blob: 6beb9652ed643a48d28808372b176752a94bfe37 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
522Global variables definitions must be initialized, may have an explicit section
523to be placed in, and may have an optional explicit alignment specified.
524
525Global variables in other translation units can also be declared, in which
526case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000527
Michael Gottesman006039c2013-01-31 05:48:48 +0000528A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000529the contents of the variable will **never** be modified (enabling better
530optimization, allowing the global data to be placed in the read-only
531section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000532initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000533variable.
534
535LLVM explicitly allows *declarations* of global variables to be marked
536constant, even if the final definition of the global is not. This
537capability can be used to enable slightly better optimization of the
538program, but requires the language definition to guarantee that
539optimizations based on the 'constantness' are valid for the translation
540units that do not include the definition.
541
542As SSA values, global variables define pointer values that are in scope
543(i.e. they dominate) all basic blocks in the program. Global variables
544always define a pointer to their "content" type because they describe a
545region of memory, and all memory objects in LLVM are accessed through
546pointers.
547
548Global variables can be marked with ``unnamed_addr`` which indicates
549that the address is not significant, only the content. Constants marked
550like this can be merged with other constants if they have the same
551initializer. Note that a constant with significant address *can* be
552merged with a ``unnamed_addr`` constant, the result being a constant
553whose address is significant.
554
555A global variable may be declared to reside in a target-specific
556numbered address space. For targets that support them, address spaces
557may affect how optimizations are performed and/or what target
558instructions are used to access the variable. The default address space
559is zero. The address space qualifier must precede any other attributes.
560
561LLVM allows an explicit section to be specified for globals. If the
562target supports it, it will emit globals to the section specified.
563
Michael Gottesmane743a302013-02-04 03:22:00 +0000564By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000565variables defined within the module are not modified from their
566initial values before the start of the global initializer. This is
567true even for variables potentially accessible from outside the
568module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000569``@llvm.used`` or dllexported variables. This assumption may be suppressed
570by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571
Sean Silvab084af42012-12-07 10:36:55 +0000572An explicit alignment may be specified for a global, which must be a
573power of 2. If not present, or if the alignment is set to zero, the
574alignment of the global is set by the target to whatever it feels
575convenient. If an explicit alignment is specified, the global is forced
576to have exactly that alignment. Targets and optimizers are not allowed
577to over-align the global if the global has an assigned section. In this
578case, the extra alignment could be observable: for example, code could
579assume that the globals are densely packed in their section and try to
580iterate over them as an array, alignment padding would break this
581iteration.
582
Nico Rieck7157bb72014-01-14 15:22:47 +0000583Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
584
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000585Variables and aliasaes can have a
586:ref:`Thread Local Storage Model <tls_model>`.
587
Nico Rieck7157bb72014-01-14 15:22:47 +0000588Syntax::
589
590 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
591 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
592 <global | constant> <Type>
593 [, section "name"] [, align <Alignment>]
594
Sean Silvab084af42012-12-07 10:36:55 +0000595For example, the following defines a global in a numbered address space
596with an initializer, section, and alignment:
597
598.. code-block:: llvm
599
600 @G = addrspace(5) constant float 1.0, section "foo", align 4
601
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000602The following example just declares a global variable
603
604.. code-block:: llvm
605
606 @G = external global i32
607
Sean Silvab084af42012-12-07 10:36:55 +0000608The following example defines a thread-local global with the
609``initialexec`` TLS model:
610
611.. code-block:: llvm
612
613 @G = thread_local(initialexec) global i32 0, align 4
614
615.. _functionstructure:
616
617Functions
618---------
619
620LLVM function definitions consist of the "``define``" keyword, an
621optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000622style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
623an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000624an optional ``unnamed_addr`` attribute, a return type, an optional
625:ref:`parameter attribute <paramattrs>` for the return type, a function
626name, a (possibly empty) argument list (each with optional :ref:`parameter
627attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
628an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000629collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
630curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000631
632LLVM function declarations consist of the "``declare``" keyword, an
633optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000634style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
635an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000636an optional ``unnamed_addr`` attribute, a return type, an optional
637:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000638name, a possibly empty list of arguments, an optional alignment, an optional
639:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000640
Bill Wendling6822ecb2013-10-27 05:09:12 +0000641A function definition contains a list of basic blocks, forming the CFG (Control
642Flow Graph) for the function. Each basic block may optionally start with a label
643(giving the basic block a symbol table entry), contains a list of instructions,
644and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
645function return). If an explicit label is not provided, a block is assigned an
646implicit numbered label, using the next value from the same counter as used for
647unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
648entry block does not have an explicit label, it will be assigned label "%0",
649then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000650
651The first basic block in a function is special in two ways: it is
652immediately executed on entrance to the function, and it is not allowed
653to have predecessor basic blocks (i.e. there can not be any branches to
654the entry block of a function). Because the block can have no
655predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
656
657LLVM allows an explicit section to be specified for functions. If the
658target supports it, it will emit functions to the section specified.
659
660An explicit alignment may be specified for a function. If not present,
661or if the alignment is set to zero, the alignment of the function is set
662by the target to whatever it feels convenient. If an explicit alignment
663is specified, the function is forced to have at least that much
664alignment. All alignments must be a power of 2.
665
666If the ``unnamed_addr`` attribute is given, the address is know to not
667be significant and two identical functions can be merged.
668
669Syntax::
670
Nico Rieck7157bb72014-01-14 15:22:47 +0000671 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000672 [cconv] [ret attrs]
673 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000674 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000675 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000676
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000677.. _langref_aliases:
678
Sean Silvab084af42012-12-07 10:36:55 +0000679Aliases
680-------
681
Rafael Espindola64c1e182014-06-03 02:41:57 +0000682Aliases, unlike function or variables, don't create any new data. They
683are just a new symbol and metadata for an existing position.
684
685Aliases have a name and an aliasee that is either a global value or a
686constant expression.
687
Nico Rieck7157bb72014-01-14 15:22:47 +0000688Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000689:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
690<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000691
692Syntax::
693
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000694 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000695
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000696The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000697``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000698might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000699
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000700Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
701the aliasee.
702
Rafael Espindola64c1e182014-06-03 02:41:57 +0000703Since aliases are only a second name, some restrictions apply, of which
704some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706* The expression defining the aliasee must be computable at assembly
707 time. Since it is just a name, no relocations can be used.
708
709* No alias in the expression can be weak as the possibility of the
710 intermediate alias being overridden cannot be represented in an
711 object file.
712
713* No global value in the expression can be a declaration, since that
714 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000715
Sean Silvab084af42012-12-07 10:36:55 +0000716.. _namedmetadatastructure:
717
718Named Metadata
719--------------
720
721Named metadata is a collection of metadata. :ref:`Metadata
722nodes <metadata>` (but not metadata strings) are the only valid
723operands for a named metadata.
724
725Syntax::
726
727 ; Some unnamed metadata nodes, which are referenced by the named metadata.
728 !0 = metadata !{metadata !"zero"}
729 !1 = metadata !{metadata !"one"}
730 !2 = metadata !{metadata !"two"}
731 ; A named metadata.
732 !name = !{!0, !1, !2}
733
734.. _paramattrs:
735
736Parameter Attributes
737--------------------
738
739The return type and each parameter of a function type may have a set of
740*parameter attributes* associated with them. Parameter attributes are
741used to communicate additional information about the result or
742parameters of a function. Parameter attributes are considered to be part
743of the function, not of the function type, so functions with different
744parameter attributes can have the same function type.
745
746Parameter attributes are simple keywords that follow the type specified.
747If multiple parameter attributes are needed, they are space separated.
748For example:
749
750.. code-block:: llvm
751
752 declare i32 @printf(i8* noalias nocapture, ...)
753 declare i32 @atoi(i8 zeroext)
754 declare signext i8 @returns_signed_char()
755
756Note that any attributes for the function result (``nounwind``,
757``readonly``) come immediately after the argument list.
758
759Currently, only the following parameter attributes are defined:
760
761``zeroext``
762 This indicates to the code generator that the parameter or return
763 value should be zero-extended to the extent required by the target's
764 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
765 the caller (for a parameter) or the callee (for a return value).
766``signext``
767 This indicates to the code generator that the parameter or return
768 value should be sign-extended to the extent required by the target's
769 ABI (which is usually 32-bits) by the caller (for a parameter) or
770 the callee (for a return value).
771``inreg``
772 This indicates that this parameter or return value should be treated
773 in a special target-dependent fashion during while emitting code for
774 a function call or return (usually, by putting it in a register as
775 opposed to memory, though some targets use it to distinguish between
776 two different kinds of registers). Use of this attribute is
777 target-specific.
778``byval``
779 This indicates that the pointer parameter should really be passed by
780 value to the function. The attribute implies that a hidden copy of
781 the pointee is made between the caller and the callee, so the callee
782 is unable to modify the value in the caller. This attribute is only
783 valid on LLVM pointer arguments. It is generally used to pass
784 structs and arrays by value, but is also valid on pointers to
785 scalars. The copy is considered to belong to the caller not the
786 callee (for example, ``readonly`` functions should not write to
787 ``byval`` parameters). This is not a valid attribute for return
788 values.
789
790 The byval attribute also supports specifying an alignment with the
791 align attribute. It indicates the alignment of the stack slot to
792 form and the known alignment of the pointer specified to the call
793 site. If the alignment is not specified, then the code generator
794 makes a target-specific assumption.
795
Reid Klecknera534a382013-12-19 02:14:12 +0000796.. _attr_inalloca:
797
798``inalloca``
799
Reid Kleckner60d3a832014-01-16 22:59:24 +0000800 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000801 address of outgoing stack arguments. An ``inalloca`` argument must
802 be a pointer to stack memory produced by an ``alloca`` instruction.
803 The alloca, or argument allocation, must also be tagged with the
804 inalloca keyword. Only the past argument may have the ``inalloca``
805 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000806
Reid Kleckner436c42e2014-01-17 23:58:17 +0000807 An argument allocation may be used by a call at most once because
808 the call may deallocate it. The ``inalloca`` attribute cannot be
809 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000810 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
811 ``inalloca`` attribute also disables LLVM's implicit lowering of
812 large aggregate return values, which means that frontend authors
813 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000814
Reid Kleckner60d3a832014-01-16 22:59:24 +0000815 When the call site is reached, the argument allocation must have
816 been the most recent stack allocation that is still live, or the
817 results are undefined. It is possible to allocate additional stack
818 space after an argument allocation and before its call site, but it
819 must be cleared off with :ref:`llvm.stackrestore
820 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000821
822 See :doc:`InAlloca` for more information on how to use this
823 attribute.
824
Sean Silvab084af42012-12-07 10:36:55 +0000825``sret``
826 This indicates that the pointer parameter specifies the address of a
827 structure that is the return value of the function in the source
828 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000829 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000830 not to trap and to be properly aligned. This may only be applied to
831 the first parameter. This is not a valid attribute for return
832 values.
Sean Silva1703e702014-04-08 21:06:22 +0000833
834.. _noalias:
835
Sean Silvab084af42012-12-07 10:36:55 +0000836``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000837 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000838 the argument or return value do not alias pointer values which are
839 not *based* on it, ignoring certain "irrelevant" dependencies. For a
840 call to the parent function, dependencies between memory references
841 from before or after the call and from those during the call are
842 "irrelevant" to the ``noalias`` keyword for the arguments and return
843 value used in that call. The caller shares the responsibility with
844 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000845 details, please see the discussion of the NoAlias response in :ref:`alias
846 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000847
848 Note that this definition of ``noalias`` is intentionally similar
849 to the definition of ``restrict`` in C99 for function arguments,
850 though it is slightly weaker.
851
852 For function return values, C99's ``restrict`` is not meaningful,
853 while LLVM's ``noalias`` is.
854``nocapture``
855 This indicates that the callee does not make any copies of the
856 pointer that outlive the callee itself. This is not a valid
857 attribute for return values.
858
859.. _nest:
860
861``nest``
862 This indicates that the pointer parameter can be excised using the
863 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000864 attribute for return values and can only be applied to one parameter.
865
866``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000867 This indicates that the function always returns the argument as its return
868 value. This is an optimization hint to the code generator when generating
869 the caller, allowing tail call optimization and omission of register saves
870 and restores in some cases; it is not checked or enforced when generating
871 the callee. The parameter and the function return type must be valid
872 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
873 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000874
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000875``nonnull``
876 This indicates that the parameter or return pointer is not null. This
877 attribute may only be applied to pointer typed parameters. This is not
878 checked or enforced by LLVM, the caller must ensure that the pointer
879 passed in is non-null, or the callee must ensure that the returned pointer
880 is non-null.
881
Sean Silvab084af42012-12-07 10:36:55 +0000882.. _gc:
883
884Garbage Collector Names
885-----------------------
886
887Each function may specify a garbage collector name, which is simply a
888string:
889
890.. code-block:: llvm
891
892 define void @f() gc "name" { ... }
893
894The compiler declares the supported values of *name*. Specifying a
895collector which will cause the compiler to alter its output in order to
896support the named garbage collection algorithm.
897
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000898.. _prefixdata:
899
900Prefix Data
901-----------
902
903Prefix data is data associated with a function which the code generator
904will emit immediately before the function body. The purpose of this feature
905is to allow frontends to associate language-specific runtime metadata with
906specific functions and make it available through the function pointer while
907still allowing the function pointer to be called. To access the data for a
908given function, a program may bitcast the function pointer to a pointer to
909the constant's type. This implies that the IR symbol points to the start
910of the prefix data.
911
912To maintain the semantics of ordinary function calls, the prefix data must
913have a particular format. Specifically, it must begin with a sequence of
914bytes which decode to a sequence of machine instructions, valid for the
915module's target, which transfer control to the point immediately succeeding
916the prefix data, without performing any other visible action. This allows
917the inliner and other passes to reason about the semantics of the function
918definition without needing to reason about the prefix data. Obviously this
919makes the format of the prefix data highly target dependent.
920
Peter Collingbourne213358a2013-09-23 20:14:21 +0000921Prefix data is laid out as if it were an initializer for a global variable
922of the prefix data's type. No padding is automatically placed between the
923prefix data and the function body. If padding is required, it must be part
924of the prefix data.
925
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000926A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
927which encodes the ``nop`` instruction:
928
929.. code-block:: llvm
930
931 define void @f() prefix i8 144 { ... }
932
933Generally prefix data can be formed by encoding a relative branch instruction
934which skips the metadata, as in this example of valid prefix data for the
935x86_64 architecture, where the first two bytes encode ``jmp .+10``:
936
937.. code-block:: llvm
938
939 %0 = type <{ i8, i8, i8* }>
940
941 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
942
943A function may have prefix data but no body. This has similar semantics
944to the ``available_externally`` linkage in that the data may be used by the
945optimizers but will not be emitted in the object file.
946
Bill Wendling63b88192013-02-06 06:52:58 +0000947.. _attrgrp:
948
949Attribute Groups
950----------------
951
952Attribute groups are groups of attributes that are referenced by objects within
953the IR. They are important for keeping ``.ll`` files readable, because a lot of
954functions will use the same set of attributes. In the degenerative case of a
955``.ll`` file that corresponds to a single ``.c`` file, the single attribute
956group will capture the important command line flags used to build that file.
957
958An attribute group is a module-level object. To use an attribute group, an
959object references the attribute group's ID (e.g. ``#37``). An object may refer
960to more than one attribute group. In that situation, the attributes from the
961different groups are merged.
962
963Here is an example of attribute groups for a function that should always be
964inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
965
966.. code-block:: llvm
967
968 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000969 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000970
971 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000972 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000973
974 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
975 define void @f() #0 #1 { ... }
976
Sean Silvab084af42012-12-07 10:36:55 +0000977.. _fnattrs:
978
979Function Attributes
980-------------------
981
982Function attributes are set to communicate additional information about
983a function. Function attributes are considered to be part of the
984function, not of the function type, so functions with different function
985attributes can have the same function type.
986
987Function attributes are simple keywords that follow the type specified.
988If multiple attributes are needed, they are space separated. For
989example:
990
991.. code-block:: llvm
992
993 define void @f() noinline { ... }
994 define void @f() alwaysinline { ... }
995 define void @f() alwaysinline optsize { ... }
996 define void @f() optsize { ... }
997
Sean Silvab084af42012-12-07 10:36:55 +0000998``alignstack(<n>)``
999 This attribute indicates that, when emitting the prologue and
1000 epilogue, the backend should forcibly align the stack pointer.
1001 Specify the desired alignment, which must be a power of two, in
1002 parentheses.
1003``alwaysinline``
1004 This attribute indicates that the inliner should attempt to inline
1005 this function into callers whenever possible, ignoring any active
1006 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001007``builtin``
1008 This indicates that the callee function at a call site should be
1009 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001010 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001011 direct calls to functions which are declared with the ``nobuiltin``
1012 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001013``cold``
1014 This attribute indicates that this function is rarely called. When
1015 computing edge weights, basic blocks post-dominated by a cold
1016 function call are also considered to be cold; and, thus, given low
1017 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001018``inlinehint``
1019 This attribute indicates that the source code contained a hint that
1020 inlining this function is desirable (such as the "inline" keyword in
1021 C/C++). It is just a hint; it imposes no requirements on the
1022 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001023``jumptable``
1024 This attribute indicates that the function should be added to a
1025 jump-instruction table at code-generation time, and that all address-taken
1026 references to this function should be replaced with a reference to the
1027 appropriate jump-instruction-table function pointer. Note that this creates
1028 a new pointer for the original function, which means that code that depends
1029 on function-pointer identity can break. So, any function annotated with
1030 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001031``minsize``
1032 This attribute suggests that optimization passes and code generator
1033 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001034 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001035 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001036``naked``
1037 This attribute disables prologue / epilogue emission for the
1038 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001039``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001040 This indicates that the callee function at a call site is not recognized as
1041 a built-in function. LLVM will retain the original call and not replace it
1042 with equivalent code based on the semantics of the built-in function, unless
1043 the call site uses the ``builtin`` attribute. This is valid at call sites
1044 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001045``noduplicate``
1046 This attribute indicates that calls to the function cannot be
1047 duplicated. A call to a ``noduplicate`` function may be moved
1048 within its parent function, but may not be duplicated within
1049 its parent function.
1050
1051 A function containing a ``noduplicate`` call may still
1052 be an inlining candidate, provided that the call is not
1053 duplicated by inlining. That implies that the function has
1054 internal linkage and only has one call site, so the original
1055 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001056``noimplicitfloat``
1057 This attributes disables implicit floating point instructions.
1058``noinline``
1059 This attribute indicates that the inliner should never inline this
1060 function in any situation. This attribute may not be used together
1061 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001062``nonlazybind``
1063 This attribute suppresses lazy symbol binding for the function. This
1064 may make calls to the function faster, at the cost of extra program
1065 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001066``noredzone``
1067 This attribute indicates that the code generator should not use a
1068 red zone, even if the target-specific ABI normally permits it.
1069``noreturn``
1070 This function attribute indicates that the function never returns
1071 normally. This produces undefined behavior at runtime if the
1072 function ever does dynamically return.
1073``nounwind``
1074 This function attribute indicates that the function never returns
1075 with an unwind or exceptional control flow. If the function does
1076 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001077``optnone``
1078 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001079 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001080 exception of interprocedural optimization passes.
1081 This attribute cannot be used together with the ``alwaysinline``
1082 attribute; this attribute is also incompatible
1083 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001084
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001085 This attribute requires the ``noinline`` attribute to be specified on
1086 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001087 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001088 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001089``optsize``
1090 This attribute suggests that optimization passes and code generator
1091 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001092 and otherwise do optimizations specifically to reduce code size as
1093 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001094``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001095 On a function, this attribute indicates that the function computes its
1096 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001097 without dereferencing any pointer arguments or otherwise accessing
1098 any mutable state (e.g. memory, control registers, etc) visible to
1099 caller functions. It does not write through any pointer arguments
1100 (including ``byval`` arguments) and never changes any state visible
1101 to callers. This means that it cannot unwind exceptions by calling
1102 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001103
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001104 On an argument, this attribute indicates that the function does not
1105 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001106 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001107``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001108 On a function, this attribute indicates that the function does not write
1109 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001110 modify any state (e.g. memory, control registers, etc) visible to
1111 caller functions. It may dereference pointer arguments and read
1112 state that may be set in the caller. A readonly function always
1113 returns the same value (or unwinds an exception identically) when
1114 called with the same set of arguments and global state. It cannot
1115 unwind an exception by calling the ``C++`` exception throwing
1116 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001117
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001118 On an argument, this attribute indicates that the function does not write
1119 through this pointer argument, even though it may write to the memory that
1120 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001121``returns_twice``
1122 This attribute indicates that this function can return twice. The C
1123 ``setjmp`` is an example of such a function. The compiler disables
1124 some optimizations (like tail calls) in the caller of these
1125 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001126``sanitize_address``
1127 This attribute indicates that AddressSanitizer checks
1128 (dynamic address safety analysis) are enabled for this function.
1129``sanitize_memory``
1130 This attribute indicates that MemorySanitizer checks (dynamic detection
1131 of accesses to uninitialized memory) are enabled for this function.
1132``sanitize_thread``
1133 This attribute indicates that ThreadSanitizer checks
1134 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001135``ssp``
1136 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001137 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001138 placed on the stack before the local variables that's checked upon
1139 return from the function to see if it has been overwritten. A
1140 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001141 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001142
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001143 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1144 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1145 - Calls to alloca() with variable sizes or constant sizes greater than
1146 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001147
Josh Magee24c7f062014-02-01 01:36:16 +00001148 Variables that are identified as requiring a protector will be arranged
1149 on the stack such that they are adjacent to the stack protector guard.
1150
Sean Silvab084af42012-12-07 10:36:55 +00001151 If a function that has an ``ssp`` attribute is inlined into a
1152 function that doesn't have an ``ssp`` attribute, then the resulting
1153 function will have an ``ssp`` attribute.
1154``sspreq``
1155 This attribute indicates that the function should *always* emit a
1156 stack smashing protector. This overrides the ``ssp`` function
1157 attribute.
1158
Josh Magee24c7f062014-02-01 01:36:16 +00001159 Variables that are identified as requiring a protector will be arranged
1160 on the stack such that they are adjacent to the stack protector guard.
1161 The specific layout rules are:
1162
1163 #. Large arrays and structures containing large arrays
1164 (``>= ssp-buffer-size``) are closest to the stack protector.
1165 #. Small arrays and structures containing small arrays
1166 (``< ssp-buffer-size``) are 2nd closest to the protector.
1167 #. Variables that have had their address taken are 3rd closest to the
1168 protector.
1169
Sean Silvab084af42012-12-07 10:36:55 +00001170 If a function that has an ``sspreq`` attribute is inlined into a
1171 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001172 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1173 an ``sspreq`` attribute.
1174``sspstrong``
1175 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001176 protector. This attribute causes a strong heuristic to be used when
1177 determining if a function needs stack protectors. The strong heuristic
1178 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001179
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001180 - Arrays of any size and type
1181 - Aggregates containing an array of any size and type.
1182 - Calls to alloca().
1183 - Local variables that have had their address taken.
1184
Josh Magee24c7f062014-02-01 01:36:16 +00001185 Variables that are identified as requiring a protector will be arranged
1186 on the stack such that they are adjacent to the stack protector guard.
1187 The specific layout rules are:
1188
1189 #. Large arrays and structures containing large arrays
1190 (``>= ssp-buffer-size``) are closest to the stack protector.
1191 #. Small arrays and structures containing small arrays
1192 (``< ssp-buffer-size``) are 2nd closest to the protector.
1193 #. Variables that have had their address taken are 3rd closest to the
1194 protector.
1195
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001196 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001197
1198 If a function that has an ``sspstrong`` attribute is inlined into a
1199 function that doesn't have an ``sspstrong`` attribute, then the
1200 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001201``uwtable``
1202 This attribute indicates that the ABI being targeted requires that
1203 an unwind table entry be produce for this function even if we can
1204 show that no exceptions passes by it. This is normally the case for
1205 the ELF x86-64 abi, but it can be disabled for some compilation
1206 units.
Sean Silvab084af42012-12-07 10:36:55 +00001207
1208.. _moduleasm:
1209
1210Module-Level Inline Assembly
1211----------------------------
1212
1213Modules may contain "module-level inline asm" blocks, which corresponds
1214to the GCC "file scope inline asm" blocks. These blocks are internally
1215concatenated by LLVM and treated as a single unit, but may be separated
1216in the ``.ll`` file if desired. The syntax is very simple:
1217
1218.. code-block:: llvm
1219
1220 module asm "inline asm code goes here"
1221 module asm "more can go here"
1222
1223The strings can contain any character by escaping non-printable
1224characters. The escape sequence used is simply "\\xx" where "xx" is the
1225two digit hex code for the number.
1226
1227The inline asm code is simply printed to the machine code .s file when
1228assembly code is generated.
1229
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001230.. _langref_datalayout:
1231
Sean Silvab084af42012-12-07 10:36:55 +00001232Data Layout
1233-----------
1234
1235A module may specify a target specific data layout string that specifies
1236how data is to be laid out in memory. The syntax for the data layout is
1237simply:
1238
1239.. code-block:: llvm
1240
1241 target datalayout = "layout specification"
1242
1243The *layout specification* consists of a list of specifications
1244separated by the minus sign character ('-'). Each specification starts
1245with a letter and may include other information after the letter to
1246define some aspect of the data layout. The specifications accepted are
1247as follows:
1248
1249``E``
1250 Specifies that the target lays out data in big-endian form. That is,
1251 the bits with the most significance have the lowest address
1252 location.
1253``e``
1254 Specifies that the target lays out data in little-endian form. That
1255 is, the bits with the least significance have the lowest address
1256 location.
1257``S<size>``
1258 Specifies the natural alignment of the stack in bits. Alignment
1259 promotion of stack variables is limited to the natural stack
1260 alignment to avoid dynamic stack realignment. The stack alignment
1261 must be a multiple of 8-bits. If omitted, the natural stack
1262 alignment defaults to "unspecified", which does not prevent any
1263 alignment promotions.
1264``p[n]:<size>:<abi>:<pref>``
1265 This specifies the *size* of a pointer and its ``<abi>`` and
1266 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001267 bits. The address space, ``n`` is optional, and if not specified,
1268 denotes the default address space 0. The value of ``n`` must be
1269 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001270``i<size>:<abi>:<pref>``
1271 This specifies the alignment for an integer type of a given bit
1272 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1273``v<size>:<abi>:<pref>``
1274 This specifies the alignment for a vector type of a given bit
1275 ``<size>``.
1276``f<size>:<abi>:<pref>``
1277 This specifies the alignment for a floating point type of a given bit
1278 ``<size>``. Only values of ``<size>`` that are supported by the target
1279 will work. 32 (float) and 64 (double) are supported on all targets; 80
1280 or 128 (different flavors of long double) are also supported on some
1281 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001282``a:<abi>:<pref>``
1283 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001284``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001285 If present, specifies that llvm names are mangled in the output. The
1286 options are
1287
1288 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1289 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1290 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1291 symbols get a ``_`` prefix.
1292 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1293 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001294``n<size1>:<size2>:<size3>...``
1295 This specifies a set of native integer widths for the target CPU in
1296 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1297 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1298 this set are considered to support most general arithmetic operations
1299 efficiently.
1300
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001301On every specification that takes a ``<abi>:<pref>``, specifying the
1302``<pref>`` alignment is optional. If omitted, the preceding ``:``
1303should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1304
Sean Silvab084af42012-12-07 10:36:55 +00001305When constructing the data layout for a given target, LLVM starts with a
1306default set of specifications which are then (possibly) overridden by
1307the specifications in the ``datalayout`` keyword. The default
1308specifications are given in this list:
1309
1310- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001311- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1312- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1313 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001314- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001315- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1316- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1317- ``i16:16:16`` - i16 is 16-bit aligned
1318- ``i32:32:32`` - i32 is 32-bit aligned
1319- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1320 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001321- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001322- ``f32:32:32`` - float is 32-bit aligned
1323- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001324- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001325- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1326- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001327- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001328
1329When LLVM is determining the alignment for a given type, it uses the
1330following rules:
1331
1332#. If the type sought is an exact match for one of the specifications,
1333 that specification is used.
1334#. If no match is found, and the type sought is an integer type, then
1335 the smallest integer type that is larger than the bitwidth of the
1336 sought type is used. If none of the specifications are larger than
1337 the bitwidth then the largest integer type is used. For example,
1338 given the default specifications above, the i7 type will use the
1339 alignment of i8 (next largest) while both i65 and i256 will use the
1340 alignment of i64 (largest specified).
1341#. If no match is found, and the type sought is a vector type, then the
1342 largest vector type that is smaller than the sought vector type will
1343 be used as a fall back. This happens because <128 x double> can be
1344 implemented in terms of 64 <2 x double>, for example.
1345
1346The function of the data layout string may not be what you expect.
1347Notably, this is not a specification from the frontend of what alignment
1348the code generator should use.
1349
1350Instead, if specified, the target data layout is required to match what
1351the ultimate *code generator* expects. This string is used by the
1352mid-level optimizers to improve code, and this only works if it matches
1353what the ultimate code generator uses. If you would like to generate IR
1354that does not embed this target-specific detail into the IR, then you
1355don't have to specify the string. This will disable some optimizations
1356that require precise layout information, but this also prevents those
1357optimizations from introducing target specificity into the IR.
1358
Bill Wendling5cc90842013-10-18 23:41:25 +00001359.. _langref_triple:
1360
1361Target Triple
1362-------------
1363
1364A module may specify a target triple string that describes the target
1365host. The syntax for the target triple is simply:
1366
1367.. code-block:: llvm
1368
1369 target triple = "x86_64-apple-macosx10.7.0"
1370
1371The *target triple* string consists of a series of identifiers delimited
1372by the minus sign character ('-'). The canonical forms are:
1373
1374::
1375
1376 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1377 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1378
1379This information is passed along to the backend so that it generates
1380code for the proper architecture. It's possible to override this on the
1381command line with the ``-mtriple`` command line option.
1382
Sean Silvab084af42012-12-07 10:36:55 +00001383.. _pointeraliasing:
1384
1385Pointer Aliasing Rules
1386----------------------
1387
1388Any memory access must be done through a pointer value associated with
1389an address range of the memory access, otherwise the behavior is
1390undefined. Pointer values are associated with address ranges according
1391to the following rules:
1392
1393- A pointer value is associated with the addresses associated with any
1394 value it is *based* on.
1395- An address of a global variable is associated with the address range
1396 of the variable's storage.
1397- The result value of an allocation instruction is associated with the
1398 address range of the allocated storage.
1399- A null pointer in the default address-space is associated with no
1400 address.
1401- An integer constant other than zero or a pointer value returned from
1402 a function not defined within LLVM may be associated with address
1403 ranges allocated through mechanisms other than those provided by
1404 LLVM. Such ranges shall not overlap with any ranges of addresses
1405 allocated by mechanisms provided by LLVM.
1406
1407A pointer value is *based* on another pointer value according to the
1408following rules:
1409
1410- A pointer value formed from a ``getelementptr`` operation is *based*
1411 on the first operand of the ``getelementptr``.
1412- The result value of a ``bitcast`` is *based* on the operand of the
1413 ``bitcast``.
1414- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1415 values that contribute (directly or indirectly) to the computation of
1416 the pointer's value.
1417- The "*based* on" relationship is transitive.
1418
1419Note that this definition of *"based"* is intentionally similar to the
1420definition of *"based"* in C99, though it is slightly weaker.
1421
1422LLVM IR does not associate types with memory. The result type of a
1423``load`` merely indicates the size and alignment of the memory from
1424which to load, as well as the interpretation of the value. The first
1425operand type of a ``store`` similarly only indicates the size and
1426alignment of the store.
1427
1428Consequently, type-based alias analysis, aka TBAA, aka
1429``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1430:ref:`Metadata <metadata>` may be used to encode additional information
1431which specialized optimization passes may use to implement type-based
1432alias analysis.
1433
1434.. _volatile:
1435
1436Volatile Memory Accesses
1437------------------------
1438
1439Certain memory accesses, such as :ref:`load <i_load>`'s,
1440:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1441marked ``volatile``. The optimizers must not change the number of
1442volatile operations or change their order of execution relative to other
1443volatile operations. The optimizers *may* change the order of volatile
1444operations relative to non-volatile operations. This is not Java's
1445"volatile" and has no cross-thread synchronization behavior.
1446
Andrew Trick89fc5a62013-01-30 21:19:35 +00001447IR-level volatile loads and stores cannot safely be optimized into
1448llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1449flagged volatile. Likewise, the backend should never split or merge
1450target-legal volatile load/store instructions.
1451
Andrew Trick7e6f9282013-01-31 00:49:39 +00001452.. admonition:: Rationale
1453
1454 Platforms may rely on volatile loads and stores of natively supported
1455 data width to be executed as single instruction. For example, in C
1456 this holds for an l-value of volatile primitive type with native
1457 hardware support, but not necessarily for aggregate types. The
1458 frontend upholds these expectations, which are intentionally
1459 unspecified in the IR. The rules above ensure that IR transformation
1460 do not violate the frontend's contract with the language.
1461
Sean Silvab084af42012-12-07 10:36:55 +00001462.. _memmodel:
1463
1464Memory Model for Concurrent Operations
1465--------------------------------------
1466
1467The LLVM IR does not define any way to start parallel threads of
1468execution or to register signal handlers. Nonetheless, there are
1469platform-specific ways to create them, and we define LLVM IR's behavior
1470in their presence. This model is inspired by the C++0x memory model.
1471
1472For a more informal introduction to this model, see the :doc:`Atomics`.
1473
1474We define a *happens-before* partial order as the least partial order
1475that
1476
1477- Is a superset of single-thread program order, and
1478- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1479 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1480 techniques, like pthread locks, thread creation, thread joining,
1481 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1482 Constraints <ordering>`).
1483
1484Note that program order does not introduce *happens-before* edges
1485between a thread and signals executing inside that thread.
1486
1487Every (defined) read operation (load instructions, memcpy, atomic
1488loads/read-modify-writes, etc.) R reads a series of bytes written by
1489(defined) write operations (store instructions, atomic
1490stores/read-modify-writes, memcpy, etc.). For the purposes of this
1491section, initialized globals are considered to have a write of the
1492initializer which is atomic and happens before any other read or write
1493of the memory in question. For each byte of a read R, R\ :sub:`byte`
1494may see any write to the same byte, except:
1495
1496- If write\ :sub:`1` happens before write\ :sub:`2`, and
1497 write\ :sub:`2` happens before R\ :sub:`byte`, then
1498 R\ :sub:`byte` does not see write\ :sub:`1`.
1499- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1500 R\ :sub:`byte` does not see write\ :sub:`3`.
1501
1502Given that definition, R\ :sub:`byte` is defined as follows:
1503
1504- If R is volatile, the result is target-dependent. (Volatile is
1505 supposed to give guarantees which can support ``sig_atomic_t`` in
1506 C/C++, and may be used for accesses to addresses which do not behave
1507 like normal memory. It does not generally provide cross-thread
1508 synchronization.)
1509- Otherwise, if there is no write to the same byte that happens before
1510 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1511- Otherwise, if R\ :sub:`byte` may see exactly one write,
1512 R\ :sub:`byte` returns the value written by that write.
1513- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1514 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1515 Memory Ordering Constraints <ordering>` section for additional
1516 constraints on how the choice is made.
1517- Otherwise R\ :sub:`byte` returns ``undef``.
1518
1519R returns the value composed of the series of bytes it read. This
1520implies that some bytes within the value may be ``undef`` **without**
1521the entire value being ``undef``. Note that this only defines the
1522semantics of the operation; it doesn't mean that targets will emit more
1523than one instruction to read the series of bytes.
1524
1525Note that in cases where none of the atomic intrinsics are used, this
1526model places only one restriction on IR transformations on top of what
1527is required for single-threaded execution: introducing a store to a byte
1528which might not otherwise be stored is not allowed in general.
1529(Specifically, in the case where another thread might write to and read
1530from an address, introducing a store can change a load that may see
1531exactly one write into a load that may see multiple writes.)
1532
1533.. _ordering:
1534
1535Atomic Memory Ordering Constraints
1536----------------------------------
1537
1538Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1539:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1540:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001541ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001542the same address they *synchronize with*. These semantics are borrowed
1543from Java and C++0x, but are somewhat more colloquial. If these
1544descriptions aren't precise enough, check those specs (see spec
1545references in the :doc:`atomics guide <Atomics>`).
1546:ref:`fence <i_fence>` instructions treat these orderings somewhat
1547differently since they don't take an address. See that instruction's
1548documentation for details.
1549
1550For a simpler introduction to the ordering constraints, see the
1551:doc:`Atomics`.
1552
1553``unordered``
1554 The set of values that can be read is governed by the happens-before
1555 partial order. A value cannot be read unless some operation wrote
1556 it. This is intended to provide a guarantee strong enough to model
1557 Java's non-volatile shared variables. This ordering cannot be
1558 specified for read-modify-write operations; it is not strong enough
1559 to make them atomic in any interesting way.
1560``monotonic``
1561 In addition to the guarantees of ``unordered``, there is a single
1562 total order for modifications by ``monotonic`` operations on each
1563 address. All modification orders must be compatible with the
1564 happens-before order. There is no guarantee that the modification
1565 orders can be combined to a global total order for the whole program
1566 (and this often will not be possible). The read in an atomic
1567 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1568 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1569 order immediately before the value it writes. If one atomic read
1570 happens before another atomic read of the same address, the later
1571 read must see the same value or a later value in the address's
1572 modification order. This disallows reordering of ``monotonic`` (or
1573 stronger) operations on the same address. If an address is written
1574 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1575 read that address repeatedly, the other threads must eventually see
1576 the write. This corresponds to the C++0x/C1x
1577 ``memory_order_relaxed``.
1578``acquire``
1579 In addition to the guarantees of ``monotonic``, a
1580 *synchronizes-with* edge may be formed with a ``release`` operation.
1581 This is intended to model C++'s ``memory_order_acquire``.
1582``release``
1583 In addition to the guarantees of ``monotonic``, if this operation
1584 writes a value which is subsequently read by an ``acquire``
1585 operation, it *synchronizes-with* that operation. (This isn't a
1586 complete description; see the C++0x definition of a release
1587 sequence.) This corresponds to the C++0x/C1x
1588 ``memory_order_release``.
1589``acq_rel`` (acquire+release)
1590 Acts as both an ``acquire`` and ``release`` operation on its
1591 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1592``seq_cst`` (sequentially consistent)
1593 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1594 operation which only reads, ``release`` for an operation which only
1595 writes), there is a global total order on all
1596 sequentially-consistent operations on all addresses, which is
1597 consistent with the *happens-before* partial order and with the
1598 modification orders of all the affected addresses. Each
1599 sequentially-consistent read sees the last preceding write to the
1600 same address in this global order. This corresponds to the C++0x/C1x
1601 ``memory_order_seq_cst`` and Java volatile.
1602
1603.. _singlethread:
1604
1605If an atomic operation is marked ``singlethread``, it only *synchronizes
1606with* or participates in modification and seq\_cst total orderings with
1607other operations running in the same thread (for example, in signal
1608handlers).
1609
1610.. _fastmath:
1611
1612Fast-Math Flags
1613---------------
1614
1615LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1616:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1617:ref:`frem <i_frem>`) have the following flags that can set to enable
1618otherwise unsafe floating point operations
1619
1620``nnan``
1621 No NaNs - Allow optimizations to assume the arguments and result are not
1622 NaN. Such optimizations are required to retain defined behavior over
1623 NaNs, but the value of the result is undefined.
1624
1625``ninf``
1626 No Infs - Allow optimizations to assume the arguments and result are not
1627 +/-Inf. Such optimizations are required to retain defined behavior over
1628 +/-Inf, but the value of the result is undefined.
1629
1630``nsz``
1631 No Signed Zeros - Allow optimizations to treat the sign of a zero
1632 argument or result as insignificant.
1633
1634``arcp``
1635 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1636 argument rather than perform division.
1637
1638``fast``
1639 Fast - Allow algebraically equivalent transformations that may
1640 dramatically change results in floating point (e.g. reassociate). This
1641 flag implies all the others.
1642
1643.. _typesystem:
1644
1645Type System
1646===========
1647
1648The LLVM type system is one of the most important features of the
1649intermediate representation. Being typed enables a number of
1650optimizations to be performed on the intermediate representation
1651directly, without having to do extra analyses on the side before the
1652transformation. A strong type system makes it easier to read the
1653generated code and enables novel analyses and transformations that are
1654not feasible to perform on normal three address code representations.
1655
Rafael Espindola08013342013-12-07 19:34:20 +00001656.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001657
Rafael Espindola08013342013-12-07 19:34:20 +00001658Void Type
1659---------
Sean Silvab084af42012-12-07 10:36:55 +00001660
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001661:Overview:
1662
Rafael Espindola08013342013-12-07 19:34:20 +00001663
1664The void type does not represent any value and has no size.
1665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001666:Syntax:
1667
Rafael Espindola08013342013-12-07 19:34:20 +00001668
1669::
1670
1671 void
Sean Silvab084af42012-12-07 10:36:55 +00001672
1673
Rafael Espindola08013342013-12-07 19:34:20 +00001674.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001675
Rafael Espindola08013342013-12-07 19:34:20 +00001676Function Type
1677-------------
Sean Silvab084af42012-12-07 10:36:55 +00001678
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001679:Overview:
1680
Sean Silvab084af42012-12-07 10:36:55 +00001681
Rafael Espindola08013342013-12-07 19:34:20 +00001682The function type can be thought of as a function signature. It consists of a
1683return type and a list of formal parameter types. The return type of a function
1684type is a void type or first class type --- except for :ref:`label <t_label>`
1685and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001686
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001687:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001688
Rafael Espindola08013342013-12-07 19:34:20 +00001689::
Sean Silvab084af42012-12-07 10:36:55 +00001690
Rafael Espindola08013342013-12-07 19:34:20 +00001691 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001692
Rafael Espindola08013342013-12-07 19:34:20 +00001693...where '``<parameter list>``' is a comma-separated list of type
1694specifiers. Optionally, the parameter list may include a type ``...``, which
1695indicates that the function takes a variable number of arguments. Variable
1696argument functions can access their arguments with the :ref:`variable argument
1697handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1698except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001699
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001700:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001701
Rafael Espindola08013342013-12-07 19:34:20 +00001702+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1703| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1704+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1705| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1706+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1707| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1708+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1709| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1710+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1711
1712.. _t_firstclass:
1713
1714First Class Types
1715-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001716
1717The :ref:`first class <t_firstclass>` types are perhaps the most important.
1718Values of these types are the only ones which can be produced by
1719instructions.
1720
Rafael Espindola08013342013-12-07 19:34:20 +00001721.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001722
Rafael Espindola08013342013-12-07 19:34:20 +00001723Single Value Types
1724^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001725
Rafael Espindola08013342013-12-07 19:34:20 +00001726These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001727
1728.. _t_integer:
1729
1730Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001731""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001732
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001733:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001734
1735The integer type is a very simple type that simply specifies an
1736arbitrary bit width for the integer type desired. Any bit width from 1
1737bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1738
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001739:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001740
1741::
1742
1743 iN
1744
1745The number of bits the integer will occupy is specified by the ``N``
1746value.
1747
1748Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001749*********
Sean Silvab084af42012-12-07 10:36:55 +00001750
1751+----------------+------------------------------------------------+
1752| ``i1`` | a single-bit integer. |
1753+----------------+------------------------------------------------+
1754| ``i32`` | a 32-bit integer. |
1755+----------------+------------------------------------------------+
1756| ``i1942652`` | a really big integer of over 1 million bits. |
1757+----------------+------------------------------------------------+
1758
1759.. _t_floating:
1760
1761Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001762""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001763
1764.. list-table::
1765 :header-rows: 1
1766
1767 * - Type
1768 - Description
1769
1770 * - ``half``
1771 - 16-bit floating point value
1772
1773 * - ``float``
1774 - 32-bit floating point value
1775
1776 * - ``double``
1777 - 64-bit floating point value
1778
1779 * - ``fp128``
1780 - 128-bit floating point value (112-bit mantissa)
1781
1782 * - ``x86_fp80``
1783 - 80-bit floating point value (X87)
1784
1785 * - ``ppc_fp128``
1786 - 128-bit floating point value (two 64-bits)
1787
Reid Kleckner9a16d082014-03-05 02:41:37 +00001788X86_mmx Type
1789""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001791:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001792
Reid Kleckner9a16d082014-03-05 02:41:37 +00001793The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001794machine. The operations allowed on it are quite limited: parameters and
1795return values, load and store, and bitcast. User-specified MMX
1796instructions are represented as intrinsic or asm calls with arguments
1797and/or results of this type. There are no arrays, vectors or constants
1798of this type.
1799
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001800:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001801
1802::
1803
Reid Kleckner9a16d082014-03-05 02:41:37 +00001804 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001805
Sean Silvab084af42012-12-07 10:36:55 +00001806
Rafael Espindola08013342013-12-07 19:34:20 +00001807.. _t_pointer:
1808
1809Pointer Type
1810""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001811
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001812:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001813
Rafael Espindola08013342013-12-07 19:34:20 +00001814The pointer type is used to specify memory locations. Pointers are
1815commonly used to reference objects in memory.
1816
1817Pointer types may have an optional address space attribute defining the
1818numbered address space where the pointed-to object resides. The default
1819address space is number zero. The semantics of non-zero address spaces
1820are target-specific.
1821
1822Note that LLVM does not permit pointers to void (``void*``) nor does it
1823permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001824
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001825:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001826
1827::
1828
Rafael Espindola08013342013-12-07 19:34:20 +00001829 <type> *
1830
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001831:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001832
1833+-------------------------+--------------------------------------------------------------------------------------------------------------+
1834| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1835+-------------------------+--------------------------------------------------------------------------------------------------------------+
1836| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1837+-------------------------+--------------------------------------------------------------------------------------------------------------+
1838| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1839+-------------------------+--------------------------------------------------------------------------------------------------------------+
1840
1841.. _t_vector:
1842
1843Vector Type
1844"""""""""""
1845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001846:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001847
1848A vector type is a simple derived type that represents a vector of
1849elements. Vector types are used when multiple primitive data are
1850operated in parallel using a single instruction (SIMD). A vector type
1851requires a size (number of elements) and an underlying primitive data
1852type. Vector types are considered :ref:`first class <t_firstclass>`.
1853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001855
1856::
1857
1858 < <# elements> x <elementtype> >
1859
1860The number of elements is a constant integer value larger than 0;
1861elementtype may be any integer or floating point type, or a pointer to
1862these types. Vectors of size zero are not allowed.
1863
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001864:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001865
1866+-------------------+--------------------------------------------------+
1867| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1868+-------------------+--------------------------------------------------+
1869| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1870+-------------------+--------------------------------------------------+
1871| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1872+-------------------+--------------------------------------------------+
1873| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1874+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001875
1876.. _t_label:
1877
1878Label Type
1879^^^^^^^^^^
1880
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001881:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883The label type represents code labels.
1884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001885:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001886
1887::
1888
1889 label
1890
1891.. _t_metadata:
1892
1893Metadata Type
1894^^^^^^^^^^^^^
1895
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001896:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001897
1898The metadata type represents embedded metadata. No derived types may be
1899created from metadata except for :ref:`function <t_function>` arguments.
1900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001902
1903::
1904
1905 metadata
1906
Sean Silvab084af42012-12-07 10:36:55 +00001907.. _t_aggregate:
1908
1909Aggregate Types
1910^^^^^^^^^^^^^^^
1911
1912Aggregate Types are a subset of derived types that can contain multiple
1913member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1914aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1915aggregate types.
1916
1917.. _t_array:
1918
1919Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001920""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001922:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001923
1924The array type is a very simple derived type that arranges elements
1925sequentially in memory. The array type requires a size (number of
1926elements) and an underlying data type.
1927
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001928:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001929
1930::
1931
1932 [<# elements> x <elementtype>]
1933
1934The number of elements is a constant integer value; ``elementtype`` may
1935be any type with a size.
1936
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001937:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939+------------------+--------------------------------------+
1940| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1941+------------------+--------------------------------------+
1942| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1943+------------------+--------------------------------------+
1944| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1945+------------------+--------------------------------------+
1946
1947Here are some examples of multidimensional arrays:
1948
1949+-----------------------------+----------------------------------------------------------+
1950| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1951+-----------------------------+----------------------------------------------------------+
1952| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1953+-----------------------------+----------------------------------------------------------+
1954| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1955+-----------------------------+----------------------------------------------------------+
1956
1957There is no restriction on indexing beyond the end of the array implied
1958by a static type (though there are restrictions on indexing beyond the
1959bounds of an allocated object in some cases). This means that
1960single-dimension 'variable sized array' addressing can be implemented in
1961LLVM with a zero length array type. An implementation of 'pascal style
1962arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1963example.
1964
Sean Silvab084af42012-12-07 10:36:55 +00001965.. _t_struct:
1966
1967Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001968""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001969
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001970:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001971
1972The structure type is used to represent a collection of data members
1973together in memory. The elements of a structure may be any type that has
1974a size.
1975
1976Structures in memory are accessed using '``load``' and '``store``' by
1977getting a pointer to a field with the '``getelementptr``' instruction.
1978Structures in registers are accessed using the '``extractvalue``' and
1979'``insertvalue``' instructions.
1980
1981Structures may optionally be "packed" structures, which indicate that
1982the alignment of the struct is one byte, and that there is no padding
1983between the elements. In non-packed structs, padding between field types
1984is inserted as defined by the DataLayout string in the module, which is
1985required to match what the underlying code generator expects.
1986
1987Structures can either be "literal" or "identified". A literal structure
1988is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1989identified types are always defined at the top level with a name.
1990Literal types are uniqued by their contents and can never be recursive
1991or opaque since there is no way to write one. Identified types can be
1992recursive, can be opaqued, and are never uniqued.
1993
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001994:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001995
1996::
1997
1998 %T1 = type { <type list> } ; Identified normal struct type
1999 %T2 = type <{ <type list> }> ; Identified packed struct type
2000
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002001:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002002
2003+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2004| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2005+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002006| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002007+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2008| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2009+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2010
2011.. _t_opaque:
2012
2013Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002014""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002015
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002016:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002017
2018Opaque structure types are used to represent named structure types that
2019do not have a body specified. This corresponds (for example) to the C
2020notion of a forward declared structure.
2021
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002022:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002023
2024::
2025
2026 %X = type opaque
2027 %52 = type opaque
2028
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002029:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+--------------+-------------------+
2032| ``opaque`` | An opaque type. |
2033+--------------+-------------------+
2034
Sean Silva1703e702014-04-08 21:06:22 +00002035.. _constants:
2036
Sean Silvab084af42012-12-07 10:36:55 +00002037Constants
2038=========
2039
2040LLVM has several different basic types of constants. This section
2041describes them all and their syntax.
2042
2043Simple Constants
2044----------------
2045
2046**Boolean constants**
2047 The two strings '``true``' and '``false``' are both valid constants
2048 of the ``i1`` type.
2049**Integer constants**
2050 Standard integers (such as '4') are constants of the
2051 :ref:`integer <t_integer>` type. Negative numbers may be used with
2052 integer types.
2053**Floating point constants**
2054 Floating point constants use standard decimal notation (e.g.
2055 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2056 hexadecimal notation (see below). The assembler requires the exact
2057 decimal value of a floating-point constant. For example, the
2058 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2059 decimal in binary. Floating point constants must have a :ref:`floating
2060 point <t_floating>` type.
2061**Null pointer constants**
2062 The identifier '``null``' is recognized as a null pointer constant
2063 and must be of :ref:`pointer type <t_pointer>`.
2064
2065The one non-intuitive notation for constants is the hexadecimal form of
2066floating point constants. For example, the form
2067'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2068than) '``double 4.5e+15``'. The only time hexadecimal floating point
2069constants are required (and the only time that they are generated by the
2070disassembler) is when a floating point constant must be emitted but it
2071cannot be represented as a decimal floating point number in a reasonable
2072number of digits. For example, NaN's, infinities, and other special
2073values are represented in their IEEE hexadecimal format so that assembly
2074and disassembly do not cause any bits to change in the constants.
2075
2076When using the hexadecimal form, constants of types half, float, and
2077double are represented using the 16-digit form shown above (which
2078matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002079must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002080precision, respectively. Hexadecimal format is always used for long
2081double, and there are three forms of long double. The 80-bit format used
2082by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2083128-bit format used by PowerPC (two adjacent doubles) is represented by
2084``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002085represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2086will only work if they match the long double format on your target.
2087The IEEE 16-bit format (half precision) is represented by ``0xH``
2088followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2089(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002090
Reid Kleckner9a16d082014-03-05 02:41:37 +00002091There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002092
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002093.. _complexconstants:
2094
Sean Silvab084af42012-12-07 10:36:55 +00002095Complex Constants
2096-----------------
2097
2098Complex constants are a (potentially recursive) combination of simple
2099constants and smaller complex constants.
2100
2101**Structure constants**
2102 Structure constants are represented with notation similar to
2103 structure type definitions (a comma separated list of elements,
2104 surrounded by braces (``{}``)). For example:
2105 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2106 "``@G = external global i32``". Structure constants must have
2107 :ref:`structure type <t_struct>`, and the number and types of elements
2108 must match those specified by the type.
2109**Array constants**
2110 Array constants are represented with notation similar to array type
2111 definitions (a comma separated list of elements, surrounded by
2112 square brackets (``[]``)). For example:
2113 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2114 :ref:`array type <t_array>`, and the number and types of elements must
2115 match those specified by the type.
2116**Vector constants**
2117 Vector constants are represented with notation similar to vector
2118 type definitions (a comma separated list of elements, surrounded by
2119 less-than/greater-than's (``<>``)). For example:
2120 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2121 must have :ref:`vector type <t_vector>`, and the number and types of
2122 elements must match those specified by the type.
2123**Zero initialization**
2124 The string '``zeroinitializer``' can be used to zero initialize a
2125 value to zero of *any* type, including scalar and
2126 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2127 having to print large zero initializers (e.g. for large arrays) and
2128 is always exactly equivalent to using explicit zero initializers.
2129**Metadata node**
2130 A metadata node is a structure-like constant with :ref:`metadata
2131 type <t_metadata>`. For example:
2132 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2133 constants that are meant to be interpreted as part of the
2134 instruction stream, metadata is a place to attach additional
2135 information such as debug info.
2136
2137Global Variable and Function Addresses
2138--------------------------------------
2139
2140The addresses of :ref:`global variables <globalvars>` and
2141:ref:`functions <functionstructure>` are always implicitly valid
2142(link-time) constants. These constants are explicitly referenced when
2143the :ref:`identifier for the global <identifiers>` is used and always have
2144:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2145file:
2146
2147.. code-block:: llvm
2148
2149 @X = global i32 17
2150 @Y = global i32 42
2151 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2152
2153.. _undefvalues:
2154
2155Undefined Values
2156----------------
2157
2158The string '``undef``' can be used anywhere a constant is expected, and
2159indicates that the user of the value may receive an unspecified
2160bit-pattern. Undefined values may be of any type (other than '``label``'
2161or '``void``') and be used anywhere a constant is permitted.
2162
2163Undefined values are useful because they indicate to the compiler that
2164the program is well defined no matter what value is used. This gives the
2165compiler more freedom to optimize. Here are some examples of
2166(potentially surprising) transformations that are valid (in pseudo IR):
2167
2168.. code-block:: llvm
2169
2170 %A = add %X, undef
2171 %B = sub %X, undef
2172 %C = xor %X, undef
2173 Safe:
2174 %A = undef
2175 %B = undef
2176 %C = undef
2177
2178This is safe because all of the output bits are affected by the undef
2179bits. Any output bit can have a zero or one depending on the input bits.
2180
2181.. code-block:: llvm
2182
2183 %A = or %X, undef
2184 %B = and %X, undef
2185 Safe:
2186 %A = -1
2187 %B = 0
2188 Unsafe:
2189 %A = undef
2190 %B = undef
2191
2192These logical operations have bits that are not always affected by the
2193input. For example, if ``%X`` has a zero bit, then the output of the
2194'``and``' operation will always be a zero for that bit, no matter what
2195the corresponding bit from the '``undef``' is. As such, it is unsafe to
2196optimize or assume that the result of the '``and``' is '``undef``'.
2197However, it is safe to assume that all bits of the '``undef``' could be
21980, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2199all the bits of the '``undef``' operand to the '``or``' could be set,
2200allowing the '``or``' to be folded to -1.
2201
2202.. code-block:: llvm
2203
2204 %A = select undef, %X, %Y
2205 %B = select undef, 42, %Y
2206 %C = select %X, %Y, undef
2207 Safe:
2208 %A = %X (or %Y)
2209 %B = 42 (or %Y)
2210 %C = %Y
2211 Unsafe:
2212 %A = undef
2213 %B = undef
2214 %C = undef
2215
2216This set of examples shows that undefined '``select``' (and conditional
2217branch) conditions can go *either way*, but they have to come from one
2218of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2219both known to have a clear low bit, then ``%A`` would have to have a
2220cleared low bit. However, in the ``%C`` example, the optimizer is
2221allowed to assume that the '``undef``' operand could be the same as
2222``%Y``, allowing the whole '``select``' to be eliminated.
2223
2224.. code-block:: llvm
2225
2226 %A = xor undef, undef
2227
2228 %B = undef
2229 %C = xor %B, %B
2230
2231 %D = undef
2232 %E = icmp lt %D, 4
2233 %F = icmp gte %D, 4
2234
2235 Safe:
2236 %A = undef
2237 %B = undef
2238 %C = undef
2239 %D = undef
2240 %E = undef
2241 %F = undef
2242
2243This example points out that two '``undef``' operands are not
2244necessarily the same. This can be surprising to people (and also matches
2245C semantics) where they assume that "``X^X``" is always zero, even if
2246``X`` is undefined. This isn't true for a number of reasons, but the
2247short answer is that an '``undef``' "variable" can arbitrarily change
2248its value over its "live range". This is true because the variable
2249doesn't actually *have a live range*. Instead, the value is logically
2250read from arbitrary registers that happen to be around when needed, so
2251the value is not necessarily consistent over time. In fact, ``%A`` and
2252``%C`` need to have the same semantics or the core LLVM "replace all
2253uses with" concept would not hold.
2254
2255.. code-block:: llvm
2256
2257 %A = fdiv undef, %X
2258 %B = fdiv %X, undef
2259 Safe:
2260 %A = undef
2261 b: unreachable
2262
2263These examples show the crucial difference between an *undefined value*
2264and *undefined behavior*. An undefined value (like '``undef``') is
2265allowed to have an arbitrary bit-pattern. This means that the ``%A``
2266operation can be constant folded to '``undef``', because the '``undef``'
2267could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2268However, in the second example, we can make a more aggressive
2269assumption: because the ``undef`` is allowed to be an arbitrary value,
2270we are allowed to assume that it could be zero. Since a divide by zero
2271has *undefined behavior*, we are allowed to assume that the operation
2272does not execute at all. This allows us to delete the divide and all
2273code after it. Because the undefined operation "can't happen", the
2274optimizer can assume that it occurs in dead code.
2275
2276.. code-block:: llvm
2277
2278 a: store undef -> %X
2279 b: store %X -> undef
2280 Safe:
2281 a: <deleted>
2282 b: unreachable
2283
2284These examples reiterate the ``fdiv`` example: a store *of* an undefined
2285value can be assumed to not have any effect; we can assume that the
2286value is overwritten with bits that happen to match what was already
2287there. However, a store *to* an undefined location could clobber
2288arbitrary memory, therefore, it has undefined behavior.
2289
2290.. _poisonvalues:
2291
2292Poison Values
2293-------------
2294
2295Poison values are similar to :ref:`undef values <undefvalues>`, however
2296they also represent the fact that an instruction or constant expression
2297which cannot evoke side effects has nevertheless detected a condition
2298which results in undefined behavior.
2299
2300There is currently no way of representing a poison value in the IR; they
2301only exist when produced by operations such as :ref:`add <i_add>` with
2302the ``nsw`` flag.
2303
2304Poison value behavior is defined in terms of value *dependence*:
2305
2306- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2307- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2308 their dynamic predecessor basic block.
2309- Function arguments depend on the corresponding actual argument values
2310 in the dynamic callers of their functions.
2311- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2312 instructions that dynamically transfer control back to them.
2313- :ref:`Invoke <i_invoke>` instructions depend on the
2314 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2315 call instructions that dynamically transfer control back to them.
2316- Non-volatile loads and stores depend on the most recent stores to all
2317 of the referenced memory addresses, following the order in the IR
2318 (including loads and stores implied by intrinsics such as
2319 :ref:`@llvm.memcpy <int_memcpy>`.)
2320- An instruction with externally visible side effects depends on the
2321 most recent preceding instruction with externally visible side
2322 effects, following the order in the IR. (This includes :ref:`volatile
2323 operations <volatile>`.)
2324- An instruction *control-depends* on a :ref:`terminator
2325 instruction <terminators>` if the terminator instruction has
2326 multiple successors and the instruction is always executed when
2327 control transfers to one of the successors, and may not be executed
2328 when control is transferred to another.
2329- Additionally, an instruction also *control-depends* on a terminator
2330 instruction if the set of instructions it otherwise depends on would
2331 be different if the terminator had transferred control to a different
2332 successor.
2333- Dependence is transitive.
2334
2335Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2336with the additional affect that any instruction which has a *dependence*
2337on a poison value has undefined behavior.
2338
2339Here are some examples:
2340
2341.. code-block:: llvm
2342
2343 entry:
2344 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2345 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2346 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2347 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2348
2349 store i32 %poison, i32* @g ; Poison value stored to memory.
2350 %poison2 = load i32* @g ; Poison value loaded back from memory.
2351
2352 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2353
2354 %narrowaddr = bitcast i32* @g to i16*
2355 %wideaddr = bitcast i32* @g to i64*
2356 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2357 %poison4 = load i64* %wideaddr ; Returns a poison value.
2358
2359 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2360 br i1 %cmp, label %true, label %end ; Branch to either destination.
2361
2362 true:
2363 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2364 ; it has undefined behavior.
2365 br label %end
2366
2367 end:
2368 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2369 ; Both edges into this PHI are
2370 ; control-dependent on %cmp, so this
2371 ; always results in a poison value.
2372
2373 store volatile i32 0, i32* @g ; This would depend on the store in %true
2374 ; if %cmp is true, or the store in %entry
2375 ; otherwise, so this is undefined behavior.
2376
2377 br i1 %cmp, label %second_true, label %second_end
2378 ; The same branch again, but this time the
2379 ; true block doesn't have side effects.
2380
2381 second_true:
2382 ; No side effects!
2383 ret void
2384
2385 second_end:
2386 store volatile i32 0, i32* @g ; This time, the instruction always depends
2387 ; on the store in %end. Also, it is
2388 ; control-equivalent to %end, so this is
2389 ; well-defined (ignoring earlier undefined
2390 ; behavior in this example).
2391
2392.. _blockaddress:
2393
2394Addresses of Basic Blocks
2395-------------------------
2396
2397``blockaddress(@function, %block)``
2398
2399The '``blockaddress``' constant computes the address of the specified
2400basic block in the specified function, and always has an ``i8*`` type.
2401Taking the address of the entry block is illegal.
2402
2403This value only has defined behavior when used as an operand to the
2404':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2405against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002406undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002407no label is equal to the null pointer. This may be passed around as an
2408opaque pointer sized value as long as the bits are not inspected. This
2409allows ``ptrtoint`` and arithmetic to be performed on these values so
2410long as the original value is reconstituted before the ``indirectbr``
2411instruction.
2412
2413Finally, some targets may provide defined semantics when using the value
2414as the operand to an inline assembly, but that is target specific.
2415
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002416.. _constantexprs:
2417
Sean Silvab084af42012-12-07 10:36:55 +00002418Constant Expressions
2419--------------------
2420
2421Constant expressions are used to allow expressions involving other
2422constants to be used as constants. Constant expressions may be of any
2423:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2424that does not have side effects (e.g. load and call are not supported).
2425The following is the syntax for constant expressions:
2426
2427``trunc (CST to TYPE)``
2428 Truncate a constant to another type. The bit size of CST must be
2429 larger than the bit size of TYPE. Both types must be integers.
2430``zext (CST to TYPE)``
2431 Zero extend a constant to another type. The bit size of CST must be
2432 smaller than the bit size of TYPE. Both types must be integers.
2433``sext (CST to TYPE)``
2434 Sign extend a constant to another type. The bit size of CST must be
2435 smaller than the bit size of TYPE. Both types must be integers.
2436``fptrunc (CST to TYPE)``
2437 Truncate a floating point constant to another floating point type.
2438 The size of CST must be larger than the size of TYPE. Both types
2439 must be floating point.
2440``fpext (CST to TYPE)``
2441 Floating point extend a constant to another type. The size of CST
2442 must be smaller or equal to the size of TYPE. Both types must be
2443 floating point.
2444``fptoui (CST to TYPE)``
2445 Convert a floating point constant to the corresponding unsigned
2446 integer constant. TYPE must be a scalar or vector integer type. CST
2447 must be of scalar or vector floating point type. Both CST and TYPE
2448 must be scalars, or vectors of the same number of elements. If the
2449 value won't fit in the integer type, the results are undefined.
2450``fptosi (CST to TYPE)``
2451 Convert a floating point constant to the corresponding signed
2452 integer constant. TYPE must be a scalar or vector integer type. CST
2453 must be of scalar or vector floating point type. Both CST and TYPE
2454 must be scalars, or vectors of the same number of elements. If the
2455 value won't fit in the integer type, the results are undefined.
2456``uitofp (CST to TYPE)``
2457 Convert an unsigned integer constant to the corresponding floating
2458 point constant. TYPE must be a scalar or vector floating point type.
2459 CST must be of scalar or vector integer type. Both CST and TYPE must
2460 be scalars, or vectors of the same number of elements. If the value
2461 won't fit in the floating point type, the results are undefined.
2462``sitofp (CST to TYPE)``
2463 Convert a signed integer constant to the corresponding floating
2464 point constant. TYPE must be a scalar or vector floating point type.
2465 CST must be of scalar or vector integer type. Both CST and TYPE must
2466 be scalars, or vectors of the same number of elements. If the value
2467 won't fit in the floating point type, the results are undefined.
2468``ptrtoint (CST to TYPE)``
2469 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002470 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002471 pointer type. The ``CST`` value is zero extended, truncated, or
2472 unchanged to make it fit in ``TYPE``.
2473``inttoptr (CST to TYPE)``
2474 Convert an integer constant to a pointer constant. TYPE must be a
2475 pointer type. CST must be of integer type. The CST value is zero
2476 extended, truncated, or unchanged to make it fit in a pointer size.
2477 This one is *really* dangerous!
2478``bitcast (CST to TYPE)``
2479 Convert a constant, CST, to another TYPE. The constraints of the
2480 operands are the same as those for the :ref:`bitcast
2481 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002482``addrspacecast (CST to TYPE)``
2483 Convert a constant pointer or constant vector of pointer, CST, to another
2484 TYPE in a different address space. The constraints of the operands are the
2485 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002486``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2487 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2488 constants. As with the :ref:`getelementptr <i_getelementptr>`
2489 instruction, the index list may have zero or more indexes, which are
2490 required to make sense for the type of "CSTPTR".
2491``select (COND, VAL1, VAL2)``
2492 Perform the :ref:`select operation <i_select>` on constants.
2493``icmp COND (VAL1, VAL2)``
2494 Performs the :ref:`icmp operation <i_icmp>` on constants.
2495``fcmp COND (VAL1, VAL2)``
2496 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2497``extractelement (VAL, IDX)``
2498 Perform the :ref:`extractelement operation <i_extractelement>` on
2499 constants.
2500``insertelement (VAL, ELT, IDX)``
2501 Perform the :ref:`insertelement operation <i_insertelement>` on
2502 constants.
2503``shufflevector (VEC1, VEC2, IDXMASK)``
2504 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2505 constants.
2506``extractvalue (VAL, IDX0, IDX1, ...)``
2507 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2508 constants. The index list is interpreted in a similar manner as
2509 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2510 least one index value must be specified.
2511``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2512 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2513 The index list is interpreted in a similar manner as indices in a
2514 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2515 value must be specified.
2516``OPCODE (LHS, RHS)``
2517 Perform the specified operation of the LHS and RHS constants. OPCODE
2518 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2519 binary <bitwiseops>` operations. The constraints on operands are
2520 the same as those for the corresponding instruction (e.g. no bitwise
2521 operations on floating point values are allowed).
2522
2523Other Values
2524============
2525
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002526.. _inlineasmexprs:
2527
Sean Silvab084af42012-12-07 10:36:55 +00002528Inline Assembler Expressions
2529----------------------------
2530
2531LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2532Inline Assembly <moduleasm>`) through the use of a special value. This
2533value represents the inline assembler as a string (containing the
2534instructions to emit), a list of operand constraints (stored as a
2535string), a flag that indicates whether or not the inline asm expression
2536has side effects, and a flag indicating whether the function containing
2537the asm needs to align its stack conservatively. An example inline
2538assembler expression is:
2539
2540.. code-block:: llvm
2541
2542 i32 (i32) asm "bswap $0", "=r,r"
2543
2544Inline assembler expressions may **only** be used as the callee operand
2545of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2546Thus, typically we have:
2547
2548.. code-block:: llvm
2549
2550 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2551
2552Inline asms with side effects not visible in the constraint list must be
2553marked as having side effects. This is done through the use of the
2554'``sideeffect``' keyword, like so:
2555
2556.. code-block:: llvm
2557
2558 call void asm sideeffect "eieio", ""()
2559
2560In some cases inline asms will contain code that will not work unless
2561the stack is aligned in some way, such as calls or SSE instructions on
2562x86, yet will not contain code that does that alignment within the asm.
2563The compiler should make conservative assumptions about what the asm
2564might contain and should generate its usual stack alignment code in the
2565prologue if the '``alignstack``' keyword is present:
2566
2567.. code-block:: llvm
2568
2569 call void asm alignstack "eieio", ""()
2570
2571Inline asms also support using non-standard assembly dialects. The
2572assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2573the inline asm is using the Intel dialect. Currently, ATT and Intel are
2574the only supported dialects. An example is:
2575
2576.. code-block:: llvm
2577
2578 call void asm inteldialect "eieio", ""()
2579
2580If multiple keywords appear the '``sideeffect``' keyword must come
2581first, the '``alignstack``' keyword second and the '``inteldialect``'
2582keyword last.
2583
2584Inline Asm Metadata
2585^^^^^^^^^^^^^^^^^^^
2586
2587The call instructions that wrap inline asm nodes may have a
2588"``!srcloc``" MDNode attached to it that contains a list of constant
2589integers. If present, the code generator will use the integer as the
2590location cookie value when report errors through the ``LLVMContext``
2591error reporting mechanisms. This allows a front-end to correlate backend
2592errors that occur with inline asm back to the source code that produced
2593it. For example:
2594
2595.. code-block:: llvm
2596
2597 call void asm sideeffect "something bad", ""(), !srcloc !42
2598 ...
2599 !42 = !{ i32 1234567 }
2600
2601It is up to the front-end to make sense of the magic numbers it places
2602in the IR. If the MDNode contains multiple constants, the code generator
2603will use the one that corresponds to the line of the asm that the error
2604occurs on.
2605
2606.. _metadata:
2607
2608Metadata Nodes and Metadata Strings
2609-----------------------------------
2610
2611LLVM IR allows metadata to be attached to instructions in the program
2612that can convey extra information about the code to the optimizers and
2613code generator. One example application of metadata is source-level
2614debug information. There are two metadata primitives: strings and nodes.
2615All metadata has the ``metadata`` type and is identified in syntax by a
2616preceding exclamation point ('``!``').
2617
2618A metadata string is a string surrounded by double quotes. It can
2619contain any character by escaping non-printable characters with
2620"``\xx``" where "``xx``" is the two digit hex code. For example:
2621"``!"test\00"``".
2622
2623Metadata nodes are represented with notation similar to structure
2624constants (a comma separated list of elements, surrounded by braces and
2625preceded by an exclamation point). Metadata nodes can have any values as
2626their operand. For example:
2627
2628.. code-block:: llvm
2629
2630 !{ metadata !"test\00", i32 10}
2631
2632A :ref:`named metadata <namedmetadatastructure>` is a collection of
2633metadata nodes, which can be looked up in the module symbol table. For
2634example:
2635
2636.. code-block:: llvm
2637
2638 !foo = metadata !{!4, !3}
2639
2640Metadata can be used as function arguments. Here ``llvm.dbg.value``
2641function is using two metadata arguments:
2642
2643.. code-block:: llvm
2644
2645 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2646
2647Metadata can be attached with an instruction. Here metadata ``!21`` is
2648attached to the ``add`` instruction using the ``!dbg`` identifier:
2649
2650.. code-block:: llvm
2651
2652 %indvar.next = add i64 %indvar, 1, !dbg !21
2653
2654More information about specific metadata nodes recognized by the
2655optimizers and code generator is found below.
2656
2657'``tbaa``' Metadata
2658^^^^^^^^^^^^^^^^^^^
2659
2660In LLVM IR, memory does not have types, so LLVM's own type system is not
2661suitable for doing TBAA. Instead, metadata is added to the IR to
2662describe a type system of a higher level language. This can be used to
2663implement typical C/C++ TBAA, but it can also be used to implement
2664custom alias analysis behavior for other languages.
2665
2666The current metadata format is very simple. TBAA metadata nodes have up
2667to three fields, e.g.:
2668
2669.. code-block:: llvm
2670
2671 !0 = metadata !{ metadata !"an example type tree" }
2672 !1 = metadata !{ metadata !"int", metadata !0 }
2673 !2 = metadata !{ metadata !"float", metadata !0 }
2674 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2675
2676The first field is an identity field. It can be any value, usually a
2677metadata string, which uniquely identifies the type. The most important
2678name in the tree is the name of the root node. Two trees with different
2679root node names are entirely disjoint, even if they have leaves with
2680common names.
2681
2682The second field identifies the type's parent node in the tree, or is
2683null or omitted for a root node. A type is considered to alias all of
2684its descendants and all of its ancestors in the tree. Also, a type is
2685considered to alias all types in other trees, so that bitcode produced
2686from multiple front-ends is handled conservatively.
2687
2688If the third field is present, it's an integer which if equal to 1
2689indicates that the type is "constant" (meaning
2690``pointsToConstantMemory`` should return true; see `other useful
2691AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2692
2693'``tbaa.struct``' Metadata
2694^^^^^^^^^^^^^^^^^^^^^^^^^^
2695
2696The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2697aggregate assignment operations in C and similar languages, however it
2698is defined to copy a contiguous region of memory, which is more than
2699strictly necessary for aggregate types which contain holes due to
2700padding. Also, it doesn't contain any TBAA information about the fields
2701of the aggregate.
2702
2703``!tbaa.struct`` metadata can describe which memory subregions in a
2704memcpy are padding and what the TBAA tags of the struct are.
2705
2706The current metadata format is very simple. ``!tbaa.struct`` metadata
2707nodes are a list of operands which are in conceptual groups of three.
2708For each group of three, the first operand gives the byte offset of a
2709field in bytes, the second gives its size in bytes, and the third gives
2710its tbaa tag. e.g.:
2711
2712.. code-block:: llvm
2713
2714 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2715
2716This describes a struct with two fields. The first is at offset 0 bytes
2717with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2718and has size 4 bytes and has tbaa tag !2.
2719
2720Note that the fields need not be contiguous. In this example, there is a
27214 byte gap between the two fields. This gap represents padding which
2722does not carry useful data and need not be preserved.
2723
2724'``fpmath``' Metadata
2725^^^^^^^^^^^^^^^^^^^^^
2726
2727``fpmath`` metadata may be attached to any instruction of floating point
2728type. It can be used to express the maximum acceptable error in the
2729result of that instruction, in ULPs, thus potentially allowing the
2730compiler to use a more efficient but less accurate method of computing
2731it. ULP is defined as follows:
2732
2733 If ``x`` is a real number that lies between two finite consecutive
2734 floating-point numbers ``a`` and ``b``, without being equal to one
2735 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2736 distance between the two non-equal finite floating-point numbers
2737 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2738
2739The metadata node shall consist of a single positive floating point
2740number representing the maximum relative error, for example:
2741
2742.. code-block:: llvm
2743
2744 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2745
2746'``range``' Metadata
2747^^^^^^^^^^^^^^^^^^^^
2748
2749``range`` metadata may be attached only to loads of integer types. It
2750expresses the possible ranges the loaded value is in. The ranges are
2751represented with a flattened list of integers. The loaded value is known
2752to be in the union of the ranges defined by each consecutive pair. Each
2753pair has the following properties:
2754
2755- The type must match the type loaded by the instruction.
2756- The pair ``a,b`` represents the range ``[a,b)``.
2757- Both ``a`` and ``b`` are constants.
2758- The range is allowed to wrap.
2759- The range should not represent the full or empty set. That is,
2760 ``a!=b``.
2761
2762In addition, the pairs must be in signed order of the lower bound and
2763they must be non-contiguous.
2764
2765Examples:
2766
2767.. code-block:: llvm
2768
2769 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2770 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2771 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2772 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2773 ...
2774 !0 = metadata !{ i8 0, i8 2 }
2775 !1 = metadata !{ i8 255, i8 2 }
2776 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2777 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2778
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002779'``llvm.loop``'
2780^^^^^^^^^^^^^^^
2781
2782It is sometimes useful to attach information to loop constructs. Currently,
2783loop metadata is implemented as metadata attached to the branch instruction
2784in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002785guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002786specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002787
2788The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002789itself to avoid merging it with any other identifier metadata, e.g.,
2790during module linkage or function inlining. That is, each loop should refer
2791to their own identification metadata even if they reside in separate functions.
2792The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002793constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002794
2795.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002796
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002797 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002798 !1 = metadata !{ metadata !1 }
2799
Paul Redmond5fdf8362013-05-28 20:00:34 +00002800The loop identifier metadata can be used to specify additional per-loop
2801metadata. Any operands after the first operand can be treated as user-defined
2802metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2803by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002804
Paul Redmond5fdf8362013-05-28 20:00:34 +00002805.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002806
Paul Redmond5fdf8362013-05-28 20:00:34 +00002807 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2808 ...
2809 !0 = metadata !{ metadata !0, metadata !1 }
2810 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002811
2812'``llvm.mem``'
2813^^^^^^^^^^^^^^^
2814
2815Metadata types used to annotate memory accesses with information helpful
2816for optimizations are prefixed with ``llvm.mem``.
2817
2818'``llvm.mem.parallel_loop_access``' Metadata
2819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2820
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002821The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2822or metadata containing a list of loop identifiers for nested loops.
2823The metadata is attached to memory accessing instructions and denotes that
2824no loop carried memory dependence exist between it and other instructions denoted
2825with the same loop identifier.
2826
2827Precisely, given two instructions ``m1`` and ``m2`` that both have the
2828``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2829set of loops associated with that metadata, respectively, then there is no loop
2830carried dependence between ``m1`` and ``m2`` for loops ``L1`` or
2831``L2``.
2832
2833As a special case, if all memory accessing instructions in a loop have
2834``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2835loop has no loop carried memory dependences and is considered to be a parallel
2836loop.
2837
2838Note that if not all memory access instructions have such metadata referring to
2839the loop, then the loop is considered not being trivially parallel. Additional
2840memory dependence analysis is required to make that determination. As a fail
2841safe mechanism, this causes loops that were originally parallel to be considered
2842sequential (if optimization passes that are unaware of the parallel semantics
2843insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002844
2845Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002846both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002847metadata types that refer to the same loop identifier metadata.
2848
2849.. code-block:: llvm
2850
2851 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002852 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002853 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002854 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002855 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002856 ...
2857 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002858
2859 for.end:
2860 ...
2861 !0 = metadata !{ metadata !0 }
2862
2863It is also possible to have nested parallel loops. In that case the
2864memory accesses refer to a list of loop identifier metadata nodes instead of
2865the loop identifier metadata node directly:
2866
2867.. code-block:: llvm
2868
2869 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002870 ...
2871 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2872 ...
2873 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002874
2875 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002876 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002877 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002878 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002879 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002880 ...
2881 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002882
2883 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002884 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002885 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002886 ...
2887 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002888
2889 outer.for.end: ; preds = %for.body
2890 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002891 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2892 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2893 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002894
Paul Redmond5fdf8362013-05-28 20:00:34 +00002895'``llvm.vectorizer``'
2896^^^^^^^^^^^^^^^^^^^^^
2897
2898Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2899vectorization parameters such as vectorization factor and unroll factor.
2900
2901``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2902loop identification metadata.
2903
2904'``llvm.vectorizer.unroll``' Metadata
2905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2906
2907This metadata instructs the loop vectorizer to unroll the specified
2908loop exactly ``N`` times.
2909
2910The first operand is the string ``llvm.vectorizer.unroll`` and the second
2911operand is an integer specifying the unroll factor. For example:
2912
2913.. code-block:: llvm
2914
2915 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2916
2917Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2918loop.
2919
2920If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2921determined automatically.
2922
2923'``llvm.vectorizer.width``' Metadata
2924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2925
Paul Redmondeccbb322013-05-30 17:22:46 +00002926This metadata sets the target width of the vectorizer to ``N``. Without
2927this metadata, the vectorizer will choose a width automatically.
2928Regardless of this metadata, the vectorizer will only vectorize loops if
2929it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002930
2931The first operand is the string ``llvm.vectorizer.width`` and the second
2932operand is an integer specifying the width. For example:
2933
2934.. code-block:: llvm
2935
2936 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2937
2938Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2939loop.
2940
2941If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2942automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002943
Sean Silvab084af42012-12-07 10:36:55 +00002944Module Flags Metadata
2945=====================
2946
2947Information about the module as a whole is difficult to convey to LLVM's
2948subsystems. The LLVM IR isn't sufficient to transmit this information.
2949The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002950this. These flags are in the form of key / value pairs --- much like a
2951dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002952look it up.
2953
2954The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2955Each triplet has the following form:
2956
2957- The first element is a *behavior* flag, which specifies the behavior
2958 when two (or more) modules are merged together, and it encounters two
2959 (or more) metadata with the same ID. The supported behaviors are
2960 described below.
2961- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002962 metadata. Each module may only have one flag entry for each unique ID (not
2963 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002964- The third element is the value of the flag.
2965
2966When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002967``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2968each unique metadata ID string, there will be exactly one entry in the merged
2969modules ``llvm.module.flags`` metadata table, and the value for that entry will
2970be determined by the merge behavior flag, as described below. The only exception
2971is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002972
2973The following behaviors are supported:
2974
2975.. list-table::
2976 :header-rows: 1
2977 :widths: 10 90
2978
2979 * - Value
2980 - Behavior
2981
2982 * - 1
2983 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002984 Emits an error if two values disagree, otherwise the resulting value
2985 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002986
2987 * - 2
2988 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002989 Emits a warning if two values disagree. The result value will be the
2990 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002991
2992 * - 3
2993 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002994 Adds a requirement that another module flag be present and have a
2995 specified value after linking is performed. The value must be a
2996 metadata pair, where the first element of the pair is the ID of the
2997 module flag to be restricted, and the second element of the pair is
2998 the value the module flag should be restricted to. This behavior can
2999 be used to restrict the allowable results (via triggering of an
3000 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002 * - 4
3003 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003004 Uses the specified value, regardless of the behavior or value of the
3005 other module. If both modules specify **Override**, but the values
3006 differ, an error will be emitted.
3007
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003008 * - 5
3009 - **Append**
3010 Appends the two values, which are required to be metadata nodes.
3011
3012 * - 6
3013 - **AppendUnique**
3014 Appends the two values, which are required to be metadata
3015 nodes. However, duplicate entries in the second list are dropped
3016 during the append operation.
3017
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003018It is an error for a particular unique flag ID to have multiple behaviors,
3019except in the case of **Require** (which adds restrictions on another metadata
3020value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003021
3022An example of module flags:
3023
3024.. code-block:: llvm
3025
3026 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3027 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3028 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3029 !3 = metadata !{ i32 3, metadata !"qux",
3030 metadata !{
3031 metadata !"foo", i32 1
3032 }
3033 }
3034 !llvm.module.flags = !{ !0, !1, !2, !3 }
3035
3036- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3037 if two or more ``!"foo"`` flags are seen is to emit an error if their
3038 values are not equal.
3039
3040- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3041 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003042 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003043
3044- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3045 behavior if two or more ``!"qux"`` flags are seen is to emit a
3046 warning if their values are not equal.
3047
3048- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3049
3050 ::
3051
3052 metadata !{ metadata !"foo", i32 1 }
3053
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003054 The behavior is to emit an error if the ``llvm.module.flags`` does not
3055 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3056 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003057
3058Objective-C Garbage Collection Module Flags Metadata
3059----------------------------------------------------
3060
3061On the Mach-O platform, Objective-C stores metadata about garbage
3062collection in a special section called "image info". The metadata
3063consists of a version number and a bitmask specifying what types of
3064garbage collection are supported (if any) by the file. If two or more
3065modules are linked together their garbage collection metadata needs to
3066be merged rather than appended together.
3067
3068The Objective-C garbage collection module flags metadata consists of the
3069following key-value pairs:
3070
3071.. list-table::
3072 :header-rows: 1
3073 :widths: 30 70
3074
3075 * - Key
3076 - Value
3077
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003078 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003079 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003080
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003081 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003082 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003083 always 0.
3084
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003085 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003086 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003087 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3088 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3089 Objective-C ABI version 2.
3090
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003091 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003092 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003093 not. Valid values are 0, for no garbage collection, and 2, for garbage
3094 collection supported.
3095
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003096 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003097 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003098 If present, its value must be 6. This flag requires that the
3099 ``Objective-C Garbage Collection`` flag have the value 2.
3100
3101Some important flag interactions:
3102
3103- If a module with ``Objective-C Garbage Collection`` set to 0 is
3104 merged with a module with ``Objective-C Garbage Collection`` set to
3105 2, then the resulting module has the
3106 ``Objective-C Garbage Collection`` flag set to 0.
3107- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3108 merged with a module with ``Objective-C GC Only`` set to 6.
3109
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003110Automatic Linker Flags Module Flags Metadata
3111--------------------------------------------
3112
3113Some targets support embedding flags to the linker inside individual object
3114files. Typically this is used in conjunction with language extensions which
3115allow source files to explicitly declare the libraries they depend on, and have
3116these automatically be transmitted to the linker via object files.
3117
3118These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003119using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003120to be ``AppendUnique``, and the value for the key is expected to be a metadata
3121node which should be a list of other metadata nodes, each of which should be a
3122list of metadata strings defining linker options.
3123
3124For example, the following metadata section specifies two separate sets of
3125linker options, presumably to link against ``libz`` and the ``Cocoa``
3126framework::
3127
Michael Liaoa7699082013-03-06 18:24:34 +00003128 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003129 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003130 metadata !{ metadata !"-lz" },
3131 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003132 !llvm.module.flags = !{ !0 }
3133
3134The metadata encoding as lists of lists of options, as opposed to a collapsed
3135list of options, is chosen so that the IR encoding can use multiple option
3136strings to specify e.g., a single library, while still having that specifier be
3137preserved as an atomic element that can be recognized by a target specific
3138assembly writer or object file emitter.
3139
3140Each individual option is required to be either a valid option for the target's
3141linker, or an option that is reserved by the target specific assembly writer or
3142object file emitter. No other aspect of these options is defined by the IR.
3143
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003144.. _intrinsicglobalvariables:
3145
Sean Silvab084af42012-12-07 10:36:55 +00003146Intrinsic Global Variables
3147==========================
3148
3149LLVM has a number of "magic" global variables that contain data that
3150affect code generation or other IR semantics. These are documented here.
3151All globals of this sort should have a section specified as
3152"``llvm.metadata``". This section and all globals that start with
3153"``llvm.``" are reserved for use by LLVM.
3154
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003155.. _gv_llvmused:
3156
Sean Silvab084af42012-12-07 10:36:55 +00003157The '``llvm.used``' Global Variable
3158-----------------------------------
3159
Rafael Espindola74f2e462013-04-22 14:58:02 +00003160The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003161:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003162pointers to named global variables, functions and aliases which may optionally
3163have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003164use of it is:
3165
3166.. code-block:: llvm
3167
3168 @X = global i8 4
3169 @Y = global i32 123
3170
3171 @llvm.used = appending global [2 x i8*] [
3172 i8* @X,
3173 i8* bitcast (i32* @Y to i8*)
3174 ], section "llvm.metadata"
3175
Rafael Espindola74f2e462013-04-22 14:58:02 +00003176If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3177and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003178symbol that it cannot see (which is why they have to be named). For example, if
3179a variable has internal linkage and no references other than that from the
3180``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3181references from inline asms and other things the compiler cannot "see", and
3182corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003183
3184On some targets, the code generator must emit a directive to the
3185assembler or object file to prevent the assembler and linker from
3186molesting the symbol.
3187
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003188.. _gv_llvmcompilerused:
3189
Sean Silvab084af42012-12-07 10:36:55 +00003190The '``llvm.compiler.used``' Global Variable
3191--------------------------------------------
3192
3193The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3194directive, except that it only prevents the compiler from touching the
3195symbol. On targets that support it, this allows an intelligent linker to
3196optimize references to the symbol without being impeded as it would be
3197by ``@llvm.used``.
3198
3199This is a rare construct that should only be used in rare circumstances,
3200and should not be exposed to source languages.
3201
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003202.. _gv_llvmglobalctors:
3203
Sean Silvab084af42012-12-07 10:36:55 +00003204The '``llvm.global_ctors``' Global Variable
3205-------------------------------------------
3206
3207.. code-block:: llvm
3208
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003209 %0 = type { i32, void ()*, i8* }
3210 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003211
3212The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003213functions, priorities, and an optional associated global or function.
3214The functions referenced by this array will be called in ascending order
3215of priority (i.e. lowest first) when the module is loaded. The order of
3216functions with the same priority is not defined.
3217
3218If the third field is present, non-null, and points to a global variable
3219or function, the initializer function will only run if the associated
3220data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003221
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003222.. _llvmglobaldtors:
3223
Sean Silvab084af42012-12-07 10:36:55 +00003224The '``llvm.global_dtors``' Global Variable
3225-------------------------------------------
3226
3227.. code-block:: llvm
3228
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003229 %0 = type { i32, void ()*, i8* }
3230 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003231
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003232The ``@llvm.global_dtors`` array contains a list of destructor
3233functions, priorities, and an optional associated global or function.
3234The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003235order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003236order of functions with the same priority is not defined.
3237
3238If the third field is present, non-null, and points to a global variable
3239or function, the destructor function will only run if the associated
3240data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003241
3242Instruction Reference
3243=====================
3244
3245The LLVM instruction set consists of several different classifications
3246of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3247instructions <binaryops>`, :ref:`bitwise binary
3248instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3249:ref:`other instructions <otherops>`.
3250
3251.. _terminators:
3252
3253Terminator Instructions
3254-----------------------
3255
3256As mentioned :ref:`previously <functionstructure>`, every basic block in a
3257program ends with a "Terminator" instruction, which indicates which
3258block should be executed after the current block is finished. These
3259terminator instructions typically yield a '``void``' value: they produce
3260control flow, not values (the one exception being the
3261':ref:`invoke <i_invoke>`' instruction).
3262
3263The terminator instructions are: ':ref:`ret <i_ret>`',
3264':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3265':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3266':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3267
3268.. _i_ret:
3269
3270'``ret``' Instruction
3271^^^^^^^^^^^^^^^^^^^^^
3272
3273Syntax:
3274"""""""
3275
3276::
3277
3278 ret <type> <value> ; Return a value from a non-void function
3279 ret void ; Return from void function
3280
3281Overview:
3282"""""""""
3283
3284The '``ret``' instruction is used to return control flow (and optionally
3285a value) from a function back to the caller.
3286
3287There are two forms of the '``ret``' instruction: one that returns a
3288value and then causes control flow, and one that just causes control
3289flow to occur.
3290
3291Arguments:
3292""""""""""
3293
3294The '``ret``' instruction optionally accepts a single argument, the
3295return value. The type of the return value must be a ':ref:`first
3296class <t_firstclass>`' type.
3297
3298A function is not :ref:`well formed <wellformed>` if it it has a non-void
3299return type and contains a '``ret``' instruction with no return value or
3300a return value with a type that does not match its type, or if it has a
3301void return type and contains a '``ret``' instruction with a return
3302value.
3303
3304Semantics:
3305""""""""""
3306
3307When the '``ret``' instruction is executed, control flow returns back to
3308the calling function's context. If the caller is a
3309":ref:`call <i_call>`" instruction, execution continues at the
3310instruction after the call. If the caller was an
3311":ref:`invoke <i_invoke>`" instruction, execution continues at the
3312beginning of the "normal" destination block. If the instruction returns
3313a value, that value shall set the call or invoke instruction's return
3314value.
3315
3316Example:
3317""""""""
3318
3319.. code-block:: llvm
3320
3321 ret i32 5 ; Return an integer value of 5
3322 ret void ; Return from a void function
3323 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3324
3325.. _i_br:
3326
3327'``br``' Instruction
3328^^^^^^^^^^^^^^^^^^^^
3329
3330Syntax:
3331"""""""
3332
3333::
3334
3335 br i1 <cond>, label <iftrue>, label <iffalse>
3336 br label <dest> ; Unconditional branch
3337
3338Overview:
3339"""""""""
3340
3341The '``br``' instruction is used to cause control flow to transfer to a
3342different basic block in the current function. There are two forms of
3343this instruction, corresponding to a conditional branch and an
3344unconditional branch.
3345
3346Arguments:
3347""""""""""
3348
3349The conditional branch form of the '``br``' instruction takes a single
3350'``i1``' value and two '``label``' values. The unconditional form of the
3351'``br``' instruction takes a single '``label``' value as a target.
3352
3353Semantics:
3354""""""""""
3355
3356Upon execution of a conditional '``br``' instruction, the '``i1``'
3357argument is evaluated. If the value is ``true``, control flows to the
3358'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3359to the '``iffalse``' ``label`` argument.
3360
3361Example:
3362""""""""
3363
3364.. code-block:: llvm
3365
3366 Test:
3367 %cond = icmp eq i32 %a, %b
3368 br i1 %cond, label %IfEqual, label %IfUnequal
3369 IfEqual:
3370 ret i32 1
3371 IfUnequal:
3372 ret i32 0
3373
3374.. _i_switch:
3375
3376'``switch``' Instruction
3377^^^^^^^^^^^^^^^^^^^^^^^^
3378
3379Syntax:
3380"""""""
3381
3382::
3383
3384 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3385
3386Overview:
3387"""""""""
3388
3389The '``switch``' instruction is used to transfer control flow to one of
3390several different places. It is a generalization of the '``br``'
3391instruction, allowing a branch to occur to one of many possible
3392destinations.
3393
3394Arguments:
3395""""""""""
3396
3397The '``switch``' instruction uses three parameters: an integer
3398comparison value '``value``', a default '``label``' destination, and an
3399array of pairs of comparison value constants and '``label``'s. The table
3400is not allowed to contain duplicate constant entries.
3401
3402Semantics:
3403""""""""""
3404
3405The ``switch`` instruction specifies a table of values and destinations.
3406When the '``switch``' instruction is executed, this table is searched
3407for the given value. If the value is found, control flow is transferred
3408to the corresponding destination; otherwise, control flow is transferred
3409to the default destination.
3410
3411Implementation:
3412"""""""""""""""
3413
3414Depending on properties of the target machine and the particular
3415``switch`` instruction, this instruction may be code generated in
3416different ways. For example, it could be generated as a series of
3417chained conditional branches or with a lookup table.
3418
3419Example:
3420""""""""
3421
3422.. code-block:: llvm
3423
3424 ; Emulate a conditional br instruction
3425 %Val = zext i1 %value to i32
3426 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3427
3428 ; Emulate an unconditional br instruction
3429 switch i32 0, label %dest [ ]
3430
3431 ; Implement a jump table:
3432 switch i32 %val, label %otherwise [ i32 0, label %onzero
3433 i32 1, label %onone
3434 i32 2, label %ontwo ]
3435
3436.. _i_indirectbr:
3437
3438'``indirectbr``' Instruction
3439^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3440
3441Syntax:
3442"""""""
3443
3444::
3445
3446 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3447
3448Overview:
3449"""""""""
3450
3451The '``indirectbr``' instruction implements an indirect branch to a
3452label within the current function, whose address is specified by
3453"``address``". Address must be derived from a
3454:ref:`blockaddress <blockaddress>` constant.
3455
3456Arguments:
3457""""""""""
3458
3459The '``address``' argument is the address of the label to jump to. The
3460rest of the arguments indicate the full set of possible destinations
3461that the address may point to. Blocks are allowed to occur multiple
3462times in the destination list, though this isn't particularly useful.
3463
3464This destination list is required so that dataflow analysis has an
3465accurate understanding of the CFG.
3466
3467Semantics:
3468""""""""""
3469
3470Control transfers to the block specified in the address argument. All
3471possible destination blocks must be listed in the label list, otherwise
3472this instruction has undefined behavior. This implies that jumps to
3473labels defined in other functions have undefined behavior as well.
3474
3475Implementation:
3476"""""""""""""""
3477
3478This is typically implemented with a jump through a register.
3479
3480Example:
3481""""""""
3482
3483.. code-block:: llvm
3484
3485 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3486
3487.. _i_invoke:
3488
3489'``invoke``' Instruction
3490^^^^^^^^^^^^^^^^^^^^^^^^
3491
3492Syntax:
3493"""""""
3494
3495::
3496
3497 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3498 to label <normal label> unwind label <exception label>
3499
3500Overview:
3501"""""""""
3502
3503The '``invoke``' instruction causes control to transfer to a specified
3504function, with the possibility of control flow transfer to either the
3505'``normal``' label or the '``exception``' label. If the callee function
3506returns with the "``ret``" instruction, control flow will return to the
3507"normal" label. If the callee (or any indirect callees) returns via the
3508":ref:`resume <i_resume>`" instruction or other exception handling
3509mechanism, control is interrupted and continued at the dynamically
3510nearest "exception" label.
3511
3512The '``exception``' label is a `landing
3513pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3514'``exception``' label is required to have the
3515":ref:`landingpad <i_landingpad>`" instruction, which contains the
3516information about the behavior of the program after unwinding happens,
3517as its first non-PHI instruction. The restrictions on the
3518"``landingpad``" instruction's tightly couples it to the "``invoke``"
3519instruction, so that the important information contained within the
3520"``landingpad``" instruction can't be lost through normal code motion.
3521
3522Arguments:
3523""""""""""
3524
3525This instruction requires several arguments:
3526
3527#. The optional "cconv" marker indicates which :ref:`calling
3528 convention <callingconv>` the call should use. If none is
3529 specified, the call defaults to using C calling conventions.
3530#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3531 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3532 are valid here.
3533#. '``ptr to function ty``': shall be the signature of the pointer to
3534 function value being invoked. In most cases, this is a direct
3535 function invocation, but indirect ``invoke``'s are just as possible,
3536 branching off an arbitrary pointer to function value.
3537#. '``function ptr val``': An LLVM value containing a pointer to a
3538 function to be invoked.
3539#. '``function args``': argument list whose types match the function
3540 signature argument types and parameter attributes. All arguments must
3541 be of :ref:`first class <t_firstclass>` type. If the function signature
3542 indicates the function accepts a variable number of arguments, the
3543 extra arguments can be specified.
3544#. '``normal label``': the label reached when the called function
3545 executes a '``ret``' instruction.
3546#. '``exception label``': the label reached when a callee returns via
3547 the :ref:`resume <i_resume>` instruction or other exception handling
3548 mechanism.
3549#. The optional :ref:`function attributes <fnattrs>` list. Only
3550 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3551 attributes are valid here.
3552
3553Semantics:
3554""""""""""
3555
3556This instruction is designed to operate as a standard '``call``'
3557instruction in most regards. The primary difference is that it
3558establishes an association with a label, which is used by the runtime
3559library to unwind the stack.
3560
3561This instruction is used in languages with destructors to ensure that
3562proper cleanup is performed in the case of either a ``longjmp`` or a
3563thrown exception. Additionally, this is important for implementation of
3564'``catch``' clauses in high-level languages that support them.
3565
3566For the purposes of the SSA form, the definition of the value returned
3567by the '``invoke``' instruction is deemed to occur on the edge from the
3568current block to the "normal" label. If the callee unwinds then no
3569return value is available.
3570
3571Example:
3572""""""""
3573
3574.. code-block:: llvm
3575
3576 %retval = invoke i32 @Test(i32 15) to label %Continue
3577 unwind label %TestCleanup ; {i32}:retval set
3578 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3579 unwind label %TestCleanup ; {i32}:retval set
3580
3581.. _i_resume:
3582
3583'``resume``' Instruction
3584^^^^^^^^^^^^^^^^^^^^^^^^
3585
3586Syntax:
3587"""""""
3588
3589::
3590
3591 resume <type> <value>
3592
3593Overview:
3594"""""""""
3595
3596The '``resume``' instruction is a terminator instruction that has no
3597successors.
3598
3599Arguments:
3600""""""""""
3601
3602The '``resume``' instruction requires one argument, which must have the
3603same type as the result of any '``landingpad``' instruction in the same
3604function.
3605
3606Semantics:
3607""""""""""
3608
3609The '``resume``' instruction resumes propagation of an existing
3610(in-flight) exception whose unwinding was interrupted with a
3611:ref:`landingpad <i_landingpad>` instruction.
3612
3613Example:
3614""""""""
3615
3616.. code-block:: llvm
3617
3618 resume { i8*, i32 } %exn
3619
3620.. _i_unreachable:
3621
3622'``unreachable``' Instruction
3623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3624
3625Syntax:
3626"""""""
3627
3628::
3629
3630 unreachable
3631
3632Overview:
3633"""""""""
3634
3635The '``unreachable``' instruction has no defined semantics. This
3636instruction is used to inform the optimizer that a particular portion of
3637the code is not reachable. This can be used to indicate that the code
3638after a no-return function cannot be reached, and other facts.
3639
3640Semantics:
3641""""""""""
3642
3643The '``unreachable``' instruction has no defined semantics.
3644
3645.. _binaryops:
3646
3647Binary Operations
3648-----------------
3649
3650Binary operators are used to do most of the computation in a program.
3651They require two operands of the same type, execute an operation on
3652them, and produce a single value. The operands might represent multiple
3653data, as is the case with the :ref:`vector <t_vector>` data type. The
3654result value has the same type as its operands.
3655
3656There are several different binary operators:
3657
3658.. _i_add:
3659
3660'``add``' Instruction
3661^^^^^^^^^^^^^^^^^^^^^
3662
3663Syntax:
3664"""""""
3665
3666::
3667
3668 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3669 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3670 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3671 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3672
3673Overview:
3674"""""""""
3675
3676The '``add``' instruction returns the sum of its two operands.
3677
3678Arguments:
3679""""""""""
3680
3681The two arguments to the '``add``' instruction must be
3682:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3683arguments must have identical types.
3684
3685Semantics:
3686""""""""""
3687
3688The value produced is the integer sum of the two operands.
3689
3690If the sum has unsigned overflow, the result returned is the
3691mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3692the result.
3693
3694Because LLVM integers use a two's complement representation, this
3695instruction is appropriate for both signed and unsigned integers.
3696
3697``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3698respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3699result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3700unsigned and/or signed overflow, respectively, occurs.
3701
3702Example:
3703""""""""
3704
3705.. code-block:: llvm
3706
3707 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3708
3709.. _i_fadd:
3710
3711'``fadd``' Instruction
3712^^^^^^^^^^^^^^^^^^^^^^
3713
3714Syntax:
3715"""""""
3716
3717::
3718
3719 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3720
3721Overview:
3722"""""""""
3723
3724The '``fadd``' instruction returns the sum of its two operands.
3725
3726Arguments:
3727""""""""""
3728
3729The two arguments to the '``fadd``' instruction must be :ref:`floating
3730point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3731Both arguments must have identical types.
3732
3733Semantics:
3734""""""""""
3735
3736The value produced is the floating point sum of the two operands. This
3737instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3738which are optimization hints to enable otherwise unsafe floating point
3739optimizations:
3740
3741Example:
3742""""""""
3743
3744.. code-block:: llvm
3745
3746 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3747
3748'``sub``' Instruction
3749^^^^^^^^^^^^^^^^^^^^^
3750
3751Syntax:
3752"""""""
3753
3754::
3755
3756 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3757 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3758 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3759 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3760
3761Overview:
3762"""""""""
3763
3764The '``sub``' instruction returns the difference of its two operands.
3765
3766Note that the '``sub``' instruction is used to represent the '``neg``'
3767instruction present in most other intermediate representations.
3768
3769Arguments:
3770""""""""""
3771
3772The two arguments to the '``sub``' instruction must be
3773:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3774arguments must have identical types.
3775
3776Semantics:
3777""""""""""
3778
3779The value produced is the integer difference of the two operands.
3780
3781If the difference has unsigned overflow, the result returned is the
3782mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3783the result.
3784
3785Because LLVM integers use a two's complement representation, this
3786instruction is appropriate for both signed and unsigned integers.
3787
3788``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3789respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3790result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3791unsigned and/or signed overflow, respectively, occurs.
3792
3793Example:
3794""""""""
3795
3796.. code-block:: llvm
3797
3798 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3799 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3800
3801.. _i_fsub:
3802
3803'``fsub``' Instruction
3804^^^^^^^^^^^^^^^^^^^^^^
3805
3806Syntax:
3807"""""""
3808
3809::
3810
3811 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3812
3813Overview:
3814"""""""""
3815
3816The '``fsub``' instruction returns the difference of its two operands.
3817
3818Note that the '``fsub``' instruction is used to represent the '``fneg``'
3819instruction present in most other intermediate representations.
3820
3821Arguments:
3822""""""""""
3823
3824The two arguments to the '``fsub``' instruction must be :ref:`floating
3825point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3826Both arguments must have identical types.
3827
3828Semantics:
3829""""""""""
3830
3831The value produced is the floating point difference of the two operands.
3832This instruction can also take any number of :ref:`fast-math
3833flags <fastmath>`, which are optimization hints to enable otherwise
3834unsafe floating point optimizations:
3835
3836Example:
3837""""""""
3838
3839.. code-block:: llvm
3840
3841 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3842 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3843
3844'``mul``' Instruction
3845^^^^^^^^^^^^^^^^^^^^^
3846
3847Syntax:
3848"""""""
3849
3850::
3851
3852 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3853 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3854 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3855 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3856
3857Overview:
3858"""""""""
3859
3860The '``mul``' instruction returns the product of its two operands.
3861
3862Arguments:
3863""""""""""
3864
3865The two arguments to the '``mul``' instruction must be
3866:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3867arguments must have identical types.
3868
3869Semantics:
3870""""""""""
3871
3872The value produced is the integer product of the two operands.
3873
3874If the result of the multiplication has unsigned overflow, the result
3875returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3876bit width of the result.
3877
3878Because LLVM integers use a two's complement representation, and the
3879result is the same width as the operands, this instruction returns the
3880correct result for both signed and unsigned integers. If a full product
3881(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3882sign-extended or zero-extended as appropriate to the width of the full
3883product.
3884
3885``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3886respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3887result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3888unsigned and/or signed overflow, respectively, occurs.
3889
3890Example:
3891""""""""
3892
3893.. code-block:: llvm
3894
3895 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3896
3897.. _i_fmul:
3898
3899'``fmul``' Instruction
3900^^^^^^^^^^^^^^^^^^^^^^
3901
3902Syntax:
3903"""""""
3904
3905::
3906
3907 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3908
3909Overview:
3910"""""""""
3911
3912The '``fmul``' instruction returns the product of its two operands.
3913
3914Arguments:
3915""""""""""
3916
3917The two arguments to the '``fmul``' instruction must be :ref:`floating
3918point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3919Both arguments must have identical types.
3920
3921Semantics:
3922""""""""""
3923
3924The value produced is the floating point product of the two operands.
3925This instruction can also take any number of :ref:`fast-math
3926flags <fastmath>`, which are optimization hints to enable otherwise
3927unsafe floating point optimizations:
3928
3929Example:
3930""""""""
3931
3932.. code-block:: llvm
3933
3934 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3935
3936'``udiv``' Instruction
3937^^^^^^^^^^^^^^^^^^^^^^
3938
3939Syntax:
3940"""""""
3941
3942::
3943
3944 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3945 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3946
3947Overview:
3948"""""""""
3949
3950The '``udiv``' instruction returns the quotient of its two operands.
3951
3952Arguments:
3953""""""""""
3954
3955The two arguments to the '``udiv``' instruction must be
3956:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3957arguments must have identical types.
3958
3959Semantics:
3960""""""""""
3961
3962The value produced is the unsigned integer quotient of the two operands.
3963
3964Note that unsigned integer division and signed integer division are
3965distinct operations; for signed integer division, use '``sdiv``'.
3966
3967Division by zero leads to undefined behavior.
3968
3969If the ``exact`` keyword is present, the result value of the ``udiv`` is
3970a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3971such, "((a udiv exact b) mul b) == a").
3972
3973Example:
3974""""""""
3975
3976.. code-block:: llvm
3977
3978 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3979
3980'``sdiv``' Instruction
3981^^^^^^^^^^^^^^^^^^^^^^
3982
3983Syntax:
3984"""""""
3985
3986::
3987
3988 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3989 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3990
3991Overview:
3992"""""""""
3993
3994The '``sdiv``' instruction returns the quotient of its two operands.
3995
3996Arguments:
3997""""""""""
3998
3999The two arguments to the '``sdiv``' instruction must be
4000:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4001arguments must have identical types.
4002
4003Semantics:
4004""""""""""
4005
4006The value produced is the signed integer quotient of the two operands
4007rounded towards zero.
4008
4009Note that signed integer division and unsigned integer division are
4010distinct operations; for unsigned integer division, use '``udiv``'.
4011
4012Division by zero leads to undefined behavior. Overflow also leads to
4013undefined behavior; this is a rare case, but can occur, for example, by
4014doing a 32-bit division of -2147483648 by -1.
4015
4016If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4017a :ref:`poison value <poisonvalues>` if the result would be rounded.
4018
4019Example:
4020""""""""
4021
4022.. code-block:: llvm
4023
4024 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
4025
4026.. _i_fdiv:
4027
4028'``fdiv``' Instruction
4029^^^^^^^^^^^^^^^^^^^^^^
4030
4031Syntax:
4032"""""""
4033
4034::
4035
4036 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4037
4038Overview:
4039"""""""""
4040
4041The '``fdiv``' instruction returns the quotient of its two operands.
4042
4043Arguments:
4044""""""""""
4045
4046The two arguments to the '``fdiv``' instruction must be :ref:`floating
4047point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4048Both arguments must have identical types.
4049
4050Semantics:
4051""""""""""
4052
4053The value produced is the floating point quotient of the two operands.
4054This instruction can also take any number of :ref:`fast-math
4055flags <fastmath>`, which are optimization hints to enable otherwise
4056unsafe floating point optimizations:
4057
4058Example:
4059""""""""
4060
4061.. code-block:: llvm
4062
4063 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4064
4065'``urem``' Instruction
4066^^^^^^^^^^^^^^^^^^^^^^
4067
4068Syntax:
4069"""""""
4070
4071::
4072
4073 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4074
4075Overview:
4076"""""""""
4077
4078The '``urem``' instruction returns the remainder from the unsigned
4079division of its two arguments.
4080
4081Arguments:
4082""""""""""
4083
4084The two arguments to the '``urem``' instruction must be
4085:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4086arguments must have identical types.
4087
4088Semantics:
4089""""""""""
4090
4091This instruction returns the unsigned integer *remainder* of a division.
4092This instruction always performs an unsigned division to get the
4093remainder.
4094
4095Note that unsigned integer remainder and signed integer remainder are
4096distinct operations; for signed integer remainder, use '``srem``'.
4097
4098Taking the remainder of a division by zero leads to undefined behavior.
4099
4100Example:
4101""""""""
4102
4103.. code-block:: llvm
4104
4105 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4106
4107'``srem``' Instruction
4108^^^^^^^^^^^^^^^^^^^^^^
4109
4110Syntax:
4111"""""""
4112
4113::
4114
4115 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4116
4117Overview:
4118"""""""""
4119
4120The '``srem``' instruction returns the remainder from the signed
4121division of its two operands. This instruction can also take
4122:ref:`vector <t_vector>` versions of the values in which case the elements
4123must be integers.
4124
4125Arguments:
4126""""""""""
4127
4128The two arguments to the '``srem``' instruction must be
4129:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4130arguments must have identical types.
4131
4132Semantics:
4133""""""""""
4134
4135This instruction returns the *remainder* of a division (where the result
4136is either zero or has the same sign as the dividend, ``op1``), not the
4137*modulo* operator (where the result is either zero or has the same sign
4138as the divisor, ``op2``) of a value. For more information about the
4139difference, see `The Math
4140Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4141table of how this is implemented in various languages, please see
4142`Wikipedia: modulo
4143operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4144
4145Note that signed integer remainder and unsigned integer remainder are
4146distinct operations; for unsigned integer remainder, use '``urem``'.
4147
4148Taking the remainder of a division by zero leads to undefined behavior.
4149Overflow also leads to undefined behavior; this is a rare case, but can
4150occur, for example, by taking the remainder of a 32-bit division of
4151-2147483648 by -1. (The remainder doesn't actually overflow, but this
4152rule lets srem be implemented using instructions that return both the
4153result of the division and the remainder.)
4154
4155Example:
4156""""""""
4157
4158.. code-block:: llvm
4159
4160 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4161
4162.. _i_frem:
4163
4164'``frem``' Instruction
4165^^^^^^^^^^^^^^^^^^^^^^
4166
4167Syntax:
4168"""""""
4169
4170::
4171
4172 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4173
4174Overview:
4175"""""""""
4176
4177The '``frem``' instruction returns the remainder from the division of
4178its two operands.
4179
4180Arguments:
4181""""""""""
4182
4183The two arguments to the '``frem``' instruction must be :ref:`floating
4184point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4185Both arguments must have identical types.
4186
4187Semantics:
4188""""""""""
4189
4190This instruction returns the *remainder* of a division. The remainder
4191has the same sign as the dividend. This instruction can also take any
4192number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4193to enable otherwise unsafe floating point optimizations:
4194
4195Example:
4196""""""""
4197
4198.. code-block:: llvm
4199
4200 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4201
4202.. _bitwiseops:
4203
4204Bitwise Binary Operations
4205-------------------------
4206
4207Bitwise binary operators are used to do various forms of bit-twiddling
4208in a program. They are generally very efficient instructions and can
4209commonly be strength reduced from other instructions. They require two
4210operands of the same type, execute an operation on them, and produce a
4211single value. The resulting value is the same type as its operands.
4212
4213'``shl``' Instruction
4214^^^^^^^^^^^^^^^^^^^^^
4215
4216Syntax:
4217"""""""
4218
4219::
4220
4221 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4222 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4223 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4224 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4225
4226Overview:
4227"""""""""
4228
4229The '``shl``' instruction returns the first operand shifted to the left
4230a specified number of bits.
4231
4232Arguments:
4233""""""""""
4234
4235Both arguments to the '``shl``' instruction must be the same
4236:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4237'``op2``' is treated as an unsigned value.
4238
4239Semantics:
4240""""""""""
4241
4242The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4243where ``n`` is the width of the result. If ``op2`` is (statically or
4244dynamically) negative or equal to or larger than the number of bits in
4245``op1``, the result is undefined. If the arguments are vectors, each
4246vector element of ``op1`` is shifted by the corresponding shift amount
4247in ``op2``.
4248
4249If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4250value <poisonvalues>` if it shifts out any non-zero bits. If the
4251``nsw`` keyword is present, then the shift produces a :ref:`poison
4252value <poisonvalues>` if it shifts out any bits that disagree with the
4253resultant sign bit. As such, NUW/NSW have the same semantics as they
4254would if the shift were expressed as a mul instruction with the same
4255nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4256
4257Example:
4258""""""""
4259
4260.. code-block:: llvm
4261
4262 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4263 <result> = shl i32 4, 2 ; yields {i32}: 16
4264 <result> = shl i32 1, 10 ; yields {i32}: 1024
4265 <result> = shl i32 1, 32 ; undefined
4266 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4267
4268'``lshr``' Instruction
4269^^^^^^^^^^^^^^^^^^^^^^
4270
4271Syntax:
4272"""""""
4273
4274::
4275
4276 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4277 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4278
4279Overview:
4280"""""""""
4281
4282The '``lshr``' instruction (logical shift right) returns the first
4283operand shifted to the right a specified number of bits with zero fill.
4284
4285Arguments:
4286""""""""""
4287
4288Both arguments to the '``lshr``' instruction must be the same
4289:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4290'``op2``' is treated as an unsigned value.
4291
4292Semantics:
4293""""""""""
4294
4295This instruction always performs a logical shift right operation. The
4296most significant bits of the result will be filled with zero bits after
4297the shift. If ``op2`` is (statically or dynamically) equal to or larger
4298than the number of bits in ``op1``, the result is undefined. If the
4299arguments are vectors, each vector element of ``op1`` is shifted by the
4300corresponding shift amount in ``op2``.
4301
4302If the ``exact`` keyword is present, the result value of the ``lshr`` is
4303a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4304non-zero.
4305
4306Example:
4307""""""""
4308
4309.. code-block:: llvm
4310
4311 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4312 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4313 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004314 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004315 <result> = lshr i32 1, 32 ; undefined
4316 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4317
4318'``ashr``' Instruction
4319^^^^^^^^^^^^^^^^^^^^^^
4320
4321Syntax:
4322"""""""
4323
4324::
4325
4326 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4327 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4328
4329Overview:
4330"""""""""
4331
4332The '``ashr``' instruction (arithmetic shift right) returns the first
4333operand shifted to the right a specified number of bits with sign
4334extension.
4335
4336Arguments:
4337""""""""""
4338
4339Both arguments to the '``ashr``' instruction must be the same
4340:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4341'``op2``' is treated as an unsigned value.
4342
4343Semantics:
4344""""""""""
4345
4346This instruction always performs an arithmetic shift right operation,
4347The most significant bits of the result will be filled with the sign bit
4348of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4349than the number of bits in ``op1``, the result is undefined. If the
4350arguments are vectors, each vector element of ``op1`` is shifted by the
4351corresponding shift amount in ``op2``.
4352
4353If the ``exact`` keyword is present, the result value of the ``ashr`` is
4354a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4355non-zero.
4356
4357Example:
4358""""""""
4359
4360.. code-block:: llvm
4361
4362 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4363 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4364 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4365 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4366 <result> = ashr i32 1, 32 ; undefined
4367 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4368
4369'``and``' Instruction
4370^^^^^^^^^^^^^^^^^^^^^
4371
4372Syntax:
4373"""""""
4374
4375::
4376
4377 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4378
4379Overview:
4380"""""""""
4381
4382The '``and``' instruction returns the bitwise logical and of its two
4383operands.
4384
4385Arguments:
4386""""""""""
4387
4388The two arguments to the '``and``' instruction must be
4389:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4390arguments must have identical types.
4391
4392Semantics:
4393""""""""""
4394
4395The truth table used for the '``and``' instruction is:
4396
4397+-----+-----+-----+
4398| In0 | In1 | Out |
4399+-----+-----+-----+
4400| 0 | 0 | 0 |
4401+-----+-----+-----+
4402| 0 | 1 | 0 |
4403+-----+-----+-----+
4404| 1 | 0 | 0 |
4405+-----+-----+-----+
4406| 1 | 1 | 1 |
4407+-----+-----+-----+
4408
4409Example:
4410""""""""
4411
4412.. code-block:: llvm
4413
4414 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4415 <result> = and i32 15, 40 ; yields {i32}:result = 8
4416 <result> = and i32 4, 8 ; yields {i32}:result = 0
4417
4418'``or``' Instruction
4419^^^^^^^^^^^^^^^^^^^^
4420
4421Syntax:
4422"""""""
4423
4424::
4425
4426 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4427
4428Overview:
4429"""""""""
4430
4431The '``or``' instruction returns the bitwise logical inclusive or of its
4432two operands.
4433
4434Arguments:
4435""""""""""
4436
4437The two arguments to the '``or``' instruction must be
4438:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4439arguments must have identical types.
4440
4441Semantics:
4442""""""""""
4443
4444The truth table used for the '``or``' instruction is:
4445
4446+-----+-----+-----+
4447| In0 | In1 | Out |
4448+-----+-----+-----+
4449| 0 | 0 | 0 |
4450+-----+-----+-----+
4451| 0 | 1 | 1 |
4452+-----+-----+-----+
4453| 1 | 0 | 1 |
4454+-----+-----+-----+
4455| 1 | 1 | 1 |
4456+-----+-----+-----+
4457
4458Example:
4459""""""""
4460
4461::
4462
4463 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4464 <result> = or i32 15, 40 ; yields {i32}:result = 47
4465 <result> = or i32 4, 8 ; yields {i32}:result = 12
4466
4467'``xor``' Instruction
4468^^^^^^^^^^^^^^^^^^^^^
4469
4470Syntax:
4471"""""""
4472
4473::
4474
4475 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4476
4477Overview:
4478"""""""""
4479
4480The '``xor``' instruction returns the bitwise logical exclusive or of
4481its two operands. The ``xor`` is used to implement the "one's
4482complement" operation, which is the "~" operator in C.
4483
4484Arguments:
4485""""""""""
4486
4487The two arguments to the '``xor``' instruction must be
4488:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4489arguments must have identical types.
4490
4491Semantics:
4492""""""""""
4493
4494The truth table used for the '``xor``' instruction is:
4495
4496+-----+-----+-----+
4497| In0 | In1 | Out |
4498+-----+-----+-----+
4499| 0 | 0 | 0 |
4500+-----+-----+-----+
4501| 0 | 1 | 1 |
4502+-----+-----+-----+
4503| 1 | 0 | 1 |
4504+-----+-----+-----+
4505| 1 | 1 | 0 |
4506+-----+-----+-----+
4507
4508Example:
4509""""""""
4510
4511.. code-block:: llvm
4512
4513 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4514 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4515 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4516 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4517
4518Vector Operations
4519-----------------
4520
4521LLVM supports several instructions to represent vector operations in a
4522target-independent manner. These instructions cover the element-access
4523and vector-specific operations needed to process vectors effectively.
4524While LLVM does directly support these vector operations, many
4525sophisticated algorithms will want to use target-specific intrinsics to
4526take full advantage of a specific target.
4527
4528.. _i_extractelement:
4529
4530'``extractelement``' Instruction
4531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4532
4533Syntax:
4534"""""""
4535
4536::
4537
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004538 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004539
4540Overview:
4541"""""""""
4542
4543The '``extractelement``' instruction extracts a single scalar element
4544from a vector at a specified index.
4545
4546Arguments:
4547""""""""""
4548
4549The first operand of an '``extractelement``' instruction is a value of
4550:ref:`vector <t_vector>` type. The second operand is an index indicating
4551the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004552variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004553
4554Semantics:
4555""""""""""
4556
4557The result is a scalar of the same type as the element type of ``val``.
4558Its value is the value at position ``idx`` of ``val``. If ``idx``
4559exceeds the length of ``val``, the results are undefined.
4560
4561Example:
4562""""""""
4563
4564.. code-block:: llvm
4565
4566 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4567
4568.. _i_insertelement:
4569
4570'``insertelement``' Instruction
4571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4572
4573Syntax:
4574"""""""
4575
4576::
4577
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004578 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004579
4580Overview:
4581"""""""""
4582
4583The '``insertelement``' instruction inserts a scalar element into a
4584vector at a specified index.
4585
4586Arguments:
4587""""""""""
4588
4589The first operand of an '``insertelement``' instruction is a value of
4590:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4591type must equal the element type of the first operand. The third operand
4592is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004593index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004594
4595Semantics:
4596""""""""""
4597
4598The result is a vector of the same type as ``val``. Its element values
4599are those of ``val`` except at position ``idx``, where it gets the value
4600``elt``. If ``idx`` exceeds the length of ``val``, the results are
4601undefined.
4602
4603Example:
4604""""""""
4605
4606.. code-block:: llvm
4607
4608 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4609
4610.. _i_shufflevector:
4611
4612'``shufflevector``' Instruction
4613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4614
4615Syntax:
4616"""""""
4617
4618::
4619
4620 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4621
4622Overview:
4623"""""""""
4624
4625The '``shufflevector``' instruction constructs a permutation of elements
4626from two input vectors, returning a vector with the same element type as
4627the input and length that is the same as the shuffle mask.
4628
4629Arguments:
4630""""""""""
4631
4632The first two operands of a '``shufflevector``' instruction are vectors
4633with the same type. The third argument is a shuffle mask whose element
4634type is always 'i32'. The result of the instruction is a vector whose
4635length is the same as the shuffle mask and whose element type is the
4636same as the element type of the first two operands.
4637
4638The shuffle mask operand is required to be a constant vector with either
4639constant integer or undef values.
4640
4641Semantics:
4642""""""""""
4643
4644The elements of the two input vectors are numbered from left to right
4645across both of the vectors. The shuffle mask operand specifies, for each
4646element of the result vector, which element of the two input vectors the
4647result element gets. The element selector may be undef (meaning "don't
4648care") and the second operand may be undef if performing a shuffle from
4649only one vector.
4650
4651Example:
4652""""""""
4653
4654.. code-block:: llvm
4655
4656 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4657 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4658 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4659 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4660 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4661 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4662 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4663 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4664
4665Aggregate Operations
4666--------------------
4667
4668LLVM supports several instructions for working with
4669:ref:`aggregate <t_aggregate>` values.
4670
4671.. _i_extractvalue:
4672
4673'``extractvalue``' Instruction
4674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4675
4676Syntax:
4677"""""""
4678
4679::
4680
4681 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4682
4683Overview:
4684"""""""""
4685
4686The '``extractvalue``' instruction extracts the value of a member field
4687from an :ref:`aggregate <t_aggregate>` value.
4688
4689Arguments:
4690""""""""""
4691
4692The first operand of an '``extractvalue``' instruction is a value of
4693:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4694constant indices to specify which value to extract in a similar manner
4695as indices in a '``getelementptr``' instruction.
4696
4697The major differences to ``getelementptr`` indexing are:
4698
4699- Since the value being indexed is not a pointer, the first index is
4700 omitted and assumed to be zero.
4701- At least one index must be specified.
4702- Not only struct indices but also array indices must be in bounds.
4703
4704Semantics:
4705""""""""""
4706
4707The result is the value at the position in the aggregate specified by
4708the index operands.
4709
4710Example:
4711""""""""
4712
4713.. code-block:: llvm
4714
4715 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4716
4717.. _i_insertvalue:
4718
4719'``insertvalue``' Instruction
4720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4721
4722Syntax:
4723"""""""
4724
4725::
4726
4727 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4728
4729Overview:
4730"""""""""
4731
4732The '``insertvalue``' instruction inserts a value into a member field in
4733an :ref:`aggregate <t_aggregate>` value.
4734
4735Arguments:
4736""""""""""
4737
4738The first operand of an '``insertvalue``' instruction is a value of
4739:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4740a first-class value to insert. The following operands are constant
4741indices indicating the position at which to insert the value in a
4742similar manner as indices in a '``extractvalue``' instruction. The value
4743to insert must have the same type as the value identified by the
4744indices.
4745
4746Semantics:
4747""""""""""
4748
4749The result is an aggregate of the same type as ``val``. Its value is
4750that of ``val`` except that the value at the position specified by the
4751indices is that of ``elt``.
4752
4753Example:
4754""""""""
4755
4756.. code-block:: llvm
4757
4758 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4759 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4760 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4761
4762.. _memoryops:
4763
4764Memory Access and Addressing Operations
4765---------------------------------------
4766
4767A key design point of an SSA-based representation is how it represents
4768memory. In LLVM, no memory locations are in SSA form, which makes things
4769very simple. This section describes how to read, write, and allocate
4770memory in LLVM.
4771
4772.. _i_alloca:
4773
4774'``alloca``' Instruction
4775^^^^^^^^^^^^^^^^^^^^^^^^
4776
4777Syntax:
4778"""""""
4779
4780::
4781
David Majnemerc4ab61c2014-03-09 06:41:58 +00004782 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004783
4784Overview:
4785"""""""""
4786
4787The '``alloca``' instruction allocates memory on the stack frame of the
4788currently executing function, to be automatically released when this
4789function returns to its caller. The object is always allocated in the
4790generic address space (address space zero).
4791
4792Arguments:
4793""""""""""
4794
4795The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4796bytes of memory on the runtime stack, returning a pointer of the
4797appropriate type to the program. If "NumElements" is specified, it is
4798the number of elements allocated, otherwise "NumElements" is defaulted
4799to be one. If a constant alignment is specified, the value result of the
4800allocation is guaranteed to be aligned to at least that boundary. If not
4801specified, or if zero, the target can choose to align the allocation on
4802any convenient boundary compatible with the type.
4803
4804'``type``' may be any sized type.
4805
4806Semantics:
4807""""""""""
4808
4809Memory is allocated; a pointer is returned. The operation is undefined
4810if there is insufficient stack space for the allocation. '``alloca``'d
4811memory is automatically released when the function returns. The
4812'``alloca``' instruction is commonly used to represent automatic
4813variables that must have an address available. When the function returns
4814(either with the ``ret`` or ``resume`` instructions), the memory is
4815reclaimed. Allocating zero bytes is legal, but the result is undefined.
4816The order in which memory is allocated (ie., which way the stack grows)
4817is not specified.
4818
4819Example:
4820""""""""
4821
4822.. code-block:: llvm
4823
4824 %ptr = alloca i32 ; yields {i32*}:ptr
4825 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4826 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4827 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4828
4829.. _i_load:
4830
4831'``load``' Instruction
4832^^^^^^^^^^^^^^^^^^^^^^
4833
4834Syntax:
4835"""""""
4836
4837::
4838
4839 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4840 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4841 !<index> = !{ i32 1 }
4842
4843Overview:
4844"""""""""
4845
4846The '``load``' instruction is used to read from memory.
4847
4848Arguments:
4849""""""""""
4850
Eli Bendersky239a78b2013-04-17 20:17:08 +00004851The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004852from which to load. The pointer must point to a :ref:`first
4853class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4854then the optimizer is not allowed to modify the number or order of
4855execution of this ``load`` with other :ref:`volatile
4856operations <volatile>`.
4857
4858If the ``load`` is marked as ``atomic``, it takes an extra
4859:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4860``release`` and ``acq_rel`` orderings are not valid on ``load``
4861instructions. Atomic loads produce :ref:`defined <memmodel>` results
4862when they may see multiple atomic stores. The type of the pointee must
4863be an integer type whose bit width is a power of two greater than or
4864equal to eight and less than or equal to a target-specific size limit.
4865``align`` must be explicitly specified on atomic loads, and the load has
4866undefined behavior if the alignment is not set to a value which is at
4867least the size in bytes of the pointee. ``!nontemporal`` does not have
4868any defined semantics for atomic loads.
4869
4870The optional constant ``align`` argument specifies the alignment of the
4871operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004872or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004873alignment for the target. It is the responsibility of the code emitter
4874to ensure that the alignment information is correct. Overestimating the
4875alignment results in undefined behavior. Underestimating the alignment
4876may produce less efficient code. An alignment of 1 is always safe.
4877
4878The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004879metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004880``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004881metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004882that this load is not expected to be reused in the cache. The code
4883generator may select special instructions to save cache bandwidth, such
4884as the ``MOVNT`` instruction on x86.
4885
4886The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004887metadata name ``<index>`` corresponding to a metadata node with no
4888entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004889instruction tells the optimizer and code generator that this load
4890address points to memory which does not change value during program
4891execution. The optimizer may then move this load around, for example, by
4892hoisting it out of loops using loop invariant code motion.
4893
4894Semantics:
4895""""""""""
4896
4897The location of memory pointed to is loaded. If the value being loaded
4898is of scalar type then the number of bytes read does not exceed the
4899minimum number of bytes needed to hold all bits of the type. For
4900example, loading an ``i24`` reads at most three bytes. When loading a
4901value of a type like ``i20`` with a size that is not an integral number
4902of bytes, the result is undefined if the value was not originally
4903written using a store of the same type.
4904
4905Examples:
4906"""""""""
4907
4908.. code-block:: llvm
4909
4910 %ptr = alloca i32 ; yields {i32*}:ptr
4911 store i32 3, i32* %ptr ; yields {void}
4912 %val = load i32* %ptr ; yields {i32}:val = i32 3
4913
4914.. _i_store:
4915
4916'``store``' Instruction
4917^^^^^^^^^^^^^^^^^^^^^^^
4918
4919Syntax:
4920"""""""
4921
4922::
4923
4924 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4925 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4926
4927Overview:
4928"""""""""
4929
4930The '``store``' instruction is used to write to memory.
4931
4932Arguments:
4933""""""""""
4934
Eli Benderskyca380842013-04-17 17:17:20 +00004935There are two arguments to the ``store`` instruction: a value to store
4936and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004937operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004938the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004939then the optimizer is not allowed to modify the number or order of
4940execution of this ``store`` with other :ref:`volatile
4941operations <volatile>`.
4942
4943If the ``store`` is marked as ``atomic``, it takes an extra
4944:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4945``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4946instructions. Atomic loads produce :ref:`defined <memmodel>` results
4947when they may see multiple atomic stores. The type of the pointee must
4948be an integer type whose bit width is a power of two greater than or
4949equal to eight and less than or equal to a target-specific size limit.
4950``align`` must be explicitly specified on atomic stores, and the store
4951has undefined behavior if the alignment is not set to a value which is
4952at least the size in bytes of the pointee. ``!nontemporal`` does not
4953have any defined semantics for atomic stores.
4954
Eli Benderskyca380842013-04-17 17:17:20 +00004955The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004956operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004957or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004958alignment for the target. It is the responsibility of the code emitter
4959to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004960alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004961alignment may produce less efficient code. An alignment of 1 is always
4962safe.
4963
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004964The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004965name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004966value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004967tells the optimizer and code generator that this load is not expected to
4968be reused in the cache. The code generator may select special
4969instructions to save cache bandwidth, such as the MOVNT instruction on
4970x86.
4971
4972Semantics:
4973""""""""""
4974
Eli Benderskyca380842013-04-17 17:17:20 +00004975The contents of memory are updated to contain ``<value>`` at the
4976location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004977of scalar type then the number of bytes written does not exceed the
4978minimum number of bytes needed to hold all bits of the type. For
4979example, storing an ``i24`` writes at most three bytes. When writing a
4980value of a type like ``i20`` with a size that is not an integral number
4981of bytes, it is unspecified what happens to the extra bits that do not
4982belong to the type, but they will typically be overwritten.
4983
4984Example:
4985""""""""
4986
4987.. code-block:: llvm
4988
4989 %ptr = alloca i32 ; yields {i32*}:ptr
4990 store i32 3, i32* %ptr ; yields {void}
4991 %val = load i32* %ptr ; yields {i32}:val = i32 3
4992
4993.. _i_fence:
4994
4995'``fence``' Instruction
4996^^^^^^^^^^^^^^^^^^^^^^^
4997
4998Syntax:
4999"""""""
5000
5001::
5002
5003 fence [singlethread] <ordering> ; yields {void}
5004
5005Overview:
5006"""""""""
5007
5008The '``fence``' instruction is used to introduce happens-before edges
5009between operations.
5010
5011Arguments:
5012""""""""""
5013
5014'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5015defines what *synchronizes-with* edges they add. They can only be given
5016``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5017
5018Semantics:
5019""""""""""
5020
5021A fence A which has (at least) ``release`` ordering semantics
5022*synchronizes with* a fence B with (at least) ``acquire`` ordering
5023semantics if and only if there exist atomic operations X and Y, both
5024operating on some atomic object M, such that A is sequenced before X, X
5025modifies M (either directly or through some side effect of a sequence
5026headed by X), Y is sequenced before B, and Y observes M. This provides a
5027*happens-before* dependency between A and B. Rather than an explicit
5028``fence``, one (but not both) of the atomic operations X or Y might
5029provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5030still *synchronize-with* the explicit ``fence`` and establish the
5031*happens-before* edge.
5032
5033A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5034``acquire`` and ``release`` semantics specified above, participates in
5035the global program order of other ``seq_cst`` operations and/or fences.
5036
5037The optional ":ref:`singlethread <singlethread>`" argument specifies
5038that the fence only synchronizes with other fences in the same thread.
5039(This is useful for interacting with signal handlers.)
5040
5041Example:
5042""""""""
5043
5044.. code-block:: llvm
5045
5046 fence acquire ; yields {void}
5047 fence singlethread seq_cst ; yields {void}
5048
5049.. _i_cmpxchg:
5050
5051'``cmpxchg``' Instruction
5052^^^^^^^^^^^^^^^^^^^^^^^^^
5053
5054Syntax:
5055"""""""
5056
5057::
5058
Tim Northovere94a5182014-03-11 10:48:52 +00005059 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005060
5061Overview:
5062"""""""""
5063
5064The '``cmpxchg``' instruction is used to atomically modify memory. It
5065loads a value in memory and compares it to a given value. If they are
5066equal, it stores a new value into the memory.
5067
5068Arguments:
5069""""""""""
5070
5071There are three arguments to the '``cmpxchg``' instruction: an address
5072to operate on, a value to compare to the value currently be at that
5073address, and a new value to place at that address if the compared values
5074are equal. The type of '<cmp>' must be an integer type whose bit width
5075is a power of two greater than or equal to eight and less than or equal
5076to a target-specific size limit. '<cmp>' and '<new>' must have the same
5077type, and the type of '<pointer>' must be a pointer to that type. If the
5078``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5079to modify the number or order of execution of this ``cmpxchg`` with
5080other :ref:`volatile operations <volatile>`.
5081
Tim Northovere94a5182014-03-11 10:48:52 +00005082The success and failure :ref:`ordering <ordering>` arguments specify how this
5083``cmpxchg`` synchronizes with other atomic operations. The both ordering
5084parameters must be at least ``monotonic``, the ordering constraint on failure
5085must be no stronger than that on success, and the failure ordering cannot be
5086either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005087
5088The optional "``singlethread``" argument declares that the ``cmpxchg``
5089is only atomic with respect to code (usually signal handlers) running in
5090the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5091respect to all other code in the system.
5092
5093The pointer passed into cmpxchg must have alignment greater than or
5094equal to the size in memory of the operand.
5095
5096Semantics:
5097""""""""""
5098
5099The contents of memory at the location specified by the '``<pointer>``'
5100operand is read and compared to '``<cmp>``'; if the read value is the
5101equal, '``<new>``' is written. The original value at the location is
5102returned.
5103
Tim Northovere94a5182014-03-11 10:48:52 +00005104A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5105identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5106load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005107
5108Example:
5109""""""""
5110
5111.. code-block:: llvm
5112
5113 entry:
5114 %orig = atomic load i32* %ptr unordered ; yields {i32}
5115 br label %loop
5116
5117 loop:
5118 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5119 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005120 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005121 %success = icmp eq i32 %cmp, %old
5122 br i1 %success, label %done, label %loop
5123
5124 done:
5125 ...
5126
5127.. _i_atomicrmw:
5128
5129'``atomicrmw``' Instruction
5130^^^^^^^^^^^^^^^^^^^^^^^^^^^
5131
5132Syntax:
5133"""""""
5134
5135::
5136
5137 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5138
5139Overview:
5140"""""""""
5141
5142The '``atomicrmw``' instruction is used to atomically modify memory.
5143
5144Arguments:
5145""""""""""
5146
5147There are three arguments to the '``atomicrmw``' instruction: an
5148operation to apply, an address whose value to modify, an argument to the
5149operation. The operation must be one of the following keywords:
5150
5151- xchg
5152- add
5153- sub
5154- and
5155- nand
5156- or
5157- xor
5158- max
5159- min
5160- umax
5161- umin
5162
5163The type of '<value>' must be an integer type whose bit width is a power
5164of two greater than or equal to eight and less than or equal to a
5165target-specific size limit. The type of the '``<pointer>``' operand must
5166be a pointer to that type. If the ``atomicrmw`` is marked as
5167``volatile``, then the optimizer is not allowed to modify the number or
5168order of execution of this ``atomicrmw`` with other :ref:`volatile
5169operations <volatile>`.
5170
5171Semantics:
5172""""""""""
5173
5174The contents of memory at the location specified by the '``<pointer>``'
5175operand are atomically read, modified, and written back. The original
5176value at the location is returned. The modification is specified by the
5177operation argument:
5178
5179- xchg: ``*ptr = val``
5180- add: ``*ptr = *ptr + val``
5181- sub: ``*ptr = *ptr - val``
5182- and: ``*ptr = *ptr & val``
5183- nand: ``*ptr = ~(*ptr & val)``
5184- or: ``*ptr = *ptr | val``
5185- xor: ``*ptr = *ptr ^ val``
5186- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5187- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5188- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5189 comparison)
5190- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5191 comparison)
5192
5193Example:
5194""""""""
5195
5196.. code-block:: llvm
5197
5198 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5199
5200.. _i_getelementptr:
5201
5202'``getelementptr``' Instruction
5203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5204
5205Syntax:
5206"""""""
5207
5208::
5209
5210 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5211 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5212 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5213
5214Overview:
5215"""""""""
5216
5217The '``getelementptr``' instruction is used to get the address of a
5218subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5219address calculation only and does not access memory.
5220
5221Arguments:
5222""""""""""
5223
5224The first argument is always a pointer or a vector of pointers, and
5225forms the basis of the calculation. The remaining arguments are indices
5226that indicate which of the elements of the aggregate object are indexed.
5227The interpretation of each index is dependent on the type being indexed
5228into. The first index always indexes the pointer value given as the
5229first argument, the second index indexes a value of the type pointed to
5230(not necessarily the value directly pointed to, since the first index
5231can be non-zero), etc. The first type indexed into must be a pointer
5232value, subsequent types can be arrays, vectors, and structs. Note that
5233subsequent types being indexed into can never be pointers, since that
5234would require loading the pointer before continuing calculation.
5235
5236The type of each index argument depends on the type it is indexing into.
5237When indexing into a (optionally packed) structure, only ``i32`` integer
5238**constants** are allowed (when using a vector of indices they must all
5239be the **same** ``i32`` integer constant). When indexing into an array,
5240pointer or vector, integers of any width are allowed, and they are not
5241required to be constant. These integers are treated as signed values
5242where relevant.
5243
5244For example, let's consider a C code fragment and how it gets compiled
5245to LLVM:
5246
5247.. code-block:: c
5248
5249 struct RT {
5250 char A;
5251 int B[10][20];
5252 char C;
5253 };
5254 struct ST {
5255 int X;
5256 double Y;
5257 struct RT Z;
5258 };
5259
5260 int *foo(struct ST *s) {
5261 return &s[1].Z.B[5][13];
5262 }
5263
5264The LLVM code generated by Clang is:
5265
5266.. code-block:: llvm
5267
5268 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5269 %struct.ST = type { i32, double, %struct.RT }
5270
5271 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5272 entry:
5273 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5274 ret i32* %arrayidx
5275 }
5276
5277Semantics:
5278""""""""""
5279
5280In the example above, the first index is indexing into the
5281'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5282= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5283indexes into the third element of the structure, yielding a
5284'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5285structure. The third index indexes into the second element of the
5286structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5287dimensions of the array are subscripted into, yielding an '``i32``'
5288type. The '``getelementptr``' instruction returns a pointer to this
5289element, thus computing a value of '``i32*``' type.
5290
5291Note that it is perfectly legal to index partially through a structure,
5292returning a pointer to an inner element. Because of this, the LLVM code
5293for the given testcase is equivalent to:
5294
5295.. code-block:: llvm
5296
5297 define i32* @foo(%struct.ST* %s) {
5298 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5299 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5300 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5301 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5302 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5303 ret i32* %t5
5304 }
5305
5306If the ``inbounds`` keyword is present, the result value of the
5307``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5308pointer is not an *in bounds* address of an allocated object, or if any
5309of the addresses that would be formed by successive addition of the
5310offsets implied by the indices to the base address with infinitely
5311precise signed arithmetic are not an *in bounds* address of that
5312allocated object. The *in bounds* addresses for an allocated object are
5313all the addresses that point into the object, plus the address one byte
5314past the end. In cases where the base is a vector of pointers the
5315``inbounds`` keyword applies to each of the computations element-wise.
5316
5317If the ``inbounds`` keyword is not present, the offsets are added to the
5318base address with silently-wrapping two's complement arithmetic. If the
5319offsets have a different width from the pointer, they are sign-extended
5320or truncated to the width of the pointer. The result value of the
5321``getelementptr`` may be outside the object pointed to by the base
5322pointer. The result value may not necessarily be used to access memory
5323though, even if it happens to point into allocated storage. See the
5324:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5325information.
5326
5327The getelementptr instruction is often confusing. For some more insight
5328into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5329
5330Example:
5331""""""""
5332
5333.. code-block:: llvm
5334
5335 ; yields [12 x i8]*:aptr
5336 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5337 ; yields i8*:vptr
5338 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5339 ; yields i8*:eptr
5340 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5341 ; yields i32*:iptr
5342 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5343
5344In cases where the pointer argument is a vector of pointers, each index
5345must be a vector with the same number of elements. For example:
5346
5347.. code-block:: llvm
5348
5349 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5350
5351Conversion Operations
5352---------------------
5353
5354The instructions in this category are the conversion instructions
5355(casting) which all take a single operand and a type. They perform
5356various bit conversions on the operand.
5357
5358'``trunc .. to``' Instruction
5359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5360
5361Syntax:
5362"""""""
5363
5364::
5365
5366 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5367
5368Overview:
5369"""""""""
5370
5371The '``trunc``' instruction truncates its operand to the type ``ty2``.
5372
5373Arguments:
5374""""""""""
5375
5376The '``trunc``' instruction takes a value to trunc, and a type to trunc
5377it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5378of the same number of integers. The bit size of the ``value`` must be
5379larger than the bit size of the destination type, ``ty2``. Equal sized
5380types are not allowed.
5381
5382Semantics:
5383""""""""""
5384
5385The '``trunc``' instruction truncates the high order bits in ``value``
5386and converts the remaining bits to ``ty2``. Since the source size must
5387be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5388It will always truncate bits.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 %X = trunc i32 257 to i8 ; yields i8:1
5396 %Y = trunc i32 123 to i1 ; yields i1:true
5397 %Z = trunc i32 122 to i1 ; yields i1:false
5398 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5399
5400'``zext .. to``' Instruction
5401^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5402
5403Syntax:
5404"""""""
5405
5406::
5407
5408 <result> = zext <ty> <value> to <ty2> ; yields ty2
5409
5410Overview:
5411"""""""""
5412
5413The '``zext``' instruction zero extends its operand to type ``ty2``.
5414
5415Arguments:
5416""""""""""
5417
5418The '``zext``' instruction takes a value to cast, and a type to cast it
5419to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5420the same number of integers. The bit size of the ``value`` must be
5421smaller than the bit size of the destination type, ``ty2``.
5422
5423Semantics:
5424""""""""""
5425
5426The ``zext`` fills the high order bits of the ``value`` with zero bits
5427until it reaches the size of the destination type, ``ty2``.
5428
5429When zero extending from i1, the result will always be either 0 or 1.
5430
5431Example:
5432""""""""
5433
5434.. code-block:: llvm
5435
5436 %X = zext i32 257 to i64 ; yields i64:257
5437 %Y = zext i1 true to i32 ; yields i32:1
5438 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5439
5440'``sext .. to``' Instruction
5441^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5442
5443Syntax:
5444"""""""
5445
5446::
5447
5448 <result> = sext <ty> <value> to <ty2> ; yields ty2
5449
5450Overview:
5451"""""""""
5452
5453The '``sext``' sign extends ``value`` to the type ``ty2``.
5454
5455Arguments:
5456""""""""""
5457
5458The '``sext``' instruction takes a value to cast, and a type to cast it
5459to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5460the same number of integers. The bit size of the ``value`` must be
5461smaller than the bit size of the destination type, ``ty2``.
5462
5463Semantics:
5464""""""""""
5465
5466The '``sext``' instruction performs a sign extension by copying the sign
5467bit (highest order bit) of the ``value`` until it reaches the bit size
5468of the type ``ty2``.
5469
5470When sign extending from i1, the extension always results in -1 or 0.
5471
5472Example:
5473""""""""
5474
5475.. code-block:: llvm
5476
5477 %X = sext i8 -1 to i16 ; yields i16 :65535
5478 %Y = sext i1 true to i32 ; yields i32:-1
5479 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5480
5481'``fptrunc .. to``' Instruction
5482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5483
5484Syntax:
5485"""""""
5486
5487::
5488
5489 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5490
5491Overview:
5492"""""""""
5493
5494The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5495
5496Arguments:
5497""""""""""
5498
5499The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5500value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5501The size of ``value`` must be larger than the size of ``ty2``. This
5502implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5503
5504Semantics:
5505""""""""""
5506
5507The '``fptrunc``' instruction truncates a ``value`` from a larger
5508:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5509point <t_floating>` type. If the value cannot fit within the
5510destination type, ``ty2``, then the results are undefined.
5511
5512Example:
5513""""""""
5514
5515.. code-block:: llvm
5516
5517 %X = fptrunc double 123.0 to float ; yields float:123.0
5518 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5519
5520'``fpext .. to``' Instruction
5521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5522
5523Syntax:
5524"""""""
5525
5526::
5527
5528 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5529
5530Overview:
5531"""""""""
5532
5533The '``fpext``' extends a floating point ``value`` to a larger floating
5534point value.
5535
5536Arguments:
5537""""""""""
5538
5539The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5540``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5541to. The source type must be smaller than the destination type.
5542
5543Semantics:
5544""""""""""
5545
5546The '``fpext``' instruction extends the ``value`` from a smaller
5547:ref:`floating point <t_floating>` type to a larger :ref:`floating
5548point <t_floating>` type. The ``fpext`` cannot be used to make a
5549*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5550*no-op cast* for a floating point cast.
5551
5552Example:
5553""""""""
5554
5555.. code-block:: llvm
5556
5557 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5558 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5559
5560'``fptoui .. to``' Instruction
5561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5562
5563Syntax:
5564"""""""
5565
5566::
5567
5568 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5569
5570Overview:
5571"""""""""
5572
5573The '``fptoui``' converts a floating point ``value`` to its unsigned
5574integer equivalent of type ``ty2``.
5575
5576Arguments:
5577""""""""""
5578
5579The '``fptoui``' instruction takes a value to cast, which must be a
5580scalar or vector :ref:`floating point <t_floating>` value, and a type to
5581cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5582``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5583type with the same number of elements as ``ty``
5584
5585Semantics:
5586""""""""""
5587
5588The '``fptoui``' instruction converts its :ref:`floating
5589point <t_floating>` operand into the nearest (rounding towards zero)
5590unsigned integer value. If the value cannot fit in ``ty2``, the results
5591are undefined.
5592
5593Example:
5594""""""""
5595
5596.. code-block:: llvm
5597
5598 %X = fptoui double 123.0 to i32 ; yields i32:123
5599 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5600 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5601
5602'``fptosi .. to``' Instruction
5603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5604
5605Syntax:
5606"""""""
5607
5608::
5609
5610 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5611
5612Overview:
5613"""""""""
5614
5615The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5616``value`` to type ``ty2``.
5617
5618Arguments:
5619""""""""""
5620
5621The '``fptosi``' instruction takes a value to cast, which must be a
5622scalar or vector :ref:`floating point <t_floating>` value, and a type to
5623cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5624``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5625type with the same number of elements as ``ty``
5626
5627Semantics:
5628""""""""""
5629
5630The '``fptosi``' instruction converts its :ref:`floating
5631point <t_floating>` operand into the nearest (rounding towards zero)
5632signed integer value. If the value cannot fit in ``ty2``, the results
5633are undefined.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 %X = fptosi double -123.0 to i32 ; yields i32:-123
5641 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5642 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5643
5644'``uitofp .. to``' Instruction
5645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5646
5647Syntax:
5648"""""""
5649
5650::
5651
5652 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5653
5654Overview:
5655"""""""""
5656
5657The '``uitofp``' instruction regards ``value`` as an unsigned integer
5658and converts that value to the ``ty2`` type.
5659
5660Arguments:
5661""""""""""
5662
5663The '``uitofp``' instruction takes a value to cast, which must be a
5664scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5665``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5666``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5667type with the same number of elements as ``ty``
5668
5669Semantics:
5670""""""""""
5671
5672The '``uitofp``' instruction interprets its operand as an unsigned
5673integer quantity and converts it to the corresponding floating point
5674value. If the value cannot fit in the floating point value, the results
5675are undefined.
5676
5677Example:
5678""""""""
5679
5680.. code-block:: llvm
5681
5682 %X = uitofp i32 257 to float ; yields float:257.0
5683 %Y = uitofp i8 -1 to double ; yields double:255.0
5684
5685'``sitofp .. to``' Instruction
5686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5687
5688Syntax:
5689"""""""
5690
5691::
5692
5693 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5694
5695Overview:
5696"""""""""
5697
5698The '``sitofp``' instruction regards ``value`` as a signed integer and
5699converts that value to the ``ty2`` type.
5700
5701Arguments:
5702""""""""""
5703
5704The '``sitofp``' instruction takes a value to cast, which must be a
5705scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5706``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5707``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5708type with the same number of elements as ``ty``
5709
5710Semantics:
5711""""""""""
5712
5713The '``sitofp``' instruction interprets its operand as a signed integer
5714quantity and converts it to the corresponding floating point value. If
5715the value cannot fit in the floating point value, the results are
5716undefined.
5717
5718Example:
5719""""""""
5720
5721.. code-block:: llvm
5722
5723 %X = sitofp i32 257 to float ; yields float:257.0
5724 %Y = sitofp i8 -1 to double ; yields double:-1.0
5725
5726.. _i_ptrtoint:
5727
5728'``ptrtoint .. to``' Instruction
5729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5730
5731Syntax:
5732"""""""
5733
5734::
5735
5736 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5737
5738Overview:
5739"""""""""
5740
5741The '``ptrtoint``' instruction converts the pointer or a vector of
5742pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5743
5744Arguments:
5745""""""""""
5746
5747The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5748a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5749type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5750a vector of integers type.
5751
5752Semantics:
5753""""""""""
5754
5755The '``ptrtoint``' instruction converts ``value`` to integer type
5756``ty2`` by interpreting the pointer value as an integer and either
5757truncating or zero extending that value to the size of the integer type.
5758If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5759``value`` is larger than ``ty2`` then a truncation is done. If they are
5760the same size, then nothing is done (*no-op cast*) other than a type
5761change.
5762
5763Example:
5764""""""""
5765
5766.. code-block:: llvm
5767
5768 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5769 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5770 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5771
5772.. _i_inttoptr:
5773
5774'``inttoptr .. to``' Instruction
5775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5776
5777Syntax:
5778"""""""
5779
5780::
5781
5782 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5783
5784Overview:
5785"""""""""
5786
5787The '``inttoptr``' instruction converts an integer ``value`` to a
5788pointer type, ``ty2``.
5789
5790Arguments:
5791""""""""""
5792
5793The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5794cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5795type.
5796
5797Semantics:
5798""""""""""
5799
5800The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5801applying either a zero extension or a truncation depending on the size
5802of the integer ``value``. If ``value`` is larger than the size of a
5803pointer then a truncation is done. If ``value`` is smaller than the size
5804of a pointer then a zero extension is done. If they are the same size,
5805nothing is done (*no-op cast*).
5806
5807Example:
5808""""""""
5809
5810.. code-block:: llvm
5811
5812 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5813 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5814 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5815 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5816
5817.. _i_bitcast:
5818
5819'``bitcast .. to``' Instruction
5820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5821
5822Syntax:
5823"""""""
5824
5825::
5826
5827 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5828
5829Overview:
5830"""""""""
5831
5832The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5833changing any bits.
5834
5835Arguments:
5836""""""""""
5837
5838The '``bitcast``' instruction takes a value to cast, which must be a
5839non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005840also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5841bit sizes of ``value`` and the destination type, ``ty2``, must be
5842identical. If the source type is a pointer, the destination type must
5843also be a pointer of the same size. This instruction supports bitwise
5844conversion of vectors to integers and to vectors of other types (as
5845long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005846
5847Semantics:
5848""""""""""
5849
Matt Arsenault24b49c42013-07-31 17:49:08 +00005850The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5851is always a *no-op cast* because no bits change with this
5852conversion. The conversion is done as if the ``value`` had been stored
5853to memory and read back as type ``ty2``. Pointer (or vector of
5854pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005855pointers) types with the same address space through this instruction.
5856To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5857or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005858
5859Example:
5860""""""""
5861
5862.. code-block:: llvm
5863
5864 %X = bitcast i8 255 to i8 ; yields i8 :-1
5865 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5866 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5867 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5868
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005869.. _i_addrspacecast:
5870
5871'``addrspacecast .. to``' Instruction
5872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5873
5874Syntax:
5875"""""""
5876
5877::
5878
5879 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5880
5881Overview:
5882"""""""""
5883
5884The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5885address space ``n`` to type ``pty2`` in address space ``m``.
5886
5887Arguments:
5888""""""""""
5889
5890The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5891to cast and a pointer type to cast it to, which must have a different
5892address space.
5893
5894Semantics:
5895""""""""""
5896
5897The '``addrspacecast``' instruction converts the pointer value
5898``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005899value modification, depending on the target and the address space
5900pair. Pointer conversions within the same address space must be
5901performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005902conversion is legal then both result and operand refer to the same memory
5903location.
5904
5905Example:
5906""""""""
5907
5908.. code-block:: llvm
5909
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005910 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5911 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5912 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005913
Sean Silvab084af42012-12-07 10:36:55 +00005914.. _otherops:
5915
5916Other Operations
5917----------------
5918
5919The instructions in this category are the "miscellaneous" instructions,
5920which defy better classification.
5921
5922.. _i_icmp:
5923
5924'``icmp``' Instruction
5925^^^^^^^^^^^^^^^^^^^^^^
5926
5927Syntax:
5928"""""""
5929
5930::
5931
5932 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5933
5934Overview:
5935"""""""""
5936
5937The '``icmp``' instruction returns a boolean value or a vector of
5938boolean values based on comparison of its two integer, integer vector,
5939pointer, or pointer vector operands.
5940
5941Arguments:
5942""""""""""
5943
5944The '``icmp``' instruction takes three operands. The first operand is
5945the condition code indicating the kind of comparison to perform. It is
5946not a value, just a keyword. The possible condition code are:
5947
5948#. ``eq``: equal
5949#. ``ne``: not equal
5950#. ``ugt``: unsigned greater than
5951#. ``uge``: unsigned greater or equal
5952#. ``ult``: unsigned less than
5953#. ``ule``: unsigned less or equal
5954#. ``sgt``: signed greater than
5955#. ``sge``: signed greater or equal
5956#. ``slt``: signed less than
5957#. ``sle``: signed less or equal
5958
5959The remaining two arguments must be :ref:`integer <t_integer>` or
5960:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5961must also be identical types.
5962
5963Semantics:
5964""""""""""
5965
5966The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5967code given as ``cond``. The comparison performed always yields either an
5968:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5969
5970#. ``eq``: yields ``true`` if the operands are equal, ``false``
5971 otherwise. No sign interpretation is necessary or performed.
5972#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5973 otherwise. No sign interpretation is necessary or performed.
5974#. ``ugt``: interprets the operands as unsigned values and yields
5975 ``true`` if ``op1`` is greater than ``op2``.
5976#. ``uge``: interprets the operands as unsigned values and yields
5977 ``true`` if ``op1`` is greater than or equal to ``op2``.
5978#. ``ult``: interprets the operands as unsigned values and yields
5979 ``true`` if ``op1`` is less than ``op2``.
5980#. ``ule``: interprets the operands as unsigned values and yields
5981 ``true`` if ``op1`` is less than or equal to ``op2``.
5982#. ``sgt``: interprets the operands as signed values and yields ``true``
5983 if ``op1`` is greater than ``op2``.
5984#. ``sge``: interprets the operands as signed values and yields ``true``
5985 if ``op1`` is greater than or equal to ``op2``.
5986#. ``slt``: interprets the operands as signed values and yields ``true``
5987 if ``op1`` is less than ``op2``.
5988#. ``sle``: interprets the operands as signed values and yields ``true``
5989 if ``op1`` is less than or equal to ``op2``.
5990
5991If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5992are compared as if they were integers.
5993
5994If the operands are integer vectors, then they are compared element by
5995element. The result is an ``i1`` vector with the same number of elements
5996as the values being compared. Otherwise, the result is an ``i1``.
5997
5998Example:
5999""""""""
6000
6001.. code-block:: llvm
6002
6003 <result> = icmp eq i32 4, 5 ; yields: result=false
6004 <result> = icmp ne float* %X, %X ; yields: result=false
6005 <result> = icmp ult i16 4, 5 ; yields: result=true
6006 <result> = icmp sgt i16 4, 5 ; yields: result=false
6007 <result> = icmp ule i16 -4, 5 ; yields: result=false
6008 <result> = icmp sge i16 4, 5 ; yields: result=false
6009
6010Note that the code generator does not yet support vector types with the
6011``icmp`` instruction.
6012
6013.. _i_fcmp:
6014
6015'``fcmp``' Instruction
6016^^^^^^^^^^^^^^^^^^^^^^
6017
6018Syntax:
6019"""""""
6020
6021::
6022
6023 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
6024
6025Overview:
6026"""""""""
6027
6028The '``fcmp``' instruction returns a boolean value or vector of boolean
6029values based on comparison of its operands.
6030
6031If the operands are floating point scalars, then the result type is a
6032boolean (:ref:`i1 <t_integer>`).
6033
6034If the operands are floating point vectors, then the result type is a
6035vector of boolean with the same number of elements as the operands being
6036compared.
6037
6038Arguments:
6039""""""""""
6040
6041The '``fcmp``' instruction takes three operands. The first operand is
6042the condition code indicating the kind of comparison to perform. It is
6043not a value, just a keyword. The possible condition code are:
6044
6045#. ``false``: no comparison, always returns false
6046#. ``oeq``: ordered and equal
6047#. ``ogt``: ordered and greater than
6048#. ``oge``: ordered and greater than or equal
6049#. ``olt``: ordered and less than
6050#. ``ole``: ordered and less than or equal
6051#. ``one``: ordered and not equal
6052#. ``ord``: ordered (no nans)
6053#. ``ueq``: unordered or equal
6054#. ``ugt``: unordered or greater than
6055#. ``uge``: unordered or greater than or equal
6056#. ``ult``: unordered or less than
6057#. ``ule``: unordered or less than or equal
6058#. ``une``: unordered or not equal
6059#. ``uno``: unordered (either nans)
6060#. ``true``: no comparison, always returns true
6061
6062*Ordered* means that neither operand is a QNAN while *unordered* means
6063that either operand may be a QNAN.
6064
6065Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6066point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6067type. They must have identical types.
6068
6069Semantics:
6070""""""""""
6071
6072The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6073condition code given as ``cond``. If the operands are vectors, then the
6074vectors are compared element by element. Each comparison performed
6075always yields an :ref:`i1 <t_integer>` result, as follows:
6076
6077#. ``false``: always yields ``false``, regardless of operands.
6078#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6079 is equal to ``op2``.
6080#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6081 is greater than ``op2``.
6082#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6083 is greater than or equal to ``op2``.
6084#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6085 is less than ``op2``.
6086#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6087 is less than or equal to ``op2``.
6088#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6089 is not equal to ``op2``.
6090#. ``ord``: yields ``true`` if both operands are not a QNAN.
6091#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6092 equal to ``op2``.
6093#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6094 greater than ``op2``.
6095#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6096 greater than or equal to ``op2``.
6097#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6098 less than ``op2``.
6099#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6100 less than or equal to ``op2``.
6101#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6102 not equal to ``op2``.
6103#. ``uno``: yields ``true`` if either operand is a QNAN.
6104#. ``true``: always yields ``true``, regardless of operands.
6105
6106Example:
6107""""""""
6108
6109.. code-block:: llvm
6110
6111 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6112 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6113 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6114 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6115
6116Note that the code generator does not yet support vector types with the
6117``fcmp`` instruction.
6118
6119.. _i_phi:
6120
6121'``phi``' Instruction
6122^^^^^^^^^^^^^^^^^^^^^
6123
6124Syntax:
6125"""""""
6126
6127::
6128
6129 <result> = phi <ty> [ <val0>, <label0>], ...
6130
6131Overview:
6132"""""""""
6133
6134The '``phi``' instruction is used to implement the φ node in the SSA
6135graph representing the function.
6136
6137Arguments:
6138""""""""""
6139
6140The type of the incoming values is specified with the first type field.
6141After this, the '``phi``' instruction takes a list of pairs as
6142arguments, with one pair for each predecessor basic block of the current
6143block. Only values of :ref:`first class <t_firstclass>` type may be used as
6144the value arguments to the PHI node. Only labels may be used as the
6145label arguments.
6146
6147There must be no non-phi instructions between the start of a basic block
6148and the PHI instructions: i.e. PHI instructions must be first in a basic
6149block.
6150
6151For the purposes of the SSA form, the use of each incoming value is
6152deemed to occur on the edge from the corresponding predecessor block to
6153the current block (but after any definition of an '``invoke``'
6154instruction's return value on the same edge).
6155
6156Semantics:
6157""""""""""
6158
6159At runtime, the '``phi``' instruction logically takes on the value
6160specified by the pair corresponding to the predecessor basic block that
6161executed just prior to the current block.
6162
6163Example:
6164""""""""
6165
6166.. code-block:: llvm
6167
6168 Loop: ; Infinite loop that counts from 0 on up...
6169 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6170 %nextindvar = add i32 %indvar, 1
6171 br label %Loop
6172
6173.. _i_select:
6174
6175'``select``' Instruction
6176^^^^^^^^^^^^^^^^^^^^^^^^
6177
6178Syntax:
6179"""""""
6180
6181::
6182
6183 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6184
6185 selty is either i1 or {<N x i1>}
6186
6187Overview:
6188"""""""""
6189
6190The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006191condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193Arguments:
6194""""""""""
6195
6196The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6197values indicating the condition, and two values of the same :ref:`first
6198class <t_firstclass>` type. If the val1/val2 are vectors and the
6199condition is a scalar, then entire vectors are selected, not individual
6200elements.
6201
6202Semantics:
6203""""""""""
6204
6205If the condition is an i1 and it evaluates to 1, the instruction returns
6206the first value argument; otherwise, it returns the second value
6207argument.
6208
6209If the condition is a vector of i1, then the value arguments must be
6210vectors of the same size, and the selection is done element by element.
6211
6212Example:
6213""""""""
6214
6215.. code-block:: llvm
6216
6217 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6218
6219.. _i_call:
6220
6221'``call``' Instruction
6222^^^^^^^^^^^^^^^^^^^^^^
6223
6224Syntax:
6225"""""""
6226
6227::
6228
Reid Kleckner5772b772014-04-24 20:14:34 +00006229 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006230
6231Overview:
6232"""""""""
6233
6234The '``call``' instruction represents a simple function call.
6235
6236Arguments:
6237""""""""""
6238
6239This instruction requires several arguments:
6240
Reid Kleckner5772b772014-04-24 20:14:34 +00006241#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6242 should perform tail call optimization. The ``tail`` marker is a hint that
6243 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6244 means that the call must be tail call optimized in order for the program to
6245 be correct. The ``musttail`` marker provides these guarantees:
6246
6247 #. The call will not cause unbounded stack growth if it is part of a
6248 recursive cycle in the call graph.
6249 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6250 forwarded in place.
6251
6252 Both markers imply that the callee does not access allocas or varargs from
6253 the caller. Calls marked ``musttail`` must obey the following additional
6254 rules:
6255
6256 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6257 or a pointer bitcast followed by a ret instruction.
6258 - The ret instruction must return the (possibly bitcasted) value
6259 produced by the call or void.
6260 - The caller and callee prototypes must match. Pointer types of
6261 parameters or return types may differ in pointee type, but not
6262 in address space.
6263 - The calling conventions of the caller and callee must match.
6264 - All ABI-impacting function attributes, such as sret, byval, inreg,
6265 returned, and inalloca, must match.
6266
6267 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6268 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006269
6270 - Caller and callee both have the calling convention ``fastcc``.
6271 - The call is in tail position (ret immediately follows call and ret
6272 uses value of call or is void).
6273 - Option ``-tailcallopt`` is enabled, or
6274 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6275 - `Platform specific constraints are
6276 met. <CodeGenerator.html#tailcallopt>`_
6277
6278#. The optional "cconv" marker indicates which :ref:`calling
6279 convention <callingconv>` the call should use. If none is
6280 specified, the call defaults to using C calling conventions. The
6281 calling convention of the call must match the calling convention of
6282 the target function, or else the behavior is undefined.
6283#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6284 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6285 are valid here.
6286#. '``ty``': the type of the call instruction itself which is also the
6287 type of the return value. Functions that return no value are marked
6288 ``void``.
6289#. '``fnty``': shall be the signature of the pointer to function value
6290 being invoked. The argument types must match the types implied by
6291 this signature. This type can be omitted if the function is not
6292 varargs and if the function type does not return a pointer to a
6293 function.
6294#. '``fnptrval``': An LLVM value containing a pointer to a function to
6295 be invoked. In most cases, this is a direct function invocation, but
6296 indirect ``call``'s are just as possible, calling an arbitrary pointer
6297 to function value.
6298#. '``function args``': argument list whose types match the function
6299 signature argument types and parameter attributes. All arguments must
6300 be of :ref:`first class <t_firstclass>` type. If the function signature
6301 indicates the function accepts a variable number of arguments, the
6302 extra arguments can be specified.
6303#. The optional :ref:`function attributes <fnattrs>` list. Only
6304 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6305 attributes are valid here.
6306
6307Semantics:
6308""""""""""
6309
6310The '``call``' instruction is used to cause control flow to transfer to
6311a specified function, with its incoming arguments bound to the specified
6312values. Upon a '``ret``' instruction in the called function, control
6313flow continues with the instruction after the function call, and the
6314return value of the function is bound to the result argument.
6315
6316Example:
6317""""""""
6318
6319.. code-block:: llvm
6320
6321 %retval = call i32 @test(i32 %argc)
6322 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6323 %X = tail call i32 @foo() ; yields i32
6324 %Y = tail call fastcc i32 @foo() ; yields i32
6325 call void %foo(i8 97 signext)
6326
6327 %struct.A = type { i32, i8 }
6328 %r = call %struct.A @foo() ; yields { 32, i8 }
6329 %gr = extractvalue %struct.A %r, 0 ; yields i32
6330 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6331 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6332 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6333
6334llvm treats calls to some functions with names and arguments that match
6335the standard C99 library as being the C99 library functions, and may
6336perform optimizations or generate code for them under that assumption.
6337This is something we'd like to change in the future to provide better
6338support for freestanding environments and non-C-based languages.
6339
6340.. _i_va_arg:
6341
6342'``va_arg``' Instruction
6343^^^^^^^^^^^^^^^^^^^^^^^^
6344
6345Syntax:
6346"""""""
6347
6348::
6349
6350 <resultval> = va_arg <va_list*> <arglist>, <argty>
6351
6352Overview:
6353"""""""""
6354
6355The '``va_arg``' instruction is used to access arguments passed through
6356the "variable argument" area of a function call. It is used to implement
6357the ``va_arg`` macro in C.
6358
6359Arguments:
6360""""""""""
6361
6362This instruction takes a ``va_list*`` value and the type of the
6363argument. It returns a value of the specified argument type and
6364increments the ``va_list`` to point to the next argument. The actual
6365type of ``va_list`` is target specific.
6366
6367Semantics:
6368""""""""""
6369
6370The '``va_arg``' instruction loads an argument of the specified type
6371from the specified ``va_list`` and causes the ``va_list`` to point to
6372the next argument. For more information, see the variable argument
6373handling :ref:`Intrinsic Functions <int_varargs>`.
6374
6375It is legal for this instruction to be called in a function which does
6376not take a variable number of arguments, for example, the ``vfprintf``
6377function.
6378
6379``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6380function <intrinsics>` because it takes a type as an argument.
6381
6382Example:
6383""""""""
6384
6385See the :ref:`variable argument processing <int_varargs>` section.
6386
6387Note that the code generator does not yet fully support va\_arg on many
6388targets. Also, it does not currently support va\_arg with aggregate
6389types on any target.
6390
6391.. _i_landingpad:
6392
6393'``landingpad``' Instruction
6394^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6395
6396Syntax:
6397"""""""
6398
6399::
6400
6401 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6402 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6403
6404 <clause> := catch <type> <value>
6405 <clause> := filter <array constant type> <array constant>
6406
6407Overview:
6408"""""""""
6409
6410The '``landingpad``' instruction is used by `LLVM's exception handling
6411system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006412is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006413code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6414defines values supplied by the personality function (``pers_fn``) upon
6415re-entry to the function. The ``resultval`` has the type ``resultty``.
6416
6417Arguments:
6418""""""""""
6419
6420This instruction takes a ``pers_fn`` value. This is the personality
6421function associated with the unwinding mechanism. The optional
6422``cleanup`` flag indicates that the landing pad block is a cleanup.
6423
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006424A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006425contains the global variable representing the "type" that may be caught
6426or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6427clause takes an array constant as its argument. Use
6428"``[0 x i8**] undef``" for a filter which cannot throw. The
6429'``landingpad``' instruction must contain *at least* one ``clause`` or
6430the ``cleanup`` flag.
6431
6432Semantics:
6433""""""""""
6434
6435The '``landingpad``' instruction defines the values which are set by the
6436personality function (``pers_fn``) upon re-entry to the function, and
6437therefore the "result type" of the ``landingpad`` instruction. As with
6438calling conventions, how the personality function results are
6439represented in LLVM IR is target specific.
6440
6441The clauses are applied in order from top to bottom. If two
6442``landingpad`` instructions are merged together through inlining, the
6443clauses from the calling function are appended to the list of clauses.
6444When the call stack is being unwound due to an exception being thrown,
6445the exception is compared against each ``clause`` in turn. If it doesn't
6446match any of the clauses, and the ``cleanup`` flag is not set, then
6447unwinding continues further up the call stack.
6448
6449The ``landingpad`` instruction has several restrictions:
6450
6451- A landing pad block is a basic block which is the unwind destination
6452 of an '``invoke``' instruction.
6453- A landing pad block must have a '``landingpad``' instruction as its
6454 first non-PHI instruction.
6455- There can be only one '``landingpad``' instruction within the landing
6456 pad block.
6457- A basic block that is not a landing pad block may not include a
6458 '``landingpad``' instruction.
6459- All '``landingpad``' instructions in a function must have the same
6460 personality function.
6461
6462Example:
6463""""""""
6464
6465.. code-block:: llvm
6466
6467 ;; A landing pad which can catch an integer.
6468 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6469 catch i8** @_ZTIi
6470 ;; A landing pad that is a cleanup.
6471 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6472 cleanup
6473 ;; A landing pad which can catch an integer and can only throw a double.
6474 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6475 catch i8** @_ZTIi
6476 filter [1 x i8**] [@_ZTId]
6477
6478.. _intrinsics:
6479
6480Intrinsic Functions
6481===================
6482
6483LLVM supports the notion of an "intrinsic function". These functions
6484have well known names and semantics and are required to follow certain
6485restrictions. Overall, these intrinsics represent an extension mechanism
6486for the LLVM language that does not require changing all of the
6487transformations in LLVM when adding to the language (or the bitcode
6488reader/writer, the parser, etc...).
6489
6490Intrinsic function names must all start with an "``llvm.``" prefix. This
6491prefix is reserved in LLVM for intrinsic names; thus, function names may
6492not begin with this prefix. Intrinsic functions must always be external
6493functions: you cannot define the body of intrinsic functions. Intrinsic
6494functions may only be used in call or invoke instructions: it is illegal
6495to take the address of an intrinsic function. Additionally, because
6496intrinsic functions are part of the LLVM language, it is required if any
6497are added that they be documented here.
6498
6499Some intrinsic functions can be overloaded, i.e., the intrinsic
6500represents a family of functions that perform the same operation but on
6501different data types. Because LLVM can represent over 8 million
6502different integer types, overloading is used commonly to allow an
6503intrinsic function to operate on any integer type. One or more of the
6504argument types or the result type can be overloaded to accept any
6505integer type. Argument types may also be defined as exactly matching a
6506previous argument's type or the result type. This allows an intrinsic
6507function which accepts multiple arguments, but needs all of them to be
6508of the same type, to only be overloaded with respect to a single
6509argument or the result.
6510
6511Overloaded intrinsics will have the names of its overloaded argument
6512types encoded into its function name, each preceded by a period. Only
6513those types which are overloaded result in a name suffix. Arguments
6514whose type is matched against another type do not. For example, the
6515``llvm.ctpop`` function can take an integer of any width and returns an
6516integer of exactly the same integer width. This leads to a family of
6517functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6518``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6519overloaded, and only one type suffix is required. Because the argument's
6520type is matched against the return type, it does not require its own
6521name suffix.
6522
6523To learn how to add an intrinsic function, please see the `Extending
6524LLVM Guide <ExtendingLLVM.html>`_.
6525
6526.. _int_varargs:
6527
6528Variable Argument Handling Intrinsics
6529-------------------------------------
6530
6531Variable argument support is defined in LLVM with the
6532:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6533functions. These functions are related to the similarly named macros
6534defined in the ``<stdarg.h>`` header file.
6535
6536All of these functions operate on arguments that use a target-specific
6537value type "``va_list``". The LLVM assembly language reference manual
6538does not define what this type is, so all transformations should be
6539prepared to handle these functions regardless of the type used.
6540
6541This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6542variable argument handling intrinsic functions are used.
6543
6544.. code-block:: llvm
6545
6546 define i32 @test(i32 %X, ...) {
6547 ; Initialize variable argument processing
6548 %ap = alloca i8*
6549 %ap2 = bitcast i8** %ap to i8*
6550 call void @llvm.va_start(i8* %ap2)
6551
6552 ; Read a single integer argument
6553 %tmp = va_arg i8** %ap, i32
6554
6555 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6556 %aq = alloca i8*
6557 %aq2 = bitcast i8** %aq to i8*
6558 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6559 call void @llvm.va_end(i8* %aq2)
6560
6561 ; Stop processing of arguments.
6562 call void @llvm.va_end(i8* %ap2)
6563 ret i32 %tmp
6564 }
6565
6566 declare void @llvm.va_start(i8*)
6567 declare void @llvm.va_copy(i8*, i8*)
6568 declare void @llvm.va_end(i8*)
6569
6570.. _int_va_start:
6571
6572'``llvm.va_start``' Intrinsic
6573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6574
6575Syntax:
6576"""""""
6577
6578::
6579
Nick Lewycky04f6de02013-09-11 22:04:52 +00006580 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006581
6582Overview:
6583"""""""""
6584
6585The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6586subsequent use by ``va_arg``.
6587
6588Arguments:
6589""""""""""
6590
6591The argument is a pointer to a ``va_list`` element to initialize.
6592
6593Semantics:
6594""""""""""
6595
6596The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6597available in C. In a target-dependent way, it initializes the
6598``va_list`` element to which the argument points, so that the next call
6599to ``va_arg`` will produce the first variable argument passed to the
6600function. Unlike the C ``va_start`` macro, this intrinsic does not need
6601to know the last argument of the function as the compiler can figure
6602that out.
6603
6604'``llvm.va_end``' Intrinsic
6605^^^^^^^^^^^^^^^^^^^^^^^^^^^
6606
6607Syntax:
6608"""""""
6609
6610::
6611
6612 declare void @llvm.va_end(i8* <arglist>)
6613
6614Overview:
6615"""""""""
6616
6617The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6618initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6619
6620Arguments:
6621""""""""""
6622
6623The argument is a pointer to a ``va_list`` to destroy.
6624
6625Semantics:
6626""""""""""
6627
6628The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6629available in C. In a target-dependent way, it destroys the ``va_list``
6630element to which the argument points. Calls to
6631:ref:`llvm.va_start <int_va_start>` and
6632:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6633``llvm.va_end``.
6634
6635.. _int_va_copy:
6636
6637'``llvm.va_copy``' Intrinsic
6638^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643::
6644
6645 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6646
6647Overview:
6648"""""""""
6649
6650The '``llvm.va_copy``' intrinsic copies the current argument position
6651from the source argument list to the destination argument list.
6652
6653Arguments:
6654""""""""""
6655
6656The first argument is a pointer to a ``va_list`` element to initialize.
6657The second argument is a pointer to a ``va_list`` element to copy from.
6658
6659Semantics:
6660""""""""""
6661
6662The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6663available in C. In a target-dependent way, it copies the source
6664``va_list`` element into the destination ``va_list`` element. This
6665intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6666arbitrarily complex and require, for example, memory allocation.
6667
6668Accurate Garbage Collection Intrinsics
6669--------------------------------------
6670
6671LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6672(GC) requires the implementation and generation of these intrinsics.
6673These intrinsics allow identification of :ref:`GC roots on the
6674stack <int_gcroot>`, as well as garbage collector implementations that
6675require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6676Front-ends for type-safe garbage collected languages should generate
6677these intrinsics to make use of the LLVM garbage collectors. For more
6678details, see `Accurate Garbage Collection with
6679LLVM <GarbageCollection.html>`_.
6680
6681The garbage collection intrinsics only operate on objects in the generic
6682address space (address space zero).
6683
6684.. _int_gcroot:
6685
6686'``llvm.gcroot``' Intrinsic
6687^^^^^^^^^^^^^^^^^^^^^^^^^^^
6688
6689Syntax:
6690"""""""
6691
6692::
6693
6694 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6695
6696Overview:
6697"""""""""
6698
6699The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6700the code generator, and allows some metadata to be associated with it.
6701
6702Arguments:
6703""""""""""
6704
6705The first argument specifies the address of a stack object that contains
6706the root pointer. The second pointer (which must be either a constant or
6707a global value address) contains the meta-data to be associated with the
6708root.
6709
6710Semantics:
6711""""""""""
6712
6713At runtime, a call to this intrinsic stores a null pointer into the
6714"ptrloc" location. At compile-time, the code generator generates
6715information to allow the runtime to find the pointer at GC safe points.
6716The '``llvm.gcroot``' intrinsic may only be used in a function which
6717:ref:`specifies a GC algorithm <gc>`.
6718
6719.. _int_gcread:
6720
6721'``llvm.gcread``' Intrinsic
6722^^^^^^^^^^^^^^^^^^^^^^^^^^^
6723
6724Syntax:
6725"""""""
6726
6727::
6728
6729 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6730
6731Overview:
6732"""""""""
6733
6734The '``llvm.gcread``' intrinsic identifies reads of references from heap
6735locations, allowing garbage collector implementations that require read
6736barriers.
6737
6738Arguments:
6739""""""""""
6740
6741The second argument is the address to read from, which should be an
6742address allocated from the garbage collector. The first object is a
6743pointer to the start of the referenced object, if needed by the language
6744runtime (otherwise null).
6745
6746Semantics:
6747""""""""""
6748
6749The '``llvm.gcread``' intrinsic has the same semantics as a load
6750instruction, but may be replaced with substantially more complex code by
6751the garbage collector runtime, as needed. The '``llvm.gcread``'
6752intrinsic may only be used in a function which :ref:`specifies a GC
6753algorithm <gc>`.
6754
6755.. _int_gcwrite:
6756
6757'``llvm.gcwrite``' Intrinsic
6758^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6759
6760Syntax:
6761"""""""
6762
6763::
6764
6765 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6766
6767Overview:
6768"""""""""
6769
6770The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6771locations, allowing garbage collector implementations that require write
6772barriers (such as generational or reference counting collectors).
6773
6774Arguments:
6775""""""""""
6776
6777The first argument is the reference to store, the second is the start of
6778the object to store it to, and the third is the address of the field of
6779Obj to store to. If the runtime does not require a pointer to the
6780object, Obj may be null.
6781
6782Semantics:
6783""""""""""
6784
6785The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6786instruction, but may be replaced with substantially more complex code by
6787the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6788intrinsic may only be used in a function which :ref:`specifies a GC
6789algorithm <gc>`.
6790
6791Code Generator Intrinsics
6792-------------------------
6793
6794These intrinsics are provided by LLVM to expose special features that
6795may only be implemented with code generator support.
6796
6797'``llvm.returnaddress``' Intrinsic
6798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6799
6800Syntax:
6801"""""""
6802
6803::
6804
6805 declare i8 *@llvm.returnaddress(i32 <level>)
6806
6807Overview:
6808"""""""""
6809
6810The '``llvm.returnaddress``' intrinsic attempts to compute a
6811target-specific value indicating the return address of the current
6812function or one of its callers.
6813
6814Arguments:
6815""""""""""
6816
6817The argument to this intrinsic indicates which function to return the
6818address for. Zero indicates the calling function, one indicates its
6819caller, etc. The argument is **required** to be a constant integer
6820value.
6821
6822Semantics:
6823""""""""""
6824
6825The '``llvm.returnaddress``' intrinsic either returns a pointer
6826indicating the return address of the specified call frame, or zero if it
6827cannot be identified. The value returned by this intrinsic is likely to
6828be incorrect or 0 for arguments other than zero, so it should only be
6829used for debugging purposes.
6830
6831Note that calling this intrinsic does not prevent function inlining or
6832other aggressive transformations, so the value returned may not be that
6833of the obvious source-language caller.
6834
6835'``llvm.frameaddress``' Intrinsic
6836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6837
6838Syntax:
6839"""""""
6840
6841::
6842
6843 declare i8* @llvm.frameaddress(i32 <level>)
6844
6845Overview:
6846"""""""""
6847
6848The '``llvm.frameaddress``' intrinsic attempts to return the
6849target-specific frame pointer value for the specified stack frame.
6850
6851Arguments:
6852""""""""""
6853
6854The argument to this intrinsic indicates which function to return the
6855frame pointer for. Zero indicates the calling function, one indicates
6856its caller, etc. The argument is **required** to be a constant integer
6857value.
6858
6859Semantics:
6860""""""""""
6861
6862The '``llvm.frameaddress``' intrinsic either returns a pointer
6863indicating the frame address of the specified call frame, or zero if it
6864cannot be identified. The value returned by this intrinsic is likely to
6865be incorrect or 0 for arguments other than zero, so it should only be
6866used for debugging purposes.
6867
6868Note that calling this intrinsic does not prevent function inlining or
6869other aggressive transformations, so the value returned may not be that
6870of the obvious source-language caller.
6871
Renato Golinc7aea402014-05-06 16:51:25 +00006872.. _int_read_register:
6873.. _int_write_register:
6874
6875'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6877
6878Syntax:
6879"""""""
6880
6881::
6882
6883 declare i32 @llvm.read_register.i32(metadata)
6884 declare i64 @llvm.read_register.i64(metadata)
6885 declare void @llvm.write_register.i32(metadata, i32 @value)
6886 declare void @llvm.write_register.i64(metadata, i64 @value)
6887 !0 = metadata !{metadata !"sp\00"}
6888
6889Overview:
6890"""""""""
6891
6892The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6893provides access to the named register. The register must be valid on
6894the architecture being compiled to. The type needs to be compatible
6895with the register being read.
6896
6897Semantics:
6898""""""""""
6899
6900The '``llvm.read_register``' intrinsic returns the current value of the
6901register, where possible. The '``llvm.write_register``' intrinsic sets
6902the current value of the register, where possible.
6903
6904This is useful to implement named register global variables that need
6905to always be mapped to a specific register, as is common practice on
6906bare-metal programs including OS kernels.
6907
6908The compiler doesn't check for register availability or use of the used
6909register in surrounding code, including inline assembly. Because of that,
6910allocatable registers are not supported.
6911
6912Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006913architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006914work is needed to support other registers and even more so, allocatable
6915registers.
6916
Sean Silvab084af42012-12-07 10:36:55 +00006917.. _int_stacksave:
6918
6919'``llvm.stacksave``' Intrinsic
6920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6921
6922Syntax:
6923"""""""
6924
6925::
6926
6927 declare i8* @llvm.stacksave()
6928
6929Overview:
6930"""""""""
6931
6932The '``llvm.stacksave``' intrinsic is used to remember the current state
6933of the function stack, for use with
6934:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6935implementing language features like scoped automatic variable sized
6936arrays in C99.
6937
6938Semantics:
6939""""""""""
6940
6941This intrinsic returns a opaque pointer value that can be passed to
6942:ref:`llvm.stackrestore <int_stackrestore>`. When an
6943``llvm.stackrestore`` intrinsic is executed with a value saved from
6944``llvm.stacksave``, it effectively restores the state of the stack to
6945the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6946practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6947were allocated after the ``llvm.stacksave`` was executed.
6948
6949.. _int_stackrestore:
6950
6951'``llvm.stackrestore``' Intrinsic
6952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6953
6954Syntax:
6955"""""""
6956
6957::
6958
6959 declare void @llvm.stackrestore(i8* %ptr)
6960
6961Overview:
6962"""""""""
6963
6964The '``llvm.stackrestore``' intrinsic is used to restore the state of
6965the function stack to the state it was in when the corresponding
6966:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6967useful for implementing language features like scoped automatic variable
6968sized arrays in C99.
6969
6970Semantics:
6971""""""""""
6972
6973See the description for :ref:`llvm.stacksave <int_stacksave>`.
6974
6975'``llvm.prefetch``' Intrinsic
6976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6977
6978Syntax:
6979"""""""
6980
6981::
6982
6983 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6984
6985Overview:
6986"""""""""
6987
6988The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6989insert a prefetch instruction if supported; otherwise, it is a noop.
6990Prefetches have no effect on the behavior of the program but can change
6991its performance characteristics.
6992
6993Arguments:
6994""""""""""
6995
6996``address`` is the address to be prefetched, ``rw`` is the specifier
6997determining if the fetch should be for a read (0) or write (1), and
6998``locality`` is a temporal locality specifier ranging from (0) - no
6999locality, to (3) - extremely local keep in cache. The ``cache type``
7000specifies whether the prefetch is performed on the data (1) or
7001instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7002arguments must be constant integers.
7003
7004Semantics:
7005""""""""""
7006
7007This intrinsic does not modify the behavior of the program. In
7008particular, prefetches cannot trap and do not produce a value. On
7009targets that support this intrinsic, the prefetch can provide hints to
7010the processor cache for better performance.
7011
7012'``llvm.pcmarker``' Intrinsic
7013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
7020 declare void @llvm.pcmarker(i32 <id>)
7021
7022Overview:
7023"""""""""
7024
7025The '``llvm.pcmarker``' intrinsic is a method to export a Program
7026Counter (PC) in a region of code to simulators and other tools. The
7027method is target specific, but it is expected that the marker will use
7028exported symbols to transmit the PC of the marker. The marker makes no
7029guarantees that it will remain with any specific instruction after
7030optimizations. It is possible that the presence of a marker will inhibit
7031optimizations. The intended use is to be inserted after optimizations to
7032allow correlations of simulation runs.
7033
7034Arguments:
7035""""""""""
7036
7037``id`` is a numerical id identifying the marker.
7038
7039Semantics:
7040""""""""""
7041
7042This intrinsic does not modify the behavior of the program. Backends
7043that do not support this intrinsic may ignore it.
7044
7045'``llvm.readcyclecounter``' Intrinsic
7046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7047
7048Syntax:
7049"""""""
7050
7051::
7052
7053 declare i64 @llvm.readcyclecounter()
7054
7055Overview:
7056"""""""""
7057
7058The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7059counter register (or similar low latency, high accuracy clocks) on those
7060targets that support it. On X86, it should map to RDTSC. On Alpha, it
7061should map to RPCC. As the backing counters overflow quickly (on the
7062order of 9 seconds on alpha), this should only be used for small
7063timings.
7064
7065Semantics:
7066""""""""""
7067
7068When directly supported, reading the cycle counter should not modify any
7069memory. Implementations are allowed to either return a application
7070specific value or a system wide value. On backends without support, this
7071is lowered to a constant 0.
7072
Tim Northoverbc933082013-05-23 19:11:20 +00007073Note that runtime support may be conditional on the privilege-level code is
7074running at and the host platform.
7075
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007076'``llvm.clear_cache``' Intrinsic
7077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7078
7079Syntax:
7080"""""""
7081
7082::
7083
7084 declare void @llvm.clear_cache(i8*, i8*)
7085
7086Overview:
7087"""""""""
7088
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007089The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7090in the specified range to the execution unit of the processor. On
7091targets with non-unified instruction and data cache, the implementation
7092flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007093
7094Semantics:
7095""""""""""
7096
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007097On platforms with coherent instruction and data caches (e.g. x86), this
7098intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007099cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007100instructions or a system call, if cache flushing requires special
7101privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007102
Sean Silvad02bf3e2014-04-07 22:29:53 +00007103The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007104time library.
Renato Golin93010e62014-03-26 14:01:32 +00007105
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007106This instrinsic does *not* empty the instruction pipeline. Modifications
7107of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007108
Sean Silvab084af42012-12-07 10:36:55 +00007109Standard C Library Intrinsics
7110-----------------------------
7111
7112LLVM provides intrinsics for a few important standard C library
7113functions. These intrinsics allow source-language front-ends to pass
7114information about the alignment of the pointer arguments to the code
7115generator, providing opportunity for more efficient code generation.
7116
7117.. _int_memcpy:
7118
7119'``llvm.memcpy``' Intrinsic
7120^^^^^^^^^^^^^^^^^^^^^^^^^^^
7121
7122Syntax:
7123"""""""
7124
7125This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7126integer bit width and for different address spaces. Not all targets
7127support all bit widths however.
7128
7129::
7130
7131 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7132 i32 <len>, i32 <align>, i1 <isvolatile>)
7133 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7134 i64 <len>, i32 <align>, i1 <isvolatile>)
7135
7136Overview:
7137"""""""""
7138
7139The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7140source location to the destination location.
7141
7142Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7143intrinsics do not return a value, takes extra alignment/isvolatile
7144arguments and the pointers can be in specified address spaces.
7145
7146Arguments:
7147""""""""""
7148
7149The first argument is a pointer to the destination, the second is a
7150pointer to the source. The third argument is an integer argument
7151specifying the number of bytes to copy, the fourth argument is the
7152alignment of the source and destination locations, and the fifth is a
7153boolean indicating a volatile access.
7154
7155If the call to this intrinsic has an alignment value that is not 0 or 1,
7156then the caller guarantees that both the source and destination pointers
7157are aligned to that boundary.
7158
7159If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7160a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7161very cleanly specified and it is unwise to depend on it.
7162
7163Semantics:
7164""""""""""
7165
7166The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7167source location to the destination location, which are not allowed to
7168overlap. It copies "len" bytes of memory over. If the argument is known
7169to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007170argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007171
7172'``llvm.memmove``' Intrinsic
7173^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7174
7175Syntax:
7176"""""""
7177
7178This is an overloaded intrinsic. You can use llvm.memmove on any integer
7179bit width and for different address space. Not all targets support all
7180bit widths however.
7181
7182::
7183
7184 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7185 i32 <len>, i32 <align>, i1 <isvolatile>)
7186 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7187 i64 <len>, i32 <align>, i1 <isvolatile>)
7188
7189Overview:
7190"""""""""
7191
7192The '``llvm.memmove.*``' intrinsics move a block of memory from the
7193source location to the destination location. It is similar to the
7194'``llvm.memcpy``' intrinsic but allows the two memory locations to
7195overlap.
7196
7197Note that, unlike the standard libc function, the ``llvm.memmove.*``
7198intrinsics do not return a value, takes extra alignment/isvolatile
7199arguments and the pointers can be in specified address spaces.
7200
7201Arguments:
7202""""""""""
7203
7204The first argument is a pointer to the destination, the second is a
7205pointer to the source. The third argument is an integer argument
7206specifying the number of bytes to copy, the fourth argument is the
7207alignment of the source and destination locations, and the fifth is a
7208boolean indicating a volatile access.
7209
7210If the call to this intrinsic has an alignment value that is not 0 or 1,
7211then the caller guarantees that the source and destination pointers are
7212aligned to that boundary.
7213
7214If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7215is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7216not very cleanly specified and it is unwise to depend on it.
7217
7218Semantics:
7219""""""""""
7220
7221The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7222source location to the destination location, which may overlap. It
7223copies "len" bytes of memory over. If the argument is known to be
7224aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007225otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007226
7227'``llvm.memset.*``' Intrinsics
7228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7229
7230Syntax:
7231"""""""
7232
7233This is an overloaded intrinsic. You can use llvm.memset on any integer
7234bit width and for different address spaces. However, not all targets
7235support all bit widths.
7236
7237::
7238
7239 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7240 i32 <len>, i32 <align>, i1 <isvolatile>)
7241 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7242 i64 <len>, i32 <align>, i1 <isvolatile>)
7243
7244Overview:
7245"""""""""
7246
7247The '``llvm.memset.*``' intrinsics fill a block of memory with a
7248particular byte value.
7249
7250Note that, unlike the standard libc function, the ``llvm.memset``
7251intrinsic does not return a value and takes extra alignment/volatile
7252arguments. Also, the destination can be in an arbitrary address space.
7253
7254Arguments:
7255""""""""""
7256
7257The first argument is a pointer to the destination to fill, the second
7258is the byte value with which to fill it, the third argument is an
7259integer argument specifying the number of bytes to fill, and the fourth
7260argument is the known alignment of the destination location.
7261
7262If the call to this intrinsic has an alignment value that is not 0 or 1,
7263then the caller guarantees that the destination pointer is aligned to
7264that boundary.
7265
7266If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7267a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7268very cleanly specified and it is unwise to depend on it.
7269
7270Semantics:
7271""""""""""
7272
7273The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7274at the destination location. If the argument is known to be aligned to
7275some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007276it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007277
7278'``llvm.sqrt.*``' Intrinsic
7279^^^^^^^^^^^^^^^^^^^^^^^^^^^
7280
7281Syntax:
7282"""""""
7283
7284This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7285floating point or vector of floating point type. Not all targets support
7286all types however.
7287
7288::
7289
7290 declare float @llvm.sqrt.f32(float %Val)
7291 declare double @llvm.sqrt.f64(double %Val)
7292 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7293 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7294 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7295
7296Overview:
7297"""""""""
7298
7299The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7300returning the same value as the libm '``sqrt``' functions would. Unlike
7301``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7302negative numbers other than -0.0 (which allows for better optimization,
7303because there is no need to worry about errno being set).
7304``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7305
7306Arguments:
7307""""""""""
7308
7309The argument and return value are floating point numbers of the same
7310type.
7311
7312Semantics:
7313""""""""""
7314
7315This function returns the sqrt of the specified operand if it is a
7316nonnegative floating point number.
7317
7318'``llvm.powi.*``' Intrinsic
7319^^^^^^^^^^^^^^^^^^^^^^^^^^^
7320
7321Syntax:
7322"""""""
7323
7324This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7325floating point or vector of floating point type. Not all targets support
7326all types however.
7327
7328::
7329
7330 declare float @llvm.powi.f32(float %Val, i32 %power)
7331 declare double @llvm.powi.f64(double %Val, i32 %power)
7332 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7333 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7334 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7335
7336Overview:
7337"""""""""
7338
7339The '``llvm.powi.*``' intrinsics return the first operand raised to the
7340specified (positive or negative) power. The order of evaluation of
7341multiplications is not defined. When a vector of floating point type is
7342used, the second argument remains a scalar integer value.
7343
7344Arguments:
7345""""""""""
7346
7347The second argument is an integer power, and the first is a value to
7348raise to that power.
7349
7350Semantics:
7351""""""""""
7352
7353This function returns the first value raised to the second power with an
7354unspecified sequence of rounding operations.
7355
7356'``llvm.sin.*``' Intrinsic
7357^^^^^^^^^^^^^^^^^^^^^^^^^^
7358
7359Syntax:
7360"""""""
7361
7362This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7363floating point or vector of floating point type. Not all targets support
7364all types however.
7365
7366::
7367
7368 declare float @llvm.sin.f32(float %Val)
7369 declare double @llvm.sin.f64(double %Val)
7370 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7371 declare fp128 @llvm.sin.f128(fp128 %Val)
7372 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7373
7374Overview:
7375"""""""""
7376
7377The '``llvm.sin.*``' intrinsics return the sine of the operand.
7378
7379Arguments:
7380""""""""""
7381
7382The argument and return value are floating point numbers of the same
7383type.
7384
7385Semantics:
7386""""""""""
7387
7388This function returns the sine of the specified operand, returning the
7389same values as the libm ``sin`` functions would, and handles error
7390conditions in the same way.
7391
7392'``llvm.cos.*``' Intrinsic
7393^^^^^^^^^^^^^^^^^^^^^^^^^^
7394
7395Syntax:
7396"""""""
7397
7398This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7399floating point or vector of floating point type. Not all targets support
7400all types however.
7401
7402::
7403
7404 declare float @llvm.cos.f32(float %Val)
7405 declare double @llvm.cos.f64(double %Val)
7406 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7407 declare fp128 @llvm.cos.f128(fp128 %Val)
7408 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7409
7410Overview:
7411"""""""""
7412
7413The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7414
7415Arguments:
7416""""""""""
7417
7418The argument and return value are floating point numbers of the same
7419type.
7420
7421Semantics:
7422""""""""""
7423
7424This function returns the cosine of the specified operand, returning the
7425same values as the libm ``cos`` functions would, and handles error
7426conditions in the same way.
7427
7428'``llvm.pow.*``' Intrinsic
7429^^^^^^^^^^^^^^^^^^^^^^^^^^
7430
7431Syntax:
7432"""""""
7433
7434This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7435floating point or vector of floating point type. Not all targets support
7436all types however.
7437
7438::
7439
7440 declare float @llvm.pow.f32(float %Val, float %Power)
7441 declare double @llvm.pow.f64(double %Val, double %Power)
7442 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7443 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7444 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7445
7446Overview:
7447"""""""""
7448
7449The '``llvm.pow.*``' intrinsics return the first operand raised to the
7450specified (positive or negative) power.
7451
7452Arguments:
7453""""""""""
7454
7455The second argument is a floating point power, and the first is a value
7456to raise to that power.
7457
7458Semantics:
7459""""""""""
7460
7461This function returns the first value raised to the second power,
7462returning the same values as the libm ``pow`` functions would, and
7463handles error conditions in the same way.
7464
7465'``llvm.exp.*``' Intrinsic
7466^^^^^^^^^^^^^^^^^^^^^^^^^^
7467
7468Syntax:
7469"""""""
7470
7471This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7472floating point or vector of floating point type. Not all targets support
7473all types however.
7474
7475::
7476
7477 declare float @llvm.exp.f32(float %Val)
7478 declare double @llvm.exp.f64(double %Val)
7479 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7480 declare fp128 @llvm.exp.f128(fp128 %Val)
7481 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7482
7483Overview:
7484"""""""""
7485
7486The '``llvm.exp.*``' intrinsics perform the exp function.
7487
7488Arguments:
7489""""""""""
7490
7491The argument and return value are floating point numbers of the same
7492type.
7493
7494Semantics:
7495""""""""""
7496
7497This function returns the same values as the libm ``exp`` functions
7498would, and handles error conditions in the same way.
7499
7500'``llvm.exp2.*``' Intrinsic
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7507floating point or vector of floating point type. Not all targets support
7508all types however.
7509
7510::
7511
7512 declare float @llvm.exp2.f32(float %Val)
7513 declare double @llvm.exp2.f64(double %Val)
7514 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7515 declare fp128 @llvm.exp2.f128(fp128 %Val)
7516 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7517
7518Overview:
7519"""""""""
7520
7521The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7522
7523Arguments:
7524""""""""""
7525
7526The argument and return value are floating point numbers of the same
7527type.
7528
7529Semantics:
7530""""""""""
7531
7532This function returns the same values as the libm ``exp2`` functions
7533would, and handles error conditions in the same way.
7534
7535'``llvm.log.*``' Intrinsic
7536^^^^^^^^^^^^^^^^^^^^^^^^^^
7537
7538Syntax:
7539"""""""
7540
7541This is an overloaded intrinsic. You can use ``llvm.log`` on any
7542floating point or vector of floating point type. Not all targets support
7543all types however.
7544
7545::
7546
7547 declare float @llvm.log.f32(float %Val)
7548 declare double @llvm.log.f64(double %Val)
7549 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7550 declare fp128 @llvm.log.f128(fp128 %Val)
7551 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7552
7553Overview:
7554"""""""""
7555
7556The '``llvm.log.*``' intrinsics perform the log function.
7557
7558Arguments:
7559""""""""""
7560
7561The argument and return value are floating point numbers of the same
7562type.
7563
7564Semantics:
7565""""""""""
7566
7567This function returns the same values as the libm ``log`` functions
7568would, and handles error conditions in the same way.
7569
7570'``llvm.log10.*``' Intrinsic
7571^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7572
7573Syntax:
7574"""""""
7575
7576This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7577floating point or vector of floating point type. Not all targets support
7578all types however.
7579
7580::
7581
7582 declare float @llvm.log10.f32(float %Val)
7583 declare double @llvm.log10.f64(double %Val)
7584 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7585 declare fp128 @llvm.log10.f128(fp128 %Val)
7586 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7587
7588Overview:
7589"""""""""
7590
7591The '``llvm.log10.*``' intrinsics perform the log10 function.
7592
7593Arguments:
7594""""""""""
7595
7596The argument and return value are floating point numbers of the same
7597type.
7598
7599Semantics:
7600""""""""""
7601
7602This function returns the same values as the libm ``log10`` functions
7603would, and handles error conditions in the same way.
7604
7605'``llvm.log2.*``' Intrinsic
7606^^^^^^^^^^^^^^^^^^^^^^^^^^^
7607
7608Syntax:
7609"""""""
7610
7611This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7612floating point or vector of floating point type. Not all targets support
7613all types however.
7614
7615::
7616
7617 declare float @llvm.log2.f32(float %Val)
7618 declare double @llvm.log2.f64(double %Val)
7619 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7620 declare fp128 @llvm.log2.f128(fp128 %Val)
7621 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7622
7623Overview:
7624"""""""""
7625
7626The '``llvm.log2.*``' intrinsics perform the log2 function.
7627
7628Arguments:
7629""""""""""
7630
7631The argument and return value are floating point numbers of the same
7632type.
7633
7634Semantics:
7635""""""""""
7636
7637This function returns the same values as the libm ``log2`` functions
7638would, and handles error conditions in the same way.
7639
7640'``llvm.fma.*``' Intrinsic
7641^^^^^^^^^^^^^^^^^^^^^^^^^^
7642
7643Syntax:
7644"""""""
7645
7646This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7647floating point or vector of floating point type. Not all targets support
7648all types however.
7649
7650::
7651
7652 declare float @llvm.fma.f32(float %a, float %b, float %c)
7653 declare double @llvm.fma.f64(double %a, double %b, double %c)
7654 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7655 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7656 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7657
7658Overview:
7659"""""""""
7660
7661The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7662operation.
7663
7664Arguments:
7665""""""""""
7666
7667The argument and return value are floating point numbers of the same
7668type.
7669
7670Semantics:
7671""""""""""
7672
7673This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007674would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007675
7676'``llvm.fabs.*``' Intrinsic
7677^^^^^^^^^^^^^^^^^^^^^^^^^^^
7678
7679Syntax:
7680"""""""
7681
7682This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7683floating point or vector of floating point type. Not all targets support
7684all types however.
7685
7686::
7687
7688 declare float @llvm.fabs.f32(float %Val)
7689 declare double @llvm.fabs.f64(double %Val)
7690 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7691 declare fp128 @llvm.fabs.f128(fp128 %Val)
7692 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7693
7694Overview:
7695"""""""""
7696
7697The '``llvm.fabs.*``' intrinsics return the absolute value of the
7698operand.
7699
7700Arguments:
7701""""""""""
7702
7703The argument and return value are floating point numbers of the same
7704type.
7705
7706Semantics:
7707""""""""""
7708
7709This function returns the same values as the libm ``fabs`` functions
7710would, and handles error conditions in the same way.
7711
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007712'``llvm.copysign.*``' Intrinsic
7713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7714
7715Syntax:
7716"""""""
7717
7718This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7719floating point or vector of floating point type. Not all targets support
7720all types however.
7721
7722::
7723
7724 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7725 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7726 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7727 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7728 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7729
7730Overview:
7731"""""""""
7732
7733The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7734first operand and the sign of the second operand.
7735
7736Arguments:
7737""""""""""
7738
7739The arguments and return value are floating point numbers of the same
7740type.
7741
7742Semantics:
7743""""""""""
7744
7745This function returns the same values as the libm ``copysign``
7746functions would, and handles error conditions in the same way.
7747
Sean Silvab084af42012-12-07 10:36:55 +00007748'``llvm.floor.*``' Intrinsic
7749^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7750
7751Syntax:
7752"""""""
7753
7754This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7755floating point or vector of floating point type. Not all targets support
7756all types however.
7757
7758::
7759
7760 declare float @llvm.floor.f32(float %Val)
7761 declare double @llvm.floor.f64(double %Val)
7762 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7763 declare fp128 @llvm.floor.f128(fp128 %Val)
7764 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7765
7766Overview:
7767"""""""""
7768
7769The '``llvm.floor.*``' intrinsics return the floor of the operand.
7770
7771Arguments:
7772""""""""""
7773
7774The argument and return value are floating point numbers of the same
7775type.
7776
7777Semantics:
7778""""""""""
7779
7780This function returns the same values as the libm ``floor`` functions
7781would, and handles error conditions in the same way.
7782
7783'``llvm.ceil.*``' Intrinsic
7784^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7790floating point or vector of floating point type. Not all targets support
7791all types however.
7792
7793::
7794
7795 declare float @llvm.ceil.f32(float %Val)
7796 declare double @llvm.ceil.f64(double %Val)
7797 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7798 declare fp128 @llvm.ceil.f128(fp128 %Val)
7799 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7800
7801Overview:
7802"""""""""
7803
7804The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7805
7806Arguments:
7807""""""""""
7808
7809The argument and return value are floating point numbers of the same
7810type.
7811
7812Semantics:
7813""""""""""
7814
7815This function returns the same values as the libm ``ceil`` functions
7816would, and handles error conditions in the same way.
7817
7818'``llvm.trunc.*``' Intrinsic
7819^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7820
7821Syntax:
7822"""""""
7823
7824This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7825floating point or vector of floating point type. Not all targets support
7826all types however.
7827
7828::
7829
7830 declare float @llvm.trunc.f32(float %Val)
7831 declare double @llvm.trunc.f64(double %Val)
7832 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7833 declare fp128 @llvm.trunc.f128(fp128 %Val)
7834 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7835
7836Overview:
7837"""""""""
7838
7839The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7840nearest integer not larger in magnitude than the operand.
7841
7842Arguments:
7843""""""""""
7844
7845The argument and return value are floating point numbers of the same
7846type.
7847
7848Semantics:
7849""""""""""
7850
7851This function returns the same values as the libm ``trunc`` functions
7852would, and handles error conditions in the same way.
7853
7854'``llvm.rint.*``' Intrinsic
7855^^^^^^^^^^^^^^^^^^^^^^^^^^^
7856
7857Syntax:
7858"""""""
7859
7860This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7861floating point or vector of floating point type. Not all targets support
7862all types however.
7863
7864::
7865
7866 declare float @llvm.rint.f32(float %Val)
7867 declare double @llvm.rint.f64(double %Val)
7868 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7869 declare fp128 @llvm.rint.f128(fp128 %Val)
7870 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7871
7872Overview:
7873"""""""""
7874
7875The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7876nearest integer. It may raise an inexact floating-point exception if the
7877operand isn't an integer.
7878
7879Arguments:
7880""""""""""
7881
7882The argument and return value are floating point numbers of the same
7883type.
7884
7885Semantics:
7886""""""""""
7887
7888This function returns the same values as the libm ``rint`` functions
7889would, and handles error conditions in the same way.
7890
7891'``llvm.nearbyint.*``' Intrinsic
7892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7893
7894Syntax:
7895"""""""
7896
7897This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7898floating point or vector of floating point type. Not all targets support
7899all types however.
7900
7901::
7902
7903 declare float @llvm.nearbyint.f32(float %Val)
7904 declare double @llvm.nearbyint.f64(double %Val)
7905 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7906 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7907 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7908
7909Overview:
7910"""""""""
7911
7912The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7913nearest integer.
7914
7915Arguments:
7916""""""""""
7917
7918The argument and return value are floating point numbers of the same
7919type.
7920
7921Semantics:
7922""""""""""
7923
7924This function returns the same values as the libm ``nearbyint``
7925functions would, and handles error conditions in the same way.
7926
Hal Finkel171817e2013-08-07 22:49:12 +00007927'``llvm.round.*``' Intrinsic
7928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7929
7930Syntax:
7931"""""""
7932
7933This is an overloaded intrinsic. You can use ``llvm.round`` on any
7934floating point or vector of floating point type. Not all targets support
7935all types however.
7936
7937::
7938
7939 declare float @llvm.round.f32(float %Val)
7940 declare double @llvm.round.f64(double %Val)
7941 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7942 declare fp128 @llvm.round.f128(fp128 %Val)
7943 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7944
7945Overview:
7946"""""""""
7947
7948The '``llvm.round.*``' intrinsics returns the operand rounded to the
7949nearest integer.
7950
7951Arguments:
7952""""""""""
7953
7954The argument and return value are floating point numbers of the same
7955type.
7956
7957Semantics:
7958""""""""""
7959
7960This function returns the same values as the libm ``round``
7961functions would, and handles error conditions in the same way.
7962
Sean Silvab084af42012-12-07 10:36:55 +00007963Bit Manipulation Intrinsics
7964---------------------------
7965
7966LLVM provides intrinsics for a few important bit manipulation
7967operations. These allow efficient code generation for some algorithms.
7968
7969'``llvm.bswap.*``' Intrinsics
7970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7971
7972Syntax:
7973"""""""
7974
7975This is an overloaded intrinsic function. You can use bswap on any
7976integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7977
7978::
7979
7980 declare i16 @llvm.bswap.i16(i16 <id>)
7981 declare i32 @llvm.bswap.i32(i32 <id>)
7982 declare i64 @llvm.bswap.i64(i64 <id>)
7983
7984Overview:
7985"""""""""
7986
7987The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7988values with an even number of bytes (positive multiple of 16 bits).
7989These are useful for performing operations on data that is not in the
7990target's native byte order.
7991
7992Semantics:
7993""""""""""
7994
7995The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7996and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7997intrinsic returns an i32 value that has the four bytes of the input i32
7998swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7999returned i32 will have its bytes in 3, 2, 1, 0 order. The
8000``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8001concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8002respectively).
8003
8004'``llvm.ctpop.*``' Intrinsic
8005^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8006
8007Syntax:
8008"""""""
8009
8010This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8011bit width, or on any vector with integer elements. Not all targets
8012support all bit widths or vector types, however.
8013
8014::
8015
8016 declare i8 @llvm.ctpop.i8(i8 <src>)
8017 declare i16 @llvm.ctpop.i16(i16 <src>)
8018 declare i32 @llvm.ctpop.i32(i32 <src>)
8019 declare i64 @llvm.ctpop.i64(i64 <src>)
8020 declare i256 @llvm.ctpop.i256(i256 <src>)
8021 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8022
8023Overview:
8024"""""""""
8025
8026The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8027in a value.
8028
8029Arguments:
8030""""""""""
8031
8032The only argument is the value to be counted. The argument may be of any
8033integer type, or a vector with integer elements. The return type must
8034match the argument type.
8035
8036Semantics:
8037""""""""""
8038
8039The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8040each element of a vector.
8041
8042'``llvm.ctlz.*``' Intrinsic
8043^^^^^^^^^^^^^^^^^^^^^^^^^^^
8044
8045Syntax:
8046"""""""
8047
8048This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8049integer bit width, or any vector whose elements are integers. Not all
8050targets support all bit widths or vector types, however.
8051
8052::
8053
8054 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8055 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8056 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8057 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8058 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8059 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8060
8061Overview:
8062"""""""""
8063
8064The '``llvm.ctlz``' family of intrinsic functions counts the number of
8065leading zeros in a variable.
8066
8067Arguments:
8068""""""""""
8069
8070The first argument is the value to be counted. This argument may be of
8071any integer type, or a vectory with integer element type. The return
8072type must match the first argument type.
8073
8074The second argument must be a constant and is a flag to indicate whether
8075the intrinsic should ensure that a zero as the first argument produces a
8076defined result. Historically some architectures did not provide a
8077defined result for zero values as efficiently, and many algorithms are
8078now predicated on avoiding zero-value inputs.
8079
8080Semantics:
8081""""""""""
8082
8083The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8084zeros in a variable, or within each element of the vector. If
8085``src == 0`` then the result is the size in bits of the type of ``src``
8086if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8087``llvm.ctlz(i32 2) = 30``.
8088
8089'``llvm.cttz.*``' Intrinsic
8090^^^^^^^^^^^^^^^^^^^^^^^^^^^
8091
8092Syntax:
8093"""""""
8094
8095This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8096integer bit width, or any vector of integer elements. Not all targets
8097support all bit widths or vector types, however.
8098
8099::
8100
8101 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8102 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8103 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8104 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8105 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8106 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8107
8108Overview:
8109"""""""""
8110
8111The '``llvm.cttz``' family of intrinsic functions counts the number of
8112trailing zeros.
8113
8114Arguments:
8115""""""""""
8116
8117The first argument is the value to be counted. This argument may be of
8118any integer type, or a vectory with integer element type. The return
8119type must match the first argument type.
8120
8121The second argument must be a constant and is a flag to indicate whether
8122the intrinsic should ensure that a zero as the first argument produces a
8123defined result. Historically some architectures did not provide a
8124defined result for zero values as efficiently, and many algorithms are
8125now predicated on avoiding zero-value inputs.
8126
8127Semantics:
8128""""""""""
8129
8130The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8131zeros in a variable, or within each element of a vector. If ``src == 0``
8132then the result is the size in bits of the type of ``src`` if
8133``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8134``llvm.cttz(2) = 1``.
8135
8136Arithmetic with Overflow Intrinsics
8137-----------------------------------
8138
8139LLVM provides intrinsics for some arithmetic with overflow operations.
8140
8141'``llvm.sadd.with.overflow.*``' Intrinsics
8142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8143
8144Syntax:
8145"""""""
8146
8147This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8148on any integer bit width.
8149
8150::
8151
8152 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8153 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8154 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8155
8156Overview:
8157"""""""""
8158
8159The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8160a signed addition of the two arguments, and indicate whether an overflow
8161occurred during the signed summation.
8162
8163Arguments:
8164""""""""""
8165
8166The arguments (%a and %b) and the first element of the result structure
8167may be of integer types of any bit width, but they must have the same
8168bit width. The second element of the result structure must be of type
8169``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8170addition.
8171
8172Semantics:
8173""""""""""
8174
8175The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008176a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008177first element of which is the signed summation, and the second element
8178of which is a bit specifying if the signed summation resulted in an
8179overflow.
8180
8181Examples:
8182"""""""""
8183
8184.. code-block:: llvm
8185
8186 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8187 %sum = extractvalue {i32, i1} %res, 0
8188 %obit = extractvalue {i32, i1} %res, 1
8189 br i1 %obit, label %overflow, label %normal
8190
8191'``llvm.uadd.with.overflow.*``' Intrinsics
8192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8193
8194Syntax:
8195"""""""
8196
8197This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8198on any integer bit width.
8199
8200::
8201
8202 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8203 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8204 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8205
8206Overview:
8207"""""""""
8208
8209The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8210an unsigned addition of the two arguments, and indicate whether a carry
8211occurred during the unsigned summation.
8212
8213Arguments:
8214""""""""""
8215
8216The arguments (%a and %b) and the first element of the result structure
8217may be of integer types of any bit width, but they must have the same
8218bit width. The second element of the result structure must be of type
8219``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8220addition.
8221
8222Semantics:
8223""""""""""
8224
8225The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008226an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008227first element of which is the sum, and the second element of which is a
8228bit specifying if the unsigned summation resulted in a carry.
8229
8230Examples:
8231"""""""""
8232
8233.. code-block:: llvm
8234
8235 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8236 %sum = extractvalue {i32, i1} %res, 0
8237 %obit = extractvalue {i32, i1} %res, 1
8238 br i1 %obit, label %carry, label %normal
8239
8240'``llvm.ssub.with.overflow.*``' Intrinsics
8241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8242
8243Syntax:
8244"""""""
8245
8246This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8247on any integer bit width.
8248
8249::
8250
8251 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8252 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8253 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8254
8255Overview:
8256"""""""""
8257
8258The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8259a signed subtraction of the two arguments, and indicate whether an
8260overflow occurred during the signed subtraction.
8261
8262Arguments:
8263""""""""""
8264
8265The arguments (%a and %b) and the first element of the result structure
8266may be of integer types of any bit width, but they must have the same
8267bit width. The second element of the result structure must be of type
8268``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8269subtraction.
8270
8271Semantics:
8272""""""""""
8273
8274The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008275a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008276first element of which is the subtraction, and the second element of
8277which is a bit specifying if the signed subtraction resulted in an
8278overflow.
8279
8280Examples:
8281"""""""""
8282
8283.. code-block:: llvm
8284
8285 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8286 %sum = extractvalue {i32, i1} %res, 0
8287 %obit = extractvalue {i32, i1} %res, 1
8288 br i1 %obit, label %overflow, label %normal
8289
8290'``llvm.usub.with.overflow.*``' Intrinsics
8291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8292
8293Syntax:
8294"""""""
8295
8296This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8297on any integer bit width.
8298
8299::
8300
8301 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8302 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8303 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8304
8305Overview:
8306"""""""""
8307
8308The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8309an unsigned subtraction of the two arguments, and indicate whether an
8310overflow occurred during the unsigned subtraction.
8311
8312Arguments:
8313""""""""""
8314
8315The arguments (%a and %b) and the first element of the result structure
8316may be of integer types of any bit width, but they must have the same
8317bit width. The second element of the result structure must be of type
8318``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8319subtraction.
8320
8321Semantics:
8322""""""""""
8323
8324The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008325an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008326the first element of which is the subtraction, and the second element of
8327which is a bit specifying if the unsigned subtraction resulted in an
8328overflow.
8329
8330Examples:
8331"""""""""
8332
8333.. code-block:: llvm
8334
8335 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8336 %sum = extractvalue {i32, i1} %res, 0
8337 %obit = extractvalue {i32, i1} %res, 1
8338 br i1 %obit, label %overflow, label %normal
8339
8340'``llvm.smul.with.overflow.*``' Intrinsics
8341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8342
8343Syntax:
8344"""""""
8345
8346This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8347on any integer bit width.
8348
8349::
8350
8351 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8352 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8353 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8354
8355Overview:
8356"""""""""
8357
8358The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8359a signed multiplication of the two arguments, and indicate whether an
8360overflow occurred during the signed multiplication.
8361
8362Arguments:
8363""""""""""
8364
8365The arguments (%a and %b) and the first element of the result structure
8366may be of integer types of any bit width, but they must have the same
8367bit width. The second element of the result structure must be of type
8368``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8369multiplication.
8370
8371Semantics:
8372""""""""""
8373
8374The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008375a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008376the first element of which is the multiplication, and the second element
8377of which is a bit specifying if the signed multiplication resulted in an
8378overflow.
8379
8380Examples:
8381"""""""""
8382
8383.. code-block:: llvm
8384
8385 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8386 %sum = extractvalue {i32, i1} %res, 0
8387 %obit = extractvalue {i32, i1} %res, 1
8388 br i1 %obit, label %overflow, label %normal
8389
8390'``llvm.umul.with.overflow.*``' Intrinsics
8391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8392
8393Syntax:
8394"""""""
8395
8396This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8397on any integer bit width.
8398
8399::
8400
8401 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8402 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8403 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8404
8405Overview:
8406"""""""""
8407
8408The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8409a unsigned multiplication of the two arguments, and indicate whether an
8410overflow occurred during the unsigned multiplication.
8411
8412Arguments:
8413""""""""""
8414
8415The arguments (%a and %b) and the first element of the result structure
8416may be of integer types of any bit width, but they must have the same
8417bit width. The second element of the result structure must be of type
8418``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8419multiplication.
8420
8421Semantics:
8422""""""""""
8423
8424The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008425an unsigned multiplication of the two arguments. They return a structure ---
8426the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008427element of which is a bit specifying if the unsigned multiplication
8428resulted in an overflow.
8429
8430Examples:
8431"""""""""
8432
8433.. code-block:: llvm
8434
8435 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8436 %sum = extractvalue {i32, i1} %res, 0
8437 %obit = extractvalue {i32, i1} %res, 1
8438 br i1 %obit, label %overflow, label %normal
8439
8440Specialised Arithmetic Intrinsics
8441---------------------------------
8442
8443'``llvm.fmuladd.*``' Intrinsic
8444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8445
8446Syntax:
8447"""""""
8448
8449::
8450
8451 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8452 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8453
8454Overview:
8455"""""""""
8456
8457The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008458expressions that can be fused if the code generator determines that (a) the
8459target instruction set has support for a fused operation, and (b) that the
8460fused operation is more efficient than the equivalent, separate pair of mul
8461and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008462
8463Arguments:
8464""""""""""
8465
8466The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8467multiplicands, a and b, and an addend c.
8468
8469Semantics:
8470""""""""""
8471
8472The expression:
8473
8474::
8475
8476 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8477
8478is equivalent to the expression a \* b + c, except that rounding will
8479not be performed between the multiplication and addition steps if the
8480code generator fuses the operations. Fusion is not guaranteed, even if
8481the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008482corresponding llvm.fma.\* intrinsic function should be used
8483instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008484
8485Examples:
8486"""""""""
8487
8488.. code-block:: llvm
8489
8490 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8491
8492Half Precision Floating Point Intrinsics
8493----------------------------------------
8494
8495For most target platforms, half precision floating point is a
8496storage-only format. This means that it is a dense encoding (in memory)
8497but does not support computation in the format.
8498
8499This means that code must first load the half-precision floating point
8500value as an i16, then convert it to float with
8501:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8502then be performed on the float value (including extending to double
8503etc). To store the value back to memory, it is first converted to float
8504if needed, then converted to i16 with
8505:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8506i16 value.
8507
8508.. _int_convert_to_fp16:
8509
8510'``llvm.convert.to.fp16``' Intrinsic
8511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8512
8513Syntax:
8514"""""""
8515
8516::
8517
8518 declare i16 @llvm.convert.to.fp16(f32 %a)
8519
8520Overview:
8521"""""""""
8522
8523The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8524from single precision floating point format to half precision floating
8525point format.
8526
8527Arguments:
8528""""""""""
8529
8530The intrinsic function contains single argument - the value to be
8531converted.
8532
8533Semantics:
8534""""""""""
8535
8536The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8537from single precision floating point format to half precision floating
8538point format. The return value is an ``i16`` which contains the
8539converted number.
8540
8541Examples:
8542"""""""""
8543
8544.. code-block:: llvm
8545
8546 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8547 store i16 %res, i16* @x, align 2
8548
8549.. _int_convert_from_fp16:
8550
8551'``llvm.convert.from.fp16``' Intrinsic
8552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8553
8554Syntax:
8555"""""""
8556
8557::
8558
8559 declare f32 @llvm.convert.from.fp16(i16 %a)
8560
8561Overview:
8562"""""""""
8563
8564The '``llvm.convert.from.fp16``' intrinsic function performs a
8565conversion from half precision floating point format to single precision
8566floating point format.
8567
8568Arguments:
8569""""""""""
8570
8571The intrinsic function contains single argument - the value to be
8572converted.
8573
8574Semantics:
8575""""""""""
8576
8577The '``llvm.convert.from.fp16``' intrinsic function performs a
8578conversion from half single precision floating point format to single
8579precision floating point format. The input half-float value is
8580represented by an ``i16`` value.
8581
8582Examples:
8583"""""""""
8584
8585.. code-block:: llvm
8586
8587 %a = load i16* @x, align 2
8588 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8589
8590Debugger Intrinsics
8591-------------------
8592
8593The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8594prefix), are described in the `LLVM Source Level
8595Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8596document.
8597
8598Exception Handling Intrinsics
8599-----------------------------
8600
8601The LLVM exception handling intrinsics (which all start with
8602``llvm.eh.`` prefix), are described in the `LLVM Exception
8603Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8604
8605.. _int_trampoline:
8606
8607Trampoline Intrinsics
8608---------------------
8609
8610These intrinsics make it possible to excise one parameter, marked with
8611the :ref:`nest <nest>` attribute, from a function. The result is a
8612callable function pointer lacking the nest parameter - the caller does
8613not need to provide a value for it. Instead, the value to use is stored
8614in advance in a "trampoline", a block of memory usually allocated on the
8615stack, which also contains code to splice the nest value into the
8616argument list. This is used to implement the GCC nested function address
8617extension.
8618
8619For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8620then the resulting function pointer has signature ``i32 (i32, i32)*``.
8621It can be created as follows:
8622
8623.. code-block:: llvm
8624
8625 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8626 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8627 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8628 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8629 %fp = bitcast i8* %p to i32 (i32, i32)*
8630
8631The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8632``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8633
8634.. _int_it:
8635
8636'``llvm.init.trampoline``' Intrinsic
8637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8638
8639Syntax:
8640"""""""
8641
8642::
8643
8644 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8645
8646Overview:
8647"""""""""
8648
8649This fills the memory pointed to by ``tramp`` with executable code,
8650turning it into a trampoline.
8651
8652Arguments:
8653""""""""""
8654
8655The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8656pointers. The ``tramp`` argument must point to a sufficiently large and
8657sufficiently aligned block of memory; this memory is written to by the
8658intrinsic. Note that the size and the alignment are target-specific -
8659LLVM currently provides no portable way of determining them, so a
8660front-end that generates this intrinsic needs to have some
8661target-specific knowledge. The ``func`` argument must hold a function
8662bitcast to an ``i8*``.
8663
8664Semantics:
8665""""""""""
8666
8667The block of memory pointed to by ``tramp`` is filled with target
8668dependent code, turning it into a function. Then ``tramp`` needs to be
8669passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8670be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8671function's signature is the same as that of ``func`` with any arguments
8672marked with the ``nest`` attribute removed. At most one such ``nest``
8673argument is allowed, and it must be of pointer type. Calling the new
8674function is equivalent to calling ``func`` with the same argument list,
8675but with ``nval`` used for the missing ``nest`` argument. If, after
8676calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8677modified, then the effect of any later call to the returned function
8678pointer is undefined.
8679
8680.. _int_at:
8681
8682'``llvm.adjust.trampoline``' Intrinsic
8683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8684
8685Syntax:
8686"""""""
8687
8688::
8689
8690 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8691
8692Overview:
8693"""""""""
8694
8695This performs any required machine-specific adjustment to the address of
8696a trampoline (passed as ``tramp``).
8697
8698Arguments:
8699""""""""""
8700
8701``tramp`` must point to a block of memory which already has trampoline
8702code filled in by a previous call to
8703:ref:`llvm.init.trampoline <int_it>`.
8704
8705Semantics:
8706""""""""""
8707
8708On some architectures the address of the code to be executed needs to be
8709different to the address where the trampoline is actually stored. This
8710intrinsic returns the executable address corresponding to ``tramp``
8711after performing the required machine specific adjustments. The pointer
8712returned can then be :ref:`bitcast and executed <int_trampoline>`.
8713
8714Memory Use Markers
8715------------------
8716
8717This class of intrinsics exists to information about the lifetime of
8718memory objects and ranges where variables are immutable.
8719
Reid Klecknera534a382013-12-19 02:14:12 +00008720.. _int_lifestart:
8721
Sean Silvab084af42012-12-07 10:36:55 +00008722'``llvm.lifetime.start``' Intrinsic
8723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8724
8725Syntax:
8726"""""""
8727
8728::
8729
8730 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8731
8732Overview:
8733"""""""""
8734
8735The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8736object's lifetime.
8737
8738Arguments:
8739""""""""""
8740
8741The first argument is a constant integer representing the size of the
8742object, or -1 if it is variable sized. The second argument is a pointer
8743to the object.
8744
8745Semantics:
8746""""""""""
8747
8748This intrinsic indicates that before this point in the code, the value
8749of the memory pointed to by ``ptr`` is dead. This means that it is known
8750to never be used and has an undefined value. A load from the pointer
8751that precedes this intrinsic can be replaced with ``'undef'``.
8752
Reid Klecknera534a382013-12-19 02:14:12 +00008753.. _int_lifeend:
8754
Sean Silvab084af42012-12-07 10:36:55 +00008755'``llvm.lifetime.end``' Intrinsic
8756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8757
8758Syntax:
8759"""""""
8760
8761::
8762
8763 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8764
8765Overview:
8766"""""""""
8767
8768The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8769object's lifetime.
8770
8771Arguments:
8772""""""""""
8773
8774The first argument is a constant integer representing the size of the
8775object, or -1 if it is variable sized. The second argument is a pointer
8776to the object.
8777
8778Semantics:
8779""""""""""
8780
8781This intrinsic indicates that after this point in the code, the value of
8782the memory pointed to by ``ptr`` is dead. This means that it is known to
8783never be used and has an undefined value. Any stores into the memory
8784object following this intrinsic may be removed as dead.
8785
8786'``llvm.invariant.start``' Intrinsic
8787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8788
8789Syntax:
8790"""""""
8791
8792::
8793
8794 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8795
8796Overview:
8797"""""""""
8798
8799The '``llvm.invariant.start``' intrinsic specifies that the contents of
8800a memory object will not change.
8801
8802Arguments:
8803""""""""""
8804
8805The first argument is a constant integer representing the size of the
8806object, or -1 if it is variable sized. The second argument is a pointer
8807to the object.
8808
8809Semantics:
8810""""""""""
8811
8812This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8813the return value, the referenced memory location is constant and
8814unchanging.
8815
8816'``llvm.invariant.end``' Intrinsic
8817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8818
8819Syntax:
8820"""""""
8821
8822::
8823
8824 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8825
8826Overview:
8827"""""""""
8828
8829The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8830memory object are mutable.
8831
8832Arguments:
8833""""""""""
8834
8835The first argument is the matching ``llvm.invariant.start`` intrinsic.
8836The second argument is a constant integer representing the size of the
8837object, or -1 if it is variable sized and the third argument is a
8838pointer to the object.
8839
8840Semantics:
8841""""""""""
8842
8843This intrinsic indicates that the memory is mutable again.
8844
8845General Intrinsics
8846------------------
8847
8848This class of intrinsics is designed to be generic and has no specific
8849purpose.
8850
8851'``llvm.var.annotation``' Intrinsic
8852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8853
8854Syntax:
8855"""""""
8856
8857::
8858
8859 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8860
8861Overview:
8862"""""""""
8863
8864The '``llvm.var.annotation``' intrinsic.
8865
8866Arguments:
8867""""""""""
8868
8869The first argument is a pointer to a value, the second is a pointer to a
8870global string, the third is a pointer to a global string which is the
8871source file name, and the last argument is the line number.
8872
8873Semantics:
8874""""""""""
8875
8876This intrinsic allows annotation of local variables with arbitrary
8877strings. This can be useful for special purpose optimizations that want
8878to look for these annotations. These have no other defined use; they are
8879ignored by code generation and optimization.
8880
Michael Gottesman88d18832013-03-26 00:34:27 +00008881'``llvm.ptr.annotation.*``' Intrinsic
8882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8883
8884Syntax:
8885"""""""
8886
8887This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8888pointer to an integer of any width. *NOTE* you must specify an address space for
8889the pointer. The identifier for the default address space is the integer
8890'``0``'.
8891
8892::
8893
8894 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8895 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8896 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8897 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8898 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8899
8900Overview:
8901"""""""""
8902
8903The '``llvm.ptr.annotation``' intrinsic.
8904
8905Arguments:
8906""""""""""
8907
8908The first argument is a pointer to an integer value of arbitrary bitwidth
8909(result of some expression), the second is a pointer to a global string, the
8910third is a pointer to a global string which is the source file name, and the
8911last argument is the line number. It returns the value of the first argument.
8912
8913Semantics:
8914""""""""""
8915
8916This intrinsic allows annotation of a pointer to an integer with arbitrary
8917strings. This can be useful for special purpose optimizations that want to look
8918for these annotations. These have no other defined use; they are ignored by code
8919generation and optimization.
8920
Sean Silvab084af42012-12-07 10:36:55 +00008921'``llvm.annotation.*``' Intrinsic
8922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8923
8924Syntax:
8925"""""""
8926
8927This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8928any integer bit width.
8929
8930::
8931
8932 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8933 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8934 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8935 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8936 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8937
8938Overview:
8939"""""""""
8940
8941The '``llvm.annotation``' intrinsic.
8942
8943Arguments:
8944""""""""""
8945
8946The first argument is an integer value (result of some expression), the
8947second is a pointer to a global string, the third is a pointer to a
8948global string which is the source file name, and the last argument is
8949the line number. It returns the value of the first argument.
8950
8951Semantics:
8952""""""""""
8953
8954This intrinsic allows annotations to be put on arbitrary expressions
8955with arbitrary strings. This can be useful for special purpose
8956optimizations that want to look for these annotations. These have no
8957other defined use; they are ignored by code generation and optimization.
8958
8959'``llvm.trap``' Intrinsic
8960^^^^^^^^^^^^^^^^^^^^^^^^^
8961
8962Syntax:
8963"""""""
8964
8965::
8966
8967 declare void @llvm.trap() noreturn nounwind
8968
8969Overview:
8970"""""""""
8971
8972The '``llvm.trap``' intrinsic.
8973
8974Arguments:
8975""""""""""
8976
8977None.
8978
8979Semantics:
8980""""""""""
8981
8982This intrinsic is lowered to the target dependent trap instruction. If
8983the target does not have a trap instruction, this intrinsic will be
8984lowered to a call of the ``abort()`` function.
8985
8986'``llvm.debugtrap``' Intrinsic
8987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8988
8989Syntax:
8990"""""""
8991
8992::
8993
8994 declare void @llvm.debugtrap() nounwind
8995
8996Overview:
8997"""""""""
8998
8999The '``llvm.debugtrap``' intrinsic.
9000
9001Arguments:
9002""""""""""
9003
9004None.
9005
9006Semantics:
9007""""""""""
9008
9009This intrinsic is lowered to code which is intended to cause an
9010execution trap with the intention of requesting the attention of a
9011debugger.
9012
9013'``llvm.stackprotector``' Intrinsic
9014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9015
9016Syntax:
9017"""""""
9018
9019::
9020
9021 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9022
9023Overview:
9024"""""""""
9025
9026The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9027onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9028is placed on the stack before local variables.
9029
9030Arguments:
9031""""""""""
9032
9033The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9034The first argument is the value loaded from the stack guard
9035``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9036enough space to hold the value of the guard.
9037
9038Semantics:
9039""""""""""
9040
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009041This intrinsic causes the prologue/epilogue inserter to force the position of
9042the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9043to ensure that if a local variable on the stack is overwritten, it will destroy
9044the value of the guard. When the function exits, the guard on the stack is
9045checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9046different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9047calling the ``__stack_chk_fail()`` function.
9048
9049'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009051
9052Syntax:
9053"""""""
9054
9055::
9056
9057 declare void @llvm.stackprotectorcheck(i8** <guard>)
9058
9059Overview:
9060"""""""""
9061
9062The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009063created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009064``__stack_chk_fail()`` function.
9065
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009066Arguments:
9067""""""""""
9068
9069The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9070the variable ``@__stack_chk_guard``.
9071
9072Semantics:
9073""""""""""
9074
9075This intrinsic is provided to perform the stack protector check by comparing
9076``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9077values do not match call the ``__stack_chk_fail()`` function.
9078
9079The reason to provide this as an IR level intrinsic instead of implementing it
9080via other IR operations is that in order to perform this operation at the IR
9081level without an intrinsic, one would need to create additional basic blocks to
9082handle the success/failure cases. This makes it difficult to stop the stack
9083protector check from disrupting sibling tail calls in Codegen. With this
9084intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009085codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009086
Sean Silvab084af42012-12-07 10:36:55 +00009087'``llvm.objectsize``' Intrinsic
9088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9089
9090Syntax:
9091"""""""
9092
9093::
9094
9095 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9096 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9097
9098Overview:
9099"""""""""
9100
9101The ``llvm.objectsize`` intrinsic is designed to provide information to
9102the optimizers to determine at compile time whether a) an operation
9103(like memcpy) will overflow a buffer that corresponds to an object, or
9104b) that a runtime check for overflow isn't necessary. An object in this
9105context means an allocation of a specific class, structure, array, or
9106other object.
9107
9108Arguments:
9109""""""""""
9110
9111The ``llvm.objectsize`` intrinsic takes two arguments. The first
9112argument is a pointer to or into the ``object``. The second argument is
9113a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9114or -1 (if false) when the object size is unknown. The second argument
9115only accepts constants.
9116
9117Semantics:
9118""""""""""
9119
9120The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9121the size of the object concerned. If the size cannot be determined at
9122compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9123on the ``min`` argument).
9124
9125'``llvm.expect``' Intrinsic
9126^^^^^^^^^^^^^^^^^^^^^^^^^^^
9127
9128Syntax:
9129"""""""
9130
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009131This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9132integer bit width.
9133
Sean Silvab084af42012-12-07 10:36:55 +00009134::
9135
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009136 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009137 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9138 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9139
9140Overview:
9141"""""""""
9142
9143The ``llvm.expect`` intrinsic provides information about expected (the
9144most probable) value of ``val``, which can be used by optimizers.
9145
9146Arguments:
9147""""""""""
9148
9149The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9150a value. The second argument is an expected value, this needs to be a
9151constant value, variables are not allowed.
9152
9153Semantics:
9154""""""""""
9155
9156This intrinsic is lowered to the ``val``.
9157
9158'``llvm.donothing``' Intrinsic
9159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9160
9161Syntax:
9162"""""""
9163
9164::
9165
9166 declare void @llvm.donothing() nounwind readnone
9167
9168Overview:
9169"""""""""
9170
9171The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9172only intrinsic that can be called with an invoke instruction.
9173
9174Arguments:
9175""""""""""
9176
9177None.
9178
9179Semantics:
9180""""""""""
9181
9182This intrinsic does nothing, and it's removed by optimizers and ignored
9183by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009184
9185Stack Map Intrinsics
9186--------------------
9187
9188LLVM provides experimental intrinsics to support runtime patching
9189mechanisms commonly desired in dynamic language JITs. These intrinsics
9190are described in :doc:`StackMaps`.