blob: 69541247d4728c152aa89ce8385fab7984647e45 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Filipe Cabecinhas0da99372016-04-29 15:22:48 +0000114// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
Benjamin Kramer214935e2012-10-26 17:31:32 +0000115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
Wei Mia49559b2016-02-04 01:27:38 +0000118static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
Jeroen Ketemae48e3932016-04-12 23:21:46 +0000120 cl::desc("Verify no dangling value in ScalarEvolution's "
Wei Mia49559b2016-02-04 01:27:38 +0000121 "ExprValueMap (slow)"));
Benjamin Kramer214935e2012-10-26 17:31:32 +0000122
Chris Lattnerd934c702004-04-02 20:23:17 +0000123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Davide Italiano2071f4c2015-10-25 19:55:24 +0000131LLVM_DUMP_METHOD
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136
Dan Gohman534749b2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000138 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000139 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000169 if (AR->hasNoUnsignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000170 OS << "nuw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000171 if (AR->hasNoSignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000172 OS << "nsw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000173 if (AR->hasNoSelfWrap() &&
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000185 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000196 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
Sanjoy Das76c48e02016-02-04 18:21:54 +0000203 if (NAry->hasNoUnsignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000204 OS << "<nuw>";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000205 if (NAry->hasNoSignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000206 OS << "<nsw>";
207 }
Dan Gohman534749b2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000226
Chris Lattner229907c2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000231 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000232 OS << ")";
233 return;
234 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000235
Dan Gohman534749b2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000237 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000243 }
244 llvm_unreachable("Unknown SCEV kind!");
245}
246
Chris Lattner229907c2011-07-18 04:54:35 +0000247Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000248 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000268 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000270}
271
Dan Gohmanbe928e32008-06-18 16:23:07 +0000272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
Chris Lattnerd934c702004-04-02 20:23:17 +0000283
Dan Gohman18a96bb2009-06-24 00:30:26 +0000284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
Andrew Trick881a7762012-01-07 00:27:31 +0000290/// isNonConstantNegative - Return true if the specified scev is negated, but
291/// not a constant.
292bool SCEV::isNonConstantNegative() const {
293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294 if (!Mul) return false;
295
296 // If there is a constant factor, it will be first.
297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298 if (!SC) return false;
299
300 // Return true if the value is negative, this matches things like (-42 * V).
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000301 return SC->getAPInt().isNegative();
Andrew Trick881a7762012-01-07 00:27:31 +0000302}
303
Owen Anderson04052ec2009-06-22 21:57:23 +0000304SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000306
Chris Lattnerd934c702004-04-02 20:23:17 +0000307bool SCEVCouldNotCompute::classof(const SCEV *S) {
308 return S->getSCEVType() == scCouldNotCompute;
309}
310
Dan Gohmanaf752342009-07-07 17:06:11 +0000311const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 FoldingSetNodeID ID;
313 ID.AddInteger(scConstant);
314 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000315 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000318 UniqueSCEVs.InsertNode(S, IP);
319 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000320}
Chris Lattnerd934c702004-04-02 20:23:17 +0000321
Nick Lewycky31eaca52014-01-27 10:04:03 +0000322const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000323 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000324}
325
Dan Gohmanaf752342009-07-07 17:06:11 +0000326const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000327ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000329 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000330}
331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000335
Dan Gohman24ceda82010-06-18 19:54:20 +0000336SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000337 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000338 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000341 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342}
Chris Lattnerd934c702004-04-02 20:23:17 +0000343
Dan Gohman24ceda82010-06-18 19:54:20 +0000344SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000345 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000346 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000349 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350}
351
Dan Gohman24ceda82010-06-18 19:54:20 +0000352SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000353 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000354 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000357 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358}
359
Dan Gohman7cac9572010-08-02 23:49:30 +0000360void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000361 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000362 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000363
364 // Remove this SCEVUnknown from the uniquing map.
365 SE->UniqueSCEVs.RemoveNode(this);
366
367 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000368 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000369}
370
371void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000372 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000373 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374
375 // Remove this SCEVUnknown from the uniquing map.
376 SE->UniqueSCEVs.RemoveNode(this);
377
378 // Update this SCEVUnknown to point to the new value. This is needed
379 // because there may still be outstanding SCEVs which still point to
380 // this SCEVUnknown.
381 setValPtr(New);
382}
383
Chris Lattner229907c2011-07-18 04:54:35 +0000384bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue() &&
390 CE->getNumOperands() == 2)
391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392 if (CI->isOne()) {
393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394 ->getElementType();
395 return true;
396 }
Dan Gohmancf913832010-01-28 02:15:55 +0000397
398 return false;
399}
400
Chris Lattner229907c2011-07-18 04:54:35 +0000401bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000403 if (VCE->getOpcode() == Instruction::PtrToInt)
404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (CE->getOpcode() == Instruction::GetElementPtr &&
406 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000409 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (!STy->isPacked() &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(1)->isNullValue()) {
413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414 if (CI->isOne() &&
415 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000416 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000417 AllocTy = STy->getElementType(1);
418 return true;
419 }
420 }
421 }
Dan Gohmancf913832010-01-28 02:15:55 +0000422
423 return false;
424}
425
Chris Lattner229907c2011-07-18 04:54:35 +0000426bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000428 if (VCE->getOpcode() == Instruction::PtrToInt)
429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430 if (CE->getOpcode() == Instruction::GetElementPtr &&
431 CE->getNumOperands() == 3 &&
432 CE->getOperand(0)->isNullValue() &&
433 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000434 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436 // Ignore vector types here so that ScalarEvolutionExpander doesn't
437 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000438 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000439 CTy = Ty;
440 FieldNo = CE->getOperand(2);
441 return true;
442 }
443 }
444
445 return false;
446}
447
Chris Lattnereb3e8402004-06-20 06:23:15 +0000448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
Sanjoy Das7881abd2015-12-08 04:32:51 +0000453/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454/// than the complexity of the RHS. This comparator is used to canonicalize
455/// expressions.
456class SCEVComplexityCompare {
457 const LoopInfo *const LI;
458public:
459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000460
Sanjoy Das7881abd2015-12-08 04:32:51 +0000461 // Return true or false if LHS is less than, or at least RHS, respectively.
462 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463 return compare(LHS, RHS) < 0;
464 }
Dan Gohman27065672010-08-27 15:26:01 +0000465
Sanjoy Das7881abd2015-12-08 04:32:51 +0000466 // Return negative, zero, or positive, if LHS is less than, equal to, or
467 // greater than RHS, respectively. A three-way result allows recursive
468 // comparisons to be more efficient.
469 int compare(const SCEV *LHS, const SCEV *RHS) const {
470 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471 if (LHS == RHS)
472 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473
Sanjoy Das7881abd2015-12-08 04:32:51 +0000474 // Primarily, sort the SCEVs by their getSCEVType().
475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476 if (LType != RType)
477 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000478
Sanjoy Das7881abd2015-12-08 04:32:51 +0000479 // Aside from the getSCEVType() ordering, the particular ordering
480 // isn't very important except that it's beneficial to be consistent,
481 // so that (a + b) and (b + a) don't end up as different expressions.
482 switch (static_cast<SCEVTypes>(LType)) {
483 case scUnknown: {
484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000486
Sanjoy Das7881abd2015-12-08 04:32:51 +0000487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488 // not as complete as it could be.
489 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000490
Sanjoy Das7881abd2015-12-08 04:32:51 +0000491 // Order pointer values after integer values. This helps SCEVExpander
492 // form GEPs.
493 bool LIsPointer = LV->getType()->isPointerTy(),
494 RIsPointer = RV->getType()->isPointerTy();
495 if (LIsPointer != RIsPointer)
496 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000497
Sanjoy Das7881abd2015-12-08 04:32:51 +0000498 // Compare getValueID values.
499 unsigned LID = LV->getValueID(),
500 RID = RV->getValueID();
501 if (LID != RID)
502 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000503
Sanjoy Das7881abd2015-12-08 04:32:51 +0000504 // Sort arguments by their position.
505 if (const Argument *LA = dyn_cast<Argument>(LV)) {
506 const Argument *RA = cast<Argument>(RV);
507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000509 }
510
Sanjoy Das7881abd2015-12-08 04:32:51 +0000511 // For instructions, compare their loop depth, and their operand
512 // count. This is pretty loose.
513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000515
Sanjoy Das7881abd2015-12-08 04:32:51 +0000516 // Compare loop depths.
517 const BasicBlock *LParent = LInst->getParent(),
518 *RParent = RInst->getParent();
519 if (LParent != RParent) {
520 unsigned LDepth = LI->getLoopDepth(LParent),
521 RDepth = LI->getLoopDepth(RParent);
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000523 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000524 }
Dan Gohman27065672010-08-27 15:26:01 +0000525
Sanjoy Das7881abd2015-12-08 04:32:51 +0000526 // Compare the number of operands.
527 unsigned LNumOps = LInst->getNumOperands(),
528 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000529 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000530 }
531
Sanjoy Das7881abd2015-12-08 04:32:51 +0000532 return 0;
533 }
Dan Gohman27065672010-08-27 15:26:01 +0000534
Sanjoy Das7881abd2015-12-08 04:32:51 +0000535 case scConstant: {
536 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538
539 // Compare constant values.
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000540 const APInt &LA = LC->getAPInt();
541 const APInt &RA = RC->getAPInt();
Sanjoy Das7881abd2015-12-08 04:32:51 +0000542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543 if (LBitWidth != RBitWidth)
544 return (int)LBitWidth - (int)RBitWidth;
545 return LA.ult(RA) ? -1 : 1;
546 }
547
548 case scAddRecExpr: {
549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551
552 // Compare addrec loop depths.
553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554 if (LLoop != RLoop) {
555 unsigned LDepth = LLoop->getLoopDepth(),
556 RDepth = RLoop->getLoopDepth();
557 if (LDepth != RDepth)
558 return (int)LDepth - (int)RDepth;
559 }
560
561 // Addrec complexity grows with operand count.
562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563 if (LNumOps != RNumOps)
564 return (int)LNumOps - (int)RNumOps;
565
566 // Lexicographically compare.
567 for (unsigned i = 0; i != LNumOps; ++i) {
568 long X = compare(LA->getOperand(i), RA->getOperand(i));
Dan Gohman27065672010-08-27 15:26:01 +0000569 if (X != 0)
570 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000571 }
572
Sanjoy Das7881abd2015-12-08 04:32:51 +0000573 return 0;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000574 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000575
576 case scAddExpr:
577 case scMulExpr:
578 case scSMaxExpr:
579 case scUMaxExpr: {
580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582
583 // Lexicographically compare n-ary expressions.
584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585 if (LNumOps != RNumOps)
586 return (int)LNumOps - (int)RNumOps;
587
588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
594 }
595 return (int)LNumOps - (int)RNumOps;
596 }
597
598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
607 }
608
609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
619 case scCouldNotCompute:
620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621 }
622 llvm_unreachable("Unknown SCEV kind!");
623 }
624};
625} // end anonymous namespace
Chris Lattnereb3e8402004-06-20 06:23:15 +0000626
627/// GroupByComplexity - Given a list of SCEV objects, order them by their
628/// complexity, and group objects of the same complexity together by value.
629/// When this routine is finished, we know that any duplicates in the vector are
630/// consecutive and that complexity is monotonically increasing.
631///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000632/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000633/// results from this routine. In other words, we don't want the results of
634/// this to depend on where the addresses of various SCEV objects happened to
635/// land in memory.
636///
Dan Gohmanaf752342009-07-07 17:06:11 +0000637static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000638 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000639 if (Ops.size() < 2) return; // Noop
640 if (Ops.size() == 2) {
641 // This is the common case, which also happens to be trivially simple.
642 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644 if (SCEVComplexityCompare(LI)(RHS, LHS))
645 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000646 return;
647 }
648
Dan Gohman24ceda82010-06-18 19:54:20 +0000649 // Do the rough sort by complexity.
650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651
652 // Now that we are sorted by complexity, group elements of the same
653 // complexity. Note that this is, at worst, N^2, but the vector is likely to
654 // be extremely short in practice. Note that we take this approach because we
655 // do not want to depend on the addresses of the objects we are grouping.
656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657 const SCEV *S = Ops[i];
658 unsigned Complexity = S->getSCEVType();
659
660 // If there are any objects of the same complexity and same value as this
661 // one, group them.
662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663 if (Ops[j] == S) { // Found a duplicate.
664 // Move it to immediately after i'th element.
665 std::swap(Ops[i+1], Ops[j]);
666 ++i; // no need to rescan it.
667 if (i == e-2) return; // Done!
668 }
669 }
670 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000671}
672
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000673// Returns the size of the SCEV S.
674static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000675 struct FindSCEVSize {
676 int Size;
677 FindSCEVSize() : Size(0) {}
678
679 bool follow(const SCEV *S) {
680 ++Size;
681 // Keep looking at all operands of S.
682 return true;
683 }
684 bool isDone() const {
685 return false;
686 }
687 };
688
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000689 FindSCEVSize F;
690 SCEVTraversal<FindSCEVSize> ST(F);
691 ST.visitAll(S);
692 return F.Size;
693}
694
695namespace {
696
David Majnemer4e879362014-12-14 09:12:33 +0000697struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000698public:
699 // Computes the Quotient and Remainder of the division of Numerator by
700 // Denominator.
701 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702 const SCEV *Denominator, const SCEV **Quotient,
703 const SCEV **Remainder) {
704 assert(Numerator && Denominator && "Uninitialized SCEV");
705
David Majnemer4e879362014-12-14 09:12:33 +0000706 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000707
708 // Check for the trivial case here to avoid having to check for it in the
709 // rest of the code.
710 if (Numerator == Denominator) {
711 *Quotient = D.One;
712 *Remainder = D.Zero;
713 return;
714 }
715
716 if (Numerator->isZero()) {
717 *Quotient = D.Zero;
718 *Remainder = D.Zero;
719 return;
720 }
721
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000722 // A simple case when N/1. The quotient is N.
723 if (Denominator->isOne()) {
724 *Quotient = Numerator;
725 *Remainder = D.Zero;
726 return;
727 }
728
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000767 APInt NumeratorVal = Numerator->getAPInt();
768 APInt DenominatorVal = D->getAPInt();
David Majnemer4e879362014-12-14 09:12:33 +0000769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000788 if (!Numerator->isAffine())
789 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000792 // Bail out if the types do not match.
793 Type *Ty = Denominator->getType();
794 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000795 Ty != StepQ->getType() || Ty != StepR->getType())
796 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800 Numerator->getNoWrapFlags());
801 }
802
803 void visitAddExpr(const SCEVAddExpr *Numerator) {
804 SmallVector<const SCEV *, 2> Qs, Rs;
805 Type *Ty = Denominator->getType();
806
807 for (const SCEV *Op : Numerator->operands()) {
808 const SCEV *Q, *R;
809 divide(SE, Op, Denominator, &Q, &R);
810
811 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000812 if (Ty != Q->getType() || Ty != R->getType())
813 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000814
815 Qs.push_back(Q);
816 Rs.push_back(R);
817 }
818
819 if (Qs.size() == 1) {
820 Quotient = Qs[0];
821 Remainder = Rs[0];
822 return;
823 }
824
825 Quotient = SE.getAddExpr(Qs);
826 Remainder = SE.getAddExpr(Rs);
827 }
828
829 void visitMulExpr(const SCEVMulExpr *Numerator) {
830 SmallVector<const SCEV *, 2> Qs;
831 Type *Ty = Denominator->getType();
832
833 bool FoundDenominatorTerm = false;
834 for (const SCEV *Op : Numerator->operands()) {
835 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000836 if (Ty != Op->getType())
837 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000853 if (Ty != Q->getType())
854 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000855
856 FoundDenominatorTerm = true;
857 Qs.push_back(Q);
858 }
859
860 if (FoundDenominatorTerm) {
861 Remainder = Zero;
862 if (Qs.size() == 1)
863 Quotient = Qs[0];
864 else
865 Quotient = SE.getMulExpr(Qs);
866 return;
867 }
868
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000869 if (!isa<SCEVUnknown>(Denominator))
870 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000871
872 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873 ValueToValueMap RewriteMap;
874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875 cast<SCEVConstant>(Zero)->getValue();
876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877
878 if (Remainder->isZero()) {
879 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(One)->getValue();
882 Quotient =
883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884 return;
885 }
886
887 // Quotient is (Numerator - Remainder) divided by Denominator.
888 const SCEV *Q, *R;
889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000890 // This SCEV does not seem to simplify: fail the division here.
891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000893 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000894 if (R != Zero)
895 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000896 Quotient = Q;
897 }
898
899private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901 const SCEV *Denominator)
902 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000903 Zero = SE.getZero(Denominator->getType());
904 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000905
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000906 // We generally do not know how to divide Expr by Denominator. We
907 // initialize the division to a "cannot divide" state to simplify the rest
908 // of the code.
909 cannotDivide(Numerator);
910 }
911
912 // Convenience function for giving up on the division. We set the quotient to
913 // be equal to zero and the remainder to be equal to the numerator.
914 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000915 Quotient = Zero;
916 Remainder = Numerator;
917 }
918
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000919 ScalarEvolution &SE;
920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000921};
922
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000923}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000924
Chris Lattnerd934c702004-04-02 20:23:17 +0000925//===----------------------------------------------------------------------===//
926// Simple SCEV method implementations
927//===----------------------------------------------------------------------===//
928
Eli Friedman61f67622008-08-04 23:49:06 +0000929/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000930/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000931static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000932 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000933 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000934 // Handle the simplest case efficiently.
935 if (K == 1)
936 return SE.getTruncateOrZeroExtend(It, ResultTy);
937
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000938 // We are using the following formula for BC(It, K):
939 //
940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941 //
Eli Friedman61f67622008-08-04 23:49:06 +0000942 // Suppose, W is the bitwidth of the return value. We must be prepared for
943 // overflow. Hence, we must assure that the result of our computation is
944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
945 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000946 //
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000948 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // This formula is trivially equivalent to the previous formula. However,
955 // this formula can be implemented much more efficiently. The trick is that
956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957 // arithmetic. To do exact division in modular arithmetic, all we have
958 // to do is multiply by the inverse. Therefore, this step can be done at
959 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000960 //
Eli Friedman61f67622008-08-04 23:49:06 +0000961 // The next issue is how to safely do the division by 2^T. The way this
962 // is done is by doing the multiplication step at a width of at least W + T
963 // bits. This way, the bottom W+T bits of the product are accurate. Then,
964 // when we perform the division by 2^T (which is equivalent to a right shift
965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
966 // truncated out after the division by 2^T.
967 //
968 // In comparison to just directly using the first formula, this technique
969 // is much more efficient; using the first formula requires W * K bits,
970 // but this formula less than W + K bits. Also, the first formula requires
971 // a division step, whereas this formula only requires multiplies and shifts.
972 //
973 // It doesn't matter whether the subtraction step is done in the calculation
974 // width or the input iteration count's width; if the subtraction overflows,
975 // the result must be zero anyway. We prefer here to do it in the width of
976 // the induction variable because it helps a lot for certain cases; CodeGen
977 // isn't smart enough to ignore the overflow, which leads to much less
978 // efficient code if the width of the subtraction is wider than the native
979 // register width.
980 //
981 // (It's possible to not widen at all by pulling out factors of 2 before
982 // the multiplication; for example, K=2 can be calculated as
983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984 // extra arithmetic, so it's not an obvious win, and it gets
985 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000986
Eli Friedman61f67622008-08-04 23:49:06 +0000987 // Protection from insane SCEVs; this bound is conservative,
988 // but it probably doesn't matter.
989 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000990 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000992 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Eli Friedman61f67622008-08-04 23:49:06 +0000994 // Calculate K! / 2^T and T; we divide out the factors of two before
995 // multiplying for calculating K! / 2^T to avoid overflow.
996 // Other overflow doesn't matter because we only care about the bottom
997 // W bits of the result.
998 APInt OddFactorial(W, 1);
999 unsigned T = 1;
1000 for (unsigned i = 3; i <= K; ++i) {
1001 APInt Mult(W, i);
1002 unsigned TwoFactors = Mult.countTrailingZeros();
1003 T += TwoFactors;
1004 Mult = Mult.lshr(TwoFactors);
1005 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001006 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001007
Eli Friedman61f67622008-08-04 23:49:06 +00001008 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001009 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001010
Dan Gohman8b0a4192010-03-01 17:49:51 +00001011 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001013
1014 // Calculate the multiplicative inverse of K! / 2^T;
1015 // this multiplication factor will perform the exact division by
1016 // K! / 2^T.
1017 APInt Mod = APInt::getSignedMinValue(W+1);
1018 APInt MultiplyFactor = OddFactorial.zext(W+1);
1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020 MultiplyFactor = MultiplyFactor.trunc(W);
1021
1022 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001024 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001026 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001028 Dividend = SE.getMulExpr(Dividend,
1029 SE.getTruncateOrZeroExtend(S, CalculationTy));
1030 }
1031
1032 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001034
1035 // Truncate the result, and divide by K! / 2^T.
1036
1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001039}
1040
Chris Lattnerd934c702004-04-02 20:23:17 +00001041/// evaluateAtIteration - Return the value of this chain of recurrences at
1042/// the specified iteration number. We can evaluate this recurrence by
1043/// multiplying each element in the chain by the binomial coefficient
1044/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Dan Gohmanaf752342009-07-07 17:06:11 +00001050const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001051 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001052 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001054 // The computation is correct in the face of overflow provided that the
1055 // multiplication is performed _after_ the evaluation of the binomial
1056 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001058 if (isa<SCEVCouldNotCompute>(Coeff))
1059 return Coeff;
1060
1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001062 }
1063 return Result;
1064}
1065
Chris Lattnerd934c702004-04-02 20:23:17 +00001066//===----------------------------------------------------------------------===//
1067// SCEV Expression folder implementations
1068//===----------------------------------------------------------------------===//
1069
Dan Gohmanaf752342009-07-07 17:06:11 +00001070const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001071 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001073 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001074 assert(isSCEVable(Ty) &&
1075 "This is not a conversion to a SCEVable type!");
1076 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001077
Dan Gohman3a302cb2009-07-13 20:50:19 +00001078 FoldingSetNodeID ID;
1079 ID.AddInteger(scTruncate);
1080 ID.AddPointer(Op);
1081 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001082 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084
Dan Gohman3423e722009-06-30 20:13:32 +00001085 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001087 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001089
Dan Gohman79af8542009-04-22 16:20:48 +00001090 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001092 return getTruncateExpr(ST->getOperand(), Ty);
1093
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097
1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001103 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105 SmallVector<const SCEV *, 4> Operands;
1106 bool hasTrunc = false;
1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001109 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001111 Operands.push_back(S);
1112 }
1113 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001114 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001116 }
1117
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001119 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121 SmallVector<const SCEV *, 4> Operands;
1122 bool hasTrunc = false;
1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001125 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001137 for (const SCEV *Op : AddRec->operands())
1138 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Sanjoy Das4153f472015-02-18 01:47:07 +00001151// Get the limit of a recurrence such that incrementing by Step cannot cause
1152// signed overflow as long as the value of the recurrence within the
1153// loop does not exceed this limit before incrementing.
1154static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155 ICmpInst::Predicate *Pred,
1156 ScalarEvolution *SE) {
1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158 if (SE->isKnownPositive(Step)) {
1159 *Pred = ICmpInst::ICMP_SLT;
1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161 SE->getSignedRange(Step).getSignedMax());
1162 }
1163 if (SE->isKnownNegative(Step)) {
1164 *Pred = ICmpInst::ICMP_SGT;
1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166 SE->getSignedRange(Step).getSignedMin());
1167 }
1168 return nullptr;
1169}
1170
1171// Get the limit of a recurrence such that incrementing by Step cannot cause
1172// unsigned overflow as long as the value of the recurrence within the loop does
1173// not exceed this limit before incrementing.
1174static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175 ICmpInst::Predicate *Pred,
1176 ScalarEvolution *SE) {
1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178 *Pred = ICmpInst::ICMP_ULT;
1179
1180 return SE->getConstant(APInt::getMinValue(BitWidth) -
1181 SE->getUnsignedRange(Step).getUnsignedMax());
1182}
1183
1184namespace {
1185
1186struct ExtendOpTraitsBase {
1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188};
1189
1190// Used to make code generic over signed and unsigned overflow.
1191template <typename ExtendOp> struct ExtendOpTraits {
1192 // Members present:
1193 //
1194 // static const SCEV::NoWrapFlags WrapType;
1195 //
1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197 //
1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199 // ICmpInst::Predicate *Pred,
1200 // ScalarEvolution *SE);
1201};
1202
1203template <>
1204struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206
1207 static const GetExtendExprTy GetExtendExpr;
1208
1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210 ICmpInst::Predicate *Pred,
1211 ScalarEvolution *SE) {
1212 return getSignedOverflowLimitForStep(Step, Pred, SE);
1213 }
1214};
1215
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001216const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218
1219template <>
1220struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222
1223 static const GetExtendExprTy GetExtendExpr;
1224
1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226 ICmpInst::Predicate *Pred,
1227 ScalarEvolution *SE) {
1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229 }
1230};
1231
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001232const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001234}
Sanjoy Das4153f472015-02-18 01:47:07 +00001235
1236// The recurrence AR has been shown to have no signed/unsigned wrap or something
1237// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241// expression "Step + sext/zext(PreIncAR)" is congruent with
1242// "sext/zext(PostIncAR)"
1243template <typename ExtendOpTy>
1244static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245 ScalarEvolution *SE) {
1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248
1249 const Loop *L = AR->getLoop();
1250 const SCEV *Start = AR->getStart();
1251 const SCEV *Step = AR->getStepRecurrence(*SE);
1252
1253 // Check for a simple looking step prior to loop entry.
1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255 if (!SA)
1256 return nullptr;
1257
1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259 // subtraction is expensive. For this purpose, perform a quick and dirty
1260 // difference, by checking for Step in the operand list.
1261 SmallVector<const SCEV *, 4> DiffOps;
1262 for (const SCEV *Op : SA->operands())
1263 if (Op != Step)
1264 DiffOps.push_back(Op);
1265
1266 if (DiffOps.size() == SA->getNumOperands())
1267 return nullptr;
1268
1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270 // `Step`:
1271
1272 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001273 auto PreStartFlags =
1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001281 //
1282
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001283 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001286 return PreStart;
1287
1288 // 2. Direct overflow check on the step operation's expression.
1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291 const SCEV *OperandExtendedStart =
1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293 (SE->*GetExtendExpr)(Step, WideTy));
1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300 }
1301 return PreStart;
1302 }
1303
1304 // 3. Loop precondition.
1305 ICmpInst::Predicate Pred;
1306 const SCEV *OverflowLimit =
1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001311 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001312
Sanjoy Das4153f472015-02-18 01:47:07 +00001313 return nullptr;
1314}
1315
1316// Get the normalized zero or sign extended expression for this AddRec's Start.
1317template <typename ExtendOpTy>
1318static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319 ScalarEvolution *SE) {
1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323 if (!PreStart)
1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327 (SE->*GetExtendExpr)(PreStart, Ty));
1328}
1329
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001330// Try to prove away overflow by looking at "nearby" add recurrences. A
1331// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333//
1334// Formally:
1335//
1336// {S,+,X} == {S-T,+,X} + T
1337// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338//
1339// If ({S-T,+,X} + T) does not overflow ... (1)
1340//
1341// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342//
1343// If {S-T,+,X} does not overflow ... (2)
1344//
1345// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346// == {Ext(S-T)+Ext(T),+,Ext(X)}
1347//
1348// If (S-T)+T does not overflow ... (3)
1349//
1350// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351// == {Ext(S),+,Ext(X)} == LHS
1352//
1353// Thus, if (1), (2) and (3) are true for some T, then
1354// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355//
1356// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357// does not overflow" restricted to the 0th iteration. Therefore we only need
1358// to check for (1) and (2).
1359//
1360// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361// is `Delta` (defined below).
1362//
1363template <typename ExtendOpTy>
1364bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365 const SCEV *Step,
1366 const Loop *L) {
1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369 // We restrict `Start` to a constant to prevent SCEV from spending too much
1370 // time here. It is correct (but more expensive) to continue with a
1371 // non-constant `Start` and do a general SCEV subtraction to compute
1372 // `PreStart` below.
1373 //
1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375 if (!StartC)
1376 return false;
1377
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001378 APInt StartAI = StartC->getAPInt();
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001379
1380 for (unsigned Delta : {-2, -1, 1, 2}) {
1381 const SCEV *PreStart = getConstant(StartAI - Delta);
1382
Sanjoy Das42801102015-10-23 06:57:21 +00001383 FoldingSetNodeID ID;
1384 ID.AddInteger(scAddRecExpr);
1385 ID.AddPointer(PreStart);
1386 ID.AddPointer(Step);
1387 ID.AddPointer(L);
1388 void *IP = nullptr;
1389 const auto *PreAR =
1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 // Give up if we don't already have the add recurrence we need because
1393 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398 DeltaS, &Pred, this);
1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
Dan Gohmanaf752342009-07-07 17:06:11 +00001407const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001408 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001411 assert(isSCEVable(Ty) &&
1412 "This is not a conversion to a SCEVable type!");
1413 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001414
Dan Gohman3423e722009-06-30 20:13:32 +00001415 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001419
Dan Gohman79af8542009-04-22 16:20:48 +00001420 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001422 return getZeroExtendExpr(SZ->getOperand(), Ty);
1423
Dan Gohman74a0ba12009-07-13 20:55:53 +00001424 // Before doing any expensive analysis, check to see if we've already
1425 // computed a SCEV for this Op and Ty.
1426 FoldingSetNodeID ID;
1427 ID.AddInteger(scZeroExtend);
1428 ID.AddPointer(Op);
1429 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001430 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001433 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435 // It's possible the bits taken off by the truncate were all zero bits. If
1436 // so, we should be able to simplify this further.
1437 const SCEV *X = ST->getOperand();
1438 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001439 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440 unsigned NewBits = getTypeSizeInBits(Ty);
1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001442 CR.zextOrTrunc(NewBits)))
1443 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001444 }
1445
Dan Gohman76466372009-04-27 20:16:15 +00001446 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001448 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001451 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001452 const SCEV *Start = AR->getStart();
1453 const SCEV *Step = AR->getStepRecurrence(*this);
1454 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455 const Loop *L = AR->getLoop();
1456
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001457 if (!AR->hasNoUnsignedWrap()) {
1458 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1459 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1460 }
1461
Dan Gohman62ef6a72009-07-25 01:22:26 +00001462 // If we have special knowledge that this addrec won't overflow,
1463 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001464 if (AR->hasNoUnsignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001465 return getAddRecExpr(
1466 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1467 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001468
Dan Gohman76466372009-04-27 20:16:15 +00001469 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1470 // Note that this serves two purposes: It filters out loops that are
1471 // simply not analyzable, and it covers the case where this code is
1472 // being called from within backedge-taken count analysis, such that
1473 // attempting to ask for the backedge-taken count would likely result
1474 // in infinite recursion. In the later case, the analysis code will
1475 // cope with a conservative value, and it will take care to purge
1476 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001477 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001479 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001480 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001481
1482 // Check whether the backedge-taken count can be losslessly casted to
1483 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001484 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001485 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001486 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001487 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1488 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001489 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001490 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001491 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1493 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1494 const SCEV *WideMaxBECount =
1495 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001496 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001497 getAddExpr(WideStart,
1498 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001499 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001500 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001501 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1502 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001503 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001504 return getAddRecExpr(
1505 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001507 }
Dan Gohman76466372009-04-27 20:16:15 +00001508 // Similar to above, only this time treat the step value as signed.
1509 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001510 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001511 getAddExpr(WideStart,
1512 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001513 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001514 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 // Cache knowledge of AR NW, which is propagated to this AddRec.
1516 // Negative step causes unsigned wrap, but it still can't self-wrap.
1517 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001518 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001519 return getAddRecExpr(
1520 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1521 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001522 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001523 }
1524
1525 // If the backedge is guarded by a comparison with the pre-inc value
1526 // the addrec is safe. Also, if the entry is guarded by a comparison
1527 // with the start value and the backedge is guarded by a comparison
1528 // with the post-inc value, the addrec is safe.
1529 if (isKnownPositive(Step)) {
1530 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1531 getUnsignedRange(Step).getUnsignedMax());
1532 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001533 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001534 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 AR->getPostIncExpr(*this), N))) {
1536 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001538 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001539 return getAddRecExpr(
1540 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1541 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 } else if (isKnownNegative(Step)) {
1544 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1545 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001546 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1547 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001548 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001549 AR->getPostIncExpr(*this), N))) {
1550 // Cache knowledge of AR NW, which is propagated to this AddRec.
1551 // Negative step causes unsigned wrap, but it still can't self-wrap.
1552 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1553 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001554 return getAddRecExpr(
1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001557 }
Dan Gohman76466372009-04-27 20:16:15 +00001558 }
1559 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001560
1561 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1563 return getAddRecExpr(
1564 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1565 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1566 }
Dan Gohman76466372009-04-27 20:16:15 +00001567 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001568
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001569 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1570 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001571 if (SA->hasNoUnsignedWrap()) {
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001572 // If the addition does not unsign overflow then we can, by definition,
1573 // commute the zero extension with the addition operation.
1574 SmallVector<const SCEV *, 4> Ops;
1575 for (const auto *Op : SA->operands())
1576 Ops.push_back(getZeroExtendExpr(Op, Ty));
1577 return getAddExpr(Ops, SCEV::FlagNUW);
1578 }
1579 }
1580
Dan Gohman74a0ba12009-07-13 20:55:53 +00001581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001588}
1589
Dan Gohmanaf752342009-07-07 17:06:11 +00001590const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001591 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001593 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001594 assert(isSCEVable(Ty) &&
1595 "This is not a conversion to a SCEVable type!");
1596 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001597
Dan Gohman3423e722009-06-30 20:13:32 +00001598 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1600 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001602
Dan Gohman79af8542009-04-22 16:20:48 +00001603 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001605 return getSignExtendExpr(SS->getOperand(), Ty);
1606
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001607 // sext(zext(x)) --> zext(x)
1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1609 return getZeroExtendExpr(SZ->getOperand(), Ty);
1610
Dan Gohman74a0ba12009-07-13 20:55:53 +00001611 // Before doing any expensive analysis, check to see if we've already
1612 // computed a SCEV for this Op and Ty.
1613 FoldingSetNodeID ID;
1614 ID.AddInteger(scSignExtend);
1615 ID.AddPointer(Op);
1616 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001617 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1619
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001620 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1621 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1622 // It's possible the bits taken off by the truncate were all sign bits. If
1623 // so, we should be able to simplify this further.
1624 const SCEV *X = ST->getOperand();
1625 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001626 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1627 unsigned NewBits = getTypeSizeInBits(Ty);
1628 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001629 CR.sextOrTrunc(NewBits)))
1630 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001631 }
1632
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001633 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001634 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001635 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001636 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1637 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001638 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001639 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001640 const APInt &C1 = SC1->getAPInt();
1641 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001642 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001643 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001644 return getAddExpr(getSignExtendExpr(SC1, Ty),
1645 getSignExtendExpr(SMul, Ty));
1646 }
1647 }
1648 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001649
1650 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001651 if (SA->hasNoSignedWrap()) {
Sanjoy Dasa060e602015-10-22 19:57:25 +00001652 // If the addition does not sign overflow then we can, by definition,
1653 // commute the sign extension with the addition operation.
1654 SmallVector<const SCEV *, 4> Ops;
1655 for (const auto *Op : SA->operands())
1656 Ops.push_back(getSignExtendExpr(Op, Ty));
1657 return getAddExpr(Ops, SCEV::FlagNSW);
1658 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001659 }
Dan Gohman76466372009-04-27 20:16:15 +00001660 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001661 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001662 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001663 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001665 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001666 const SCEV *Start = AR->getStart();
1667 const SCEV *Step = AR->getStepRecurrence(*this);
1668 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1669 const Loop *L = AR->getLoop();
1670
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001671 if (!AR->hasNoSignedWrap()) {
1672 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1673 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1674 }
1675
Dan Gohman62ef6a72009-07-25 01:22:26 +00001676 // If we have special knowledge that this addrec won't overflow,
1677 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001678 if (AR->hasNoSignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001679 return getAddRecExpr(
1680 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1681 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001682
Dan Gohman76466372009-04-27 20:16:15 +00001683 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1684 // Note that this serves two purposes: It filters out loops that are
1685 // simply not analyzable, and it covers the case where this code is
1686 // being called from within backedge-taken count analysis, such that
1687 // attempting to ask for the backedge-taken count would likely result
1688 // in infinite recursion. In the later case, the analysis code will
1689 // cope with a conservative value, and it will take care to purge
1690 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001691 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001692 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001693 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001694 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001695
1696 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001697 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001698 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001699 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001700 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001701 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1702 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001703 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001704 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001705 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001706 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1707 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1708 const SCEV *WideMaxBECount =
1709 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001710 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001711 getAddExpr(WideStart,
1712 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001713 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001714 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001715 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1716 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001717 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001718 return getAddRecExpr(
1719 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1720 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001721 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001722 // Similar to above, only this time treat the step value as unsigned.
1723 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001724 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001725 getAddExpr(WideStart,
1726 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001727 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001728 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001729 // If AR wraps around then
1730 //
1731 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1732 // => SAdd != OperandExtendedAdd
1733 //
1734 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1735 // (SAdd == OperandExtendedAdd => AR is NW)
1736
1737 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1738
Dan Gohman8c129d72009-07-16 17:34:36 +00001739 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001740 return getAddRecExpr(
1741 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1742 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001743 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001744 }
1745
1746 // If the backedge is guarded by a comparison with the pre-inc value
1747 // the addrec is safe. Also, if the entry is guarded by a comparison
1748 // with the start value and the backedge is guarded by a comparison
1749 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001750 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001751 const SCEV *OverflowLimit =
1752 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001753 if (OverflowLimit &&
1754 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1755 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1756 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1757 OverflowLimit)))) {
1758 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1759 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001760 return getAddRecExpr(
1761 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1762 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001763 }
1764 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001765 // If Start and Step are constants, check if we can apply this
1766 // transformation:
1767 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001768 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1769 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001770 if (SC1 && SC2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001771 const APInt &C1 = SC1->getAPInt();
1772 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001773 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1774 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001775 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001776 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1777 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001778 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1779 }
1780 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001781
1782 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1783 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1784 return getAddRecExpr(
1785 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1786 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1787 }
Dan Gohman76466372009-04-27 20:16:15 +00001788 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001789
Sanjoy Das11ef6062016-03-03 18:31:23 +00001790 // If the input value is provably positive and we could not simplify
1791 // away the sext build a zext instead.
1792 if (isKnownNonNegative(Op))
1793 return getZeroExtendExpr(Op, Ty);
1794
Dan Gohman74a0ba12009-07-13 20:55:53 +00001795 // The cast wasn't folded; create an explicit cast node.
1796 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001797 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001798 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1799 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001800 UniqueSCEVs.InsertNode(S, IP);
1801 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001802}
1803
Dan Gohman8db2edc2009-06-13 15:56:47 +00001804/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1805/// unspecified bits out to the given type.
1806///
Dan Gohmanaf752342009-07-07 17:06:11 +00001807const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001808 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001809 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1810 "This is not an extending conversion!");
1811 assert(isSCEVable(Ty) &&
1812 "This is not a conversion to a SCEVable type!");
1813 Ty = getEffectiveSCEVType(Ty);
1814
1815 // Sign-extend negative constants.
1816 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001817 if (SC->getAPInt().isNegative())
Dan Gohman8db2edc2009-06-13 15:56:47 +00001818 return getSignExtendExpr(Op, Ty);
1819
1820 // Peel off a truncate cast.
1821 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001822 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001823 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1824 return getAnyExtendExpr(NewOp, Ty);
1825 return getTruncateOrNoop(NewOp, Ty);
1826 }
1827
1828 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001829 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001830 if (!isa<SCEVZeroExtendExpr>(ZExt))
1831 return ZExt;
1832
1833 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001834 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001835 if (!isa<SCEVSignExtendExpr>(SExt))
1836 return SExt;
1837
Dan Gohman51ad99d2010-01-21 02:09:26 +00001838 // Force the cast to be folded into the operands of an addrec.
1839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1840 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001841 for (const SCEV *Op : AR->operands())
1842 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001843 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001844 }
1845
Dan Gohman8db2edc2009-06-13 15:56:47 +00001846 // If the expression is obviously signed, use the sext cast value.
1847 if (isa<SCEVSMaxExpr>(Op))
1848 return SExt;
1849
1850 // Absent any other information, use the zext cast value.
1851 return ZExt;
1852}
1853
Dan Gohman038d02e2009-06-14 22:58:51 +00001854/// CollectAddOperandsWithScales - Process the given Ops list, which is
1855/// a list of operands to be added under the given scale, update the given
1856/// map. This is a helper function for getAddRecExpr. As an example of
1857/// what it does, given a sequence of operands that would form an add
1858/// expression like this:
1859///
Tobias Grosserba49e422014-03-05 10:37:17 +00001860/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001861///
1862/// where A and B are constants, update the map with these values:
1863///
1864/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1865///
1866/// and add 13 + A*B*29 to AccumulatedConstant.
1867/// This will allow getAddRecExpr to produce this:
1868///
1869/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1870///
1871/// This form often exposes folding opportunities that are hidden in
1872/// the original operand list.
1873///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001874/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001875/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1876/// the common case where no interesting opportunities are present, and
1877/// is also used as a check to avoid infinite recursion.
1878///
1879static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001880CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001881 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001882 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001883 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001884 const APInt &Scale,
1885 ScalarEvolution &SE) {
1886 bool Interesting = false;
1887
Dan Gohman45073042010-06-18 19:12:32 +00001888 // Iterate over the add operands. They are sorted, with constants first.
1889 unsigned i = 0;
1890 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1891 ++i;
1892 // Pull a buried constant out to the outside.
1893 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1894 Interesting = true;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001895 AccumulatedConstant += Scale * C->getAPInt();
Dan Gohman45073042010-06-18 19:12:32 +00001896 }
1897
1898 // Next comes everything else. We're especially interested in multiplies
1899 // here, but they're in the middle, so just visit the rest with one loop.
1900 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001901 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1902 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1903 APInt NewScale =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001904 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
Dan Gohman038d02e2009-06-14 22:58:51 +00001905 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1906 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001907 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001908 Interesting |=
1909 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001910 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001911 NewScale, SE);
1912 } else {
1913 // A multiplication of a constant with some other value. Update
1914 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001915 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1916 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001917 auto Pair = M.insert({Key, NewScale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001919 NewOps.push_back(Pair.first->first);
1920 } else {
1921 Pair.first->second += NewScale;
1922 // The map already had an entry for this value, which may indicate
1923 // a folding opportunity.
1924 Interesting = true;
1925 }
1926 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001927 } else {
1928 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001929 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001930 M.insert({Ops[i], Scale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001931 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001932 NewOps.push_back(Pair.first->first);
1933 } else {
1934 Pair.first->second += Scale;
1935 // The map already had an entry for this value, which may indicate
1936 // a folding opportunity.
1937 Interesting = true;
1938 }
1939 }
1940 }
1941
1942 return Interesting;
1943}
1944
Sanjoy Das81401d42015-01-10 23:41:24 +00001945// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1946// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1947// can't-overflow flags for the operation if possible.
1948static SCEV::NoWrapFlags
1949StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1950 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001951 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001952 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001953 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001954
1955 bool CanAnalyze =
1956 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1957 (void)CanAnalyze;
1958 assert(CanAnalyze && "don't call from other places!");
1959
1960 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1961 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001962 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001963
1964 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001965 auto IsKnownNonNegative = [&](const SCEV *S) {
1966 return SE->isKnownNonNegative(S);
1967 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001968
Sanjoy Das3b827c72015-11-29 23:40:53 +00001969 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001970 Flags =
1971 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001972
Sanjoy Das8f274152015-10-22 19:57:19 +00001973 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1974
1975 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1976 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1977
1978 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1979 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1980
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001981 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
Sanjoy Das8f274152015-10-22 19:57:19 +00001982 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00001983 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1984 Instruction::Add, C, OBO::NoSignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00001985 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1986 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1987 }
1988 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00001989 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1990 Instruction::Add, C, OBO::NoUnsignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00001991 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1992 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1993 }
1994 }
1995
1996 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001997}
1998
Dan Gohman4d5435d2009-05-24 23:45:28 +00001999/// getAddExpr - Get a canonical add expression, or something simpler if
2000/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002001const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002002 SCEV::NoWrapFlags Flags) {
2003 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2004 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002005 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002006 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002007#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002008 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002009 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002010 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002011 "SCEVAddExpr operand types don't match!");
2012#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002013
2014 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002015 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002016
Sanjoy Das64895612015-10-09 02:44:45 +00002017 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2018
Chris Lattnerd934c702004-04-02 20:23:17 +00002019 // If there are any constants, fold them together.
2020 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002022 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002023 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002024 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002025 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002026 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
Dan Gohman011cf682009-06-14 22:53:57 +00002027 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002028 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002029 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002030 }
2031
2032 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002033 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002034 Ops.erase(Ops.begin());
2035 --Idx;
2036 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002037
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002038 if (Ops.size() == 1) return Ops[0];
2039 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002040
Dan Gohman15871f22010-08-27 21:39:59 +00002041 // Okay, check to see if the same value occurs in the operand list more than
2042 // once. If so, merge them together into an multiply expression. Since we
2043 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002044 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002045 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002046 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002047 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002048 // Scan ahead to count how many equal operands there are.
2049 unsigned Count = 2;
2050 while (i+Count != e && Ops[i+Count] == Ops[i])
2051 ++Count;
2052 // Merge the values into a multiply.
2053 const SCEV *Scale = getConstant(Ty, Count);
2054 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2055 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002056 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002057 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002058 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002059 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002060 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002061 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002062 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002063 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002064
Dan Gohman2e55cc52009-05-08 21:03:19 +00002065 // Check for truncates. If all the operands are truncated from the same
2066 // type, see if factoring out the truncate would permit the result to be
2067 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2068 // if the contents of the resulting outer trunc fold to something simple.
2069 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2070 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002071 Type *DstType = Trunc->getType();
2072 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002073 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002074 bool Ok = true;
2075 // Check all the operands to see if they can be represented in the
2076 // source type of the truncate.
2077 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2078 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2079 if (T->getOperand()->getType() != SrcType) {
2080 Ok = false;
2081 break;
2082 }
2083 LargeOps.push_back(T->getOperand());
2084 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002085 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002086 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002087 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002088 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2089 if (const SCEVTruncateExpr *T =
2090 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2091 if (T->getOperand()->getType() != SrcType) {
2092 Ok = false;
2093 break;
2094 }
2095 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002096 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002097 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002098 } else {
2099 Ok = false;
2100 break;
2101 }
2102 }
2103 if (Ok)
2104 LargeOps.push_back(getMulExpr(LargeMulOps));
2105 } else {
2106 Ok = false;
2107 break;
2108 }
2109 }
2110 if (Ok) {
2111 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002112 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002113 // If it folds to something simple, use it. Otherwise, don't.
2114 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2115 return getTruncateExpr(Fold, DstType);
2116 }
2117 }
2118
2119 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002120 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2121 ++Idx;
2122
2123 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002124 if (Idx < Ops.size()) {
2125 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002126 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002127 // If we have an add, expand the add operands onto the end of the operands
2128 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002129 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002130 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002131 DeletedAdd = true;
2132 }
2133
2134 // If we deleted at least one add, we added operands to the end of the list,
2135 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002136 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002137 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002138 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002139 }
2140
2141 // Skip over the add expression until we get to a multiply.
2142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2143 ++Idx;
2144
Dan Gohman038d02e2009-06-14 22:58:51 +00002145 // Check to see if there are any folding opportunities present with
2146 // operands multiplied by constant values.
2147 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2148 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002149 DenseMap<const SCEV *, APInt> M;
2150 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002151 APInt AccumulatedConstant(BitWidth, 0);
2152 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002153 Ops.data(), Ops.size(),
2154 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002155 struct APIntCompare {
2156 bool operator()(const APInt &LHS, const APInt &RHS) const {
2157 return LHS.ult(RHS);
2158 }
2159 };
2160
Dan Gohman038d02e2009-06-14 22:58:51 +00002161 // Some interesting folding opportunity is present, so its worthwhile to
2162 // re-generate the operands list. Group the operands by constant scale,
2163 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002164 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002165 for (const SCEV *NewOp : NewOps)
2166 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002167 // Re-generate the operands list.
2168 Ops.clear();
2169 if (AccumulatedConstant != 0)
2170 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002171 for (auto &MulOp : MulOpLists)
2172 if (MulOp.first != 0)
2173 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2174 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002175 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002176 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002177 if (Ops.size() == 1)
2178 return Ops[0];
2179 return getAddExpr(Ops);
2180 }
2181 }
2182
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 // If we are adding something to a multiply expression, make sure the
2184 // something is not already an operand of the multiply. If so, merge it into
2185 // the multiply.
2186 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002187 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002189 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002190 if (isa<SCEVConstant>(MulOpSCEV))
2191 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002192 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002193 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002194 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002195 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 if (Mul->getNumOperands() != 2) {
2197 // If the multiply has more than two operands, we must get the
2198 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002199 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2200 Mul->op_begin()+MulOp);
2201 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002202 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002203 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002204 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002205 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002206 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002207 if (Ops.size() == 2) return OuterMul;
2208 if (AddOp < Idx) {
2209 Ops.erase(Ops.begin()+AddOp);
2210 Ops.erase(Ops.begin()+Idx-1);
2211 } else {
2212 Ops.erase(Ops.begin()+Idx);
2213 Ops.erase(Ops.begin()+AddOp-1);
2214 }
2215 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002216 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002217 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002218
Chris Lattnerd934c702004-04-02 20:23:17 +00002219 // Check this multiply against other multiplies being added together.
2220 for (unsigned OtherMulIdx = Idx+1;
2221 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2222 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002223 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002224 // If MulOp occurs in OtherMul, we can fold the two multiplies
2225 // together.
2226 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2227 OMulOp != e; ++OMulOp)
2228 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2229 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002230 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002231 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002232 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002233 Mul->op_begin()+MulOp);
2234 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002235 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002236 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002237 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002239 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002240 OtherMul->op_begin()+OMulOp);
2241 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002242 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002243 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002244 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2245 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002246 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002247 Ops.erase(Ops.begin()+Idx);
2248 Ops.erase(Ops.begin()+OtherMulIdx-1);
2249 Ops.push_back(OuterMul);
2250 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002251 }
2252 }
2253 }
2254 }
2255
2256 // If there are any add recurrences in the operands list, see if any other
2257 // added values are loop invariant. If so, we can fold them into the
2258 // recurrence.
2259 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2260 ++Idx;
2261
2262 // Scan over all recurrences, trying to fold loop invariants into them.
2263 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2264 // Scan all of the other operands to this add and add them to the vector if
2265 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002266 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002267 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002268 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002269 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002270 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002271 LIOps.push_back(Ops[i]);
2272 Ops.erase(Ops.begin()+i);
2273 --i; --e;
2274 }
2275
2276 // If we found some loop invariants, fold them into the recurrence.
2277 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002278 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002279 LIOps.push_back(AddRec->getStart());
2280
Dan Gohmanaf752342009-07-07 17:06:11 +00002281 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002282 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002283 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002284
Dan Gohman16206132010-06-30 07:16:37 +00002285 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002286 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002287 // Always propagate NW.
2288 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002289 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002290
Chris Lattnerd934c702004-04-02 20:23:17 +00002291 // If all of the other operands were loop invariant, we are done.
2292 if (Ops.size() == 1) return NewRec;
2293
Nick Lewyckydb66b822011-09-06 05:08:09 +00002294 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002295 for (unsigned i = 0;; ++i)
2296 if (Ops[i] == AddRec) {
2297 Ops[i] = NewRec;
2298 break;
2299 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002300 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002301 }
2302
2303 // Okay, if there weren't any loop invariants to be folded, check to see if
2304 // there are multiple AddRec's with the same loop induction variable being
2305 // added together. If so, we can fold them.
2306 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002307 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2308 ++OtherIdx)
2309 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2310 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2311 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2312 AddRec->op_end());
2313 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2314 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002315 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002316 if (OtherAddRec->getLoop() == AddRecLoop) {
2317 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2318 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002319 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002320 AddRecOps.append(OtherAddRec->op_begin()+i,
2321 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002322 break;
2323 }
Dan Gohman028c1812010-08-29 14:53:34 +00002324 AddRecOps[i] = getAddExpr(AddRecOps[i],
2325 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002326 }
2327 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002328 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002329 // Step size has changed, so we cannot guarantee no self-wraparound.
2330 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002331 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002332 }
2333
2334 // Otherwise couldn't fold anything into this recurrence. Move onto the
2335 // next one.
2336 }
2337
2338 // Okay, it looks like we really DO need an add expr. Check to see if we
2339 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002340 FoldingSetNodeID ID;
2341 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002342 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2343 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002344 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002345 SCEVAddExpr *S =
2346 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2347 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002348 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2349 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002350 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2351 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002352 UniqueSCEVs.InsertNode(S, IP);
2353 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002354 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002355 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002356}
2357
Nick Lewycky287682e2011-10-04 06:51:26 +00002358static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2359 uint64_t k = i*j;
2360 if (j > 1 && k / j != i) Overflow = true;
2361 return k;
2362}
2363
2364/// Compute the result of "n choose k", the binomial coefficient. If an
2365/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002366/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002367static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2368 // We use the multiplicative formula:
2369 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2370 // At each iteration, we take the n-th term of the numeral and divide by the
2371 // (k-n)th term of the denominator. This division will always produce an
2372 // integral result, and helps reduce the chance of overflow in the
2373 // intermediate computations. However, we can still overflow even when the
2374 // final result would fit.
2375
2376 if (n == 0 || n == k) return 1;
2377 if (k > n) return 0;
2378
2379 if (k > n/2)
2380 k = n-k;
2381
2382 uint64_t r = 1;
2383 for (uint64_t i = 1; i <= k; ++i) {
2384 r = umul_ov(r, n-(i-1), Overflow);
2385 r /= i;
2386 }
2387 return r;
2388}
2389
Nick Lewycky05044c22014-12-06 00:45:50 +00002390/// Determine if any of the operands in this SCEV are a constant or if
2391/// any of the add or multiply expressions in this SCEV contain a constant.
2392static bool containsConstantSomewhere(const SCEV *StartExpr) {
2393 SmallVector<const SCEV *, 4> Ops;
2394 Ops.push_back(StartExpr);
2395 while (!Ops.empty()) {
2396 const SCEV *CurrentExpr = Ops.pop_back_val();
2397 if (isa<SCEVConstant>(*CurrentExpr))
2398 return true;
2399
2400 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2401 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002402 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002403 }
2404 }
2405 return false;
2406}
2407
Dan Gohman4d5435d2009-05-24 23:45:28 +00002408/// getMulExpr - Get a canonical multiply expression, or something simpler if
2409/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002410const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002411 SCEV::NoWrapFlags Flags) {
2412 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2413 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002414 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002415 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002416#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002417 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002418 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002419 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002420 "SCEVMulExpr operand types don't match!");
2421#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002422
2423 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002424 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002425
Sanjoy Das64895612015-10-09 02:44:45 +00002426 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2427
Chris Lattnerd934c702004-04-02 20:23:17 +00002428 // If there are any constants, fold them together.
2429 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002431
2432 // C1*(C2+V) -> C1*C2 + C1*V
2433 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2435 // If any of Add's ops are Adds or Muls with a constant,
2436 // apply this transformation as well.
2437 if (Add->getNumOperands() == 2)
2438 if (containsConstantSomewhere(Add))
2439 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2440 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002441
Chris Lattnerd934c702004-04-02 20:23:17 +00002442 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002443 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002444 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002445 ConstantInt *Fold =
2446 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002447 Ops[0] = getConstant(Fold);
2448 Ops.erase(Ops.begin()+1); // Erase the folded element
2449 if (Ops.size() == 1) return Ops[0];
2450 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002451 }
2452
2453 // If we are left with a constant one being multiplied, strip it off.
2454 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2455 Ops.erase(Ops.begin());
2456 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002457 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002458 // If we have a multiply of zero, it will always be zero.
2459 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002460 } else if (Ops[0]->isAllOnesValue()) {
2461 // If we have a mul by -1 of an add, try distributing the -1 among the
2462 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002463 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002464 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2465 SmallVector<const SCEV *, 4> NewOps;
2466 bool AnyFolded = false;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002467 for (const SCEV *AddOp : Add->operands()) {
2468 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002469 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2470 NewOps.push_back(Mul);
2471 }
2472 if (AnyFolded)
2473 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002474 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002475 // Negation preserves a recurrence's no self-wrap property.
2476 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002477 for (const SCEV *AddRecOp : AddRec->operands())
2478 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2479
Andrew Tricke92dcce2011-03-14 17:38:54 +00002480 return getAddRecExpr(Operands, AddRec->getLoop(),
2481 AddRec->getNoWrapFlags(SCEV::FlagNW));
2482 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002483 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002484 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002485
2486 if (Ops.size() == 1)
2487 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002488 }
2489
2490 // Skip over the add expression until we get to a multiply.
2491 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2492 ++Idx;
2493
Chris Lattnerd934c702004-04-02 20:23:17 +00002494 // If there are mul operands inline them all into this expression.
2495 if (Idx < Ops.size()) {
2496 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002497 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002498 // If we have an mul, expand the mul operands onto the end of the operands
2499 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002500 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002501 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002502 DeletedMul = true;
2503 }
2504
2505 // If we deleted at least one mul, we added operands to the end of the list,
2506 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002507 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002508 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002509 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002510 }
2511
2512 // If there are any add recurrences in the operands list, see if any other
2513 // added values are loop invariant. If so, we can fold them into the
2514 // recurrence.
2515 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2516 ++Idx;
2517
2518 // Scan over all recurrences, trying to fold loop invariants into them.
2519 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2520 // Scan all of the other operands to this mul and add them to the vector if
2521 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002522 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002523 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002524 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002525 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002526 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002527 LIOps.push_back(Ops[i]);
2528 Ops.erase(Ops.begin()+i);
2529 --i; --e;
2530 }
2531
2532 // If we found some loop invariants, fold them into the recurrence.
2533 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002534 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002535 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002536 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002537 const SCEV *Scale = getMulExpr(LIOps);
2538 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2539 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002540
Dan Gohman16206132010-06-30 07:16:37 +00002541 // Build the new addrec. Propagate the NUW and NSW flags if both the
2542 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002543 //
2544 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002545 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002546 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2547 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002548
2549 // If all of the other operands were loop invariant, we are done.
2550 if (Ops.size() == 1) return NewRec;
2551
Nick Lewyckydb66b822011-09-06 05:08:09 +00002552 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002553 for (unsigned i = 0;; ++i)
2554 if (Ops[i] == AddRec) {
2555 Ops[i] = NewRec;
2556 break;
2557 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002558 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002559 }
2560
2561 // Okay, if there weren't any loop invariants to be folded, check to see if
2562 // there are multiple AddRec's with the same loop induction variable being
2563 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002564
2565 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2566 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2567 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2568 // ]]],+,...up to x=2n}.
2569 // Note that the arguments to choose() are always integers with values
2570 // known at compile time, never SCEV objects.
2571 //
2572 // The implementation avoids pointless extra computations when the two
2573 // addrec's are of different length (mathematically, it's equivalent to
2574 // an infinite stream of zeros on the right).
2575 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002576 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002577 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002578 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002579 const SCEVAddRecExpr *OtherAddRec =
2580 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2581 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002582 continue;
2583
Nick Lewycky97756402014-09-01 05:17:15 +00002584 bool Overflow = false;
2585 Type *Ty = AddRec->getType();
2586 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2587 SmallVector<const SCEV*, 7> AddRecOps;
2588 for (int x = 0, xe = AddRec->getNumOperands() +
2589 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002590 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002591 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2592 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2593 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2594 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2595 z < ze && !Overflow; ++z) {
2596 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2597 uint64_t Coeff;
2598 if (LargerThan64Bits)
2599 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2600 else
2601 Coeff = Coeff1*Coeff2;
2602 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2603 const SCEV *Term1 = AddRec->getOperand(y-z);
2604 const SCEV *Term2 = OtherAddRec->getOperand(z);
2605 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002606 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002607 }
Nick Lewycky97756402014-09-01 05:17:15 +00002608 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002609 }
Nick Lewycky97756402014-09-01 05:17:15 +00002610 if (!Overflow) {
2611 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2612 SCEV::FlagAnyWrap);
2613 if (Ops.size() == 2) return NewAddRec;
2614 Ops[Idx] = NewAddRec;
2615 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2616 OpsModified = true;
2617 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2618 if (!AddRec)
2619 break;
2620 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002621 }
Nick Lewycky97756402014-09-01 05:17:15 +00002622 if (OpsModified)
2623 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002624
2625 // Otherwise couldn't fold anything into this recurrence. Move onto the
2626 // next one.
2627 }
2628
2629 // Okay, it looks like we really DO need an mul expr. Check to see if we
2630 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002631 FoldingSetNodeID ID;
2632 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002633 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2634 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002635 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002636 SCEVMulExpr *S =
2637 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2638 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002639 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2640 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002641 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2642 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002643 UniqueSCEVs.InsertNode(S, IP);
2644 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002645 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002646 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002647}
2648
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002649/// getUDivExpr - Get a canonical unsigned division expression, or something
2650/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002651const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2652 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002653 assert(getEffectiveSCEVType(LHS->getType()) ==
2654 getEffectiveSCEVType(RHS->getType()) &&
2655 "SCEVUDivExpr operand types don't match!");
2656
Dan Gohmana30370b2009-05-04 22:02:23 +00002657 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002658 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002659 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002660 // If the denominator is zero, the result of the udiv is undefined. Don't
2661 // try to analyze it, because the resolution chosen here may differ from
2662 // the resolution chosen in other parts of the compiler.
2663 if (!RHSC->getValue()->isZero()) {
2664 // Determine if the division can be folded into the operands of
2665 // its operands.
2666 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002667 Type *Ty = LHS->getType();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002668 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002669 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002670 // For non-power-of-two values, effectively round the value up to the
2671 // nearest power of two.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002672 if (!RHSC->getAPInt().isPowerOf2())
Dan Gohmanacd700a2010-04-22 01:35:11 +00002673 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002674 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002675 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002676 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2677 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002678 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2679 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002680 const APInt &StepInt = Step->getAPInt();
2681 const APInt &DivInt = RHSC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002682 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002683 getZeroExtendExpr(AR, ExtTy) ==
2684 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2685 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002686 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002687 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002688 for (const SCEV *Op : AR->operands())
2689 Operands.push_back(getUDivExpr(Op, RHS));
2690 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002691 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002692 /// Get a canonical UDivExpr for a recurrence.
2693 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2694 // We can currently only fold X%N if X is constant.
2695 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2696 if (StartC && !DivInt.urem(StepInt) &&
2697 getZeroExtendExpr(AR, ExtTy) ==
2698 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2699 getZeroExtendExpr(Step, ExtTy),
2700 AR->getLoop(), SCEV::FlagAnyWrap)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002701 const APInt &StartInt = StartC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002702 const APInt &StartRem = StartInt.urem(StepInt);
2703 if (StartRem != 0)
2704 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2705 AR->getLoop(), SCEV::FlagNW);
2706 }
2707 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002708 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2709 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2710 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002711 for (const SCEV *Op : M->operands())
2712 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002713 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2714 // Find an operand that's safely divisible.
2715 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2716 const SCEV *Op = M->getOperand(i);
2717 const SCEV *Div = getUDivExpr(Op, RHSC);
2718 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2719 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2720 M->op_end());
2721 Operands[i] = Div;
2722 return getMulExpr(Operands);
2723 }
2724 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002725 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002726 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002727 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002728 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002729 for (const SCEV *Op : A->operands())
2730 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002731 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2732 Operands.clear();
2733 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2734 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2735 if (isa<SCEVUDivExpr>(Op) ||
2736 getMulExpr(Op, RHS) != A->getOperand(i))
2737 break;
2738 Operands.push_back(Op);
2739 }
2740 if (Operands.size() == A->getNumOperands())
2741 return getAddExpr(Operands);
2742 }
2743 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002744
Dan Gohmanacd700a2010-04-22 01:35:11 +00002745 // Fold if both operands are constant.
2746 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2747 Constant *LHSCV = LHSC->getValue();
2748 Constant *RHSCV = RHSC->getValue();
2749 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2750 RHSCV)));
2751 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002752 }
2753 }
2754
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002755 FoldingSetNodeID ID;
2756 ID.AddInteger(scUDivExpr);
2757 ID.AddPointer(LHS);
2758 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002759 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002760 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002761 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2762 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002763 UniqueSCEVs.InsertNode(S, IP);
2764 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002765}
2766
Nick Lewycky31eaca52014-01-27 10:04:03 +00002767static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002768 APInt A = C1->getAPInt().abs();
2769 APInt B = C2->getAPInt().abs();
Nick Lewycky31eaca52014-01-27 10:04:03 +00002770 uint32_t ABW = A.getBitWidth();
2771 uint32_t BBW = B.getBitWidth();
2772
2773 if (ABW > BBW)
2774 B = B.zext(ABW);
2775 else if (ABW < BBW)
2776 A = A.zext(BBW);
2777
2778 return APIntOps::GreatestCommonDivisor(A, B);
2779}
2780
2781/// getUDivExactExpr - Get a canonical unsigned division expression, or
2782/// something simpler if possible. There is no representation for an exact udiv
2783/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2784/// We can't do this when it's not exact because the udiv may be clearing bits.
2785const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2786 const SCEV *RHS) {
2787 // TODO: we could try to find factors in all sorts of things, but for now we
2788 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2789 // end of this file for inspiration.
2790
2791 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2792 if (!Mul)
2793 return getUDivExpr(LHS, RHS);
2794
2795 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2796 // If the mulexpr multiplies by a constant, then that constant must be the
2797 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002798 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002799 if (LHSCst == RHSCst) {
2800 SmallVector<const SCEV *, 2> Operands;
2801 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2802 return getMulExpr(Operands);
2803 }
2804
2805 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2806 // that there's a factor provided by one of the other terms. We need to
2807 // check.
2808 APInt Factor = gcd(LHSCst, RHSCst);
2809 if (!Factor.isIntN(1)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002810 LHSCst =
2811 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2812 RHSCst =
2813 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
Nick Lewycky31eaca52014-01-27 10:04:03 +00002814 SmallVector<const SCEV *, 2> Operands;
2815 Operands.push_back(LHSCst);
2816 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2817 LHS = getMulExpr(Operands);
2818 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002819 Mul = dyn_cast<SCEVMulExpr>(LHS);
2820 if (!Mul)
2821 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002822 }
2823 }
2824 }
2825
2826 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2827 if (Mul->getOperand(i) == RHS) {
2828 SmallVector<const SCEV *, 2> Operands;
2829 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2830 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2831 return getMulExpr(Operands);
2832 }
2833 }
2834
2835 return getUDivExpr(LHS, RHS);
2836}
Chris Lattnerd934c702004-04-02 20:23:17 +00002837
Dan Gohman4d5435d2009-05-24 23:45:28 +00002838/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2839/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002840const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2841 const Loop *L,
2842 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002843 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002844 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002845 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002846 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002847 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002848 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002849 }
2850
2851 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002852 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002853}
2854
Dan Gohman4d5435d2009-05-24 23:45:28 +00002855/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2856/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002857const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002858ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002859 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002860 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002861#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002862 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002863 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002864 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002865 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002866 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002867 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002868 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002869#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002870
Dan Gohmanbe928e32008-06-18 16:23:07 +00002871 if (Operands.back()->isZero()) {
2872 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002873 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002874 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002875
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002876 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2877 // use that information to infer NUW and NSW flags. However, computing a
2878 // BE count requires calling getAddRecExpr, so we may not yet have a
2879 // meaningful BE count at this point (and if we don't, we'd be stuck
2880 // with a SCEVCouldNotCompute as the cached BE count).
2881
Sanjoy Das81401d42015-01-10 23:41:24 +00002882 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002883
Dan Gohman223a5d22008-08-08 18:33:12 +00002884 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002885 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002886 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002887 if (L->contains(NestedLoop)
2888 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2889 : (!NestedLoop->contains(L) &&
2890 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002891 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002892 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002893 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002894 // AddRecs require their operands be loop-invariant with respect to their
2895 // loops. Don't perform this transformation if it would break this
2896 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002897 bool AllInvariant = all_of(
2898 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002899
Dan Gohmancc030b72009-06-26 22:36:20 +00002900 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002901 // Create a recurrence for the outer loop with the same step size.
2902 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002903 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2904 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002905 SCEV::NoWrapFlags OuterFlags =
2906 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002907
2908 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002909 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2910 return isLoopInvariant(Op, NestedLoop);
2911 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002912
Andrew Trick8b55b732011-03-14 16:50:06 +00002913 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002914 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002915 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002916 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2917 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002918 SCEV::NoWrapFlags InnerFlags =
2919 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002920 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2921 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002922 }
2923 // Reset Operands to its original state.
2924 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002925 }
2926 }
2927
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002928 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2929 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002930 FoldingSetNodeID ID;
2931 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002932 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2933 ID.AddPointer(Operands[i]);
2934 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002935 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002936 SCEVAddRecExpr *S =
2937 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2938 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002939 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2940 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002941 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2942 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002943 UniqueSCEVs.InsertNode(S, IP);
2944 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002945 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002946 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002947}
2948
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002949const SCEV *
2950ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2951 const SmallVectorImpl<const SCEV *> &IndexExprs,
2952 bool InBounds) {
2953 // getSCEV(Base)->getType() has the same address space as Base->getType()
2954 // because SCEV::getType() preserves the address space.
2955 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2956 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2957 // instruction to its SCEV, because the Instruction may be guarded by control
2958 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002959 // context. This can be fixed similarly to how these flags are handled for
2960 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002961 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2962
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002963 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002964 // The address space is unimportant. The first thing we do on CurTy is getting
2965 // its element type.
2966 Type *CurTy = PointerType::getUnqual(PointeeType);
2967 for (const SCEV *IndexExpr : IndexExprs) {
2968 // Compute the (potentially symbolic) offset in bytes for this index.
2969 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2970 // For a struct, add the member offset.
2971 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2972 unsigned FieldNo = Index->getZExtValue();
2973 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2974
2975 // Add the field offset to the running total offset.
2976 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2977
2978 // Update CurTy to the type of the field at Index.
2979 CurTy = STy->getTypeAtIndex(Index);
2980 } else {
2981 // Update CurTy to its element type.
2982 CurTy = cast<SequentialType>(CurTy)->getElementType();
2983 // For an array, add the element offset, explicitly scaled.
2984 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2985 // Getelementptr indices are signed.
2986 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2987
2988 // Multiply the index by the element size to compute the element offset.
2989 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2990
2991 // Add the element offset to the running total offset.
2992 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2993 }
2994 }
2995
2996 // Add the total offset from all the GEP indices to the base.
2997 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2998}
2999
Dan Gohmanabd17092009-06-24 14:49:00 +00003000const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3001 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003002 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003003 Ops.push_back(LHS);
3004 Ops.push_back(RHS);
3005 return getSMaxExpr(Ops);
3006}
3007
Dan Gohmanaf752342009-07-07 17:06:11 +00003008const SCEV *
3009ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003010 assert(!Ops.empty() && "Cannot get empty smax!");
3011 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003012#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003013 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003014 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003015 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003016 "SCEVSMaxExpr operand types don't match!");
3017#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003018
3019 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003020 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003021
3022 // If there are any constants, fold them together.
3023 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003024 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003025 ++Idx;
3026 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003027 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003028 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003029 ConstantInt *Fold = ConstantInt::get(
3030 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003031 Ops[0] = getConstant(Fold);
3032 Ops.erase(Ops.begin()+1); // Erase the folded element
3033 if (Ops.size() == 1) return Ops[0];
3034 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003035 }
3036
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003037 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003038 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3039 Ops.erase(Ops.begin());
3040 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003041 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3042 // If we have an smax with a constant maximum-int, it will always be
3043 // maximum-int.
3044 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003045 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003046
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003047 if (Ops.size() == 1) return Ops[0];
3048 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003049
3050 // Find the first SMax
3051 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3052 ++Idx;
3053
3054 // Check to see if one of the operands is an SMax. If so, expand its operands
3055 // onto our operand list, and recurse to simplify.
3056 if (Idx < Ops.size()) {
3057 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003058 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003059 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003060 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003061 DeletedSMax = true;
3062 }
3063
3064 if (DeletedSMax)
3065 return getSMaxExpr(Ops);
3066 }
3067
3068 // Okay, check to see if the same value occurs in the operand list twice. If
3069 // so, delete one. Since we sorted the list, these values are required to
3070 // be adjacent.
3071 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003072 // X smax Y smax Y --> X smax Y
3073 // X smax Y --> X, if X is always greater than Y
3074 if (Ops[i] == Ops[i+1] ||
3075 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3076 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3077 --i; --e;
3078 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003079 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3080 --i; --e;
3081 }
3082
3083 if (Ops.size() == 1) return Ops[0];
3084
3085 assert(!Ops.empty() && "Reduced smax down to nothing!");
3086
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003087 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003088 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003089 FoldingSetNodeID ID;
3090 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003091 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3092 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003093 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003094 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003095 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3096 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003097 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3098 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003099 UniqueSCEVs.InsertNode(S, IP);
3100 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003101}
3102
Dan Gohmanabd17092009-06-24 14:49:00 +00003103const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3104 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003105 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003106 Ops.push_back(LHS);
3107 Ops.push_back(RHS);
3108 return getUMaxExpr(Ops);
3109}
3110
Dan Gohmanaf752342009-07-07 17:06:11 +00003111const SCEV *
3112ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003113 assert(!Ops.empty() && "Cannot get empty umax!");
3114 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003115#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003116 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003117 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003118 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003119 "SCEVUMaxExpr operand types don't match!");
3120#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003121
3122 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003123 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124
3125 // If there are any constants, fold them together.
3126 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003127 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003128 ++Idx;
3129 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003130 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003131 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003132 ConstantInt *Fold = ConstantInt::get(
3133 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003134 Ops[0] = getConstant(Fold);
3135 Ops.erase(Ops.begin()+1); // Erase the folded element
3136 if (Ops.size() == 1) return Ops[0];
3137 LHSC = cast<SCEVConstant>(Ops[0]);
3138 }
3139
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003140 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003141 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3142 Ops.erase(Ops.begin());
3143 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003144 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3145 // If we have an umax with a constant maximum-int, it will always be
3146 // maximum-int.
3147 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003148 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003149
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003150 if (Ops.size() == 1) return Ops[0];
3151 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003152
3153 // Find the first UMax
3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3155 ++Idx;
3156
3157 // Check to see if one of the operands is a UMax. If so, expand its operands
3158 // onto our operand list, and recurse to simplify.
3159 if (Idx < Ops.size()) {
3160 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003161 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003162 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003163 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003164 DeletedUMax = true;
3165 }
3166
3167 if (DeletedUMax)
3168 return getUMaxExpr(Ops);
3169 }
3170
3171 // Okay, check to see if the same value occurs in the operand list twice. If
3172 // so, delete one. Since we sorted the list, these values are required to
3173 // be adjacent.
3174 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003175 // X umax Y umax Y --> X umax Y
3176 // X umax Y --> X, if X is always greater than Y
3177 if (Ops[i] == Ops[i+1] ||
3178 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3179 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3180 --i; --e;
3181 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003182 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3183 --i; --e;
3184 }
3185
3186 if (Ops.size() == 1) return Ops[0];
3187
3188 assert(!Ops.empty() && "Reduced umax down to nothing!");
3189
3190 // Okay, it looks like we really DO need a umax expr. Check to see if we
3191 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003192 FoldingSetNodeID ID;
3193 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003194 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3195 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003196 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003197 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003198 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3199 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003200 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3201 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003202 UniqueSCEVs.InsertNode(S, IP);
3203 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003204}
3205
Dan Gohmanabd17092009-06-24 14:49:00 +00003206const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3207 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003208 // ~smax(~x, ~y) == smin(x, y).
3209 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3210}
3211
Dan Gohmanabd17092009-06-24 14:49:00 +00003212const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3213 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003214 // ~umax(~x, ~y) == umin(x, y)
3215 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3216}
3217
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003218const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003219 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003220 // constant expression and then folding it back into a ConstantInt.
3221 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003222 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003223}
3224
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003225const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3226 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003227 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003228 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003229 // constant expression and then folding it back into a ConstantInt.
3230 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003231 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003232 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003233}
3234
Dan Gohmanaf752342009-07-07 17:06:11 +00003235const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003236 // Don't attempt to do anything other than create a SCEVUnknown object
3237 // here. createSCEV only calls getUnknown after checking for all other
3238 // interesting possibilities, and any other code that calls getUnknown
3239 // is doing so in order to hide a value from SCEV canonicalization.
3240
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003241 FoldingSetNodeID ID;
3242 ID.AddInteger(scUnknown);
3243 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003244 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003245 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3246 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3247 "Stale SCEVUnknown in uniquing map!");
3248 return S;
3249 }
3250 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3251 FirstUnknown);
3252 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003253 UniqueSCEVs.InsertNode(S, IP);
3254 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003255}
3256
Chris Lattnerd934c702004-04-02 20:23:17 +00003257//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003258// Basic SCEV Analysis and PHI Idiom Recognition Code
3259//
3260
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003261/// isSCEVable - Test if values of the given type are analyzable within
3262/// the SCEV framework. This primarily includes integer types, and it
3263/// can optionally include pointer types if the ScalarEvolution class
3264/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003265bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003266 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003267 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003268}
3269
3270/// getTypeSizeInBits - Return the size in bits of the specified type,
3271/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003272uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003273 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003274 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003275}
3276
3277/// getEffectiveSCEVType - Return a type with the same bitwidth as
3278/// the given type and which represents how SCEV will treat the given
3279/// type, for which isSCEVable must return true. For pointer types,
3280/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003281Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003282 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3283
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003284 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003285 return Ty;
3286
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003287 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003288 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003289 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003290}
Chris Lattnerd934c702004-04-02 20:23:17 +00003291
Dan Gohmanaf752342009-07-07 17:06:11 +00003292const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003293 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003294}
3295
Sanjoy Das7d752672015-12-08 04:32:54 +00003296
3297bool ScalarEvolution::checkValidity(const SCEV *S) const {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003298 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3299 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3300 // is set iff if find such SCEVUnknown.
3301 //
3302 struct FindInvalidSCEVUnknown {
3303 bool FindOne;
3304 FindInvalidSCEVUnknown() { FindOne = false; }
3305 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003306 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003307 case scConstant:
3308 return false;
3309 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003310 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003311 FindOne = true;
3312 return false;
3313 default:
3314 return true;
3315 }
3316 }
3317 bool isDone() const { return FindOne; }
3318 };
Shuxin Yangefc4c012013-07-08 17:33:13 +00003319
Shuxin Yangefc4c012013-07-08 17:33:13 +00003320 FindInvalidSCEVUnknown F;
3321 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3322 ST.visitAll(S);
3323
3324 return !F.FindOne;
3325}
3326
Wei Mia49559b2016-02-04 01:27:38 +00003327namespace {
3328// Helper class working with SCEVTraversal to figure out if a SCEV contains
3329// a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3330// iff if such sub scAddRecExpr type SCEV is found.
3331struct FindAddRecurrence {
3332 bool FoundOne;
3333 FindAddRecurrence() : FoundOne(false) {}
3334
3335 bool follow(const SCEV *S) {
3336 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3337 case scAddRecExpr:
3338 FoundOne = true;
3339 case scConstant:
3340 case scUnknown:
3341 case scCouldNotCompute:
3342 return false;
3343 default:
3344 return true;
3345 }
3346 }
3347 bool isDone() const { return FoundOne; }
3348};
3349}
3350
3351bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3352 HasRecMapType::iterator I = HasRecMap.find_as(S);
3353 if (I != HasRecMap.end())
3354 return I->second;
3355
3356 FindAddRecurrence F;
3357 SCEVTraversal<FindAddRecurrence> ST(F);
3358 ST.visitAll(S);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003359 HasRecMap.insert({S, F.FoundOne});
Wei Mia49559b2016-02-04 01:27:38 +00003360 return F.FoundOne;
3361}
3362
3363/// getSCEVValues - Return the Value set from S.
3364SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3365 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3366 if (SI == ExprValueMap.end())
3367 return nullptr;
3368#ifndef NDEBUG
3369 if (VerifySCEVMap) {
3370 // Check there is no dangling Value in the set returned.
3371 for (const auto &VE : SI->second)
3372 assert(ValueExprMap.count(VE));
3373 }
3374#endif
3375 return &SI->second;
3376}
3377
3378/// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3379/// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3380/// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3381/// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3382void ScalarEvolution::eraseValueFromMap(Value *V) {
3383 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3384 if (I != ValueExprMap.end()) {
3385 const SCEV *S = I->second;
3386 SetVector<Value *> *SV = getSCEVValues(S);
3387 // Remove V from the set of ExprValueMap[S]
3388 if (SV)
3389 SV->remove(V);
3390 ValueExprMap.erase(V);
3391 }
3392}
3393
Chris Lattnerd934c702004-04-02 20:23:17 +00003394/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3395/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003396const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003397 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003398
Jingyue Wu42f1d672015-07-28 18:22:40 +00003399 const SCEV *S = getExistingSCEV(V);
3400 if (S == nullptr) {
3401 S = createSCEV(V);
Wei Mia49559b2016-02-04 01:27:38 +00003402 // During PHI resolution, it is possible to create two SCEVs for the same
3403 // V, so it is needed to double check whether V->S is inserted into
3404 // ValueExprMap before insert S->V into ExprValueMap.
3405 std::pair<ValueExprMapType::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003406 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
Wei Mia49559b2016-02-04 01:27:38 +00003407 if (Pair.second)
3408 ExprValueMap[S].insert(V);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003409 }
3410 return S;
3411}
3412
3413const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3414 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3415
Shuxin Yangefc4c012013-07-08 17:33:13 +00003416 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3417 if (I != ValueExprMap.end()) {
3418 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003419 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003420 return S;
Wei Mia49559b2016-02-04 01:27:38 +00003421 forgetMemoizedResults(S);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003422 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003423 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003424 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003425}
3426
Dan Gohman0a40ad92009-04-16 03:18:22 +00003427/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3428///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003429const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3430 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003431 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003432 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003433 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003434
Chris Lattner229907c2011-07-18 04:54:35 +00003435 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003436 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003437 return getMulExpr(
3438 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003439}
3440
3441/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003442const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003443 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003444 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003445 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003446
Chris Lattner229907c2011-07-18 04:54:35 +00003447 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003448 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003449 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003450 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003451 return getMinusSCEV(AllOnes, V);
3452}
3453
Andrew Trick8b55b732011-03-14 16:50:06 +00003454/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003455const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003456 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003457 // Fast path: X - X --> 0.
3458 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003459 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003460
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003461 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3462 // makes it so that we cannot make much use of NUW.
3463 auto AddFlags = SCEV::FlagAnyWrap;
3464 const bool RHSIsNotMinSigned =
3465 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3466 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3467 // Let M be the minimum representable signed value. Then (-1)*RHS
3468 // signed-wraps if and only if RHS is M. That can happen even for
3469 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3470 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3471 // (-1)*RHS, we need to prove that RHS != M.
3472 //
3473 // If LHS is non-negative and we know that LHS - RHS does not
3474 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3475 // either by proving that RHS > M or that LHS >= 0.
3476 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3477 AddFlags = SCEV::FlagNSW;
3478 }
3479 }
3480
3481 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3482 // RHS is NSW and LHS >= 0.
3483 //
3484 // The difficulty here is that the NSW flag may have been proven
3485 // relative to a loop that is to be found in a recurrence in LHS and
3486 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3487 // larger scope than intended.
3488 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3489
3490 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003491}
3492
3493/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3494/// input value to the specified type. If the type must be extended, it is zero
3495/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003496const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003497ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3498 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003499 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3500 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003501 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003502 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003503 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003504 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003505 return getTruncateExpr(V, Ty);
3506 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003507}
3508
3509/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3510/// input value to the specified type. If the type must be extended, it is sign
3511/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003512const SCEV *
3513ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003514 Type *Ty) {
3515 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003516 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3517 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003518 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003519 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003520 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003521 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003522 return getTruncateExpr(V, Ty);
3523 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003524}
3525
Dan Gohmane712a2f2009-05-13 03:46:30 +00003526/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3527/// input value to the specified type. If the type must be extended, it is zero
3528/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003529const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003530ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3531 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003532 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3533 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003534 "Cannot noop or zero extend with non-integer arguments!");
3535 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3536 "getNoopOrZeroExtend cannot truncate!");
3537 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3538 return V; // No conversion
3539 return getZeroExtendExpr(V, Ty);
3540}
3541
3542/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3543/// input value to the specified type. If the type must be extended, it is sign
3544/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003545const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003546ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3547 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003548 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3549 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003550 "Cannot noop or sign extend with non-integer arguments!");
3551 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3552 "getNoopOrSignExtend cannot truncate!");
3553 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3554 return V; // No conversion
3555 return getSignExtendExpr(V, Ty);
3556}
3557
Dan Gohman8db2edc2009-06-13 15:56:47 +00003558/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3559/// the input value to the specified type. If the type must be extended,
3560/// it is extended with unspecified bits. The conversion must not be
3561/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003562const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003563ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3564 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3566 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003567 "Cannot noop or any extend with non-integer arguments!");
3568 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3569 "getNoopOrAnyExtend cannot truncate!");
3570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3571 return V; // No conversion
3572 return getAnyExtendExpr(V, Ty);
3573}
3574
Dan Gohmane712a2f2009-05-13 03:46:30 +00003575/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3576/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003577const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003578ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3579 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003580 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3581 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003582 "Cannot truncate or noop with non-integer arguments!");
3583 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3584 "getTruncateOrNoop cannot extend!");
3585 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3586 return V; // No conversion
3587 return getTruncateExpr(V, Ty);
3588}
3589
Dan Gohman96212b62009-06-22 00:31:57 +00003590/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3591/// the types using zero-extension, and then perform a umax operation
3592/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003593const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3594 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003595 const SCEV *PromotedLHS = LHS;
3596 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003597
3598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3600 else
3601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3602
3603 return getUMaxExpr(PromotedLHS, PromotedRHS);
3604}
3605
Dan Gohman2bc22302009-06-22 15:03:27 +00003606/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3607/// the types using zero-extension, and then perform a umin operation
3608/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003609const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3610 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003611 const SCEV *PromotedLHS = LHS;
3612 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003613
3614 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3615 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3616 else
3617 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3618
3619 return getUMinExpr(PromotedLHS, PromotedRHS);
3620}
3621
Andrew Trick87716c92011-03-17 23:51:11 +00003622/// getPointerBase - Transitively follow the chain of pointer-type operands
3623/// until reaching a SCEV that does not have a single pointer operand. This
3624/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3625/// but corner cases do exist.
3626const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3627 // A pointer operand may evaluate to a nonpointer expression, such as null.
3628 if (!V->getType()->isPointerTy())
3629 return V;
3630
3631 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3632 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003633 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003634 const SCEV *PtrOp = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003635 for (const SCEV *NAryOp : NAry->operands()) {
3636 if (NAryOp->getType()->isPointerTy()) {
Andrew Trick87716c92011-03-17 23:51:11 +00003637 // Cannot find the base of an expression with multiple pointer operands.
3638 if (PtrOp)
3639 return V;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003640 PtrOp = NAryOp;
Andrew Trick87716c92011-03-17 23:51:11 +00003641 }
3642 }
3643 if (!PtrOp)
3644 return V;
3645 return getPointerBase(PtrOp);
3646 }
3647 return V;
3648}
3649
Dan Gohman0b89dff2009-07-25 01:13:03 +00003650/// PushDefUseChildren - Push users of the given Instruction
3651/// onto the given Worklist.
3652static void
3653PushDefUseChildren(Instruction *I,
3654 SmallVectorImpl<Instruction *> &Worklist) {
3655 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003656 for (User *U : I->users())
3657 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003658}
3659
3660/// ForgetSymbolicValue - This looks up computed SCEV values for all
3661/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003662/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003663/// resolution.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00003664void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003665 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003666 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003667
Dan Gohman0b89dff2009-07-25 01:13:03 +00003668 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003669 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003670 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003671 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003672 if (!Visited.insert(I).second)
3673 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003674
Sanjoy Das63914592015-10-18 00:29:20 +00003675 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003676 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003677 const SCEV *Old = It->second;
3678
Dan Gohman0b89dff2009-07-25 01:13:03 +00003679 // Short-circuit the def-use traversal if the symbolic name
3680 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003681 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003682 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003683
Dan Gohman0b89dff2009-07-25 01:13:03 +00003684 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003685 // structure, it's a PHI that's in the progress of being computed
3686 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3687 // additional loop trip count information isn't going to change anything.
3688 // In the second case, createNodeForPHI will perform the necessary
3689 // updates on its own when it gets to that point. In the third, we do
3690 // want to forget the SCEVUnknown.
3691 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003692 !isa<SCEVUnknown>(Old) ||
3693 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003694 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003695 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003696 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003697 }
3698
3699 PushDefUseChildren(I, Worklist);
3700 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003701}
Chris Lattnerd934c702004-04-02 20:23:17 +00003702
Benjamin Kramer83709b12015-11-16 09:01:28 +00003703namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003704class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3705public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003706 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003707 ScalarEvolution &SE) {
3708 SCEVInitRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003709 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003710 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3711 }
3712
3713 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3714 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3715
3716 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3717 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3718 Valid = false;
3719 return Expr;
3720 }
3721
3722 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3723 // Only allow AddRecExprs for this loop.
3724 if (Expr->getLoop() == L)
3725 return Expr->getStart();
3726 Valid = false;
3727 return Expr;
3728 }
3729
3730 bool isValid() { return Valid; }
3731
3732private:
3733 const Loop *L;
3734 bool Valid;
3735};
3736
3737class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3738public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003739 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003740 ScalarEvolution &SE) {
3741 SCEVShiftRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003742 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003743 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3744 }
3745
3746 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3747 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3748
3749 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3750 // Only allow AddRecExprs for this loop.
3751 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3752 Valid = false;
3753 return Expr;
3754 }
3755
3756 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3757 if (Expr->getLoop() == L && Expr->isAffine())
3758 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3759 Valid = false;
3760 return Expr;
3761 }
3762 bool isValid() { return Valid; }
3763
3764private:
3765 const Loop *L;
3766 bool Valid;
3767};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003768} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003769
Sanjoy Das724f5cf2016-03-03 18:31:29 +00003770SCEV::NoWrapFlags
3771ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3772 if (!AR->isAffine())
3773 return SCEV::FlagAnyWrap;
3774
3775 typedef OverflowingBinaryOperator OBO;
3776 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3777
3778 if (!AR->hasNoSignedWrap()) {
3779 ConstantRange AddRecRange = getSignedRange(AR);
3780 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3781
3782 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3783 Instruction::Add, IncRange, OBO::NoSignedWrap);
3784 if (NSWRegion.contains(AddRecRange))
3785 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3786 }
3787
3788 if (!AR->hasNoUnsignedWrap()) {
3789 ConstantRange AddRecRange = getUnsignedRange(AR);
3790 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3791
3792 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3793 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3794 if (NUWRegion.contains(AddRecRange))
3795 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3796 }
3797
3798 return Result;
3799}
3800
Sanjoy Das118d9192016-03-31 05:14:22 +00003801namespace {
3802/// Represents an abstract binary operation. This may exist as a
3803/// normal instruction or constant expression, or may have been
3804/// derived from an expression tree.
3805struct BinaryOp {
3806 unsigned Opcode;
3807 Value *LHS;
3808 Value *RHS;
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003809 bool IsNSW;
3810 bool IsNUW;
Sanjoy Das118d9192016-03-31 05:14:22 +00003811
3812 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3813 /// constant expression.
3814 Operator *Op;
3815
3816 explicit BinaryOp(Operator *Op)
3817 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003818 IsNSW(false), IsNUW(false), Op(Op) {
3819 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3820 IsNSW = OBO->hasNoSignedWrap();
3821 IsNUW = OBO->hasNoUnsignedWrap();
3822 }
3823 }
Sanjoy Das118d9192016-03-31 05:14:22 +00003824
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003825 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3826 bool IsNUW = false)
3827 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3828 Op(nullptr) {}
Sanjoy Das118d9192016-03-31 05:14:22 +00003829};
3830}
3831
3832
3833/// Try to map \p V into a BinaryOp, and return \c None on failure.
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00003834static Optional<BinaryOp> MatchBinaryOp(Value *V) {
Sanjoy Das118d9192016-03-31 05:14:22 +00003835 auto *Op = dyn_cast<Operator>(V);
3836 if (!Op)
3837 return None;
3838
3839 // Implementation detail: all the cleverness here should happen without
3840 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3841 // SCEV expressions when possible, and we should not break that.
3842
3843 switch (Op->getOpcode()) {
3844 case Instruction::Add:
3845 case Instruction::Sub:
3846 case Instruction::Mul:
3847 case Instruction::UDiv:
3848 case Instruction::And:
3849 case Instruction::Or:
3850 case Instruction::AShr:
3851 case Instruction::Shl:
3852 return BinaryOp(Op);
3853
3854 case Instruction::Xor:
3855 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3856 // If the RHS of the xor is a signbit, then this is just an add.
3857 // Instcombine turns add of signbit into xor as a strength reduction step.
3858 if (RHSC->getValue().isSignBit())
3859 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3860 return BinaryOp(Op);
3861
3862 case Instruction::LShr:
3863 // Turn logical shift right of a constant into a unsigned divide.
3864 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3865 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3866
3867 // If the shift count is not less than the bitwidth, the result of
3868 // the shift is undefined. Don't try to analyze it, because the
3869 // resolution chosen here may differ from the resolution chosen in
3870 // other parts of the compiler.
3871 if (SA->getValue().ult(BitWidth)) {
3872 Constant *X =
3873 ConstantInt::get(SA->getContext(),
3874 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3875 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3876 }
3877 }
3878 return BinaryOp(Op);
3879
3880 default:
3881 break;
3882 }
3883
3884 return None;
3885}
3886
Sanjoy Das55015d22015-10-02 23:09:44 +00003887const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3888 const Loop *L = LI.getLoopFor(PN->getParent());
3889 if (!L || L->getHeader() != PN->getParent())
3890 return nullptr;
3891
3892 // The loop may have multiple entrances or multiple exits; we can analyze
3893 // this phi as an addrec if it has a unique entry value and a unique
3894 // backedge value.
3895 Value *BEValueV = nullptr, *StartValueV = nullptr;
3896 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3897 Value *V = PN->getIncomingValue(i);
3898 if (L->contains(PN->getIncomingBlock(i))) {
3899 if (!BEValueV) {
3900 BEValueV = V;
3901 } else if (BEValueV != V) {
3902 BEValueV = nullptr;
3903 break;
3904 }
3905 } else if (!StartValueV) {
3906 StartValueV = V;
3907 } else if (StartValueV != V) {
3908 StartValueV = nullptr;
3909 break;
3910 }
3911 }
3912 if (BEValueV && StartValueV) {
3913 // While we are analyzing this PHI node, handle its value symbolically.
3914 const SCEV *SymbolicName = getUnknown(PN);
3915 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3916 "PHI node already processed?");
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003917 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
Sanjoy Das55015d22015-10-02 23:09:44 +00003918
3919 // Using this symbolic name for the PHI, analyze the value coming around
3920 // the back-edge.
3921 const SCEV *BEValue = getSCEV(BEValueV);
3922
3923 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3924 // has a special value for the first iteration of the loop.
3925
3926 // If the value coming around the backedge is an add with the symbolic
3927 // value we just inserted, then we found a simple induction variable!
3928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3929 // If there is a single occurrence of the symbolic value, replace it
3930 // with a recurrence.
3931 unsigned FoundIndex = Add->getNumOperands();
3932 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3933 if (Add->getOperand(i) == SymbolicName)
3934 if (FoundIndex == e) {
3935 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003936 break;
3937 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003938
3939 if (FoundIndex != Add->getNumOperands()) {
3940 // Create an add with everything but the specified operand.
3941 SmallVector<const SCEV *, 8> Ops;
3942 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3943 if (i != FoundIndex)
3944 Ops.push_back(Add->getOperand(i));
3945 const SCEV *Accum = getAddExpr(Ops);
3946
3947 // This is not a valid addrec if the step amount is varying each
3948 // loop iteration, but is not itself an addrec in this loop.
3949 if (isLoopInvariant(Accum, L) ||
3950 (isa<SCEVAddRecExpr>(Accum) &&
3951 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3952 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3953
3954 // If the increment doesn't overflow, then neither the addrec nor
3955 // the post-increment will overflow.
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00003956 if (auto BO = MatchBinaryOp(BEValueV)) {
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003957 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3958 if (BO->IsNUW)
Sanjoy Das55015d22015-10-02 23:09:44 +00003959 Flags = setFlags(Flags, SCEV::FlagNUW);
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003960 if (BO->IsNSW)
Sanjoy Das55015d22015-10-02 23:09:44 +00003961 Flags = setFlags(Flags, SCEV::FlagNSW);
3962 }
3963 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3964 // If the increment is an inbounds GEP, then we know the address
3965 // space cannot be wrapped around. We cannot make any guarantee
3966 // about signed or unsigned overflow because pointers are
3967 // unsigned but we may have a negative index from the base
3968 // pointer. We can guarantee that no unsigned wrap occurs if the
3969 // indices form a positive value.
3970 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3971 Flags = setFlags(Flags, SCEV::FlagNW);
3972
3973 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3974 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3975 Flags = setFlags(Flags, SCEV::FlagNUW);
3976 }
3977
3978 // We cannot transfer nuw and nsw flags from subtraction
3979 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3980 // for instance.
3981 }
3982
3983 const SCEV *StartVal = getSCEV(StartValueV);
3984 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3985
3986 // Since the no-wrap flags are on the increment, they apply to the
3987 // post-incremented value as well.
3988 if (isLoopInvariant(Accum, L))
3989 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3990
3991 // Okay, for the entire analysis of this edge we assumed the PHI
3992 // to be symbolic. We now need to go back and purge all of the
3993 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00003994 forgetSymbolicName(PN, SymbolicName);
Sanjoy Das55015d22015-10-02 23:09:44 +00003995 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3996 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003997 }
3998 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00003999 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00004000 // Otherwise, this could be a loop like this:
4001 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4002 // In this case, j = {1,+,1} and BEValue is j.
4003 // Because the other in-value of i (0) fits the evolution of BEValue
4004 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00004005 //
4006 // We can generalize this saying that i is the shifted value of BEValue
4007 // by one iteration:
4008 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4009 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4010 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4011 if (Shifted != getCouldNotCompute() &&
4012 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004013 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004014 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004015 // Okay, for the entire analysis of this edge we assumed the PHI
4016 // to be symbolic. We now need to go back and purge all of the
4017 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004018 forgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004019 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4020 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00004021 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004022 }
Dan Gohman6635bb22010-04-12 07:49:36 +00004023 }
Tobias Grosser934fcf42016-02-21 18:50:09 +00004024
4025 // Remove the temporary PHI node SCEV that has been inserted while intending
4026 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4027 // as it will prevent later (possibly simpler) SCEV expressions to be added
4028 // to the ValueExprMap.
4029 ValueExprMap.erase(PN);
Sanjoy Das55015d22015-10-02 23:09:44 +00004030 }
4031
4032 return nullptr;
4033}
4034
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004035// Checks if the SCEV S is available at BB. S is considered available at BB
4036// if S can be materialized at BB without introducing a fault.
4037static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4038 BasicBlock *BB) {
4039 struct CheckAvailable {
4040 bool TraversalDone = false;
4041 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004042
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004043 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4044 BasicBlock *BB = nullptr;
4045 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00004046
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004047 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4048 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00004049
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004050 bool setUnavailable() {
4051 TraversalDone = true;
4052 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004053 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004054 }
4055
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004056 bool follow(const SCEV *S) {
4057 switch (S->getSCEVType()) {
4058 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4059 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00004060 // These expressions are available if their operand(s) is/are.
4061 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004062
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004063 case scAddRecExpr: {
4064 // We allow add recurrences that are on the loop BB is in, or some
4065 // outer loop. This guarantees availability because the value of the
4066 // add recurrence at BB is simply the "current" value of the induction
4067 // variable. We can relax this in the future; for instance an add
4068 // recurrence on a sibling dominating loop is also available at BB.
4069 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4070 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00004071 return true;
4072
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004073 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00004074 }
4075
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004076 case scUnknown: {
4077 // For SCEVUnknown, we check for simple dominance.
4078 const auto *SU = cast<SCEVUnknown>(S);
4079 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00004080
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004081 if (isa<Argument>(V))
4082 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004083
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004084 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4085 return false;
4086
4087 return setUnavailable();
4088 }
4089
4090 case scUDivExpr:
4091 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00004092 // We do not try to smart about these at all.
4093 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004094 }
4095 llvm_unreachable("switch should be fully covered!");
4096 }
4097
4098 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00004099 };
4100
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004101 CheckAvailable CA(L, BB, DT);
4102 SCEVTraversal<CheckAvailable> ST(CA);
4103
4104 ST.visitAll(S);
4105 return CA.Available;
4106}
4107
4108// Try to match a control flow sequence that branches out at BI and merges back
4109// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4110// match.
4111static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4112 Value *&C, Value *&LHS, Value *&RHS) {
4113 C = BI->getCondition();
4114
4115 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4116 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4117
4118 if (!LeftEdge.isSingleEdge())
4119 return false;
4120
4121 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4122
4123 Use &LeftUse = Merge->getOperandUse(0);
4124 Use &RightUse = Merge->getOperandUse(1);
4125
4126 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4127 LHS = LeftUse;
4128 RHS = RightUse;
4129 return true;
4130 }
4131
4132 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4133 LHS = RightUse;
4134 RHS = LeftUse;
4135 return true;
4136 }
4137
4138 return false;
4139}
4140
4141const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004142 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004143 const Loop *L = LI.getLoopFor(PN->getParent());
4144
Sanjoy Das337d4782015-10-31 23:21:40 +00004145 // We don't want to break LCSSA, even in a SCEV expression tree.
4146 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4147 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4148 return nullptr;
4149
Sanjoy Das55015d22015-10-02 23:09:44 +00004150 // Try to match
4151 //
4152 // br %cond, label %left, label %right
4153 // left:
4154 // br label %merge
4155 // right:
4156 // br label %merge
4157 // merge:
4158 // V = phi [ %x, %left ], [ %y, %right ]
4159 //
4160 // as "select %cond, %x, %y"
4161
4162 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4163 assert(IDom && "At least the entry block should dominate PN");
4164
4165 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4166 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4167
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004168 if (BI && BI->isConditional() &&
4169 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4170 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4171 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00004172 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4173 }
4174
4175 return nullptr;
4176}
4177
4178const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4179 if (const SCEV *S = createAddRecFromPHI(PN))
4180 return S;
4181
4182 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4183 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00004184
Dan Gohmana9c205c2010-02-25 06:57:05 +00004185 // If the PHI has a single incoming value, follow that value, unless the
4186 // PHI's incoming blocks are in a different loop, in which case doing so
4187 // risks breaking LCSSA form. Instcombine would normally zap these, but
4188 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004189 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004190 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00004191 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00004192
Chris Lattnerd934c702004-04-02 20:23:17 +00004193 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00004194 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00004195}
4196
Sanjoy Das55015d22015-10-02 23:09:44 +00004197const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4198 Value *Cond,
4199 Value *TrueVal,
4200 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004201 // Handle "constant" branch or select. This can occur for instance when a
4202 // loop pass transforms an inner loop and moves on to process the outer loop.
4203 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4204 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4205
Sanjoy Dasd0671342015-10-02 19:39:59 +00004206 // Try to match some simple smax or umax patterns.
4207 auto *ICI = dyn_cast<ICmpInst>(Cond);
4208 if (!ICI)
4209 return getUnknown(I);
4210
4211 Value *LHS = ICI->getOperand(0);
4212 Value *RHS = ICI->getOperand(1);
4213
4214 switch (ICI->getPredicate()) {
4215 case ICmpInst::ICMP_SLT:
4216 case ICmpInst::ICMP_SLE:
4217 std::swap(LHS, RHS);
4218 // fall through
4219 case ICmpInst::ICMP_SGT:
4220 case ICmpInst::ICMP_SGE:
4221 // a >s b ? a+x : b+x -> smax(a, b)+x
4222 // a >s b ? b+x : a+x -> smin(a, b)+x
4223 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4224 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4225 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4226 const SCEV *LA = getSCEV(TrueVal);
4227 const SCEV *RA = getSCEV(FalseVal);
4228 const SCEV *LDiff = getMinusSCEV(LA, LS);
4229 const SCEV *RDiff = getMinusSCEV(RA, RS);
4230 if (LDiff == RDiff)
4231 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4232 LDiff = getMinusSCEV(LA, RS);
4233 RDiff = getMinusSCEV(RA, LS);
4234 if (LDiff == RDiff)
4235 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4236 }
4237 break;
4238 case ICmpInst::ICMP_ULT:
4239 case ICmpInst::ICMP_ULE:
4240 std::swap(LHS, RHS);
4241 // fall through
4242 case ICmpInst::ICMP_UGT:
4243 case ICmpInst::ICMP_UGE:
4244 // a >u b ? a+x : b+x -> umax(a, b)+x
4245 // a >u b ? b+x : a+x -> umin(a, b)+x
4246 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4247 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4248 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4249 const SCEV *LA = getSCEV(TrueVal);
4250 const SCEV *RA = getSCEV(FalseVal);
4251 const SCEV *LDiff = getMinusSCEV(LA, LS);
4252 const SCEV *RDiff = getMinusSCEV(RA, RS);
4253 if (LDiff == RDiff)
4254 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4255 LDiff = getMinusSCEV(LA, RS);
4256 RDiff = getMinusSCEV(RA, LS);
4257 if (LDiff == RDiff)
4258 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4259 }
4260 break;
4261 case ICmpInst::ICMP_NE:
4262 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4263 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4264 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4265 const SCEV *One = getOne(I->getType());
4266 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4267 const SCEV *LA = getSCEV(TrueVal);
4268 const SCEV *RA = getSCEV(FalseVal);
4269 const SCEV *LDiff = getMinusSCEV(LA, LS);
4270 const SCEV *RDiff = getMinusSCEV(RA, One);
4271 if (LDiff == RDiff)
4272 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4273 }
4274 break;
4275 case ICmpInst::ICMP_EQ:
4276 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4277 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4278 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4279 const SCEV *One = getOne(I->getType());
4280 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4281 const SCEV *LA = getSCEV(TrueVal);
4282 const SCEV *RA = getSCEV(FalseVal);
4283 const SCEV *LDiff = getMinusSCEV(LA, One);
4284 const SCEV *RDiff = getMinusSCEV(RA, LS);
4285 if (LDiff == RDiff)
4286 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4287 }
4288 break;
4289 default:
4290 break;
4291 }
4292
4293 return getUnknown(I);
4294}
4295
Dan Gohmanee750d12009-05-08 20:26:55 +00004296/// createNodeForGEP - Expand GEP instructions into add and multiply
4297/// operations. This allows them to be analyzed by regular SCEV code.
4298///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004299const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman30f24fe2009-05-09 00:14:52 +00004300 // Don't attempt to analyze GEPs over unsized objects.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004301 if (!GEP->getSourceElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004302 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004303
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004304 SmallVector<const SCEV *, 4> IndexExprs;
4305 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4306 IndexExprs.push_back(getSCEV(*Index));
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004307 return getGEPExpr(GEP->getSourceElementType(),
4308 getSCEV(GEP->getPointerOperand()),
4309 IndexExprs, GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004310}
4311
Nick Lewycky3783b462007-11-22 07:59:40 +00004312/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4313/// guaranteed to end in (at every loop iteration). It is, at the same time,
4314/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4315/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004316uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004317ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004318 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004319 return C->getAPInt().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004320
Dan Gohmana30370b2009-05-04 22:02:23 +00004321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004322 return std::min(GetMinTrailingZeros(T->getOperand()),
4323 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004324
Dan Gohmana30370b2009-05-04 22:02:23 +00004325 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004326 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4327 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4328 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004329 }
4330
Dan Gohmana30370b2009-05-04 22:02:23 +00004331 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004332 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4333 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4334 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004335 }
4336
Dan Gohmana30370b2009-05-04 22:02:23 +00004337 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004338 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004339 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004340 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004341 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004342 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004343 }
4344
Dan Gohmana30370b2009-05-04 22:02:23 +00004345 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004346 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004347 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4348 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004349 for (unsigned i = 1, e = M->getNumOperands();
4350 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004351 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004352 BitWidth);
4353 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004354 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004355
Dan Gohmana30370b2009-05-04 22:02:23 +00004356 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004357 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004358 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004359 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004360 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004361 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004362 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004363
Dan Gohmana30370b2009-05-04 22:02:23 +00004364 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004365 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004366 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004367 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004368 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004369 return MinOpRes;
4370 }
4371
Dan Gohmana30370b2009-05-04 22:02:23 +00004372 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004373 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004374 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004375 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004376 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004377 return MinOpRes;
4378 }
4379
Dan Gohmanc702fc02009-06-19 23:29:04 +00004380 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4381 // For a SCEVUnknown, ask ValueTracking.
4382 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004383 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004384 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4385 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004386 return Zeros.countTrailingOnes();
4387 }
4388
4389 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004390 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004391}
Chris Lattnerd934c702004-04-02 20:23:17 +00004392
Sanjoy Das1f05c512014-10-10 21:22:34 +00004393/// GetRangeFromMetadata - Helper method to assign a range to V from
4394/// metadata present in the IR.
4395static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004396 if (Instruction *I = dyn_cast<Instruction>(V))
4397 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4398 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004399
4400 return None;
4401}
4402
Sanjoy Das91b54772015-03-09 21:43:43 +00004403/// getRange - Determine the range for a particular SCEV. If SignHint is
4404/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4405/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004406///
4407ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004408ScalarEvolution::getRange(const SCEV *S,
4409 ScalarEvolution::RangeSignHint SignHint) {
4410 DenseMap<const SCEV *, ConstantRange> &Cache =
4411 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4412 : SignedRanges;
4413
Dan Gohman761065e2010-11-17 02:44:44 +00004414 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004415 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4416 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004417 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004418
4419 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004420 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004421
Dan Gohman85be4332010-01-26 19:19:05 +00004422 unsigned BitWidth = getTypeSizeInBits(S->getType());
4423 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4424
Sanjoy Das91b54772015-03-09 21:43:43 +00004425 // If the value has known zeros, the maximum value will have those known zeros
4426 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004427 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004428 if (TZ != 0) {
4429 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4430 ConservativeResult =
4431 ConstantRange(APInt::getMinValue(BitWidth),
4432 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4433 else
4434 ConservativeResult = ConstantRange(
4435 APInt::getSignedMinValue(BitWidth),
4436 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4437 }
Dan Gohman85be4332010-01-26 19:19:05 +00004438
Dan Gohmane65c9172009-07-13 21:35:55 +00004439 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004440 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004441 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004442 X = X.add(getRange(Add->getOperand(i), SignHint));
4443 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004444 }
4445
4446 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004447 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004448 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004449 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4450 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004451 }
4452
4453 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004454 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004455 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004456 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4457 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004458 }
4459
4460 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004461 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004462 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004463 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4464 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004465 }
4466
4467 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004468 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4469 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4470 return setRange(UDiv, SignHint,
4471 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004472 }
4473
4474 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004475 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4476 return setRange(ZExt, SignHint,
4477 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004478 }
4479
4480 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004481 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4482 return setRange(SExt, SignHint,
4483 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004484 }
4485
4486 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004487 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4488 return setRange(Trunc, SignHint,
4489 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004490 }
4491
Dan Gohmane65c9172009-07-13 21:35:55 +00004492 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004493 // If there's no unsigned wrap, the value will never be less than its
4494 // initial value.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004495 if (AddRec->hasNoUnsignedWrap())
Dan Gohman51ad99d2010-01-21 02:09:26 +00004496 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004497 if (!C->getValue()->isZero())
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004498 ConservativeResult = ConservativeResult.intersectWith(
4499 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004500
Dan Gohman51ad99d2010-01-21 02:09:26 +00004501 // If there's no signed wrap, and all the operands have the same sign or
4502 // zero, the value won't ever change sign.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004503 if (AddRec->hasNoSignedWrap()) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004504 bool AllNonNeg = true;
4505 bool AllNonPos = true;
4506 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4507 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4508 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4509 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004510 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004511 ConservativeResult = ConservativeResult.intersectWith(
4512 ConstantRange(APInt(BitWidth, 0),
4513 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004514 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004515 ConservativeResult = ConservativeResult.intersectWith(
4516 ConstantRange(APInt::getSignedMinValue(BitWidth),
4517 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004518 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004519
4520 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004521 if (AddRec->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00004522 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004523 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4524 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Dasb765b632016-03-02 00:57:39 +00004525 auto RangeFromAffine = getRangeForAffineAR(
4526 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4527 BitWidth);
4528 if (!RangeFromAffine.isFullSet())
4529 ConservativeResult =
4530 ConservativeResult.intersectWith(RangeFromAffine);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004531
4532 auto RangeFromFactoring = getRangeViaFactoring(
4533 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4534 BitWidth);
4535 if (!RangeFromFactoring.isFullSet())
4536 ConservativeResult =
4537 ConservativeResult.intersectWith(RangeFromFactoring);
Dan Gohmand261d272009-06-24 01:05:09 +00004538 }
Dan Gohmand261d272009-06-24 01:05:09 +00004539 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004540
Sanjoy Das91b54772015-03-09 21:43:43 +00004541 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004542 }
4543
Dan Gohmanc702fc02009-06-19 23:29:04 +00004544 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004545 // Check if the IR explicitly contains !range metadata.
4546 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4547 if (MDRange.hasValue())
4548 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4549
Sanjoy Das91b54772015-03-09 21:43:43 +00004550 // Split here to avoid paying the compile-time cost of calling both
4551 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4552 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004553 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004554 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4555 // For a SCEVUnknown, ask ValueTracking.
4556 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004557 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004558 if (Ones != ~Zeros + 1)
4559 ConservativeResult =
4560 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4561 } else {
4562 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4563 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004564 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004565 if (NS > 1)
4566 ConservativeResult = ConservativeResult.intersectWith(
4567 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4568 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004569 }
4570
4571 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004572 }
4573
Sanjoy Das91b54772015-03-09 21:43:43 +00004574 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004575}
4576
Sanjoy Dasb765b632016-03-02 00:57:39 +00004577ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4578 const SCEV *Step,
4579 const SCEV *MaxBECount,
4580 unsigned BitWidth) {
4581 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4582 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4583 "Precondition!");
4584
4585 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4586
4587 // Check for overflow. This must be done with ConstantRange arithmetic
4588 // because we could be called from within the ScalarEvolution overflow
4589 // checking code.
4590
4591 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4592 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4593 ConstantRange ZExtMaxBECountRange =
4594 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4595
4596 ConstantRange StepSRange = getSignedRange(Step);
4597 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4598
4599 ConstantRange StartURange = getUnsignedRange(Start);
4600 ConstantRange EndURange =
4601 StartURange.add(MaxBECountRange.multiply(StepSRange));
4602
4603 // Check for unsigned overflow.
4604 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4605 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4606 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4607 ZExtEndURange) {
4608 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4609 EndURange.getUnsignedMin());
4610 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4611 EndURange.getUnsignedMax());
4612 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4613 if (!IsFullRange)
4614 Result =
4615 Result.intersectWith(ConstantRange(Min, Max + 1));
4616 }
4617
4618 ConstantRange StartSRange = getSignedRange(Start);
4619 ConstantRange EndSRange =
4620 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4621
4622 // Check for signed overflow. This must be done with ConstantRange
4623 // arithmetic because we could be called from within the ScalarEvolution
4624 // overflow checking code.
4625 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4626 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4627 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4628 SExtEndSRange) {
4629 APInt Min =
4630 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4631 APInt Max =
4632 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4633 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4634 if (!IsFullRange)
4635 Result =
4636 Result.intersectWith(ConstantRange(Min, Max + 1));
4637 }
4638
4639 return Result;
4640}
4641
Sanjoy Dasbf730982016-03-02 00:57:54 +00004642ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4643 const SCEV *Step,
4644 const SCEV *MaxBECount,
4645 unsigned BitWidth) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004646 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4647 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4648
4649 struct SelectPattern {
4650 Value *Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004651 APInt TrueValue;
4652 APInt FalseValue;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004653
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004654 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4655 const SCEV *S) {
4656 Optional<unsigned> CastOp;
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004657 APInt Offset(BitWidth, 0);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004658
4659 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4660 "Should be!");
4661
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004662 // Peel off a constant offset:
4663 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4664 // In the future we could consider being smarter here and handle
4665 // {Start+Step,+,Step} too.
4666 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4667 return;
4668
4669 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4670 S = SA->getOperand(1);
4671 }
4672
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004673 // Peel off a cast operation
4674 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4675 CastOp = SCast->getSCEVType();
4676 S = SCast->getOperand();
4677 }
4678
Sanjoy Dasbf730982016-03-02 00:57:54 +00004679 using namespace llvm::PatternMatch;
4680
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004681 auto *SU = dyn_cast<SCEVUnknown>(S);
4682 const APInt *TrueVal, *FalseVal;
4683 if (!SU ||
4684 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4685 m_APInt(FalseVal)))) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004686 Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004687 return;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004688 }
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004689
4690 TrueValue = *TrueVal;
4691 FalseValue = *FalseVal;
4692
4693 // Re-apply the cast we peeled off earlier
4694 if (CastOp.hasValue())
4695 switch (*CastOp) {
4696 default:
4697 llvm_unreachable("Unknown SCEV cast type!");
4698
4699 case scTruncate:
4700 TrueValue = TrueValue.trunc(BitWidth);
4701 FalseValue = FalseValue.trunc(BitWidth);
4702 break;
4703 case scZeroExtend:
4704 TrueValue = TrueValue.zext(BitWidth);
4705 FalseValue = FalseValue.zext(BitWidth);
4706 break;
4707 case scSignExtend:
4708 TrueValue = TrueValue.sext(BitWidth);
4709 FalseValue = FalseValue.sext(BitWidth);
4710 break;
4711 }
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004712
4713 // Re-apply the constant offset we peeled off earlier
4714 TrueValue += Offset;
4715 FalseValue += Offset;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004716 }
4717
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004718 bool isRecognized() { return Condition != nullptr; }
Sanjoy Dasbf730982016-03-02 00:57:54 +00004719 };
4720
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004721 SelectPattern StartPattern(*this, BitWidth, Start);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004722 if (!StartPattern.isRecognized())
4723 return ConstantRange(BitWidth, /* isFullSet = */ true);
4724
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004725 SelectPattern StepPattern(*this, BitWidth, Step);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004726 if (!StepPattern.isRecognized())
4727 return ConstantRange(BitWidth, /* isFullSet = */ true);
4728
4729 if (StartPattern.Condition != StepPattern.Condition) {
4730 // We don't handle this case today; but we could, by considering four
4731 // possibilities below instead of two. I'm not sure if there are cases where
4732 // that will help over what getRange already does, though.
4733 return ConstantRange(BitWidth, /* isFullSet = */ true);
4734 }
4735
4736 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4737 // construct arbitrary general SCEV expressions here. This function is called
4738 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4739 // say) can end up caching a suboptimal value.
4740
Sanjoy Das6b017a12016-03-02 02:56:29 +00004741 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4742 // C2352 and C2512 (otherwise it isn't needed).
4743
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004744 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004745 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004746 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004747 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
Sanjoy Das62a1c332016-03-02 02:15:42 +00004748
Sanjoy Das1168f932016-03-02 02:34:20 +00004749 ConstantRange TrueRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004750 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
Sanjoy Das1168f932016-03-02 02:34:20 +00004751 ConstantRange FalseRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004752 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004753
4754 return TrueRange.unionWith(FalseRange);
4755}
4756
Jingyue Wu42f1d672015-07-28 18:22:40 +00004757SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004758 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004759 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4760
4761 // Return early if there are no flags to propagate to the SCEV.
4762 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4763 if (BinOp->hasNoUnsignedWrap())
4764 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4765 if (BinOp->hasNoSignedWrap())
4766 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004767 if (Flags == SCEV::FlagAnyWrap)
Jingyue Wu42f1d672015-07-28 18:22:40 +00004768 return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004769
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004770 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4771}
4772
4773bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4774 // Here we check that I is in the header of the innermost loop containing I,
4775 // since we only deal with instructions in the loop header. The actual loop we
4776 // need to check later will come from an add recurrence, but getting that
4777 // requires computing the SCEV of the operands, which can be expensive. This
4778 // check we can do cheaply to rule out some cases early.
4779 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004780 if (InnermostContainingLoop == nullptr ||
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004781 InnermostContainingLoop->getHeader() != I->getParent())
4782 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004783
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004784 // Only proceed if we can prove that I does not yield poison.
4785 if (!isKnownNotFullPoison(I)) return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004786
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004787 // At this point we know that if I is executed, then it does not wrap
4788 // according to at least one of NSW or NUW. If I is not executed, then we do
4789 // not know if the calculation that I represents would wrap. Multiple
4790 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
Jingyue Wu42f1d672015-07-28 18:22:40 +00004791 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4792 // derived from other instructions that map to the same SCEV. We cannot make
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004793 // that guarantee for cases where I is not executed. So we need to find the
4794 // loop that I is considered in relation to and prove that I is executed for
4795 // every iteration of that loop. That implies that the value that I
Jingyue Wu42f1d672015-07-28 18:22:40 +00004796 // calculates does not wrap anywhere in the loop, so then we can apply the
4797 // flags to the SCEV.
4798 //
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004799 // We check isLoopInvariant to disambiguate in case we are adding recurrences
4800 // from different loops, so that we know which loop to prove that I is
4801 // executed in.
4802 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4803 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
Jingyue Wu42f1d672015-07-28 18:22:40 +00004804 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004805 bool AllOtherOpsLoopInvariant = true;
4806 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4807 ++OtherOpIndex) {
4808 if (OtherOpIndex != OpIndex) {
4809 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4810 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4811 AllOtherOpsLoopInvariant = false;
4812 break;
4813 }
4814 }
4815 }
4816 if (AllOtherOpsLoopInvariant &&
4817 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4818 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004819 }
4820 }
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004821 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004822}
4823
4824/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4825/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004826///
Dan Gohmanaf752342009-07-07 17:06:11 +00004827const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004828 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004829 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004830
Dan Gohman69451a02010-03-09 23:46:50 +00004831 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman69451a02010-03-09 23:46:50 +00004832 // Don't attempt to analyze instructions in blocks that aren't
4833 // reachable. Such instructions don't matter, and they aren't required
4834 // to obey basic rules for definitions dominating uses which this
4835 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004836 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004837 return getUnknown(V);
Sanjoy Das260ad4d2016-03-29 16:40:39 +00004838 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohmanf436bac2009-06-24 00:54:57 +00004839 return getConstant(CI);
4840 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004841 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004842 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
Sanjoy Das5ce32722016-04-08 00:48:30 +00004843 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
Sanjoy Das260ad4d2016-03-29 16:40:39 +00004844 else if (!isa<ConstantExpr>(V))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004845 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004846
Dan Gohman80ca01c2009-07-17 20:47:02 +00004847 Operator *U = cast<Operator>(V);
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00004848 if (auto BO = MatchBinaryOp(U)) {
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004849 switch (BO->Opcode) {
4850 case Instruction::Add: {
4851 // The simple thing to do would be to just call getSCEV on both operands
4852 // and call getAddExpr with the result. However if we're looking at a
4853 // bunch of things all added together, this can be quite inefficient,
4854 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4855 // Instead, gather up all the operands and make a single getAddExpr call.
4856 // LLVM IR canonical form means we need only traverse the left operands.
4857 SmallVector<const SCEV *, 4> AddOps;
4858 do {
4859 if (BO->Op) {
4860 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4861 AddOps.push_back(OpSCEV);
4862 break;
4863 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004864
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004865 // If a NUW or NSW flag can be applied to the SCEV for this
4866 // addition, then compute the SCEV for this addition by itself
4867 // with a separate call to getAddExpr. We need to do that
4868 // instead of pushing the operands of the addition onto AddOps,
4869 // since the flags are only known to apply to this particular
4870 // addition - they may not apply to other additions that can be
4871 // formed with operands from AddOps.
4872 const SCEV *RHS = getSCEV(BO->RHS);
4873 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4874 if (Flags != SCEV::FlagAnyWrap) {
4875 const SCEV *LHS = getSCEV(BO->LHS);
4876 if (BO->Opcode == Instruction::Sub)
4877 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4878 else
4879 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4880 break;
4881 }
Dan Gohman36bad002009-09-17 18:05:20 +00004882 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004883
4884 if (BO->Opcode == Instruction::Sub)
4885 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4886 else
4887 AddOps.push_back(getSCEV(BO->RHS));
4888
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00004889 auto NewBO = MatchBinaryOp(BO->LHS);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004890 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4891 NewBO->Opcode != Instruction::Sub)) {
4892 AddOps.push_back(getSCEV(BO->LHS));
4893 break;
4894 }
4895 BO = NewBO;
4896 } while (true);
4897
4898 return getAddExpr(AddOps);
4899 }
4900
4901 case Instruction::Mul: {
4902 SmallVector<const SCEV *, 4> MulOps;
4903 do {
4904 if (BO->Op) {
4905 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4906 MulOps.push_back(OpSCEV);
4907 break;
4908 }
4909
4910 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4911 if (Flags != SCEV::FlagAnyWrap) {
4912 MulOps.push_back(
4913 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
4914 break;
4915 }
4916 }
4917
4918 MulOps.push_back(getSCEV(BO->RHS));
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00004919 auto NewBO = MatchBinaryOp(BO->LHS);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004920 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
4921 MulOps.push_back(getSCEV(BO->LHS));
4922 break;
4923 }
4924 BO = NewBO;
4925 } while (true);
4926
4927 return getMulExpr(MulOps);
4928 }
4929 case Instruction::UDiv:
4930 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
4931 case Instruction::Sub: {
4932 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4933 if (BO->Op)
4934 Flags = getNoWrapFlagsFromUB(BO->Op);
4935 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
4936 }
4937 case Instruction::And:
4938 // For an expression like x&255 that merely masks off the high bits,
4939 // use zext(trunc(x)) as the SCEV expression.
4940 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4941 if (CI->isNullValue())
4942 return getSCEV(BO->RHS);
4943 if (CI->isAllOnesValue())
4944 return getSCEV(BO->LHS);
4945 const APInt &A = CI->getValue();
4946
4947 // Instcombine's ShrinkDemandedConstant may strip bits out of
4948 // constants, obscuring what would otherwise be a low-bits mask.
4949 // Use computeKnownBits to compute what ShrinkDemandedConstant
4950 // knew about to reconstruct a low-bits mask value.
4951 unsigned LZ = A.countLeadingZeros();
4952 unsigned TZ = A.countTrailingZeros();
4953 unsigned BitWidth = A.getBitWidth();
4954 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4955 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
4956 0, &AC, nullptr, &DT);
4957
4958 APInt EffectiveMask =
4959 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4960 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4961 const SCEV *MulCount = getConstant(ConstantInt::get(
4962 getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4963 return getMulExpr(
4964 getZeroExtendExpr(
4965 getTruncateExpr(
4966 getUDivExactExpr(getSCEV(BO->LHS), MulCount),
4967 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4968 BO->LHS->getType()),
4969 MulCount);
4970 }
Dan Gohman36bad002009-09-17 18:05:20 +00004971 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004972 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004973
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004974 case Instruction::Or:
4975 // If the RHS of the Or is a constant, we may have something like:
4976 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4977 // optimizations will transparently handle this case.
4978 //
4979 // In order for this transformation to be safe, the LHS must be of the
4980 // form X*(2^n) and the Or constant must be less than 2^n.
4981 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4982 const SCEV *LHS = getSCEV(BO->LHS);
4983 const APInt &CIVal = CI->getValue();
4984 if (GetMinTrailingZeros(LHS) >=
4985 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4986 // Build a plain add SCEV.
4987 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4988 // If the LHS of the add was an addrec and it has no-wrap flags,
4989 // transfer the no-wrap flags, since an or won't introduce a wrap.
4990 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4991 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4992 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4993 OldAR->getNoWrapFlags());
4994 }
4995 return S;
4996 }
4997 }
4998 break;
Dan Gohman6350296e2009-05-18 16:29:04 +00004999
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005000 case Instruction::Xor:
5001 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5002 // If the RHS of xor is -1, then this is a not operation.
5003 if (CI->isAllOnesValue())
5004 return getNotSCEV(getSCEV(BO->LHS));
Dan Gohmaneddf7712009-06-18 00:00:20 +00005005
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005006 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5007 // This is a variant of the check for xor with -1, and it handles
5008 // the case where instcombine has trimmed non-demanded bits out
5009 // of an xor with -1.
5010 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5011 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5012 if (LBO->getOpcode() == Instruction::And &&
5013 LCI->getValue() == CI->getValue())
5014 if (const SCEVZeroExtendExpr *Z =
5015 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5016 Type *UTy = BO->LHS->getType();
5017 const SCEV *Z0 = Z->getOperand();
5018 Type *Z0Ty = Z0->getType();
5019 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
Dan Gohmaneddf7712009-06-18 00:00:20 +00005020
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005021 // If C is a low-bits mask, the zero extend is serving to
5022 // mask off the high bits. Complement the operand and
5023 // re-apply the zext.
5024 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5025 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5026
5027 // If C is a single bit, it may be in the sign-bit position
5028 // before the zero-extend. In this case, represent the xor
5029 // using an add, which is equivalent, and re-apply the zext.
5030 APInt Trunc = CI->getValue().trunc(Z0TySize);
5031 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5032 Trunc.isSignBit())
5033 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5034 UTy);
5035 }
5036 }
5037 break;
Dan Gohman05e89732008-06-22 19:56:46 +00005038
5039 case Instruction::Shl:
5040 // Turn shift left of a constant amount into a multiply.
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005041 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5042 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00005043
5044 // If the shift count is not less than the bitwidth, the result of
5045 // the shift is undefined. Don't try to analyze it, because the
5046 // resolution chosen here may differ from the resolution chosen in
5047 // other parts of the compiler.
5048 if (SA->getValue().uge(BitWidth))
5049 break;
5050
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005051 // It is currently not resolved how to interpret NSW for left
5052 // shift by BitWidth - 1, so we avoid applying flags in that
5053 // case. Remove this check (or this comment) once the situation
5054 // is resolved. See
5055 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5056 // and http://reviews.llvm.org/D8890 .
5057 auto Flags = SCEV::FlagAnyWrap;
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005058 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5059 Flags = getNoWrapFlagsFromUB(BO->Op);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005060
Owen Andersonedb4a702009-07-24 23:12:02 +00005061 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00005062 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005063 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00005064 }
5065 break;
5066
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005067 case Instruction::AShr:
5068 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5069 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5070 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5071 if (L->getOpcode() == Instruction::Shl &&
5072 L->getOperand(1) == BO->RHS) {
5073 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
Dan Gohmanacd700a2010-04-22 01:35:11 +00005074
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005075 // If the shift count is not less than the bitwidth, the result of
5076 // the shift is undefined. Don't try to analyze it, because the
5077 // resolution chosen here may differ from the resolution chosen in
5078 // other parts of the compiler.
5079 if (CI->getValue().uge(BitWidth))
5080 break;
Dan Gohmanacd700a2010-04-22 01:35:11 +00005081
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005082 uint64_t Amt = BitWidth - CI->getZExtValue();
5083 if (Amt == BitWidth)
5084 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5085 return getSignExtendExpr(
5086 getTruncateExpr(getSCEV(L->getOperand(0)),
5087 IntegerType::get(getContext(), Amt)),
5088 BO->LHS->getType());
5089 }
5090 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005091 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005092 }
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005093
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005094 switch (U->getOpcode()) {
Dan Gohman05e89732008-06-22 19:56:46 +00005095 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005096 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005097
5098 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005099 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005100
5101 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005102 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005103
5104 case Instruction::BitCast:
5105 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00005106 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00005107 return getSCEV(U->getOperand(0));
5108 break;
5109
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00005110 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5111 // lead to pointer expressions which cannot safely be expanded to GEPs,
5112 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5113 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00005114
Dan Gohmanee750d12009-05-08 20:26:55 +00005115 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00005116 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00005117
Dan Gohman05e89732008-06-22 19:56:46 +00005118 case Instruction::PHI:
5119 return createNodeForPHI(cast<PHINode>(U));
5120
5121 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00005122 // U can also be a select constant expr, which let fall through. Since
5123 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5124 // constant expressions cannot have instructions as operands, we'd have
5125 // returned getUnknown for a select constant expressions anyway.
5126 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00005127 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5128 U->getOperand(1), U->getOperand(2));
Chris Lattnerd934c702004-04-02 20:23:17 +00005129 }
5130
Dan Gohmanc8e23622009-04-21 23:15:49 +00005131 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005132}
5133
5134
5135
5136//===----------------------------------------------------------------------===//
5137// Iteration Count Computation Code
5138//
5139
Chandler Carruth6666c272014-10-11 00:12:11 +00005140unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5141 if (BasicBlock *ExitingBB = L->getExitingBlock())
5142 return getSmallConstantTripCount(L, ExitingBB);
5143
5144 // No trip count information for multiple exits.
5145 return 0;
5146}
5147
Andrew Trick2b6860f2011-08-11 23:36:16 +00005148/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00005149/// normal unsigned value. Returns 0 if the trip count is unknown or not
5150/// constant. Will also return 0 if the maximum trip count is very large (>=
5151/// 2^32).
5152///
5153/// This "trip count" assumes that control exits via ExitingBlock. More
5154/// precisely, it is the number of times that control may reach ExitingBlock
5155/// before taking the branch. For loops with multiple exits, it may not be the
5156/// number times that the loop header executes because the loop may exit
5157/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005158unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5159 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005160 assert(ExitingBlock && "Must pass a non-null exiting block!");
5161 assert(L->isLoopExiting(ExitingBlock) &&
5162 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00005163 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005164 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005165 if (!ExitCount)
5166 return 0;
5167
5168 ConstantInt *ExitConst = ExitCount->getValue();
5169
5170 // Guard against huge trip counts.
5171 if (ExitConst->getValue().getActiveBits() > 32)
5172 return 0;
5173
5174 // In case of integer overflow, this returns 0, which is correct.
5175 return ((unsigned)ExitConst->getZExtValue()) + 1;
5176}
5177
Chandler Carruth6666c272014-10-11 00:12:11 +00005178unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5179 if (BasicBlock *ExitingBB = L->getExitingBlock())
5180 return getSmallConstantTripMultiple(L, ExitingBB);
5181
5182 // No trip multiple information for multiple exits.
5183 return 0;
5184}
5185
Andrew Trick2b6860f2011-08-11 23:36:16 +00005186/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
5187/// trip count of this loop as a normal unsigned value, if possible. This
5188/// means that the actual trip count is always a multiple of the returned
5189/// value (don't forget the trip count could very well be zero as well!).
5190///
5191/// Returns 1 if the trip count is unknown or not guaranteed to be the
5192/// multiple of a constant (which is also the case if the trip count is simply
5193/// constant, use getSmallConstantTripCount for that case), Will also return 1
5194/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00005195///
5196/// As explained in the comments for getSmallConstantTripCount, this assumes
5197/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005198unsigned
5199ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5200 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005201 assert(ExitingBlock && "Must pass a non-null exiting block!");
5202 assert(L->isLoopExiting(ExitingBlock) &&
5203 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005204 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00005205 if (ExitCount == getCouldNotCompute())
5206 return 1;
5207
5208 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005209 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005210 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5211 // to factor simple cases.
5212 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5213 TCMul = Mul->getOperand(0);
5214
5215 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5216 if (!MulC)
5217 return 1;
5218
5219 ConstantInt *Result = MulC->getValue();
5220
Hal Finkel30bd9342012-10-24 19:46:44 +00005221 // Guard against huge trip counts (this requires checking
5222 // for zero to handle the case where the trip count == -1 and the
5223 // addition wraps).
5224 if (!Result || Result->getValue().getActiveBits() > 32 ||
5225 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00005226 return 1;
5227
5228 return (unsigned)Result->getZExtValue();
5229}
5230
Andrew Trick3ca3f982011-07-26 17:19:55 +00005231// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00005232// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00005233// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00005234const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5235 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005236}
5237
Silviu Baranga6f444df2016-04-08 14:29:09 +00005238const SCEV *
5239ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5240 SCEVUnionPredicate &Preds) {
5241 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5242}
5243
Dan Gohman0bddac12009-02-24 18:55:53 +00005244/// getBackedgeTakenCount - If the specified loop has a predictable
5245/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
5246/// object. The backedge-taken count is the number of times the loop header
5247/// will be branched to from within the loop. This is one less than the
5248/// trip count of the loop, since it doesn't count the first iteration,
5249/// when the header is branched to from outside the loop.
5250///
5251/// Note that it is not valid to call this method on a loop without a
5252/// loop-invariant backedge-taken count (see
5253/// hasLoopInvariantBackedgeTakenCount).
5254///
Dan Gohmanaf752342009-07-07 17:06:11 +00005255const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005256 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005257}
5258
5259/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5260/// return the least SCEV value that is known never to be less than the
5261/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00005262const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005263 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005264}
5265
Dan Gohmandc191042009-07-08 19:23:34 +00005266/// PushLoopPHIs - Push PHI nodes in the header of the given loop
5267/// onto the given Worklist.
5268static void
5269PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5270 BasicBlock *Header = L->getHeader();
5271
5272 // Push all Loop-header PHIs onto the Worklist stack.
5273 for (BasicBlock::iterator I = Header->begin();
5274 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5275 Worklist.push_back(PN);
5276}
5277
Dan Gohman2b8da352009-04-30 20:47:05 +00005278const ScalarEvolution::BackedgeTakenInfo &
Silviu Baranga6f444df2016-04-08 14:29:09 +00005279ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5280 auto &BTI = getBackedgeTakenInfo(L);
5281 if (BTI.hasFullInfo())
5282 return BTI;
5283
5284 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5285
5286 if (!Pair.second)
5287 return Pair.first->second;
5288
5289 BackedgeTakenInfo Result =
5290 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5291
5292 return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5293}
5294
5295const ScalarEvolution::BackedgeTakenInfo &
Dan Gohman2b8da352009-04-30 20:47:05 +00005296ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005297 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00005298 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00005299 // update the value. The temporary CouldNotCompute value tells SCEV
5300 // code elsewhere that it shouldn't attempt to request a new
5301 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00005302 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00005303 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
Chris Lattnera337f5e2011-01-09 02:16:18 +00005304 if (!Pair.second)
5305 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00005306
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005307 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00005308 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5309 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005310 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005311
5312 if (Result.getExact(this) != getCouldNotCompute()) {
5313 assert(isLoopInvariant(Result.getExact(this), L) &&
5314 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00005315 "Computed backedge-taken count isn't loop invariant for loop!");
5316 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005317 }
5318 else if (Result.getMax(this) == getCouldNotCompute() &&
5319 isa<PHINode>(L->getHeader()->begin())) {
5320 // Only count loops that have phi nodes as not being computable.
5321 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00005322 }
Dan Gohman2b8da352009-04-30 20:47:05 +00005323
Chris Lattnera337f5e2011-01-09 02:16:18 +00005324 // Now that we know more about the trip count for this loop, forget any
5325 // existing SCEV values for PHI nodes in this loop since they are only
5326 // conservative estimates made without the benefit of trip count
5327 // information. This is similar to the code in forgetLoop, except that
5328 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005329 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00005330 SmallVector<Instruction *, 16> Worklist;
5331 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005332
Chris Lattnera337f5e2011-01-09 02:16:18 +00005333 SmallPtrSet<Instruction *, 8> Visited;
5334 while (!Worklist.empty()) {
5335 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005336 if (!Visited.insert(I).second)
5337 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005338
Chris Lattnera337f5e2011-01-09 02:16:18 +00005339 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005340 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00005341 if (It != ValueExprMap.end()) {
5342 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00005343
Chris Lattnera337f5e2011-01-09 02:16:18 +00005344 // SCEVUnknown for a PHI either means that it has an unrecognized
5345 // structure, or it's a PHI that's in the progress of being computed
5346 // by createNodeForPHI. In the former case, additional loop trip
5347 // count information isn't going to change anything. In the later
5348 // case, createNodeForPHI will perform the necessary updates on its
5349 // own when it gets to that point.
5350 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5351 forgetMemoizedResults(Old);
5352 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005353 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005354 if (PHINode *PN = dyn_cast<PHINode>(I))
5355 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005356 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005357
5358 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005359 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005360 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005361
5362 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005363 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005364 // recusive call to getBackedgeTakenInfo (on a different
5365 // loop), which would invalidate the iterator computed
5366 // earlier.
5367 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005368}
5369
Dan Gohman880c92a2009-10-31 15:04:55 +00005370/// forgetLoop - This method should be called by the client when it has
5371/// changed a loop in a way that may effect ScalarEvolution's ability to
5372/// compute a trip count, or if the loop is deleted.
5373void ScalarEvolution::forgetLoop(const Loop *L) {
5374 // Drop any stored trip count value.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005375 auto RemoveLoopFromBackedgeMap =
5376 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5377 auto BTCPos = Map.find(L);
5378 if (BTCPos != Map.end()) {
5379 BTCPos->second.clear();
5380 Map.erase(BTCPos);
5381 }
5382 };
5383
5384 RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5385 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohmanf1505722009-05-02 17:43:35 +00005386
Dan Gohman880c92a2009-10-31 15:04:55 +00005387 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005388 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005389 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005390
Dan Gohmandc191042009-07-08 19:23:34 +00005391 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005392 while (!Worklist.empty()) {
5393 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005394 if (!Visited.insert(I).second)
5395 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005396
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005397 ValueExprMapType::iterator It =
5398 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005399 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005400 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005401 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005402 if (PHINode *PN = dyn_cast<PHINode>(I))
5403 ConstantEvolutionLoopExitValue.erase(PN);
5404 }
5405
5406 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005407 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005408
5409 // Forget all contained loops too, to avoid dangling entries in the
5410 // ValuesAtScopes map.
5411 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5412 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005413}
5414
Eric Christopheref6d5932010-07-29 01:25:38 +00005415/// forgetValue - This method should be called by the client when it has
5416/// changed a value in a way that may effect its value, or which may
5417/// disconnect it from a def-use chain linking it to a loop.
5418void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005419 Instruction *I = dyn_cast<Instruction>(V);
5420 if (!I) return;
5421
5422 // Drop information about expressions based on loop-header PHIs.
5423 SmallVector<Instruction *, 16> Worklist;
5424 Worklist.push_back(I);
5425
5426 SmallPtrSet<Instruction *, 8> Visited;
5427 while (!Worklist.empty()) {
5428 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005429 if (!Visited.insert(I).second)
5430 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005431
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005432 ValueExprMapType::iterator It =
5433 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005434 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005435 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005436 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005437 if (PHINode *PN = dyn_cast<PHINode>(I))
5438 ConstantEvolutionLoopExitValue.erase(PN);
5439 }
5440
5441 PushDefUseChildren(I, Worklist);
5442 }
5443}
5444
Andrew Trick3ca3f982011-07-26 17:19:55 +00005445/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005446/// exits. A computable result can only be returned for loops with a single
5447/// exit. Returning the minimum taken count among all exits is incorrect
5448/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5449/// assumes that the limit of each loop test is never skipped. This is a valid
5450/// assumption as long as the loop exits via that test. For precise results, it
5451/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005452/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005453const SCEV *
Silviu Baranga6f444df2016-04-08 14:29:09 +00005454ScalarEvolution::BackedgeTakenInfo::getExact(
5455 ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005456 // If any exits were not computable, the loop is not computable.
5457 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5458
Andrew Trick90c7a102011-11-16 00:52:40 +00005459 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005460 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005461 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5462
Craig Topper9f008862014-04-15 04:59:12 +00005463 const SCEV *BECount = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005464 for (auto &ENT : ExitNotTaken) {
5465 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005466
5467 if (!BECount)
Silviu Baranga6f444df2016-04-08 14:29:09 +00005468 BECount = ENT.ExactNotTaken;
5469 else if (BECount != ENT.ExactNotTaken)
Andrew Trick90c7a102011-11-16 00:52:40 +00005470 return SE->getCouldNotCompute();
Silviu Baranga6f444df2016-04-08 14:29:09 +00005471 if (Preds && ENT.getPred())
5472 Preds->add(ENT.getPred());
5473
5474 assert((Preds || ENT.hasAlwaysTruePred()) &&
5475 "Predicate should be always true!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005476 }
Silviu Baranga6f444df2016-04-08 14:29:09 +00005477
Andrew Trickbbb226a2011-09-02 21:20:46 +00005478 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005479 return BECount;
5480}
5481
5482/// getExact - Get the exact not taken count for this loop exit.
5483const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005484ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005485 ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005486 for (auto &ENT : ExitNotTaken)
5487 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5488 return ENT.ExactNotTaken;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005489
Andrew Trick3ca3f982011-07-26 17:19:55 +00005490 return SE->getCouldNotCompute();
5491}
5492
5493/// getMax - Get the max backedge taken count for the loop.
5494const SCEV *
5495ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005496 for (auto &ENT : ExitNotTaken)
5497 if (!ENT.hasAlwaysTruePred())
5498 return SE->getCouldNotCompute();
5499
Andrew Trick3ca3f982011-07-26 17:19:55 +00005500 return Max ? Max : SE->getCouldNotCompute();
5501}
5502
Andrew Trick9093e152013-03-26 03:14:53 +00005503bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5504 ScalarEvolution *SE) const {
5505 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5506 return true;
5507
5508 if (!ExitNotTaken.ExitingBlock)
5509 return false;
5510
Silviu Baranga6f444df2016-04-08 14:29:09 +00005511 for (auto &ENT : ExitNotTaken)
5512 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5513 SE->hasOperand(ENT.ExactNotTaken, S))
Silviu Barangaa393baf2016-04-06 14:06:32 +00005514 return true;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005515
Andrew Trick9093e152013-03-26 03:14:53 +00005516 return false;
5517}
5518
Andrew Trick3ca3f982011-07-26 17:19:55 +00005519/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5520/// computable exit into a persistent ExitNotTakenInfo array.
5521ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
Silviu Baranga6f444df2016-04-08 14:29:09 +00005522 SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5523 : Max(MaxCount) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005524
5525 if (!Complete)
5526 ExitNotTaken.setIncomplete();
5527
5528 unsigned NumExits = ExitCounts.size();
5529 if (NumExits == 0) return;
5530
Silviu Baranga6f444df2016-04-08 14:29:09 +00005531 ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5532 ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5533
5534 // Determine the number of ExitNotTakenExtras structures that we need.
5535 unsigned ExtraInfoSize = 0;
5536 if (NumExits > 1)
5537 ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5538 ExitCounts.end(), [](EdgeInfo &Entry) {
5539 return !Entry.Pred.isAlwaysTrue();
5540 });
5541 else if (!ExitCounts[0].Pred.isAlwaysTrue())
5542 ExtraInfoSize = 1;
5543
5544 ExitNotTakenExtras *ENT = nullptr;
5545
5546 // Allocate the ExitNotTakenExtras structures and initialize the first
5547 // element (ExitNotTaken).
5548 if (ExtraInfoSize > 0) {
5549 ENT = new ExitNotTakenExtras[ExtraInfoSize];
5550 ExitNotTaken.ExtraInfo = &ENT[0];
5551 *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5552 }
5553
5554 if (NumExits == 1)
5555 return;
5556
5557 auto &Exits = ExitNotTaken.ExtraInfo->Exits;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005558
5559 // Handle the rare case of multiple computable exits.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005560 for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5561 ExitNotTakenExtras *Ptr = nullptr;
5562 if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5563 Ptr = &ENT[PredPos++];
5564 Ptr->Pred = std::move(ExitCounts[i].Pred);
5565 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005566
Silviu Baranga6f444df2016-04-08 14:29:09 +00005567 Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005568 }
5569}
5570
5571/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5572void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005573 ExitNotTaken.ExitingBlock = nullptr;
5574 ExitNotTaken.ExactNotTaken = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005575 delete[] ExitNotTaken.ExtraInfo;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005576}
5577
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005578/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005579/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005580ScalarEvolution::BackedgeTakenInfo
Silviu Baranga6f444df2016-04-08 14:29:09 +00005581ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5582 bool AllowPredicates) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005583 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005584 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005585
Silviu Baranga6f444df2016-04-08 14:29:09 +00005586 SmallVector<EdgeInfo, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005587 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005588 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005589 const SCEV *MustExitMaxBECount = nullptr;
5590 const SCEV *MayExitMaxBECount = nullptr;
5591
5592 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5593 // and compute maxBECount.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005594 // Do a union of all the predicates here.
Dan Gohman96212b62009-06-22 00:31:57 +00005595 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005596 BasicBlock *ExitBB = ExitingBlocks[i];
Silviu Baranga6f444df2016-04-08 14:29:09 +00005597 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5598
5599 assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5600 "Predicated exit limit when predicates are not allowed!");
Andrew Trick839e30b2014-05-23 19:47:13 +00005601
5602 // 1. For each exit that can be computed, add an entry to ExitCounts.
5603 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005604 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005605 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005606 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005607 CouldComputeBECount = false;
5608 else
Silviu Baranga6f444df2016-04-08 14:29:09 +00005609 ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005610
Andrew Trick839e30b2014-05-23 19:47:13 +00005611 // 2. Derive the loop's MaxBECount from each exit's max number of
5612 // non-exiting iterations. Partition the loop exits into two kinds:
5613 // LoopMustExits and LoopMayExits.
5614 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005615 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5616 // is a LoopMayExit. If any computable LoopMustExit is found, then
5617 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5618 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5619 // considered greater than any computable EL.Max.
5620 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005621 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005622 if (!MustExitMaxBECount)
5623 MustExitMaxBECount = EL.Max;
5624 else {
5625 MustExitMaxBECount =
5626 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005627 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005628 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5629 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5630 MayExitMaxBECount = EL.Max;
5631 else {
5632 MayExitMaxBECount =
5633 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5634 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005635 }
Dan Gohman96212b62009-06-22 00:31:57 +00005636 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005637 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5638 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005639 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005640}
5641
Andrew Trick3ca3f982011-07-26 17:19:55 +00005642ScalarEvolution::ExitLimit
Silviu Baranga6f444df2016-04-08 14:29:09 +00005643ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5644 bool AllowPredicates) {
Dan Gohman96212b62009-06-22 00:31:57 +00005645
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005646 // Okay, we've chosen an exiting block. See what condition causes us to exit
5647 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005648 // lead to the loop header.
5649 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005650 BasicBlock *Exit = nullptr;
Sanjoy Das0ff07872016-01-19 20:53:46 +00005651 for (auto *SBB : successors(ExitingBlock))
5652 if (!L->contains(SBB)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005653 if (Exit) // Multiple exit successors.
5654 return getCouldNotCompute();
Sanjoy Das0ff07872016-01-19 20:53:46 +00005655 Exit = SBB;
5656 } else if (SBB != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005657 MustExecuteLoopHeader = false;
5658 }
Dan Gohmance973df2009-06-24 04:48:43 +00005659
Chris Lattner18954852007-01-07 02:24:26 +00005660 // At this point, we know we have a conditional branch that determines whether
5661 // the loop is exited. However, we don't know if the branch is executed each
5662 // time through the loop. If not, then the execution count of the branch will
5663 // not be equal to the trip count of the loop.
5664 //
5665 // Currently we check for this by checking to see if the Exit branch goes to
5666 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005667 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005668 // loop header. This is common for un-rotated loops.
5669 //
5670 // If both of those tests fail, walk up the unique predecessor chain to the
5671 // header, stopping if there is an edge that doesn't exit the loop. If the
5672 // header is reached, the execution count of the branch will be equal to the
5673 // trip count of the loop.
5674 //
5675 // More extensive analysis could be done to handle more cases here.
5676 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005677 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005678 // The simple checks failed, try climbing the unique predecessor chain
5679 // up to the header.
5680 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005681 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005682 BasicBlock *Pred = BB->getUniquePredecessor();
5683 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005684 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005685 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005686 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005687 if (PredSucc == BB)
5688 continue;
5689 // If the predecessor has a successor that isn't BB and isn't
5690 // outside the loop, assume the worst.
5691 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005692 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005693 }
5694 if (Pred == L->getHeader()) {
5695 Ok = true;
5696 break;
5697 }
5698 BB = Pred;
5699 }
5700 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005701 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005702 }
5703
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005704 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005705 TerminatorInst *Term = ExitingBlock->getTerminator();
5706 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5707 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5708 // Proceed to the next level to examine the exit condition expression.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005709 return computeExitLimitFromCond(
5710 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5711 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005712 }
5713
5714 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005715 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005716 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005717
5718 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005719}
5720
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005721/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005722/// backedge of the specified loop will execute if its exit condition
5723/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005724///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005725/// @param ControlsExit is true if ExitCond directly controls the exit
5726/// branch. In this case, we can assume that the loop exits only if the
5727/// condition is true and can infer that failing to meet the condition prior to
5728/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005729ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005730ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005731 Value *ExitCond,
5732 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005733 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005734 bool ControlsExit,
5735 bool AllowPredicates) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005736 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005737 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5738 if (BO->getOpcode() == Instruction::And) {
5739 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005740 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005741 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005742 ControlsExit && !EitherMayExit,
5743 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005744 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005745 ControlsExit && !EitherMayExit,
5746 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005747 const SCEV *BECount = getCouldNotCompute();
5748 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005749 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005750 // Both conditions must be true for the loop to continue executing.
5751 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005752 if (EL0.Exact == getCouldNotCompute() ||
5753 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005754 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005755 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005756 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5757 if (EL0.Max == getCouldNotCompute())
5758 MaxBECount = EL1.Max;
5759 else if (EL1.Max == getCouldNotCompute())
5760 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005761 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005762 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005763 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005764 // Both conditions must be true at the same time for the loop to exit.
5765 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005766 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005767 if (EL0.Max == EL1.Max)
5768 MaxBECount = EL0.Max;
5769 if (EL0.Exact == EL1.Exact)
5770 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005771 }
5772
Silviu Baranga6f444df2016-04-08 14:29:09 +00005773 SCEVUnionPredicate NP;
5774 NP.add(&EL0.Pred);
5775 NP.add(&EL1.Pred);
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005776 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5777 // to be more aggressive when computing BECount than when computing
5778 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5779 // to match, but for EL0.Max and EL1.Max to not.
5780 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5781 !isa<SCEVCouldNotCompute>(BECount))
5782 MaxBECount = BECount;
5783
Silviu Baranga6f444df2016-04-08 14:29:09 +00005784 return ExitLimit(BECount, MaxBECount, NP);
Dan Gohman96212b62009-06-22 00:31:57 +00005785 }
5786 if (BO->getOpcode() == Instruction::Or) {
5787 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005788 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005789 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005790 ControlsExit && !EitherMayExit,
5791 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005792 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005793 ControlsExit && !EitherMayExit,
5794 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005795 const SCEV *BECount = getCouldNotCompute();
5796 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005797 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005798 // Both conditions must be false for the loop to continue executing.
5799 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005800 if (EL0.Exact == getCouldNotCompute() ||
5801 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005802 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005803 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005804 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5805 if (EL0.Max == getCouldNotCompute())
5806 MaxBECount = EL1.Max;
5807 else if (EL1.Max == getCouldNotCompute())
5808 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005809 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005810 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005811 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005812 // Both conditions must be false at the same time for the loop to exit.
5813 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005814 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005815 if (EL0.Max == EL1.Max)
5816 MaxBECount = EL0.Max;
5817 if (EL0.Exact == EL1.Exact)
5818 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005819 }
5820
Silviu Baranga6f444df2016-04-08 14:29:09 +00005821 SCEVUnionPredicate NP;
5822 NP.add(&EL0.Pred);
5823 NP.add(&EL1.Pred);
5824 return ExitLimit(BECount, MaxBECount, NP);
Dan Gohman96212b62009-06-22 00:31:57 +00005825 }
5826 }
5827
5828 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005829 // Proceed to the next level to examine the icmp.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005830 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5831 ExitLimit EL =
5832 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5833 if (EL.hasFullInfo() || !AllowPredicates)
5834 return EL;
5835
5836 // Try again, but use SCEV predicates this time.
5837 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5838 /*AllowPredicates=*/true);
5839 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005840
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005841 // Check for a constant condition. These are normally stripped out by
5842 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5843 // preserve the CFG and is temporarily leaving constant conditions
5844 // in place.
5845 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5846 if (L->contains(FBB) == !CI->getZExtValue())
5847 // The backedge is always taken.
5848 return getCouldNotCompute();
5849 else
5850 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005851 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005852 }
5853
Eli Friedmanebf98b02009-05-09 12:32:42 +00005854 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005855 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005856}
5857
Andrew Trick3ca3f982011-07-26 17:19:55 +00005858ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005859ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005860 ICmpInst *ExitCond,
5861 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005862 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005863 bool ControlsExit,
5864 bool AllowPredicates) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005865
Reid Spencer266e42b2006-12-23 06:05:41 +00005866 // If the condition was exit on true, convert the condition to exit on false
5867 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005868 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005869 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005870 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005871 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005872
5873 // Handle common loops like: for (X = "string"; *X; ++X)
5874 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5875 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005876 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005877 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005878 if (ItCnt.hasAnyInfo())
5879 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005880 }
5881
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005882 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5883 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5884 if (ShiftEL.hasAnyInfo())
5885 return ShiftEL;
5886
Dan Gohmanaf752342009-07-07 17:06:11 +00005887 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5888 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005889
5890 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005891 LHS = getSCEVAtScope(LHS, L);
5892 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005893
Dan Gohmance973df2009-06-24 04:48:43 +00005894 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005895 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005896 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005897 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005898 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005899 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005900 }
5901
Dan Gohman81585c12010-05-03 16:35:17 +00005902 // Simplify the operands before analyzing them.
5903 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5904
Chris Lattnerd934c702004-04-02 20:23:17 +00005905 // If we have a comparison of a chrec against a constant, try to use value
5906 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005907 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5908 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005909 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005910 // Form the constant range.
5911 ConstantRange CompRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00005912 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005913
Dan Gohmanaf752342009-07-07 17:06:11 +00005914 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005915 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005916 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005917
Chris Lattnerd934c702004-04-02 20:23:17 +00005918 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005919 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005920 // Convert to: while (X-Y != 0)
Silviu Baranga6f444df2016-04-08 14:29:09 +00005921 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
5922 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005923 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005924 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005925 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005926 case ICmpInst::ICMP_EQ: { // while (X == Y)
5927 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005928 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5929 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005930 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005931 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005932 case ICmpInst::ICMP_SLT:
5933 case ICmpInst::ICMP_ULT: { // while (X < Y)
5934 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005935 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
5936 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005937 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005938 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005939 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005940 case ICmpInst::ICMP_SGT:
5941 case ICmpInst::ICMP_UGT: { // while (X > Y)
5942 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005943 ExitLimit EL =
5944 HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
5945 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005946 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005947 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005948 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005949 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005950 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005951 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005952 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005953}
5954
Benjamin Kramer5a188542014-02-11 15:44:32 +00005955ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005956ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005957 SwitchInst *Switch,
5958 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005959 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005960 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5961
5962 // Give up if the exit is the default dest of a switch.
5963 if (Switch->getDefaultDest() == ExitingBlock)
5964 return getCouldNotCompute();
5965
5966 assert(L->contains(Switch->getDefaultDest()) &&
5967 "Default case must not exit the loop!");
5968 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5969 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5970
5971 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005972 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005973 if (EL.hasAnyInfo())
5974 return EL;
5975
5976 return getCouldNotCompute();
5977}
5978
Chris Lattnerec901cc2004-10-12 01:49:27 +00005979static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005980EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5981 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005982 const SCEV *InVal = SE.getConstant(C);
5983 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005984 assert(isa<SCEVConstant>(Val) &&
5985 "Evaluation of SCEV at constant didn't fold correctly?");
5986 return cast<SCEVConstant>(Val)->getValue();
5987}
5988
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005989/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005990/// 'icmp op load X, cst', try to see if we can compute the backedge
5991/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005992ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005993ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005994 LoadInst *LI,
5995 Constant *RHS,
5996 const Loop *L,
5997 ICmpInst::Predicate predicate) {
5998
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005999 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006000
6001 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00006002 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006003 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006004 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006005
6006 // Make sure that it is really a constant global we are gepping, with an
6007 // initializer, and make sure the first IDX is really 0.
6008 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00006009 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006010 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6011 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006012 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006013
6014 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00006015 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00006016 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00006017 unsigned VarIdxNum = 0;
6018 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6019 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6020 Indexes.push_back(CI);
6021 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006022 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006023 VarIdx = GEP->getOperand(i);
6024 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00006025 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006026 }
6027
Andrew Trick7004e4b2012-03-26 22:33:59 +00006028 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6029 if (!VarIdx)
6030 return getCouldNotCompute();
6031
Chris Lattnerec901cc2004-10-12 01:49:27 +00006032 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6033 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006034 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00006035 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006036
6037 // We can only recognize very limited forms of loop index expressions, in
6038 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00006039 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00006040 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006041 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6042 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006043 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006044
6045 unsigned MaxSteps = MaxBruteForceIterations;
6046 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00006047 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00006048 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00006049 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006050
6051 // Form the GEP offset.
6052 Indexes[VarIdxNum] = Val;
6053
Chris Lattnere166a852012-01-24 05:49:24 +00006054 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6055 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00006056 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006057
6058 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00006059 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00006060 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00006061 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00006062 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00006063 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006064 }
6065 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006066 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006067}
6068
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006069ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6070 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6071 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6072 if (!RHS)
6073 return getCouldNotCompute();
6074
6075 const BasicBlock *Latch = L->getLoopLatch();
6076 if (!Latch)
6077 return getCouldNotCompute();
6078
6079 const BasicBlock *Predecessor = L->getLoopPredecessor();
6080 if (!Predecessor)
6081 return getCouldNotCompute();
6082
6083 // Return true if V is of the form "LHS `shift_op` <positive constant>".
6084 // Return LHS in OutLHS and shift_opt in OutOpCode.
6085 auto MatchPositiveShift =
6086 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6087
6088 using namespace PatternMatch;
6089
6090 ConstantInt *ShiftAmt;
6091 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6092 OutOpCode = Instruction::LShr;
6093 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6094 OutOpCode = Instruction::AShr;
6095 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6096 OutOpCode = Instruction::Shl;
6097 else
6098 return false;
6099
6100 return ShiftAmt->getValue().isStrictlyPositive();
6101 };
6102
6103 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6104 //
6105 // loop:
6106 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6107 // %iv.shifted = lshr i32 %iv, <positive constant>
6108 //
6109 // Return true on a succesful match. Return the corresponding PHI node (%iv
6110 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6111 auto MatchShiftRecurrence =
6112 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6113 Optional<Instruction::BinaryOps> PostShiftOpCode;
6114
6115 {
6116 Instruction::BinaryOps OpC;
6117 Value *V;
6118
6119 // If we encounter a shift instruction, "peel off" the shift operation,
6120 // and remember that we did so. Later when we inspect %iv's backedge
6121 // value, we will make sure that the backedge value uses the same
6122 // operation.
6123 //
6124 // Note: the peeled shift operation does not have to be the same
6125 // instruction as the one feeding into the PHI's backedge value. We only
6126 // really care about it being the same *kind* of shift instruction --
6127 // that's all that is required for our later inferences to hold.
6128 if (MatchPositiveShift(LHS, V, OpC)) {
6129 PostShiftOpCode = OpC;
6130 LHS = V;
6131 }
6132 }
6133
6134 PNOut = dyn_cast<PHINode>(LHS);
6135 if (!PNOut || PNOut->getParent() != L->getHeader())
6136 return false;
6137
6138 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6139 Value *OpLHS;
6140
6141 return
6142 // The backedge value for the PHI node must be a shift by a positive
6143 // amount
6144 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6145
6146 // of the PHI node itself
6147 OpLHS == PNOut &&
6148
6149 // and the kind of shift should be match the kind of shift we peeled
6150 // off, if any.
6151 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6152 };
6153
6154 PHINode *PN;
6155 Instruction::BinaryOps OpCode;
6156 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6157 return getCouldNotCompute();
6158
6159 const DataLayout &DL = getDataLayout();
6160
6161 // The key rationale for this optimization is that for some kinds of shift
6162 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6163 // within a finite number of iterations. If the condition guarding the
6164 // backedge (in the sense that the backedge is taken if the condition is true)
6165 // is false for the value the shift recurrence stabilizes to, then we know
6166 // that the backedge is taken only a finite number of times.
6167
6168 ConstantInt *StableValue = nullptr;
6169 switch (OpCode) {
6170 default:
6171 llvm_unreachable("Impossible case!");
6172
6173 case Instruction::AShr: {
6174 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6175 // bitwidth(K) iterations.
6176 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6177 bool KnownZero, KnownOne;
6178 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6179 Predecessor->getTerminator(), &DT);
6180 auto *Ty = cast<IntegerType>(RHS->getType());
6181 if (KnownZero)
6182 StableValue = ConstantInt::get(Ty, 0);
6183 else if (KnownOne)
6184 StableValue = ConstantInt::get(Ty, -1, true);
6185 else
6186 return getCouldNotCompute();
6187
6188 break;
6189 }
6190 case Instruction::LShr:
6191 case Instruction::Shl:
6192 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6193 // stabilize to 0 in at most bitwidth(K) iterations.
6194 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6195 break;
6196 }
6197
6198 auto *Result =
6199 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6200 assert(Result->getType()->isIntegerTy(1) &&
6201 "Otherwise cannot be an operand to a branch instruction");
6202
6203 if (Result->isZeroValue()) {
6204 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6205 const SCEV *UpperBound =
6206 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
Silviu Baranga6f444df2016-04-08 14:29:09 +00006207 SCEVUnionPredicate P;
6208 return ExitLimit(getCouldNotCompute(), UpperBound, P);
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006209 }
6210
6211 return getCouldNotCompute();
6212}
Chris Lattnerec901cc2004-10-12 01:49:27 +00006213
Chris Lattnerdd730472004-04-17 22:58:41 +00006214/// CanConstantFold - Return true if we can constant fold an instruction of the
6215/// specified type, assuming that all operands were constants.
6216static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00006217 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00006218 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6219 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00006220 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00006221
Chris Lattnerdd730472004-04-17 22:58:41 +00006222 if (const CallInst *CI = dyn_cast<CallInst>(I))
6223 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00006224 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00006225 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00006226}
6227
Andrew Trick3a86ba72011-10-05 03:25:31 +00006228/// Determine whether this instruction can constant evolve within this loop
6229/// assuming its operands can all constant evolve.
6230static bool canConstantEvolve(Instruction *I, const Loop *L) {
6231 // An instruction outside of the loop can't be derived from a loop PHI.
6232 if (!L->contains(I)) return false;
6233
6234 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00006235 // We don't currently keep track of the control flow needed to evaluate
6236 // PHIs, so we cannot handle PHIs inside of loops.
6237 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006238 }
6239
6240 // If we won't be able to constant fold this expression even if the operands
6241 // are constants, bail early.
6242 return CanConstantFold(I);
6243}
6244
6245/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6246/// recursing through each instruction operand until reaching a loop header phi.
6247static PHINode *
6248getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00006249 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00006250
6251 // Otherwise, we can evaluate this instruction if all of its operands are
6252 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00006253 PHINode *PHI = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006254 for (Value *Op : UseInst->operands()) {
6255 if (isa<Constant>(Op)) continue;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006256
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006257 Instruction *OpInst = dyn_cast<Instruction>(Op);
Craig Topper9f008862014-04-15 04:59:12 +00006258 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006259
6260 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00006261 if (!P)
6262 // If this operand is already visited, reuse the prior result.
6263 // We may have P != PHI if this is the deepest point at which the
6264 // inconsistent paths meet.
6265 P = PHIMap.lookup(OpInst);
6266 if (!P) {
6267 // Recurse and memoize the results, whether a phi is found or not.
6268 // This recursive call invalidates pointers into PHIMap.
6269 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6270 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00006271 }
Craig Topper9f008862014-04-15 04:59:12 +00006272 if (!P)
6273 return nullptr; // Not evolving from PHI
6274 if (PHI && PHI != P)
6275 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00006276 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006277 }
6278 // This is a expression evolving from a constant PHI!
6279 return PHI;
6280}
6281
Chris Lattnerdd730472004-04-17 22:58:41 +00006282/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6283/// in the loop that V is derived from. We allow arbitrary operations along the
6284/// way, but the operands of an operation must either be constants or a value
6285/// derived from a constant PHI. If this expression does not fit with these
6286/// constraints, return null.
6287static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006288 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006289 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006290
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00006291 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00006292 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00006293
Andrew Trick3a86ba72011-10-05 03:25:31 +00006294 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00006295 DenseMap<Instruction *, PHINode *> PHIMap;
6296 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00006297}
6298
6299/// EvaluateExpression - Given an expression that passes the
6300/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6301/// in the loop has the value PHIVal. If we can't fold this expression for some
6302/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006303static Constant *EvaluateExpression(Value *V, const Loop *L,
6304 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006305 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00006306 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006307 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00006308 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006309 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006310 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006311
Andrew Trick3a86ba72011-10-05 03:25:31 +00006312 if (Constant *C = Vals.lookup(I)) return C;
6313
Nick Lewyckya6674c72011-10-22 19:58:20 +00006314 // An instruction inside the loop depends on a value outside the loop that we
6315 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00006316 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006317
6318 // An unmapped PHI can be due to a branch or another loop inside this loop,
6319 // or due to this not being the initial iteration through a loop where we
6320 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00006321 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006322
Dan Gohmanf820bd32010-06-22 13:15:46 +00006323 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00006324
6325 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006326 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6327 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00006328 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006329 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006330 continue;
6331 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006332 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00006333 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00006334 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006335 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00006336 }
6337
Nick Lewyckya6674c72011-10-22 19:58:20 +00006338 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00006339 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006340 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006341 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6342 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006343 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006344 }
Manuel Jacobe9024592016-01-21 06:33:22 +00006345 return ConstantFoldInstOperands(I, Operands, DL, TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00006346}
6347
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006348
6349// If every incoming value to PN except the one for BB is a specific Constant,
6350// return that, else return nullptr.
6351static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6352 Constant *IncomingVal = nullptr;
6353
6354 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6355 if (PN->getIncomingBlock(i) == BB)
6356 continue;
6357
6358 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6359 if (!CurrentVal)
6360 return nullptr;
6361
6362 if (IncomingVal != CurrentVal) {
6363 if (IncomingVal)
6364 return nullptr;
6365 IncomingVal = CurrentVal;
6366 }
6367 }
6368
6369 return IncomingVal;
6370}
6371
Chris Lattnerdd730472004-04-17 22:58:41 +00006372/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6373/// in the header of its containing loop, we know the loop executes a
6374/// constant number of times, and the PHI node is just a recurrence
6375/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00006376Constant *
6377ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00006378 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00006379 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00006380 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00006381 if (I != ConstantEvolutionLoopExitValue.end())
6382 return I->second;
6383
Dan Gohman4ce1fb12010-04-08 23:03:40 +00006384 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00006385 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00006386
6387 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6388
Andrew Trick3a86ba72011-10-05 03:25:31 +00006389 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006390 BasicBlock *Header = L->getHeader();
6391 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00006392
Sanjoy Dasdd709962015-10-08 18:28:36 +00006393 BasicBlock *Latch = L->getLoopLatch();
6394 if (!Latch)
6395 return nullptr;
6396
Sanjoy Das4493b402015-10-07 17:38:25 +00006397 for (auto &I : *Header) {
6398 PHINode *PHI = dyn_cast<PHINode>(&I);
6399 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006400 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006401 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006402 CurrentIterVals[PHI] = StartCST;
6403 }
6404 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00006405 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006406
Sanjoy Dasdd709962015-10-08 18:28:36 +00006407 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00006408
6409 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00006410 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00006411 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00006412
Dan Gohman0bddac12009-02-24 18:55:53 +00006413 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00006414 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006415 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006416 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006417 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006418 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006419
Nick Lewyckya6674c72011-10-22 19:58:20 +00006420 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006421 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006422 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006423 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006424 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006425 if (!NextPHI)
6426 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006427 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006428
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006429 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6430
Nick Lewyckya6674c72011-10-22 19:58:20 +00006431 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6432 // cease to be able to evaluate one of them or if they stop evolving,
6433 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006434 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006435 for (const auto &I : CurrentIterVals) {
6436 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006437 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006438 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006439 }
6440 // We use two distinct loops because EvaluateExpression may invalidate any
6441 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006442 for (const auto &I : PHIsToCompute) {
6443 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006444 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006445 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006446 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006447 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006448 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006449 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006450 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006451 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006452
6453 // If all entries in CurrentIterVals == NextIterVals then we can stop
6454 // iterating, the loop can't continue to change.
6455 if (StoppedEvolving)
6456 return RetVal = CurrentIterVals[PN];
6457
Andrew Trick3a86ba72011-10-05 03:25:31 +00006458 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006459 }
6460}
6461
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006462const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006463 Value *Cond,
6464 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006465 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006466 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006467
Dan Gohman866971e2010-06-19 14:17:24 +00006468 // If the loop is canonicalized, the PHI will have exactly two entries.
6469 // That's the only form we support here.
6470 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6471
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006472 DenseMap<Instruction *, Constant *> CurrentIterVals;
6473 BasicBlock *Header = L->getHeader();
6474 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6475
Sanjoy Dasdd709962015-10-08 18:28:36 +00006476 BasicBlock *Latch = L->getLoopLatch();
6477 assert(Latch && "Should follow from NumIncomingValues == 2!");
6478
Sanjoy Das4493b402015-10-07 17:38:25 +00006479 for (auto &I : *Header) {
6480 PHINode *PHI = dyn_cast<PHINode>(&I);
6481 if (!PHI)
6482 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006483 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006484 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006485 CurrentIterVals[PHI] = StartCST;
6486 }
6487 if (!CurrentIterVals.count(PN))
6488 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006489
6490 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6491 // the loop symbolically to determine when the condition gets a value of
6492 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006493 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006494 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006495 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006496 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006497 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006498
Zhou Sheng75b871f2007-01-11 12:24:14 +00006499 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006500 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006501
Reid Spencer983e3b32007-03-01 07:25:48 +00006502 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006503 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006504 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006505 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006506
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006507 // Update all the PHI nodes for the next iteration.
6508 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006509
6510 // Create a list of which PHIs we need to compute. We want to do this before
6511 // calling EvaluateExpression on them because that may invalidate iterators
6512 // into CurrentIterVals.
6513 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006514 for (const auto &I : CurrentIterVals) {
6515 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006516 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006517 PHIsToCompute.push_back(PHI);
6518 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006519 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006520 Constant *&NextPHI = NextIterVals[PHI];
6521 if (NextPHI) continue; // Already computed!
6522
Sanjoy Dasdd709962015-10-08 18:28:36 +00006523 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006524 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006525 }
6526 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006527 }
6528
6529 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006530 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006531}
6532
Dan Gohman237d9e52009-09-03 15:00:26 +00006533/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006534/// at the specified scope in the program. The L value specifies a loop
6535/// nest to evaluate the expression at, where null is the top-level or a
6536/// specified loop is immediately inside of the loop.
6537///
6538/// This method can be used to compute the exit value for a variable defined
6539/// in a loop by querying what the value will hold in the parent loop.
6540///
Dan Gohman8ca08852009-05-24 23:25:42 +00006541/// In the case that a relevant loop exit value cannot be computed, the
6542/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006543const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006544 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6545 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006546 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006547 for (auto &LS : Values)
6548 if (LS.first == L)
6549 return LS.second ? LS.second : V;
6550
6551 Values.emplace_back(L, nullptr);
6552
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006553 // Otherwise compute it.
6554 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006555 for (auto &LS : reverse(ValuesAtScopes[V]))
6556 if (LS.first == L) {
6557 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006558 break;
6559 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006560 return C;
6561}
6562
Nick Lewyckya6674c72011-10-22 19:58:20 +00006563/// This builds up a Constant using the ConstantExpr interface. That way, we
6564/// will return Constants for objects which aren't represented by a
6565/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6566/// Returns NULL if the SCEV isn't representable as a Constant.
6567static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006568 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006569 case scCouldNotCompute:
6570 case scAddRecExpr:
6571 break;
6572 case scConstant:
6573 return cast<SCEVConstant>(V)->getValue();
6574 case scUnknown:
6575 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6576 case scSignExtend: {
6577 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6578 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6579 return ConstantExpr::getSExt(CastOp, SS->getType());
6580 break;
6581 }
6582 case scZeroExtend: {
6583 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6584 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6585 return ConstantExpr::getZExt(CastOp, SZ->getType());
6586 break;
6587 }
6588 case scTruncate: {
6589 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6590 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6591 return ConstantExpr::getTrunc(CastOp, ST->getType());
6592 break;
6593 }
6594 case scAddExpr: {
6595 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6596 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006597 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6598 unsigned AS = PTy->getAddressSpace();
6599 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6600 C = ConstantExpr::getBitCast(C, DestPtrTy);
6601 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006602 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6603 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006604 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006605
6606 // First pointer!
6607 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006608 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006609 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006610 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006611 // The offsets have been converted to bytes. We can add bytes to an
6612 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006613 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006614 }
6615
6616 // Don't bother trying to sum two pointers. We probably can't
6617 // statically compute a load that results from it anyway.
6618 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006619 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006620
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006621 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6622 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006623 C2 = ConstantExpr::getIntegerCast(
6624 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006625 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006626 } else
6627 C = ConstantExpr::getAdd(C, C2);
6628 }
6629 return C;
6630 }
6631 break;
6632 }
6633 case scMulExpr: {
6634 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6635 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6636 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006637 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006638 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6639 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006640 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006641 C = ConstantExpr::getMul(C, C2);
6642 }
6643 return C;
6644 }
6645 break;
6646 }
6647 case scUDivExpr: {
6648 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6649 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6650 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6651 if (LHS->getType() == RHS->getType())
6652 return ConstantExpr::getUDiv(LHS, RHS);
6653 break;
6654 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006655 case scSMaxExpr:
6656 case scUMaxExpr:
6657 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006658 }
Craig Topper9f008862014-04-15 04:59:12 +00006659 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006660}
6661
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006662const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006663 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006664
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006665 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006666 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006667 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006668 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006669 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006670 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6671 if (PHINode *PN = dyn_cast<PHINode>(I))
6672 if (PN->getParent() == LI->getHeader()) {
6673 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006674 // to see if the loop that contains it has a known backedge-taken
6675 // count. If so, we may be able to force computation of the exit
6676 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006677 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006678 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006679 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006680 // Okay, we know how many times the containing loop executes. If
6681 // this is a constant evolving PHI node, get the final value at
6682 // the specified iteration number.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006683 Constant *RV =
6684 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006685 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006686 }
6687 }
6688
Reid Spencere6328ca2006-12-04 21:33:23 +00006689 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006690 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006691 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006692 // result. This is particularly useful for computing loop exit values.
6693 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006694 SmallVector<Constant *, 4> Operands;
6695 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006696 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006697 if (Constant *C = dyn_cast<Constant>(Op)) {
6698 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006699 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006700 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006701
6702 // If any of the operands is non-constant and if they are
6703 // non-integer and non-pointer, don't even try to analyze them
6704 // with scev techniques.
6705 if (!isSCEVable(Op->getType()))
6706 return V;
6707
6708 const SCEV *OrigV = getSCEV(Op);
6709 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6710 MadeImprovement |= OrigV != OpV;
6711
Nick Lewyckya6674c72011-10-22 19:58:20 +00006712 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006713 if (!C) return V;
6714 if (C->getType() != Op->getType())
6715 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6716 Op->getType(),
6717 false),
6718 C, Op->getType());
6719 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006720 }
Dan Gohmance973df2009-06-24 04:48:43 +00006721
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006722 // Check to see if getSCEVAtScope actually made an improvement.
6723 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006724 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006725 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006726 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006727 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006728 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006729 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6730 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006731 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006732 } else
Manuel Jacobe9024592016-01-21 06:33:22 +00006733 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006734 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006735 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006736 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006737 }
6738 }
6739
6740 // This is some other type of SCEVUnknown, just return it.
6741 return V;
6742 }
6743
Dan Gohmana30370b2009-05-04 22:02:23 +00006744 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006745 // Avoid performing the look-up in the common case where the specified
6746 // expression has no loop-variant portions.
6747 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006748 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006749 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006750 // Okay, at least one of these operands is loop variant but might be
6751 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006752 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6753 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006754 NewOps.push_back(OpAtScope);
6755
6756 for (++i; i != e; ++i) {
6757 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006758 NewOps.push_back(OpAtScope);
6759 }
6760 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006761 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006762 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006763 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006764 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006765 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006766 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006767 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006768 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006769 }
6770 }
6771 // If we got here, all operands are loop invariant.
6772 return Comm;
6773 }
6774
Dan Gohmana30370b2009-05-04 22:02:23 +00006775 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006776 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6777 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006778 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6779 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006780 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006781 }
6782
6783 // If this is a loop recurrence for a loop that does not contain L, then we
6784 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006785 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006786 // First, attempt to evaluate each operand.
6787 // Avoid performing the look-up in the common case where the specified
6788 // expression has no loop-variant portions.
6789 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6790 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6791 if (OpAtScope == AddRec->getOperand(i))
6792 continue;
6793
6794 // Okay, at least one of these operands is loop variant but might be
6795 // foldable. Build a new instance of the folded commutative expression.
6796 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6797 AddRec->op_begin()+i);
6798 NewOps.push_back(OpAtScope);
6799 for (++i; i != e; ++i)
6800 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6801
Andrew Trick759ba082011-04-27 01:21:25 +00006802 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006803 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006804 AddRec->getNoWrapFlags(SCEV::FlagNW));
6805 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006806 // The addrec may be folded to a nonrecurrence, for example, if the
6807 // induction variable is multiplied by zero after constant folding. Go
6808 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006809 if (!AddRec)
6810 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006811 break;
6812 }
6813
6814 // If the scope is outside the addrec's loop, evaluate it by using the
6815 // loop exit value of the addrec.
6816 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006817 // To evaluate this recurrence, we need to know how many times the AddRec
6818 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006819 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006820 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006821
Eli Friedman61f67622008-08-04 23:49:06 +00006822 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006823 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006824 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006825
Dan Gohman8ca08852009-05-24 23:25:42 +00006826 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006827 }
6828
Dan Gohmana30370b2009-05-04 22:02:23 +00006829 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006830 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006831 if (Op == Cast->getOperand())
6832 return Cast; // must be loop invariant
6833 return getZeroExtendExpr(Op, Cast->getType());
6834 }
6835
Dan Gohmana30370b2009-05-04 22:02:23 +00006836 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006837 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006838 if (Op == Cast->getOperand())
6839 return Cast; // must be loop invariant
6840 return getSignExtendExpr(Op, Cast->getType());
6841 }
6842
Dan Gohmana30370b2009-05-04 22:02:23 +00006843 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006844 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006845 if (Op == Cast->getOperand())
6846 return Cast; // must be loop invariant
6847 return getTruncateExpr(Op, Cast->getType());
6848 }
6849
Torok Edwinfbcc6632009-07-14 16:55:14 +00006850 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006851}
6852
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006853/// getSCEVAtScope - This is a convenience function which does
6854/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006855const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006856 return getSCEVAtScope(getSCEV(V), L);
6857}
6858
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006859/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6860/// following equation:
6861///
6862/// A * X = B (mod N)
6863///
6864/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6865/// A and B isn't important.
6866///
6867/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006868static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006869 ScalarEvolution &SE) {
6870 uint32_t BW = A.getBitWidth();
6871 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6872 assert(A != 0 && "A must be non-zero.");
6873
6874 // 1. D = gcd(A, N)
6875 //
6876 // The gcd of A and N may have only one prime factor: 2. The number of
6877 // trailing zeros in A is its multiplicity
6878 uint32_t Mult2 = A.countTrailingZeros();
6879 // D = 2^Mult2
6880
6881 // 2. Check if B is divisible by D.
6882 //
6883 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6884 // is not less than multiplicity of this prime factor for D.
6885 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006886 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006887
6888 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6889 // modulo (N / D).
6890 //
6891 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6892 // bit width during computations.
6893 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6894 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006895 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006896 APInt I = AD.multiplicativeInverse(Mod);
6897
6898 // 4. Compute the minimum unsigned root of the equation:
6899 // I * (B / D) mod (N / D)
6900 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6901
6902 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6903 // bits.
6904 return SE.getConstant(Result.trunc(BW));
6905}
Chris Lattnerd934c702004-04-02 20:23:17 +00006906
6907/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6908/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6909/// might be the same) or two SCEVCouldNotCompute objects.
6910///
Dan Gohmanaf752342009-07-07 17:06:11 +00006911static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006912SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006913 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006914 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6915 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6916 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006917
Chris Lattnerd934c702004-04-02 20:23:17 +00006918 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006919 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006920 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006921 return {CNC, CNC};
Chris Lattnerd934c702004-04-02 20:23:17 +00006922 }
6923
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006924 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6925 const APInt &L = LC->getAPInt();
6926 const APInt &M = MC->getAPInt();
6927 const APInt &N = NC->getAPInt();
Reid Spencer983e3b32007-03-01 07:25:48 +00006928 APInt Two(BitWidth, 2);
6929 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006930
Dan Gohmance973df2009-06-24 04:48:43 +00006931 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006932 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006933 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006934 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6935 // The B coefficient is M-N/2
6936 APInt B(M);
6937 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006938
Reid Spencer983e3b32007-03-01 07:25:48 +00006939 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006940 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006941
Reid Spencer983e3b32007-03-01 07:25:48 +00006942 // Compute the B^2-4ac term.
6943 APInt SqrtTerm(B);
6944 SqrtTerm *= B;
6945 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006946
Nick Lewyckyfb780832012-08-01 09:14:36 +00006947 if (SqrtTerm.isNegative()) {
6948 // The loop is provably infinite.
6949 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006950 return {CNC, CNC};
Nick Lewyckyfb780832012-08-01 09:14:36 +00006951 }
6952
Reid Spencer983e3b32007-03-01 07:25:48 +00006953 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6954 // integer value or else APInt::sqrt() will assert.
6955 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006956
Dan Gohmance973df2009-06-24 04:48:43 +00006957 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006958 // The divisions must be performed as signed divisions.
6959 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006960 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006961 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006962 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006963 return {CNC, CNC};
Nick Lewycky7b14e202008-11-03 02:43:49 +00006964 }
6965
Owen Anderson47db9412009-07-22 00:24:57 +00006966 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006967
6968 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006969 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006970 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006971 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006972
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006973 return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
Nick Lewycky31555522011-10-03 07:10:45 +00006974 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006975}
6976
6977/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006978/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006979///
6980/// This is only used for loops with a "x != y" exit test. The exit condition is
6981/// now expressed as a single expression, V = x-y. So the exit test is
6982/// effectively V != 0. We know and take advantage of the fact that this
6983/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006984ScalarEvolution::ExitLimit
Silviu Baranga6f444df2016-04-08 14:29:09 +00006985ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
6986 bool AllowPredicates) {
6987 SCEVUnionPredicate P;
Chris Lattnerd934c702004-04-02 20:23:17 +00006988 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006989 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006990 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006991 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006992 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006993 }
6994
Dan Gohman48f82222009-05-04 22:30:44 +00006995 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Silviu Baranga6f444df2016-04-08 14:29:09 +00006996 if (!AddRec && AllowPredicates)
6997 // Try to make this an AddRec using runtime tests, in the first X
6998 // iterations of this loop, where X is the SCEV expression found by the
6999 // algorithm below.
7000 AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7001
Chris Lattnerd934c702004-04-02 20:23:17 +00007002 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007003 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007004
Chris Lattnerdff679f2011-01-09 22:39:48 +00007005 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7006 // the quadratic equation to solve it.
7007 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7008 std::pair<const SCEV *,const SCEV *> Roots =
7009 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00007010 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7011 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00007012 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007013 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007014 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00007015 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
7016 R1->getValue(),
7017 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007018 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007019 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00007020
Chris Lattnerd934c702004-04-02 20:23:17 +00007021 // We can only use this value if the chrec ends up with an exact zero
7022 // value at this index. When solving for "X*X != 5", for example, we
7023 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00007024 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00007025 if (Val->isZero())
Silviu Baranga6f444df2016-04-08 14:29:09 +00007026 return ExitLimit(R1, R1, P); // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00007027 }
7028 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00007029 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007030 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007031
Chris Lattnerdff679f2011-01-09 22:39:48 +00007032 // Otherwise we can only handle this if it is affine.
7033 if (!AddRec->isAffine())
7034 return getCouldNotCompute();
7035
7036 // If this is an affine expression, the execution count of this branch is
7037 // the minimum unsigned root of the following equation:
7038 //
7039 // Start + Step*N = 0 (mod 2^BW)
7040 //
7041 // equivalent to:
7042 //
7043 // Step*N = -Start (mod 2^BW)
7044 //
7045 // where BW is the common bit width of Start and Step.
7046
7047 // Get the initial value for the loop.
7048 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7049 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7050
7051 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00007052 //
7053 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7054 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7055 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7056 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00007057 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00007058 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00007059 return getCouldNotCompute();
7060
Andrew Trick8b55b732011-03-14 16:50:06 +00007061 // For positive steps (counting up until unsigned overflow):
7062 // N = -Start/Step (as unsigned)
7063 // For negative steps (counting down to zero):
7064 // N = Start/-Step
7065 // First compute the unsigned distance from zero in the direction of Step.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007066 bool CountDown = StepC->getAPInt().isNegative();
Andrew Trickf1781db2011-03-14 17:28:02 +00007067 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00007068
7069 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00007070 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7071 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00007072 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7073 ConstantRange CR = getUnsignedRange(Start);
7074 const SCEV *MaxBECount;
7075 if (!CountDown && CR.getUnsignedMin().isMinValue())
7076 // When counting up, the worst starting value is 1, not 0.
7077 MaxBECount = CR.getUnsignedMax().isMinValue()
7078 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7079 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7080 else
7081 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7082 : -CR.getUnsignedMin());
Silviu Baranga6f444df2016-04-08 14:29:09 +00007083 return ExitLimit(Distance, MaxBECount, P);
Nick Lewycky31555522011-10-03 07:10:45 +00007084 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00007085
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007086 // As a special case, handle the instance where Step is a positive power of
7087 // two. In this case, determining whether Step divides Distance evenly can be
7088 // done by counting and comparing the number of trailing zeros of Step and
7089 // Distance.
7090 if (!CountDown) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007091 const APInt &StepV = StepC->getAPInt();
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007092 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
7093 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7094 // case is not handled as this code is guarded by !CountDown.
7095 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007096 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7097 // Here we've constrained the equation to be of the form
7098 //
7099 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
7100 //
7101 // where we're operating on a W bit wide integer domain and k is
7102 // non-negative. The smallest unsigned solution for X is the trip count.
7103 //
7104 // (0) is equivalent to:
7105 //
7106 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
7107 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7108 // <=> 2^k * Distance' - X = L * 2^(W - N)
7109 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7110 //
7111 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7112 // by 2^(W - N).
7113 //
7114 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7115 //
7116 // E.g. say we're solving
7117 //
7118 // 2 * Val = 2 * X (in i8) ... (3)
7119 //
7120 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7121 //
7122 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7123 // necessarily the smallest unsigned value of X that satisfies (3).
7124 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7125 // is i8 1, not i8 -127
7126
7127 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7128
7129 // Since SCEV does not have a URem node, we construct one using a truncate
7130 // and a zero extend.
7131
7132 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7133 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7134 auto *WideTy = Distance->getType();
7135
Silviu Baranga6f444df2016-04-08 14:29:09 +00007136 const SCEV *Limit =
7137 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7138 return ExitLimit(Limit, Limit, P);
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007139 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007140 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007141
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007142 // If the condition controls loop exit (the loop exits only if the expression
7143 // is true) and the addition is no-wrap we can use unsigned divide to
7144 // compute the backedge count. In this case, the step may not divide the
7145 // distance, but we don't care because if the condition is "missed" the loop
7146 // will have undefined behavior due to wrapping.
Sanjoy Das76c48e02016-02-04 18:21:54 +00007147 if (ControlsExit && AddRec->hasNoSelfWrap()) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007148 const SCEV *Exact =
7149 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007150 return ExitLimit(Exact, Exact, P);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007151 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007152
Chris Lattnerdff679f2011-01-09 22:39:48 +00007153 // Then, try to solve the above equation provided that Start is constant.
Silviu Baranga6f444df2016-04-08 14:29:09 +00007154 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7155 const SCEV *E = SolveLinEquationWithOverflow(
7156 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7157 return ExitLimit(E, E, P);
7158 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007159 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007160}
7161
7162/// HowFarToNonZero - Return the number of times a backedge checking the
7163/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007164/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00007165ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00007166ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007167 // Loops that look like: while (X == 0) are very strange indeed. We don't
7168 // handle them yet except for the trivial case. This could be expanded in the
7169 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00007170
Chris Lattnerd934c702004-04-02 20:23:17 +00007171 // If the value is a constant, check to see if it is known to be non-zero
7172 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00007173 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00007174 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007175 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007176 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007177 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007178
Chris Lattnerd934c702004-04-02 20:23:17 +00007179 // We could implement others, but I really doubt anyone writes loops like
7180 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007181 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007182}
7183
Dan Gohmanf9081a22008-09-15 22:18:04 +00007184/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
7185/// (which may not be an immediate predecessor) which has exactly one
7186/// successor from which BB is reachable, or null if no such block is
7187/// found.
7188///
Dan Gohman4e3c1132010-04-15 16:19:08 +00007189std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00007190ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00007191 // If the block has a unique predecessor, then there is no path from the
7192 // predecessor to the block that does not go through the direct edge
7193 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00007194 if (BasicBlock *Pred = BB->getSinglePredecessor())
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007195 return {Pred, BB};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007196
7197 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007198 // If the header has a unique predecessor outside the loop, it must be
7199 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007200 if (Loop *L = LI.getLoopFor(BB))
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007201 return {L->getLoopPredecessor(), L->getHeader()};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007202
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007203 return {nullptr, nullptr};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007204}
7205
Dan Gohman450f4e02009-06-20 00:35:32 +00007206/// HasSameValue - SCEV structural equivalence is usually sufficient for
7207/// testing whether two expressions are equal, however for the purposes of
7208/// looking for a condition guarding a loop, it can be useful to be a little
7209/// more general, since a front-end may have replicated the controlling
7210/// expression.
7211///
Dan Gohmanaf752342009-07-07 17:06:11 +00007212static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00007213 // Quick check to see if they are the same SCEV.
7214 if (A == B) return true;
7215
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007216 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7217 // Not all instructions that are "identical" compute the same value. For
7218 // instance, two distinct alloca instructions allocating the same type are
7219 // identical and do not read memory; but compute distinct values.
7220 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7221 };
7222
Dan Gohman450f4e02009-06-20 00:35:32 +00007223 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7224 // two different instructions with the same value. Check for this case.
7225 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7226 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7227 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7228 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007229 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00007230 return true;
7231
7232 // Otherwise assume they may have a different value.
7233 return false;
7234}
7235
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007236/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00007237/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007238///
7239bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007240 const SCEV *&LHS, const SCEV *&RHS,
7241 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007242 bool Changed = false;
7243
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007244 // If we hit the max recursion limit bail out.
7245 if (Depth >= 3)
7246 return false;
7247
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007248 // Canonicalize a constant to the right side.
7249 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7250 // Check for both operands constant.
7251 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7252 if (ConstantExpr::getICmp(Pred,
7253 LHSC->getValue(),
7254 RHSC->getValue())->isNullValue())
7255 goto trivially_false;
7256 else
7257 goto trivially_true;
7258 }
7259 // Otherwise swap the operands to put the constant on the right.
7260 std::swap(LHS, RHS);
7261 Pred = ICmpInst::getSwappedPredicate(Pred);
7262 Changed = true;
7263 }
7264
7265 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00007266 // addrec's loop, put the addrec on the left. Also make a dominance check,
7267 // as both operands could be addrecs loop-invariant in each other's loop.
7268 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7269 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00007270 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007271 std::swap(LHS, RHS);
7272 Pred = ICmpInst::getSwappedPredicate(Pred);
7273 Changed = true;
7274 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00007275 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007276
7277 // If there's a constant operand, canonicalize comparisons with boundary
7278 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7279 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007280 const APInt &RA = RC->getAPInt();
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007281 switch (Pred) {
7282 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7283 case ICmpInst::ICMP_EQ:
7284 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007285 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7286 if (!RA)
7287 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7288 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00007289 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7290 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007291 RHS = AE->getOperand(1);
7292 LHS = ME->getOperand(1);
7293 Changed = true;
7294 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007295 break;
7296 case ICmpInst::ICMP_UGE:
7297 if ((RA - 1).isMinValue()) {
7298 Pred = ICmpInst::ICMP_NE;
7299 RHS = getConstant(RA - 1);
7300 Changed = true;
7301 break;
7302 }
7303 if (RA.isMaxValue()) {
7304 Pred = ICmpInst::ICMP_EQ;
7305 Changed = true;
7306 break;
7307 }
7308 if (RA.isMinValue()) goto trivially_true;
7309
7310 Pred = ICmpInst::ICMP_UGT;
7311 RHS = getConstant(RA - 1);
7312 Changed = true;
7313 break;
7314 case ICmpInst::ICMP_ULE:
7315 if ((RA + 1).isMaxValue()) {
7316 Pred = ICmpInst::ICMP_NE;
7317 RHS = getConstant(RA + 1);
7318 Changed = true;
7319 break;
7320 }
7321 if (RA.isMinValue()) {
7322 Pred = ICmpInst::ICMP_EQ;
7323 Changed = true;
7324 break;
7325 }
7326 if (RA.isMaxValue()) goto trivially_true;
7327
7328 Pred = ICmpInst::ICMP_ULT;
7329 RHS = getConstant(RA + 1);
7330 Changed = true;
7331 break;
7332 case ICmpInst::ICMP_SGE:
7333 if ((RA - 1).isMinSignedValue()) {
7334 Pred = ICmpInst::ICMP_NE;
7335 RHS = getConstant(RA - 1);
7336 Changed = true;
7337 break;
7338 }
7339 if (RA.isMaxSignedValue()) {
7340 Pred = ICmpInst::ICMP_EQ;
7341 Changed = true;
7342 break;
7343 }
7344 if (RA.isMinSignedValue()) goto trivially_true;
7345
7346 Pred = ICmpInst::ICMP_SGT;
7347 RHS = getConstant(RA - 1);
7348 Changed = true;
7349 break;
7350 case ICmpInst::ICMP_SLE:
7351 if ((RA + 1).isMaxSignedValue()) {
7352 Pred = ICmpInst::ICMP_NE;
7353 RHS = getConstant(RA + 1);
7354 Changed = true;
7355 break;
7356 }
7357 if (RA.isMinSignedValue()) {
7358 Pred = ICmpInst::ICMP_EQ;
7359 Changed = true;
7360 break;
7361 }
7362 if (RA.isMaxSignedValue()) goto trivially_true;
7363
7364 Pred = ICmpInst::ICMP_SLT;
7365 RHS = getConstant(RA + 1);
7366 Changed = true;
7367 break;
7368 case ICmpInst::ICMP_UGT:
7369 if (RA.isMinValue()) {
7370 Pred = ICmpInst::ICMP_NE;
7371 Changed = true;
7372 break;
7373 }
7374 if ((RA + 1).isMaxValue()) {
7375 Pred = ICmpInst::ICMP_EQ;
7376 RHS = getConstant(RA + 1);
7377 Changed = true;
7378 break;
7379 }
7380 if (RA.isMaxValue()) goto trivially_false;
7381 break;
7382 case ICmpInst::ICMP_ULT:
7383 if (RA.isMaxValue()) {
7384 Pred = ICmpInst::ICMP_NE;
7385 Changed = true;
7386 break;
7387 }
7388 if ((RA - 1).isMinValue()) {
7389 Pred = ICmpInst::ICMP_EQ;
7390 RHS = getConstant(RA - 1);
7391 Changed = true;
7392 break;
7393 }
7394 if (RA.isMinValue()) goto trivially_false;
7395 break;
7396 case ICmpInst::ICMP_SGT:
7397 if (RA.isMinSignedValue()) {
7398 Pred = ICmpInst::ICMP_NE;
7399 Changed = true;
7400 break;
7401 }
7402 if ((RA + 1).isMaxSignedValue()) {
7403 Pred = ICmpInst::ICMP_EQ;
7404 RHS = getConstant(RA + 1);
7405 Changed = true;
7406 break;
7407 }
7408 if (RA.isMaxSignedValue()) goto trivially_false;
7409 break;
7410 case ICmpInst::ICMP_SLT:
7411 if (RA.isMaxSignedValue()) {
7412 Pred = ICmpInst::ICMP_NE;
7413 Changed = true;
7414 break;
7415 }
7416 if ((RA - 1).isMinSignedValue()) {
7417 Pred = ICmpInst::ICMP_EQ;
7418 RHS = getConstant(RA - 1);
7419 Changed = true;
7420 break;
7421 }
7422 if (RA.isMinSignedValue()) goto trivially_false;
7423 break;
7424 }
7425 }
7426
7427 // Check for obvious equality.
7428 if (HasSameValue(LHS, RHS)) {
7429 if (ICmpInst::isTrueWhenEqual(Pred))
7430 goto trivially_true;
7431 if (ICmpInst::isFalseWhenEqual(Pred))
7432 goto trivially_false;
7433 }
7434
Dan Gohman81585c12010-05-03 16:35:17 +00007435 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7436 // adding or subtracting 1 from one of the operands.
7437 switch (Pred) {
7438 case ICmpInst::ICMP_SLE:
7439 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7440 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007441 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007442 Pred = ICmpInst::ICMP_SLT;
7443 Changed = true;
7444 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007445 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007446 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007447 Pred = ICmpInst::ICMP_SLT;
7448 Changed = true;
7449 }
7450 break;
7451 case ICmpInst::ICMP_SGE:
7452 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007453 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007454 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007455 Pred = ICmpInst::ICMP_SGT;
7456 Changed = true;
7457 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7458 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007459 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007460 Pred = ICmpInst::ICMP_SGT;
7461 Changed = true;
7462 }
7463 break;
7464 case ICmpInst::ICMP_ULE:
7465 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007466 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007467 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007468 Pred = ICmpInst::ICMP_ULT;
7469 Changed = true;
7470 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007471 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007472 Pred = ICmpInst::ICMP_ULT;
7473 Changed = true;
7474 }
7475 break;
7476 case ICmpInst::ICMP_UGE:
7477 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007478 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007479 Pred = ICmpInst::ICMP_UGT;
7480 Changed = true;
7481 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007482 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007483 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007484 Pred = ICmpInst::ICMP_UGT;
7485 Changed = true;
7486 }
7487 break;
7488 default:
7489 break;
7490 }
7491
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007492 // TODO: More simplifications are possible here.
7493
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007494 // Recursively simplify until we either hit a recursion limit or nothing
7495 // changes.
7496 if (Changed)
7497 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7498
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007499 return Changed;
7500
7501trivially_true:
7502 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007503 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007504 Pred = ICmpInst::ICMP_EQ;
7505 return true;
7506
7507trivially_false:
7508 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007509 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007510 Pred = ICmpInst::ICMP_NE;
7511 return true;
7512}
7513
Dan Gohmane65c9172009-07-13 21:35:55 +00007514bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7515 return getSignedRange(S).getSignedMax().isNegative();
7516}
7517
7518bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7519 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7520}
7521
7522bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7523 return !getSignedRange(S).getSignedMin().isNegative();
7524}
7525
7526bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7527 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7528}
7529
7530bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7531 return isKnownNegative(S) || isKnownPositive(S);
7532}
7533
7534bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7535 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007536 // Canonicalize the inputs first.
7537 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7538
Dan Gohman07591692010-04-11 22:16:48 +00007539 // If LHS or RHS is an addrec, check to see if the condition is true in
7540 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007541 // If LHS and RHS are both addrec, both conditions must be true in
7542 // every iteration of the loop.
7543 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7544 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7545 bool LeftGuarded = false;
7546 bool RightGuarded = false;
7547 if (LAR) {
7548 const Loop *L = LAR->getLoop();
7549 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7550 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7551 if (!RAR) return true;
7552 LeftGuarded = true;
7553 }
7554 }
7555 if (RAR) {
7556 const Loop *L = RAR->getLoop();
7557 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7558 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7559 if (!LAR) return true;
7560 RightGuarded = true;
7561 }
7562 }
7563 if (LeftGuarded && RightGuarded)
7564 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007565
Sanjoy Das7d910f22015-10-02 18:50:30 +00007566 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7567 return true;
7568
Dan Gohman07591692010-04-11 22:16:48 +00007569 // Otherwise see what can be done with known constant ranges.
Sanjoy Das401e6312016-02-01 20:48:10 +00007570 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
Dan Gohman07591692010-04-11 22:16:48 +00007571}
7572
Sanjoy Das5dab2052015-07-27 21:42:49 +00007573bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7574 ICmpInst::Predicate Pred,
7575 bool &Increasing) {
7576 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7577
7578#ifndef NDEBUG
7579 // Verify an invariant: inverting the predicate should turn a monotonically
7580 // increasing change to a monotonically decreasing one, and vice versa.
7581 bool IncreasingSwapped;
7582 bool ResultSwapped = isMonotonicPredicateImpl(
7583 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7584
7585 assert(Result == ResultSwapped && "should be able to analyze both!");
7586 if (ResultSwapped)
7587 assert(Increasing == !IncreasingSwapped &&
7588 "monotonicity should flip as we flip the predicate");
7589#endif
7590
7591 return Result;
7592}
7593
7594bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7595 ICmpInst::Predicate Pred,
7596 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007597
7598 // A zero step value for LHS means the induction variable is essentially a
7599 // loop invariant value. We don't really depend on the predicate actually
7600 // flipping from false to true (for increasing predicates, and the other way
7601 // around for decreasing predicates), all we care about is that *if* the
7602 // predicate changes then it only changes from false to true.
7603 //
7604 // A zero step value in itself is not very useful, but there may be places
7605 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7606 // as general as possible.
7607
Sanjoy Das366acc12015-08-06 20:43:41 +00007608 switch (Pred) {
7609 default:
7610 return false; // Conservative answer
7611
7612 case ICmpInst::ICMP_UGT:
7613 case ICmpInst::ICMP_UGE:
7614 case ICmpInst::ICMP_ULT:
7615 case ICmpInst::ICMP_ULE:
Sanjoy Das76c48e02016-02-04 18:21:54 +00007616 if (!LHS->hasNoUnsignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007617 return false;
7618
7619 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007620 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007621
7622 case ICmpInst::ICMP_SGT:
7623 case ICmpInst::ICMP_SGE:
7624 case ICmpInst::ICMP_SLT:
7625 case ICmpInst::ICMP_SLE: {
Sanjoy Das76c48e02016-02-04 18:21:54 +00007626 if (!LHS->hasNoSignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007627 return false;
7628
7629 const SCEV *Step = LHS->getStepRecurrence(*this);
7630
7631 if (isKnownNonNegative(Step)) {
7632 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7633 return true;
7634 }
7635
7636 if (isKnownNonPositive(Step)) {
7637 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7638 return true;
7639 }
7640
7641 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007642 }
7643
Sanjoy Das5dab2052015-07-27 21:42:49 +00007644 }
7645
Sanjoy Das366acc12015-08-06 20:43:41 +00007646 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007647}
7648
7649bool ScalarEvolution::isLoopInvariantPredicate(
7650 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7651 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7652 const SCEV *&InvariantRHS) {
7653
7654 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7655 if (!isLoopInvariant(RHS, L)) {
7656 if (!isLoopInvariant(LHS, L))
7657 return false;
7658
7659 std::swap(LHS, RHS);
7660 Pred = ICmpInst::getSwappedPredicate(Pred);
7661 }
7662
7663 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7664 if (!ArLHS || ArLHS->getLoop() != L)
7665 return false;
7666
7667 bool Increasing;
7668 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7669 return false;
7670
7671 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7672 // true as the loop iterates, and the backedge is control dependent on
7673 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7674 //
7675 // * if the predicate was false in the first iteration then the predicate
7676 // is never evaluated again, since the loop exits without taking the
7677 // backedge.
7678 // * if the predicate was true in the first iteration then it will
7679 // continue to be true for all future iterations since it is
7680 // monotonically increasing.
7681 //
7682 // For both the above possibilities, we can replace the loop varying
7683 // predicate with its value on the first iteration of the loop (which is
7684 // loop invariant).
7685 //
7686 // A similar reasoning applies for a monotonically decreasing predicate, by
7687 // replacing true with false and false with true in the above two bullets.
7688
7689 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7690
7691 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7692 return false;
7693
7694 InvariantPred = Pred;
7695 InvariantLHS = ArLHS->getStart();
7696 InvariantRHS = RHS;
7697 return true;
7698}
7699
Sanjoy Das401e6312016-02-01 20:48:10 +00007700bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7701 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007702 if (HasSameValue(LHS, RHS))
7703 return ICmpInst::isTrueWhenEqual(Pred);
7704
Dan Gohman07591692010-04-11 22:16:48 +00007705 // This code is split out from isKnownPredicate because it is called from
7706 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007707
Sanjoy Das4c7b6d72016-02-01 20:48:14 +00007708 auto CheckRanges =
7709 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7710 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7711 .contains(RangeLHS);
7712 };
7713
7714 // The check at the top of the function catches the case where the values are
7715 // known to be equal.
7716 if (Pred == CmpInst::ICMP_EQ)
7717 return false;
7718
7719 if (Pred == CmpInst::ICMP_NE)
7720 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7721 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7722 isKnownNonZero(getMinusSCEV(LHS, RHS));
7723
7724 if (CmpInst::isSigned(Pred))
7725 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7726
7727 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
Dan Gohmane65c9172009-07-13 21:35:55 +00007728}
7729
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007730bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7731 const SCEV *LHS,
7732 const SCEV *RHS) {
7733
7734 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7735 // Return Y via OutY.
7736 auto MatchBinaryAddToConst =
7737 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7738 SCEV::NoWrapFlags ExpectedFlags) {
7739 const SCEV *NonConstOp, *ConstOp;
7740 SCEV::NoWrapFlags FlagsPresent;
7741
7742 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7743 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7744 return false;
7745
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007746 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007747 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7748 };
7749
7750 APInt C;
7751
7752 switch (Pred) {
7753 default:
7754 break;
7755
7756 case ICmpInst::ICMP_SGE:
7757 std::swap(LHS, RHS);
7758 case ICmpInst::ICMP_SLE:
7759 // X s<= (X + C)<nsw> if C >= 0
7760 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7761 return true;
7762
7763 // (X + C)<nsw> s<= X if C <= 0
7764 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7765 !C.isStrictlyPositive())
7766 return true;
7767 break;
7768
7769 case ICmpInst::ICMP_SGT:
7770 std::swap(LHS, RHS);
7771 case ICmpInst::ICMP_SLT:
7772 // X s< (X + C)<nsw> if C > 0
7773 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7774 C.isStrictlyPositive())
7775 return true;
7776
7777 // (X + C)<nsw> s< X if C < 0
7778 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7779 return true;
7780 break;
7781 }
7782
7783 return false;
7784}
7785
Sanjoy Das7d910f22015-10-02 18:50:30 +00007786bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7787 const SCEV *LHS,
7788 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007789 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007790 return false;
7791
7792 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7793 // the stack can result in exponential time complexity.
7794 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7795
7796 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7797 //
7798 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7799 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7800 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7801 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7802 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007803 return isKnownNonNegative(RHS) &&
7804 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7805 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007806}
7807
Dan Gohmane65c9172009-07-13 21:35:55 +00007808/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7809/// protected by a conditional between LHS and RHS. This is used to
7810/// to eliminate casts.
7811bool
7812ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7813 ICmpInst::Predicate Pred,
7814 const SCEV *LHS, const SCEV *RHS) {
7815 // Interpret a null as meaning no loop, where there is obviously no guard
7816 // (interprocedural conditions notwithstanding).
7817 if (!L) return true;
7818
Sanjoy Das401e6312016-02-01 20:48:10 +00007819 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7820 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007821
Dan Gohmane65c9172009-07-13 21:35:55 +00007822 BasicBlock *Latch = L->getLoopLatch();
7823 if (!Latch)
7824 return false;
7825
7826 BranchInst *LoopContinuePredicate =
7827 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007828 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7829 isImpliedCond(Pred, LHS, RHS,
7830 LoopContinuePredicate->getCondition(),
7831 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7832 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007833
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007834 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007835 // -- that can lead to O(n!) time complexity.
7836 if (WalkingBEDominatingConds)
7837 return false;
7838
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007839 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007840
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007841 // See if we can exploit a trip count to prove the predicate.
7842 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7843 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7844 if (LatchBECount != getCouldNotCompute()) {
7845 // We know that Latch branches back to the loop header exactly
7846 // LatchBECount times. This means the backdege condition at Latch is
7847 // equivalent to "{0,+,1} u< LatchBECount".
7848 Type *Ty = LatchBECount->getType();
7849 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7850 const SCEV *LoopCounter =
7851 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7852 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7853 LatchBECount))
7854 return true;
7855 }
7856
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007857 // Check conditions due to any @llvm.assume intrinsics.
7858 for (auto &AssumeVH : AC.assumptions()) {
7859 if (!AssumeVH)
7860 continue;
7861 auto *CI = cast<CallInst>(AssumeVH);
7862 if (!DT.dominates(CI, Latch->getTerminator()))
7863 continue;
7864
7865 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7866 return true;
7867 }
7868
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007869 // If the loop is not reachable from the entry block, we risk running into an
7870 // infinite loop as we walk up into the dom tree. These loops do not matter
7871 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007872 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007873 return false;
7874
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007875 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7876 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007877
7878 assert(DTN && "should reach the loop header before reaching the root!");
7879
7880 BasicBlock *BB = DTN->getBlock();
7881 BasicBlock *PBB = BB->getSinglePredecessor();
7882 if (!PBB)
7883 continue;
7884
7885 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7886 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7887 continue;
7888
7889 Value *Condition = ContinuePredicate->getCondition();
7890
7891 // If we have an edge `E` within the loop body that dominates the only
7892 // latch, the condition guarding `E` also guards the backedge. This
7893 // reasoning works only for loops with a single latch.
7894
7895 BasicBlockEdge DominatingEdge(PBB, BB);
7896 if (DominatingEdge.isSingleEdge()) {
7897 // We're constructively (and conservatively) enumerating edges within the
7898 // loop body that dominate the latch. The dominator tree better agree
7899 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007900 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007901
7902 if (isImpliedCond(Pred, LHS, RHS, Condition,
7903 BB != ContinuePredicate->getSuccessor(0)))
7904 return true;
7905 }
7906 }
7907
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007908 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007909}
7910
Dan Gohmanb50349a2010-04-11 19:27:13 +00007911/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007912/// by a conditional between LHS and RHS. This is used to help avoid max
7913/// expressions in loop trip counts, and to eliminate casts.
7914bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007915ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7916 ICmpInst::Predicate Pred,
7917 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007918 // Interpret a null as meaning no loop, where there is obviously no guard
7919 // (interprocedural conditions notwithstanding).
7920 if (!L) return false;
7921
Sanjoy Das401e6312016-02-01 20:48:10 +00007922 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7923 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007924
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007925 // Starting at the loop predecessor, climb up the predecessor chain, as long
7926 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007927 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007928 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007929 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007930 Pair.first;
7931 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007932
7933 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007934 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007935 if (!LoopEntryPredicate ||
7936 LoopEntryPredicate->isUnconditional())
7937 continue;
7938
Dan Gohmane18c2d62010-08-10 23:46:30 +00007939 if (isImpliedCond(Pred, LHS, RHS,
7940 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007941 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007942 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007943 }
7944
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007945 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007946 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007947 if (!AssumeVH)
7948 continue;
7949 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007950 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007951 continue;
7952
7953 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7954 return true;
7955 }
7956
Dan Gohman2a62fd92008-08-12 20:17:31 +00007957 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007958}
7959
Benjamin Kramer039b1042015-10-28 13:54:36 +00007960namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007961/// RAII wrapper to prevent recursive application of isImpliedCond.
7962/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7963/// currently evaluating isImpliedCond.
7964struct MarkPendingLoopPredicate {
7965 Value *Cond;
7966 DenseSet<Value*> &LoopPreds;
7967 bool Pending;
7968
7969 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7970 : Cond(C), LoopPreds(LP) {
7971 Pending = !LoopPreds.insert(Cond).second;
7972 }
7973 ~MarkPendingLoopPredicate() {
7974 if (!Pending)
7975 LoopPreds.erase(Cond);
7976 }
7977};
Benjamin Kramer039b1042015-10-28 13:54:36 +00007978} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007979
Dan Gohman430f0cc2009-07-21 23:03:19 +00007980/// isImpliedCond - Test whether the condition described by Pred, LHS,
7981/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007982bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007983 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007984 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007985 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007986 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7987 if (Mark.Pending)
7988 return false;
7989
Dan Gohman8b0a4192010-03-01 17:49:51 +00007990 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007991 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007992 if (BO->getOpcode() == Instruction::And) {
7993 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007994 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7995 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007996 } else if (BO->getOpcode() == Instruction::Or) {
7997 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007998 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7999 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008000 }
8001 }
8002
Dan Gohmane18c2d62010-08-10 23:46:30 +00008003 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008004 if (!ICI) return false;
8005
Andrew Trickfa594032012-11-29 18:35:13 +00008006 // Now that we found a conditional branch that dominates the loop or controls
8007 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00008008 ICmpInst::Predicate FoundPred;
8009 if (Inverse)
8010 FoundPred = ICI->getInversePredicate();
8011 else
8012 FoundPred = ICI->getPredicate();
8013
8014 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8015 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00008016
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00008017 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8018}
8019
8020bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8021 const SCEV *RHS,
8022 ICmpInst::Predicate FoundPred,
8023 const SCEV *FoundLHS,
8024 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00008025 // Balance the types.
8026 if (getTypeSizeInBits(LHS->getType()) <
8027 getTypeSizeInBits(FoundLHS->getType())) {
8028 if (CmpInst::isSigned(Pred)) {
8029 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8030 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8031 } else {
8032 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8033 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8034 }
8035 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00008036 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00008037 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00008038 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8039 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8040 } else {
8041 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8042 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8043 }
8044 }
8045
Dan Gohman430f0cc2009-07-21 23:03:19 +00008046 // Canonicalize the query to match the way instcombine will have
8047 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00008048 if (SimplifyICmpOperands(Pred, LHS, RHS))
8049 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00008050 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00008051 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8052 if (FoundLHS == FoundRHS)
8053 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00008054
8055 // Check to see if we can make the LHS or RHS match.
8056 if (LHS == FoundRHS || RHS == FoundLHS) {
8057 if (isa<SCEVConstant>(RHS)) {
8058 std::swap(FoundLHS, FoundRHS);
8059 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8060 } else {
8061 std::swap(LHS, RHS);
8062 Pred = ICmpInst::getSwappedPredicate(Pred);
8063 }
8064 }
8065
8066 // Check whether the found predicate is the same as the desired predicate.
8067 if (FoundPred == Pred)
8068 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8069
8070 // Check whether swapping the found predicate makes it the same as the
8071 // desired predicate.
8072 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8073 if (isa<SCEVConstant>(RHS))
8074 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8075 else
8076 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8077 RHS, LHS, FoundLHS, FoundRHS);
8078 }
8079
Sanjoy Das6e78b172015-10-22 19:57:34 +00008080 // Unsigned comparison is the same as signed comparison when both the operands
8081 // are non-negative.
8082 if (CmpInst::isUnsigned(FoundPred) &&
8083 CmpInst::getSignedPredicate(FoundPred) == Pred &&
8084 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8085 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8086
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008087 // Check if we can make progress by sharpening ranges.
8088 if (FoundPred == ICmpInst::ICMP_NE &&
8089 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8090
8091 const SCEVConstant *C = nullptr;
8092 const SCEV *V = nullptr;
8093
8094 if (isa<SCEVConstant>(FoundLHS)) {
8095 C = cast<SCEVConstant>(FoundLHS);
8096 V = FoundRHS;
8097 } else {
8098 C = cast<SCEVConstant>(FoundRHS);
8099 V = FoundLHS;
8100 }
8101
8102 // The guarding predicate tells us that C != V. If the known range
8103 // of V is [C, t), we can sharpen the range to [C + 1, t). The
8104 // range we consider has to correspond to same signedness as the
8105 // predicate we're interested in folding.
8106
8107 APInt Min = ICmpInst::isSigned(Pred) ?
8108 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8109
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008110 if (Min == C->getAPInt()) {
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008111 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8112 // This is true even if (Min + 1) wraps around -- in case of
8113 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8114
8115 APInt SharperMin = Min + 1;
8116
8117 switch (Pred) {
8118 case ICmpInst::ICMP_SGE:
8119 case ICmpInst::ICMP_UGE:
8120 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8121 // RHS, we're done.
8122 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8123 getConstant(SharperMin)))
8124 return true;
8125
8126 case ICmpInst::ICMP_SGT:
8127 case ICmpInst::ICMP_UGT:
8128 // We know from the range information that (V `Pred` Min ||
8129 // V == Min). We know from the guarding condition that !(V
8130 // == Min). This gives us
8131 //
8132 // V `Pred` Min || V == Min && !(V == Min)
8133 // => V `Pred` Min
8134 //
8135 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8136
8137 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8138 return true;
8139
8140 default:
8141 // No change
8142 break;
8143 }
8144 }
8145 }
8146
Dan Gohman430f0cc2009-07-21 23:03:19 +00008147 // Check whether the actual condition is beyond sufficient.
8148 if (FoundPred == ICmpInst::ICMP_EQ)
8149 if (ICmpInst::isTrueWhenEqual(Pred))
8150 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8151 return true;
8152 if (Pred == ICmpInst::ICMP_NE)
8153 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8154 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8155 return true;
8156
8157 // Otherwise assume the worst.
8158 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00008159}
8160
Sanjoy Das1ed69102015-10-13 02:53:27 +00008161bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8162 const SCEV *&L, const SCEV *&R,
8163 SCEV::NoWrapFlags &Flags) {
8164 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8165 if (!AE || AE->getNumOperands() != 2)
8166 return false;
8167
8168 L = AE->getOperand(0);
8169 R = AE->getOperand(1);
8170 Flags = AE->getNoWrapFlags();
8171 return true;
8172}
8173
8174bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8175 const SCEV *More,
8176 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00008177 // We avoid subtracting expressions here because this function is usually
8178 // fairly deep in the call stack (i.e. is called many times).
8179
Sanjoy Das96709c42015-09-25 23:53:45 +00008180 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8181 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8182 const auto *MAR = cast<SCEVAddRecExpr>(More);
8183
8184 if (LAR->getLoop() != MAR->getLoop())
8185 return false;
8186
8187 // We look at affine expressions only; not for correctness but to keep
8188 // getStepRecurrence cheap.
8189 if (!LAR->isAffine() || !MAR->isAffine())
8190 return false;
8191
Sanjoy Das1ed69102015-10-13 02:53:27 +00008192 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00008193 return false;
8194
8195 Less = LAR->getStart();
8196 More = MAR->getStart();
8197
8198 // fall through
8199 }
8200
8201 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008202 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8203 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008204 C = M - L;
8205 return true;
8206 }
8207
8208 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008209 SCEV::NoWrapFlags Flags;
8210 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008211 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8212 if (R == More) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008213 C = -(LC->getAPInt());
Sanjoy Das96709c42015-09-25 23:53:45 +00008214 return true;
8215 }
8216
Sanjoy Das1ed69102015-10-13 02:53:27 +00008217 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008218 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8219 if (R == Less) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008220 C = LC->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008221 return true;
8222 }
8223
8224 return false;
8225}
8226
8227bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8228 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8229 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8230 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8231 return false;
8232
8233 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8234 if (!AddRecLHS)
8235 return false;
8236
8237 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8238 if (!AddRecFoundLHS)
8239 return false;
8240
8241 // We'd like to let SCEV reason about control dependencies, so we constrain
8242 // both the inequalities to be about add recurrences on the same loop. This
8243 // way we can use isLoopEntryGuardedByCond later.
8244
8245 const Loop *L = AddRecFoundLHS->getLoop();
8246 if (L != AddRecLHS->getLoop())
8247 return false;
8248
8249 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8250 //
8251 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8252 // ... (2)
8253 //
8254 // Informal proof for (2), assuming (1) [*]:
8255 //
8256 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8257 //
8258 // Then
8259 //
8260 // FoundLHS s< FoundRHS s< INT_MIN - C
8261 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8262 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8263 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8264 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8265 // <=> FoundLHS + C s< FoundRHS + C
8266 //
8267 // [*]: (1) can be proved by ruling out overflow.
8268 //
8269 // [**]: This can be proved by analyzing all the four possibilities:
8270 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8271 // (A s>= 0, B s>= 0).
8272 //
8273 // Note:
8274 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8275 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8276 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8277 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8278 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8279 // C)".
8280
8281 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008282 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8283 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00008284 LDiff != RDiff)
8285 return false;
8286
8287 if (LDiff == 0)
8288 return true;
8289
Sanjoy Das96709c42015-09-25 23:53:45 +00008290 APInt FoundRHSLimit;
8291
8292 if (Pred == CmpInst::ICMP_ULT) {
8293 FoundRHSLimit = -RDiff;
8294 } else {
8295 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00008296 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00008297 }
8298
8299 // Try to prove (1) or (2), as needed.
8300 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8301 getConstant(FoundRHSLimit));
8302}
8303
Dan Gohman430f0cc2009-07-21 23:03:19 +00008304/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00008305/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008306/// and FoundRHS is true.
8307bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8308 const SCEV *LHS, const SCEV *RHS,
8309 const SCEV *FoundLHS,
8310 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008311 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8312 return true;
8313
Sanjoy Das96709c42015-09-25 23:53:45 +00008314 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8315 return true;
8316
Dan Gohman430f0cc2009-07-21 23:03:19 +00008317 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8318 FoundLHS, FoundRHS) ||
8319 // ~x < ~y --> x > y
8320 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8321 getNotSCEV(FoundRHS),
8322 getNotSCEV(FoundLHS));
8323}
8324
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008325
8326/// If Expr computes ~A, return A else return nullptr
8327static const SCEV *MatchNotExpr(const SCEV *Expr) {
8328 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008329 if (!Add || Add->getNumOperands() != 2 ||
8330 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008331 return nullptr;
8332
8333 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008334 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8335 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008336 return nullptr;
8337
8338 return AddRHS->getOperand(1);
8339}
8340
8341
8342/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8343template<typename MaxExprType>
8344static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8345 const SCEV *Candidate) {
8346 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8347 if (!MaxExpr) return false;
8348
Sanjoy Das347d2722015-12-01 07:49:27 +00008349 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008350}
8351
8352
8353/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8354template<typename MaxExprType>
8355static bool IsMinConsistingOf(ScalarEvolution &SE,
8356 const SCEV *MaybeMinExpr,
8357 const SCEV *Candidate) {
8358 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8359 if (!MaybeMaxExpr)
8360 return false;
8361
8362 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8363}
8364
Hal Finkela8d205f2015-08-19 01:51:51 +00008365static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8366 ICmpInst::Predicate Pred,
8367 const SCEV *LHS, const SCEV *RHS) {
8368
8369 // If both sides are affine addrecs for the same loop, with equal
8370 // steps, and we know the recurrences don't wrap, then we only
8371 // need to check the predicate on the starting values.
8372
8373 if (!ICmpInst::isRelational(Pred))
8374 return false;
8375
8376 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8377 if (!LAR)
8378 return false;
8379 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8380 if (!RAR)
8381 return false;
8382 if (LAR->getLoop() != RAR->getLoop())
8383 return false;
8384 if (!LAR->isAffine() || !RAR->isAffine())
8385 return false;
8386
8387 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8388 return false;
8389
Hal Finkelff08a2e2015-08-19 17:26:07 +00008390 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8391 SCEV::FlagNSW : SCEV::FlagNUW;
8392 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008393 return false;
8394
8395 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8396}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008397
8398/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8399/// expression?
8400static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8401 ICmpInst::Predicate Pred,
8402 const SCEV *LHS, const SCEV *RHS) {
8403 switch (Pred) {
8404 default:
8405 return false;
8406
8407 case ICmpInst::ICMP_SGE:
8408 std::swap(LHS, RHS);
8409 // fall through
8410 case ICmpInst::ICMP_SLE:
8411 return
8412 // min(A, ...) <= A
8413 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8414 // A <= max(A, ...)
8415 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8416
8417 case ICmpInst::ICMP_UGE:
8418 std::swap(LHS, RHS);
8419 // fall through
8420 case ICmpInst::ICMP_ULE:
8421 return
8422 // min(A, ...) <= A
8423 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8424 // A <= max(A, ...)
8425 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8426 }
8427
8428 llvm_unreachable("covered switch fell through?!");
8429}
8430
Dan Gohman430f0cc2009-07-21 23:03:19 +00008431/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008432/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008433/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008434bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008435ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8436 const SCEV *LHS, const SCEV *RHS,
8437 const SCEV *FoundLHS,
8438 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008439 auto IsKnownPredicateFull =
8440 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Sanjoy Das401e6312016-02-01 20:48:10 +00008441 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008442 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008443 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8444 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008445 };
8446
Dan Gohmane65c9172009-07-13 21:35:55 +00008447 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008448 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8449 case ICmpInst::ICMP_EQ:
8450 case ICmpInst::ICMP_NE:
8451 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8452 return true;
8453 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008454 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008455 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008456 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8457 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008458 return true;
8459 break;
8460 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008461 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008462 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8463 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008464 return true;
8465 break;
8466 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008467 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008468 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8469 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008470 return true;
8471 break;
8472 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008473 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008474 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8475 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008476 return true;
8477 break;
8478 }
8479
8480 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008481}
8482
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008483/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8484/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8485bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8486 const SCEV *LHS,
8487 const SCEV *RHS,
8488 const SCEV *FoundLHS,
8489 const SCEV *FoundRHS) {
8490 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8491 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8492 // reduce the compile time impact of this optimization.
8493 return false;
8494
8495 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8496 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8497 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8498 return false;
8499
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008500 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008501
8502 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8503 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8504 ConstantRange FoundLHSRange =
8505 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8506
8507 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8508 // for `LHS`:
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008509 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008510 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8511
8512 // We can also compute the range of values for `LHS` that satisfy the
8513 // consequent, "`LHS` `Pred` `RHS`":
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008514 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008515 ConstantRange SatisfyingLHSRange =
8516 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8517
8518 // The antecedent implies the consequent if every value of `LHS` that
8519 // satisfies the antecedent also satisfies the consequent.
8520 return SatisfyingLHSRange.contains(LHSRange);
8521}
8522
Johannes Doerfert2683e562015-02-09 12:34:23 +00008523// Verify if an linear IV with positive stride can overflow when in a
8524// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008525// stride and the knowledge of NSW/NUW flags on the recurrence.
8526bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8527 bool IsSigned, bool NoWrap) {
8528 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008529
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008530 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008531 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008532
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008533 if (IsSigned) {
8534 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8535 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8536 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8537 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008538
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008539 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8540 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008541 }
Dan Gohman01048422009-06-21 23:46:38 +00008542
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008543 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8544 APInt MaxValue = APInt::getMaxValue(BitWidth);
8545 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8546 .getUnsignedMax();
8547
8548 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8549 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8550}
8551
Johannes Doerfert2683e562015-02-09 12:34:23 +00008552// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008553// greater-than comparison, knowing the invariant term of the comparison,
8554// the stride and the knowledge of NSW/NUW flags on the recurrence.
8555bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8556 bool IsSigned, bool NoWrap) {
8557 if (NoWrap) return false;
8558
8559 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008560 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008561
8562 if (IsSigned) {
8563 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8564 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8565 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8566 .getSignedMax();
8567
8568 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8569 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8570 }
8571
8572 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8573 APInt MinValue = APInt::getMinValue(BitWidth);
8574 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8575 .getUnsignedMax();
8576
8577 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8578 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8579}
8580
8581// Compute the backedge taken count knowing the interval difference, the
8582// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008583const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008584 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008585 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008586 Delta = Equality ? getAddExpr(Delta, Step)
8587 : getAddExpr(Delta, getMinusSCEV(Step, One));
8588 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008589}
8590
Chris Lattner587a75b2005-08-15 23:33:51 +00008591/// HowManyLessThans - Return the number of times a backedge containing the
8592/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008593/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008594///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008595/// @param ControlsExit is true when the LHS < RHS condition directly controls
8596/// the branch (loops exits only if condition is true). In this case, we can use
8597/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008598ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008599ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008600 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008601 bool ControlsExit, bool AllowPredicates) {
8602 SCEVUnionPredicate P;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008603 // We handle only IV < Invariant
8604 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008605 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008606
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008607 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008608 if (!IV && AllowPredicates)
8609 // Try to make this an AddRec using runtime tests, in the first X
8610 // iterations of this loop, where X is the SCEV expression found by the
8611 // algorithm below.
8612 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
Dan Gohman2b8da352009-04-30 20:47:05 +00008613
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008614 // Avoid weird loops
8615 if (!IV || IV->getLoop() != L || !IV->isAffine())
8616 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008617
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008618 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008619 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008620
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008621 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008622
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008623 // Avoid negative or zero stride values
8624 if (!isKnownPositive(Stride))
8625 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008626
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008627 // Avoid proven overflow cases: this will ensure that the backedge taken count
8628 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008629 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008630 // behaviors like the case of C language.
8631 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8632 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008633
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008634 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8635 : ICmpInst::ICMP_ULT;
8636 const SCEV *Start = IV->getStart();
8637 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008638 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8639 const SCEV *Diff = getMinusSCEV(RHS, Start);
8640 // If we have NoWrap set, then we can assume that the increment won't
8641 // overflow, in which case if RHS - Start is a constant, we don't need to
8642 // do a max operation since we can just figure it out statically
8643 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008644 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008645 if (D.isNegative())
8646 End = Start;
8647 } else
8648 End = IsSigned ? getSMaxExpr(RHS, Start)
8649 : getUMaxExpr(RHS, Start);
8650 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008651
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008652 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008653
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008654 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8655 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008656
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008657 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8658 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008659
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008660 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8661 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8662 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008663
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008664 // Although End can be a MAX expression we estimate MaxEnd considering only
8665 // the case End = RHS. This is safe because in the other case (End - Start)
8666 // is zero, leading to a zero maximum backedge taken count.
8667 APInt MaxEnd =
8668 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8669 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8670
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008671 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008672 if (isa<SCEVConstant>(BECount))
8673 MaxBECount = BECount;
8674 else
8675 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8676 getConstant(MinStride), false);
8677
8678 if (isa<SCEVCouldNotCompute>(MaxBECount))
8679 MaxBECount = BECount;
8680
Silviu Baranga6f444df2016-04-08 14:29:09 +00008681 return ExitLimit(BECount, MaxBECount, P);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008682}
8683
8684ScalarEvolution::ExitLimit
8685ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8686 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008687 bool ControlsExit, bool AllowPredicates) {
8688 SCEVUnionPredicate P;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008689 // We handle only IV > Invariant
8690 if (!isLoopInvariant(RHS, L))
8691 return getCouldNotCompute();
8692
8693 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008694 if (!IV && AllowPredicates)
8695 // Try to make this an AddRec using runtime tests, in the first X
8696 // iterations of this loop, where X is the SCEV expression found by the
8697 // algorithm below.
8698 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008699
8700 // Avoid weird loops
8701 if (!IV || IV->getLoop() != L || !IV->isAffine())
8702 return getCouldNotCompute();
8703
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008704 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008705 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8706
8707 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8708
8709 // Avoid negative or zero stride values
8710 if (!isKnownPositive(Stride))
8711 return getCouldNotCompute();
8712
8713 // Avoid proven overflow cases: this will ensure that the backedge taken count
8714 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008715 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008716 // behaviors like the case of C language.
8717 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8718 return getCouldNotCompute();
8719
8720 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8721 : ICmpInst::ICMP_UGT;
8722
8723 const SCEV *Start = IV->getStart();
8724 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008725 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8726 const SCEV *Diff = getMinusSCEV(RHS, Start);
8727 // If we have NoWrap set, then we can assume that the increment won't
8728 // overflow, in which case if RHS - Start is a constant, we don't need to
8729 // do a max operation since we can just figure it out statically
8730 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008731 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008732 if (!D.isNegative())
8733 End = Start;
8734 } else
8735 End = IsSigned ? getSMinExpr(RHS, Start)
8736 : getUMinExpr(RHS, Start);
8737 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008738
8739 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8740
8741 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8742 : getUnsignedRange(Start).getUnsignedMax();
8743
8744 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8745 : getUnsignedRange(Stride).getUnsignedMin();
8746
8747 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8748 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8749 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8750
8751 // Although End can be a MIN expression we estimate MinEnd considering only
8752 // the case End = RHS. This is safe because in the other case (Start - End)
8753 // is zero, leading to a zero maximum backedge taken count.
8754 APInt MinEnd =
8755 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8756 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8757
8758
8759 const SCEV *MaxBECount = getCouldNotCompute();
8760 if (isa<SCEVConstant>(BECount))
8761 MaxBECount = BECount;
8762 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008763 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008764 getConstant(MinStride), false);
8765
8766 if (isa<SCEVCouldNotCompute>(MaxBECount))
8767 MaxBECount = BECount;
8768
Silviu Baranga6f444df2016-04-08 14:29:09 +00008769 return ExitLimit(BECount, MaxBECount, P);
Chris Lattner587a75b2005-08-15 23:33:51 +00008770}
8771
Chris Lattnerd934c702004-04-02 20:23:17 +00008772/// getNumIterationsInRange - Return the number of iterations of this loop that
8773/// produce values in the specified constant range. Another way of looking at
8774/// this is that it returns the first iteration number where the value is not in
8775/// the condition, thus computing the exit count. If the iteration count can't
8776/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008777const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008778 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008779 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008780 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008781
8782 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008783 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008784 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008785 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008786 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008787 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008788 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008789 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008790 return ShiftedAddRec->getNumIterationsInRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008791 Range.subtract(SC->getAPInt()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008792 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008793 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008794 }
8795
8796 // The only time we can solve this is when we have all constant indices.
8797 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008798 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008799 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008800
8801 // Okay at this point we know that all elements of the chrec are constants and
8802 // that the start element is zero.
8803
8804 // First check to see if the range contains zero. If not, the first
8805 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008806 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008807 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008808 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008809
Chris Lattnerd934c702004-04-02 20:23:17 +00008810 if (isAffine()) {
8811 // If this is an affine expression then we have this situation:
8812 // Solve {0,+,A} in Range === Ax in Range
8813
Nick Lewycky52460262007-07-16 02:08:00 +00008814 // We know that zero is in the range. If A is positive then we know that
8815 // the upper value of the range must be the first possible exit value.
8816 // If A is negative then the lower of the range is the last possible loop
8817 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008818 APInt One(BitWidth,1);
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008819 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
Nick Lewycky52460262007-07-16 02:08:00 +00008820 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008821
Nick Lewycky52460262007-07-16 02:08:00 +00008822 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008823 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008824 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008825
8826 // Evaluate at the exit value. If we really did fall out of the valid
8827 // range, then we computed our trip count, otherwise wrap around or other
8828 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008829 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008830 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008831 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008832
8833 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008834 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008835 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008836 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008837 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008838 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008839 } else if (isQuadratic()) {
8840 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8841 // quadratic equation to solve it. To do this, we must frame our problem in
8842 // terms of figuring out when zero is crossed, instead of when
8843 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008844 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008845 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008846 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8847 // getNoWrapFlags(FlagNW)
8848 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008849
8850 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008851 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008852 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8853 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008854 if (R1) {
8855 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008856 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8857 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008858 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008859 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008860
Chris Lattnerd934c702004-04-02 20:23:17 +00008861 // Make sure the root is not off by one. The returned iteration should
8862 // not be in the range, but the previous one should be. When solving
8863 // for "X*X < 5", for example, we should not return a root of 2.
8864 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008865 R1->getValue(),
8866 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008867 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008868 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008869 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008870 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008871
Dan Gohmana37eaf22007-10-22 18:31:58 +00008872 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008873 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008874 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008875 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008876 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008877
Chris Lattnerd934c702004-04-02 20:23:17 +00008878 // If R1 was not in the range, then it is a good return value. Make
8879 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008880 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008881 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008882 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008883 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008884 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008885 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008886 }
8887 }
8888 }
8889
Dan Gohman31efa302009-04-18 17:58:19 +00008890 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008891}
8892
Sebastian Pop448712b2014-05-07 18:01:20 +00008893namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008894struct FindUndefs {
8895 bool Found;
8896 FindUndefs() : Found(false) {}
8897
8898 bool follow(const SCEV *S) {
8899 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8900 if (isa<UndefValue>(C->getValue()))
8901 Found = true;
8902 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8903 if (isa<UndefValue>(C->getValue()))
8904 Found = true;
8905 }
8906
8907 // Keep looking if we haven't found it yet.
8908 return !Found;
8909 }
8910 bool isDone() const {
8911 // Stop recursion if we have found an undef.
8912 return Found;
8913 }
8914};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008915}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008916
8917// Return true when S contains at least an undef value.
8918static inline bool
8919containsUndefs(const SCEV *S) {
8920 FindUndefs F;
8921 SCEVTraversal<FindUndefs> ST(F);
8922 ST.visitAll(S);
8923
8924 return F.Found;
8925}
8926
8927namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008928// Collect all steps of SCEV expressions.
8929struct SCEVCollectStrides {
8930 ScalarEvolution &SE;
8931 SmallVectorImpl<const SCEV *> &Strides;
8932
8933 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8934 : SE(SE), Strides(S) {}
8935
8936 bool follow(const SCEV *S) {
8937 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8938 Strides.push_back(AR->getStepRecurrence(SE));
8939 return true;
8940 }
8941 bool isDone() const { return false; }
8942};
8943
8944// Collect all SCEVUnknown and SCEVMulExpr expressions.
8945struct SCEVCollectTerms {
8946 SmallVectorImpl<const SCEV *> &Terms;
8947
8948 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8949 : Terms(T) {}
8950
8951 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008952 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008953 if (!containsUndefs(S))
8954 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008955
8956 // Stop recursion: once we collected a term, do not walk its operands.
8957 return false;
8958 }
8959
8960 // Keep looking.
8961 return true;
8962 }
8963 bool isDone() const { return false; }
8964};
Tobias Grosser374bce02015-10-12 08:02:00 +00008965
8966// Check if a SCEV contains an AddRecExpr.
8967struct SCEVHasAddRec {
8968 bool &ContainsAddRec;
8969
8970 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8971 ContainsAddRec = false;
8972 }
8973
8974 bool follow(const SCEV *S) {
8975 if (isa<SCEVAddRecExpr>(S)) {
8976 ContainsAddRec = true;
8977
8978 // Stop recursion: once we collected a term, do not walk its operands.
8979 return false;
8980 }
8981
8982 // Keep looking.
8983 return true;
8984 }
8985 bool isDone() const { return false; }
8986};
8987
8988// Find factors that are multiplied with an expression that (possibly as a
8989// subexpression) contains an AddRecExpr. In the expression:
8990//
8991// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8992//
8993// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8994// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8995// parameters as they form a product with an induction variable.
8996//
8997// This collector expects all array size parameters to be in the same MulExpr.
8998// It might be necessary to later add support for collecting parameters that are
8999// spread over different nested MulExpr.
9000struct SCEVCollectAddRecMultiplies {
9001 SmallVectorImpl<const SCEV *> &Terms;
9002 ScalarEvolution &SE;
9003
9004 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9005 : Terms(T), SE(SE) {}
9006
9007 bool follow(const SCEV *S) {
9008 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9009 bool HasAddRec = false;
9010 SmallVector<const SCEV *, 0> Operands;
9011 for (auto Op : Mul->operands()) {
9012 if (isa<SCEVUnknown>(Op)) {
9013 Operands.push_back(Op);
9014 } else {
9015 bool ContainsAddRec;
9016 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9017 visitAll(Op, ContiansAddRec);
9018 HasAddRec |= ContainsAddRec;
9019 }
9020 }
9021 if (Operands.size() == 0)
9022 return true;
9023
9024 if (!HasAddRec)
9025 return false;
9026
9027 Terms.push_back(SE.getMulExpr(Operands));
9028 // Stop recursion: once we collected a term, do not walk its operands.
9029 return false;
9030 }
9031
9032 // Keep looking.
9033 return true;
9034 }
9035 bool isDone() const { return false; }
9036};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009037}
Sebastian Pop448712b2014-05-07 18:01:20 +00009038
Tobias Grosser374bce02015-10-12 08:02:00 +00009039/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9040/// two places:
9041/// 1) The strides of AddRec expressions.
9042/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009043void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9044 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009045 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009046 SCEVCollectStrides StrideCollector(*this, Strides);
9047 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009048
9049 DEBUG({
9050 dbgs() << "Strides:\n";
9051 for (const SCEV *S : Strides)
9052 dbgs() << *S << "\n";
9053 });
9054
9055 for (const SCEV *S : Strides) {
9056 SCEVCollectTerms TermCollector(Terms);
9057 visitAll(S, TermCollector);
9058 }
9059
9060 DEBUG({
9061 dbgs() << "Terms:\n";
9062 for (const SCEV *T : Terms)
9063 dbgs() << *T << "\n";
9064 });
Tobias Grosser374bce02015-10-12 08:02:00 +00009065
9066 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9067 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009068}
9069
Sebastian Popb1a548f2014-05-12 19:01:53 +00009070static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00009071 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00009072 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00009073 int Last = Terms.size() - 1;
9074 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00009075
Sebastian Pop448712b2014-05-07 18:01:20 +00009076 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00009077 if (Last == 0) {
9078 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009079 SmallVector<const SCEV *, 2> Qs;
9080 for (const SCEV *Op : M->operands())
9081 if (!isa<SCEVConstant>(Op))
9082 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00009083
Sebastian Pope30bd352014-05-27 22:41:56 +00009084 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00009085 }
9086
Sebastian Pope30bd352014-05-27 22:41:56 +00009087 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009088 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00009089 }
9090
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009091 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009092 // Normalize the terms before the next call to findArrayDimensionsRec.
9093 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009094 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009095
9096 // Bail out when GCD does not evenly divide one of the terms.
9097 if (!R->isZero())
9098 return false;
9099
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009100 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00009101 }
9102
Tobias Grosser3080cf12014-05-08 07:55:34 +00009103 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00009104 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9105 return isa<SCEVConstant>(E);
9106 }),
9107 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00009108
Sebastian Pop448712b2014-05-07 18:01:20 +00009109 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00009110 if (!findArrayDimensionsRec(SE, Terms, Sizes))
9111 return false;
9112
Sebastian Pope30bd352014-05-27 22:41:56 +00009113 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009114 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00009115}
Sebastian Popc62c6792013-11-12 22:47:20 +00009116
Sebastian Pop448712b2014-05-07 18:01:20 +00009117// Returns true when S contains at least a SCEVUnknown parameter.
9118static inline bool
9119containsParameters(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +00009120 struct FindParameter {
9121 bool FoundParameter;
9122 FindParameter() : FoundParameter(false) {}
9123
9124 bool follow(const SCEV *S) {
9125 if (isa<SCEVUnknown>(S)) {
9126 FoundParameter = true;
9127 // Stop recursion: we found a parameter.
9128 return false;
9129 }
9130 // Keep looking.
9131 return true;
9132 }
9133 bool isDone() const {
9134 // Stop recursion if we have found a parameter.
9135 return FoundParameter;
9136 }
9137 };
9138
Sebastian Pop448712b2014-05-07 18:01:20 +00009139 FindParameter F;
9140 SCEVTraversal<FindParameter> ST(F);
9141 ST.visitAll(S);
9142
9143 return F.FoundParameter;
9144}
9145
9146// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9147static inline bool
9148containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9149 for (const SCEV *T : Terms)
9150 if (containsParameters(T))
9151 return true;
9152 return false;
9153}
9154
9155// Return the number of product terms in S.
9156static inline int numberOfTerms(const SCEV *S) {
9157 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9158 return Expr->getNumOperands();
9159 return 1;
9160}
9161
Sebastian Popa6e58602014-05-27 22:41:45 +00009162static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9163 if (isa<SCEVConstant>(T))
9164 return nullptr;
9165
9166 if (isa<SCEVUnknown>(T))
9167 return T;
9168
9169 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9170 SmallVector<const SCEV *, 2> Factors;
9171 for (const SCEV *Op : M->operands())
9172 if (!isa<SCEVConstant>(Op))
9173 Factors.push_back(Op);
9174
9175 return SE.getMulExpr(Factors);
9176 }
9177
9178 return T;
9179}
9180
9181/// Return the size of an element read or written by Inst.
9182const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9183 Type *Ty;
9184 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9185 Ty = Store->getValueOperand()->getType();
9186 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00009187 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00009188 else
9189 return nullptr;
9190
9191 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9192 return getSizeOfExpr(ETy, Ty);
9193}
9194
Sebastian Pop448712b2014-05-07 18:01:20 +00009195/// Second step of delinearization: compute the array dimensions Sizes from the
9196/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00009197void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9198 SmallVectorImpl<const SCEV *> &Sizes,
9199 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00009200
Sebastian Pop53524082014-05-29 19:44:05 +00009201 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00009202 return;
9203
9204 // Early return when Terms do not contain parameters: we do not delinearize
9205 // non parametric SCEVs.
9206 if (!containsParameters(Terms))
9207 return;
9208
9209 DEBUG({
9210 dbgs() << "Terms:\n";
9211 for (const SCEV *T : Terms)
9212 dbgs() << *T << "\n";
9213 });
9214
9215 // Remove duplicates.
9216 std::sort(Terms.begin(), Terms.end());
9217 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9218
9219 // Put larger terms first.
9220 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9221 return numberOfTerms(LHS) > numberOfTerms(RHS);
9222 });
9223
Sebastian Popa6e58602014-05-27 22:41:45 +00009224 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9225
Tobias Grosser374bce02015-10-12 08:02:00 +00009226 // Try to divide all terms by the element size. If term is not divisible by
9227 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00009228 for (const SCEV *&Term : Terms) {
9229 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009230 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00009231 if (!Q->isZero())
9232 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00009233 }
9234
9235 SmallVector<const SCEV *, 4> NewTerms;
9236
9237 // Remove constant factors.
9238 for (const SCEV *T : Terms)
9239 if (const SCEV *NewT = removeConstantFactors(SE, T))
9240 NewTerms.push_back(NewT);
9241
Sebastian Pop448712b2014-05-07 18:01:20 +00009242 DEBUG({
9243 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00009244 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00009245 dbgs() << *T << "\n";
9246 });
9247
Sebastian Popa6e58602014-05-27 22:41:45 +00009248 if (NewTerms.empty() ||
9249 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00009250 Sizes.clear();
9251 return;
9252 }
Sebastian Pop448712b2014-05-07 18:01:20 +00009253
Sebastian Popa6e58602014-05-27 22:41:45 +00009254 // The last element to be pushed into Sizes is the size of an element.
9255 Sizes.push_back(ElementSize);
9256
Sebastian Pop448712b2014-05-07 18:01:20 +00009257 DEBUG({
9258 dbgs() << "Sizes:\n";
9259 for (const SCEV *S : Sizes)
9260 dbgs() << *S << "\n";
9261 });
9262}
9263
9264/// Third step of delinearization: compute the access functions for the
9265/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009266void ScalarEvolution::computeAccessFunctions(
9267 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9268 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009269
Sebastian Popb1a548f2014-05-12 19:01:53 +00009270 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009271 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009272 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009273
Sanjoy Das1195dbe2015-10-08 03:45:58 +00009274 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009275 if (!AR->isAffine())
9276 return;
9277
9278 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00009279 int Last = Sizes.size() - 1;
9280 for (int i = Last; i >= 0; i--) {
9281 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009282 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00009283
9284 DEBUG({
9285 dbgs() << "Res: " << *Res << "\n";
9286 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9287 dbgs() << "Res divided by Sizes[i]:\n";
9288 dbgs() << "Quotient: " << *Q << "\n";
9289 dbgs() << "Remainder: " << *R << "\n";
9290 });
9291
9292 Res = Q;
9293
Sebastian Popa6e58602014-05-27 22:41:45 +00009294 // Do not record the last subscript corresponding to the size of elements in
9295 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00009296 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00009297
9298 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00009299 if (isa<SCEVAddRecExpr>(R)) {
9300 Subscripts.clear();
9301 Sizes.clear();
9302 return;
9303 }
Sebastian Popa6e58602014-05-27 22:41:45 +00009304
Sebastian Pop448712b2014-05-07 18:01:20 +00009305 continue;
9306 }
9307
9308 // Record the access function for the current subscript.
9309 Subscripts.push_back(R);
9310 }
9311
9312 // Also push in last position the remainder of the last division: it will be
9313 // the access function of the innermost dimension.
9314 Subscripts.push_back(Res);
9315
9316 std::reverse(Subscripts.begin(), Subscripts.end());
9317
9318 DEBUG({
9319 dbgs() << "Subscripts:\n";
9320 for (const SCEV *S : Subscripts)
9321 dbgs() << *S << "\n";
9322 });
Sebastian Pop448712b2014-05-07 18:01:20 +00009323}
9324
Sebastian Popc62c6792013-11-12 22:47:20 +00009325/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9326/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00009327/// is the offset start of the array. The SCEV->delinearize algorithm computes
9328/// the multiples of SCEV coefficients: that is a pattern matching of sub
9329/// expressions in the stride and base of a SCEV corresponding to the
9330/// computation of a GCD (greatest common divisor) of base and stride. When
9331/// SCEV->delinearize fails, it returns the SCEV unchanged.
9332///
9333/// For example: when analyzing the memory access A[i][j][k] in this loop nest
9334///
9335/// void foo(long n, long m, long o, double A[n][m][o]) {
9336///
9337/// for (long i = 0; i < n; i++)
9338/// for (long j = 0; j < m; j++)
9339/// for (long k = 0; k < o; k++)
9340/// A[i][j][k] = 1.0;
9341/// }
9342///
9343/// the delinearization input is the following AddRec SCEV:
9344///
9345/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9346///
9347/// From this SCEV, we are able to say that the base offset of the access is %A
9348/// because it appears as an offset that does not divide any of the strides in
9349/// the loops:
9350///
9351/// CHECK: Base offset: %A
9352///
9353/// and then SCEV->delinearize determines the size of some of the dimensions of
9354/// the array as these are the multiples by which the strides are happening:
9355///
9356/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9357///
9358/// Note that the outermost dimension remains of UnknownSize because there are
9359/// no strides that would help identifying the size of the last dimension: when
9360/// the array has been statically allocated, one could compute the size of that
9361/// dimension by dividing the overall size of the array by the size of the known
9362/// dimensions: %m * %o * 8.
9363///
9364/// Finally delinearize provides the access functions for the array reference
9365/// that does correspond to A[i][j][k] of the above C testcase:
9366///
9367/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9368///
9369/// The testcases are checking the output of a function pass:
9370/// DelinearizationPass that walks through all loads and stores of a function
9371/// asking for the SCEV of the memory access with respect to all enclosing
9372/// loops, calling SCEV->delinearize on that and printing the results.
9373
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009374void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00009375 SmallVectorImpl<const SCEV *> &Subscripts,
9376 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009377 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009378 // First step: collect parametric terms.
9379 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009380 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00009381
Sebastian Popb1a548f2014-05-12 19:01:53 +00009382 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009383 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009384
Sebastian Pop448712b2014-05-07 18:01:20 +00009385 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009386 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00009387
Sebastian Popb1a548f2014-05-12 19:01:53 +00009388 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009389 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009390
Sebastian Pop448712b2014-05-07 18:01:20 +00009391 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009392 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009393
Sebastian Pop28e6b972014-05-27 22:41:51 +00009394 if (Subscripts.empty())
9395 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009396
Sebastian Pop448712b2014-05-07 18:01:20 +00009397 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009398 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009399 dbgs() << "ArrayDecl[UnknownSize]";
9400 for (const SCEV *S : Sizes)
9401 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009402
Sebastian Pop444621a2014-05-09 22:45:02 +00009403 dbgs() << "\nArrayRef";
9404 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009405 dbgs() << "[" << *S << "]";
9406 dbgs() << "\n";
9407 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009408}
Chris Lattnerd934c702004-04-02 20:23:17 +00009409
9410//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009411// SCEVCallbackVH Class Implementation
9412//===----------------------------------------------------------------------===//
9413
Dan Gohmand33a0902009-05-19 19:22:47 +00009414void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009415 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009416 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9417 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009418 SE->eraseValueFromMap(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009419 // this now dangles!
9420}
9421
Dan Gohman7a066722010-07-28 01:09:07 +00009422void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009423 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009424
Dan Gohman48f82222009-05-04 22:30:44 +00009425 // Forget all the expressions associated with users of the old value,
9426 // so that future queries will recompute the expressions using the new
9427 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009428 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009429 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009430 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009431 while (!Worklist.empty()) {
9432 User *U = Worklist.pop_back_val();
9433 // Deleting the Old value will cause this to dangle. Postpone
9434 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009435 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009436 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009437 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009438 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009439 if (PHINode *PN = dyn_cast<PHINode>(U))
9440 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009441 SE->eraseValueFromMap(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009442 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009443 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009444 // Delete the Old value.
9445 if (PHINode *PN = dyn_cast<PHINode>(Old))
9446 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009447 SE->eraseValueFromMap(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009448 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009449}
9450
Dan Gohmand33a0902009-05-19 19:22:47 +00009451ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009452 : CallbackVH(V), SE(se) {}
9453
9454//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009455// ScalarEvolution Class Implementation
9456//===----------------------------------------------------------------------===//
9457
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009458ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9459 AssumptionCache &AC, DominatorTree &DT,
9460 LoopInfo &LI)
9461 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9462 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009463 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9464 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9465 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009466
9467ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9468 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9469 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9470 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009471 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009472 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
Silviu Baranga6f444df2016-04-08 14:29:09 +00009473 PredicatedBackedgeTakenCounts(
9474 std::move(Arg.PredicatedBackedgeTakenCounts)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009475 ConstantEvolutionLoopExitValue(
9476 std::move(Arg.ConstantEvolutionLoopExitValue)),
9477 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9478 LoopDispositions(std::move(Arg.LoopDispositions)),
9479 BlockDispositions(std::move(Arg.BlockDispositions)),
9480 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9481 SignedRanges(std::move(Arg.SignedRanges)),
9482 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009483 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009484 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9485 FirstUnknown(Arg.FirstUnknown) {
9486 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009487}
9488
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009489ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009490 // Iterate through all the SCEVUnknown instances and call their
9491 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009492 for (SCEVUnknown *U = FirstUnknown; U;) {
9493 SCEVUnknown *Tmp = U;
9494 U = U->Next;
9495 Tmp->~SCEVUnknown();
9496 }
Craig Topper9f008862014-04-15 04:59:12 +00009497 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009498
Wei Mia49559b2016-02-04 01:27:38 +00009499 ExprValueMap.clear();
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009500 ValueExprMap.clear();
Wei Mia49559b2016-02-04 01:27:38 +00009501 HasRecMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009502
9503 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9504 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009505 for (auto &BTCI : BackedgeTakenCounts)
9506 BTCI.second.clear();
Silviu Baranga6f444df2016-04-08 14:29:09 +00009507 for (auto &BTCI : PredicatedBackedgeTakenCounts)
9508 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009509
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009510 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009511 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009512 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009513}
9514
Dan Gohmanc8e23622009-04-21 23:15:49 +00009515bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009516 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009517}
9518
Dan Gohmanc8e23622009-04-21 23:15:49 +00009519static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009520 const Loop *L) {
9521 // Print all inner loops first
9522 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9523 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009524
Dan Gohmanbc694912010-01-09 18:17:45 +00009525 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009526 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009527 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009528
Dan Gohmancb0efec2009-12-18 01:14:11 +00009529 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009530 L->getExitBlocks(ExitBlocks);
9531 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009532 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009533
Dan Gohman0bddac12009-02-24 18:55:53 +00009534 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9535 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009536 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009537 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009538 }
9539
Dan Gohmanbc694912010-01-09 18:17:45 +00009540 OS << "\n"
9541 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009542 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009543 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009544
9545 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9546 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9547 } else {
9548 OS << "Unpredictable max backedge-taken count. ";
9549 }
9550
Silviu Baranga6f444df2016-04-08 14:29:09 +00009551 OS << "\n"
9552 "Loop ";
9553 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9554 OS << ": ";
9555
9556 SCEVUnionPredicate Pred;
9557 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9558 if (!isa<SCEVCouldNotCompute>(PBT)) {
9559 OS << "Predicated backedge-taken count is " << *PBT << "\n";
9560 OS << " Predicates:\n";
9561 Pred.print(OS, 4);
9562 } else {
9563 OS << "Unpredictable predicated backedge-taken count. ";
9564 }
Dan Gohman69942932009-06-24 00:33:16 +00009565 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009566}
9567
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009568static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9569 switch (LD) {
9570 case ScalarEvolution::LoopVariant:
9571 return "Variant";
9572 case ScalarEvolution::LoopInvariant:
9573 return "Invariant";
9574 case ScalarEvolution::LoopComputable:
9575 return "Computable";
9576 }
Simon Pilgrim33ae13d2016-05-01 15:52:31 +00009577 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009578}
9579
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009580void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009581 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009582 // out SCEV values of all instructions that are interesting. Doing
9583 // this potentially causes it to create new SCEV objects though,
9584 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009585 // observable from outside the class though, so casting away the
9586 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009587 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009588
Dan Gohmanbc694912010-01-09 18:17:45 +00009589 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009590 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009591 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009592 for (Instruction &I : instructions(F))
9593 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9594 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009595 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009596 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009597 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009598 if (!isa<SCEVCouldNotCompute>(SV)) {
9599 OS << " U: ";
9600 SE.getUnsignedRange(SV).print(OS);
9601 OS << " S: ";
9602 SE.getSignedRange(SV).print(OS);
9603 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009604
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009605 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009606
Dan Gohmanaf752342009-07-07 17:06:11 +00009607 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009608 if (AtUse != SV) {
9609 OS << " --> ";
9610 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009611 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9612 OS << " U: ";
9613 SE.getUnsignedRange(AtUse).print(OS);
9614 OS << " S: ";
9615 SE.getSignedRange(AtUse).print(OS);
9616 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009617 }
9618
9619 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009620 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009621 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009622 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009623 OS << "<<Unknown>>";
9624 } else {
9625 OS << *ExitValue;
9626 }
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009627
9628 bool First = true;
9629 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9630 if (First) {
9631 OS << "\t\t" "LoopDispositions: [ ";
9632 First = false;
9633 } else {
9634 OS << ", ";
9635 }
9636
9637 OS << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9638 }
9639
9640 OS << " ]";
Chris Lattnerd934c702004-04-02 20:23:17 +00009641 }
9642
Chris Lattnerd934c702004-04-02 20:23:17 +00009643 OS << "\n";
9644 }
9645
Dan Gohmanbc694912010-01-09 18:17:45 +00009646 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009647 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009648 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009649 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009650 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009651}
Dan Gohmane20f8242009-04-21 00:47:46 +00009652
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009653ScalarEvolution::LoopDisposition
9654ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009655 auto &Values = LoopDispositions[S];
9656 for (auto &V : Values) {
9657 if (V.getPointer() == L)
9658 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009659 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009660 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009661 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009662 auto &Values2 = LoopDispositions[S];
9663 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9664 if (V.getPointer() == L) {
9665 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009666 break;
9667 }
9668 }
9669 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009670}
9671
9672ScalarEvolution::LoopDisposition
9673ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009674 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009675 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009676 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009677 case scTruncate:
9678 case scZeroExtend:
9679 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009680 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009681 case scAddRecExpr: {
9682 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9683
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009684 // If L is the addrec's loop, it's computable.
9685 if (AR->getLoop() == L)
9686 return LoopComputable;
9687
Dan Gohmanafd6db92010-11-17 21:23:15 +00009688 // Add recurrences are never invariant in the function-body (null loop).
9689 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009690 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009691
9692 // This recurrence is variant w.r.t. L if L contains AR's loop.
9693 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009694 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009695
9696 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9697 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009698 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009699
9700 // This recurrence is variant w.r.t. L if any of its operands
9701 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009702 for (auto *Op : AR->operands())
9703 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009704 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009705
9706 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009707 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009708 }
9709 case scAddExpr:
9710 case scMulExpr:
9711 case scUMaxExpr:
9712 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009713 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009714 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9715 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009716 if (D == LoopVariant)
9717 return LoopVariant;
9718 if (D == LoopComputable)
9719 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009720 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009721 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009722 }
9723 case scUDivExpr: {
9724 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009725 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9726 if (LD == LoopVariant)
9727 return LoopVariant;
9728 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9729 if (RD == LoopVariant)
9730 return LoopVariant;
9731 return (LD == LoopInvariant && RD == LoopInvariant) ?
9732 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009733 }
9734 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009735 // All non-instruction values are loop invariant. All instructions are loop
9736 // invariant if they are not contained in the specified loop.
9737 // Instructions are never considered invariant in the function body
9738 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009739 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009740 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9741 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009742 case scCouldNotCompute:
9743 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009744 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009745 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009746}
9747
9748bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9749 return getLoopDisposition(S, L) == LoopInvariant;
9750}
9751
9752bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9753 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009754}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009755
Dan Gohman8ea83d82010-11-18 00:34:22 +00009756ScalarEvolution::BlockDisposition
9757ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009758 auto &Values = BlockDispositions[S];
9759 for (auto &V : Values) {
9760 if (V.getPointer() == BB)
9761 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009762 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009763 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009764 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009765 auto &Values2 = BlockDispositions[S];
9766 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9767 if (V.getPointer() == BB) {
9768 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009769 break;
9770 }
9771 }
9772 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009773}
9774
Dan Gohman8ea83d82010-11-18 00:34:22 +00009775ScalarEvolution::BlockDisposition
9776ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009777 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009778 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009779 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009780 case scTruncate:
9781 case scZeroExtend:
9782 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009783 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009784 case scAddRecExpr: {
9785 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009786 // to test for proper dominance too, because the instruction which
9787 // produces the addrec's value is a PHI, and a PHI effectively properly
9788 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009789 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009790 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009791 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009792 }
9793 // FALL THROUGH into SCEVNAryExpr handling.
9794 case scAddExpr:
9795 case scMulExpr:
9796 case scUMaxExpr:
9797 case scSMaxExpr: {
9798 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009799 bool Proper = true;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00009800 for (const SCEV *NAryOp : NAry->operands()) {
9801 BlockDisposition D = getBlockDisposition(NAryOp, BB);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009802 if (D == DoesNotDominateBlock)
9803 return DoesNotDominateBlock;
9804 if (D == DominatesBlock)
9805 Proper = false;
9806 }
9807 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009808 }
9809 case scUDivExpr: {
9810 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009811 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9812 BlockDisposition LD = getBlockDisposition(LHS, BB);
9813 if (LD == DoesNotDominateBlock)
9814 return DoesNotDominateBlock;
9815 BlockDisposition RD = getBlockDisposition(RHS, BB);
9816 if (RD == DoesNotDominateBlock)
9817 return DoesNotDominateBlock;
9818 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9819 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009820 }
9821 case scUnknown:
9822 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009823 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9824 if (I->getParent() == BB)
9825 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009826 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009827 return ProperlyDominatesBlock;
9828 return DoesNotDominateBlock;
9829 }
9830 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009831 case scCouldNotCompute:
9832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009833 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009834 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009835}
9836
9837bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9838 return getBlockDisposition(S, BB) >= DominatesBlock;
9839}
9840
9841bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9842 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009843}
Dan Gohman534749b2010-11-17 22:27:42 +00009844
9845bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das7d752672015-12-08 04:32:54 +00009846 // Search for a SCEV expression node within an expression tree.
9847 // Implements SCEVTraversal::Visitor.
9848 struct SCEVSearch {
9849 const SCEV *Node;
9850 bool IsFound;
9851
9852 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9853
9854 bool follow(const SCEV *S) {
9855 IsFound |= (S == Node);
9856 return !IsFound;
9857 }
9858 bool isDone() const { return IsFound; }
9859 };
9860
Andrew Trick365e31c2012-07-13 23:33:03 +00009861 SCEVSearch Search(Op);
9862 visitAll(S, Search);
9863 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009864}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009865
9866void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9867 ValuesAtScopes.erase(S);
9868 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009869 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009870 UnsignedRanges.erase(S);
9871 SignedRanges.erase(S);
Wei Mia49559b2016-02-04 01:27:38 +00009872 ExprValueMap.erase(S);
9873 HasRecMap.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009874
Silviu Baranga6f444df2016-04-08 14:29:09 +00009875 auto RemoveSCEVFromBackedgeMap =
9876 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9877 for (auto I = Map.begin(), E = Map.end(); I != E;) {
9878 BackedgeTakenInfo &BEInfo = I->second;
9879 if (BEInfo.hasOperand(S, this)) {
9880 BEInfo.clear();
9881 Map.erase(I++);
9882 } else
9883 ++I;
9884 }
9885 };
9886
9887 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9888 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009889}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009890
9891typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009892
Alp Tokercb402912014-01-24 17:20:08 +00009893/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009894static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9895 size_t Pos = 0;
9896 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9897 Str.replace(Pos, From.size(), To.data(), To.size());
9898 Pos += To.size();
9899 }
9900}
9901
Benjamin Kramer214935e2012-10-26 17:31:32 +00009902/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9903static void
9904getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009905 std::string &S = Map[L];
9906 if (S.empty()) {
9907 raw_string_ostream OS(S);
9908 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009909
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009910 // false and 0 are semantically equivalent. This can happen in dead loops.
9911 replaceSubString(OS.str(), "false", "0");
9912 // Remove wrap flags, their use in SCEV is highly fragile.
9913 // FIXME: Remove this when SCEV gets smarter about them.
9914 replaceSubString(OS.str(), "<nw>", "");
9915 replaceSubString(OS.str(), "<nsw>", "");
9916 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009917 }
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009918
JF Bastien61ad8b32015-12-23 18:18:53 +00009919 for (auto *R : reverse(*L))
9920 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
Benjamin Kramer214935e2012-10-26 17:31:32 +00009921}
9922
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009923void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009924 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9925
9926 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9927 // FIXME: It would be much better to store actual values instead of strings,
9928 // but SCEV pointers will change if we drop the caches.
9929 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009930 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009931 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9932
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009933 // Gather stringified backedge taken counts for all loops using a fresh
9934 // ScalarEvolution object.
9935 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9936 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9937 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009938
9939 // Now compare whether they're the same with and without caches. This allows
9940 // verifying that no pass changed the cache.
9941 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9942 "New loops suddenly appeared!");
9943
9944 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9945 OldE = BackedgeDumpsOld.end(),
9946 NewI = BackedgeDumpsNew.begin();
9947 OldI != OldE; ++OldI, ++NewI) {
9948 assert(OldI->first == NewI->first && "Loop order changed!");
9949
9950 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9951 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009952 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009953 // means that a pass is buggy or SCEV has to learn a new pattern but is
9954 // usually not harmful.
9955 if (OldI->second != NewI->second &&
9956 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009957 NewI->second.find("undef") == std::string::npos &&
9958 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009959 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009960 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009961 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009962 << "' changed from '" << OldI->second
9963 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009964 std::abort();
9965 }
9966 }
9967
9968 // TODO: Verify more things.
9969}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009970
Chandler Carruthb4faf132016-03-11 10:22:49 +00009971char ScalarEvolutionAnalysis::PassID;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +00009972
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009973ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +00009974 AnalysisManager<Function> &AM) {
9975 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
9976 AM.getResult<AssumptionAnalysis>(F),
9977 AM.getResult<DominatorTreeAnalysis>(F),
9978 AM.getResult<LoopAnalysis>(F));
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009979}
9980
9981PreservedAnalyses
Chandler Carruthb47f8012016-03-11 11:05:24 +00009982ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
9983 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009984 return PreservedAnalyses::all();
9985}
9986
9987INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9988 "Scalar Evolution Analysis", false, true)
9989INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9990INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9991INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9992INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9993INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9994 "Scalar Evolution Analysis", false, true)
9995char ScalarEvolutionWrapperPass::ID = 0;
9996
9997ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9998 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9999}
10000
10001bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10002 SE.reset(new ScalarEvolution(
10003 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10004 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10005 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10006 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10007 return false;
10008}
10009
10010void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10011
10012void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10013 SE->print(OS);
10014}
10015
10016void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10017 if (!VerifySCEV)
10018 return;
10019
10020 SE->verify();
10021}
10022
10023void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10024 AU.setPreservesAll();
10025 AU.addRequiredTransitive<AssumptionCacheTracker>();
10026 AU.addRequiredTransitive<LoopInfoWrapperPass>();
10027 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10028 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10029}
Silviu Barangae3c05342015-11-02 14:41:02 +000010030
10031const SCEVPredicate *
10032ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10033 const SCEVConstant *RHS) {
10034 FoldingSetNodeID ID;
10035 // Unique this node based on the arguments
10036 ID.AddInteger(SCEVPredicate::P_Equal);
10037 ID.AddPointer(LHS);
10038 ID.AddPointer(RHS);
10039 void *IP = nullptr;
10040 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10041 return S;
10042 SCEVEqualPredicate *Eq = new (SCEVAllocator)
10043 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10044 UniquePreds.InsertNode(Eq, IP);
10045 return Eq;
10046}
10047
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010048const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10049 const SCEVAddRecExpr *AR,
10050 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10051 FoldingSetNodeID ID;
10052 // Unique this node based on the arguments
10053 ID.AddInteger(SCEVPredicate::P_Wrap);
10054 ID.AddPointer(AR);
10055 ID.AddInteger(AddedFlags);
10056 void *IP = nullptr;
10057 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10058 return S;
10059 auto *OF = new (SCEVAllocator)
10060 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10061 UniquePreds.InsertNode(OF, IP);
10062 return OF;
10063}
10064
Benjamin Kramer83709b12015-11-16 09:01:28 +000010065namespace {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010066
Silviu Barangae3c05342015-11-02 14:41:02 +000010067class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10068public:
Sanjoy Das807d33d2016-02-20 01:44:10 +000010069 // Rewrites \p S in the context of a loop L and the predicate A.
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010070 // If Assume is true, rewrite is free to add further predicates to A
10071 // such that the result will be an AddRecExpr.
Sanjoy Das807d33d2016-02-20 01:44:10 +000010072 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10073 SCEVUnionPredicate &A, bool Assume) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010074 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
Sanjoy Das807d33d2016-02-20 01:44:10 +000010075 return Rewriter.visit(S);
Silviu Barangae3c05342015-11-02 14:41:02 +000010076 }
10077
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010078 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10079 SCEVUnionPredicate &P, bool Assume)
10080 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
Silviu Barangae3c05342015-11-02 14:41:02 +000010081
10082 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10083 auto ExprPreds = P.getPredicatesForExpr(Expr);
10084 for (auto *Pred : ExprPreds)
10085 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10086 if (IPred->getLHS() == Expr)
10087 return IPred->getRHS();
10088
10089 return Expr;
10090 }
10091
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010092 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10093 const SCEV *Operand = visit(Expr->getOperand());
10094 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10095 if (AR && AR->getLoop() == L && AR->isAffine()) {
10096 // This couldn't be folded because the operand didn't have the nuw
10097 // flag. Add the nusw flag as an assumption that we could make.
10098 const SCEV *Step = AR->getStepRecurrence(SE);
10099 Type *Ty = Expr->getType();
10100 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10101 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10102 SE.getSignExtendExpr(Step, Ty), L,
10103 AR->getNoWrapFlags());
10104 }
10105 return SE.getZeroExtendExpr(Operand, Expr->getType());
10106 }
10107
10108 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10109 const SCEV *Operand = visit(Expr->getOperand());
10110 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10111 if (AR && AR->getLoop() == L && AR->isAffine()) {
10112 // This couldn't be folded because the operand didn't have the nsw
10113 // flag. Add the nssw flag as an assumption that we could make.
10114 const SCEV *Step = AR->getStepRecurrence(SE);
10115 Type *Ty = Expr->getType();
10116 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10117 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10118 SE.getSignExtendExpr(Step, Ty), L,
10119 AR->getNoWrapFlags());
10120 }
10121 return SE.getSignExtendExpr(Operand, Expr->getType());
10122 }
10123
Silviu Barangae3c05342015-11-02 14:41:02 +000010124private:
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010125 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10126 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10127 auto *A = SE.getWrapPredicate(AR, AddedFlags);
10128 if (!Assume) {
10129 // Check if we've already made this assumption.
10130 if (P.implies(A))
10131 return true;
10132 return false;
10133 }
10134 P.add(A);
10135 return true;
10136 }
10137
Silviu Barangae3c05342015-11-02 14:41:02 +000010138 SCEVUnionPredicate &P;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010139 const Loop *L;
10140 bool Assume;
Silviu Barangae3c05342015-11-02 14:41:02 +000010141};
Benjamin Kramer83709b12015-11-16 09:01:28 +000010142} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +000010143
Sanjoy Das807d33d2016-02-20 01:44:10 +000010144const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
Silviu Barangae3c05342015-11-02 14:41:02 +000010145 SCEVUnionPredicate &Preds) {
Sanjoy Das807d33d2016-02-20 01:44:10 +000010146 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010147}
10148
Silviu Barangad68ed852016-03-23 15:29:30 +000010149const SCEVAddRecExpr *
Sanjoy Das807d33d2016-02-20 01:44:10 +000010150ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10151 SCEVUnionPredicate &Preds) {
Silviu Barangad68ed852016-03-23 15:29:30 +000010152 SCEVUnionPredicate TransformPreds;
10153 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10154 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10155
10156 if (!AddRec)
10157 return nullptr;
10158
10159 // Since the transformation was successful, we can now transfer the SCEV
10160 // predicates.
10161 Preds.add(&TransformPreds);
10162 return AddRec;
Silviu Barangae3c05342015-11-02 14:41:02 +000010163}
10164
10165/// SCEV predicates
10166SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10167 SCEVPredicateKind Kind)
10168 : FastID(ID), Kind(Kind) {}
10169
10170SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10171 const SCEVUnknown *LHS,
10172 const SCEVConstant *RHS)
10173 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10174
10175bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10176 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10177
10178 if (!Op)
10179 return false;
10180
10181 return Op->LHS == LHS && Op->RHS == RHS;
10182}
10183
10184bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10185
10186const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10187
10188void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10189 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10190}
10191
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010192SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10193 const SCEVAddRecExpr *AR,
10194 IncrementWrapFlags Flags)
10195 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10196
10197const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10198
10199bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10200 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10201
10202 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10203}
10204
10205bool SCEVWrapPredicate::isAlwaysTrue() const {
10206 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10207 IncrementWrapFlags IFlags = Flags;
10208
10209 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10210 IFlags = clearFlags(IFlags, IncrementNSSW);
10211
10212 return IFlags == IncrementAnyWrap;
10213}
10214
10215void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10216 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10217 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10218 OS << "<nusw>";
10219 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10220 OS << "<nssw>";
10221 OS << "\n";
10222}
10223
10224SCEVWrapPredicate::IncrementWrapFlags
10225SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10226 ScalarEvolution &SE) {
10227 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10228 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10229
10230 // We can safely transfer the NSW flag as NSSW.
10231 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10232 ImpliedFlags = IncrementNSSW;
10233
10234 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10235 // If the increment is positive, the SCEV NUW flag will also imply the
10236 // WrapPredicate NUSW flag.
10237 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10238 if (Step->getValue()->getValue().isNonNegative())
10239 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10240 }
10241
10242 return ImpliedFlags;
10243}
10244
Silviu Barangae3c05342015-11-02 14:41:02 +000010245/// Union predicates don't get cached so create a dummy set ID for it.
10246SCEVUnionPredicate::SCEVUnionPredicate()
10247 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10248
10249bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +000010250 return all_of(Preds,
10251 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010252}
10253
10254ArrayRef<const SCEVPredicate *>
10255SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10256 auto I = SCEVToPreds.find(Expr);
10257 if (I == SCEVToPreds.end())
10258 return ArrayRef<const SCEVPredicate *>();
10259 return I->second;
10260}
10261
10262bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10263 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +000010264 return all_of(Set->Preds,
10265 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010266
10267 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10268 if (ScevPredsIt == SCEVToPreds.end())
10269 return false;
10270 auto &SCEVPreds = ScevPredsIt->second;
10271
Sanjoy Dasff3b8b42015-12-01 07:49:23 +000010272 return any_of(SCEVPreds,
10273 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010274}
10275
10276const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10277
10278void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10279 for (auto Pred : Preds)
10280 Pred->print(OS, Depth);
10281}
10282
10283void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10284 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10285 for (auto Pred : Set->Preds)
10286 add(Pred);
10287 return;
10288 }
10289
10290 if (implies(N))
10291 return;
10292
10293 const SCEV *Key = N->getExpr();
10294 assert(Key && "Only SCEVUnionPredicate doesn't have an "
10295 " associated expression!");
10296
10297 SCEVToPreds[Key].push_back(N);
10298 Preds.push_back(N);
10299}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010300
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010301PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10302 Loop &L)
Silviu Baranga6f444df2016-04-08 14:29:09 +000010303 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010304
10305const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10306 const SCEV *Expr = SE.getSCEV(V);
10307 RewriteEntry &Entry = RewriteMap[Expr];
10308
10309 // If we already have an entry and the version matches, return it.
10310 if (Entry.second && Generation == Entry.first)
10311 return Entry.second;
10312
10313 // We found an entry but it's stale. Rewrite the stale entry
10314 // acording to the current predicate.
10315 if (Entry.second)
10316 Expr = Entry.second;
10317
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010318 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010319 Entry = {Generation, NewSCEV};
10320
10321 return NewSCEV;
10322}
10323
Silviu Baranga6f444df2016-04-08 14:29:09 +000010324const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10325 if (!BackedgeCount) {
10326 SCEVUnionPredicate BackedgePred;
10327 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10328 addPredicate(BackedgePred);
10329 }
10330 return BackedgeCount;
10331}
10332
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010333void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10334 if (Preds.implies(&Pred))
10335 return;
10336 Preds.add(&Pred);
10337 updateGeneration();
10338}
10339
10340const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10341 return Preds;
10342}
10343
10344void PredicatedScalarEvolution::updateGeneration() {
10345 // If the generation number wrapped recompute everything.
10346 if (++Generation == 0) {
10347 for (auto &II : RewriteMap) {
10348 const SCEV *Rewritten = II.second.second;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010349 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010350 }
10351 }
10352}
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010353
10354void PredicatedScalarEvolution::setNoOverflow(
10355 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10356 const SCEV *Expr = getSCEV(V);
10357 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10358
10359 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10360
10361 // Clear the statically implied flags.
10362 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10363 addPredicate(*SE.getWrapPredicate(AR, Flags));
10364
10365 auto II = FlagsMap.insert({V, Flags});
10366 if (!II.second)
10367 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10368}
10369
10370bool PredicatedScalarEvolution::hasNoOverflow(
10371 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10372 const SCEV *Expr = getSCEV(V);
10373 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10374
10375 Flags = SCEVWrapPredicate::clearFlags(
10376 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10377
10378 auto II = FlagsMap.find(V);
10379
10380 if (II != FlagsMap.end())
10381 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10382
10383 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10384}
10385
Silviu Barangad68ed852016-03-23 15:29:30 +000010386const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010387 const SCEV *Expr = this->getSCEV(V);
Silviu Barangad68ed852016-03-23 15:29:30 +000010388 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10389
10390 if (!New)
10391 return nullptr;
10392
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010393 updateGeneration();
10394 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10395 return New;
10396}
10397
Silviu Baranga6f444df2016-04-08 14:29:09 +000010398PredicatedScalarEvolution::PredicatedScalarEvolution(
10399 const PredicatedScalarEvolution &Init)
10400 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10401 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010402 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10403 FlagsMap.insert(*I);
10404}
Silviu Barangab77365b2016-04-14 16:08:45 +000010405
10406void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10407 // For each block.
10408 for (auto *BB : L.getBlocks())
10409 for (auto &I : *BB) {
10410 if (!SE.isSCEVable(I.getType()))
10411 continue;
10412
10413 auto *Expr = SE.getSCEV(&I);
10414 auto II = RewriteMap.find(Expr);
10415
10416 if (II == RewriteMap.end())
10417 continue;
10418
10419 // Don't print things that are not interesting.
10420 if (II->second.second == Expr)
10421 continue;
10422
10423 OS.indent(Depth) << "[PSE]" << I << ":\n";
10424 OS.indent(Depth + 2) << *Expr << "\n";
10425 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10426 }
10427}