blob: 39a92066a487c527294e8938bc01d84d4acbce44 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000029#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000030#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000031#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000038#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000039#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000040#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000041#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000042#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000043#include <algorithm>
44#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000045#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000046using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000047using namespace llvm::PatternMatch;
48
49const unsigned MaxDepth = 6;
50
Philip Reames1c292272015-03-10 22:43:20 +000051// Controls the number of uses of the value searched for possible
52// dominating comparisons.
53static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000054 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000055
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000056// This optimization is known to cause performance regressions is some cases,
57// keep it under a temporary flag for now.
58static cl::opt<bool>
59DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
60 cl::Hidden, cl::init(true));
61
Craig Topper6b3940a2017-05-03 22:25:19 +000062/// Returns the bitwidth of the given scalar or pointer type. For vector types,
63/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000064static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000065 if (unsigned BitWidth = Ty->getScalarSizeInBits())
66 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000067
Mehdi Aminia28d91d2015-03-10 02:37:25 +000068 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000069}
Chris Lattner965c7692008-06-02 01:18:21 +000070
Benjamin Kramercfd8d902014-09-12 08:56:53 +000071namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000072// Simplifying using an assume can only be done in a particular control-flow
73// context (the context instruction provides that context). If an assume and
74// the context instruction are not in the same block then the DT helps in
75// figuring out if we can use it.
76struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000077 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000078 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000079 const Instruction *CxtI;
80 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000081 // Unlike the other analyses, this may be a nullptr because not all clients
82 // provide it currently.
83 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000084
Matthias Braun37e5d792016-01-28 06:29:33 +000085 /// Set of assumptions that should be excluded from further queries.
86 /// This is because of the potential for mutual recursion to cause
87 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
88 /// classic case of this is assume(x = y), which will attempt to determine
89 /// bits in x from bits in y, which will attempt to determine bits in y from
90 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +000091 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
92 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +000093 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000094 unsigned NumExcluded;
95
Daniel Jasperaec2fa32016-12-19 08:22:17 +000096 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000097 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000099
100 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000103 Excluded = Q.Excluded;
104 Excluded[NumExcluded++] = NewExcl;
105 assert(NumExcluded <= Excluded.size());
106 }
107
108 bool isExcluded(const Value *Value) const {
109 if (NumExcluded == 0)
110 return false;
111 auto End = Excluded.begin() + NumExcluded;
112 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000113 }
114};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000115} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000116
Sanjay Patel547e9752014-11-04 16:09:50 +0000117// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000118// the preferred context instruction (if any).
119static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120 // If we've been provided with a context instruction, then use that (provided
121 // it has been inserted).
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 // If the value is really an already-inserted instruction, then use that.
126 CxtI = dyn_cast<Instruction>(V);
127 if (CxtI && CxtI->getParent())
128 return CxtI;
129
130 return nullptr;
131}
132
Craig Topperb45eabc2017-04-26 16:39:58 +0000133static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000134 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000135
Craig Topperb45eabc2017-04-26 16:39:58 +0000136void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000138 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000139 const DominatorTree *DT,
140 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000141 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000143}
144
Craig Topper6e11a052017-05-08 16:22:48 +0000145static KnownBits computeKnownBits(const Value *V, unsigned Depth,
146 const Query &Q);
147
148KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
149 unsigned Depth, AssumptionCache *AC,
150 const Instruction *CxtI,
151 const DominatorTree *DT) {
152 return ::computeKnownBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
153}
154
Pete Cooper35b00d52016-08-13 01:05:32 +0000155bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
156 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000157 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000158 const DominatorTree *DT) {
159 assert(LHS->getType() == RHS->getType() &&
160 "LHS and RHS should have the same type");
161 assert(LHS->getType()->isIntOrIntVectorTy() &&
162 "LHS and RHS should be integers");
163 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000164 KnownBits LHSKnown(IT->getBitWidth());
165 KnownBits RHSKnown(IT->getBitWidth());
166 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
167 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
168 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000169}
170
Hal Finkel60db0582014-09-07 18:57:58 +0000171
Pete Cooper35b00d52016-08-13 01:05:32 +0000172void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000173 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000174 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000175 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000176 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
177 KnownZero = Known.isNonNegative();
178 KnownOne = Known.isNegative();
Hal Finkel60db0582014-09-07 18:57:58 +0000179}
180
Pete Cooper35b00d52016-08-13 01:05:32 +0000181static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000182 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000183
Pete Cooper35b00d52016-08-13 01:05:32 +0000184bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
185 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000186 unsigned Depth, AssumptionCache *AC,
187 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000188 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000189 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000190 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000191}
192
Pete Cooper35b00d52016-08-13 01:05:32 +0000193static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000194
Pete Cooper35b00d52016-08-13 01:05:32 +0000195bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 AssumptionCache *AC, const Instruction *CxtI,
197 const DominatorTree *DT) {
198 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 unsigned Depth,
203 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000204 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000205 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
206 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000207}
208
Pete Cooper35b00d52016-08-13 01:05:32 +0000209bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000210 AssumptionCache *AC, const Instruction *CxtI,
211 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000212 if (auto *CI = dyn_cast<ConstantInt>(V))
213 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000214
Philip Reames8f12eba2016-03-09 21:31:47 +0000215 // TODO: We'd doing two recursive queries here. We should factor this such
216 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000217 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
218 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000219}
220
Pete Cooper35b00d52016-08-13 01:05:32 +0000221bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000222 AssumptionCache *AC, const Instruction *CxtI,
223 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000224 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
225 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000226}
227
Pete Cooper35b00d52016-08-13 01:05:32 +0000228static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000229
Pete Cooper35b00d52016-08-13 01:05:32 +0000230bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000231 const DataLayout &DL,
232 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000233 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
235 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000236 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000237}
238
Pete Cooper35b00d52016-08-13 01:05:32 +0000239static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000240 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000241
Pete Cooper35b00d52016-08-13 01:05:32 +0000242bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
243 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000244 unsigned Depth, AssumptionCache *AC,
245 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000246 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000247 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000248}
249
Pete Cooper35b00d52016-08-13 01:05:32 +0000250static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
251 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000252
Pete Cooper35b00d52016-08-13 01:05:32 +0000253unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 unsigned Depth, AssumptionCache *AC,
255 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000256 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000257 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000258}
259
Craig Topper8fbb74b2017-03-24 22:12:10 +0000260static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
261 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000262 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000263 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000264 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000265
266 // If an initial sequence of bits in the result is not needed, the
267 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000268 KnownBits LHSKnown(BitWidth);
269 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
270 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000271
David Majnemer97ddca32014-08-22 00:40:43 +0000272 // Carry in a 1 for a subtract, rather than a 0.
Craig Topper059b98e2017-03-24 05:38:09 +0000273 uint64_t CarryIn = 0;
David Majnemer97ddca32014-08-22 00:40:43 +0000274 if (!Add) {
275 // Sum = LHS + ~RHS + 1
Craig Topperb45eabc2017-04-26 16:39:58 +0000276 std::swap(Known2.Zero, Known2.One);
Craig Topper059b98e2017-03-24 05:38:09 +0000277 CarryIn = 1;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000278 }
279
Craig Topperb45eabc2017-04-26 16:39:58 +0000280 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn;
281 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn;
David Majnemer97ddca32014-08-22 00:40:43 +0000282
283 // Compute known bits of the carry.
Craig Topperb45eabc2017-04-26 16:39:58 +0000284 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero);
285 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One;
David Majnemer97ddca32014-08-22 00:40:43 +0000286
287 // Compute set of known bits (where all three relevant bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000288 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One;
289 APInt RHSKnownUnion = Known2.Zero | Known2.One;
290 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne;
291 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion;
David Majnemer97ddca32014-08-22 00:40:43 +0000292
293 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
294 "known bits of sum differ");
295
296 // Compute known bits of the result.
Craig Topperb45eabc2017-04-26 16:39:58 +0000297 KnownOut.Zero = ~PossibleSumOne & Known;
298 KnownOut.One = PossibleSumOne & Known;
David Majnemer97ddca32014-08-22 00:40:43 +0000299
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000300 // Are we still trying to solve for the sign bit?
Craig Topperd23004c2017-04-17 16:38:20 +0000301 if (!Known.isSignBitSet()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000302 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000303 // Adding two non-negative numbers, or subtracting a negative number from
304 // a non-negative one, can't wrap into negative.
Craig Topperca48af32017-04-29 16:43:11 +0000305 if (LHSKnown.isNonNegative() && Known2.isNonNegative())
306 KnownOut.makeNonNegative();
David Majnemer97ddca32014-08-22 00:40:43 +0000307 // Adding two negative numbers, or subtracting a non-negative number from
308 // a negative one, can't wrap into non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000309 else if (LHSKnown.isNegative() && Known2.isNegative())
310 KnownOut.makeNegative();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000311 }
312 }
313}
314
Pete Cooper35b00d52016-08-13 01:05:32 +0000315static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000316 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000318 unsigned BitWidth = Known.getBitWidth();
319 computeKnownBits(Op1, Known, Depth + 1, Q);
320 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000330 bool isKnownNonNegativeOp1 = Known.isNonNegative();
331 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
332 bool isKnownNegativeOp1 = Known.isNegative();
333 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
Craig Topperb45eabc2017-04-26 16:39:58 +0000351 unsigned TrailZ = Known.Zero.countTrailingOnes() +
352 Known2.Zero.countTrailingOnes();
353 unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() +
354 Known2.Zero.countLeadingOnes(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 BitWidth) - BitWidth;
356
357 TrailZ = std::min(TrailZ, BitWidth);
358 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000359 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000360 Known.Zero.setLowBits(TrailZ);
361 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000368 if (isKnownNonNegative && !Known.isNegative())
369 Known.makeNonNegative();
370 else if (isKnownNegative && !Known.isNonNegative())
371 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000375 KnownBits &Known) {
376 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000377 unsigned NumRanges = Ranges.getNumOperands() / 2;
378 assert(NumRanges >= 1);
379
Craig Topperf42b23f2017-04-28 06:28:56 +0000380 Known.Zero.setAllBits();
381 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382
Rafael Espindola53190532012-03-30 15:52:11 +0000383 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000384 ConstantInt *Lower =
385 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
386 ConstantInt *Upper =
387 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000388 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000389
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000390 // The first CommonPrefixBits of all values in Range are equal.
391 unsigned CommonPrefixBits =
392 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
393
394 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000395 Known.One &= Range.getUnsignedMax() & Mask;
396 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000397 }
Rafael Espindola53190532012-03-30 15:52:11 +0000398}
Jay Foad5a29c362014-05-15 12:12:55 +0000399
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000400static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000401 SmallVector<const Value *, 16> WorkSet(1, I);
402 SmallPtrSet<const Value *, 32> Visited;
403 SmallPtrSet<const Value *, 16> EphValues;
404
Hal Finkelf2199b22015-10-23 20:37:08 +0000405 // The instruction defining an assumption's condition itself is always
406 // considered ephemeral to that assumption (even if it has other
407 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000408 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000409 return true;
410
Hal Finkel60db0582014-09-07 18:57:58 +0000411 while (!WorkSet.empty()) {
412 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000413 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000414 continue;
415
416 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000417 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000418 if (V == E)
419 return true;
420
421 EphValues.insert(V);
422 if (const User *U = dyn_cast<User>(V))
423 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
424 J != JE; ++J) {
425 if (isSafeToSpeculativelyExecute(*J))
426 WorkSet.push_back(*J);
427 }
428 }
429 }
430
431 return false;
432}
433
434// Is this an intrinsic that cannot be speculated but also cannot trap?
435static bool isAssumeLikeIntrinsic(const Instruction *I) {
436 if (const CallInst *CI = dyn_cast<CallInst>(I))
437 if (Function *F = CI->getCalledFunction())
438 switch (F->getIntrinsicID()) {
439 default: break;
440 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
441 case Intrinsic::assume:
442 case Intrinsic::dbg_declare:
443 case Intrinsic::dbg_value:
444 case Intrinsic::invariant_start:
445 case Intrinsic::invariant_end:
446 case Intrinsic::lifetime_start:
447 case Intrinsic::lifetime_end:
448 case Intrinsic::objectsize:
449 case Intrinsic::ptr_annotation:
450 case Intrinsic::var_annotation:
451 return true;
452 }
453
454 return false;
455}
456
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000457bool llvm::isValidAssumeForContext(const Instruction *Inv,
458 const Instruction *CxtI,
459 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000460
461 // There are two restrictions on the use of an assume:
462 // 1. The assume must dominate the context (or the control flow must
463 // reach the assume whenever it reaches the context).
464 // 2. The context must not be in the assume's set of ephemeral values
465 // (otherwise we will use the assume to prove that the condition
466 // feeding the assume is trivially true, thus causing the removal of
467 // the assume).
468
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000469 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000470 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000471 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000472 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
473 // We don't have a DT, but this trivially dominates.
474 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000475 }
476
Pete Cooper54a02552016-08-12 01:00:15 +0000477 // With or without a DT, the only remaining case we will check is if the
478 // instructions are in the same BB. Give up if that is not the case.
479 if (Inv->getParent() != CxtI->getParent())
480 return false;
481
482 // If we have a dom tree, then we now know that the assume doens't dominate
483 // the other instruction. If we don't have a dom tree then we can check if
484 // the assume is first in the BB.
485 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000486 // Search forward from the assume until we reach the context (or the end
487 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000488 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000489 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000490 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000492 }
493
Pete Cooper54a02552016-08-12 01:00:15 +0000494 // The context comes first, but they're both in the same block. Make sure
495 // there is nothing in between that might interrupt the control flow.
496 for (BasicBlock::const_iterator I =
497 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
498 I != IE; ++I)
499 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
500 return false;
501
502 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000503}
504
Craig Topperb45eabc2017-04-26 16:39:58 +0000505static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
506 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000507 // Use of assumptions is context-sensitive. If we don't have a context, we
508 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000509 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000510 return;
511
Craig Topperb45eabc2017-04-26 16:39:58 +0000512 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000513
Hal Finkel8a9a7832017-01-11 13:24:24 +0000514 // Note that the patterns below need to be kept in sync with the code
515 // in AssumptionCache::updateAffectedValues.
516
517 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000518 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000519 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000520 CallInst *I = cast<CallInst>(AssumeVH);
521 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
522 "Got assumption for the wrong function!");
523 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000524 continue;
525
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000526 // Warning: This loop can end up being somewhat performance sensetive.
527 // We're running this loop for once for each value queried resulting in a
528 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000529
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000530 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
531 "must be an assume intrinsic");
532
533 Value *Arg = I->getArgOperand(0);
534
535 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000536 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000537 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000538 return;
539 }
Sanjay Patel96669962017-01-17 18:15:49 +0000540 if (match(Arg, m_Not(m_Specific(V))) &&
541 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
542 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000543 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000544 return;
545 }
Hal Finkel60db0582014-09-07 18:57:58 +0000546
David Majnemer9b609752014-12-12 23:59:29 +0000547 // The remaining tests are all recursive, so bail out if we hit the limit.
548 if (Depth == MaxDepth)
549 continue;
550
Hal Finkel60db0582014-09-07 18:57:58 +0000551 Value *A, *B;
552 auto m_V = m_CombineOr(m_Specific(V),
553 m_CombineOr(m_PtrToInt(m_Specific(V)),
554 m_BitCast(m_Specific(V))));
555
556 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000557 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000558 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000559 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000560 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000561 KnownBits RHSKnown(BitWidth);
562 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
563 Known.Zero |= RHSKnown.Zero;
564 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000566 } else if (match(Arg,
567 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000568 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000569 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000570 KnownBits RHSKnown(BitWidth);
571 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
572 KnownBits MaskKnown(BitWidth);
573 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000574
575 // For those bits in the mask that are known to be one, we can propagate
576 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000577 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
578 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000579 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000580 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
581 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000582 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000584 KnownBits RHSKnown(BitWidth);
585 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
586 KnownBits MaskKnown(BitWidth);
587 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000588
589 // For those bits in the mask that are known to be one, we can propagate
590 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000591 Known.Zero |= RHSKnown.One & MaskKnown.One;
592 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000594 } else if (match(Arg,
595 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000596 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000598 KnownBits RHSKnown(BitWidth);
599 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
600 KnownBits BKnown(BitWidth);
601 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000602
603 // For those bits in B that are known to be zero, we can propagate known
604 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000605 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
606 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000608 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
609 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000610 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000612 KnownBits RHSKnown(BitWidth);
613 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
614 KnownBits BKnown(BitWidth);
615 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000616
617 // For those bits in B that are known to be zero, we can propagate
618 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000619 Known.Zero |= RHSKnown.One & BKnown.Zero;
620 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000622 } else if (match(Arg,
623 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000624 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000626 KnownBits RHSKnown(BitWidth);
627 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
628 KnownBits BKnown(BitWidth);
629 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000630
631 // For those bits in B that are known to be zero, we can propagate known
632 // bits from the RHS to V. For those bits in B that are known to be one,
633 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000634 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
635 Known.One |= RHSKnown.One & BKnown.Zero;
636 Known.Zero |= RHSKnown.One & BKnown.One;
637 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000638 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
640 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000643 KnownBits RHSKnown(BitWidth);
644 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
645 KnownBits BKnown(BitWidth);
646 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647
648 // For those bits in B that are known to be zero, we can propagate
649 // inverted known bits from the RHS to V. For those bits in B that are
650 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000651 Known.Zero |= RHSKnown.One & BKnown.Zero;
652 Known.One |= RHSKnown.Zero & BKnown.Zero;
653 Known.Zero |= RHSKnown.Zero & BKnown.One;
654 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000655 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000656 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
657 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000658 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000660 KnownBits RHSKnown(BitWidth);
661 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 // For those bits in RHS that are known, we can propagate them to known
663 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000664 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
665 Known.Zero |= RHSKnown.Zero;
666 RHSKnown.One.lshrInPlace(C->getZExtValue());
667 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000669 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
670 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000671 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000673 KnownBits RHSKnown(BitWidth);
674 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000675 // For those bits in RHS that are known, we can propagate them inverted
676 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000677 RHSKnown.One.lshrInPlace(C->getZExtValue());
678 Known.Zero |= RHSKnown.One;
679 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
680 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000682 } else if (match(Arg,
683 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000684 m_AShr(m_V, m_ConstantInt(C))),
685 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000686 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000688 KnownBits RHSKnown(BitWidth);
689 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 // For those bits in RHS that are known, we can propagate them to known
691 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000692 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
693 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000694 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000695 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000696 m_LShr(m_V, m_ConstantInt(C)),
697 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000698 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000701 KnownBits RHSKnown(BitWidth);
702 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 // For those bits in RHS that are known, we can propagate them inverted
704 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000705 Known.Zero |= RHSKnown.One << C->getZExtValue();
706 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000708 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000711 KnownBits RHSKnown(BitWidth);
712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713
Craig Topperca48af32017-04-29 16:43:11 +0000714 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000715 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000716 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000717 }
718 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000719 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000720 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000721 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000722 KnownBits RHSKnown(BitWidth);
723 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724
Craig Topperf0aeee02017-05-05 17:36:09 +0000725 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000727 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000728 }
729 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000730 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000731 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000732 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000733 KnownBits RHSKnown(BitWidth);
734 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735
Craig Topperca48af32017-04-29 16:43:11 +0000736 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000738 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000739 }
740 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000741 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000742 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000744 KnownBits RHSKnown(BitWidth);
745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746
Craig Topperf0aeee02017-05-05 17:36:09 +0000747 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000748 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000749 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000750 }
751 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000755 KnownBits RHSKnown(BitWidth);
756 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757
758 // Whatever high bits in c are zero are known to be zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000759 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes());
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000761 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000762 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000763 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000764 KnownBits RHSKnown(BitWidth);
765 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000766
767 // Whatever high bits in c are zero are known to be zero (if c is a power
768 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topperb45eabc2017-04-26 16:39:58 +0000770 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()+1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000771 else
Craig Topperb45eabc2017-04-26 16:39:58 +0000772 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000773 }
774 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000775
776 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000777 // have a logical fallacy. It's possible that the assumption is not reachable,
778 // so this isn't a real bug. On the other hand, the program may have undefined
779 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
780 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000781 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000782 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000783
784 if (Q.ORE) {
785 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
786 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
787 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
788 "have undefined behavior, or compiler may have "
789 "internal error.");
790 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000791 }
Hal Finkel60db0582014-09-07 18:57:58 +0000792}
793
Hal Finkelf2199b22015-10-23 20:37:08 +0000794// Compute known bits from a shift operator, including those with a
Craig Topperb45eabc2017-04-26 16:39:58 +0000795// non-constant shift amount. Known is the outputs of this function. Known2 is a
796// pre-allocated temporary with the/ same bit width as Known. KZF and KOF are
797// operator-specific functors that, given the known-zero or known-one bits
798// respectively, and a shift amount, compute the implied known-zero or known-one
799// bits of the shift operator's result respectively for that shift amount. The
800// results from calling KZF and KOF are conservatively combined for all
801// permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000802static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000803 const Operator *I, KnownBits &Known, KnownBits &Known2,
804 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000805 function_ref<APInt(const APInt &, unsigned)> KZF,
806 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000807 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000808
809 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
810 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
811
Craig Topperb45eabc2017-04-26 16:39:58 +0000812 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
813 Known.Zero = KZF(Known.Zero, ShiftAmt);
814 Known.One = KOF(Known.One, ShiftAmt);
815 // If there is conflict between Known.Zero and Known.One, this must be an
816 // overflowing left shift, so the shift result is undefined. Clear Known
817 // bits so that other code could propagate this undef.
Craig Topperf0aeee02017-05-05 17:36:09 +0000818 if ((Known.Zero & Known.One) != 0)
819 Known.resetAll();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000820
Hal Finkelf2199b22015-10-23 20:37:08 +0000821 return;
822 }
823
Craig Topperb45eabc2017-04-26 16:39:58 +0000824 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000825
Oliver Stannard06204112017-03-14 10:13:17 +0000826 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
827 // value could be undef, so we don't know anything about it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000828 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000829 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000830 return;
831 }
832
Craig Topperb45eabc2017-04-26 16:39:58 +0000833 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000834 // BitWidth > 64 and any upper bits are known, we'll end up returning the
835 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000836 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
837 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000838
839 // It would be more-clearly correct to use the two temporaries for this
840 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000841 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000842
James Molloy493e57d2015-10-26 14:10:46 +0000843 // If we know the shifter operand is nonzero, we can sometimes infer more
844 // known bits. However this is expensive to compute, so be lazy about it and
845 // only compute it when absolutely necessary.
846 Optional<bool> ShifterOperandIsNonZero;
847
Hal Finkelf2199b22015-10-23 20:37:08 +0000848 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000849 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
850 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000851 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000852 if (!*ShifterOperandIsNonZero)
853 return;
854 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000855
Craig Topperb45eabc2017-04-26 16:39:58 +0000856 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000857
Craig Topperb45eabc2017-04-26 16:39:58 +0000858 Known.Zero.setAllBits();
859 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000860 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
861 // Combine the shifted known input bits only for those shift amounts
862 // compatible with its known constraints.
863 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
864 continue;
865 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
866 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000867 // If we know the shifter is nonzero, we may be able to infer more known
868 // bits. This check is sunk down as far as possible to avoid the expensive
869 // call to isKnownNonZero if the cheaper checks above fail.
870 if (ShiftAmt == 0) {
871 if (!ShifterOperandIsNonZero.hasValue())
872 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000873 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000874 if (*ShifterOperandIsNonZero)
875 continue;
876 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000877
Craig Topperb45eabc2017-04-26 16:39:58 +0000878 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
879 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000880 }
881
882 // If there are no compatible shift amounts, then we've proven that the shift
883 // amount must be >= the BitWidth, and the result is undefined. We could
884 // return anything we'd like, but we need to make sure the sets of known bits
885 // stay disjoint (it should be better for some other code to actually
886 // propagate the undef than to pick a value here using known bits).
Craig Topperf0aeee02017-05-05 17:36:09 +0000887 if (Known.Zero.intersects(Known.One))
888 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000889}
890
Craig Topperb45eabc2017-04-26 16:39:58 +0000891static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
892 unsigned Depth, const Query &Q) {
893 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000894
Craig Topperb45eabc2017-04-26 16:39:58 +0000895 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000896 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000897 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000898 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000899 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000900 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000901 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000902 case Instruction::And: {
903 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000904 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
905 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000906
Chris Lattner965c7692008-06-02 01:18:21 +0000907 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000908 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000909 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000910 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000911
912 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
913 // here we handle the more general case of adding any odd number by
914 // matching the form add(x, add(x, y)) where y is odd.
915 // TODO: This could be generalized to clearing any bit set in y where the
916 // following bit is known to be unset in y.
917 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000918 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000919 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
920 m_Value(Y))) ||
921 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
922 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000923 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000924 computeKnownBits(Y, Known2, Depth + 1, Q);
925 if (Known2.One.countTrailingOnes() > 0)
926 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000927 }
Jay Foad5a29c362014-05-15 12:12:55 +0000928 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000929 }
930 case Instruction::Or: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000931 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
932 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000933
Chris Lattner965c7692008-06-02 01:18:21 +0000934 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000935 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000937 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000939 }
940 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000941 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
942 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000943
Chris Lattner965c7692008-06-02 01:18:21 +0000944 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000945 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000946 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000947 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
948 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000949 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000950 }
951 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000952 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000953 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
954 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000955 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000956 }
957 case Instruction::UDiv: {
958 // For the purposes of computing leading zeros we can conservatively
959 // treat a udiv as a logical right shift by the power of 2 known to
960 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000961 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
962 unsigned LeadZ = Known2.Zero.countLeadingOnes();
Chris Lattner965c7692008-06-02 01:18:21 +0000963
Craig Topperf0aeee02017-05-05 17:36:09 +0000964 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000965 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
966 unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000967 if (RHSUnknownLeadingOnes != BitWidth)
968 LeadZ = std::min(BitWidth,
969 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
970
Craig Topperb45eabc2017-04-26 16:39:58 +0000971 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000972 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000973 }
David Majnemera19d0f22016-08-06 08:16:00 +0000974 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000975 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000976 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
977 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000978 computeKnownBits(RHS, Known, Depth + 1, Q);
979 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000980 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000981 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
982 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000983 }
984
985 unsigned MaxHighOnes = 0;
986 unsigned MaxHighZeros = 0;
987 if (SPF == SPF_SMAX) {
988 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000989 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000990 // We can derive a lower bound on the result by taking the max of the
991 // leading one bits.
Craig Topperb45eabc2017-04-26 16:39:58 +0000992 MaxHighOnes = std::max(Known.One.countLeadingOnes(),
993 Known2.One.countLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000994 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000995 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000996 MaxHighZeros = 1;
997 } else if (SPF == SPF_SMIN) {
998 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000999 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001000 // We can derive an upper bound on the result by taking the max of the
1001 // leading zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001002 MaxHighZeros = std::max(Known.Zero.countLeadingOnes(),
1003 Known2.Zero.countLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001004 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001005 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001006 MaxHighOnes = 1;
1007 } else if (SPF == SPF_UMAX) {
1008 // We can derive a lower bound on the result by taking the max of the
1009 // leading one bits.
1010 MaxHighOnes =
Craig Topperb45eabc2017-04-26 16:39:58 +00001011 std::max(Known.One.countLeadingOnes(), Known2.One.countLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001012 } else if (SPF == SPF_UMIN) {
1013 // We can derive an upper bound on the result by taking the max of the
1014 // leading zero bits.
1015 MaxHighZeros =
Craig Topperb45eabc2017-04-26 16:39:58 +00001016 std::max(Known.Zero.countLeadingOnes(), Known2.Zero.countLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001017 }
1018
Chris Lattner965c7692008-06-02 01:18:21 +00001019 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001020 Known.One &= Known2.One;
1021 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001022 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001023 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001024 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001025 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001026 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001027 }
Chris Lattner965c7692008-06-02 01:18:21 +00001028 case Instruction::FPTrunc:
1029 case Instruction::FPExt:
1030 case Instruction::FPToUI:
1031 case Instruction::FPToSI:
1032 case Instruction::SIToFP:
1033 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001034 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001035 case Instruction::PtrToInt:
1036 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001037 // Fall through and handle them the same as zext/trunc.
1038 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001039 case Instruction::ZExt:
1040 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001041 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001042
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001043 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001044 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1045 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001046 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001047
1048 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001049 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001050 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001051 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001052 // Any top bits are known to be zero.
1053 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001054 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001055 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001056 }
1057 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001058 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001059 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001060 // TODO: For now, not handling conversions like:
1061 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001062 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001063 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 }
1066 break;
1067 }
1068 case Instruction::SExt: {
1069 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001070 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001071
Craig Topperd938fd12017-05-03 22:07:25 +00001072 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001073 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001074 // If the sign bit of the input is known set or clear, then we know the
1075 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001076 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001077 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001078 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001079 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001080 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001081 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001082 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1083 APInt KZResult = KnownZero << ShiftAmt;
1084 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001085 // If this shift has "nsw" keyword, then the result is either a poison
1086 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001087 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001088 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001089 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001090 };
1091
Craig Topperd73c6b42017-03-23 07:06:39 +00001092 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001093 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001094 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001095 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001096 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001097 };
1098
Craig Topperb45eabc2017-04-26 16:39:58 +00001099 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001100 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001101 }
1102 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001103 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001104 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1105 APInt KZResult = KnownZero.lshr(ShiftAmt);
1106 // High bits known zero.
1107 KZResult.setHighBits(ShiftAmt);
1108 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001109 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001110
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001111 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001112 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 };
1114
Craig Topperb45eabc2017-04-26 16:39:58 +00001115 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001116 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001117 }
1118 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001119 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001120 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001121 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001122 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001123
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001124 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001125 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001126 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001127
Craig Topperb45eabc2017-04-26 16:39:58 +00001128 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001129 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001130 }
Chris Lattner965c7692008-06-02 01:18:21 +00001131 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001132 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001133 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001134 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001135 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001136 }
Chris Lattner965c7692008-06-02 01:18:21 +00001137 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001140 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001141 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001142 }
1143 case Instruction::SRem:
1144 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001145 APInt RA = Rem->getValue().abs();
1146 if (RA.isPowerOf2()) {
1147 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001148 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001149
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001150 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001151 Known.Zero = Known2.Zero & LowBits;
1152 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001153
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001154 // If the first operand is non-negative or has all low bits zero, then
1155 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001156 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001157 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001158
1159 // If the first operand is negative and not all low bits are zero, then
1160 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001161 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001162 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001163
Craig Topperb45eabc2017-04-26 16:39:58 +00001164 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001165 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001166 }
1167 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001168
1169 // The sign bit is the LHS's sign bit, except when the result of the
1170 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001171 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001172 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001173 if (Known2.isNonNegative())
1174 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001175
Chris Lattner965c7692008-06-02 01:18:21 +00001176 break;
1177 case Instruction::URem: {
1178 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001179 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001180 if (RA.isPowerOf2()) {
1181 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001182 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1183 Known.Zero |= ~LowBits;
1184 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001185 break;
1186 }
1187 }
1188
1189 // Since the result is less than or equal to either operand, any leading
1190 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001191 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1192 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001193
Craig Topperb45eabc2017-04-26 16:39:58 +00001194 unsigned Leaders = std::max(Known.Zero.countLeadingOnes(),
1195 Known2.Zero.countLeadingOnes());
Craig Topperf0aeee02017-05-05 17:36:09 +00001196 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001197 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 }
1200
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001201 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001202 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001203 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001204 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001205 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001206
Chris Lattner965c7692008-06-02 01:18:21 +00001207 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001208 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001209 break;
1210 }
1211 case Instruction::GetElementPtr: {
1212 // Analyze all of the subscripts of this getelementptr instruction
1213 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001214 KnownBits LocalKnown(BitWidth);
1215 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1216 unsigned TrailZ = LocalKnown.Zero.countTrailingOnes();
Chris Lattner965c7692008-06-02 01:18:21 +00001217
1218 gep_type_iterator GTI = gep_type_begin(I);
1219 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1220 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001221 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001222 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001223
1224 // Handle case when index is vector zeroinitializer
1225 Constant *CIndex = cast<Constant>(Index);
1226 if (CIndex->isZeroValue())
1227 continue;
1228
1229 if (CIndex->getType()->isVectorTy())
1230 Index = CIndex->getSplatValue();
1231
Chris Lattner965c7692008-06-02 01:18:21 +00001232 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001233 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001234 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001235 TrailZ = std::min<unsigned>(TrailZ,
1236 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001237 } else {
1238 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001239 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001240 if (!IndexedTy->isSized()) {
1241 TrailZ = 0;
1242 break;
1243 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001244 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001245 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001246 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1247 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001249 unsigned(countTrailingZeros(TypeSize) +
Craig Topperb45eabc2017-04-26 16:39:58 +00001250 LocalKnown.Zero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001251 }
1252 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001253
Craig Topperb45eabc2017-04-26 16:39:58 +00001254 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001255 break;
1256 }
1257 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001258 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001259 // Handle the case of a simple two-predecessor recurrence PHI.
1260 // There's a lot more that could theoretically be done here, but
1261 // this is sufficient to catch some interesting cases.
1262 if (P->getNumIncomingValues() == 2) {
1263 for (unsigned i = 0; i != 2; ++i) {
1264 Value *L = P->getIncomingValue(i);
1265 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001266 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001267 if (!LU)
1268 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001269 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001270 // Check for operations that have the property that if
1271 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001272 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001273 if (Opcode == Instruction::Add ||
1274 Opcode == Instruction::Sub ||
1275 Opcode == Instruction::And ||
1276 Opcode == Instruction::Or ||
1277 Opcode == Instruction::Mul) {
1278 Value *LL = LU->getOperand(0);
1279 Value *LR = LU->getOperand(1);
1280 // Find a recurrence.
1281 if (LL == I)
1282 L = LR;
1283 else if (LR == I)
1284 L = LL;
1285 else
1286 break;
1287 // Ok, we have a PHI of the form L op= R. Check for low
1288 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001289 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001290
1291 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001292 KnownBits Known3(Known);
1293 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001294
Craig Topperb45eabc2017-04-26 16:39:58 +00001295 Known.Zero.setLowBits(std::min(Known2.Zero.countTrailingOnes(),
1296 Known3.Zero.countTrailingOnes()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001297
1298 if (DontImproveNonNegativePhiBits)
1299 break;
1300
1301 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1302 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1303 // If initial value of recurrence is nonnegative, and we are adding
1304 // a nonnegative number with nsw, the result can only be nonnegative
1305 // or poison value regardless of the number of times we execute the
1306 // add in phi recurrence. If initial value is negative and we are
1307 // adding a negative number with nsw, the result can only be
1308 // negative or poison value. Similar arguments apply to sub and mul.
1309 //
1310 // (add non-negative, non-negative) --> non-negative
1311 // (add negative, negative) --> negative
1312 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001313 if (Known2.isNonNegative() && Known3.isNonNegative())
1314 Known.makeNonNegative();
1315 else if (Known2.isNegative() && Known3.isNegative())
1316 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001317 }
1318
1319 // (sub nsw non-negative, negative) --> non-negative
1320 // (sub nsw negative, non-negative) --> negative
1321 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001322 if (Known2.isNonNegative() && Known3.isNegative())
1323 Known.makeNonNegative();
1324 else if (Known2.isNegative() && Known3.isNonNegative())
1325 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001326 }
1327
1328 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001329 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1330 Known3.isNonNegative())
1331 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001332 }
1333
Chris Lattner965c7692008-06-02 01:18:21 +00001334 break;
1335 }
1336 }
1337 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001338
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001339 // Unreachable blocks may have zero-operand PHI nodes.
1340 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001341 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001342
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001343 // Otherwise take the unions of the known bit sets of the operands,
1344 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001345 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001346 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001347 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001348 break;
1349
Craig Topperb45eabc2017-04-26 16:39:58 +00001350 Known.Zero.setAllBits();
1351 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001352 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001353 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001354 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001355
Craig Topperb45eabc2017-04-26 16:39:58 +00001356 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001357 // Recurse, but cap the recursion to one level, because we don't
1358 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001359 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1360 Known.Zero &= Known2.Zero;
1361 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001362 // If all bits have been ruled out, there's no need to check
1363 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001364 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001365 break;
1366 }
1367 }
Chris Lattner965c7692008-06-02 01:18:21 +00001368 break;
1369 }
1370 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001371 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001372 // If range metadata is attached to this call, set known bits from that,
1373 // and then intersect with known bits based on other properties of the
1374 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001375 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001376 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001377 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001378 computeKnownBits(RV, Known2, Depth + 1, Q);
1379 Known.Zero |= Known2.Zero;
1380 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001381 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001382 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001383 switch (II->getIntrinsicID()) {
1384 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001385 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001386 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1387 Known.Zero |= Known2.Zero.reverseBits();
1388 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001389 break;
Philip Reames675418e2015-10-06 20:20:45 +00001390 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001391 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1392 Known.Zero |= Known2.Zero.byteSwap();
1393 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001394 break;
Craig Topper868813f2017-05-08 17:22:34 +00001395 case Intrinsic::ctlz: {
1396 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1397 // If we have a known 1, its position is our upper bound.
1398 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001399 // If this call is undefined for 0, the result will be less than 2^n.
1400 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001401 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1402 unsigned LowBits = Log2_32(PossibleLZ)+1;
1403 Known.Zero.setBitsFrom(LowBits);
1404 break;
1405 }
1406 case Intrinsic::cttz: {
1407 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1408 // If we have a known 1, its position is our upper bound.
1409 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1410 // If this call is undefined for 0, the result will be less than 2^n.
1411 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1412 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1413 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001414 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001415 break;
1416 }
1417 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001418 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001419 // We can bound the space the count needs. Also, bits known to be zero
1420 // can't contribute to the population.
Craig Topperb45eabc2017-04-26 16:39:58 +00001421 unsigned BitsPossiblySet = BitWidth - Known2.Zero.countPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001422 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001423 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001424 // TODO: we could bound KnownOne using the lower bound on the number
1425 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001426 break;
1427 }
Chad Rosierb3628842011-05-26 23:13:19 +00001428 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001429 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001430 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001431 }
1432 }
1433 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001434 case Instruction::ExtractElement:
1435 // Look through extract element. At the moment we keep this simple and skip
1436 // tracking the specific element. But at least we might find information
1437 // valid for all elements of the vector (for example if vector is sign
1438 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001439 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001440 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001441 case Instruction::ExtractValue:
1442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001443 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001444 if (EVI->getNumIndices() != 1) break;
1445 if (EVI->getIndices()[0] == 0) {
1446 switch (II->getIntrinsicID()) {
1447 default: break;
1448 case Intrinsic::uadd_with_overflow:
1449 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001450 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001451 II->getArgOperand(1), false, Known, Known2,
1452 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001453 break;
1454 case Intrinsic::usub_with_overflow:
1455 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001456 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001457 II->getArgOperand(1), false, Known, Known2,
1458 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001459 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001460 case Intrinsic::umul_with_overflow:
1461 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001462 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001463 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001464 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001465 }
1466 }
1467 }
Chris Lattner965c7692008-06-02 01:18:21 +00001468 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001469}
1470
1471/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001472/// them.
1473KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1474 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1475 computeKnownBits(V, Known, Depth, Q);
1476 return Known;
1477}
1478
1479/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001480/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001481///
1482/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1483/// we cannot optimize based on the assumption that it is zero without changing
1484/// it to be an explicit zero. If we don't change it to zero, other code could
1485/// optimized based on the contradictory assumption that it is non-zero.
1486/// Because instcombine aggressively folds operations with undef args anyway,
1487/// this won't lose us code quality.
1488///
1489/// This function is defined on values with integer type, values with pointer
1490/// type, and vectors of integers. In the case
1491/// where V is a vector, known zero, and known one values are the
1492/// same width as the vector element, and the bit is set only if it is true
1493/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001494void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1495 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001496 assert(V && "No Value?");
1497 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001498 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001499
1500 assert((V->getType()->isIntOrIntVectorTy() ||
1501 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001502 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001503 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001504 (!V->getType()->isIntOrIntVectorTy() ||
1505 V->getType()->getScalarSizeInBits() == BitWidth) &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001506 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001507 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001508
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001509 const APInt *C;
1510 if (match(V, m_APInt(C))) {
1511 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001512 Known.One = *C;
1513 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001514 return;
1515 }
1516 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001517 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001518 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001519 return;
1520 }
1521 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001522 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001523 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001524 // We know that CDS must be a vector of integers. Take the intersection of
1525 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001526 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001527 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001528 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1529 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001530 Known.Zero &= ~Elt;
1531 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001532 }
1533 return;
1534 }
1535
Pete Cooper35b00d52016-08-13 01:05:32 +00001536 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001537 // We know that CV must be a vector of integers. Take the intersection of
1538 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001539 Known.Zero.setAllBits(); Known.One.setAllBits();
1540 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001541 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1542 Constant *Element = CV->getAggregateElement(i);
1543 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1544 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001545 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001546 return;
1547 }
1548 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001549 Known.Zero &= ~Elt;
1550 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001551 }
1552 return;
1553 }
1554
Jingyue Wu12b0c282015-06-15 05:46:29 +00001555 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001556 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001557
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001558 // We can't imply anything about undefs.
1559 if (isa<UndefValue>(V))
1560 return;
1561
1562 // There's no point in looking through other users of ConstantData for
1563 // assumptions. Confirm that we've handled them all.
1564 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1565
Jingyue Wu12b0c282015-06-15 05:46:29 +00001566 // Limit search depth.
1567 // All recursive calls that increase depth must come after this.
1568 if (Depth == MaxDepth)
1569 return;
1570
1571 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1572 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001573 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001574 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001575 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001576 return;
1577 }
1578
Pete Cooper35b00d52016-08-13 01:05:32 +00001579 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001580 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001581
Craig Topperb45eabc2017-04-26 16:39:58 +00001582 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001583 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001584 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001585 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001586 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001587 }
1588
Craig Topperb45eabc2017-04-26 16:39:58 +00001589 // computeKnownBitsFromAssume strictly refines Known.
1590 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001591
1592 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001593 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001594
Craig Topperb45eabc2017-04-26 16:39:58 +00001595 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001596}
1597
Sanjay Patelaee84212014-11-04 16:27:42 +00001598/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001599/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001600/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001601/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001602bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001603 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001604 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001605 if (C->isNullValue())
1606 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001607
1608 const APInt *ConstIntOrConstSplatInt;
1609 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1610 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001611 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001612
1613 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1614 // it is shifted off the end then the result is undefined.
1615 if (match(V, m_Shl(m_One(), m_Value())))
1616 return true;
1617
Craig Topperbcfd2d12017-04-20 16:56:25 +00001618 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1619 // the bottom. If it is shifted off the bottom then the result is undefined.
1620 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001621 return true;
1622
1623 // The remaining tests are all recursive, so bail out if we hit the limit.
1624 if (Depth++ == MaxDepth)
1625 return false;
1626
Craig Topper9f008862014-04-15 04:59:12 +00001627 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001628 // A shift left or a logical shift right of a power of two is a power of two
1629 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001630 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001631 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001632 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001633
Pete Cooper35b00d52016-08-13 01:05:32 +00001634 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001635 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001636
Pete Cooper35b00d52016-08-13 01:05:32 +00001637 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001638 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1639 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001640
Duncan Sandsba286d72011-10-26 20:55:21 +00001641 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1642 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001643 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1644 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001645 return true;
1646 // X & (-X) is always a power of two or zero.
1647 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1648 return true;
1649 return false;
1650 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001651
David Majnemerb7d54092013-07-30 21:01:36 +00001652 // Adding a power-of-two or zero to the same power-of-two or zero yields
1653 // either the original power-of-two, a larger power-of-two or zero.
1654 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001655 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001656 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1657 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1658 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001659 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001660 return true;
1661 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1662 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001663 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001664 return true;
1665
1666 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001667 KnownBits LHSBits(BitWidth);
1668 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001669
Craig Topperb45eabc2017-04-26 16:39:58 +00001670 KnownBits RHSBits(BitWidth);
1671 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001672 // If i8 V is a power of two or zero:
1673 // ZeroBits: 1 1 1 0 1 1 1 1
1674 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001675 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001676 // If OrZero isn't set, we cannot give back a zero result.
1677 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001678 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001679 return true;
1680 }
1681 }
David Majnemerbeab5672013-05-18 19:30:37 +00001682
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001683 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001684 // is a power of two only if the first operand is a power of two and not
1685 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001686 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1687 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001688 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001689 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001690 }
1691
Duncan Sandsd3951082011-01-25 09:38:29 +00001692 return false;
1693}
1694
Chandler Carruth80d3e562012-12-07 02:08:58 +00001695/// \brief Test whether a GEP's result is known to be non-null.
1696///
1697/// Uses properties inherent in a GEP to try to determine whether it is known
1698/// to be non-null.
1699///
1700/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001701static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001702 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001703 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1704 return false;
1705
1706 // FIXME: Support vector-GEPs.
1707 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1708
1709 // If the base pointer is non-null, we cannot walk to a null address with an
1710 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001712 return true;
1713
Chandler Carruth80d3e562012-12-07 02:08:58 +00001714 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1715 // If so, then the GEP cannot produce a null pointer, as doing so would
1716 // inherently violate the inbounds contract within address space zero.
1717 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1718 GTI != GTE; ++GTI) {
1719 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001720 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001721 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1722 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001724 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1725 if (ElementOffset > 0)
1726 return true;
1727 continue;
1728 }
1729
1730 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001731 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001732 continue;
1733
1734 // Fast path the constant operand case both for efficiency and so we don't
1735 // increment Depth when just zipping down an all-constant GEP.
1736 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1737 if (!OpC->isZero())
1738 return true;
1739 continue;
1740 }
1741
1742 // We post-increment Depth here because while isKnownNonZero increments it
1743 // as well, when we pop back up that increment won't persist. We don't want
1744 // to recurse 10k times just because we have 10k GEP operands. We don't
1745 // bail completely out because we want to handle constant GEPs regardless
1746 // of depth.
1747 if (Depth++ >= MaxDepth)
1748 continue;
1749
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001750 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001751 return true;
1752 }
1753
1754 return false;
1755}
1756
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001757/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1758/// ensure that the value it's attached to is never Value? 'RangeType' is
1759/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001760static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001761 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1762 assert(NumRanges >= 1);
1763 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001764 ConstantInt *Lower =
1765 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1766 ConstantInt *Upper =
1767 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001768 ConstantRange Range(Lower->getValue(), Upper->getValue());
1769 if (Range.contains(Value))
1770 return false;
1771 }
1772 return true;
1773}
1774
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001775/// Return true if the given value is known to be non-zero when defined. For
1776/// vectors, return true if every element is known to be non-zero when
1777/// defined. For pointers, if the context instruction and dominator tree are
1778/// specified, perform context-sensitive analysis and return true if the
1779/// pointer couldn't possibly be null at the specified instruction.
1780/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001781bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001782 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001783 if (C->isNullValue())
1784 return false;
1785 if (isa<ConstantInt>(C))
1786 // Must be non-zero due to null test above.
1787 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001788
1789 // For constant vectors, check that all elements are undefined or known
1790 // non-zero to determine that the whole vector is known non-zero.
1791 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1792 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1793 Constant *Elt = C->getAggregateElement(i);
1794 if (!Elt || Elt->isNullValue())
1795 return false;
1796 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1797 return false;
1798 }
1799 return true;
1800 }
1801
Duncan Sandsd3951082011-01-25 09:38:29 +00001802 return false;
1803 }
1804
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001805 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001806 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001807 // If the possible ranges don't contain zero, then the value is
1808 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001809 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001810 const APInt ZeroValue(Ty->getBitWidth(), 0);
1811 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1812 return true;
1813 }
1814 }
1815 }
1816
Duncan Sandsd3951082011-01-25 09:38:29 +00001817 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001818 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001819 return false;
1820
Chandler Carruth80d3e562012-12-07 02:08:58 +00001821 // Check for pointer simplifications.
1822 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001823 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001824 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001825 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001826 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001827 return true;
1828 }
1829
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001830 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001831
1832 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001833 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001834 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001835 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001836
1837 // ext X != 0 if X != 0.
1838 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001839 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001840
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001841 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001842 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001843 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001844 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001845 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001846 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001847 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001848
Craig Topperb45eabc2017-04-26 16:39:58 +00001849 KnownBits Known(BitWidth);
1850 computeKnownBits(X, Known, Depth, Q);
1851 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001852 return true;
1853 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001854 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001855 // defined if the sign bit is shifted off the end.
1856 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001857 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001858 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001859 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001860 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001861
Craig Topper6e11a052017-05-08 16:22:48 +00001862 KnownBits Known = computeKnownBits(X, Depth, Q);
1863 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001864 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001865
1866 // If the shifter operand is a constant, and all of the bits shifted
1867 // out are known to be zero, and X is known non-zero then at least one
1868 // non-zero bit must remain.
1869 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001870 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1871 // Is there a known one in the portion not shifted out?
Craig Topperb45eabc2017-04-26 16:39:58 +00001872 if (Known.One.countLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001873 return true;
1874 // Are all the bits to be shifted out known zero?
Craig Topperb45eabc2017-04-26 16:39:58 +00001875 if (Known.Zero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001876 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001877 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001878 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001879 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001880 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001881 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001882 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001883 // X + Y.
1884 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001885 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1886 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001887
1888 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001889 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001890 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001891 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001892 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001893
1894 // If X and Y are both negative (as signed values) then their sum is not
1895 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001896 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001897 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1898 // The sign bit of X is set. If some other bit is set then X is not equal
1899 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001900 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001901 return true;
1902 // The sign bit of Y is set. If some other bit is set then Y is not equal
1903 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001904 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001905 return true;
1906 }
1907
1908 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001909 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001910 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001911 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001912 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001914 return true;
1915 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001916 // X * Y.
1917 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001918 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001919 // If X and Y are non-zero then so is X * Y as long as the multiplication
1920 // does not overflow.
1921 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001922 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001923 return true;
1924 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001925 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001926 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001927 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1928 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001929 return true;
1930 }
James Molloy897048b2015-09-29 14:08:45 +00001931 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001932 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001933 // Try and detect a recurrence that monotonically increases from a
1934 // starting value, as these are common as induction variables.
1935 if (PN->getNumIncomingValues() == 2) {
1936 Value *Start = PN->getIncomingValue(0);
1937 Value *Induction = PN->getIncomingValue(1);
1938 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1939 std::swap(Start, Induction);
1940 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1941 if (!C->isZero() && !C->isNegative()) {
1942 ConstantInt *X;
1943 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1944 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1945 !X->isNegative())
1946 return true;
1947 }
1948 }
1949 }
Jun Bum Limca832662016-02-01 17:03:07 +00001950 // Check if all incoming values are non-zero constant.
1951 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1952 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1953 });
1954 if (AllNonZeroConstants)
1955 return true;
James Molloy897048b2015-09-29 14:08:45 +00001956 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001957
Craig Topperb45eabc2017-04-26 16:39:58 +00001958 KnownBits Known(BitWidth);
1959 computeKnownBits(V, Known, Depth, Q);
1960 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00001961}
1962
James Molloy1d88d6f2015-10-22 13:18:42 +00001963/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001964static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1965 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001966 if (!BO || BO->getOpcode() != Instruction::Add)
1967 return false;
1968 Value *Op = nullptr;
1969 if (V2 == BO->getOperand(0))
1970 Op = BO->getOperand(1);
1971 else if (V2 == BO->getOperand(1))
1972 Op = BO->getOperand(0);
1973 else
1974 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001975 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001976}
1977
1978/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001979static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001980 if (V1->getType()->isVectorTy() || V1 == V2)
1981 return false;
1982 if (V1->getType() != V2->getType())
1983 // We can't look through casts yet.
1984 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001985 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001986 return true;
1987
1988 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1989 // Are any known bits in V1 contradictory to known bits in V2? If V1
1990 // has a known zero where V2 has a known one, they must not be equal.
1991 auto BitWidth = Ty->getBitWidth();
Craig Topperb45eabc2017-04-26 16:39:58 +00001992 KnownBits Known1(BitWidth);
1993 computeKnownBits(V1, Known1, 0, Q);
1994 KnownBits Known2(BitWidth);
1995 computeKnownBits(V2, Known2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001996
Craig Topperb45eabc2017-04-26 16:39:58 +00001997 APInt OppositeBits = (Known1.Zero & Known2.One) |
1998 (Known2.Zero & Known1.One);
James Molloy1d88d6f2015-10-22 13:18:42 +00001999 if (OppositeBits.getBoolValue())
2000 return true;
2001 }
2002 return false;
2003}
2004
Sanjay Patelaee84212014-11-04 16:27:42 +00002005/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2006/// simplify operations downstream. Mask is known to be zero for bits that V
2007/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002008///
2009/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002010/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002011/// where V is a vector, the mask, known zero, and known one values are the
2012/// same width as the vector element, and the bit is set only if it is true
2013/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002014bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002015 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002016 KnownBits Known(Mask.getBitWidth());
2017 computeKnownBits(V, Known, Depth, Q);
2018 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002019}
2020
Sanjay Patela06d9892016-06-22 19:20:59 +00002021/// For vector constants, loop over the elements and find the constant with the
2022/// minimum number of sign bits. Return 0 if the value is not a vector constant
2023/// or if any element was not analyzed; otherwise, return the count for the
2024/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002025static unsigned computeNumSignBitsVectorConstant(const Value *V,
2026 unsigned TyBits) {
2027 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002028 if (!CV || !CV->getType()->isVectorTy())
2029 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002030
Sanjay Patela06d9892016-06-22 19:20:59 +00002031 unsigned MinSignBits = TyBits;
2032 unsigned NumElts = CV->getType()->getVectorNumElements();
2033 for (unsigned i = 0; i != NumElts; ++i) {
2034 // If we find a non-ConstantInt, bail out.
2035 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2036 if (!Elt)
2037 return 0;
2038
2039 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2040 APInt EltVal = Elt->getValue();
2041 if (EltVal.isNegative())
2042 EltVal = ~EltVal;
2043 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2044 }
2045
2046 return MinSignBits;
2047}
Chris Lattner965c7692008-06-02 01:18:21 +00002048
Sanjoy Das39a684d2017-02-25 20:30:45 +00002049static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2050 const Query &Q);
2051
2052static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2053 const Query &Q) {
2054 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2055 assert(Result > 0 && "At least one sign bit needs to be present!");
2056 return Result;
2057}
2058
Sanjay Patelaee84212014-11-04 16:27:42 +00002059/// Return the number of times the sign bit of the register is replicated into
2060/// the other bits. We know that at least 1 bit is always equal to the sign bit
2061/// (itself), but other cases can give us information. For example, immediately
2062/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002063/// other, so we return 3. For vectors, return the number of sign bits for the
2064/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002065static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2066 const Query &Q) {
2067
2068 // We return the minimum number of sign bits that are guaranteed to be present
2069 // in V, so for undef we have to conservatively return 1. We don't have the
2070 // same behavior for poison though -- that's a FIXME today.
2071
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002072 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002073 unsigned Tmp, Tmp2;
2074 unsigned FirstAnswer = 1;
2075
Jay Foada0653a32014-05-14 21:14:37 +00002076 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002077 // below.
2078
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002079 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002080 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002081
Pete Cooper35b00d52016-08-13 01:05:32 +00002082 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002083 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002084 default: break;
2085 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002086 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002087 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002088
Nadav Rotemc99a3872015-03-06 00:23:58 +00002089 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002090 const APInt *Denominator;
2091 // sdiv X, C -> adds log(C) sign bits.
2092 if (match(U->getOperand(1), m_APInt(Denominator))) {
2093
2094 // Ignore non-positive denominator.
2095 if (!Denominator->isStrictlyPositive())
2096 break;
2097
2098 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002099 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002100
2101 // Add floor(log(C)) bits to the numerator bits.
2102 return std::min(TyBits, NumBits + Denominator->logBase2());
2103 }
2104 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002105 }
2106
2107 case Instruction::SRem: {
2108 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002109 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2110 // positive constant. This let us put a lower bound on the number of sign
2111 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002112 if (match(U->getOperand(1), m_APInt(Denominator))) {
2113
2114 // Ignore non-positive denominator.
2115 if (!Denominator->isStrictlyPositive())
2116 break;
2117
2118 // Calculate the incoming numerator bits. SRem by a positive constant
2119 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002120 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002121 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002122
2123 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002124 // denominator. Given that the denominator is positive, there are two
2125 // cases:
2126 //
2127 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2128 // (1 << ceilLogBase2(C)).
2129 //
2130 // 2. the numerator is negative. Then the result range is (-C,0] and
2131 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2132 //
2133 // Thus a lower bound on the number of sign bits is `TyBits -
2134 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002135
Sanjoy Dase561fee2015-03-25 22:33:53 +00002136 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002137 return std::max(NumrBits, ResBits);
2138 }
2139 break;
2140 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002141
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002142 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002143 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002144 // ashr X, C -> adds C sign bits. Vectors too.
2145 const APInt *ShAmt;
2146 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002147 unsigned ShAmtLimited = ShAmt->getZExtValue();
2148 if (ShAmtLimited >= TyBits)
2149 break; // Bad shift.
2150 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002151 if (Tmp > TyBits) Tmp = TyBits;
2152 }
2153 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002154 }
2155 case Instruction::Shl: {
2156 const APInt *ShAmt;
2157 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002158 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002159 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002160 Tmp2 = ShAmt->getZExtValue();
2161 if (Tmp2 >= TyBits || // Bad shift.
2162 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2163 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002164 }
2165 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002166 }
Chris Lattner965c7692008-06-02 01:18:21 +00002167 case Instruction::And:
2168 case Instruction::Or:
2169 case Instruction::Xor: // NOT is handled here.
2170 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002171 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002172 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002173 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002174 FirstAnswer = std::min(Tmp, Tmp2);
2175 // We computed what we know about the sign bits as our first
2176 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002177 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002178 }
2179 break;
2180
2181 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002182 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002183 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002184 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002185 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002186
Chris Lattner965c7692008-06-02 01:18:21 +00002187 case Instruction::Add:
2188 // Add can have at most one carry bit. Thus we know that the output
2189 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002190 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002191 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002192
Chris Lattner965c7692008-06-02 01:18:21 +00002193 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002194 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002195 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002196 KnownBits Known(TyBits);
2197 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002198
Chris Lattner965c7692008-06-02 01:18:21 +00002199 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2200 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002201 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002202 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002203
Chris Lattner965c7692008-06-02 01:18:21 +00002204 // If we are subtracting one from a positive number, there is no carry
2205 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002206 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002207 return Tmp;
2208 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002209
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002210 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002211 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002212 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002213
Chris Lattner965c7692008-06-02 01:18:21 +00002214 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002215 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002216 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002217
Chris Lattner965c7692008-06-02 01:18:21 +00002218 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002219 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002220 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002221 KnownBits Known(TyBits);
2222 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002223 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2224 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002225 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002226 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002227
Chris Lattner965c7692008-06-02 01:18:21 +00002228 // If the input is known to be positive (the sign bit is known clear),
2229 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002230 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002231 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 // Otherwise, we treat this like a SUB.
2234 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002235
Chris Lattner965c7692008-06-02 01:18:21 +00002236 // Sub can have at most one carry bit. Thus we know that the output
2237 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002238 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002239 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002240 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002241
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002242 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002243 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002244 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002245 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002246 if (NumIncomingValues > 4) break;
2247 // Unreachable blocks may have zero-operand PHI nodes.
2248 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002249
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002250 // Take the minimum of all incoming values. This can't infinitely loop
2251 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002252 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002253 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002254 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002255 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002256 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002257 }
2258 return Tmp;
2259 }
2260
Chris Lattner965c7692008-06-02 01:18:21 +00002261 case Instruction::Trunc:
2262 // FIXME: it's tricky to do anything useful for this, but it is an important
2263 // case for targets like X86.
2264 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002265
2266 case Instruction::ExtractElement:
2267 // Look through extract element. At the moment we keep this simple and skip
2268 // tracking the specific element. But at least we might find information
2269 // valid for all elements of the vector (for example if vector is sign
2270 // extended, shifted, etc).
2271 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002272 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002273
Chris Lattner965c7692008-06-02 01:18:21 +00002274 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2275 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002276
2277 // If we can examine all elements of a vector constant successfully, we're
2278 // done (we can't do any better than that). If not, keep trying.
2279 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2280 return VecSignBits;
2281
Craig Topperb45eabc2017-04-26 16:39:58 +00002282 KnownBits Known(TyBits);
2283 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002284
Sanjay Patele0536212016-06-23 17:41:59 +00002285 // If we know that the sign bit is either zero or one, determine the number of
2286 // identical bits in the top of the input value.
Craig Topperca48af32017-04-29 16:43:11 +00002287 if (Known.isNonNegative())
Craig Topperb45eabc2017-04-26 16:39:58 +00002288 return std::max(FirstAnswer, Known.Zero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002289
Craig Topperca48af32017-04-29 16:43:11 +00002290 if (Known.isNegative())
Craig Topperb45eabc2017-04-26 16:39:58 +00002291 return std::max(FirstAnswer, Known.One.countLeadingOnes());
Sanjay Patele0536212016-06-23 17:41:59 +00002292
2293 // computeKnownBits gave us no extra information about the top bits.
2294 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002295}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002296
Sanjay Patelaee84212014-11-04 16:27:42 +00002297/// This function computes the integer multiple of Base that equals V.
2298/// If successful, it returns true and returns the multiple in
2299/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002300/// through SExt instructions only if LookThroughSExt is true.
2301bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002302 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002303 const unsigned MaxDepth = 6;
2304
Dan Gohman6a976bb2009-11-18 00:58:27 +00002305 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002306 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002307 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002308
Chris Lattner229907c2011-07-18 04:54:35 +00002309 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002310
Dan Gohman6a976bb2009-11-18 00:58:27 +00002311 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002312
2313 if (Base == 0)
2314 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002315
Victor Hernandez47444882009-11-10 08:28:35 +00002316 if (Base == 1) {
2317 Multiple = V;
2318 return true;
2319 }
2320
2321 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2322 Constant *BaseVal = ConstantInt::get(T, Base);
2323 if (CO && CO == BaseVal) {
2324 // Multiple is 1.
2325 Multiple = ConstantInt::get(T, 1);
2326 return true;
2327 }
2328
2329 if (CI && CI->getZExtValue() % Base == 0) {
2330 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002331 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002332 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002333
Victor Hernandez47444882009-11-10 08:28:35 +00002334 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002335
Victor Hernandez47444882009-11-10 08:28:35 +00002336 Operator *I = dyn_cast<Operator>(V);
2337 if (!I) return false;
2338
2339 switch (I->getOpcode()) {
2340 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002341 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002342 if (!LookThroughSExt) return false;
2343 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002344 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002345 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2346 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002347 case Instruction::Shl:
2348 case Instruction::Mul: {
2349 Value *Op0 = I->getOperand(0);
2350 Value *Op1 = I->getOperand(1);
2351
2352 if (I->getOpcode() == Instruction::Shl) {
2353 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2354 if (!Op1CI) return false;
2355 // Turn Op0 << Op1 into Op0 * 2^Op1
2356 APInt Op1Int = Op1CI->getValue();
2357 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002358 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002359 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002360 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002361 }
2362
Craig Topper9f008862014-04-15 04:59:12 +00002363 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002364 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2365 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2366 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002367 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002368 MulC->getType()->getPrimitiveSizeInBits())
2369 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002370 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002371 MulC->getType()->getPrimitiveSizeInBits())
2372 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002373
Chris Lattner72d283c2010-09-05 17:20:46 +00002374 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2375 Multiple = ConstantExpr::getMul(MulC, Op1C);
2376 return true;
2377 }
Victor Hernandez47444882009-11-10 08:28:35 +00002378
2379 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2380 if (Mul0CI->getValue() == 1) {
2381 // V == Base * Op1, so return Op1
2382 Multiple = Op1;
2383 return true;
2384 }
2385 }
2386
Craig Topper9f008862014-04-15 04:59:12 +00002387 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002388 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2389 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2390 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002391 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002392 MulC->getType()->getPrimitiveSizeInBits())
2393 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002394 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002395 MulC->getType()->getPrimitiveSizeInBits())
2396 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002397
Chris Lattner72d283c2010-09-05 17:20:46 +00002398 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2399 Multiple = ConstantExpr::getMul(MulC, Op0C);
2400 return true;
2401 }
Victor Hernandez47444882009-11-10 08:28:35 +00002402
2403 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2404 if (Mul1CI->getValue() == 1) {
2405 // V == Base * Op0, so return Op0
2406 Multiple = Op0;
2407 return true;
2408 }
2409 }
Victor Hernandez47444882009-11-10 08:28:35 +00002410 }
2411 }
2412
2413 // We could not determine if V is a multiple of Base.
2414 return false;
2415}
2416
David Majnemerb4b27232016-04-19 19:10:21 +00002417Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2418 const TargetLibraryInfo *TLI) {
2419 const Function *F = ICS.getCalledFunction();
2420 if (!F)
2421 return Intrinsic::not_intrinsic;
2422
2423 if (F->isIntrinsic())
2424 return F->getIntrinsicID();
2425
2426 if (!TLI)
2427 return Intrinsic::not_intrinsic;
2428
David L. Jonesd21529f2017-01-23 23:16:46 +00002429 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002430 // We're going to make assumptions on the semantics of the functions, check
2431 // that the target knows that it's available in this environment and it does
2432 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002433 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2434 return Intrinsic::not_intrinsic;
2435
2436 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002437 return Intrinsic::not_intrinsic;
2438
2439 // Otherwise check if we have a call to a function that can be turned into a
2440 // vector intrinsic.
2441 switch (Func) {
2442 default:
2443 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002444 case LibFunc_sin:
2445 case LibFunc_sinf:
2446 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002447 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002448 case LibFunc_cos:
2449 case LibFunc_cosf:
2450 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002451 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002452 case LibFunc_exp:
2453 case LibFunc_expf:
2454 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002455 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002456 case LibFunc_exp2:
2457 case LibFunc_exp2f:
2458 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002459 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002460 case LibFunc_log:
2461 case LibFunc_logf:
2462 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002463 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002464 case LibFunc_log10:
2465 case LibFunc_log10f:
2466 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002467 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002468 case LibFunc_log2:
2469 case LibFunc_log2f:
2470 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002471 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002472 case LibFunc_fabs:
2473 case LibFunc_fabsf:
2474 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002475 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002476 case LibFunc_fmin:
2477 case LibFunc_fminf:
2478 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002479 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002480 case LibFunc_fmax:
2481 case LibFunc_fmaxf:
2482 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002483 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002484 case LibFunc_copysign:
2485 case LibFunc_copysignf:
2486 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002487 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002488 case LibFunc_floor:
2489 case LibFunc_floorf:
2490 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002491 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002492 case LibFunc_ceil:
2493 case LibFunc_ceilf:
2494 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002495 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002496 case LibFunc_trunc:
2497 case LibFunc_truncf:
2498 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002499 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002500 case LibFunc_rint:
2501 case LibFunc_rintf:
2502 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002503 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002504 case LibFunc_nearbyint:
2505 case LibFunc_nearbyintf:
2506 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002507 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002508 case LibFunc_round:
2509 case LibFunc_roundf:
2510 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002511 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002512 case LibFunc_pow:
2513 case LibFunc_powf:
2514 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002515 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002516 case LibFunc_sqrt:
2517 case LibFunc_sqrtf:
2518 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002519 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002520 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002521 return Intrinsic::not_intrinsic;
2522 }
2523
2524 return Intrinsic::not_intrinsic;
2525}
2526
Sanjay Patelaee84212014-11-04 16:27:42 +00002527/// Return true if we can prove that the specified FP value is never equal to
2528/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002529///
2530/// NOTE: this function will need to be revisited when we support non-default
2531/// rounding modes!
2532///
David Majnemer3ee5f342016-04-13 06:55:52 +00002533bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2534 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002535 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2536 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002537
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002538 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002539 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002540
Dan Gohman80ca01c2009-07-17 20:47:02 +00002541 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002542 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002543
2544 // Check if the nsz fast-math flag is set
2545 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2546 if (FPO->hasNoSignedZeros())
2547 return true;
2548
Chris Lattnera12a6de2008-06-02 01:29:46 +00002549 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002550 if (I->getOpcode() == Instruction::FAdd)
2551 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2552 if (CFP->isNullValue())
2553 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002554
Chris Lattnera12a6de2008-06-02 01:29:46 +00002555 // sitofp and uitofp turn into +0.0 for zero.
2556 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2557 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002558
David Majnemer3ee5f342016-04-13 06:55:52 +00002559 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002560 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002561 switch (IID) {
2562 default:
2563 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002564 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002565 case Intrinsic::sqrt:
2566 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2567 // fabs(x) != -0.0
2568 case Intrinsic::fabs:
2569 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002570 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002571 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002572
Chris Lattnera12a6de2008-06-02 01:29:46 +00002573 return false;
2574}
2575
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002576/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2577/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2578/// bit despite comparing equal.
2579static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2580 const TargetLibraryInfo *TLI,
2581 bool SignBitOnly,
2582 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002583 // TODO: This function does not do the right thing when SignBitOnly is true
2584 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2585 // which flips the sign bits of NaNs. See
2586 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2587
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002588 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2589 return !CFP->getValueAPF().isNegative() ||
2590 (!SignBitOnly && CFP->getValueAPF().isZero());
2591 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002592
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002593 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002594 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002595
2596 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002597 if (!I)
2598 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002599
2600 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002601 default:
2602 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002603 // Unsigned integers are always nonnegative.
2604 case Instruction::UIToFP:
2605 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002606 case Instruction::FMul:
2607 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002608 if (I->getOperand(0) == I->getOperand(1) &&
2609 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002610 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002611
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002612 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002613 case Instruction::FAdd:
2614 case Instruction::FDiv:
2615 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002616 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2617 Depth + 1) &&
2618 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2619 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002620 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002621 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2622 Depth + 1) &&
2623 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2624 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002625 case Instruction::FPExt:
2626 case Instruction::FPTrunc:
2627 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002628 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2629 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002630 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002631 const auto *CI = cast<CallInst>(I);
2632 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002633 switch (IID) {
2634 default:
2635 break;
2636 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002637 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2638 Depth + 1) ||
2639 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2640 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002641 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002642 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2643 Depth + 1) &&
2644 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2645 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002646 case Intrinsic::exp:
2647 case Intrinsic::exp2:
2648 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002649 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002650
2651 case Intrinsic::sqrt:
2652 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2653 if (!SignBitOnly)
2654 return true;
2655 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2656 CannotBeNegativeZero(CI->getOperand(0), TLI));
2657
David Majnemer3ee5f342016-04-13 06:55:52 +00002658 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002659 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002660 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002661 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002662 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002663 }
Justin Lebar322c1272017-01-27 00:58:34 +00002664 // TODO: This is not correct. Given that exp is an integer, here are the
2665 // ways that pow can return a negative value:
2666 //
2667 // pow(x, exp) --> negative if exp is odd and x is negative.
2668 // pow(-0, exp) --> -inf if exp is negative odd.
2669 // pow(-0, exp) --> -0 if exp is positive odd.
2670 // pow(-inf, exp) --> -0 if exp is negative odd.
2671 // pow(-inf, exp) --> -inf if exp is positive odd.
2672 //
2673 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2674 // but we must return false if x == -0. Unfortunately we do not currently
2675 // have a way of expressing this constraint. See details in
2676 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2678 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002679
David Majnemer3ee5f342016-04-13 06:55:52 +00002680 case Intrinsic::fma:
2681 case Intrinsic::fmuladd:
2682 // x*x+y is non-negative if y is non-negative.
2683 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002684 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2686 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002687 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002688 break;
2689 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002690 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002691}
2692
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002693bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2694 const TargetLibraryInfo *TLI) {
2695 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2696}
2697
2698bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2699 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2700}
2701
Sanjay Patelaee84212014-11-04 16:27:42 +00002702/// If the specified value can be set by repeating the same byte in memory,
2703/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002704/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2705/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2706/// byte store (e.g. i16 0x1234), return null.
2707Value *llvm::isBytewiseValue(Value *V) {
2708 // All byte-wide stores are splatable, even of arbitrary variables.
2709 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002710
2711 // Handle 'null' ConstantArrayZero etc.
2712 if (Constant *C = dyn_cast<Constant>(V))
2713 if (C->isNullValue())
2714 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002715
Chris Lattner9cb10352010-12-26 20:15:01 +00002716 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002717 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002718 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2719 if (CFP->getType()->isFloatTy())
2720 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2721 if (CFP->getType()->isDoubleTy())
2722 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2723 // Don't handle long double formats, which have strange constraints.
2724 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002725
Benjamin Kramer17d90152015-02-07 19:29:02 +00002726 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002727 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002728 if (CI->getBitWidth() % 8 == 0) {
2729 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002730
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002731 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002732 return nullptr;
2733 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002734 }
2735 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002736
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002737 // A ConstantDataArray/Vector is splatable if all its members are equal and
2738 // also splatable.
2739 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2740 Value *Elt = CA->getElementAsConstant(0);
2741 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002742 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002743 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002744
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002745 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2746 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002747 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002748
Chris Lattner9cb10352010-12-26 20:15:01 +00002749 return Val;
2750 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002751
Chris Lattner9cb10352010-12-26 20:15:01 +00002752 // Conceptually, we could handle things like:
2753 // %a = zext i8 %X to i16
2754 // %b = shl i16 %a, 8
2755 // %c = or i16 %a, %b
2756 // but until there is an example that actually needs this, it doesn't seem
2757 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002758 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002759}
2760
2761
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002762// This is the recursive version of BuildSubAggregate. It takes a few different
2763// arguments. Idxs is the index within the nested struct From that we are
2764// looking at now (which is of type IndexedType). IdxSkip is the number of
2765// indices from Idxs that should be left out when inserting into the resulting
2766// struct. To is the result struct built so far, new insertvalue instructions
2767// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002768static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002769 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002770 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002771 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002772 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002773 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002774 // Save the original To argument so we can modify it
2775 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002776 // General case, the type indexed by Idxs is a struct
2777 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2778 // Process each struct element recursively
2779 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002780 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002781 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002782 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002783 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002784 if (!To) {
2785 // Couldn't find any inserted value for this index? Cleanup
2786 while (PrevTo != OrigTo) {
2787 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2788 PrevTo = Del->getAggregateOperand();
2789 Del->eraseFromParent();
2790 }
2791 // Stop processing elements
2792 break;
2793 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002794 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002795 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002796 if (To)
2797 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002798 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002799 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2800 // the struct's elements had a value that was inserted directly. In the latter
2801 // case, perhaps we can't determine each of the subelements individually, but
2802 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002803
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002804 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002805 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002806
2807 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002808 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002809
2810 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002811 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002812 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002813}
2814
2815// This helper takes a nested struct and extracts a part of it (which is again a
2816// struct) into a new value. For example, given the struct:
2817// { a, { b, { c, d }, e } }
2818// and the indices "1, 1" this returns
2819// { c, d }.
2820//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002821// It does this by inserting an insertvalue for each element in the resulting
2822// struct, as opposed to just inserting a single struct. This will only work if
2823// each of the elements of the substruct are known (ie, inserted into From by an
2824// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002825//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002826// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002827static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002828 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002829 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002830 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002831 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002832 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002833 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002834 unsigned IdxSkip = Idxs.size();
2835
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002836 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002837}
2838
Sanjay Patelaee84212014-11-04 16:27:42 +00002839/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002840/// the scalar value indexed is already around as a register, for example if it
2841/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002842///
2843/// If InsertBefore is not null, this function will duplicate (modified)
2844/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002845Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2846 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002847 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002848 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002849 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002850 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002851 // We have indices, so V should have an indexable type.
2852 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2853 "Not looking at a struct or array?");
2854 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2855 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002856
Chris Lattner67058832012-01-25 06:48:06 +00002857 if (Constant *C = dyn_cast<Constant>(V)) {
2858 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002859 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002860 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2861 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002862
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002863 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002864 // Loop the indices for the insertvalue instruction in parallel with the
2865 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002866 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002867 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2868 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002869 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002870 // We can't handle this without inserting insertvalues
2871 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002872 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002873
2874 // The requested index identifies a part of a nested aggregate. Handle
2875 // this specially. For example,
2876 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2877 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2878 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2879 // This can be changed into
2880 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2881 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2882 // which allows the unused 0,0 element from the nested struct to be
2883 // removed.
2884 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2885 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002886 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002887
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002888 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002889 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002890 // looking for, then.
2891 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002892 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002893 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002894 }
2895 // If we end up here, the indices of the insertvalue match with those
2896 // requested (though possibly only partially). Now we recursively look at
2897 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002898 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002899 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002900 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002901 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002902
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002903 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002904 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002905 // something else, we can extract from that something else directly instead.
2906 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002907
2908 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002909 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002910 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002911 SmallVector<unsigned, 5> Idxs;
2912 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002913 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002914 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002915
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002916 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002917 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002918
Craig Topper1bef2c82012-12-22 19:15:35 +00002919 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002920 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002921
Jay Foad57aa6362011-07-13 10:26:04 +00002922 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002923 }
2924 // Otherwise, we don't know (such as, extracting from a function return value
2925 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002926 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002927}
Evan Chengda3db112008-06-30 07:31:25 +00002928
Sanjay Patelaee84212014-11-04 16:27:42 +00002929/// Analyze the specified pointer to see if it can be expressed as a base
2930/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002931Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002932 const DataLayout &DL) {
2933 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002934 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002935
2936 // We walk up the defs but use a visited set to handle unreachable code. In
2937 // that case, we stop after accumulating the cycle once (not that it
2938 // matters).
2939 SmallPtrSet<Value *, 16> Visited;
2940 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002941 if (Ptr->getType()->isVectorTy())
2942 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002943
Nuno Lopes368c4d02012-12-31 20:48:35 +00002944 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002945 // If one of the values we have visited is an addrspacecast, then
2946 // the pointer type of this GEP may be different from the type
2947 // of the Ptr parameter which was passed to this function. This
2948 // means when we construct GEPOffset, we need to use the size
2949 // of GEP's pointer type rather than the size of the original
2950 // pointer type.
2951 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002952 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2953 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002954
Tom Stellard17eb3412016-10-07 14:23:29 +00002955 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002956
Nuno Lopes368c4d02012-12-31 20:48:35 +00002957 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002958 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2959 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002960 Ptr = cast<Operator>(Ptr)->getOperand(0);
2961 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002962 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002963 break;
2964 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002965 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002966 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002967 }
2968 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002969 Offset = ByteOffset.getSExtValue();
2970 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002971}
2972
David L Kreitzer752c1442016-04-13 14:31:06 +00002973bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2974 // Make sure the GEP has exactly three arguments.
2975 if (GEP->getNumOperands() != 3)
2976 return false;
2977
2978 // Make sure the index-ee is a pointer to array of i8.
2979 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2980 if (!AT || !AT->getElementType()->isIntegerTy(8))
2981 return false;
2982
2983 // Check to make sure that the first operand of the GEP is an integer and
2984 // has value 0 so that we are sure we're indexing into the initializer.
2985 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2986 if (!FirstIdx || !FirstIdx->isZero())
2987 return false;
2988
2989 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002990}
Chris Lattnere28618d2010-11-30 22:25:26 +00002991
Sanjay Patelaee84212014-11-04 16:27:42 +00002992/// This function computes the length of a null-terminated C string pointed to
2993/// by V. If successful, it returns true and returns the string in Str.
2994/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002995bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2996 uint64_t Offset, bool TrimAtNul) {
2997 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002998
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002999 // Look through bitcast instructions and geps.
3000 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003001
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003002 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003003 // offset.
3004 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003005 // The GEP operator should be based on a pointer to string constant, and is
3006 // indexing into the string constant.
3007 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003008 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003009
Evan Chengda3db112008-06-30 07:31:25 +00003010 // If the second index isn't a ConstantInt, then this is a variable index
3011 // into the array. If this occurs, we can't say anything meaningful about
3012 // the string.
3013 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003014 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003015 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003016 else
3017 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003018 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3019 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003020 }
Nick Lewycky46209882011-10-20 00:34:35 +00003021
Evan Chengda3db112008-06-30 07:31:25 +00003022 // The GEP instruction, constant or instruction, must reference a global
3023 // variable that is a constant and is initialized. The referenced constant
3024 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003025 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003026 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003027 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003028
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003029 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003030 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003031 // This is a degenerate case. The initializer is constant zero so the
3032 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003033 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003034 return true;
3035 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003036
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003037 // This must be a ConstantDataArray.
3038 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003039 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003040 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003041
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003042 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003043 uint64_t NumElts = Array->getType()->getArrayNumElements();
3044
3045 // Start out with the entire array in the StringRef.
3046 Str = Array->getAsString();
3047
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003048 if (Offset > NumElts)
3049 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003050
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003051 // Skip over 'offset' bytes.
3052 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003053
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003054 if (TrimAtNul) {
3055 // Trim off the \0 and anything after it. If the array is not nul
3056 // terminated, we just return the whole end of string. The client may know
3057 // some other way that the string is length-bound.
3058 Str = Str.substr(0, Str.find('\0'));
3059 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003060 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003061}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003062
3063// These next two are very similar to the above, but also look through PHI
3064// nodes.
3065// TODO: See if we can integrate these two together.
3066
Sanjay Patelaee84212014-11-04 16:27:42 +00003067/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003068/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003069static uint64_t GetStringLengthH(const Value *V,
3070 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003071 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003072 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003073
3074 // If this is a PHI node, there are two cases: either we have already seen it
3075 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003076 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003077 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003078 return ~0ULL; // already in the set.
3079
3080 // If it was new, see if all the input strings are the same length.
3081 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003082 for (Value *IncValue : PN->incoming_values()) {
3083 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003084 if (Len == 0) return 0; // Unknown length -> unknown.
3085
3086 if (Len == ~0ULL) continue;
3087
3088 if (Len != LenSoFar && LenSoFar != ~0ULL)
3089 return 0; // Disagree -> unknown.
3090 LenSoFar = Len;
3091 }
3092
3093 // Success, all agree.
3094 return LenSoFar;
3095 }
3096
3097 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003098 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003099 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3100 if (Len1 == 0) return 0;
3101 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3102 if (Len2 == 0) return 0;
3103 if (Len1 == ~0ULL) return Len2;
3104 if (Len2 == ~0ULL) return Len1;
3105 if (Len1 != Len2) return 0;
3106 return Len1;
3107 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003108
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003109 // Otherwise, see if we can read the string.
3110 StringRef StrData;
3111 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003112 return 0;
3113
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003114 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003115}
3116
Sanjay Patelaee84212014-11-04 16:27:42 +00003117/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003118/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003119uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003120 if (!V->getType()->isPointerTy()) return 0;
3121
Pete Cooper35b00d52016-08-13 01:05:32 +00003122 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003123 uint64_t Len = GetStringLengthH(V, PHIs);
3124 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3125 // an empty string as a length.
3126 return Len == ~0ULL ? 1 : Len;
3127}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003128
Adam Nemete2b885c2015-04-23 20:09:20 +00003129/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3130/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003131static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3132 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003133 // Find the loop-defined value.
3134 Loop *L = LI->getLoopFor(PN->getParent());
3135 if (PN->getNumIncomingValues() != 2)
3136 return true;
3137
3138 // Find the value from previous iteration.
3139 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3140 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3141 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3142 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3143 return true;
3144
3145 // If a new pointer is loaded in the loop, the pointer references a different
3146 // object in every iteration. E.g.:
3147 // for (i)
3148 // int *p = a[i];
3149 // ...
3150 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3151 if (!L->isLoopInvariant(Load->getPointerOperand()))
3152 return false;
3153 return true;
3154}
3155
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003156Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3157 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003158 if (!V->getType()->isPointerTy())
3159 return V;
3160 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3161 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3162 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003163 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3164 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003165 V = cast<Operator>(V)->getOperand(0);
3166 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003167 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003168 return V;
3169 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003170 } else if (isa<AllocaInst>(V)) {
3171 // An alloca can't be further simplified.
3172 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003173 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003174 if (auto CS = CallSite(V))
3175 if (Value *RV = CS.getReturnedArgOperand()) {
3176 V = RV;
3177 continue;
3178 }
3179
Dan Gohman05b18f12010-12-15 20:49:55 +00003180 // See if InstructionSimplify knows any relevant tricks.
3181 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003182 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003183 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003184 V = Simplified;
3185 continue;
3186 }
3187
Dan Gohmana4fcd242010-12-15 20:02:24 +00003188 return V;
3189 }
3190 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3191 }
3192 return V;
3193}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003194
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003195void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003196 const DataLayout &DL, LoopInfo *LI,
3197 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003198 SmallPtrSet<Value *, 4> Visited;
3199 SmallVector<Value *, 4> Worklist;
3200 Worklist.push_back(V);
3201 do {
3202 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003203 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003204
David Blaikie70573dc2014-11-19 07:49:26 +00003205 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003206 continue;
3207
3208 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3209 Worklist.push_back(SI->getTrueValue());
3210 Worklist.push_back(SI->getFalseValue());
3211 continue;
3212 }
3213
3214 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003215 // If this PHI changes the underlying object in every iteration of the
3216 // loop, don't look through it. Consider:
3217 // int **A;
3218 // for (i) {
3219 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3220 // Curr = A[i];
3221 // *Prev, *Curr;
3222 //
3223 // Prev is tracking Curr one iteration behind so they refer to different
3224 // underlying objects.
3225 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3226 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003227 for (Value *IncValue : PN->incoming_values())
3228 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003229 continue;
3230 }
3231
3232 Objects.push_back(P);
3233 } while (!Worklist.empty());
3234}
3235
Sanjay Patelaee84212014-11-04 16:27:42 +00003236/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003237bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003238 for (const User *U : V->users()) {
3239 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003240 if (!II) return false;
3241
3242 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3243 II->getIntrinsicID() != Intrinsic::lifetime_end)
3244 return false;
3245 }
3246 return true;
3247}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003248
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003249bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3250 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003251 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003252 const Operator *Inst = dyn_cast<Operator>(V);
3253 if (!Inst)
3254 return false;
3255
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003256 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3257 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3258 if (C->canTrap())
3259 return false;
3260
3261 switch (Inst->getOpcode()) {
3262 default:
3263 return true;
3264 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003265 case Instruction::URem: {
3266 // x / y is undefined if y == 0.
3267 const APInt *V;
3268 if (match(Inst->getOperand(1), m_APInt(V)))
3269 return *V != 0;
3270 return false;
3271 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003272 case Instruction::SDiv:
3273 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003274 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003275 const APInt *Numerator, *Denominator;
3276 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3277 return false;
3278 // We cannot hoist this division if the denominator is 0.
3279 if (*Denominator == 0)
3280 return false;
3281 // It's safe to hoist if the denominator is not 0 or -1.
3282 if (*Denominator != -1)
3283 return true;
3284 // At this point we know that the denominator is -1. It is safe to hoist as
3285 // long we know that the numerator is not INT_MIN.
3286 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3287 return !Numerator->isMinSignedValue();
3288 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003289 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003290 }
3291 case Instruction::Load: {
3292 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003293 if (!LI->isUnordered() ||
3294 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003295 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003296 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003297 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003298 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003299 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003300 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3301 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003302 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003303 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003304 auto *CI = cast<const CallInst>(Inst);
3305 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003306
Matt Arsenault6a288c12017-05-03 02:26:10 +00003307 // The called function could have undefined behavior or side-effects, even
3308 // if marked readnone nounwind.
3309 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003310 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003311 case Instruction::VAArg:
3312 case Instruction::Alloca:
3313 case Instruction::Invoke:
3314 case Instruction::PHI:
3315 case Instruction::Store:
3316 case Instruction::Ret:
3317 case Instruction::Br:
3318 case Instruction::IndirectBr:
3319 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003320 case Instruction::Unreachable:
3321 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003322 case Instruction::AtomicRMW:
3323 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003324 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003325 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003326 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003327 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003328 case Instruction::CatchRet:
3329 case Instruction::CleanupPad:
3330 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003331 return false; // Misc instructions which have effects
3332 }
3333}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003334
Quentin Colombet6443cce2015-08-06 18:44:34 +00003335bool llvm::mayBeMemoryDependent(const Instruction &I) {
3336 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3337}
3338
Sanjay Patelaee84212014-11-04 16:27:42 +00003339/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003340bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003341 assert(V->getType()->isPointerTy() && "V must be pointer type");
3342
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003343 // Alloca never returns null, malloc might.
3344 if (isa<AllocaInst>(V)) return true;
3345
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003346 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003347 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003348 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003349
Peter Collingbourne235c2752016-12-08 19:01:00 +00003350 // A global variable in address space 0 is non null unless extern weak
3351 // or an absolute symbol reference. Other address spaces may have null as a
3352 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003353 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003354 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003355 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003356
Sanjoy Das5056e192016-05-07 02:08:22 +00003357 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003358 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003359 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003360
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003361 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003362 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003363 return true;
3364
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003365 return false;
3366}
David Majnemer491331a2015-01-02 07:29:43 +00003367
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003368static bool isKnownNonNullFromDominatingCondition(const Value *V,
3369 const Instruction *CtxI,
3370 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003371 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003372 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003373 assert(CtxI && "Context instruction required for analysis");
3374 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003375
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003376 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003377 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003378 // Avoid massive lists
3379 if (NumUsesExplored >= DomConditionsMaxUses)
3380 break;
3381 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003382
3383 // If the value is used as an argument to a call or invoke, then argument
3384 // attributes may provide an answer about null-ness.
3385 if (auto CS = ImmutableCallSite(U))
3386 if (auto *CalledFunc = CS.getCalledFunction())
3387 for (const Argument &Arg : CalledFunc->args())
3388 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3389 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3390 return true;
3391
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003392 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003393 CmpInst::Predicate Pred;
3394 if (!match(const_cast<User *>(U),
3395 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3396 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003397 continue;
3398
Sanjoy Das987aaa12016-05-07 02:08:24 +00003399 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003400 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3401 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003402
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003403 BasicBlock *NonNullSuccessor =
3404 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3405 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3406 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3407 return true;
3408 } else if (Pred == ICmpInst::ICMP_NE &&
3409 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3410 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003411 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003412 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003413 }
3414 }
3415
3416 return false;
3417}
3418
3419bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003420 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003421 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3422 return false;
3423
Sean Silva45835e72016-07-02 23:47:27 +00003424 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003425 return true;
3426
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003427 if (!CtxI || !DT)
3428 return false;
3429
3430 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003431}
3432
Pete Cooper35b00d52016-08-13 01:05:32 +00003433OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3434 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003435 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003436 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003437 const Instruction *CxtI,
3438 const DominatorTree *DT) {
3439 // Multiplying n * m significant bits yields a result of n + m significant
3440 // bits. If the total number of significant bits does not exceed the
3441 // result bit width (minus 1), there is no overflow.
3442 // This means if we have enough leading zero bits in the operands
3443 // we can guarantee that the result does not overflow.
3444 // Ref: "Hacker's Delight" by Henry Warren
3445 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003446 KnownBits LHSKnown(BitWidth);
3447 KnownBits RHSKnown(BitWidth);
3448 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3449 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003450 // Note that underestimating the number of zero bits gives a more
3451 // conservative answer.
Craig Topperb45eabc2017-04-26 16:39:58 +00003452 unsigned ZeroBits = LHSKnown.Zero.countLeadingOnes() +
3453 RHSKnown.Zero.countLeadingOnes();
David Majnemer491331a2015-01-02 07:29:43 +00003454 // First handle the easy case: if we have enough zero bits there's
3455 // definitely no overflow.
3456 if (ZeroBits >= BitWidth)
3457 return OverflowResult::NeverOverflows;
3458
3459 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003460 APInt LHSMax = ~LHSKnown.Zero;
3461 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003462
3463 // We know the multiply operation doesn't overflow if the maximum values for
3464 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003465 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003466 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003467 if (!MaxOverflow)
3468 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003469
David Majnemerc8a576b2015-01-02 07:29:47 +00003470 // We know it always overflows if multiplying the smallest possible values for
3471 // the operands also results in overflow.
3472 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003473 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003474 if (MinOverflow)
3475 return OverflowResult::AlwaysOverflows;
3476
3477 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003478}
David Majnemer5310c1e2015-01-07 00:39:50 +00003479
Pete Cooper35b00d52016-08-13 01:05:32 +00003480OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3481 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003482 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003483 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003484 const Instruction *CxtI,
3485 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003486 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3487 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3488 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003489
Craig Topper6e11a052017-05-08 16:22:48 +00003490 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003491 // The sign bit is set in both cases: this MUST overflow.
3492 // Create a simple add instruction, and insert it into the struct.
3493 return OverflowResult::AlwaysOverflows;
3494 }
3495
Craig Topper6e11a052017-05-08 16:22:48 +00003496 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003497 // The sign bit is clear in both cases: this CANNOT overflow.
3498 // Create a simple add instruction, and insert it into the struct.
3499 return OverflowResult::NeverOverflows;
3500 }
3501 }
3502
3503 return OverflowResult::MayOverflow;
3504}
James Molloy71b91c22015-05-11 14:42:20 +00003505
Pete Cooper35b00d52016-08-13 01:05:32 +00003506static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3507 const Value *RHS,
3508 const AddOperator *Add,
3509 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003510 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003511 const Instruction *CxtI,
3512 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003513 if (Add && Add->hasNoSignedWrap()) {
3514 return OverflowResult::NeverOverflows;
3515 }
3516
Craig Topper6e11a052017-05-08 16:22:48 +00003517 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3518 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003519
Craig Topper6e11a052017-05-08 16:22:48 +00003520 if ((LHSKnown.isNonNegative() && RHSKnown.isNegative()) ||
3521 (LHSKnown.isNegative() && RHSKnown.isNonNegative())) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003522 // The sign bits are opposite: this CANNOT overflow.
3523 return OverflowResult::NeverOverflows;
3524 }
3525
3526 // The remaining code needs Add to be available. Early returns if not so.
3527 if (!Add)
3528 return OverflowResult::MayOverflow;
3529
3530 // If the sign of Add is the same as at least one of the operands, this add
3531 // CANNOT overflow. This is particularly useful when the sum is
3532 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3533 // operands.
3534 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003535 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
3536 bool LHSOrRHSKnownNegative = (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003537 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003538 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3539 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3540 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003541 return OverflowResult::NeverOverflows;
3542 }
3543 }
3544
3545 return OverflowResult::MayOverflow;
3546}
3547
Pete Cooper35b00d52016-08-13 01:05:32 +00003548bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3549 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003550#ifndef NDEBUG
3551 auto IID = II->getIntrinsicID();
3552 assert((IID == Intrinsic::sadd_with_overflow ||
3553 IID == Intrinsic::uadd_with_overflow ||
3554 IID == Intrinsic::ssub_with_overflow ||
3555 IID == Intrinsic::usub_with_overflow ||
3556 IID == Intrinsic::smul_with_overflow ||
3557 IID == Intrinsic::umul_with_overflow) &&
3558 "Not an overflow intrinsic!");
3559#endif
3560
Pete Cooper35b00d52016-08-13 01:05:32 +00003561 SmallVector<const BranchInst *, 2> GuardingBranches;
3562 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003563
Pete Cooper35b00d52016-08-13 01:05:32 +00003564 for (const User *U : II->users()) {
3565 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003566 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3567
3568 if (EVI->getIndices()[0] == 0)
3569 Results.push_back(EVI);
3570 else {
3571 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3572
Pete Cooper35b00d52016-08-13 01:05:32 +00003573 for (const auto *U : EVI->users())
3574 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003575 assert(B->isConditional() && "How else is it using an i1?");
3576 GuardingBranches.push_back(B);
3577 }
3578 }
3579 } else {
3580 // We are using the aggregate directly in a way we don't want to analyze
3581 // here (storing it to a global, say).
3582 return false;
3583 }
3584 }
3585
Pete Cooper35b00d52016-08-13 01:05:32 +00003586 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003587 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3588 if (!NoWrapEdge.isSingleEdge())
3589 return false;
3590
3591 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003592 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003593 // If the extractvalue itself is not executed on overflow, the we don't
3594 // need to check each use separately, since domination is transitive.
3595 if (DT.dominates(NoWrapEdge, Result->getParent()))
3596 continue;
3597
3598 for (auto &RU : Result->uses())
3599 if (!DT.dominates(NoWrapEdge, RU))
3600 return false;
3601 }
3602
3603 return true;
3604 };
3605
3606 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3607}
3608
3609
Pete Cooper35b00d52016-08-13 01:05:32 +00003610OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003611 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003612 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003613 const Instruction *CxtI,
3614 const DominatorTree *DT) {
3615 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003616 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003617}
3618
Pete Cooper35b00d52016-08-13 01:05:32 +00003619OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3620 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003621 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003622 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003623 const Instruction *CxtI,
3624 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003625 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003626}
3627
Jingyue Wu42f1d672015-07-28 18:22:40 +00003628bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003629 // A memory operation returns normally if it isn't volatile. A volatile
3630 // operation is allowed to trap.
3631 //
3632 // An atomic operation isn't guaranteed to return in a reasonable amount of
3633 // time because it's possible for another thread to interfere with it for an
3634 // arbitrary length of time, but programs aren't allowed to rely on that.
3635 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3636 return !LI->isVolatile();
3637 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3638 return !SI->isVolatile();
3639 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3640 return !CXI->isVolatile();
3641 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3642 return !RMWI->isVolatile();
3643 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3644 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003645
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003646 // If there is no successor, then execution can't transfer to it.
3647 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3648 return !CRI->unwindsToCaller();
3649 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3650 return !CatchSwitch->unwindsToCaller();
3651 if (isa<ResumeInst>(I))
3652 return false;
3653 if (isa<ReturnInst>(I))
3654 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003655 if (isa<UnreachableInst>(I))
3656 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003657
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003658 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003659 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003660 // Call sites that throw have implicit non-local control flow.
3661 if (!CS.doesNotThrow())
3662 return false;
3663
3664 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3665 // etc. and thus not return. However, LLVM already assumes that
3666 //
3667 // - Thread exiting actions are modeled as writes to memory invisible to
3668 // the program.
3669 //
3670 // - Loops that don't have side effects (side effects are volatile/atomic
3671 // stores and IO) always terminate (see http://llvm.org/PR965).
3672 // Furthermore IO itself is also modeled as writes to memory invisible to
3673 // the program.
3674 //
3675 // We rely on those assumptions here, and use the memory effects of the call
3676 // target as a proxy for checking that it always returns.
3677
3678 // FIXME: This isn't aggressive enough; a call which only writes to a global
3679 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003680 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3681 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003682 }
3683
3684 // Other instructions return normally.
3685 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003686}
3687
3688bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3689 const Loop *L) {
3690 // The loop header is guaranteed to be executed for every iteration.
3691 //
3692 // FIXME: Relax this constraint to cover all basic blocks that are
3693 // guaranteed to be executed at every iteration.
3694 if (I->getParent() != L->getHeader()) return false;
3695
3696 for (const Instruction &LI : *L->getHeader()) {
3697 if (&LI == I) return true;
3698 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3699 }
3700 llvm_unreachable("Instruction not contained in its own parent basic block.");
3701}
3702
3703bool llvm::propagatesFullPoison(const Instruction *I) {
3704 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003705 case Instruction::Add:
3706 case Instruction::Sub:
3707 case Instruction::Xor:
3708 case Instruction::Trunc:
3709 case Instruction::BitCast:
3710 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003711 case Instruction::Mul:
3712 case Instruction::Shl:
3713 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003714 // These operations all propagate poison unconditionally. Note that poison
3715 // is not any particular value, so xor or subtraction of poison with
3716 // itself still yields poison, not zero.
3717 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003718
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003719 case Instruction::AShr:
3720 case Instruction::SExt:
3721 // For these operations, one bit of the input is replicated across
3722 // multiple output bits. A replicated poison bit is still poison.
3723 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003724
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003725 case Instruction::ICmp:
3726 // Comparing poison with any value yields poison. This is why, for
3727 // instance, x s< (x +nsw 1) can be folded to true.
3728 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003729
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003730 default:
3731 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003732 }
3733}
3734
3735const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3736 switch (I->getOpcode()) {
3737 case Instruction::Store:
3738 return cast<StoreInst>(I)->getPointerOperand();
3739
3740 case Instruction::Load:
3741 return cast<LoadInst>(I)->getPointerOperand();
3742
3743 case Instruction::AtomicCmpXchg:
3744 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3745
3746 case Instruction::AtomicRMW:
3747 return cast<AtomicRMWInst>(I)->getPointerOperand();
3748
3749 case Instruction::UDiv:
3750 case Instruction::SDiv:
3751 case Instruction::URem:
3752 case Instruction::SRem:
3753 return I->getOperand(1);
3754
3755 default:
3756 return nullptr;
3757 }
3758}
3759
Sanjoy Das08989c72017-04-30 19:41:19 +00003760bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003761 // We currently only look for uses of poison values within the same basic
3762 // block, as that makes it easier to guarantee that the uses will be
3763 // executed given that PoisonI is executed.
3764 //
3765 // FIXME: Expand this to consider uses beyond the same basic block. To do
3766 // this, look out for the distinction between post-dominance and strong
3767 // post-dominance.
3768 const BasicBlock *BB = PoisonI->getParent();
3769
3770 // Set of instructions that we have proved will yield poison if PoisonI
3771 // does.
3772 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003773 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003774 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003775 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003776
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003777 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003778
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003779 unsigned Iter = 0;
3780 while (Iter++ < MaxDepth) {
3781 for (auto &I : make_range(Begin, End)) {
3782 if (&I != PoisonI) {
3783 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3784 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3785 return true;
3786 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3787 return false;
3788 }
3789
3790 // Mark poison that propagates from I through uses of I.
3791 if (YieldsPoison.count(&I)) {
3792 for (const User *User : I.users()) {
3793 const Instruction *UserI = cast<Instruction>(User);
3794 if (propagatesFullPoison(UserI))
3795 YieldsPoison.insert(User);
3796 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003797 }
3798 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003799
3800 if (auto *NextBB = BB->getSingleSuccessor()) {
3801 if (Visited.insert(NextBB).second) {
3802 BB = NextBB;
3803 Begin = BB->getFirstNonPHI()->getIterator();
3804 End = BB->end();
3805 continue;
3806 }
3807 }
3808
3809 break;
3810 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003811 return false;
3812}
3813
Pete Cooper35b00d52016-08-13 01:05:32 +00003814static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003815 if (FMF.noNaNs())
3816 return true;
3817
3818 if (auto *C = dyn_cast<ConstantFP>(V))
3819 return !C->isNaN();
3820 return false;
3821}
3822
Pete Cooper35b00d52016-08-13 01:05:32 +00003823static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003824 if (auto *C = dyn_cast<ConstantFP>(V))
3825 return !C->isZero();
3826 return false;
3827}
3828
Sanjay Patel819f0962016-11-13 19:30:19 +00003829/// Match non-obvious integer minimum and maximum sequences.
3830static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3831 Value *CmpLHS, Value *CmpRHS,
3832 Value *TrueVal, Value *FalseVal,
3833 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003834 // Assume success. If there's no match, callers should not use these anyway.
3835 LHS = TrueVal;
3836 RHS = FalseVal;
3837
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003838 // Recognize variations of:
3839 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3840 const APInt *C1;
3841 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3842 const APInt *C2;
3843
3844 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3845 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003846 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003847 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003848
3849 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3850 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003851 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003852 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003853
3854 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3855 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003856 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003857 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003858
3859 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3860 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003861 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003862 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003863 }
3864
Sanjay Patel819f0962016-11-13 19:30:19 +00003865 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3866 return {SPF_UNKNOWN, SPNB_NA, false};
3867
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003868 // Z = X -nsw Y
3869 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3870 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3871 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003872 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003873 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003874
3875 // Z = X -nsw Y
3876 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3877 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3878 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003879 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003880 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003881
Sanjay Patel819f0962016-11-13 19:30:19 +00003882 if (!match(CmpRHS, m_APInt(C1)))
3883 return {SPF_UNKNOWN, SPNB_NA, false};
3884
3885 // An unsigned min/max can be written with a signed compare.
3886 const APInt *C2;
3887 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3888 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3889 // Is the sign bit set?
3890 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3891 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00003892 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00003893 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00003894
3895 // Is the sign bit clear?
3896 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3897 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3898 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003899 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00003900 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00003901 }
3902
3903 // Look through 'not' ops to find disguised signed min/max.
3904 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3905 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3906 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003907 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00003908 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00003909
3910 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3911 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3912 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003913 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00003914 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00003915
3916 return {SPF_UNKNOWN, SPNB_NA, false};
3917}
3918
James Molloy134bec22015-08-11 09:12:57 +00003919static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3920 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003921 Value *CmpLHS, Value *CmpRHS,
3922 Value *TrueVal, Value *FalseVal,
3923 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003924 LHS = CmpLHS;
3925 RHS = CmpRHS;
3926
James Molloy134bec22015-08-11 09:12:57 +00003927 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3928 // return inconsistent results between implementations.
3929 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3930 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3931 // Therefore we behave conservatively and only proceed if at least one of the
3932 // operands is known to not be zero, or if we don't care about signed zeroes.
3933 switch (Pred) {
3934 default: break;
3935 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3936 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3937 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3938 !isKnownNonZero(CmpRHS))
3939 return {SPF_UNKNOWN, SPNB_NA, false};
3940 }
3941
3942 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3943 bool Ordered = false;
3944
3945 // When given one NaN and one non-NaN input:
3946 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3947 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3948 // ordered comparison fails), which could be NaN or non-NaN.
3949 // so here we discover exactly what NaN behavior is required/accepted.
3950 if (CmpInst::isFPPredicate(Pred)) {
3951 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3952 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3953
3954 if (LHSSafe && RHSSafe) {
3955 // Both operands are known non-NaN.
3956 NaNBehavior = SPNB_RETURNS_ANY;
3957 } else if (CmpInst::isOrdered(Pred)) {
3958 // An ordered comparison will return false when given a NaN, so it
3959 // returns the RHS.
3960 Ordered = true;
3961 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003962 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003963 NaNBehavior = SPNB_RETURNS_NAN;
3964 else if (RHSSafe)
3965 NaNBehavior = SPNB_RETURNS_OTHER;
3966 else
3967 // Completely unsafe.
3968 return {SPF_UNKNOWN, SPNB_NA, false};
3969 } else {
3970 Ordered = false;
3971 // An unordered comparison will return true when given a NaN, so it
3972 // returns the LHS.
3973 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003974 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003975 NaNBehavior = SPNB_RETURNS_OTHER;
3976 else if (RHSSafe)
3977 NaNBehavior = SPNB_RETURNS_NAN;
3978 else
3979 // Completely unsafe.
3980 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003981 }
3982 }
3983
James Molloy71b91c22015-05-11 14:42:20 +00003984 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003985 std::swap(CmpLHS, CmpRHS);
3986 Pred = CmpInst::getSwappedPredicate(Pred);
3987 if (NaNBehavior == SPNB_RETURNS_NAN)
3988 NaNBehavior = SPNB_RETURNS_OTHER;
3989 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3990 NaNBehavior = SPNB_RETURNS_NAN;
3991 Ordered = !Ordered;
3992 }
3993
3994 // ([if]cmp X, Y) ? X : Y
3995 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003996 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003997 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003998 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003999 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004000 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004001 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004002 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004003 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004004 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004005 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4006 case FCmpInst::FCMP_UGT:
4007 case FCmpInst::FCMP_UGE:
4008 case FCmpInst::FCMP_OGT:
4009 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4010 case FCmpInst::FCMP_ULT:
4011 case FCmpInst::FCMP_ULE:
4012 case FCmpInst::FCMP_OLT:
4013 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004014 }
4015 }
4016
Sanjay Patele372aec2016-10-27 15:26:10 +00004017 const APInt *C1;
4018 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004019 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4020 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4021
4022 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4023 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004024 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004025 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004026 }
4027
4028 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4029 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004030 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004031 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004032 }
4033 }
James Molloy71b91c22015-05-11 14:42:20 +00004034 }
4035
Sanjay Patel819f0962016-11-13 19:30:19 +00004036 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004037}
James Molloy270ef8c2015-05-15 16:04:50 +00004038
James Molloy569cea62015-09-02 17:25:25 +00004039static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4040 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004041 auto *Cast1 = dyn_cast<CastInst>(V1);
4042 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004043 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004044
Sanjay Patel14a4b812017-01-29 16:34:57 +00004045 *CastOp = Cast1->getOpcode();
4046 Type *SrcTy = Cast1->getSrcTy();
4047 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4048 // If V1 and V2 are both the same cast from the same type, look through V1.
4049 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4050 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004051 return nullptr;
4052 }
4053
Sanjay Patel14a4b812017-01-29 16:34:57 +00004054 auto *C = dyn_cast<Constant>(V2);
4055 if (!C)
4056 return nullptr;
4057
David Majnemerd2a074b2016-04-29 18:40:34 +00004058 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004059 switch (*CastOp) {
4060 case Instruction::ZExt:
4061 if (CmpI->isUnsigned())
4062 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4063 break;
4064 case Instruction::SExt:
4065 if (CmpI->isSigned())
4066 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4067 break;
4068 case Instruction::Trunc:
4069 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4070 break;
4071 case Instruction::FPTrunc:
4072 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4073 break;
4074 case Instruction::FPExt:
4075 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4076 break;
4077 case Instruction::FPToUI:
4078 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4079 break;
4080 case Instruction::FPToSI:
4081 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4082 break;
4083 case Instruction::UIToFP:
4084 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4085 break;
4086 case Instruction::SIToFP:
4087 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4088 break;
4089 default:
4090 break;
4091 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004092
4093 if (!CastedTo)
4094 return nullptr;
4095
David Majnemerd2a074b2016-04-29 18:40:34 +00004096 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004097 Constant *CastedBack =
4098 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004099 if (CastedBack != C)
4100 return nullptr;
4101
4102 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004103}
4104
Sanjay Patele8dc0902016-05-23 17:57:54 +00004105SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004106 Instruction::CastOps *CastOp) {
4107 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004108 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004109
James Molloy134bec22015-08-11 09:12:57 +00004110 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4111 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004112
James Molloy134bec22015-08-11 09:12:57 +00004113 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004114 Value *CmpLHS = CmpI->getOperand(0);
4115 Value *CmpRHS = CmpI->getOperand(1);
4116 Value *TrueVal = SI->getTrueValue();
4117 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004118 FastMathFlags FMF;
4119 if (isa<FPMathOperator>(CmpI))
4120 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004121
4122 // Bail out early.
4123 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004124 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004125
4126 // Deal with type mismatches.
4127 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004128 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004129 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004130 cast<CastInst>(TrueVal)->getOperand(0), C,
4131 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004132 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004133 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004134 C, cast<CastInst>(FalseVal)->getOperand(0),
4135 LHS, RHS);
4136 }
James Molloy134bec22015-08-11 09:12:57 +00004137 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004138 LHS, RHS);
4139}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004140
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004141/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004142static bool isTruePredicate(CmpInst::Predicate Pred,
4143 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004144 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004145 AssumptionCache *AC, const Instruction *CxtI,
4146 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004147 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004148 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4149 return true;
4150
4151 switch (Pred) {
4152 default:
4153 return false;
4154
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004155 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004156 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004157
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004158 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004159 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004160 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004161 return false;
4162 }
4163
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004164 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004165 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004166
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004167 // LHS u<= LHS +_{nuw} C for any C
4168 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004169 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004170
4171 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004172 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4173 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004174 const APInt *&CA, const APInt *&CB) {
4175 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4176 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4177 return true;
4178
4179 // If X & C == 0 then (X | C) == X +_{nuw} C
4180 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4181 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004182 KnownBits Known(CA->getBitWidth());
4183 computeKnownBits(X, Known, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004184
Craig Topperb45eabc2017-04-26 16:39:58 +00004185 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004186 return true;
4187 }
4188
4189 return false;
4190 };
4191
Pete Cooper35b00d52016-08-13 01:05:32 +00004192 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004193 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004194 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4195 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004196
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004197 return false;
4198 }
4199 }
4200}
4201
4202/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004203/// ALHS ARHS" is true. Otherwise, return None.
4204static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004205isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4206 const Value *ARHS, const Value *BLHS,
4207 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004208 unsigned Depth, AssumptionCache *AC,
4209 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004210 switch (Pred) {
4211 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004212 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004213
4214 case CmpInst::ICMP_SLT:
4215 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004216 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004217 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004218 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004219 return true;
4220 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004221
4222 case CmpInst::ICMP_ULT:
4223 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004224 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4225 DT) &&
4226 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004227 return true;
4228 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004229 }
4230}
4231
Chad Rosier226a7342016-05-05 17:41:19 +00004232/// Return true if the operands of the two compares match. IsSwappedOps is true
4233/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004234static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4235 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004236 bool &IsSwappedOps) {
4237
4238 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4239 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4240 return IsMatchingOps || IsSwappedOps;
4241}
4242
Chad Rosier41dd31f2016-04-20 19:15:26 +00004243/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4244/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4245/// BRHS" is false. Otherwise, return None if we can't infer anything.
4246static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004247 const Value *ALHS,
4248 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004249 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004250 const Value *BLHS,
4251 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004252 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004253 // Canonicalize the operands so they're matching.
4254 if (IsSwappedOps) {
4255 std::swap(BLHS, BRHS);
4256 BPred = ICmpInst::getSwappedPredicate(BPred);
4257 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004258 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004259 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004260 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004261 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004262
Chad Rosier41dd31f2016-04-20 19:15:26 +00004263 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004264}
4265
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004266/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4267/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4268/// C2" is false. Otherwise, return None if we can't infer anything.
4269static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004270isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4271 const ConstantInt *C1,
4272 CmpInst::Predicate BPred,
4273 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004274 assert(ALHS == BLHS && "LHS operands must match.");
4275 ConstantRange DomCR =
4276 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4277 ConstantRange CR =
4278 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4279 ConstantRange Intersection = DomCR.intersectWith(CR);
4280 ConstantRange Difference = DomCR.difference(CR);
4281 if (Intersection.isEmptySet())
4282 return false;
4283 if (Difference.isEmptySet())
4284 return true;
4285 return None;
4286}
4287
Pete Cooper35b00d52016-08-13 01:05:32 +00004288Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004289 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004290 unsigned Depth, AssumptionCache *AC,
4291 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004292 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004293 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4294 if (LHS->getType() != RHS->getType())
4295 return None;
4296
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004297 Type *OpTy = LHS->getType();
4298 assert(OpTy->getScalarType()->isIntegerTy(1));
4299
4300 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004301 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004302 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004303
4304 if (OpTy->isVectorTy())
4305 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004306 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004307 assert(OpTy->isIntegerTy(1) && "implied by above");
4308
4309 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004310 Value *ALHS, *ARHS;
4311 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004312
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004313 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4314 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004315 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004316
Chad Rosiere2cbd132016-04-25 17:23:36 +00004317 if (InvertAPred)
4318 APred = CmpInst::getInversePredicate(APred);
4319
Chad Rosier226a7342016-05-05 17:41:19 +00004320 // Can we infer anything when the two compares have matching operands?
4321 bool IsSwappedOps;
4322 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4323 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4324 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004325 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004326 // No amount of additional analysis will infer the second condition, so
4327 // early exit.
4328 return None;
4329 }
4330
4331 // Can we infer anything when the LHS operands match and the RHS operands are
4332 // constants (not necessarily matching)?
4333 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4334 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4335 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4336 cast<ConstantInt>(BRHS)))
4337 return Implication;
4338 // No amount of additional analysis will infer the second condition, so
4339 // early exit.
4340 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004341 }
4342
Chad Rosier41dd31f2016-04-20 19:15:26 +00004343 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004344 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4345 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004346
Chad Rosier41dd31f2016-04-20 19:15:26 +00004347 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004348}