Spencer1628cec2006-10-26 06:15:43 +00002390<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002391operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002392
Chris Lattner261efe92003-11-25 01:02:51 +00002393<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002394
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002395<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002396<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2397of floating point values. Both arguments must have identical types.</p>
2398
Chris Lattner261efe92003-11-25 01:02:51 +00002399<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002400
Reid Spencer1628cec2006-10-26 06:15:43 +00002401<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002402
Chris Lattner261efe92003-11-25 01:02:51 +00002403<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002404
2405<pre>
2406 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002407</pre>
2408</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002409
Chris Lattner261efe92003-11-25 01:02:51 +00002410<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002411<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2412</div>
2413<div class="doc_text">
2414<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002415<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002416</pre>
2417<h5>Overview:</h5>
2418<p>The '<tt>urem</tt>' instruction returns the remainder from the
2419unsigned division of its two arguments.</p>
2420<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002421<p>The two arguments to the '<tt>urem</tt>' instruction must be
2422<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2423values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002424<h5>Semantics:</h5>
2425<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002426This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002427<p>Note that unsigned integer remainder and signed integer remainder are
2428distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2429<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002430<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002431<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002432</pre>
2433
2434</div>
2435<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002436<div class="doc_subsubsection">
2437 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2438</div>
2439
Chris Lattner261efe92003-11-25 01:02:51 +00002440<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002441
Chris Lattner261efe92003-11-25 01:02:51 +00002442<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002443
2444<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002445 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002446</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002447
Chris Lattner261efe92003-11-25 01:02:51 +00002448<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002449
Reid Spencer0a783f72006-11-02 01:53:59 +00002450<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002451signed division of its two operands. This instruction can also take
2452<a href="#t_vector">vector</a> versions of the values in which case
2453the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002454
Chris Lattner261efe92003-11-25 01:02:51 +00002455<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002456
Reid Spencer0a783f72006-11-02 01:53:59 +00002457<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002458<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2459values. Both arguments must have identical types.</p>
2460
Chris Lattner261efe92003-11-25 01:02:51 +00002461<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002462
Reid Spencer0a783f72006-11-02 01:53:59 +00002463<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002464has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2465operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002466a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002467 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002468Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002469please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002470Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002471<p>Note that signed integer remainder and unsigned integer remainder are
2472distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2473<p>Taking the remainder of a division by zero leads to undefined behavior.
2474Overflow also leads to undefined behavior; this is a rare case, but can occur,
2475for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2476(The remainder doesn't actually overflow, but this rule lets srem be
2477implemented using instructions that return both the result of the division
2478and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002479<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002480<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002481</pre>
2482
2483</div>
2484<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002485<div class="doc_subsubsection">
2486 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2487
Reid Spencer0a783f72006-11-02 01:53:59 +00002488<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002489
Reid Spencer0a783f72006-11-02 01:53:59 +00002490<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002491<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002492</pre>
2493<h5>Overview:</h5>
2494<p>The '<tt>frem</tt>' instruction returns the remainder from the
2495division of its two operands.</p>
2496<h5>Arguments:</h5>
2497<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002498<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2499of floating point values. Both arguments must have identical types.</p>
2500
Reid Spencer0a783f72006-11-02 01:53:59 +00002501<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Chris Lattnera73afe02008-04-01 18:45:27 +00002503<p>This instruction returns the <i>remainder</i> of a division.
2504The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002505
Reid Spencer0a783f72006-11-02 01:53:59 +00002506<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002507
2508<pre>
2509 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002510</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002511</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002512
Reid Spencer8e11bf82007-02-02 13:57:07 +00002513<!-- ======================================================================= -->
2514<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2515Operations</a> </div>
2516<div class="doc_text">
2517<p>Bitwise binary operators are used to do various forms of
2518bit-twiddling in a program. They are generally very efficient
2519instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002520instructions. They require two operands of the same type, execute an operation on them,
2521and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002522</div>
2523
Reid Spencer569f2fa2007-01-31 21:39:12 +00002524<!-- _______________________________________________________________________ -->
2525<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2526Instruction</a> </div>
2527<div class="doc_text">
2528<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002529<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002530</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002531
Reid Spencer569f2fa2007-01-31 21:39:12 +00002532<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002533
Reid Spencer569f2fa2007-01-31 21:39:12 +00002534<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2535the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002536
Reid Spencer569f2fa2007-01-31 21:39:12 +00002537<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002538
Reid Spencer569f2fa2007-01-31 21:39:12 +00002539<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002540 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002541type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002542
Reid Spencer569f2fa2007-01-31 21:39:12 +00002543<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002544
Gabor Greiffb224a22008-08-07 21:46:00 +00002545<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2546where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2547equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002548
Reid Spencer569f2fa2007-01-31 21:39:12 +00002549<h5>Example:</h5><pre>
2550 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2551 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2552 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002553 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002554</pre>
2555</div>
2556<!-- _______________________________________________________________________ -->
2557<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2558Instruction</a> </div>
2559<div class="doc_text">
2560<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002561<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002562</pre>
2563
2564<h5>Overview:</h5>
2565<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002566operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002567
2568<h5>Arguments:</h5>
2569<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002570<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002571type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002572
2573<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002574
Reid Spencer569f2fa2007-01-31 21:39:12 +00002575<p>This instruction always performs a logical shift right operation. The most
2576significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002577shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2578the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002579
2580<h5>Example:</h5>
2581<pre>
2582 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2583 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2584 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2585 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002586 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002587</pre>
2588</div>
2589
Reid Spencer8e11bf82007-02-02 13:57:07 +00002590<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002591<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2592Instruction</a> </div>
2593<div class="doc_text">
2594
2595<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002596<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002597</pre>
2598
2599<h5>Overview:</h5>
2600<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002601operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002602
2603<h5>Arguments:</h5>
2604<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002605<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002606type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002607
2608<h5>Semantics:</h5>
2609<p>This instruction always performs an arithmetic shift right operation,
2610The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002611of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2612larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002613</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002614
2615<h5>Example:</h5>
2616<pre>
2617 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2618 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2619 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2620 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002621 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002622</pre>
2623</div>
2624
Chris Lattner00950542001-06-06 20:29:01 +00002625<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002626<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2627Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002628
Misha Brukman9d0919f2003-11-08 01:05:38 +00002629<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002630
Chris Lattner00950542001-06-06 20:29:01 +00002631<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002632
2633<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002634 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002635</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002636
Chris Lattner00950542001-06-06 20:29:01 +00002637<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002638
Chris Lattner261efe92003-11-25 01:02:51 +00002639<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2640its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002641
Chris Lattner00950542001-06-06 20:29:01 +00002642<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002643
2644<p>The two arguments to the '<tt>and</tt>' instruction must be
2645<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2646values. Both arguments must have identical types.</p>
2647
Chris Lattner00950542001-06-06 20:29:01 +00002648<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002649<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002650<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002651<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002652<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002653 <tbody>
2654 <tr>
2655 <td>In0</td>
2656 <td>In1</td>
2657 <td>Out</td>
2658 </tr>
2659 <tr>
2660 <td>0</td>
2661 <td>0</td>
2662 <td>0</td>
2663 </tr>
2664 <tr>
2665 <td>0</td>
2666 <td>1</td>
2667 <td>0</td>
2668 </tr>
2669 <tr>
2670 <td>1</td>
2671 <td>0</td>
2672 <td>0</td>
2673 </tr>
2674 <tr>
2675 <td>1</td>
2676 <td>1</td>
2677 <td>1</td>
2678 </tr>
2679 </tbody>
2680</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002681</div>
Chris Lattner00950542001-06-06 20:29:01 +00002682<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002683<pre>
2684 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002685 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2686 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002687</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002688</div>
Chris Lattner00950542001-06-06 20:29:01 +00002689<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002690<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002691<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002692<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002693<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002694</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002695<h5>Overview:</h5>
2696<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2697or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002698<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002699
2700<p>The two arguments to the '<tt>or</tt>' instruction must be
2701<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2702values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002703<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002704<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002705<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002706<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002707<table border="1" cellspacing="0" cellpadding="4">
2708 <tbody>
2709 <tr>
2710 <td>In0</td>
2711 <td>In1</td>
2712 <td>Out</td>
2713 </tr>
2714 <tr>
2715 <td>0</td>
2716 <td>0</td>
2717 <td>0</td>
2718 </tr>
2719 <tr>
2720 <td>0</td>
2721 <td>1</td>
2722 <td>1</td>
2723 </tr>
2724 <tr>
2725 <td>1</td>
2726 <td>0</td>
2727 <td>1</td>
2728 </tr>
2729 <tr>
2730 <td>1</td>
2731 <td>1</td>
2732 <td>1</td>
2733 </tr>
2734 </tbody>
2735</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002736</div>
Chris Lattner00950542001-06-06 20:29:01 +00002737<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002738<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2739 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2740 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002741</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002742</div>
Chris Lattner00950542001-06-06 20:29:01 +00002743<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002744<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2745Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002746<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002747<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002748<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002749</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002750<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002751<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2752or of its two operands. The <tt>xor</tt> is used to implement the
2753"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002754<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002755<p>The two arguments to the '<tt>xor</tt>' instruction must be
2756<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2757values. Both arguments must have identical types.</p>
2758
Chris Lattner00950542001-06-06 20:29:01 +00002759<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002760
Misha Brukman9d0919f2003-11-08 01:05:38 +00002761<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002762<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002763<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002764<table border="1" cellspacing="0" cellpadding="4">
2765 <tbody>
2766 <tr>
2767 <td>In0</td>
2768 <td>In1</td>
2769 <td>Out</td>
2770 </tr>
2771 <tr>
2772 <td>0</td>
2773 <td>0</td>
2774 <td>0</td>
2775 </tr>
2776 <tr>
2777 <td>0</td>
2778 <td>1</td>
2779 <td>1</td>
2780 </tr>
2781 <tr>
2782 <td>1</td>
2783 <td>0</td>
2784 <td>1</td>
2785 </tr>
2786 <tr>
2787 <td>1</td>
2788 <td>1</td>
2789 <td>0</td>
2790 </tr>
2791 </tbody>
2792</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002793</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002794<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002795<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002796<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2797 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2798 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2799 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002800</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002801</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002802
Chris Lattner00950542001-06-06 20:29:01 +00002803<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002804<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002805 <a name="vectorops">Vector Operations</a>
2806</div>
2807
2808<div class="doc_text">
2809
2810<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002811target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002812vector-specific operations needed to process vectors effectively. While LLVM
2813does directly support these vector operations, many sophisticated algorithms
2814will want to use target-specific intrinsics to take full advantage of a specific
2815target.</p>
2816
2817</div>
2818
2819<!-- _______________________________________________________________________ -->
2820<div class="doc_subsubsection">
2821 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2822</div>
2823
2824<div class="doc_text">
2825
2826<h5>Syntax:</h5>
2827
2828<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002829 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002830</pre>
2831
2832<h5>Overview:</h5>
2833
2834<p>
2835The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002836element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002837</p>
2838
2839
2840<h5>Arguments:</h5>
2841
2842<p>
2843The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002844value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002845an index indicating the position from which to extract the element.
2846The index may be a variable.</p>
2847
2848<h5>Semantics:</h5>
2849
2850<p>
2851The result is a scalar of the same type as the element type of
2852<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2853<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2854results are undefined.
2855</p>
2856
2857<h5>Example:</h5>
2858
2859<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002860 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002861</pre>
2862</div>
2863
2864
2865<!-- _______________________________________________________________________ -->
2866<div class="doc_subsubsection">
2867 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2868</div>
2869
2870<div class="doc_text">
2871
2872<h5>Syntax:</h5>
2873
2874<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002875 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002876</pre>
2877
2878<h5>Overview:</h5>
2879
2880<p>
2881The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002882element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002883</p>
2884
2885
2886<h5>Arguments:</h5>
2887
2888<p>
2889The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002890value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002891scalar value whose type must equal the element type of the first
2892operand. The third operand is an index indicating the position at
2893which to insert the value. The index may be a variable.</p>
2894
2895<h5>Semantics:</h5>
2896
2897<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002898The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002899element values are those of <tt>val</tt> except at position
2900<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2901exceeds the length of <tt>val</tt>, the results are undefined.
2902</p>
2903
2904<h5>Example:</h5>
2905
2906<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002907 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002908</pre>
2909</div>
2910
2911<!-- _______________________________________________________________________ -->
2912<div class="doc_subsubsection">
2913 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2914</div>
2915
2916<div class="doc_text">
2917
2918<h5>Syntax:</h5>
2919
2920<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002921 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002922</pre>
2923
2924<h5>Overview:</h5>
2925
2926<p>
2927The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2928from two input vectors, returning a vector of the same type.
2929</p>
2930
2931<h5>Arguments:</h5>
2932
2933<p>
2934The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2935with types that match each other and types that match the result of the
2936instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002937of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002938</p>
2939
2940<p>
2941The shuffle mask operand is required to be a constant vector with either
2942constant integer or undef values.
2943</p>
2944
2945<h5>Semantics:</h5>
2946
2947<p>
2948The elements of the two input vectors are numbered from left to right across
2949both of the vectors. The shuffle mask operand specifies, for each element of
2950the result vector, which element of the two input registers the result element
2951gets. The element selector may be undef (meaning "don't care") and the second
2952operand may be undef if performing a shuffle from only one vector.
2953</p>
2954
2955<h5>Example:</h5>
2956
2957<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002958 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002959 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002960 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2961 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002962</pre>
2963</div>
2964
Tanya Lattner09474292006-04-14 19:24:33 +00002965
Chris Lattner3df241e2006-04-08 23:07:04 +00002966<!-- ======================================================================= -->
2967<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002968 <a name="aggregateops">Aggregate Operations</a>
2969</div>
2970
2971<div class="doc_text">
2972
2973<p>LLVM supports several instructions for working with aggregate values.
2974</p>
2975
2976</div>
2977
2978<!-- _______________________________________________________________________ -->
2979<div class="doc_subsubsection">
2980 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2981</div>
2982
2983<div class="doc_text">
2984
2985<h5>Syntax:</h5>
2986
2987<pre>
2988 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2989</pre>
2990
2991<h5>Overview:</h5>
2992
2993<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002994The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2995or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002996</p>
2997
2998
2999<h5>Arguments:</h5>
3000
3001<p>
3002The first operand of an '<tt>extractvalue</tt>' instruction is a
3003value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003004type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003005in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003006'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3007</p>
3008
3009<h5>Semantics:</h5>
3010
3011<p>
3012The result is the value at the position in the aggregate specified by
3013the index operands.
3014</p>
3015
3016<h5>Example:</h5>
3017
3018<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003019 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003020</pre>
3021</div>
3022
3023
3024<!-- _______________________________________________________________________ -->
3025<div class="doc_subsubsection">
3026 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3027</div>
3028
3029<div class="doc_text">
3030
3031<h5>Syntax:</h5>
3032
3033<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003034 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003035</pre>
3036
3037<h5>Overview:</h5>
3038
3039<p>
3040The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003041into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003042</p>
3043
3044
3045<h5>Arguments:</h5>
3046
3047<p>
3048The first operand of an '<tt>insertvalue</tt>' instruction is a
3049value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3050The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003051The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003052indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003053indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003054'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3055The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003056by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003057
3058<h5>Semantics:</h5>
3059
3060<p>
3061The result is an aggregate of the same type as <tt>val</tt>. Its
3062value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003063specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003064</p>
3065
3066<h5>Example:</h5>
3067
3068<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003069 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003070</pre>
3071</div>
3072
3073
3074<!-- ======================================================================= -->
3075<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003076 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003077</div>
3078
Misha Brukman9d0919f2003-11-08 01:05:38 +00003079<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003080
Chris Lattner261efe92003-11-25 01:02:51 +00003081<p>A key design point of an SSA-based representation is how it
3082represents memory. In LLVM, no memory locations are in SSA form, which
3083makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003084allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003085
Misha Brukman9d0919f2003-11-08 01:05:38 +00003086</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003087
Chris Lattner00950542001-06-06 20:29:01 +00003088<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003089<div class="doc_subsubsection">
3090 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3091</div>
3092
Misha Brukman9d0919f2003-11-08 01:05:38 +00003093<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003094
Chris Lattner00950542001-06-06 20:29:01 +00003095<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003096
3097<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003098 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003099</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003100
Chris Lattner00950542001-06-06 20:29:01 +00003101<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003102
Chris Lattner261efe92003-11-25 01:02:51 +00003103<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003104heap and returns a pointer to it. The object is always allocated in the generic
3105address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003106
Chris Lattner00950542001-06-06 20:29:01 +00003107<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003108
3109<p>The '<tt>malloc</tt>' instruction allocates
3110<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003111bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003112appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003113number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003114If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003115be aligned to at least that boundary. If not specified, or if zero, the target can
3116choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003117
Misha Brukman9d0919f2003-11-08 01:05:38 +00003118<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003119
Chris Lattner00950542001-06-06 20:29:01 +00003120<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003121
Chris Lattner261efe92003-11-25 01:02:51 +00003122<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003123a pointer is returned. The result of a zero byte allocattion is undefined. The
3124result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003125
Chris Lattner2cbdc452005-11-06 08:02:57 +00003126<h5>Example:</h5>
3127
3128<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003129 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003130
Bill Wendlingaac388b2007-05-29 09:42:13 +00003131 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3132 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3133 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3134 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3135 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003136</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003137</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003138
Chris Lattner00950542001-06-06 20:29:01 +00003139<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003140<div class="doc_subsubsection">
3141 <a name="i_free">'<tt>free</tt>' Instruction</a>
3142</div>
3143
Misha Brukman9d0919f2003-11-08 01:05:38 +00003144<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003145
Chris Lattner00950542001-06-06 20:29:01 +00003146<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003147
3148<pre>
3149 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003150</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003151
Chris Lattner00950542001-06-06 20:29:01 +00003152<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003153
Chris Lattner261efe92003-11-25 01:02:51 +00003154<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003155memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003156
Chris Lattner00950542001-06-06 20:29:01 +00003157<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003158
Chris Lattner261efe92003-11-25 01:02:51 +00003159<p>'<tt>value</tt>' shall be a pointer value that points to a value
3160that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3161instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003162
Chris Lattner00950542001-06-06 20:29:01 +00003163<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003164
John Criswell9e2485c2004-12-10 15:51:16 +00003165<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003166after this instruction executes. If the pointer is null, the operation
3167is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003168
Chris Lattner00950542001-06-06 20:29:01 +00003169<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003170
3171<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003172 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3173 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003174</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003175</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003176
Chris Lattner00950542001-06-06 20:29:01 +00003177<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003178<div class="doc_subsubsection">
3179 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3180</div>
3181
Misha Brukman9d0919f2003-11-08 01:05:38 +00003182<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003183
Chris Lattner00950542001-06-06 20:29:01 +00003184<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003185
3186<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003187 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003188</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003189
Chris Lattner00950542001-06-06 20:29:01 +00003190<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003191
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003192<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3193currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003194returns to its caller. The object is always allocated in the generic address
3195space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003196
Chris Lattner00950542001-06-06 20:29:01 +00003197<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003198
John Criswell9e2485c2004-12-10 15:51:16 +00003199<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003200bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003201appropriate type to the program. If "NumElements" is specified, it is the
3202number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003203If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003204to be aligned to at least that boundary. If not specified, or if zero, the target
3205can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003206
Misha Brukman9d0919f2003-11-08 01:05:38 +00003207<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003208
Chris Lattner00950542001-06-06 20:29:01 +00003209<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003210
Chris Lattner72ed2002008-04-19 21:01:16 +00003211<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3212there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003213memory is automatically released when the function returns. The '<tt>alloca</tt>'
3214instruction is commonly used to represent automatic variables that must
3215have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003216 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003217instructions), the memory is reclaimed. Allocating zero bytes
3218is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003219
Chris Lattner00950542001-06-06 20:29:01 +00003220<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003221
3222<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003223 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003224 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3225 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003226 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003227</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003228</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003229
Chris Lattner00950542001-06-06 20:29:01 +00003230<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003231<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3232Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003233<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003234<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003235<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003236<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003237<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003238<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003239<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003240address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003241 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003242marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003243the number or order of execution of this <tt>load</tt> with other
3244volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3245instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003246<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003247The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003248(that is, the alignment of the memory address). A value of 0 or an
3249omitted "align" argument means that the operation has the preferential
3250alignment for the target. It is the responsibility of the code emitter
3251to ensure that the alignment information is correct. Overestimating
3252the alignment results in an undefined behavior. Underestimating the
3253alignment may produce less efficient code. An alignment of 1 is always
3254safe.
3255</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003256<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003257<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003258<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003259<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003260 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003261 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3262 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003263</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003264</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003265<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003266<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3267Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003268<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003269<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003270<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3271 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003272</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003273<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003274<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003275<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003276<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003277to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003278operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3279of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003280operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003281optimizer is not allowed to modify the number or order of execution of
3282this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3283 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003284<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003285The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003286(that is, the alignment of the memory address). A value of 0 or an
3287omitted "align" argument means that the operation has the preferential
3288alignment for the target. It is the responsibility of the code emitter
3289to ensure that the alignment information is correct. Overestimating
3290the alignment results in an undefined behavior. Underestimating the
3291alignment may produce less efficient code. An alignment of 1 is always
3292safe.
3293</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003294<h5>Semantics:</h5>
3295<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3296at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003297<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003298<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003299 store i32 3, i32* %ptr <i>; yields {void}</i>
3300 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003301</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003302</div>
3303
Chris Lattner2b7d3202002-05-06 03:03:22 +00003304<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003305<div class="doc_subsubsection">
3306 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3307</div>
3308
Misha Brukman9d0919f2003-11-08 01:05:38 +00003309<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003310<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003311<pre>
3312 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3313</pre>
3314
Chris Lattner7faa8832002-04-14 06:13:44 +00003315<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003316
3317<p>
3318The '<tt>getelementptr</tt>' instruction is used to get the address of a
3319subelement of an aggregate data structure.</p>
3320
Chris Lattner7faa8832002-04-14 06:13:44 +00003321<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003322
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003323<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003324elements of the aggregate object to index to. The actual types of the arguments
3325provided depend on the type of the first pointer argument. The
3326'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003327levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003328structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003329into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3330values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003331
Chris Lattner261efe92003-11-25 01:02:51 +00003332<p>For example, let's consider a C code fragment and how it gets
3333compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003334
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003335<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003336<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003337struct RT {
3338 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003339 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003340 char C;
3341};
3342struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003343 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003344 double Y;
3345 struct RT Z;
3346};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003347
Chris Lattnercabc8462007-05-29 15:43:56 +00003348int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003349 return &amp;s[1].Z.B[5][13];
3350}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003351</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003352</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003353
Misha Brukman9d0919f2003-11-08 01:05:38 +00003354<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003355
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003356<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003357<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003358%RT = type { i8 , [10 x [20 x i32]], i8 }
3359%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003360
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003361define i32* %foo(%ST* %s) {
3362entry:
3363 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3364 ret i32* %reg
3365}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003366</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003367</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003368
Chris Lattner7faa8832002-04-14 06:13:44 +00003369<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003370
3371<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003372on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003373and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003374<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003375to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3376structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003377
Misha Brukman9d0919f2003-11-08 01:05:38 +00003378<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003379type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003380}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003381the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3382i8 }</tt>' type, another structure. The third index indexes into the second
3383element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003384array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003385'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3386to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003387
Chris Lattner261efe92003-11-25 01:02:51 +00003388<p>Note that it is perfectly legal to index partially through a
3389structure, returning a pointer to an inner element. Because of this,
3390the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003391
3392<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003393 define i32* %foo(%ST* %s) {
3394 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003395 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3396 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003397 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3398 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3399 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003400 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003401</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003402
3403<p>Note that it is undefined to access an array out of bounds: array and
3404pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003405The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003406defined to be accessible as variable length arrays, which requires access
3407beyond the zero'th element.</p>
3408
Chris Lattner884a9702006-08-15 00:45:58 +00003409<p>The getelementptr instruction is often confusing. For some more insight
3410into how it works, see <a href="GetElementPtr.html">the getelementptr
3411FAQ</a>.</p>
3412
Chris Lattner7faa8832002-04-14 06:13:44 +00003413<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003414
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003415<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003416 <i>; yields [12 x i8]*:aptr</i>
3417 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003418</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003419</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003420
Chris Lattner00950542001-06-06 20:29:01 +00003421<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003422<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003423</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003424<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003425<p>The instructions in this category are the conversion instructions (casting)
3426which all take a single operand and a type. They perform various bit conversions
3427on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003428</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003429
Chris Lattner6536cfe2002-05-06 22:08:29 +00003430<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003431<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003432 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3433</div>
3434<div class="doc_text">
3435
3436<h5>Syntax:</h5>
3437<pre>
3438 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3439</pre>
3440
3441<h5>Overview:</h5>
3442<p>
3443The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3444</p>
3445
3446<h5>Arguments:</h5>
3447<p>
3448The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3449be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003450and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003451type. The bit size of <tt>value</tt> must be larger than the bit size of
3452<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003453
3454<h5>Semantics:</h5>
3455<p>
3456The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003457and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3458larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3459It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003460
3461<h5>Example:</h5>
3462<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003463 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003464 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3465 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003466</pre>
3467</div>
3468
3469<!-- _______________________________________________________________________ -->
3470<div class="doc_subsubsection">
3471 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3472</div>
3473<div class="doc_text">
3474
3475<h5>Syntax:</h5>
3476<pre>
3477 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3478</pre>
3479
3480<h5>Overview:</h5>
3481<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3482<tt>ty2</tt>.</p>
3483
3484
3485<h5>Arguments:</h5>
3486<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003487<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3488also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003489<tt>value</tt> must be smaller than the bit size of the destination type,
3490<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003491
3492<h5>Semantics:</h5>
3493<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003494bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003495
Reid Spencerb5929522007-01-12 15:46:11 +00003496<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003497
3498<h5>Example:</h5>
3499<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003500 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003501 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003502</pre>
3503</div>
3504
3505<!-- _______________________________________________________________________ -->
3506<div class="doc_subsubsection">
3507 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3508</div>
3509<div class="doc_text">
3510
3511<h5>Syntax:</h5>
3512<pre>
3513 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3514</pre>
3515
3516<h5>Overview:</h5>
3517<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3518
3519<h5>Arguments:</h5>
3520<p>
3521The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003522<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3523also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003524<tt>value</tt> must be smaller than the bit size of the destination type,
3525<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003526
3527<h5>Semantics:</h5>
3528<p>
3529The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3530bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003531the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003532
Reid Spencerc78f3372007-01-12 03:35:51 +00003533<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003534
3535<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003536<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003537 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003538 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003539</pre>
3540</div>
3541
3542<!-- _______________________________________________________________________ -->
3543<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003544 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3545</div>
3546
3547<div class="doc_text">
3548
3549<h5>Syntax:</h5>
3550
3551<pre>
3552 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3553</pre>
3554
3555<h5>Overview:</h5>
3556<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3557<tt>ty2</tt>.</p>
3558
3559
3560<h5>Arguments:</h5>
3561<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3562 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3563cast it to. The size of <tt>value</tt> must be larger than the size of
3564<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3565<i>no-op cast</i>.</p>
3566
3567<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003568<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3569<a href="#t_floating">floating point</a> type to a smaller
3570<a href="#t_floating">floating point</a> type. If the value cannot fit within
3571the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003572
3573<h5>Example:</h5>
3574<pre>
3575 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3576 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3577</pre>
3578</div>
3579
3580<!-- _______________________________________________________________________ -->
3581<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003582 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3583</div>
3584<div class="doc_text">
3585
3586<h5>Syntax:</h5>
3587<pre>
3588 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3589</pre>
3590
3591<h5>Overview:</h5>
3592<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3593floating point value.</p>
3594
3595<h5>Arguments:</h5>
3596<p>The '<tt>fpext</tt>' instruction takes a
3597<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003598and a <a href="#t_floating">floating point</a> type to cast it to. The source
3599type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003600
3601<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003602<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003603<a href="#t_floating">floating point</a> type to a larger
3604<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003605used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003606<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003607
3608<h5>Example:</h5>
3609<pre>
3610 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3611 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3612</pre>
3613</div>
3614
3615<!-- _______________________________________________________________________ -->
3616<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003617 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003618</div>
3619<div class="doc_text">
3620
3621<h5>Syntax:</h5>
3622<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003623 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003624</pre>
3625
3626<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003627<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003628unsigned integer equivalent of type <tt>ty2</tt>.
3629</p>
3630
3631<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003632<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003633scalar or vector <a href="#t_floating">floating point</a> value, and a type
3634to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3635type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3636vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003637
3638<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003639<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003640<a href="#t_floating">floating point</a> operand into the nearest (rounding
3641towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3642the results are undefined.</p>
3643
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003644<h5>Example:</h5>
3645<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003646 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003647 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003648 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003649</pre>
3650</div>
3651
3652<!-- _______________________________________________________________________ -->
3653<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003654 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003655</div>
3656<div class="doc_text">
3657
3658<h5>Syntax:</h5>
3659<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003660 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003661</pre>
3662
3663<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003664<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003665<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003666</p>
3667
Chris Lattner6536cfe2002-05-06 22:08:29 +00003668<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003669<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003670scalar or vector <a href="#t_floating">floating point</a> value, and a type
3671to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3672type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3673vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003674
Chris Lattner6536cfe2002-05-06 22:08:29 +00003675<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003676<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003677<a href="#t_floating">floating point</a> operand into the nearest (rounding
3678towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3679the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003680
Chris Lattner33ba0d92001-07-09 00:26:23 +00003681<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003682<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003683 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003684 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003685 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003686</pre>
3687</div>
3688
3689<!-- _______________________________________________________________________ -->
3690<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003691 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003692</div>
3693<div class="doc_text">
3694
3695<h5>Syntax:</h5>
3696<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003697 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003698</pre>
3699
3700<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003701<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003702integer and converts that value to the <tt>ty2</tt> type.</p>
3703
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003704<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003705<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3706scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3707to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3708type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3709floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003710
3711<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003712<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003713integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003714the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003715
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003716<h5>Example:</h5>
3717<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003718 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003719 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003720</pre>
3721</div>
3722
3723<!-- _______________________________________________________________________ -->
3724<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003725 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003726</div>
3727<div class="doc_text">
3728
3729<h5>Syntax:</h5>
3730<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003731 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003732</pre>
3733
3734<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003735<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003736integer and converts that value to the <tt>ty2</tt> type.</p>
3737
3738<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003739<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3740scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3741to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3742type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3743floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003744
3745<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003746<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003747integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003748the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003749
3750<h5>Example:</h5>
3751<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003752 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003753 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003754</pre>
3755</div>
3756
3757<!-- _______________________________________________________________________ -->
3758<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003759 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3760</div>
3761<div class="doc_text">
3762
3763<h5>Syntax:</h5>
3764<pre>
3765 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3766</pre>
3767
3768<h5>Overview:</h5>
3769<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3770the integer type <tt>ty2</tt>.</p>
3771
3772<h5>Arguments:</h5>
3773<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003774must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003775<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3776
3777<h5>Semantics:</h5>
3778<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3779<tt>ty2</tt> by interpreting the pointer value as an integer and either
3780truncating or zero extending that value to the size of the integer type. If
3781<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3782<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003783are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3784change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003785
3786<h5>Example:</h5>
3787<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003788 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3789 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003790</pre>
3791</div>
3792
3793<!-- _______________________________________________________________________ -->
3794<div class="doc_subsubsection">
3795 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3796</div>
3797<div class="doc_text">
3798
3799<h5>Syntax:</h5>
3800<pre>
3801 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3802</pre>
3803
3804<h5>Overview:</h5>
3805<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3806a pointer type, <tt>ty2</tt>.</p>
3807
3808<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003809<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003810value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003811<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003812
3813<h5>Semantics:</h5>
3814<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3815<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3816the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3817size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3818the size of a pointer then a zero extension is done. If they are the same size,
3819nothing is done (<i>no-op cast</i>).</p>
3820
3821<h5>Example:</h5>
3822<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003823 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3824 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3825 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003826</pre>
3827</div>
3828
3829<!-- _______________________________________________________________________ -->
3830<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003831 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003832</div>
3833<div class="doc_text">
3834
3835<h5>Syntax:</h5>
3836<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003837 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003838</pre>
3839
3840<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003841
Reid Spencer5c0ef472006-11-11 23:08:07 +00003842<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003843<tt>ty2</tt> without changing any bits.</p>
3844
3845<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003846
Reid Spencer5c0ef472006-11-11 23:08:07 +00003847<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003848a non-aggregate first class value, and a type to cast it to, which must also be
3849a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3850<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003851and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003852type is a pointer, the destination type must also be a pointer. This
3853instruction supports bitwise conversion of vectors to integers and to vectors
3854of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003855
3856<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003857<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003858<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3859this conversion. The conversion is done as if the <tt>value</tt> had been
3860stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3861converted to other pointer types with this instruction. To convert pointers to
3862other types, use the <a href="#i_inttoptr">inttoptr</a> or
3863<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003864
3865<h5>Example:</h5>
3866<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003867 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003868 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3869 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003870</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003871</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003872
Reid Spencer2fd21e62006-11-08 01:18:52 +00003873<!-- ======================================================================= -->
3874<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3875<div class="doc_text">
3876<p>The instructions in this category are the "miscellaneous"
3877instructions, which defy better classification.</p>
3878</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003879
3880<!-- _______________________________________________________________________ -->
3881<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3882</div>
3883<div class="doc_text">
3884<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003885<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003886</pre>
3887<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003888<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3889a vector of boolean values based on comparison
3890of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003891<h5>Arguments:</h5>
3892<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003893the condition code indicating the kind of comparison to perform. It is not
3894a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003895<ol>
3896 <li><tt>eq</tt>: equal</li>
3897 <li><tt>ne</tt>: not equal </li>
3898 <li><tt>ugt</tt>: unsigned greater than</li>
3899 <li><tt>uge</tt>: unsigned greater or equal</li>
3900 <li><tt>ult</tt>: unsigned less than</li>
3901 <li><tt>ule</tt>: unsigned less or equal</li>
3902 <li><tt>sgt</tt>: signed greater than</li>
3903 <li><tt>sge</tt>: signed greater or equal</li>
3904 <li><tt>slt</tt>: signed less than</li>
3905 <li><tt>sle</tt>: signed less or equal</li>
3906</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003907<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003908<a href="#t_pointer">pointer</a>
3909or integer <a href="#t_vector">vector</a> typed.
3910They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003911<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003912<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003913the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003914yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003915<ol>
3916 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3917 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3918 </li>
3919 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3920 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3921 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003922 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003923 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003924 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003925 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003926 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003927 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003928 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003929 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003930 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003931 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003932 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003933 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003934 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003935 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003936 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003937</ol>
3938<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003939values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003940<p>If the operands are integer vectors, then they are compared
3941element by element. The result is an <tt>i1</tt> vector with
3942the same number of elements as the values being compared.
3943Otherwise, the result is an <tt>i1</tt>.
3944</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003945
3946<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003947<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3948 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3949 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3950 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3951 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3952 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003953</pre>
3954</div>
3955
3956<!-- _______________________________________________________________________ -->
3957<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3958</div>
3959<div class="doc_text">
3960<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003961<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003962</pre>
3963<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003964<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3965or vector of boolean values based on comparison
3966of its operands.
3967<p>
3968If the operands are floating point scalars, then the result
3969type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3970</p>
3971<p>If the operands are floating point vectors, then the result type
3972is a vector of boolean with the same number of elements as the
3973operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003974<h5>Arguments:</h5>
3975<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003976the condition code indicating the kind of comparison to perform. It is not
3977a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003978<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003979 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003980 <li><tt>oeq</tt>: ordered and equal</li>
3981 <li><tt>ogt</tt>: ordered and greater than </li>
3982 <li><tt>oge</tt>: ordered and greater than or equal</li>
3983 <li><tt>olt</tt>: ordered and less than </li>
3984 <li><tt>ole</tt>: ordered and less than or equal</li>
3985 <li><tt>one</tt>: ordered and not equal</li>
3986 <li><tt>ord</tt>: ordered (no nans)</li>
3987 <li><tt>ueq</tt>: unordered or equal</li>
3988 <li><tt>ugt</tt>: unordered or greater than </li>
3989 <li><tt>uge</tt>: unordered or greater than or equal</li>
3990 <li><tt>ult</tt>: unordered or less than </li>
3991 <li><tt>ule</tt>: unordered or less than or equal</li>
3992 <li><tt>une</tt>: unordered or not equal</li>
3993 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003994 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003995</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003996<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003997<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003998<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3999either a <a href="#t_floating">floating point</a> type
4000or a <a href="#t_vector">vector</a> of floating point type.
4001They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004002<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004003<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004004according to the condition code given as <tt>cond</tt>.
4005If the operands are vectors, then the vectors are compared
4006element by element.
4007Each comparison performed
4008always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00004009<ol>
4010 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004011 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004012 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004013 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004014 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004015 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004016 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004017 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004018 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004019 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004020 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004021 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004022 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004023 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4024 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004025 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004026 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004027 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004028 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004029 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004030 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004031 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004032 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004033 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004034 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004035 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004036 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004037 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4038</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004039
4040<h5>Example:</h5>
4041<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004042 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4043 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4044 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004045</pre>
4046</div>
4047
Reid Spencer2fd21e62006-11-08 01:18:52 +00004048<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004049<div class="doc_subsubsection">
4050 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4051</div>
4052<div class="doc_text">
4053<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004054<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004055</pre>
4056<h5>Overview:</h5>
4057<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4058element-wise comparison of its two integer vector operands.</p>
4059<h5>Arguments:</h5>
4060<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4061the condition code indicating the kind of comparison to perform. It is not
4062a value, just a keyword. The possible condition code are:
4063<ol>
4064 <li><tt>eq</tt>: equal</li>
4065 <li><tt>ne</tt>: not equal </li>
4066 <li><tt>ugt</tt>: unsigned greater than</li>
4067 <li><tt>uge</tt>: unsigned greater or equal</li>
4068 <li><tt>ult</tt>: unsigned less than</li>
4069 <li><tt>ule</tt>: unsigned less or equal</li>
4070 <li><tt>sgt</tt>: signed greater than</li>
4071 <li><tt>sge</tt>: signed greater or equal</li>
4072 <li><tt>slt</tt>: signed less than</li>
4073 <li><tt>sle</tt>: signed less or equal</li>
4074</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004075<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004076<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4077<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004078<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004079according to the condition code given as <tt>cond</tt>. The comparison yields a
4080<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4081identical type as the values being compared. The most significant bit in each
4082element is 1 if the element-wise comparison evaluates to true, and is 0
4083otherwise. All other bits of the result are undefined. The condition codes
4084are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4085instruction</a>.
4086
4087<h5>Example:</h5>
4088<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004089 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4090 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004091</pre>
4092</div>
4093
4094<!-- _______________________________________________________________________ -->
4095<div class="doc_subsubsection">
4096 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4097</div>
4098<div class="doc_text">
4099<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004100<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004101<h5>Overview:</h5>
4102<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4103element-wise comparison of its two floating point vector operands. The output
4104elements have the same width as the input elements.</p>
4105<h5>Arguments:</h5>
4106<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4107the condition code indicating the kind of comparison to perform. It is not
4108a value, just a keyword. The possible condition code are:
4109<ol>
4110 <li><tt>false</tt>: no comparison, always returns false</li>
4111 <li><tt>oeq</tt>: ordered and equal</li>
4112 <li><tt>ogt</tt>: ordered and greater than </li>
4113 <li><tt>oge</tt>: ordered and greater than or equal</li>
4114 <li><tt>olt</tt>: ordered and less than </li>
4115 <li><tt>ole</tt>: ordered and less than or equal</li>
4116 <li><tt>one</tt>: ordered and not equal</li>
4117 <li><tt>ord</tt>: ordered (no nans)</li>
4118 <li><tt>ueq</tt>: unordered or equal</li>
4119 <li><tt>ugt</tt>: unordered or greater than </li>
4120 <li><tt>uge</tt>: unordered or greater than or equal</li>
4121 <li><tt>ult</tt>: unordered or less than </li>
4122 <li><tt>ule</tt>: unordered or less than or equal</li>
4123 <li><tt>une</tt>: unordered or not equal</li>
4124 <li><tt>uno</tt>: unordered (either nans)</li>
4125 <li><tt>true</tt>: no comparison, always returns true</li>
4126</ol>
4127<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4128<a href="#t_floating">floating point</a> typed. They must also be identical
4129types.</p>
4130<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004131<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004132according to the condition code given as <tt>cond</tt>. The comparison yields a
4133<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4134an identical number of elements as the values being compared, and each element
4135having identical with to the width of the floating point elements. The most
4136significant bit in each element is 1 if the element-wise comparison evaluates to
4137true, and is 0 otherwise. All other bits of the result are undefined. The
4138condition codes are evaluated identically to the
4139<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4140
4141<h5>Example:</h5>
4142<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004143 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4144 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004145</pre>
4146</div>
4147
4148<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004149<div class="doc_subsubsection">
4150 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4151</div>
4152
Reid Spencer2fd21e62006-11-08 01:18:52 +00004153<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004154
Reid Spencer2fd21e62006-11-08 01:18:52 +00004155<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004156
Reid Spencer2fd21e62006-11-08 01:18:52 +00004157<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4158<h5>Overview:</h5>
4159<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4160the SSA graph representing the function.</p>
4161<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004162
Jeff Cohenb627eab2007-04-29 01:07:00 +00004163<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004164field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4165as arguments, with one pair for each predecessor basic block of the
4166current block. Only values of <a href="#t_firstclass">first class</a>
4167type may be used as the value arguments to the PHI node. Only labels
4168may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004169
Reid Spencer2fd21e62006-11-08 01:18:52 +00004170<p>There must be no non-phi instructions between the start of a basic
4171block and the PHI instructions: i.e. PHI instructions must be first in
4172a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004173
Reid Spencer2fd21e62006-11-08 01:18:52 +00004174<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004175
Jeff Cohenb627eab2007-04-29 01:07:00 +00004176<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4177specified by the pair corresponding to the predecessor basic block that executed
4178just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004179
Reid Spencer2fd21e62006-11-08 01:18:52 +00004180<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004181<pre>
4182Loop: ; Infinite loop that counts from 0 on up...
4183 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4184 %nextindvar = add i32 %indvar, 1
4185 br label %Loop
4186</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004187</div>
4188
Chris Lattnercc37aae2004-03-12 05:50:16 +00004189<!-- _______________________________________________________________________ -->
4190<div class="doc_subsubsection">
4191 <a name="i_select">'<tt>select</tt>' Instruction</a>
4192</div>
4193
4194<div class="doc_text">
4195
4196<h5>Syntax:</h5>
4197
4198<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004199 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4200
4201 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004202</pre>
4203
4204<h5>Overview:</h5>
4205
4206<p>
4207The '<tt>select</tt>' instruction is used to choose one value based on a
4208condition, without branching.
4209</p>
4210
4211
4212<h5>Arguments:</h5>
4213
4214<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004215The '<tt>select</tt>' instruction requires an 'i1' value or
4216a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004217condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004218type. If the val1/val2 are vectors and
4219the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004220individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004221</p>
4222
4223<h5>Semantics:</h5>
4224
4225<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004226If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004227value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004228</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004229<p>
4230If the condition is a vector of i1, then the value arguments must
4231be vectors of the same size, and the selection is done element
4232by element.
4233</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004234
4235<h5>Example:</h5>
4236
4237<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004238 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004239</pre>
4240</div>
4241
Robert Bocchino05ccd702006-01-15 20:48:27 +00004242
4243<!-- _______________________________________________________________________ -->
4244<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004245 <a name="i_call">'<tt>call</tt>' Instruction</a>
4246</div>
4247
Misha Brukman9d0919f2003-11-08 01:05:38 +00004248<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004249
Chris Lattner00950542001-06-06 20:29:01 +00004250<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004251<pre>
Devang Patelf642f472008-10-06 18:50:38 +00004252 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">RetAttrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004253</pre>
4254
Chris Lattner00950542001-06-06 20:29:01 +00004255<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004256
Misha Brukman9d0919f2003-11-08 01:05:38 +00004257<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004258
Chris Lattner00950542001-06-06 20:29:01 +00004259<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004260
Misha Brukman9d0919f2003-11-08 01:05:38 +00004261<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004262
Chris Lattner6536cfe2002-05-06 22:08:29 +00004263<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004264 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004265 <p>The optional "tail" marker indicates whether the callee function accesses
4266 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004267 function call is eligible for tail call optimization. Note that calls may
4268 be marked "tail" even if they do not occur before a <a
4269 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004270 </li>
4271 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004272 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004273 convention</a> the call should use. If none is specified, the call defaults
4274 to using C calling conventions.
4275 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004276
4277 <li>
4278 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4279 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4280 and '<tt>inreg</tt>' attributes are valid here.</p>
4281 </li>
4282
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004283 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004284 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4285 the type of the return value. Functions that return no value are marked
4286 <tt><a href="#t_void">void</a></tt>.</p>
4287 </li>
4288 <li>
4289 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4290 value being invoked. The argument types must match the types implied by
4291 this signature. This type can be omitted if the function is not varargs
4292 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004293 </li>
4294 <li>
4295 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4296 be invoked. In most cases, this is a direct function invocation, but
4297 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004298 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004299 </li>
4300 <li>
4301 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004302 function signature argument types. All arguments must be of
4303 <a href="#t_firstclass">first class</a> type. If the function signature
4304 indicates the function accepts a variable number of arguments, the extra
4305 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004306 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004307 <li>
4308 <p>The optional <a href="fnattrs">function attributes</a> list. Only
4309 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4310 '<tt>readnone</tt>' attributes are valid here.</p>
4311 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004312</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004313
Chris Lattner00950542001-06-06 20:29:01 +00004314<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004315
Chris Lattner261efe92003-11-25 01:02:51 +00004316<p>The '<tt>call</tt>' instruction is used to cause control flow to
4317transfer to a specified function, with its incoming arguments bound to
4318the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4319instruction in the called function, control flow continues with the
4320instruction after the function call, and the return value of the
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004321function is bound to the result argument.
Chris Lattner2bff5242005-05-06 05:47:36 +00004322
Chris Lattner00950542001-06-06 20:29:01 +00004323<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004324
4325<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004326 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004327 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4328 %X = tail call i32 @foo() <i>; yields i32</i>
4329 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4330 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004331
4332 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004333 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004334 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4335 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Devang Patelf642f472008-10-06 18:50:38 +00004336 %Z = call void @foo() noreturn <i>; indicates that foo never returns nomrally
4337 %ZZ = call zeroext i32 @bar() <i>; Return value is zero extended
Chris Lattner2bff5242005-05-06 05:47:36 +00004338</pre>
4339
Misha Brukman9d0919f2003-11-08 01:05:38 +00004340</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004341
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004342<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004343<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004344 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004345</div>
4346
Misha Brukman9d0919f2003-11-08 01:05:38 +00004347<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004348
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004349<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004350
4351<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004352 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004353</pre>
4354
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004355<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004356
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004357<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004358the "variable argument" area of a function call. It is used to implement the
4359<tt>va_arg</tt> macro in C.</p>
4360
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004361<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004362
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004363<p>This instruction takes a <tt>va_list*</tt> value and the type of
4364the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004365increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004366actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004367
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004368<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004369
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004370<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4371type from the specified <tt>va_list</tt> and causes the
4372<tt>va_list</tt> to point to the next argument. For more information,
4373see the variable argument handling <a href="#int_varargs">Intrinsic
4374Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004375
4376<p>It is legal for this instruction to be called in a function which does not
4377take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004378function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004379
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004380<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004381href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004382argument.</p>
4383
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004384<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004385
4386<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4387
Misha Brukman9d0919f2003-11-08 01:05:38 +00004388</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004389
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004390<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004391<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4392<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004393
Misha Brukman9d0919f2003-11-08 01:05:38 +00004394<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004395
4396<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004397well known names and semantics and are required to follow certain restrictions.
4398Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004399language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004400adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004401
John Criswellfc6b8952005-05-16 16:17:45 +00004402<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004403prefix is reserved in LLVM for intrinsic names; thus, function names may not
4404begin with this prefix. Intrinsic functions must always be external functions:
4405you cannot define the body of intrinsic functions. Intrinsic functions may
4406only be used in call or invoke instructions: it is illegal to take the address
4407of an intrinsic function. Additionally, because intrinsic functions are part
4408of the LLVM language, it is required if any are added that they be documented
4409here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004410
Chandler Carruth69940402007-08-04 01:51:18 +00004411<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4412a family of functions that perform the same operation but on different data
4413types. Because LLVM can represent over 8 million different integer types,
4414overloading is used commonly to allow an intrinsic function to operate on any
4415integer type. One or more of the argument types or the result type can be
4416overloaded to accept any integer type. Argument types may also be defined as
4417exactly matching a previous argument's type or the result type. This allows an
4418intrinsic function which accepts multiple arguments, but needs all of them to
4419be of the same type, to only be overloaded with respect to a single argument or
4420the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004421
Chandler Carruth69940402007-08-04 01:51:18 +00004422<p>Overloaded intrinsics will have the names of its overloaded argument types
4423encoded into its function name, each preceded by a period. Only those types
4424which are overloaded result in a name suffix. Arguments whose type is matched
4425against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4426take an integer of any width and returns an integer of exactly the same integer
4427width. This leads to a family of functions such as
4428<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4429Only one type, the return type, is overloaded, and only one type suffix is
4430required. Because the argument's type is matched against the return type, it
4431does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004432
4433<p>To learn how to add an intrinsic function, please see the
4434<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004435</p>
4436
Misha Brukman9d0919f2003-11-08 01:05:38 +00004437</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004438
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004439<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004440<div class="doc_subsection">
4441 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4442</div>
4443
Misha Brukman9d0919f2003-11-08 01:05:38 +00004444<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004445
Misha Brukman9d0919f2003-11-08 01:05:38 +00004446<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004447 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004448intrinsic functions. These functions are related to the similarly
4449named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004450
Chris Lattner261efe92003-11-25 01:02:51 +00004451<p>All of these functions operate on arguments that use a
4452target-specific value type "<tt>va_list</tt>". The LLVM assembly
4453language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004454transformations should be prepared to handle these functions regardless of
4455the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004456
Chris Lattner374ab302006-05-15 17:26:46 +00004457<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004458instruction and the variable argument handling intrinsic functions are
4459used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004460
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004461<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004462<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004463define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004464 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004465 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004466 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004467 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004468
4469 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004470 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004471
4472 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004473 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004474 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004475 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004476 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004477
4478 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004479 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004480 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004481}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004482
4483declare void @llvm.va_start(i8*)
4484declare void @llvm.va_copy(i8*, i8*)
4485declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004486</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004487</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004488
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004489</div>
4490
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004491<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004492<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004493 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004494</div>
4495
4496
Misha Brukman9d0919f2003-11-08 01:05:38 +00004497<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004498<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004499<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004500<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004501<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4502<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4503href="#i_va_arg">va_arg</a></tt>.</p>
4504
4505<h5>Arguments:</h5>
4506
4507<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4508
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004509<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004510
4511<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4512macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004513<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004514<tt>va_arg</tt> will produce the first variable argument passed to the function.
4515Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004516last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004517
Misha Brukman9d0919f2003-11-08 01:05:38 +00004518</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004519
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004520<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004521<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004522 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004523</div>
4524
Misha Brukman9d0919f2003-11-08 01:05:38 +00004525<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004526<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004527<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004528<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004529
Jeff Cohenb627eab2007-04-29 01:07:00 +00004530<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004531which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004532or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004533
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004534<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004535
Jeff Cohenb627eab2007-04-29 01:07:00 +00004536<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004537
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004538<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004539
Misha Brukman9d0919f2003-11-08 01:05:38 +00004540<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004541macro available in C. In a target-dependent way, it destroys the
4542<tt>va_list</tt> element to which the argument points. Calls to <a
4543href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4544<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4545<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004546
Misha Brukman9d0919f2003-11-08 01:05:38 +00004547</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004548
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004549<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004550<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004551 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004552</div>
4553
Misha Brukman9d0919f2003-11-08 01:05:38 +00004554<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004555
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004556<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004557
4558<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004559 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004560</pre>
4561
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004562<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004563
Jeff Cohenb627eab2007-04-29 01:07:00 +00004564<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4565from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004566
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004567<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004568
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004569<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004570The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004571
Chris Lattnerd7923912004-05-23 21:06:01 +00004572
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004573<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004574
Jeff Cohenb627eab2007-04-29 01:07:00 +00004575<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4576macro available in C. In a target-dependent way, it copies the source
4577<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4578intrinsic is necessary because the <tt><a href="#int_va_start">
4579llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4580example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004581
Misha Brukman9d0919f2003-11-08 01:05:38 +00004582</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004583
Chris Lattner33aec9e2004-02-12 17:01:32 +00004584<!-- ======================================================================= -->
4585<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004586 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4587</div>
4588
4589<div class="doc_text">
4590
4591<p>
4592LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004593Collection</a> (GC) requires the implementation and generation of these
4594intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004595These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004596stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004597href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004598Front-ends for type-safe garbage collected languages should generate these
4599intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4600href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4601</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004602
4603<p>The garbage collection intrinsics only operate on objects in the generic
4604 address space (address space zero).</p>
4605
Chris Lattnerd7923912004-05-23 21:06:01 +00004606</div>
4607
4608<!-- _______________________________________________________________________ -->
4609<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004610 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004611</div>
4612
4613<div class="doc_text">
4614
4615<h5>Syntax:</h5>
4616
4617<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004618 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004619</pre>
4620
4621<h5>Overview:</h5>
4622
John Criswell9e2485c2004-12-10 15:51:16 +00004623<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004624the code generator, and allows some metadata to be associated with it.</p>
4625
4626<h5>Arguments:</h5>
4627
4628<p>The first argument specifies the address of a stack object that contains the
4629root pointer. The second pointer (which must be either a constant or a global
4630value address) contains the meta-data to be associated with the root.</p>
4631
4632<h5>Semantics:</h5>
4633
Chris Lattner05d67092008-04-24 05:59:56 +00004634<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004635location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004636the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4637intrinsic may only be used in a function which <a href="#gc">specifies a GC
4638algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004639
4640</div>
4641
4642
4643<!-- _______________________________________________________________________ -->
4644<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004645 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004646</div>
4647
4648<div class="doc_text">
4649
4650<h5>Syntax:</h5>
4651
4652<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004653 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004654</pre>
4655
4656<h5>Overview:</h5>
4657
4658<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4659locations, allowing garbage collector implementations that require read
4660barriers.</p>
4661
4662<h5>Arguments:</h5>
4663
Chris Lattner80626e92006-03-14 20:02:51 +00004664<p>The second argument is the address to read from, which should be an address
4665allocated from the garbage collector. The first object is a pointer to the
4666start of the referenced object, if needed by the language runtime (otherwise
4667null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004668
4669<h5>Semantics:</h5>
4670
4671<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4672instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004673garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4674may only be used in a function which <a href="#gc">specifies a GC
4675algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004676
4677</div>
4678
4679
4680<!-- _______________________________________________________________________ -->
4681<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004682 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004683</div>
4684
4685<div class="doc_text">
4686
4687<h5>Syntax:</h5>
4688
4689<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004690 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004691</pre>
4692
4693<h5>Overview:</h5>
4694
4695<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4696locations, allowing garbage collector implementations that require write
4697barriers (such as generational or reference counting collectors).</p>
4698
4699<h5>Arguments:</h5>
4700
Chris Lattner80626e92006-03-14 20:02:51 +00004701<p>The first argument is the reference to store, the second is the start of the
4702object to store it to, and the third is the address of the field of Obj to
4703store to. If the runtime does not require a pointer to the object, Obj may be
4704null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004705
4706<h5>Semantics:</h5>
4707
4708<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4709instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004710garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4711may only be used in a function which <a href="#gc">specifies a GC
4712algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004713
4714</div>
4715
4716
4717
4718<!-- ======================================================================= -->
4719<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004720 <a name="int_codegen">Code Generator Intrinsics</a>
4721</div>
4722
4723<div class="doc_text">
4724<p>
4725These intrinsics are provided by LLVM to expose special features that may only
4726be implemented with code generator support.
4727</p>
4728
4729</div>
4730
4731<!-- _______________________________________________________________________ -->
4732<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004733 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004734</div>
4735
4736<div class="doc_text">
4737
4738<h5>Syntax:</h5>
4739<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004740 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004741</pre>
4742
4743<h5>Overview:</h5>
4744
4745<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004746The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4747target-specific value indicating the return address of the current function
4748or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004749</p>
4750
4751<h5>Arguments:</h5>
4752
4753<p>
4754The argument to this intrinsic indicates which function to return the address
4755for. Zero indicates the calling function, one indicates its caller, etc. The
4756argument is <b>required</b> to be a constant integer value.
4757</p>
4758
4759<h5>Semantics:</h5>
4760
4761<p>
4762The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4763the return address of the specified call frame, or zero if it cannot be
4764identified. The value returned by this intrinsic is likely to be incorrect or 0
4765for arguments other than zero, so it should only be used for debugging purposes.
4766</p>
4767
4768<p>
4769Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004770aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004771source-language caller.
4772</p>
4773</div>
4774
4775
4776<!-- _______________________________________________________________________ -->
4777<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004778 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004779</div>
4780
4781<div class="doc_text">
4782
4783<h5>Syntax:</h5>
4784<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004785 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004786</pre>
4787
4788<h5>Overview:</h5>
4789
4790<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004791The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4792target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004793</p>
4794
4795<h5>Arguments:</h5>
4796
4797<p>
4798The argument to this intrinsic indicates which function to return the frame
4799pointer for. Zero indicates the calling function, one indicates its caller,
4800etc. The argument is <b>required</b> to be a constant integer value.
4801</p>
4802
4803<h5>Semantics:</h5>
4804
4805<p>
4806The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4807the frame address of the specified call frame, or zero if it cannot be
4808identified. The value returned by this intrinsic is likely to be incorrect or 0
4809for arguments other than zero, so it should only be used for debugging purposes.
4810</p>
4811
4812<p>
4813Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004814aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004815source-language caller.
4816</p>
4817</div>
4818
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004819<!-- _______________________________________________________________________ -->
4820<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004821 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004822</div>
4823
4824<div class="doc_text">
4825
4826<h5>Syntax:</h5>
4827<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004828 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004829</pre>
4830
4831<h5>Overview:</h5>
4832
4833<p>
4834The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004835the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004836<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4837features like scoped automatic variable sized arrays in C99.
4838</p>
4839
4840<h5>Semantics:</h5>
4841
4842<p>
4843This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004844href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004845<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4846<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4847state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4848practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4849that were allocated after the <tt>llvm.stacksave</tt> was executed.
4850</p>
4851
4852</div>
4853
4854<!-- _______________________________________________________________________ -->
4855<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004856 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004857</div>
4858
4859<div class="doc_text">
4860
4861<h5>Syntax:</h5>
4862<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004863 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004864</pre>
4865
4866<h5>Overview:</h5>
4867
4868<p>
4869The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4870the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004871href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004872useful for implementing language features like scoped automatic variable sized
4873arrays in C99.
4874</p>
4875
4876<h5>Semantics:</h5>
4877
4878<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004879See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004880</p>
4881
4882</div>
4883
4884
4885<!-- _______________________________________________________________________ -->
4886<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004887 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004888</div>
4889
4890<div class="doc_text">
4891
4892<h5>Syntax:</h5>
4893<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004894 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004895</pre>
4896
4897<h5>Overview:</h5>
4898
4899
4900<p>
4901The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004902a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4903no
4904effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004905characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004906</p>
4907
4908<h5>Arguments:</h5>
4909
4910<p>
4911<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4912determining if the fetch should be for a read (0) or write (1), and
4913<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004914locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004915<tt>locality</tt> arguments must be constant integers.
4916</p>
4917
4918<h5>Semantics:</h5>
4919
4920<p>
4921This intrinsic does not modify the behavior of the program. In particular,
4922prefetches cannot trap and do not produce a value. On targets that support this
4923intrinsic, the prefetch can provide hints to the processor cache for better
4924performance.
4925</p>
4926
4927</div>
4928
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004929<!-- _______________________________________________________________________ -->
4930<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004931 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004932</div>
4933
4934<div class="doc_text">
4935
4936<h5>Syntax:</h5>
4937<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004938 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004939</pre>
4940
4941<h5>Overview:</h5>
4942
4943
4944<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004945The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004946(PC) in a region of
4947code to simulators and other tools. The method is target specific, but it is
4948expected that the marker will use exported symbols to transmit the PC of the
4949marker.
4950The marker makes no guarantees that it will remain with any specific instruction
4951after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004952optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004953correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004954</p>
4955
4956<h5>Arguments:</h5>
4957
4958<p>
4959<tt>id</tt> is a numerical id identifying the marker.
4960</p>
4961
4962<h5>Semantics:</h5>
4963
4964<p>
4965This intrinsic does not modify the behavior of the program. Backends that do not
4966support this intrinisic may ignore it.
4967</p>
4968
4969</div>
4970
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004971<!-- _______________________________________________________________________ -->
4972<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004973 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004974</div>
4975
4976<div class="doc_text">
4977
4978<h5>Syntax:</h5>
4979<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004980 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004981</pre>
4982
4983<h5>Overview:</h5>
4984
4985
4986<p>
4987The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4988counter register (or similar low latency, high accuracy clocks) on those targets
4989that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4990As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4991should only be used for small timings.
4992</p>
4993
4994<h5>Semantics:</h5>
4995
4996<p>
4997When directly supported, reading the cycle counter should not modify any memory.
4998Implementations are allowed to either return a application specific value or a
4999system wide value. On backends without support, this is lowered to a constant 0.
5000</p>
5001
5002</div>
5003
Chris Lattner10610642004-02-14 04:08:35 +00005004<!-- ======================================================================= -->
5005<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005006 <a name="int_libc">Standard C Library Intrinsics</a>
5007</div>
5008
5009<div class="doc_text">
5010<p>
Chris Lattner10610642004-02-14 04:08:35 +00005011LLVM provides intrinsics for a few important standard C library functions.
5012These intrinsics allow source-language front-ends to pass information about the
5013alignment of the pointer arguments to the code generator, providing opportunity
5014for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005015</p>
5016
5017</div>
5018
5019<!-- _______________________________________________________________________ -->
5020<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005021 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005022</div>
5023
5024<div class="doc_text">
5025
5026<h5>Syntax:</h5>
5027<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005028 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005029 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005030 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005031 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005032</pre>
5033
5034<h5>Overview:</h5>
5035
5036<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005037The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005038location to the destination location.
5039</p>
5040
5041<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005042Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5043intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005044</p>
5045
5046<h5>Arguments:</h5>
5047
5048<p>
5049The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005050the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005051specifying the number of bytes to copy, and the fourth argument is the alignment
5052of the source and destination locations.
5053</p>
5054
Chris Lattner3301ced2004-02-12 21:18:15 +00005055<p>
5056If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005057the caller guarantees that both the source and destination pointers are aligned
5058to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005059</p>
5060
Chris Lattner33aec9e2004-02-12 17:01:32 +00005061<h5>Semantics:</h5>
5062
5063<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005064The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005065location to the destination location, which are not allowed to overlap. It
5066copies "len" bytes of memory over. If the argument is known to be aligned to
5067some boundary, this can be specified as the fourth argument, otherwise it should
5068be set to 0 or 1.
5069</p>
5070</div>
5071
5072
Chris Lattner0eb51b42004-02-12 18:10:10 +00005073<!-- _______________________________________________________________________ -->
5074<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005075 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005076</div>
5077
5078<div class="doc_text">
5079
5080<h5>Syntax:</h5>
5081<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005082 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005083 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005084 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005085 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005086</pre>
5087
5088<h5>Overview:</h5>
5089
5090<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005091The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5092location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005093'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005094</p>
5095
5096<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005097Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5098intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005099</p>
5100
5101<h5>Arguments:</h5>
5102
5103<p>
5104The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005105the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005106specifying the number of bytes to copy, and the fourth argument is the alignment
5107of the source and destination locations.
5108</p>
5109
Chris Lattner3301ced2004-02-12 21:18:15 +00005110<p>
5111If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005112the caller guarantees that the source and destination pointers are aligned to
5113that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005114</p>
5115
Chris Lattner0eb51b42004-02-12 18:10:10 +00005116<h5>Semantics:</h5>
5117
5118<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005119The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005120location to the destination location, which may overlap. It
5121copies "len" bytes of memory over. If the argument is known to be aligned to
5122some boundary, this can be specified as the fourth argument, otherwise it should
5123be set to 0 or 1.
5124</p>
5125</div>
5126
Chris Lattner8ff75902004-01-06 05:31:32 +00005127
Chris Lattner10610642004-02-14 04:08:35 +00005128<!-- _______________________________________________________________________ -->
5129<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005130 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005131</div>
5132
5133<div class="doc_text">
5134
5135<h5>Syntax:</h5>
5136<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005137 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005138 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005139 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005140 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005141</pre>
5142
5143<h5>Overview:</h5>
5144
5145<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005146The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005147byte value.
5148</p>
5149
5150<p>
5151Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5152does not return a value, and takes an extra alignment argument.
5153</p>
5154
5155<h5>Arguments:</h5>
5156
5157<p>
5158The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005159byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005160argument specifying the number of bytes to fill, and the fourth argument is the
5161known alignment of destination location.
5162</p>
5163
5164<p>
5165If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005166the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005167</p>
5168
5169<h5>Semantics:</h5>
5170
5171<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005172The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5173the
Chris Lattner10610642004-02-14 04:08:35 +00005174destination location. If the argument is known to be aligned to some boundary,
5175this can be specified as the fourth argument, otherwise it should be set to 0 or
51761.
5177</p>
5178</div>
5179
5180
Chris Lattner32006282004-06-11 02:28:03 +00005181<!-- _______________________________________________________________________ -->
5182<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005183 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005184</div>
5185
5186<div class="doc_text">
5187
5188<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005189<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005190floating point or vector of floating point type. Not all targets support all
5191types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005192<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005193 declare float @llvm.sqrt.f32(float %Val)
5194 declare double @llvm.sqrt.f64(double %Val)
5195 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5196 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5197 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005198</pre>
5199
5200<h5>Overview:</h5>
5201
5202<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005203The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005204returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005205<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005206negative numbers other than -0.0 (which allows for better optimization, because
5207there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5208defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005209</p>
5210
5211<h5>Arguments:</h5>
5212
5213<p>
5214The argument and return value are floating point numbers of the same type.
5215</p>
5216
5217<h5>Semantics:</h5>
5218
5219<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005220This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005221floating point number.
5222</p>
5223</div>
5224
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005225<!-- _______________________________________________________________________ -->
5226<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005227 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005228</div>
5229
5230<div class="doc_text">
5231
5232<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005233<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005234floating point or vector of floating point type. Not all targets support all
5235types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005236<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005237 declare float @llvm.powi.f32(float %Val, i32 %power)
5238 declare double @llvm.powi.f64(double %Val, i32 %power)
5239 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5240 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5241 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005242</pre>
5243
5244<h5>Overview:</h5>
5245
5246<p>
5247The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5248specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005249multiplications is not defined. When a vector of floating point type is
5250used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005251</p>
5252
5253<h5>Arguments:</h5>
5254
5255<p>
5256The second argument is an integer power, and the first is a value to raise to
5257that power.
5258</p>
5259
5260<h5>Semantics:</h5>
5261
5262<p>
5263This function returns the first value raised to the second power with an
5264unspecified sequence of rounding operations.</p>
5265</div>
5266
Dan Gohman91c284c2007-10-15 20:30:11 +00005267<!-- _______________________________________________________________________ -->
5268<div class="doc_subsubsection">
5269 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5270</div>
5271
5272<div class="doc_text">
5273
5274<h5>Syntax:</h5>
5275<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5276floating point or vector of floating point type. Not all targets support all
5277types however.
5278<pre>
5279 declare float @llvm.sin.f32(float %Val)
5280 declare double @llvm.sin.f64(double %Val)
5281 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5282 declare fp128 @llvm.sin.f128(fp128 %Val)
5283 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5284</pre>
5285
5286<h5>Overview:</h5>
5287
5288<p>
5289The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5290</p>
5291
5292<h5>Arguments:</h5>
5293
5294<p>
5295The argument and return value are floating point numbers of the same type.
5296</p>
5297
5298<h5>Semantics:</h5>
5299
5300<p>
5301This function returns the sine of the specified operand, returning the
5302same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005303conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005304</div>
5305
5306<!-- _______________________________________________________________________ -->
5307<div class="doc_subsubsection">
5308 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5309</div>
5310
5311<div class="doc_text">
5312
5313<h5>Syntax:</h5>
5314<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5315floating point or vector of floating point type. Not all targets support all
5316types however.
5317<pre>
5318 declare float @llvm.cos.f32(float %Val)
5319 declare double @llvm.cos.f64(double %Val)
5320 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5321 declare fp128 @llvm.cos.f128(fp128 %Val)
5322 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5323</pre>
5324
5325<h5>Overview:</h5>
5326
5327<p>
5328The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5329</p>
5330
5331<h5>Arguments:</h5>
5332
5333<p>
5334The argument and return value are floating point numbers of the same type.
5335</p>
5336
5337<h5>Semantics:</h5>
5338
5339<p>
5340This function returns the cosine of the specified operand, returning the
5341same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005342conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005343</div>
5344
5345<!-- _______________________________________________________________________ -->
5346<div class="doc_subsubsection">
5347 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5348</div>
5349
5350<div class="doc_text">
5351
5352<h5>Syntax:</h5>
5353<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5354floating point or vector of floating point type. Not all targets support all
5355types however.
5356<pre>
5357 declare float @llvm.pow.f32(float %Val, float %Power)
5358 declare double @llvm.pow.f64(double %Val, double %Power)
5359 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5360 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5361 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5362</pre>
5363
5364<h5>Overview:</h5>
5365
5366<p>
5367The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5368specified (positive or negative) power.
5369</p>
5370
5371<h5>Arguments:</h5>
5372
5373<p>
5374The second argument is a floating point power, and the first is a value to
5375raise to that power.
5376</p>
5377
5378<h5>Semantics:</h5>
5379
5380<p>
5381This function returns the first value raised to the second power,
5382returning the
5383same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005384conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005385</div>
5386
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005387
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005388<!-- ======================================================================= -->
5389<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005390 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005391</div>
5392
5393<div class="doc_text">
5394<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005395LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005396These allow efficient code generation for some algorithms.
5397</p>
5398
5399</div>
5400
5401<!-- _______________________________________________________________________ -->
5402<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005403 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005404</div>
5405
5406<div class="doc_text">
5407
5408<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005409<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005410type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005411<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005412 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5413 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5414 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005415</pre>
5416
5417<h5>Overview:</h5>
5418
5419<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005420The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005421values with an even number of bytes (positive multiple of 16 bits). These are
5422useful for performing operations on data that is not in the target's native
5423byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005424</p>
5425
5426<h5>Semantics:</h5>
5427
5428<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005429The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005430and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5431intrinsic returns an i32 value that has the four bytes of the input i32
5432swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005433i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5434<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005435additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005436</p>
5437
5438</div>
5439
5440<!-- _______________________________________________________________________ -->
5441<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005442 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005443</div>
5444
5445<div class="doc_text">
5446
5447<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005448<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5449width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005450<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005451 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5452 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005453 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005454 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5455 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005456</pre>
5457
5458<h5>Overview:</h5>
5459
5460<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005461The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5462value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005463</p>
5464
5465<h5>Arguments:</h5>
5466
5467<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005468The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005469integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005470</p>
5471
5472<h5>Semantics:</h5>
5473
5474<p>
5475The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5476</p>
5477</div>
5478
5479<!-- _______________________________________________________________________ -->
5480<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005481 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005482</div>
5483
5484<div class="doc_text">
5485
5486<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005487<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5488integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005489<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005490 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5491 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005492 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005493 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5494 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005495</pre>
5496
5497<h5>Overview:</h5>
5498
5499<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005500The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5501leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005502</p>
5503
5504<h5>Arguments:</h5>
5505
5506<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005507The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005508integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005509</p>
5510
5511<h5>Semantics:</h5>
5512
5513<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005514The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5515in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005516of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005517</p>
5518</div>
Chris Lattner32006282004-06-11 02:28:03 +00005519
5520
Chris Lattnereff29ab2005-05-15 19:39:26 +00005521
5522<!-- _______________________________________________________________________ -->
5523<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005524 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005525</div>
5526
5527<div class="doc_text">
5528
5529<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005530<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5531integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005532<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005533 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5534 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005535 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005536 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5537 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005538</pre>
5539
5540<h5>Overview:</h5>
5541
5542<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005543The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5544trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005545</p>
5546
5547<h5>Arguments:</h5>
5548
5549<p>
5550The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005551integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005552</p>
5553
5554<h5>Semantics:</h5>
5555
5556<p>
5557The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5558in a variable. If the src == 0 then the result is the size in bits of the type
5559of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5560</p>
5561</div>
5562
Reid Spencer497d93e2007-04-01 08:27:01 +00005563<!-- _______________________________________________________________________ -->
5564<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005565 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005566</div>
5567
5568<div class="doc_text">
5569
5570<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005571<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005572on any integer bit width.
5573<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005574 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5575 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005576</pre>
5577
5578<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005579<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005580range of bits from an integer value and returns them in the same bit width as
5581the original value.</p>
5582
5583<h5>Arguments:</h5>
5584<p>The first argument, <tt>%val</tt> and the result may be integer types of
5585any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005586arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005587
5588<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005589<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005590of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5591<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5592operates in forward mode.</p>
5593<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5594right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005595only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5596<ol>
5597 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5598 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5599 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5600 to determine the number of bits to retain.</li>
5601 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5602 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5603</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005604<p>In reverse mode, a similar computation is made except that the bits are
5605returned in the reverse order. So, for example, if <tt>X</tt> has the value
5606<tt>i16 0x0ACF (101011001111)</tt> and we apply
5607<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5608<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005609</div>
5610
Reid Spencerf86037f2007-04-11 23:23:49 +00005611<div class="doc_subsubsection">
5612 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5613</div>
5614
5615<div class="doc_text">
5616
5617<h5>Syntax:</h5>
5618<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5619on any integer bit width.
5620<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005621 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5622 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005623</pre>
5624
5625<h5>Overview:</h5>
5626<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5627of bits in an integer value with another integer value. It returns the integer
5628with the replaced bits.</p>
5629
5630<h5>Arguments:</h5>
5631<p>The first argument, <tt>%val</tt> and the result may be integer types of
5632any bit width but they must have the same bit width. <tt>%val</tt> is the value
5633whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5634integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5635type since they specify only a bit index.</p>
5636
5637<h5>Semantics:</h5>
5638<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5639of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5640<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5641operates in forward mode.</p>
5642<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5643truncating it down to the size of the replacement area or zero extending it
5644up to that size.</p>
5645<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5646are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5647in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5648to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005649<p>In reverse mode, a similar computation is made except that the bits are
5650reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5651<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005652<h5>Examples:</h5>
5653<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005654 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005655 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5656 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5657 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005658 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005659</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005660</div>
5661
Chris Lattner8ff75902004-01-06 05:31:32 +00005662<!-- ======================================================================= -->
5663<div class="doc_subsection">
5664 <a name="int_debugger">Debugger Intrinsics</a>
5665</div>
5666
5667<div class="doc_text">
5668<p>
5669The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5670are described in the <a
5671href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5672Debugging</a> document.
5673</p>
5674</div>
5675
5676
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005677<!-- ======================================================================= -->
5678<div class="doc_subsection">
5679 <a name="int_eh">Exception Handling Intrinsics</a>
5680</div>
5681
5682<div class="doc_text">
5683<p> The LLVM exception handling intrinsics (which all start with
5684<tt>llvm.eh.</tt> prefix), are described in the <a
5685href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5686Handling</a> document. </p>
5687</div>
5688
Tanya Lattner6d806e92007-06-15 20:50:54 +00005689<!-- ======================================================================= -->
5690<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005691 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005692</div>
5693
5694<div class="doc_text">
5695<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005696 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005697 the <tt>nest</tt> attribute, from a function. The result is a callable
5698 function pointer lacking the nest parameter - the caller does not need
5699 to provide a value for it. Instead, the value to use is stored in
5700 advance in a "trampoline", a block of memory usually allocated
5701 on the stack, which also contains code to splice the nest value into the
5702 argument list. This is used to implement the GCC nested function address
5703 extension.
5704</p>
5705<p>
5706 For example, if the function is
5707 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005708 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005709<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005710 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5711 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5712 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5713 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005714</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005715 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5716 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005717</div>
5718
5719<!-- _______________________________________________________________________ -->
5720<div class="doc_subsubsection">
5721 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5722</div>
5723<div class="doc_text">
5724<h5>Syntax:</h5>
5725<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005726declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005727</pre>
5728<h5>Overview:</h5>
5729<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005730 This fills the memory pointed to by <tt>tramp</tt> with code
5731 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005732</p>
5733<h5>Arguments:</h5>
5734<p>
5735 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5736 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5737 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005738 intrinsic. Note that the size and the alignment are target-specific - LLVM
5739 currently provides no portable way of determining them, so a front-end that
5740 generates this intrinsic needs to have some target-specific knowledge.
5741 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005742</p>
5743<h5>Semantics:</h5>
5744<p>
5745 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005746 dependent code, turning it into a function. A pointer to this function is
5747 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005748 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005749 before being called. The new function's signature is the same as that of
5750 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5751 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5752 of pointer type. Calling the new function is equivalent to calling
5753 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5754 missing <tt>nest</tt> argument. If, after calling
5755 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5756 modified, then the effect of any later call to the returned function pointer is
5757 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005758</p>
5759</div>
5760
5761<!-- ======================================================================= -->
5762<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005763 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5764</div>
5765
5766<div class="doc_text">
5767<p>
5768 These intrinsic functions expand the "universal IR" of LLVM to represent
5769 hardware constructs for atomic operations and memory synchronization. This
5770 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005771 is aimed at a low enough level to allow any programming models or APIs
5772 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005773 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5774 hardware behavior. Just as hardware provides a "universal IR" for source
5775 languages, it also provides a starting point for developing a "universal"
5776 atomic operation and synchronization IR.
5777</p>
5778<p>
5779 These do <em>not</em> form an API such as high-level threading libraries,
5780 software transaction memory systems, atomic primitives, and intrinsic
5781 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5782 application libraries. The hardware interface provided by LLVM should allow
5783 a clean implementation of all of these APIs and parallel programming models.
5784 No one model or paradigm should be selected above others unless the hardware
5785 itself ubiquitously does so.
5786
5787</p>
5788</div>
5789
5790<!-- _______________________________________________________________________ -->
5791<div class="doc_subsubsection">
5792 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5793</div>
5794<div class="doc_text">
5795<h5>Syntax:</h5>
5796<pre>
5797declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5798i1 &lt;device&gt; )
5799
5800</pre>
5801<h5>Overview:</h5>
5802<p>
5803 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5804 specific pairs of memory access types.
5805</p>
5806<h5>Arguments:</h5>
5807<p>
5808 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5809 The first four arguments enables a specific barrier as listed below. The fith
5810 argument specifies that the barrier applies to io or device or uncached memory.
5811
5812</p>
5813 <ul>
5814 <li><tt>ll</tt>: load-load barrier</li>
5815 <li><tt>ls</tt>: load-store barrier</li>
5816 <li><tt>sl</tt>: store-load barrier</li>
5817 <li><tt>ss</tt>: store-store barrier</li>
5818 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5819 </ul>
5820<h5>Semantics:</h5>
5821<p>
5822 This intrinsic causes the system to enforce some ordering constraints upon
5823 the loads and stores of the program. This barrier does not indicate
5824 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5825 which they occur. For any of the specified pairs of load and store operations
5826 (f.ex. load-load, or store-load), all of the first operations preceding the
5827 barrier will complete before any of the second operations succeeding the
5828 barrier begin. Specifically the semantics for each pairing is as follows:
5829</p>
5830 <ul>
5831 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5832 after the barrier begins.</li>
5833
5834 <li><tt>ls</tt>: All loads before the barrier must complete before any
5835 store after the barrier begins.</li>
5836 <li><tt>ss</tt>: All stores before the barrier must complete before any
5837 store after the barrier begins.</li>
5838 <li><tt>sl</tt>: All stores before the barrier must complete before any
5839 load after the barrier begins.</li>
5840 </ul>
5841<p>
5842 These semantics are applied with a logical "and" behavior when more than one
5843 is enabled in a single memory barrier intrinsic.
5844</p>
5845<p>
5846 Backends may implement stronger barriers than those requested when they do not
5847 support as fine grained a barrier as requested. Some architectures do not
5848 need all types of barriers and on such architectures, these become noops.
5849</p>
5850<h5>Example:</h5>
5851<pre>
5852%ptr = malloc i32
5853 store i32 4, %ptr
5854
5855%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5856 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5857 <i>; guarantee the above finishes</i>
5858 store i32 8, %ptr <i>; before this begins</i>
5859</pre>
5860</div>
5861
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005862<!-- _______________________________________________________________________ -->
5863<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005864 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005865</div>
5866<div class="doc_text">
5867<h5>Syntax:</h5>
5868<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005869 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5870 any integer bit width and for different address spaces. Not all targets
5871 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005872
5873<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005874declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5875declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5876declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5877declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005878
5879</pre>
5880<h5>Overview:</h5>
5881<p>
5882 This loads a value in memory and compares it to a given value. If they are
5883 equal, it stores a new value into the memory.
5884</p>
5885<h5>Arguments:</h5>
5886<p>
Mon P Wang28873102008-06-25 08:15:39 +00005887 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005888 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5889 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5890 this integer type. While any bit width integer may be used, targets may only
5891 lower representations they support in hardware.
5892
5893</p>
5894<h5>Semantics:</h5>
5895<p>
5896 This entire intrinsic must be executed atomically. It first loads the value
5897 in memory pointed to by <tt>ptr</tt> and compares it with the value
5898 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5899 loaded value is yielded in all cases. This provides the equivalent of an
5900 atomic compare-and-swap operation within the SSA framework.
5901</p>
5902<h5>Examples:</h5>
5903
5904<pre>
5905%ptr = malloc i32
5906 store i32 4, %ptr
5907
5908%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005909%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005910 <i>; yields {i32}:result1 = 4</i>
5911%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5912%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5913
5914%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005915%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005916 <i>; yields {i32}:result2 = 8</i>
5917%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5918
5919%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5920</pre>
5921</div>
5922
5923<!-- _______________________________________________________________________ -->
5924<div class="doc_subsubsection">
5925 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5926</div>
5927<div class="doc_text">
5928<h5>Syntax:</h5>
5929
5930<p>
5931 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5932 integer bit width. Not all targets support all bit widths however.</p>
5933<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005934declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5935declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5936declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5937declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005938
5939</pre>
5940<h5>Overview:</h5>
5941<p>
5942 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5943 the value from memory. It then stores the value in <tt>val</tt> in the memory
5944 at <tt>ptr</tt>.
5945</p>
5946<h5>Arguments:</h5>
5947
5948<p>
Mon P Wang28873102008-06-25 08:15:39 +00005949 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005950 <tt>val</tt> argument and the result must be integers of the same bit width.
5951 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5952 integer type. The targets may only lower integer representations they
5953 support.
5954</p>
5955<h5>Semantics:</h5>
5956<p>
5957 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5958 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5959 equivalent of an atomic swap operation within the SSA framework.
5960
5961</p>
5962<h5>Examples:</h5>
5963<pre>
5964%ptr = malloc i32
5965 store i32 4, %ptr
5966
5967%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005968%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005969 <i>; yields {i32}:result1 = 4</i>
5970%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5971%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5972
5973%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005974%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005975 <i>; yields {i32}:result2 = 8</i>
5976
5977%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5978%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5979</pre>
5980</div>
5981
5982<!-- _______________________________________________________________________ -->
5983<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005984 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005985
5986</div>
5987<div class="doc_text">
5988<h5>Syntax:</h5>
5989<p>
Mon P Wang28873102008-06-25 08:15:39 +00005990 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005991 integer bit width. Not all targets support all bit widths however.</p>
5992<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005993declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5994declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5995declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5996declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005997
5998</pre>
5999<h5>Overview:</h5>
6000<p>
6001 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6002 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6003</p>
6004<h5>Arguments:</h5>
6005<p>
6006
6007 The intrinsic takes two arguments, the first a pointer to an integer value
6008 and the second an integer value. The result is also an integer value. These
6009 integer types can have any bit width, but they must all have the same bit
6010 width. The targets may only lower integer representations they support.
6011</p>
6012<h5>Semantics:</h5>
6013<p>
6014 This intrinsic does a series of operations atomically. It first loads the
6015 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6016 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6017</p>
6018
6019<h5>Examples:</h5>
6020<pre>
6021%ptr = malloc i32
6022 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006023%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006024 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006025%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006026 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006027%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006028 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006029%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006030</pre>
6031</div>
6032
Mon P Wang28873102008-06-25 08:15:39 +00006033<!-- _______________________________________________________________________ -->
6034<div class="doc_subsubsection">
6035 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6036
6037</div>
6038<div class="doc_text">
6039<h5>Syntax:</h5>
6040<p>
6041 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006042 any integer bit width and for different address spaces. Not all targets
6043 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006044<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006045declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6046declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6047declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6048declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006049
6050</pre>
6051<h5>Overview:</h5>
6052<p>
6053 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6054 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6055</p>
6056<h5>Arguments:</h5>
6057<p>
6058
6059 The intrinsic takes two arguments, the first a pointer to an integer value
6060 and the second an integer value. The result is also an integer value. These
6061 integer types can have any bit width, but they must all have the same bit
6062 width. The targets may only lower integer representations they support.
6063</p>
6064<h5>Semantics:</h5>
6065<p>
6066 This intrinsic does a series of operations atomically. It first loads the
6067 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6068 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6069</p>
6070
6071<h5>Examples:</h5>
6072<pre>
6073%ptr = malloc i32
6074 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006075%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006076 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006077%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006078 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006079%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006080 <i>; yields {i32}:result3 = 2</i>
6081%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6082</pre>
6083</div>
6084
6085<!-- _______________________________________________________________________ -->
6086<div class="doc_subsubsection">
6087 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6088 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6089 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6090 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6091
6092</div>
6093<div class="doc_text">
6094<h5>Syntax:</h5>
6095<p>
6096 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6097 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006098 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6099 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006100<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006101declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6102declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6103declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6104declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006105
6106</pre>
6107
6108<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006109declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6110declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6111declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6112declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006113
6114</pre>
6115
6116<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006117declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6118declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6119declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6120declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006121
6122</pre>
6123
6124<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006125declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6126declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6127declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6128declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006129
6130</pre>
6131<h5>Overview:</h5>
6132<p>
6133 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6134 the value stored in memory at <tt>ptr</tt>. It yields the original value
6135 at <tt>ptr</tt>.
6136</p>
6137<h5>Arguments:</h5>
6138<p>
6139
6140 These intrinsics take two arguments, the first a pointer to an integer value
6141 and the second an integer value. The result is also an integer value. These
6142 integer types can have any bit width, but they must all have the same bit
6143 width. The targets may only lower integer representations they support.
6144</p>
6145<h5>Semantics:</h5>
6146<p>
6147 These intrinsics does a series of operations atomically. They first load the
6148 value stored at <tt>ptr</tt>. They then do the bitwise operation
6149 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6150 value stored at <tt>ptr</tt>.
6151</p>
6152
6153<h5>Examples:</h5>
6154<pre>
6155%ptr = malloc i32
6156 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006157%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006158 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006159%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006160 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006161%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006162 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006163%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006164 <i>; yields {i32}:result3 = FF</i>
6165%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6166</pre>
6167</div>
6168
6169
6170<!-- _______________________________________________________________________ -->
6171<div class="doc_subsubsection">
6172 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6173 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6174 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6175 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6176
6177</div>
6178<div class="doc_text">
6179<h5>Syntax:</h5>
6180<p>
6181 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6182 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006183 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6184 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006185 support all bit widths however.</p>
6186<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006187declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6188declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6189declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6190declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006191
6192</pre>
6193
6194<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006195declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6196declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6197declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6198declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006199
6200</pre>
6201
6202<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006203declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6204declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6205declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6206declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006207
6208</pre>
6209
6210<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006211declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6212declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6213declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6214declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006215
6216</pre>
6217<h5>Overview:</h5>
6218<p>
6219 These intrinsics takes the signed or unsigned minimum or maximum of
6220 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6221 original value at <tt>ptr</tt>.
6222</p>
6223<h5>Arguments:</h5>
6224<p>
6225
6226 These intrinsics take two arguments, the first a pointer to an integer value
6227 and the second an integer value. The result is also an integer value. These
6228 integer types can have any bit width, but they must all have the same bit
6229 width. The targets may only lower integer representations they support.
6230</p>
6231<h5>Semantics:</h5>
6232<p>
6233 These intrinsics does a series of operations atomically. They first load the
6234 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6235 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6236 the original value stored at <tt>ptr</tt>.
6237</p>
6238
6239<h5>Examples:</h5>
6240<pre>
6241%ptr = malloc i32
6242 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006243%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006244 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006245%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006246 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006247%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006248 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006249%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006250 <i>; yields {i32}:result3 = 8</i>
6251%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6252</pre>
6253</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006254
6255<!-- ======================================================================= -->
6256<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006257 <a name="int_general">General Intrinsics</a>
6258</div>
6259
6260<div class="doc_text">
6261<p> This class of intrinsics is designed to be generic and has
6262no specific purpose. </p>
6263</div>
6264
6265<!-- _______________________________________________________________________ -->
6266<div class="doc_subsubsection">
6267 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6268</div>
6269
6270<div class="doc_text">
6271
6272<h5>Syntax:</h5>
6273<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006274 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006275</pre>
6276
6277<h5>Overview:</h5>
6278
6279<p>
6280The '<tt>llvm.var.annotation</tt>' intrinsic
6281</p>
6282
6283<h5>Arguments:</h5>
6284
6285<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006286The first argument is a pointer to a value, the second is a pointer to a
6287global string, the third is a pointer to a global string which is the source
6288file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006289</p>
6290
6291<h5>Semantics:</h5>
6292
6293<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006294This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006295This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006296annotations. These have no other defined use, they are ignored by code
6297generation and optimization.
6298</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006299</div>
6300
Tanya Lattnerb6367882007-09-21 22:59:12 +00006301<!-- _______________________________________________________________________ -->
6302<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006303 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006304</div>
6305
6306<div class="doc_text">
6307
6308<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006309<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6310any integer bit width.
6311</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006312<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006313 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6314 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6315 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6316 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6317 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006318</pre>
6319
6320<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006321
6322<p>
6323The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006324</p>
6325
6326<h5>Arguments:</h5>
6327
6328<p>
6329The first argument is an integer value (result of some expression),
6330the second is a pointer to a global string, the third is a pointer to a global
6331string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006332It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006333</p>
6334
6335<h5>Semantics:</h5>
6336
6337<p>
6338This intrinsic allows annotations to be put on arbitrary expressions
6339with arbitrary strings. This can be useful for special purpose optimizations
6340that want to look for these annotations. These have no other defined use, they
6341are ignored by code generation and optimization.
6342</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006343
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006344<!-- _______________________________________________________________________ -->
6345<div class="doc_subsubsection">
6346 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6347</div>
6348
6349<div class="doc_text">
6350
6351<h5>Syntax:</h5>
6352<pre>
6353 declare void @llvm.trap()
6354</pre>
6355
6356<h5>Overview:</h5>
6357
6358<p>
6359The '<tt>llvm.trap</tt>' intrinsic
6360</p>
6361
6362<h5>Arguments:</h5>
6363
6364<p>
6365None
6366</p>
6367
6368<h5>Semantics:</h5>
6369
6370<p>
6371This intrinsics is lowered to the target dependent trap instruction. If the
6372target does not have a trap instruction, this intrinsic will be lowered to the
6373call of the abort() function.
6374</p>
6375</div>
6376
Chris Lattner00950542001-06-06 20:29:01 +00006377<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006378<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006379<address>
6380 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6381 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6382 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006383 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006384
6385 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006386 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006387 Last modified: $Date$
6388</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006389
Misha Brukman9d0919f2003-11-08 01:05:38 +00006390</body>
6391</html>