blob: 75ccc0ee64fe3b73dc572d4ccf37dea9b4115f06 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000029#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000030#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000031#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000038#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000039#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000040#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000041#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000042#include <algorithm>
43#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000044#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000045using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000046using namespace llvm::PatternMatch;
47
48const unsigned MaxDepth = 6;
49
Philip Reames1c292272015-03-10 22:43:20 +000050// Controls the number of uses of the value searched for possible
51// dominating comparisons.
52static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000053 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000054
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000055// This optimization is known to cause performance regressions is some cases,
56// keep it under a temporary flag for now.
57static cl::opt<bool>
58DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
59 cl::Hidden, cl::init(true));
60
Sanjay Patelaee84212014-11-04 16:27:42 +000061/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
62/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000063static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000064 if (unsigned BitWidth = Ty->getScalarSizeInBits())
65 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000066
Mehdi Aminia28d91d2015-03-10 02:37:25 +000067 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000068}
Chris Lattner965c7692008-06-02 01:18:21 +000069
Benjamin Kramercfd8d902014-09-12 08:56:53 +000070namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000071// Simplifying using an assume can only be done in a particular control-flow
72// context (the context instruction provides that context). If an assume and
73// the context instruction are not in the same block then the DT helps in
74// figuring out if we can use it.
75struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000076 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000077 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000078 const Instruction *CxtI;
79 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000080 // Unlike the other analyses, this may be a nullptr because not all clients
81 // provide it currently.
82 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000083
Matthias Braun37e5d792016-01-28 06:29:33 +000084 /// Set of assumptions that should be excluded from further queries.
85 /// This is because of the potential for mutual recursion to cause
86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
87 /// classic case of this is assume(x = y), which will attempt to determine
88 /// bits in x from bits in y, which will attempt to determine bits in y from
89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
92 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000093 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000094 unsigned NumExcluded;
95
Daniel Jasperaec2fa32016-12-19 08:22:17 +000096 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000097 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000099
100 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000103 Excluded = Q.Excluded;
104 Excluded[NumExcluded++] = NewExcl;
105 assert(NumExcluded <= Excluded.size());
106 }
107
108 bool isExcluded(const Value *Value) const {
109 if (NumExcluded == 0)
110 return false;
111 auto End = Excluded.begin() + NumExcluded;
112 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000113 }
114};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000115} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000116
Sanjay Patel547e9752014-11-04 16:09:50 +0000117// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000118// the preferred context instruction (if any).
119static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120 // If we've been provided with a context instruction, then use that (provided
121 // it has been inserted).
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 // If the value is really an already-inserted instruction, then use that.
126 CxtI = dyn_cast<Instruction>(V);
127 if (CxtI && CxtI->getParent())
128 return CxtI;
129
130 return nullptr;
131}
132
Pete Cooper35b00d52016-08-13 01:05:32 +0000133static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000134 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000135
Pete Cooper35b00d52016-08-13 01:05:32 +0000136void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000138 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000139 const DominatorTree *DT,
140 OptimizationRemarkEmitter *ORE) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000141 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000143}
144
Pete Cooper35b00d52016-08-13 01:05:32 +0000145bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
146 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000147 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000148 const DominatorTree *DT) {
149 assert(LHS->getType() == RHS->getType() &&
150 "LHS and RHS should have the same type");
151 assert(LHS->getType()->isIntOrIntVectorTy() &&
152 "LHS and RHS should be integers");
153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
159}
160
Pete Cooper35b00d52016-08-13 01:05:32 +0000161static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Pete Cooper35b00d52016-08-13 01:05:32 +0000164void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000167 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000169 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000170}
171
Pete Cooper35b00d52016-08-13 01:05:32 +0000172static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000173 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Pete Cooper35b00d52016-08-13 01:05:32 +0000175bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
176 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000179 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000182}
183
Pete Cooper35b00d52016-08-13 01:05:32 +0000184static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000190}
191
Pete Cooper35b00d52016-08-13 01:05:32 +0000192bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000193 unsigned Depth,
194 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000195 const DominatorTree *DT) {
196 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000198 return NonNegative;
199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000204 if (auto *CI = dyn_cast<ConstantInt>(V))
205 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000206
Philip Reames8f12eba2016-03-09 21:31:47 +0000207 // TODO: We'd doing two recursive queries here. We should factor this such
208 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000214 AssumptionCache *AC, const Instruction *CxtI,
215 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000216 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000218 return Negative;
219}
220
Pete Cooper35b00d52016-08-13 01:05:32 +0000221static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000222
Pete Cooper35b00d52016-08-13 01:05:32 +0000223bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000224 const DataLayout &DL,
225 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000226 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000227 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
228 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000229 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000230}
231
Pete Cooper35b00d52016-08-13 01:05:32 +0000232static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000234
Pete Cooper35b00d52016-08-13 01:05:32 +0000235bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
236 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 unsigned Depth, AssumptionCache *AC,
238 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000239 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000241}
242
Pete Cooper35b00d52016-08-13 01:05:32 +0000243static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
244 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000245
Pete Cooper35b00d52016-08-13 01:05:32 +0000246unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000247 unsigned Depth, AssumptionCache *AC,
248 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000249 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000251}
252
Craig Topper8fbb74b2017-03-24 22:12:10 +0000253static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
254 bool NSW,
255 APInt &KnownZero, APInt &KnownOne,
256 APInt &KnownZero2, APInt &KnownOne2,
257 unsigned Depth, const Query &Q) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259
260 // If an initial sequence of bits in the result is not needed, the
261 // corresponding bits in the operands are not needed.
262 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
263 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
264 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
265
David Majnemer97ddca32014-08-22 00:40:43 +0000266 // Carry in a 1 for a subtract, rather than a 0.
Craig Topper059b98e2017-03-24 05:38:09 +0000267 uint64_t CarryIn = 0;
David Majnemer97ddca32014-08-22 00:40:43 +0000268 if (!Add) {
269 // Sum = LHS + ~RHS + 1
Craig Topper8fbb74b2017-03-24 22:12:10 +0000270 std::swap(KnownZero2, KnownOne2);
Craig Topper059b98e2017-03-24 05:38:09 +0000271 CarryIn = 1;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000272 }
273
Craig Topper8fbb74b2017-03-24 22:12:10 +0000274 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
275 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
David Majnemer97ddca32014-08-22 00:40:43 +0000276
277 // Compute known bits of the carry.
Craig Topper8fbb74b2017-03-24 22:12:10 +0000278 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
279 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
David Majnemer97ddca32014-08-22 00:40:43 +0000280
281 // Compute set of known bits (where all three relevant bits are known).
282 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
Craig Topper8fbb74b2017-03-24 22:12:10 +0000283 APInt RHSKnown = KnownZero2 | KnownOne2;
David Majnemer97ddca32014-08-22 00:40:43 +0000284 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
285 APInt Known = LHSKnown & RHSKnown & CarryKnown;
286
287 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
288 "known bits of sum differ");
289
290 // Compute known bits of the result.
291 KnownZero = ~PossibleSumOne & Known;
292 KnownOne = PossibleSumOne & Known;
293
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000294 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000295 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000296 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000297 // Adding two non-negative numbers, or subtracting a negative number from
298 // a non-negative one, can't wrap into negative.
Craig Topper8fbb74b2017-03-24 22:12:10 +0000299 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
Craig Topper3eb0d802017-03-18 04:01:29 +0000300 KnownZero.setSignBit();
David Majnemer97ddca32014-08-22 00:40:43 +0000301 // Adding two negative numbers, or subtracting a non-negative number from
302 // a negative one, can't wrap into non-negative.
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
Craig Topper3eb0d802017-03-18 04:01:29 +0000304 KnownOne.setSignBit();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000305 }
306 }
307}
308
Pete Cooper35b00d52016-08-13 01:05:32 +0000309static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000310 APInt &KnownZero, APInt &KnownOne,
311 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000312 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000313 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000314 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
315 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000316
317 bool isKnownNegative = false;
318 bool isKnownNonNegative = false;
319 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000320 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321 if (Op0 == Op1) {
322 // The product of a number with itself is non-negative.
323 isKnownNonNegative = true;
324 } else {
325 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
327 bool isKnownNegativeOp1 = KnownOne.isNegative();
328 bool isKnownNegativeOp0 = KnownOne2.isNegative();
329 // The product of two numbers with the same sign is non-negative.
330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
332 // The product of a negative number and a non-negative number is either
333 // negative or zero.
334 if (!isKnownNonNegative)
335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000336 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000338 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 }
340 }
341
342 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000343 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 // More trickiness is possible, but this is sufficient for the
345 // interesting case of alignment computation.
346 KnownOne.clearAllBits();
347 unsigned TrailZ = KnownZero.countTrailingOnes() +
348 KnownZero2.countTrailingOnes();
349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
350 KnownZero2.countLeadingOnes(),
351 BitWidth) - BitWidth;
352
353 TrailZ = std::min(TrailZ, BitWidth);
354 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperd73c6b42017-03-23 07:06:39 +0000355 KnownZero.clearAllBits();
356 KnownZero.setLowBits(TrailZ);
357 KnownZero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000358
359 // Only make use of no-wrap flags if we failed to compute the sign bit
360 // directly. This matters if the multiplication always overflows, in
361 // which case we prefer to follow the result of the direct computation,
362 // though as the program is invoking undefined behaviour we can choose
363 // whatever we like here.
364 if (isKnownNonNegative && !KnownOne.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +0000365 KnownZero.setSignBit();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000366 else if (isKnownNegative && !KnownZero.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +0000367 KnownOne.setSignBit();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000368}
369
Jingyue Wu37fcb592014-06-19 16:50:16 +0000370void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000371 APInt &KnownZero,
372 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000373 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000374 unsigned NumRanges = Ranges.getNumOperands() / 2;
375 assert(NumRanges >= 1);
376
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000377 KnownZero.setAllBits();
378 KnownOne.setAllBits();
379
Rafael Espindola53190532012-03-30 15:52:11 +0000380 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000381 ConstantInt *Lower =
382 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
383 ConstantInt *Upper =
384 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000385 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000386
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000387 // The first CommonPrefixBits of all values in Range are equal.
388 unsigned CommonPrefixBits =
389 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
390
391 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
392 KnownOne &= Range.getUnsignedMax() & Mask;
393 KnownZero &= ~Range.getUnsignedMax() & Mask;
394 }
Rafael Espindola53190532012-03-30 15:52:11 +0000395}
Jay Foad5a29c362014-05-15 12:12:55 +0000396
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000397static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000398 SmallVector<const Value *, 16> WorkSet(1, I);
399 SmallPtrSet<const Value *, 32> Visited;
400 SmallPtrSet<const Value *, 16> EphValues;
401
Hal Finkelf2199b22015-10-23 20:37:08 +0000402 // The instruction defining an assumption's condition itself is always
403 // considered ephemeral to that assumption (even if it has other
404 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000405 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 return true;
407
Hal Finkel60db0582014-09-07 18:57:58 +0000408 while (!WorkSet.empty()) {
409 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000410 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000411 continue;
412
413 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000414 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 if (V == E)
416 return true;
417
418 EphValues.insert(V);
419 if (const User *U = dyn_cast<User>(V))
420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
421 J != JE; ++J) {
422 if (isSafeToSpeculativelyExecute(*J))
423 WorkSet.push_back(*J);
424 }
425 }
426 }
427
428 return false;
429}
430
431// Is this an intrinsic that cannot be speculated but also cannot trap?
432static bool isAssumeLikeIntrinsic(const Instruction *I) {
433 if (const CallInst *CI = dyn_cast<CallInst>(I))
434 if (Function *F = CI->getCalledFunction())
435 switch (F->getIntrinsicID()) {
436 default: break;
437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
438 case Intrinsic::assume:
439 case Intrinsic::dbg_declare:
440 case Intrinsic::dbg_value:
441 case Intrinsic::invariant_start:
442 case Intrinsic::invariant_end:
443 case Intrinsic::lifetime_start:
444 case Intrinsic::lifetime_end:
445 case Intrinsic::objectsize:
446 case Intrinsic::ptr_annotation:
447 case Intrinsic::var_annotation:
448 return true;
449 }
450
451 return false;
452}
453
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000454bool llvm::isValidAssumeForContext(const Instruction *Inv,
455 const Instruction *CxtI,
456 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000457
458 // There are two restrictions on the use of an assume:
459 // 1. The assume must dominate the context (or the control flow must
460 // reach the assume whenever it reaches the context).
461 // 2. The context must not be in the assume's set of ephemeral values
462 // (otherwise we will use the assume to prove that the condition
463 // feeding the assume is trivially true, thus causing the removal of
464 // the assume).
465
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000466 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000467 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000468 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000469 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
470 // We don't have a DT, but this trivially dominates.
471 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000472 }
473
Pete Cooper54a02552016-08-12 01:00:15 +0000474 // With or without a DT, the only remaining case we will check is if the
475 // instructions are in the same BB. Give up if that is not the case.
476 if (Inv->getParent() != CxtI->getParent())
477 return false;
478
479 // If we have a dom tree, then we now know that the assume doens't dominate
480 // the other instruction. If we don't have a dom tree then we can check if
481 // the assume is first in the BB.
482 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000483 // Search forward from the assume until we reach the context (or the end
484 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000485 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000486 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000487 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // The context comes first, but they're both in the same block. Make sure
492 // there is nothing in between that might interrupt the control flow.
493 for (BasicBlock::const_iterator I =
494 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
495 I != IE; ++I)
496 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
497 return false;
498
499 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000500}
501
Pete Cooper35b00d52016-08-13 01:05:32 +0000502static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000503 APInt &KnownOne, unsigned Depth,
504 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000505 // Use of assumptions is context-sensitive. If we don't have a context, we
506 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000507 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000508 return;
509
510 unsigned BitWidth = KnownZero.getBitWidth();
511
Hal Finkel8a9a7832017-01-11 13:24:24 +0000512 // Note that the patterns below need to be kept in sync with the code
513 // in AssumptionCache::updateAffectedValues.
514
515 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000516 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000517 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000518 CallInst *I = cast<CallInst>(AssumeVH);
519 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
520 "Got assumption for the wrong function!");
521 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000522 continue;
523
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 // Warning: This loop can end up being somewhat performance sensetive.
525 // We're running this loop for once for each value queried resulting in a
526 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000527
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000528 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
529 "must be an assume intrinsic");
530
531 Value *Arg = I->getArgOperand(0);
532
533 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000534 assert(BitWidth == 1 && "assume operand is not i1?");
535 KnownZero.clearAllBits();
536 KnownOne.setAllBits();
537 return;
538 }
Sanjay Patel96669962017-01-17 18:15:49 +0000539 if (match(Arg, m_Not(m_Specific(V))) &&
540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
541 assert(BitWidth == 1 && "assume operand is not i1?");
542 KnownZero.setAllBits();
543 KnownOne.clearAllBits();
544 return;
545 }
Hal Finkel60db0582014-09-07 18:57:58 +0000546
David Majnemer9b609752014-12-12 23:59:29 +0000547 // The remaining tests are all recursive, so bail out if we hit the limit.
548 if (Depth == MaxDepth)
549 continue;
550
Hal Finkel60db0582014-09-07 18:57:58 +0000551 Value *A, *B;
552 auto m_V = m_CombineOr(m_Specific(V),
553 m_CombineOr(m_PtrToInt(m_Specific(V)),
554 m_BitCast(m_Specific(V))));
555
556 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000557 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000558 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000559 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000560 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000561 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000562 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000563 KnownZero |= RHSKnownZero;
564 KnownOne |= RHSKnownOne;
565 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000566 } else if (match(Arg,
567 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000568 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000569 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000570 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000571 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000572 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000573 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000574
575 // For those bits in the mask that are known to be one, we can propagate
576 // known bits from the RHS to V.
577 KnownZero |= RHSKnownZero & MaskKnownOne;
578 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000579 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000580 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
581 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000582 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000587 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000588
589 // For those bits in the mask that are known to be one, we can propagate
590 // inverted known bits from the RHS to V.
591 KnownZero |= RHSKnownOne & MaskKnownOne;
592 KnownOne |= RHSKnownZero & MaskKnownOne;
593 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000594 } else if (match(Arg,
595 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000596 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000598 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000599 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000600 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000601 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000602
603 // For those bits in B that are known to be zero, we can propagate known
604 // bits from the RHS to V.
605 KnownZero |= RHSKnownZero & BKnownZero;
606 KnownOne |= RHSKnownOne & BKnownZero;
607 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000608 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
609 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000610 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000612 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000613 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000614 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000615 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000616
617 // For those bits in B that are known to be zero, we can propagate
618 // inverted known bits from the RHS to V.
619 KnownZero |= RHSKnownOne & BKnownZero;
620 KnownOne |= RHSKnownZero & BKnownZero;
621 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000622 } else if (match(Arg,
623 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000624 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000626 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000627 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000628 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000629 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000630
631 // For those bits in B that are known to be zero, we can propagate known
632 // bits from the RHS to V. For those bits in B that are known to be one,
633 // we can propagate inverted known bits from the RHS to V.
634 KnownZero |= RHSKnownZero & BKnownZero;
635 KnownOne |= RHSKnownOne & BKnownZero;
636 KnownZero |= RHSKnownOne & BKnownOne;
637 KnownOne |= RHSKnownZero & BKnownOne;
638 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
640 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647
648 // For those bits in B that are known to be zero, we can propagate
649 // inverted known bits from the RHS to V. For those bits in B that are
650 // known to be one, we can propagate known bits from the RHS to V.
651 KnownZero |= RHSKnownOne & BKnownZero;
652 KnownOne |= RHSKnownZero & BKnownZero;
653 KnownZero |= RHSKnownZero & BKnownOne;
654 KnownOne |= RHSKnownOne & BKnownOne;
655 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000656 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
657 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000658 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 // For those bits in RHS that are known, we can propagate them to known
663 // bits in V shifted to the right by C.
664 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
665 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
666 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000667 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
668 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000669 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000670 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000671 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000672 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000673 // For those bits in RHS that are known, we can propagate them inverted
674 // to known bits in V shifted to the right by C.
675 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
676 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
677 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000678 } else if (match(Arg,
679 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000680 m_AShr(m_V, m_ConstantInt(C))),
681 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000682 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000683 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000684 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000685 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000686 // For those bits in RHS that are known, we can propagate them to known
687 // bits in V shifted to the right by C.
688 KnownZero |= RHSKnownZero << C->getZExtValue();
689 KnownOne |= RHSKnownOne << C->getZExtValue();
690 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000691 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000692 m_LShr(m_V, m_ConstantInt(C)),
693 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000694 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000695 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000697 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000698 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000699 // For those bits in RHS that are known, we can propagate them inverted
700 // to known bits in V shifted to the right by C.
701 KnownZero |= RHSKnownOne << C->getZExtValue();
702 KnownOne |= RHSKnownZero << C->getZExtValue();
703 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709
710 if (RHSKnownZero.isNegative()) {
711 // We know that the sign bit is zero.
Craig Topper3eb0d802017-03-18 04:01:29 +0000712 KnownZero.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 }
714 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000716 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000718 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000719 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720
721 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
722 // We know that the sign bit is zero.
Craig Topper3eb0d802017-03-18 04:01:29 +0000723 KnownZero.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 }
725 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000726 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000727 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000729 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000730 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000731
732 if (RHSKnownOne.isNegative()) {
733 // We know that the sign bit is one.
Craig Topper3eb0d802017-03-18 04:01:29 +0000734 KnownOne.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735 }
736 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000737 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000738 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000740 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000741 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000742
743 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
744 // We know that the sign bit is one.
Craig Topper3eb0d802017-03-18 04:01:29 +0000745 KnownOne.setSignBit();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 }
747 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000748 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000749 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000750 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000751 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000752 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000753
754 // Whatever high bits in c are zero are known to be zero.
Craig Topper57d8ca72017-03-22 06:19:37 +0000755 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes());
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000757 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000758 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762
763 // Whatever high bits in c are zero are known to be zero (if c is a power
764 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000765 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper57d8ca72017-03-22 06:19:37 +0000766 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()+1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 else
Craig Topper57d8ca72017-03-22 06:19:37 +0000768 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000769 }
770 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000771
772 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000773 // have a logical fallacy. It's possible that the assumption is not reachable,
774 // so this isn't a real bug. On the other hand, the program may have undefined
775 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
776 // clear out the known bits, try to warn the user, and hope for the best.
Sanjay Patel25f6d712017-02-01 15:41:32 +0000777 if ((KnownZero & KnownOne) != 0) {
778 KnownZero.clearAllBits();
779 KnownOne.clearAllBits();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000780
781 if (Q.ORE) {
782 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
783 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
784 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
785 "have undefined behavior, or compiler may have "
786 "internal error.");
787 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000788 }
Hal Finkel60db0582014-09-07 18:57:58 +0000789}
790
Hal Finkelf2199b22015-10-23 20:37:08 +0000791// Compute known bits from a shift operator, including those with a
792// non-constant shift amount. KnownZero and KnownOne are the outputs of this
793// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
794// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
795// functors that, given the known-zero or known-one bits respectively, and a
796// shift amount, compute the implied known-zero or known-one bits of the shift
797// operator's result respectively for that shift amount. The results from calling
798// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000799static void computeKnownBitsFromShiftOperator(
800 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
801 APInt &KnownOne2, unsigned Depth, const Query &Q,
802 function_ref<APInt(const APInt &, unsigned)> KZF,
803 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000804 unsigned BitWidth = KnownZero.getBitWidth();
805
806 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
807 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
808
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000809 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000810 KnownZero = KZF(KnownZero, ShiftAmt);
811 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000812 // If there is conflict between KnownZero and KnownOne, this must be an
813 // overflowing left shift, so the shift result is undefined. Clear KnownZero
814 // and KnownOne bits so that other code could propagate this undef.
815 if ((KnownZero & KnownOne) != 0) {
816 KnownZero.clearAllBits();
817 KnownOne.clearAllBits();
818 }
819
Hal Finkelf2199b22015-10-23 20:37:08 +0000820 return;
821 }
822
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000823 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000824
Oliver Stannard06204112017-03-14 10:13:17 +0000825 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
826 // value could be undef, so we don't know anything about it.
827 if ((~KnownZero).uge(BitWidth)) {
828 KnownZero.clearAllBits();
829 KnownOne.clearAllBits();
830 return;
831 }
832
Hal Finkelf2199b22015-10-23 20:37:08 +0000833 // Note: We cannot use KnownZero.getLimitedValue() here, because if
834 // BitWidth > 64 and any upper bits are known, we'll end up returning the
835 // limit value (which implies all bits are known).
836 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
837 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
838
839 // It would be more-clearly correct to use the two temporaries for this
840 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000841 KnownZero.clearAllBits();
842 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000843
James Molloy493e57d2015-10-26 14:10:46 +0000844 // If we know the shifter operand is nonzero, we can sometimes infer more
845 // known bits. However this is expensive to compute, so be lazy about it and
846 // only compute it when absolutely necessary.
847 Optional<bool> ShifterOperandIsNonZero;
848
Hal Finkelf2199b22015-10-23 20:37:08 +0000849 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
851 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000852 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000853 if (!*ShifterOperandIsNonZero)
854 return;
855 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000856
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000857 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000858
859 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
860 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
861 // Combine the shifted known input bits only for those shift amounts
862 // compatible with its known constraints.
863 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
864 continue;
865 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
866 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000867 // If we know the shifter is nonzero, we may be able to infer more known
868 // bits. This check is sunk down as far as possible to avoid the expensive
869 // call to isKnownNonZero if the cheaper checks above fail.
870 if (ShiftAmt == 0) {
871 if (!ShifterOperandIsNonZero.hasValue())
872 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000873 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000874 if (*ShifterOperandIsNonZero)
875 continue;
876 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000877
878 KnownZero &= KZF(KnownZero2, ShiftAmt);
879 KnownOne &= KOF(KnownOne2, ShiftAmt);
880 }
881
882 // If there are no compatible shift amounts, then we've proven that the shift
883 // amount must be >= the BitWidth, and the result is undefined. We could
884 // return anything we'd like, but we need to make sure the sets of known bits
885 // stay disjoint (it should be better for some other code to actually
886 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000887 if ((KnownZero & KnownOne) != 0) {
888 KnownZero.clearAllBits();
889 KnownOne.clearAllBits();
890 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000891}
892
Pete Cooper35b00d52016-08-13 01:05:32 +0000893static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000894 APInt &KnownOne, unsigned Depth,
895 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000896 unsigned BitWidth = KnownZero.getBitWidth();
897
Chris Lattner965c7692008-06-02 01:18:21 +0000898 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000899 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000900 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000901 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000902 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000903 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000904 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000905 case Instruction::And: {
906 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000907 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
908 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000909
Chris Lattner965c7692008-06-02 01:18:21 +0000910 // Output known-1 bits are only known if set in both the LHS & RHS.
911 KnownOne &= KnownOne2;
912 // Output known-0 are known to be clear if zero in either the LHS | RHS.
913 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000914
915 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
916 // here we handle the more general case of adding any odd number by
917 // matching the form add(x, add(x, y)) where y is odd.
918 // TODO: This could be generalized to clearing any bit set in y where the
919 // following bit is known to be unset in y.
920 Value *Y = nullptr;
921 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
922 m_Value(Y))) ||
923 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
924 m_Value(Y)))) {
925 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000926 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000927 if (KnownOne3.countTrailingOnes() > 0)
Craig Topper57d8ca72017-03-22 06:19:37 +0000928 KnownZero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000929 }
Jay Foad5a29c362014-05-15 12:12:55 +0000930 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000931 }
932 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000933 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
934 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000935
Chris Lattner965c7692008-06-02 01:18:21 +0000936 // Output known-0 bits are only known if clear in both the LHS & RHS.
937 KnownZero &= KnownZero2;
938 // Output known-1 are known to be set if set in either the LHS | RHS.
939 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000940 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000941 }
942 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000943 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
944 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000945
Chris Lattner965c7692008-06-02 01:18:21 +0000946 // Output known-0 bits are known if clear or set in both the LHS & RHS.
947 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
948 // Output known-1 are known to be set if set in only one of the LHS, RHS.
949 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
Craig Topper9ce07b62017-04-13 18:25:53 +0000950 KnownZero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
953 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000954 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000955 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000956 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000957 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000958 }
959 case Instruction::UDiv: {
960 // For the purposes of computing leading zeros we can conservatively
961 // treat a udiv as a logical right shift by the power of 2 known to
962 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000963 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000964 unsigned LeadZ = KnownZero2.countLeadingOnes();
965
Jay Foad25a5e4c2010-12-01 08:53:58 +0000966 KnownOne2.clearAllBits();
967 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000968 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000969 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
970 if (RHSUnknownLeadingOnes != BitWidth)
971 LeadZ = std::min(BitWidth,
972 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
973
Craig Topper2bd95142017-03-24 03:57:24 +0000974 KnownZero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000975 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000976 }
David Majnemera19d0f22016-08-06 08:16:00 +0000977 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000978 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
979 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000980
Pete Cooper35b00d52016-08-13 01:05:32 +0000981 const Value *LHS;
982 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000983 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
984 if (SelectPatternResult::isMinOrMax(SPF)) {
985 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
986 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
987 } else {
988 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
989 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
990 }
991
992 unsigned MaxHighOnes = 0;
993 unsigned MaxHighZeros = 0;
994 if (SPF == SPF_SMAX) {
995 // If both sides are negative, the result is negative.
Craig Topper93683b62017-03-23 07:06:42 +0000996 if (KnownOne.isNegative() && KnownOne2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000997 // We can derive a lower bound on the result by taking the max of the
998 // leading one bits.
999 MaxHighOnes =
1000 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1001 // If either side is non-negative, the result is non-negative.
Craig Topper93683b62017-03-23 07:06:42 +00001002 else if (KnownZero.isNegative() || KnownZero2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001003 MaxHighZeros = 1;
1004 } else if (SPF == SPF_SMIN) {
1005 // If both sides are non-negative, the result is non-negative.
Craig Topper93683b62017-03-23 07:06:42 +00001006 if (KnownZero.isNegative() && KnownZero2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001007 // We can derive an upper bound on the result by taking the max of the
1008 // leading zero bits.
1009 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1010 KnownZero2.countLeadingOnes());
1011 // If either side is negative, the result is negative.
1012 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1013 MaxHighOnes = 1;
1014 } else if (SPF == SPF_UMAX) {
1015 // We can derive a lower bound on the result by taking the max of the
1016 // leading one bits.
1017 MaxHighOnes =
1018 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1019 } else if (SPF == SPF_UMIN) {
1020 // We can derive an upper bound on the result by taking the max of the
1021 // leading zero bits.
1022 MaxHighZeros =
1023 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1024 }
1025
Chris Lattner965c7692008-06-02 01:18:21 +00001026 // Only known if known in both the LHS and RHS.
1027 KnownOne &= KnownOne2;
1028 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001029 if (MaxHighOnes > 0)
Craig Topper57d8ca72017-03-22 06:19:37 +00001030 KnownOne.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001031 if (MaxHighZeros > 0)
Craig Topper57d8ca72017-03-22 06:19:37 +00001032 KnownZero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001033 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001034 }
Chris Lattner965c7692008-06-02 01:18:21 +00001035 case Instruction::FPTrunc:
1036 case Instruction::FPExt:
1037 case Instruction::FPToUI:
1038 case Instruction::FPToSI:
1039 case Instruction::SIToFP:
1040 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001041 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001042 case Instruction::PtrToInt:
1043 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001044 // Fall through and handle them the same as zext/trunc.
1045 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001046 case Instruction::ZExt:
1047 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001048 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001049
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001050 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001051 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1052 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001053 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001054
1055 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001059 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1060 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001061 // Any top bits are known to be zero.
1062 if (BitWidth > SrcBitWidth)
Craig Topper57d8ca72017-03-22 06:19:37 +00001063 KnownZero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 }
1066 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001067 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001069 // TODO: For now, not handling conversions like:
1070 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001071 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001072 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001073 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001074 }
1075 break;
1076 }
1077 case Instruction::SExt: {
1078 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001079 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001080
Jay Foad583abbc2010-12-07 08:25:19 +00001081 KnownZero = KnownZero.trunc(SrcBitWidth);
1082 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001083 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001084 KnownZero = KnownZero.zext(BitWidth);
1085 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001086
1087 // If the sign bit of the input is known set or clear, then we know the
1088 // top bits of the result.
1089 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
Craig Topper57d8ca72017-03-22 06:19:37 +00001090 KnownZero.setBitsFrom(SrcBitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001091 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
Craig Topper57d8ca72017-03-22 06:19:37 +00001092 KnownOne.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001093 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001094 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001095 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001096 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001097 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001098 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1099 APInt KZResult = KnownZero << ShiftAmt;
1100 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001101 // If this shift has "nsw" keyword, then the result is either a poison
1102 // value or has the same sign bit as the first operand.
1103 if (NSW && KnownZero.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001104 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001105 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001106 };
1107
Craig Topperd73c6b42017-03-23 07:06:39 +00001108 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001109 APInt KOResult = KnownOne << ShiftAmt;
1110 if (NSW && KnownOne.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001111 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001112 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 };
1114
1115 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001116 KnownZero2, KnownOne2, Depth, Q, KZF,
1117 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 }
1120 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001121 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001122 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001123 return KnownZero.lshr(ShiftAmt) |
Hal Finkelf2199b22015-10-23 20:37:08 +00001124 // High bits known zero.
1125 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1126 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001127
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001128 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001129 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001130 };
1131
1132 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001133 KnownZero2, KnownOne2, Depth, Q, KZF,
1134 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001135 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001136 }
1137 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001138 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001139 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001140 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001141 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001142
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001143 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001144 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001145 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001146
Hal Finkelf2199b22015-10-23 20:37:08 +00001147 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001148 KnownZero2, KnownOne2, Depth, Q, KZF,
1149 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001150 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001151 }
Chris Lattner965c7692008-06-02 01:18:21 +00001152 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001153 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001154 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001155 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1156 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001157 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001158 }
Chris Lattner965c7692008-06-02 01:18:21 +00001159 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001160 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001161 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001162 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1163 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001164 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001165 }
1166 case Instruction::SRem:
1167 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001168 APInt RA = Rem->getValue().abs();
1169 if (RA.isPowerOf2()) {
1170 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001171 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001172 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001173
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001174 // The low bits of the first operand are unchanged by the srem.
1175 KnownZero = KnownZero2 & LowBits;
1176 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001177
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001178 // If the first operand is non-negative or has all low bits zero, then
1179 // the upper bits are all zero.
Craig Topper93683b62017-03-23 07:06:42 +00001180 if (KnownZero2.isNegative() || ((KnownZero2 & LowBits) == LowBits))
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001181 KnownZero |= ~LowBits;
1182
1183 // If the first operand is negative and not all low bits are zero, then
1184 // the upper bits are all one.
Craig Topper93683b62017-03-23 07:06:42 +00001185 if (KnownOne2.isNegative() && ((KnownOne2 & LowBits) != 0))
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001186 KnownOne |= ~LowBits;
1187
Craig Topper1bef2c82012-12-22 19:15:35 +00001188 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001189 }
1190 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001191
1192 // The sign bit is the LHS's sign bit, except when the result of the
1193 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001194 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001195 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001196 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1197 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001198 // If it's known zero, our sign bit is also zero.
1199 if (LHSKnownZero.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001200 KnownZero.setSignBit();
Nick Lewyckye4679792011-03-07 01:50:10 +00001201 }
1202
Chris Lattner965c7692008-06-02 01:18:21 +00001203 break;
1204 case Instruction::URem: {
1205 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001206 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001207 if (RA.isPowerOf2()) {
1208 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001209 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001210 KnownZero |= ~LowBits;
1211 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001212 break;
1213 }
1214 }
1215
1216 // Since the result is less than or equal to either operand, any leading
1217 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001218 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1219 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001220
Chris Lattner4612ae12009-01-20 18:22:57 +00001221 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001222 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001223 KnownOne.clearAllBits();
Craig Topperd73c6b42017-03-23 07:06:39 +00001224 KnownZero.clearAllBits();
1225 KnownZero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001226 break;
1227 }
1228
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001229 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001230 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001231 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001232 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001233 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001234
Chris Lattner965c7692008-06-02 01:18:21 +00001235 if (Align > 0)
Craig Topper2bd95142017-03-24 03:57:24 +00001236 KnownZero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001237 break;
1238 }
1239 case Instruction::GetElementPtr: {
1240 // Analyze all of the subscripts of this getelementptr instruction
1241 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001242 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001243 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1244 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001245 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1246
1247 gep_type_iterator GTI = gep_type_begin(I);
1248 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1249 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001250 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001251 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001252
1253 // Handle case when index is vector zeroinitializer
1254 Constant *CIndex = cast<Constant>(Index);
1255 if (CIndex->isZeroValue())
1256 continue;
1257
1258 if (CIndex->getType()->isVectorTy())
1259 Index = CIndex->getSplatValue();
1260
Chris Lattner965c7692008-06-02 01:18:21 +00001261 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001262 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001264 TrailZ = std::min<unsigned>(TrailZ,
1265 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001266 } else {
1267 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001268 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001269 if (!IndexedTy->isSized()) {
1270 TrailZ = 0;
1271 break;
1272 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001273 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001274 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001275 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001276 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001277 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001278 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001279 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001280 }
1281 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001282
Craig Topper2bd95142017-03-24 03:57:24 +00001283 KnownZero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001284 break;
1285 }
1286 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001287 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001288 // Handle the case of a simple two-predecessor recurrence PHI.
1289 // There's a lot more that could theoretically be done here, but
1290 // this is sufficient to catch some interesting cases.
1291 if (P->getNumIncomingValues() == 2) {
1292 for (unsigned i = 0; i != 2; ++i) {
1293 Value *L = P->getIncomingValue(i);
1294 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001295 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001296 if (!LU)
1297 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001298 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001299 // Check for operations that have the property that if
1300 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001301 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001302 if (Opcode == Instruction::Add ||
1303 Opcode == Instruction::Sub ||
1304 Opcode == Instruction::And ||
1305 Opcode == Instruction::Or ||
1306 Opcode == Instruction::Mul) {
1307 Value *LL = LU->getOperand(0);
1308 Value *LR = LU->getOperand(1);
1309 // Find a recurrence.
1310 if (LL == I)
1311 L = LR;
1312 else if (LR == I)
1313 L = LL;
1314 else
1315 break;
1316 // Ok, we have a PHI of the form L op= R. Check for low
1317 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001318 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001319
1320 // We need to take the minimum number of known bits
1321 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001322 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001323
Craig Topper2bd95142017-03-24 03:57:24 +00001324 KnownZero.setLowBits(std::min(KnownZero2.countTrailingOnes(),
1325 KnownZero3.countTrailingOnes()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001326
1327 if (DontImproveNonNegativePhiBits)
1328 break;
1329
1330 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1331 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1332 // If initial value of recurrence is nonnegative, and we are adding
1333 // a nonnegative number with nsw, the result can only be nonnegative
1334 // or poison value regardless of the number of times we execute the
1335 // add in phi recurrence. If initial value is negative and we are
1336 // adding a negative number with nsw, the result can only be
1337 // negative or poison value. Similar arguments apply to sub and mul.
1338 //
1339 // (add non-negative, non-negative) --> non-negative
1340 // (add negative, negative) --> negative
1341 if (Opcode == Instruction::Add) {
1342 if (KnownZero2.isNegative() && KnownZero3.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001343 KnownZero.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001344 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
Craig Topper2bd95142017-03-24 03:57:24 +00001345 KnownOne.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001346 }
1347
1348 // (sub nsw non-negative, negative) --> non-negative
1349 // (sub nsw negative, non-negative) --> negative
1350 else if (Opcode == Instruction::Sub && LL == I) {
1351 if (KnownZero2.isNegative() && KnownOne3.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001352 KnownZero.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001353 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001354 KnownOne.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001355 }
1356
1357 // (mul nsw non-negative, non-negative) --> non-negative
1358 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1359 KnownZero3.isNegative())
Craig Topperd73c6b42017-03-23 07:06:39 +00001360 KnownZero.setSignBit();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001361 }
1362
Chris Lattner965c7692008-06-02 01:18:21 +00001363 break;
1364 }
1365 }
1366 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001367
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001368 // Unreachable blocks may have zero-operand PHI nodes.
1369 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001370 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001371
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001372 // Otherwise take the unions of the known bit sets of the operands,
1373 // taking conservative care to avoid excessive recursion.
1374 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001375 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001376 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001377 break;
1378
Craig Topperd73c6b42017-03-23 07:06:39 +00001379 KnownZero.setAllBits();
1380 KnownOne.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001381 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001382 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001383 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001384
1385 KnownZero2 = APInt(BitWidth, 0);
1386 KnownOne2 = APInt(BitWidth, 0);
1387 // Recurse, but cap the recursion to one level, because we don't
1388 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001389 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001390 KnownZero &= KnownZero2;
1391 KnownOne &= KnownOne2;
1392 // If all bits have been ruled out, there's no need to check
1393 // more operands.
1394 if (!KnownZero && !KnownOne)
1395 break;
1396 }
1397 }
Chris Lattner965c7692008-06-02 01:18:21 +00001398 break;
1399 }
1400 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001401 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001402 // If range metadata is attached to this call, set known bits from that,
1403 // and then intersect with known bits based on other properties of the
1404 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001405 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001406 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001407 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001408 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1409 KnownZero |= KnownZero2;
1410 KnownOne |= KnownOne2;
1411 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001412 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001413 switch (II->getIntrinsicID()) {
1414 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001415 case Intrinsic::bitreverse:
1416 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topperad5c2d02017-03-22 07:22:49 +00001417 KnownZero |= KnownZero2.reverseBits();
1418 KnownOne |= KnownOne2.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001419 break;
Philip Reames675418e2015-10-06 20:20:45 +00001420 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001421 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001422 KnownZero |= KnownZero2.byteSwap();
1423 KnownOne |= KnownOne2.byteSwap();
1424 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001425 case Intrinsic::ctlz:
1426 case Intrinsic::cttz: {
1427 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001428 // If this call is undefined for 0, the result will be less than 2^n.
1429 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1430 LowBits -= 1;
Craig Topper57d8ca72017-03-22 06:19:37 +00001431 KnownZero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001432 break;
1433 }
1434 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001435 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001436 // We can bound the space the count needs. Also, bits known to be zero
1437 // can't contribute to the population.
1438 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1439 unsigned LeadingZeros =
1440 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001441 assert(LeadingZeros <= BitWidth);
Craig Topper57d8ca72017-03-22 06:19:37 +00001442 KnownZero.setHighBits(LeadingZeros);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001443 KnownOne &= ~KnownZero;
1444 // TODO: we could bound KnownOne using the lower bound on the number
1445 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001446 break;
1447 }
Chad Rosierb3628842011-05-26 23:13:19 +00001448 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topper57d8ca72017-03-22 06:19:37 +00001449 KnownZero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001450 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001451 }
1452 }
1453 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001454 case Instruction::ExtractElement:
1455 // Look through extract element. At the moment we keep this simple and skip
1456 // tracking the specific element. But at least we might find information
1457 // valid for all elements of the vector (for example if vector is sign
1458 // extended, shifted, etc).
1459 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1460 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001461 case Instruction::ExtractValue:
1462 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001463 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001464 if (EVI->getNumIndices() != 1) break;
1465 if (EVI->getIndices()[0] == 0) {
1466 switch (II->getIntrinsicID()) {
1467 default: break;
1468 case Intrinsic::uadd_with_overflow:
1469 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001470 computeKnownBitsAddSub(true, II->getArgOperand(0),
1471 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001472 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001473 break;
1474 case Intrinsic::usub_with_overflow:
1475 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001476 computeKnownBitsAddSub(false, II->getArgOperand(0),
1477 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001478 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001479 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001480 case Intrinsic::umul_with_overflow:
1481 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001482 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001483 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1484 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001485 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001486 }
1487 }
1488 }
Chris Lattner965c7692008-06-02 01:18:21 +00001489 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001490}
1491
1492/// Determine which bits of V are known to be either zero or one and return
1493/// them in the KnownZero/KnownOne bit sets.
1494///
1495/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1496/// we cannot optimize based on the assumption that it is zero without changing
1497/// it to be an explicit zero. If we don't change it to zero, other code could
1498/// optimized based on the contradictory assumption that it is non-zero.
1499/// Because instcombine aggressively folds operations with undef args anyway,
1500/// this won't lose us code quality.
1501///
1502/// This function is defined on values with integer type, values with pointer
1503/// type, and vectors of integers. In the case
1504/// where V is a vector, known zero, and known one values are the
1505/// same width as the vector element, and the bit is set only if it is true
1506/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001507void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001508 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509 assert(V && "No Value?");
1510 assert(Depth <= MaxDepth && "Limit Search Depth");
1511 unsigned BitWidth = KnownZero.getBitWidth();
1512
1513 assert((V->getType()->isIntOrIntVectorTy() ||
1514 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001515 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001516 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001517 (!V->getType()->isIntOrIntVectorTy() ||
1518 V->getType()->getScalarSizeInBits() == BitWidth) &&
1519 KnownZero.getBitWidth() == BitWidth &&
1520 KnownOne.getBitWidth() == BitWidth &&
1521 "V, KnownOne and KnownZero should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001522 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001523
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001524 const APInt *C;
1525 if (match(V, m_APInt(C))) {
1526 // We know all of the bits for a scalar constant or a splat vector constant!
1527 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001528 KnownZero = ~KnownOne;
1529 return;
1530 }
1531 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001532 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001533 KnownOne.clearAllBits();
Craig Topperd73c6b42017-03-23 07:06:39 +00001534 KnownZero.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001535 return;
1536 }
1537 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001538 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001539 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001540 // We know that CDS must be a vector of integers. Take the intersection of
1541 // each element.
1542 KnownZero.setAllBits(); KnownOne.setAllBits();
1543 APInt Elt(KnownZero.getBitWidth(), 0);
1544 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1545 Elt = CDS->getElementAsInteger(i);
1546 KnownZero &= ~Elt;
1547 KnownOne &= Elt;
1548 }
1549 return;
1550 }
1551
Pete Cooper35b00d52016-08-13 01:05:32 +00001552 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001553 // We know that CV must be a vector of integers. Take the intersection of
1554 // each element.
1555 KnownZero.setAllBits(); KnownOne.setAllBits();
1556 APInt Elt(KnownZero.getBitWidth(), 0);
1557 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1558 Constant *Element = CV->getAggregateElement(i);
1559 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1560 if (!ElementCI) {
1561 KnownZero.clearAllBits();
1562 KnownOne.clearAllBits();
1563 return;
1564 }
1565 Elt = ElementCI->getValue();
1566 KnownZero &= ~Elt;
1567 KnownOne &= Elt;
1568 }
1569 return;
1570 }
1571
Jingyue Wu12b0c282015-06-15 05:46:29 +00001572 // Start out not knowing anything.
1573 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1574
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001575 // We can't imply anything about undefs.
1576 if (isa<UndefValue>(V))
1577 return;
1578
1579 // There's no point in looking through other users of ConstantData for
1580 // assumptions. Confirm that we've handled them all.
1581 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1582
Jingyue Wu12b0c282015-06-15 05:46:29 +00001583 // Limit search depth.
1584 // All recursive calls that increase depth must come after this.
1585 if (Depth == MaxDepth)
1586 return;
1587
1588 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1589 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001590 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001591 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001592 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001593 return;
1594 }
1595
Pete Cooper35b00d52016-08-13 01:05:32 +00001596 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001597 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001598
Artur Pilipenko029d8532015-09-30 11:55:45 +00001599 // Aligned pointers have trailing zeros - refine KnownZero set
1600 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001601 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001602 if (Align)
Craig Topper57d8ca72017-03-22 06:19:37 +00001603 KnownZero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001604 }
1605
Philip Reames146307e2016-03-03 19:44:06 +00001606 // computeKnownBitsFromAssume strictly refines KnownZero and
1607 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001608
1609 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001610 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001611
Jay Foad5a29c362014-05-15 12:12:55 +00001612 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001613}
1614
Sanjay Patelaee84212014-11-04 16:27:42 +00001615/// Determine whether the sign bit is known to be zero or one.
1616/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001617void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001618 unsigned Depth, const Query &Q) {
1619 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001620 if (!BitWidth) {
1621 KnownZero = false;
1622 KnownOne = false;
1623 return;
1624 }
1625 APInt ZeroBits(BitWidth, 0);
1626 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001627 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Craig Topper93683b62017-03-23 07:06:42 +00001628 KnownOne = OneBits.isNegative();
1629 KnownZero = ZeroBits.isNegative();
Duncan Sandsd3951082011-01-25 09:38:29 +00001630}
1631
Sanjay Patelaee84212014-11-04 16:27:42 +00001632/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001633/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001634/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001635/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001636bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001637 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001638 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001639 if (C->isNullValue())
1640 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001641
1642 const APInt *ConstIntOrConstSplatInt;
1643 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1644 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001645 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001646
1647 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1648 // it is shifted off the end then the result is undefined.
1649 if (match(V, m_Shl(m_One(), m_Value())))
1650 return true;
1651
1652 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1653 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001654 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001655 return true;
1656
1657 // The remaining tests are all recursive, so bail out if we hit the limit.
1658 if (Depth++ == MaxDepth)
1659 return false;
1660
Craig Topper9f008862014-04-15 04:59:12 +00001661 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001662 // A shift left or a logical shift right of a power of two is a power of two
1663 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001664 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001665 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001666 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001667
Pete Cooper35b00d52016-08-13 01:05:32 +00001668 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001669 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001670
Pete Cooper35b00d52016-08-13 01:05:32 +00001671 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001672 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1673 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001674
Duncan Sandsba286d72011-10-26 20:55:21 +00001675 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1676 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001677 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1678 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001679 return true;
1680 // X & (-X) is always a power of two or zero.
1681 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1682 return true;
1683 return false;
1684 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001685
David Majnemerb7d54092013-07-30 21:01:36 +00001686 // Adding a power-of-two or zero to the same power-of-two or zero yields
1687 // either the original power-of-two, a larger power-of-two or zero.
1688 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001689 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001690 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1691 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1692 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001693 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001694 return true;
1695 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1696 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001697 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001698 return true;
1699
1700 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1701 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001702 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001703
1704 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001705 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001706 // If i8 V is a power of two or zero:
1707 // ZeroBits: 1 1 1 0 1 1 1 1
1708 // ~ZeroBits: 0 0 0 1 0 0 0 0
1709 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1710 // If OrZero isn't set, we cannot give back a zero result.
1711 // Make sure either the LHS or RHS has a bit set.
1712 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1713 return true;
1714 }
1715 }
David Majnemerbeab5672013-05-18 19:30:37 +00001716
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001717 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001718 // is a power of two only if the first operand is a power of two and not
1719 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001720 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1721 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001722 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001724 }
1725
Duncan Sandsd3951082011-01-25 09:38:29 +00001726 return false;
1727}
1728
Chandler Carruth80d3e562012-12-07 02:08:58 +00001729/// \brief Test whether a GEP's result is known to be non-null.
1730///
1731/// Uses properties inherent in a GEP to try to determine whether it is known
1732/// to be non-null.
1733///
1734/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001735static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001736 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001737 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1738 return false;
1739
1740 // FIXME: Support vector-GEPs.
1741 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1742
1743 // If the base pointer is non-null, we cannot walk to a null address with an
1744 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001745 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001746 return true;
1747
Chandler Carruth80d3e562012-12-07 02:08:58 +00001748 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1749 // If so, then the GEP cannot produce a null pointer, as doing so would
1750 // inherently violate the inbounds contract within address space zero.
1751 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1752 GTI != GTE; ++GTI) {
1753 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001754 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001755 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1756 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001757 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001758 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1759 if (ElementOffset > 0)
1760 return true;
1761 continue;
1762 }
1763
1764 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001765 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001766 continue;
1767
1768 // Fast path the constant operand case both for efficiency and so we don't
1769 // increment Depth when just zipping down an all-constant GEP.
1770 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1771 if (!OpC->isZero())
1772 return true;
1773 continue;
1774 }
1775
1776 // We post-increment Depth here because while isKnownNonZero increments it
1777 // as well, when we pop back up that increment won't persist. We don't want
1778 // to recurse 10k times just because we have 10k GEP operands. We don't
1779 // bail completely out because we want to handle constant GEPs regardless
1780 // of depth.
1781 if (Depth++ >= MaxDepth)
1782 continue;
1783
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001784 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001785 return true;
1786 }
1787
1788 return false;
1789}
1790
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001791/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1792/// ensure that the value it's attached to is never Value? 'RangeType' is
1793/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001794static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001795 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1796 assert(NumRanges >= 1);
1797 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001798 ConstantInt *Lower =
1799 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1800 ConstantInt *Upper =
1801 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001802 ConstantRange Range(Lower->getValue(), Upper->getValue());
1803 if (Range.contains(Value))
1804 return false;
1805 }
1806 return true;
1807}
1808
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001809/// Return true if the given value is known to be non-zero when defined. For
1810/// vectors, return true if every element is known to be non-zero when
1811/// defined. For pointers, if the context instruction and dominator tree are
1812/// specified, perform context-sensitive analysis and return true if the
1813/// pointer couldn't possibly be null at the specified instruction.
1814/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001815bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001816 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001817 if (C->isNullValue())
1818 return false;
1819 if (isa<ConstantInt>(C))
1820 // Must be non-zero due to null test above.
1821 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001822
1823 // For constant vectors, check that all elements are undefined or known
1824 // non-zero to determine that the whole vector is known non-zero.
1825 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1826 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1827 Constant *Elt = C->getAggregateElement(i);
1828 if (!Elt || Elt->isNullValue())
1829 return false;
1830 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1831 return false;
1832 }
1833 return true;
1834 }
1835
Duncan Sandsd3951082011-01-25 09:38:29 +00001836 return false;
1837 }
1838
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001839 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001840 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001841 // If the possible ranges don't contain zero, then the value is
1842 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001843 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001844 const APInt ZeroValue(Ty->getBitWidth(), 0);
1845 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1846 return true;
1847 }
1848 }
1849 }
1850
Duncan Sandsd3951082011-01-25 09:38:29 +00001851 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001852 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001853 return false;
1854
Chandler Carruth80d3e562012-12-07 02:08:58 +00001855 // Check for pointer simplifications.
1856 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001857 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001858 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001859 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001860 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001861 return true;
1862 }
1863
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001864 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001865
1866 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001867 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001868 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001869 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001870
1871 // ext X != 0 if X != 0.
1872 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001874
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001875 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001876 // if the lowest bit is shifted off the end.
1877 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001878 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001879 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001880 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001881 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001882
Duncan Sandsd3951082011-01-25 09:38:29 +00001883 APInt KnownZero(BitWidth, 0);
1884 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001885 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001886 if (KnownOne[0])
1887 return true;
1888 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001889 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001890 // defined if the sign bit is shifted off the end.
1891 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001892 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001893 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001894 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001895 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001896
Duncan Sandsd3951082011-01-25 09:38:29 +00001897 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001898 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 if (XKnownNegative)
1900 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001901
1902 // If the shifter operand is a constant, and all of the bits shifted
1903 // out are known to be zero, and X is known non-zero then at least one
1904 // non-zero bit must remain.
1905 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1906 APInt KnownZero(BitWidth, 0);
1907 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001909
James Molloyb6be1eb2015-09-24 16:06:32 +00001910 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1911 // Is there a known one in the portion not shifted out?
1912 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1913 return true;
1914 // Are all the bits to be shifted out known zero?
1915 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001916 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001917 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001918 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001919 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001920 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001921 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001922 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001923 // X + Y.
1924 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1925 bool XKnownNonNegative, XKnownNegative;
1926 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001927 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1928 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001929
1930 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001931 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001932 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001933 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001934 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001935
1936 // If X and Y are both negative (as signed values) then their sum is not
1937 // zero unless both X and Y equal INT_MIN.
1938 if (BitWidth && XKnownNegative && YKnownNegative) {
1939 APInt KnownZero(BitWidth, 0);
1940 APInt KnownOne(BitWidth, 0);
1941 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1942 // The sign bit of X is set. If some other bit is set then X is not equal
1943 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001944 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001945 if ((KnownOne & Mask) != 0)
1946 return true;
1947 // The sign bit of Y is set. If some other bit is set then Y is not equal
1948 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001949 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001950 if ((KnownOne & Mask) != 0)
1951 return true;
1952 }
1953
1954 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001955 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001956 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001957 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001958 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001959 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001960 return true;
1961 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001962 // X * Y.
1963 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001964 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001965 // If X and Y are non-zero then so is X * Y as long as the multiplication
1966 // does not overflow.
1967 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001968 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001969 return true;
1970 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001971 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001972 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001973 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1974 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001975 return true;
1976 }
James Molloy897048b2015-09-29 14:08:45 +00001977 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001978 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001979 // Try and detect a recurrence that monotonically increases from a
1980 // starting value, as these are common as induction variables.
1981 if (PN->getNumIncomingValues() == 2) {
1982 Value *Start = PN->getIncomingValue(0);
1983 Value *Induction = PN->getIncomingValue(1);
1984 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1985 std::swap(Start, Induction);
1986 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1987 if (!C->isZero() && !C->isNegative()) {
1988 ConstantInt *X;
1989 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1990 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1991 !X->isNegative())
1992 return true;
1993 }
1994 }
1995 }
Jun Bum Limca832662016-02-01 17:03:07 +00001996 // Check if all incoming values are non-zero constant.
1997 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1998 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1999 });
2000 if (AllNonZeroConstants)
2001 return true;
James Molloy897048b2015-09-29 14:08:45 +00002002 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002003
2004 if (!BitWidth) return false;
2005 APInt KnownZero(BitWidth, 0);
2006 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002007 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002008 return KnownOne != 0;
2009}
2010
James Molloy1d88d6f2015-10-22 13:18:42 +00002011/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002012static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2013 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002014 if (!BO || BO->getOpcode() != Instruction::Add)
2015 return false;
2016 Value *Op = nullptr;
2017 if (V2 == BO->getOperand(0))
2018 Op = BO->getOperand(1);
2019 else if (V2 == BO->getOperand(1))
2020 Op = BO->getOperand(0);
2021 else
2022 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002023 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002024}
2025
2026/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002027static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002028 if (V1->getType()->isVectorTy() || V1 == V2)
2029 return false;
2030 if (V1->getType() != V2->getType())
2031 // We can't look through casts yet.
2032 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002033 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002034 return true;
2035
2036 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2037 // Are any known bits in V1 contradictory to known bits in V2? If V1
2038 // has a known zero where V2 has a known one, they must not be equal.
2039 auto BitWidth = Ty->getBitWidth();
2040 APInt KnownZero1(BitWidth, 0);
2041 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002042 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002043 APInt KnownZero2(BitWidth, 0);
2044 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002045 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002046
2047 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2048 if (OppositeBits.getBoolValue())
2049 return true;
2050 }
2051 return false;
2052}
2053
Sanjay Patelaee84212014-11-04 16:27:42 +00002054/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2055/// simplify operations downstream. Mask is known to be zero for bits that V
2056/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002057///
2058/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002059/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002060/// where V is a vector, the mask, known zero, and known one values are the
2061/// same width as the vector element, and the bit is set only if it is true
2062/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002063bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002064 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002065 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002066 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002067 return (KnownZero & Mask) == Mask;
2068}
2069
Sanjay Patela06d9892016-06-22 19:20:59 +00002070/// For vector constants, loop over the elements and find the constant with the
2071/// minimum number of sign bits. Return 0 if the value is not a vector constant
2072/// or if any element was not analyzed; otherwise, return the count for the
2073/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002074static unsigned computeNumSignBitsVectorConstant(const Value *V,
2075 unsigned TyBits) {
2076 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002077 if (!CV || !CV->getType()->isVectorTy())
2078 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002079
Sanjay Patela06d9892016-06-22 19:20:59 +00002080 unsigned MinSignBits = TyBits;
2081 unsigned NumElts = CV->getType()->getVectorNumElements();
2082 for (unsigned i = 0; i != NumElts; ++i) {
2083 // If we find a non-ConstantInt, bail out.
2084 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2085 if (!Elt)
2086 return 0;
2087
2088 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2089 APInt EltVal = Elt->getValue();
2090 if (EltVal.isNegative())
2091 EltVal = ~EltVal;
2092 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2093 }
2094
2095 return MinSignBits;
2096}
Chris Lattner965c7692008-06-02 01:18:21 +00002097
Sanjoy Das39a684d2017-02-25 20:30:45 +00002098static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2099 const Query &Q);
2100
2101static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2102 const Query &Q) {
2103 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2104 assert(Result > 0 && "At least one sign bit needs to be present!");
2105 return Result;
2106}
2107
Sanjay Patelaee84212014-11-04 16:27:42 +00002108/// Return the number of times the sign bit of the register is replicated into
2109/// the other bits. We know that at least 1 bit is always equal to the sign bit
2110/// (itself), but other cases can give us information. For example, immediately
2111/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002112/// other, so we return 3. For vectors, return the number of sign bits for the
2113/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002114static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2115 const Query &Q) {
2116
2117 // We return the minimum number of sign bits that are guaranteed to be present
2118 // in V, so for undef we have to conservatively return 1. We don't have the
2119 // same behavior for poison though -- that's a FIXME today.
2120
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002121 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002122 unsigned Tmp, Tmp2;
2123 unsigned FirstAnswer = 1;
2124
Jay Foada0653a32014-05-14 21:14:37 +00002125 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002126 // below.
2127
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002128 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002129 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002130
Pete Cooper35b00d52016-08-13 01:05:32 +00002131 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002132 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002133 default: break;
2134 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002135 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002136 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002137
Nadav Rotemc99a3872015-03-06 00:23:58 +00002138 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002139 const APInt *Denominator;
2140 // sdiv X, C -> adds log(C) sign bits.
2141 if (match(U->getOperand(1), m_APInt(Denominator))) {
2142
2143 // Ignore non-positive denominator.
2144 if (!Denominator->isStrictlyPositive())
2145 break;
2146
2147 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002148 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002149
2150 // Add floor(log(C)) bits to the numerator bits.
2151 return std::min(TyBits, NumBits + Denominator->logBase2());
2152 }
2153 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002154 }
2155
2156 case Instruction::SRem: {
2157 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002158 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2159 // positive constant. This let us put a lower bound on the number of sign
2160 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002161 if (match(U->getOperand(1), m_APInt(Denominator))) {
2162
2163 // Ignore non-positive denominator.
2164 if (!Denominator->isStrictlyPositive())
2165 break;
2166
2167 // Calculate the incoming numerator bits. SRem by a positive constant
2168 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002169 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002170 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002171
2172 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002173 // denominator. Given that the denominator is positive, there are two
2174 // cases:
2175 //
2176 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2177 // (1 << ceilLogBase2(C)).
2178 //
2179 // 2. the numerator is negative. Then the result range is (-C,0] and
2180 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2181 //
2182 // Thus a lower bound on the number of sign bits is `TyBits -
2183 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002184
Sanjoy Dase561fee2015-03-25 22:33:53 +00002185 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002186 return std::max(NumrBits, ResBits);
2187 }
2188 break;
2189 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002190
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002191 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002192 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002193 // ashr X, C -> adds C sign bits. Vectors too.
2194 const APInt *ShAmt;
2195 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002196 unsigned ShAmtLimited = ShAmt->getZExtValue();
2197 if (ShAmtLimited >= TyBits)
2198 break; // Bad shift.
2199 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002200 if (Tmp > TyBits) Tmp = TyBits;
2201 }
2202 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002203 }
2204 case Instruction::Shl: {
2205 const APInt *ShAmt;
2206 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002207 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002208 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002209 Tmp2 = ShAmt->getZExtValue();
2210 if (Tmp2 >= TyBits || // Bad shift.
2211 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2212 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002213 }
2214 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002215 }
Chris Lattner965c7692008-06-02 01:18:21 +00002216 case Instruction::And:
2217 case Instruction::Or:
2218 case Instruction::Xor: // NOT is handled here.
2219 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002220 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002221 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002222 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002223 FirstAnswer = std::min(Tmp, Tmp2);
2224 // We computed what we know about the sign bits as our first
2225 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002226 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002227 }
2228 break;
2229
2230 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002231 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002232 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002233 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002234 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002235
Chris Lattner965c7692008-06-02 01:18:21 +00002236 case Instruction::Add:
2237 // Add can have at most one carry bit. Thus we know that the output
2238 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002239 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002240 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002241
Chris Lattner965c7692008-06-02 01:18:21 +00002242 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002243 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002244 if (CRHS->isAllOnesValue()) {
2245 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002246 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002247
Chris Lattner965c7692008-06-02 01:18:21 +00002248 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2249 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002250 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002251 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002252
Chris Lattner965c7692008-06-02 01:18:21 +00002253 // If we are subtracting one from a positive number, there is no carry
2254 // out of the result.
2255 if (KnownZero.isNegative())
2256 return Tmp;
2257 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002258
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002259 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002260 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002261 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002262
Chris Lattner965c7692008-06-02 01:18:21 +00002263 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002264 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002265 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002266
Chris Lattner965c7692008-06-02 01:18:21 +00002267 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002268 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002269 if (CLHS->isNullValue()) {
2270 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002271 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002272 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2273 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002274 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002275 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002276
Chris Lattner965c7692008-06-02 01:18:21 +00002277 // If the input is known to be positive (the sign bit is known clear),
2278 // the output of the NEG has the same number of sign bits as the input.
2279 if (KnownZero.isNegative())
2280 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002281
Chris Lattner965c7692008-06-02 01:18:21 +00002282 // Otherwise, we treat this like a SUB.
2283 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002284
Chris Lattner965c7692008-06-02 01:18:21 +00002285 // Sub can have at most one carry bit. Thus we know that the output
2286 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002287 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002288 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002289 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002291 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002292 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002293 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002294 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002295 if (NumIncomingValues > 4) break;
2296 // Unreachable blocks may have zero-operand PHI nodes.
2297 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002298
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002299 // Take the minimum of all incoming values. This can't infinitely loop
2300 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002301 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002302 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002303 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002304 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002305 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002306 }
2307 return Tmp;
2308 }
2309
Chris Lattner965c7692008-06-02 01:18:21 +00002310 case Instruction::Trunc:
2311 // FIXME: it's tricky to do anything useful for this, but it is an important
2312 // case for targets like X86.
2313 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002314
2315 case Instruction::ExtractElement:
2316 // Look through extract element. At the moment we keep this simple and skip
2317 // tracking the specific element. But at least we might find information
2318 // valid for all elements of the vector (for example if vector is sign
2319 // extended, shifted, etc).
2320 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002321 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002322
Chris Lattner965c7692008-06-02 01:18:21 +00002323 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2324 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002325
2326 // If we can examine all elements of a vector constant successfully, we're
2327 // done (we can't do any better than that). If not, keep trying.
2328 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2329 return VecSignBits;
2330
Chris Lattner965c7692008-06-02 01:18:21 +00002331 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002332 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002333
Sanjay Patele0536212016-06-23 17:41:59 +00002334 // If we know that the sign bit is either zero or one, determine the number of
2335 // identical bits in the top of the input value.
2336 if (KnownZero.isNegative())
2337 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002338
Sanjay Patele0536212016-06-23 17:41:59 +00002339 if (KnownOne.isNegative())
2340 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2341
2342 // computeKnownBits gave us no extra information about the top bits.
2343 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002344}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002345
Sanjay Patelaee84212014-11-04 16:27:42 +00002346/// This function computes the integer multiple of Base that equals V.
2347/// If successful, it returns true and returns the multiple in
2348/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002349/// through SExt instructions only if LookThroughSExt is true.
2350bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002351 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002352 const unsigned MaxDepth = 6;
2353
Dan Gohman6a976bb2009-11-18 00:58:27 +00002354 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002355 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002356 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002357
Chris Lattner229907c2011-07-18 04:54:35 +00002358 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002359
Dan Gohman6a976bb2009-11-18 00:58:27 +00002360 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002361
2362 if (Base == 0)
2363 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002364
Victor Hernandez47444882009-11-10 08:28:35 +00002365 if (Base == 1) {
2366 Multiple = V;
2367 return true;
2368 }
2369
2370 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2371 Constant *BaseVal = ConstantInt::get(T, Base);
2372 if (CO && CO == BaseVal) {
2373 // Multiple is 1.
2374 Multiple = ConstantInt::get(T, 1);
2375 return true;
2376 }
2377
2378 if (CI && CI->getZExtValue() % Base == 0) {
2379 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002380 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002381 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Victor Hernandez47444882009-11-10 08:28:35 +00002383 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002384
Victor Hernandez47444882009-11-10 08:28:35 +00002385 Operator *I = dyn_cast<Operator>(V);
2386 if (!I) return false;
2387
2388 switch (I->getOpcode()) {
2389 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002390 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002391 if (!LookThroughSExt) return false;
2392 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002393 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002394 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2395 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002396 case Instruction::Shl:
2397 case Instruction::Mul: {
2398 Value *Op0 = I->getOperand(0);
2399 Value *Op1 = I->getOperand(1);
2400
2401 if (I->getOpcode() == Instruction::Shl) {
2402 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2403 if (!Op1CI) return false;
2404 // Turn Op0 << Op1 into Op0 * 2^Op1
2405 APInt Op1Int = Op1CI->getValue();
2406 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002407 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002408 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002409 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002410 }
2411
Craig Topper9f008862014-04-15 04:59:12 +00002412 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002413 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2414 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2415 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002416 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002417 MulC->getType()->getPrimitiveSizeInBits())
2418 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002419 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002420 MulC->getType()->getPrimitiveSizeInBits())
2421 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002422
Chris Lattner72d283c2010-09-05 17:20:46 +00002423 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2424 Multiple = ConstantExpr::getMul(MulC, Op1C);
2425 return true;
2426 }
Victor Hernandez47444882009-11-10 08:28:35 +00002427
2428 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2429 if (Mul0CI->getValue() == 1) {
2430 // V == Base * Op1, so return Op1
2431 Multiple = Op1;
2432 return true;
2433 }
2434 }
2435
Craig Topper9f008862014-04-15 04:59:12 +00002436 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002437 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2438 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2439 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002440 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002441 MulC->getType()->getPrimitiveSizeInBits())
2442 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002443 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002444 MulC->getType()->getPrimitiveSizeInBits())
2445 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002446
Chris Lattner72d283c2010-09-05 17:20:46 +00002447 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2448 Multiple = ConstantExpr::getMul(MulC, Op0C);
2449 return true;
2450 }
Victor Hernandez47444882009-11-10 08:28:35 +00002451
2452 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2453 if (Mul1CI->getValue() == 1) {
2454 // V == Base * Op0, so return Op0
2455 Multiple = Op0;
2456 return true;
2457 }
2458 }
Victor Hernandez47444882009-11-10 08:28:35 +00002459 }
2460 }
2461
2462 // We could not determine if V is a multiple of Base.
2463 return false;
2464}
2465
David Majnemerb4b27232016-04-19 19:10:21 +00002466Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2467 const TargetLibraryInfo *TLI) {
2468 const Function *F = ICS.getCalledFunction();
2469 if (!F)
2470 return Intrinsic::not_intrinsic;
2471
2472 if (F->isIntrinsic())
2473 return F->getIntrinsicID();
2474
2475 if (!TLI)
2476 return Intrinsic::not_intrinsic;
2477
David L. Jonesd21529f2017-01-23 23:16:46 +00002478 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002479 // We're going to make assumptions on the semantics of the functions, check
2480 // that the target knows that it's available in this environment and it does
2481 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002482 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2483 return Intrinsic::not_intrinsic;
2484
2485 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002486 return Intrinsic::not_intrinsic;
2487
2488 // Otherwise check if we have a call to a function that can be turned into a
2489 // vector intrinsic.
2490 switch (Func) {
2491 default:
2492 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002493 case LibFunc_sin:
2494 case LibFunc_sinf:
2495 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002496 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002497 case LibFunc_cos:
2498 case LibFunc_cosf:
2499 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002500 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002501 case LibFunc_exp:
2502 case LibFunc_expf:
2503 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002504 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002505 case LibFunc_exp2:
2506 case LibFunc_exp2f:
2507 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002508 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002509 case LibFunc_log:
2510 case LibFunc_logf:
2511 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002512 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002513 case LibFunc_log10:
2514 case LibFunc_log10f:
2515 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002516 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002517 case LibFunc_log2:
2518 case LibFunc_log2f:
2519 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002520 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002521 case LibFunc_fabs:
2522 case LibFunc_fabsf:
2523 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002524 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002525 case LibFunc_fmin:
2526 case LibFunc_fminf:
2527 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002528 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002529 case LibFunc_fmax:
2530 case LibFunc_fmaxf:
2531 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002532 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002533 case LibFunc_copysign:
2534 case LibFunc_copysignf:
2535 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002536 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002537 case LibFunc_floor:
2538 case LibFunc_floorf:
2539 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002540 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002541 case LibFunc_ceil:
2542 case LibFunc_ceilf:
2543 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002544 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002545 case LibFunc_trunc:
2546 case LibFunc_truncf:
2547 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002548 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002549 case LibFunc_rint:
2550 case LibFunc_rintf:
2551 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002552 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002553 case LibFunc_nearbyint:
2554 case LibFunc_nearbyintf:
2555 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002556 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002557 case LibFunc_round:
2558 case LibFunc_roundf:
2559 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002560 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002561 case LibFunc_pow:
2562 case LibFunc_powf:
2563 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002564 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002565 case LibFunc_sqrt:
2566 case LibFunc_sqrtf:
2567 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002568 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002569 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002570 return Intrinsic::not_intrinsic;
2571 }
2572
2573 return Intrinsic::not_intrinsic;
2574}
2575
Sanjay Patelaee84212014-11-04 16:27:42 +00002576/// Return true if we can prove that the specified FP value is never equal to
2577/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002578///
2579/// NOTE: this function will need to be revisited when we support non-default
2580/// rounding modes!
2581///
David Majnemer3ee5f342016-04-13 06:55:52 +00002582bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2583 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002584 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2585 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002586
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002587 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002588 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002589
Dan Gohman80ca01c2009-07-17 20:47:02 +00002590 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002591 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002592
2593 // Check if the nsz fast-math flag is set
2594 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2595 if (FPO->hasNoSignedZeros())
2596 return true;
2597
Chris Lattnera12a6de2008-06-02 01:29:46 +00002598 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002599 if (I->getOpcode() == Instruction::FAdd)
2600 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2601 if (CFP->isNullValue())
2602 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002603
Chris Lattnera12a6de2008-06-02 01:29:46 +00002604 // sitofp and uitofp turn into +0.0 for zero.
2605 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2606 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002607
David Majnemer3ee5f342016-04-13 06:55:52 +00002608 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002609 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002610 switch (IID) {
2611 default:
2612 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002613 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002614 case Intrinsic::sqrt:
2615 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2616 // fabs(x) != -0.0
2617 case Intrinsic::fabs:
2618 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002619 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002620 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002621
Chris Lattnera12a6de2008-06-02 01:29:46 +00002622 return false;
2623}
2624
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002625/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2626/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2627/// bit despite comparing equal.
2628static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2629 const TargetLibraryInfo *TLI,
2630 bool SignBitOnly,
2631 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002632 // TODO: This function does not do the right thing when SignBitOnly is true
2633 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2634 // which flips the sign bits of NaNs. See
2635 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2636
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002637 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2638 return !CFP->getValueAPF().isNegative() ||
2639 (!SignBitOnly && CFP->getValueAPF().isZero());
2640 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002641
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002642 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002643 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002644
2645 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002646 if (!I)
2647 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002648
2649 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002650 default:
2651 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002652 // Unsigned integers are always nonnegative.
2653 case Instruction::UIToFP:
2654 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002655 case Instruction::FMul:
2656 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002657 if (I->getOperand(0) == I->getOperand(1) &&
2658 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002659 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002660
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002661 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002662 case Instruction::FAdd:
2663 case Instruction::FDiv:
2664 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002665 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2666 Depth + 1) &&
2667 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2668 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002669 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002670 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2671 Depth + 1) &&
2672 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2673 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002674 case Instruction::FPExt:
2675 case Instruction::FPTrunc:
2676 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2678 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002679 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002680 const auto *CI = cast<CallInst>(I);
2681 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002682 switch (IID) {
2683 default:
2684 break;
2685 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002686 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2687 Depth + 1) ||
2688 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2689 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002690 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002691 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2692 Depth + 1) &&
2693 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2694 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002695 case Intrinsic::exp:
2696 case Intrinsic::exp2:
2697 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002698 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002699
2700 case Intrinsic::sqrt:
2701 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2702 if (!SignBitOnly)
2703 return true;
2704 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2705 CannotBeNegativeZero(CI->getOperand(0), TLI));
2706
David Majnemer3ee5f342016-04-13 06:55:52 +00002707 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002708 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002709 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002710 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002711 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002712 }
Justin Lebar322c1272017-01-27 00:58:34 +00002713 // TODO: This is not correct. Given that exp is an integer, here are the
2714 // ways that pow can return a negative value:
2715 //
2716 // pow(x, exp) --> negative if exp is odd and x is negative.
2717 // pow(-0, exp) --> -inf if exp is negative odd.
2718 // pow(-0, exp) --> -0 if exp is positive odd.
2719 // pow(-inf, exp) --> -0 if exp is negative odd.
2720 // pow(-inf, exp) --> -inf if exp is positive odd.
2721 //
2722 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2723 // but we must return false if x == -0. Unfortunately we do not currently
2724 // have a way of expressing this constraint. See details in
2725 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002726 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2727 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002728
David Majnemer3ee5f342016-04-13 06:55:52 +00002729 case Intrinsic::fma:
2730 case Intrinsic::fmuladd:
2731 // x*x+y is non-negative if y is non-negative.
2732 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002733 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2734 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2735 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002736 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002737 break;
2738 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002739 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002740}
2741
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002742bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2743 const TargetLibraryInfo *TLI) {
2744 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2745}
2746
2747bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2748 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2749}
2750
Sanjay Patelaee84212014-11-04 16:27:42 +00002751/// If the specified value can be set by repeating the same byte in memory,
2752/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002753/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2754/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2755/// byte store (e.g. i16 0x1234), return null.
2756Value *llvm::isBytewiseValue(Value *V) {
2757 // All byte-wide stores are splatable, even of arbitrary variables.
2758 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002759
2760 // Handle 'null' ConstantArrayZero etc.
2761 if (Constant *C = dyn_cast<Constant>(V))
2762 if (C->isNullValue())
2763 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002764
Chris Lattner9cb10352010-12-26 20:15:01 +00002765 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002766 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002767 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2768 if (CFP->getType()->isFloatTy())
2769 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2770 if (CFP->getType()->isDoubleTy())
2771 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2772 // Don't handle long double formats, which have strange constraints.
2773 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002774
Benjamin Kramer17d90152015-02-07 19:29:02 +00002775 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002776 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002777 if (CI->getBitWidth() % 8 == 0) {
2778 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002779
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002780 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002781 return nullptr;
2782 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002783 }
2784 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002785
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002786 // A ConstantDataArray/Vector is splatable if all its members are equal and
2787 // also splatable.
2788 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2789 Value *Elt = CA->getElementAsConstant(0);
2790 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002791 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002792 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002793
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002794 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2795 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002796 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002797
Chris Lattner9cb10352010-12-26 20:15:01 +00002798 return Val;
2799 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002800
Chris Lattner9cb10352010-12-26 20:15:01 +00002801 // Conceptually, we could handle things like:
2802 // %a = zext i8 %X to i16
2803 // %b = shl i16 %a, 8
2804 // %c = or i16 %a, %b
2805 // but until there is an example that actually needs this, it doesn't seem
2806 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002807 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002808}
2809
2810
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002811// This is the recursive version of BuildSubAggregate. It takes a few different
2812// arguments. Idxs is the index within the nested struct From that we are
2813// looking at now (which is of type IndexedType). IdxSkip is the number of
2814// indices from Idxs that should be left out when inserting into the resulting
2815// struct. To is the result struct built so far, new insertvalue instructions
2816// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002817static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002818 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002819 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002820 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002821 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002822 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002823 // Save the original To argument so we can modify it
2824 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002825 // General case, the type indexed by Idxs is a struct
2826 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2827 // Process each struct element recursively
2828 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002829 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002830 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002831 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002832 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002833 if (!To) {
2834 // Couldn't find any inserted value for this index? Cleanup
2835 while (PrevTo != OrigTo) {
2836 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2837 PrevTo = Del->getAggregateOperand();
2838 Del->eraseFromParent();
2839 }
2840 // Stop processing elements
2841 break;
2842 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002843 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002844 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002845 if (To)
2846 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002847 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002848 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2849 // the struct's elements had a value that was inserted directly. In the latter
2850 // case, perhaps we can't determine each of the subelements individually, but
2851 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002852
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002853 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002854 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002855
2856 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002857 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002858
2859 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002860 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002861 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002862}
2863
2864// This helper takes a nested struct and extracts a part of it (which is again a
2865// struct) into a new value. For example, given the struct:
2866// { a, { b, { c, d }, e } }
2867// and the indices "1, 1" this returns
2868// { c, d }.
2869//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002870// It does this by inserting an insertvalue for each element in the resulting
2871// struct, as opposed to just inserting a single struct. This will only work if
2872// each of the elements of the substruct are known (ie, inserted into From by an
2873// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002874//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002875// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002876static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002877 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002878 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002879 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002880 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002881 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002882 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002883 unsigned IdxSkip = Idxs.size();
2884
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002885 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002886}
2887
Sanjay Patelaee84212014-11-04 16:27:42 +00002888/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002889/// the scalar value indexed is already around as a register, for example if it
2890/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002891///
2892/// If InsertBefore is not null, this function will duplicate (modified)
2893/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002894Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2895 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002896 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002897 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002898 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002899 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002900 // We have indices, so V should have an indexable type.
2901 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2902 "Not looking at a struct or array?");
2903 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2904 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002905
Chris Lattner67058832012-01-25 06:48:06 +00002906 if (Constant *C = dyn_cast<Constant>(V)) {
2907 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002908 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002909 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2910 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002911
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002912 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002913 // Loop the indices for the insertvalue instruction in parallel with the
2914 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002915 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002916 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2917 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002918 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002919 // We can't handle this without inserting insertvalues
2920 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002921 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002922
2923 // The requested index identifies a part of a nested aggregate. Handle
2924 // this specially. For example,
2925 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2926 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2927 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2928 // This can be changed into
2929 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2930 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2931 // which allows the unused 0,0 element from the nested struct to be
2932 // removed.
2933 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2934 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002935 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002936
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002937 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002938 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002939 // looking for, then.
2940 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002941 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002942 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002943 }
2944 // If we end up here, the indices of the insertvalue match with those
2945 // requested (though possibly only partially). Now we recursively look at
2946 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002947 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002948 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002949 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002950 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002951
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002952 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002953 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002954 // something else, we can extract from that something else directly instead.
2955 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002956
2957 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002958 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002959 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002960 SmallVector<unsigned, 5> Idxs;
2961 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002962 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002963 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002964
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002965 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002966 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002967
Craig Topper1bef2c82012-12-22 19:15:35 +00002968 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002969 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002970
Jay Foad57aa6362011-07-13 10:26:04 +00002971 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002972 }
2973 // Otherwise, we don't know (such as, extracting from a function return value
2974 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002975 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002976}
Evan Chengda3db112008-06-30 07:31:25 +00002977
Sanjay Patelaee84212014-11-04 16:27:42 +00002978/// Analyze the specified pointer to see if it can be expressed as a base
2979/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002980Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002981 const DataLayout &DL) {
2982 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002983 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002984
2985 // We walk up the defs but use a visited set to handle unreachable code. In
2986 // that case, we stop after accumulating the cycle once (not that it
2987 // matters).
2988 SmallPtrSet<Value *, 16> Visited;
2989 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002990 if (Ptr->getType()->isVectorTy())
2991 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002992
Nuno Lopes368c4d02012-12-31 20:48:35 +00002993 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002994 // If one of the values we have visited is an addrspacecast, then
2995 // the pointer type of this GEP may be different from the type
2996 // of the Ptr parameter which was passed to this function. This
2997 // means when we construct GEPOffset, we need to use the size
2998 // of GEP's pointer type rather than the size of the original
2999 // pointer type.
3000 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003001 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3002 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003003
Tom Stellard17eb3412016-10-07 14:23:29 +00003004 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003005
Nuno Lopes368c4d02012-12-31 20:48:35 +00003006 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003007 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3008 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003009 Ptr = cast<Operator>(Ptr)->getOperand(0);
3010 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003011 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003012 break;
3013 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003014 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003015 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003016 }
3017 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003018 Offset = ByteOffset.getSExtValue();
3019 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003020}
3021
David L Kreitzer752c1442016-04-13 14:31:06 +00003022bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3023 // Make sure the GEP has exactly three arguments.
3024 if (GEP->getNumOperands() != 3)
3025 return false;
3026
3027 // Make sure the index-ee is a pointer to array of i8.
3028 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3029 if (!AT || !AT->getElementType()->isIntegerTy(8))
3030 return false;
3031
3032 // Check to make sure that the first operand of the GEP is an integer and
3033 // has value 0 so that we are sure we're indexing into the initializer.
3034 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3035 if (!FirstIdx || !FirstIdx->isZero())
3036 return false;
3037
3038 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003039}
Chris Lattnere28618d2010-11-30 22:25:26 +00003040
Sanjay Patelaee84212014-11-04 16:27:42 +00003041/// This function computes the length of a null-terminated C string pointed to
3042/// by V. If successful, it returns true and returns the string in Str.
3043/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003044bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3045 uint64_t Offset, bool TrimAtNul) {
3046 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003047
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003048 // Look through bitcast instructions and geps.
3049 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003050
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003051 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003052 // offset.
3053 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003054 // The GEP operator should be based on a pointer to string constant, and is
3055 // indexing into the string constant.
3056 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003057 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003058
Evan Chengda3db112008-06-30 07:31:25 +00003059 // If the second index isn't a ConstantInt, then this is a variable index
3060 // into the array. If this occurs, we can't say anything meaningful about
3061 // the string.
3062 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003063 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003064 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003065 else
3066 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003067 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3068 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003069 }
Nick Lewycky46209882011-10-20 00:34:35 +00003070
Evan Chengda3db112008-06-30 07:31:25 +00003071 // The GEP instruction, constant or instruction, must reference a global
3072 // variable that is a constant and is initialized. The referenced constant
3073 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003074 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003075 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003076 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003077
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003078 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003079 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003080 // This is a degenerate case. The initializer is constant zero so the
3081 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003082 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003083 return true;
3084 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003085
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003086 // This must be a ConstantDataArray.
3087 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003088 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003089 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003090
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003091 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003092 uint64_t NumElts = Array->getType()->getArrayNumElements();
3093
3094 // Start out with the entire array in the StringRef.
3095 Str = Array->getAsString();
3096
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003097 if (Offset > NumElts)
3098 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003099
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003100 // Skip over 'offset' bytes.
3101 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003102
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003103 if (TrimAtNul) {
3104 // Trim off the \0 and anything after it. If the array is not nul
3105 // terminated, we just return the whole end of string. The client may know
3106 // some other way that the string is length-bound.
3107 Str = Str.substr(0, Str.find('\0'));
3108 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003109 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003110}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003111
3112// These next two are very similar to the above, but also look through PHI
3113// nodes.
3114// TODO: See if we can integrate these two together.
3115
Sanjay Patelaee84212014-11-04 16:27:42 +00003116/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003117/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003118static uint64_t GetStringLengthH(const Value *V,
3119 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003120 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003121 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003122
3123 // If this is a PHI node, there are two cases: either we have already seen it
3124 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003125 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003126 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003127 return ~0ULL; // already in the set.
3128
3129 // If it was new, see if all the input strings are the same length.
3130 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003131 for (Value *IncValue : PN->incoming_values()) {
3132 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003133 if (Len == 0) return 0; // Unknown length -> unknown.
3134
3135 if (Len == ~0ULL) continue;
3136
3137 if (Len != LenSoFar && LenSoFar != ~0ULL)
3138 return 0; // Disagree -> unknown.
3139 LenSoFar = Len;
3140 }
3141
3142 // Success, all agree.
3143 return LenSoFar;
3144 }
3145
3146 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003147 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003148 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3149 if (Len1 == 0) return 0;
3150 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3151 if (Len2 == 0) return 0;
3152 if (Len1 == ~0ULL) return Len2;
3153 if (Len2 == ~0ULL) return Len1;
3154 if (Len1 != Len2) return 0;
3155 return Len1;
3156 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003157
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003158 // Otherwise, see if we can read the string.
3159 StringRef StrData;
3160 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003161 return 0;
3162
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003163 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003164}
3165
Sanjay Patelaee84212014-11-04 16:27:42 +00003166/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003167/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003168uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003169 if (!V->getType()->isPointerTy()) return 0;
3170
Pete Cooper35b00d52016-08-13 01:05:32 +00003171 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003172 uint64_t Len = GetStringLengthH(V, PHIs);
3173 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3174 // an empty string as a length.
3175 return Len == ~0ULL ? 1 : Len;
3176}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003177
Adam Nemete2b885c2015-04-23 20:09:20 +00003178/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3179/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003180static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3181 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003182 // Find the loop-defined value.
3183 Loop *L = LI->getLoopFor(PN->getParent());
3184 if (PN->getNumIncomingValues() != 2)
3185 return true;
3186
3187 // Find the value from previous iteration.
3188 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3189 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3190 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3191 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3192 return true;
3193
3194 // If a new pointer is loaded in the loop, the pointer references a different
3195 // object in every iteration. E.g.:
3196 // for (i)
3197 // int *p = a[i];
3198 // ...
3199 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3200 if (!L->isLoopInvariant(Load->getPointerOperand()))
3201 return false;
3202 return true;
3203}
3204
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003205Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3206 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003207 if (!V->getType()->isPointerTy())
3208 return V;
3209 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3210 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3211 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003212 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3213 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003214 V = cast<Operator>(V)->getOperand(0);
3215 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003216 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003217 return V;
3218 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003219 } else if (isa<AllocaInst>(V)) {
3220 // An alloca can't be further simplified.
3221 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003222 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003223 if (auto CS = CallSite(V))
3224 if (Value *RV = CS.getReturnedArgOperand()) {
3225 V = RV;
3226 continue;
3227 }
3228
Dan Gohman05b18f12010-12-15 20:49:55 +00003229 // See if InstructionSimplify knows any relevant tricks.
3230 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003231 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003232 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003233 V = Simplified;
3234 continue;
3235 }
3236
Dan Gohmana4fcd242010-12-15 20:02:24 +00003237 return V;
3238 }
3239 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3240 }
3241 return V;
3242}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003243
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003244void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003245 const DataLayout &DL, LoopInfo *LI,
3246 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003247 SmallPtrSet<Value *, 4> Visited;
3248 SmallVector<Value *, 4> Worklist;
3249 Worklist.push_back(V);
3250 do {
3251 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003252 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003253
David Blaikie70573dc2014-11-19 07:49:26 +00003254 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003255 continue;
3256
3257 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3258 Worklist.push_back(SI->getTrueValue());
3259 Worklist.push_back(SI->getFalseValue());
3260 continue;
3261 }
3262
3263 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003264 // If this PHI changes the underlying object in every iteration of the
3265 // loop, don't look through it. Consider:
3266 // int **A;
3267 // for (i) {
3268 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3269 // Curr = A[i];
3270 // *Prev, *Curr;
3271 //
3272 // Prev is tracking Curr one iteration behind so they refer to different
3273 // underlying objects.
3274 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3275 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003276 for (Value *IncValue : PN->incoming_values())
3277 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003278 continue;
3279 }
3280
3281 Objects.push_back(P);
3282 } while (!Worklist.empty());
3283}
3284
Sanjay Patelaee84212014-11-04 16:27:42 +00003285/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003286bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003287 for (const User *U : V->users()) {
3288 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003289 if (!II) return false;
3290
3291 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3292 II->getIntrinsicID() != Intrinsic::lifetime_end)
3293 return false;
3294 }
3295 return true;
3296}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003297
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003298bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3299 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003300 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003301 const Operator *Inst = dyn_cast<Operator>(V);
3302 if (!Inst)
3303 return false;
3304
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003305 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3306 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3307 if (C->canTrap())
3308 return false;
3309
3310 switch (Inst->getOpcode()) {
3311 default:
3312 return true;
3313 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003314 case Instruction::URem: {
3315 // x / y is undefined if y == 0.
3316 const APInt *V;
3317 if (match(Inst->getOperand(1), m_APInt(V)))
3318 return *V != 0;
3319 return false;
3320 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003321 case Instruction::SDiv:
3322 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003323 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003324 const APInt *Numerator, *Denominator;
3325 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3326 return false;
3327 // We cannot hoist this division if the denominator is 0.
3328 if (*Denominator == 0)
3329 return false;
3330 // It's safe to hoist if the denominator is not 0 or -1.
3331 if (*Denominator != -1)
3332 return true;
3333 // At this point we know that the denominator is -1. It is safe to hoist as
3334 // long we know that the numerator is not INT_MIN.
3335 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3336 return !Numerator->isMinSignedValue();
3337 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003338 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003339 }
3340 case Instruction::Load: {
3341 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003342 if (!LI->isUnordered() ||
3343 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003344 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003345 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003346 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003347 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003348 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003349 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3350 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003351 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003352 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003353 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3354 switch (II->getIntrinsicID()) {
3355 // These synthetic intrinsics have no side-effects and just mark
3356 // information about their operands.
3357 // FIXME: There are other no-op synthetic instructions that potentially
3358 // should be considered at least *safe* to speculate...
3359 case Intrinsic::dbg_declare:
3360 case Intrinsic::dbg_value:
3361 return true;
3362
Xin Tongc13a8e82017-01-09 17:57:08 +00003363 case Intrinsic::bitreverse:
David Majnemer0a92f862015-08-28 21:13:39 +00003364 case Intrinsic::bswap:
3365 case Intrinsic::ctlz:
3366 case Intrinsic::ctpop:
3367 case Intrinsic::cttz:
3368 case Intrinsic::objectsize:
3369 case Intrinsic::sadd_with_overflow:
3370 case Intrinsic::smul_with_overflow:
3371 case Intrinsic::ssub_with_overflow:
3372 case Intrinsic::uadd_with_overflow:
3373 case Intrinsic::umul_with_overflow:
3374 case Intrinsic::usub_with_overflow:
3375 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003376 // These intrinsics are defined to have the same behavior as libm
3377 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003378 case Intrinsic::sqrt:
3379 case Intrinsic::fma:
3380 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003381 return true;
3382 // These intrinsics are defined to have the same behavior as libm
3383 // functions, and the corresponding libm functions never set errno.
3384 case Intrinsic::trunc:
3385 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003386 case Intrinsic::fabs:
3387 case Intrinsic::minnum:
3388 case Intrinsic::maxnum:
3389 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003390 // These intrinsics are defined to have the same behavior as libm
3391 // functions, which never overflow when operating on the IEEE754 types
3392 // that we support, and never set errno otherwise.
3393 case Intrinsic::ceil:
3394 case Intrinsic::floor:
3395 case Intrinsic::nearbyint:
3396 case Intrinsic::rint:
3397 case Intrinsic::round:
3398 return true;
whitequark16f1e5f2017-01-25 09:32:30 +00003399 // These intrinsics do not correspond to any libm function, and
3400 // do not set errno.
3401 case Intrinsic::powi:
3402 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003403 // TODO: are convert_{from,to}_fp16 safe?
3404 // TODO: can we list target-specific intrinsics here?
3405 default: break;
3406 }
3407 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003408 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003409 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003410 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003411 case Instruction::VAArg:
3412 case Instruction::Alloca:
3413 case Instruction::Invoke:
3414 case Instruction::PHI:
3415 case Instruction::Store:
3416 case Instruction::Ret:
3417 case Instruction::Br:
3418 case Instruction::IndirectBr:
3419 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003420 case Instruction::Unreachable:
3421 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003422 case Instruction::AtomicRMW:
3423 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003424 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003425 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003426 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003427 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003428 case Instruction::CatchRet:
3429 case Instruction::CleanupPad:
3430 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003431 return false; // Misc instructions which have effects
3432 }
3433}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003434
Quentin Colombet6443cce2015-08-06 18:44:34 +00003435bool llvm::mayBeMemoryDependent(const Instruction &I) {
3436 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3437}
3438
Sanjay Patelaee84212014-11-04 16:27:42 +00003439/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003440bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003441 assert(V->getType()->isPointerTy() && "V must be pointer type");
3442
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003443 // Alloca never returns null, malloc might.
3444 if (isa<AllocaInst>(V)) return true;
3445
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003446 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003447 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003448 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003449
Peter Collingbourne235c2752016-12-08 19:01:00 +00003450 // A global variable in address space 0 is non null unless extern weak
3451 // or an absolute symbol reference. Other address spaces may have null as a
3452 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003453 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003454 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003455 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003456
Sanjoy Das5056e192016-05-07 02:08:22 +00003457 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003458 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003459 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003460
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003461 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003462 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003463 return true;
3464
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003465 return false;
3466}
David Majnemer491331a2015-01-02 07:29:43 +00003467
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003468static bool isKnownNonNullFromDominatingCondition(const Value *V,
3469 const Instruction *CtxI,
3470 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003471 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003472 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003473 assert(CtxI && "Context instruction required for analysis");
3474 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003475
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003476 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003477 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003478 // Avoid massive lists
3479 if (NumUsesExplored >= DomConditionsMaxUses)
3480 break;
3481 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003482
3483 // If the value is used as an argument to a call or invoke, then argument
3484 // attributes may provide an answer about null-ness.
3485 if (auto CS = ImmutableCallSite(U))
3486 if (auto *CalledFunc = CS.getCalledFunction())
3487 for (const Argument &Arg : CalledFunc->args())
3488 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3489 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3490 return true;
3491
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003492 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003493 CmpInst::Predicate Pred;
3494 if (!match(const_cast<User *>(U),
3495 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3496 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003497 continue;
3498
Sanjoy Das987aaa12016-05-07 02:08:24 +00003499 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003500 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3501 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003502
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003503 BasicBlock *NonNullSuccessor =
3504 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3505 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3506 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3507 return true;
3508 } else if (Pred == ICmpInst::ICMP_NE &&
3509 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3510 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003511 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003512 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003513 }
3514 }
3515
3516 return false;
3517}
3518
3519bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003520 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003521 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3522 return false;
3523
Sean Silva45835e72016-07-02 23:47:27 +00003524 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003525 return true;
3526
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003527 if (!CtxI || !DT)
3528 return false;
3529
3530 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003531}
3532
Pete Cooper35b00d52016-08-13 01:05:32 +00003533OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3534 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003535 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003536 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003537 const Instruction *CxtI,
3538 const DominatorTree *DT) {
3539 // Multiplying n * m significant bits yields a result of n + m significant
3540 // bits. If the total number of significant bits does not exceed the
3541 // result bit width (minus 1), there is no overflow.
3542 // This means if we have enough leading zero bits in the operands
3543 // we can guarantee that the result does not overflow.
3544 // Ref: "Hacker's Delight" by Henry Warren
3545 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3546 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003547 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003548 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003549 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003550 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3551 DT);
3552 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3553 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003554 // Note that underestimating the number of zero bits gives a more
3555 // conservative answer.
3556 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3557 RHSKnownZero.countLeadingOnes();
3558 // First handle the easy case: if we have enough zero bits there's
3559 // definitely no overflow.
3560 if (ZeroBits >= BitWidth)
3561 return OverflowResult::NeverOverflows;
3562
3563 // Get the largest possible values for each operand.
3564 APInt LHSMax = ~LHSKnownZero;
3565 APInt RHSMax = ~RHSKnownZero;
3566
3567 // We know the multiply operation doesn't overflow if the maximum values for
3568 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003569 bool MaxOverflow;
3570 LHSMax.umul_ov(RHSMax, MaxOverflow);
3571 if (!MaxOverflow)
3572 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003573
David Majnemerc8a576b2015-01-02 07:29:47 +00003574 // We know it always overflows if multiplying the smallest possible values for
3575 // the operands also results in overflow.
3576 bool MinOverflow;
3577 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3578 if (MinOverflow)
3579 return OverflowResult::AlwaysOverflows;
3580
3581 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003582}
David Majnemer5310c1e2015-01-07 00:39:50 +00003583
Pete Cooper35b00d52016-08-13 01:05:32 +00003584OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3585 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003586 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003587 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003588 const Instruction *CxtI,
3589 const DominatorTree *DT) {
3590 bool LHSKnownNonNegative, LHSKnownNegative;
3591 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003592 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003593 if (LHSKnownNonNegative || LHSKnownNegative) {
3594 bool RHSKnownNonNegative, RHSKnownNegative;
3595 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003596 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003597
3598 if (LHSKnownNegative && RHSKnownNegative) {
3599 // The sign bit is set in both cases: this MUST overflow.
3600 // Create a simple add instruction, and insert it into the struct.
3601 return OverflowResult::AlwaysOverflows;
3602 }
3603
3604 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3605 // The sign bit is clear in both cases: this CANNOT overflow.
3606 // Create a simple add instruction, and insert it into the struct.
3607 return OverflowResult::NeverOverflows;
3608 }
3609 }
3610
3611 return OverflowResult::MayOverflow;
3612}
James Molloy71b91c22015-05-11 14:42:20 +00003613
Pete Cooper35b00d52016-08-13 01:05:32 +00003614static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3615 const Value *RHS,
3616 const AddOperator *Add,
3617 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003618 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003619 const Instruction *CxtI,
3620 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003621 if (Add && Add->hasNoSignedWrap()) {
3622 return OverflowResult::NeverOverflows;
3623 }
3624
3625 bool LHSKnownNonNegative, LHSKnownNegative;
3626 bool RHSKnownNonNegative, RHSKnownNegative;
3627 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003628 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003629 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003630 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003631
3632 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3633 (LHSKnownNegative && RHSKnownNonNegative)) {
3634 // The sign bits are opposite: this CANNOT overflow.
3635 return OverflowResult::NeverOverflows;
3636 }
3637
3638 // The remaining code needs Add to be available. Early returns if not so.
3639 if (!Add)
3640 return OverflowResult::MayOverflow;
3641
3642 // If the sign of Add is the same as at least one of the operands, this add
3643 // CANNOT overflow. This is particularly useful when the sum is
3644 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3645 // operands.
3646 bool LHSOrRHSKnownNonNegative =
3647 (LHSKnownNonNegative || RHSKnownNonNegative);
3648 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3649 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3650 bool AddKnownNonNegative, AddKnownNegative;
3651 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003652 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003653 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3654 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3655 return OverflowResult::NeverOverflows;
3656 }
3657 }
3658
3659 return OverflowResult::MayOverflow;
3660}
3661
Pete Cooper35b00d52016-08-13 01:05:32 +00003662bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3663 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003664#ifndef NDEBUG
3665 auto IID = II->getIntrinsicID();
3666 assert((IID == Intrinsic::sadd_with_overflow ||
3667 IID == Intrinsic::uadd_with_overflow ||
3668 IID == Intrinsic::ssub_with_overflow ||
3669 IID == Intrinsic::usub_with_overflow ||
3670 IID == Intrinsic::smul_with_overflow ||
3671 IID == Intrinsic::umul_with_overflow) &&
3672 "Not an overflow intrinsic!");
3673#endif
3674
Pete Cooper35b00d52016-08-13 01:05:32 +00003675 SmallVector<const BranchInst *, 2> GuardingBranches;
3676 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003677
Pete Cooper35b00d52016-08-13 01:05:32 +00003678 for (const User *U : II->users()) {
3679 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003680 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3681
3682 if (EVI->getIndices()[0] == 0)
3683 Results.push_back(EVI);
3684 else {
3685 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3686
Pete Cooper35b00d52016-08-13 01:05:32 +00003687 for (const auto *U : EVI->users())
3688 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003689 assert(B->isConditional() && "How else is it using an i1?");
3690 GuardingBranches.push_back(B);
3691 }
3692 }
3693 } else {
3694 // We are using the aggregate directly in a way we don't want to analyze
3695 // here (storing it to a global, say).
3696 return false;
3697 }
3698 }
3699
Pete Cooper35b00d52016-08-13 01:05:32 +00003700 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003701 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3702 if (!NoWrapEdge.isSingleEdge())
3703 return false;
3704
3705 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003706 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003707 // If the extractvalue itself is not executed on overflow, the we don't
3708 // need to check each use separately, since domination is transitive.
3709 if (DT.dominates(NoWrapEdge, Result->getParent()))
3710 continue;
3711
3712 for (auto &RU : Result->uses())
3713 if (!DT.dominates(NoWrapEdge, RU))
3714 return false;
3715 }
3716
3717 return true;
3718 };
3719
3720 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3721}
3722
3723
Pete Cooper35b00d52016-08-13 01:05:32 +00003724OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003725 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003726 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003727 const Instruction *CxtI,
3728 const DominatorTree *DT) {
3729 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003730 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003731}
3732
Pete Cooper35b00d52016-08-13 01:05:32 +00003733OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3734 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003735 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003736 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003737 const Instruction *CxtI,
3738 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003739 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003740}
3741
Jingyue Wu42f1d672015-07-28 18:22:40 +00003742bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003743 // A memory operation returns normally if it isn't volatile. A volatile
3744 // operation is allowed to trap.
3745 //
3746 // An atomic operation isn't guaranteed to return in a reasonable amount of
3747 // time because it's possible for another thread to interfere with it for an
3748 // arbitrary length of time, but programs aren't allowed to rely on that.
3749 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3750 return !LI->isVolatile();
3751 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3752 return !SI->isVolatile();
3753 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3754 return !CXI->isVolatile();
3755 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3756 return !RMWI->isVolatile();
3757 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3758 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003759
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003760 // If there is no successor, then execution can't transfer to it.
3761 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3762 return !CRI->unwindsToCaller();
3763 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3764 return !CatchSwitch->unwindsToCaller();
3765 if (isa<ResumeInst>(I))
3766 return false;
3767 if (isa<ReturnInst>(I))
3768 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003769 if (isa<UnreachableInst>(I))
3770 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003771
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003772 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003773 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003774 // Call sites that throw have implicit non-local control flow.
3775 if (!CS.doesNotThrow())
3776 return false;
3777
3778 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3779 // etc. and thus not return. However, LLVM already assumes that
3780 //
3781 // - Thread exiting actions are modeled as writes to memory invisible to
3782 // the program.
3783 //
3784 // - Loops that don't have side effects (side effects are volatile/atomic
3785 // stores and IO) always terminate (see http://llvm.org/PR965).
3786 // Furthermore IO itself is also modeled as writes to memory invisible to
3787 // the program.
3788 //
3789 // We rely on those assumptions here, and use the memory effects of the call
3790 // target as a proxy for checking that it always returns.
3791
3792 // FIXME: This isn't aggressive enough; a call which only writes to a global
3793 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003794 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3795 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003796 }
3797
3798 // Other instructions return normally.
3799 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003800}
3801
3802bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3803 const Loop *L) {
3804 // The loop header is guaranteed to be executed for every iteration.
3805 //
3806 // FIXME: Relax this constraint to cover all basic blocks that are
3807 // guaranteed to be executed at every iteration.
3808 if (I->getParent() != L->getHeader()) return false;
3809
3810 for (const Instruction &LI : *L->getHeader()) {
3811 if (&LI == I) return true;
3812 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3813 }
3814 llvm_unreachable("Instruction not contained in its own parent basic block.");
3815}
3816
3817bool llvm::propagatesFullPoison(const Instruction *I) {
3818 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003819 case Instruction::Add:
3820 case Instruction::Sub:
3821 case Instruction::Xor:
3822 case Instruction::Trunc:
3823 case Instruction::BitCast:
3824 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003825 case Instruction::Mul:
3826 case Instruction::Shl:
3827 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003828 // These operations all propagate poison unconditionally. Note that poison
3829 // is not any particular value, so xor or subtraction of poison with
3830 // itself still yields poison, not zero.
3831 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003832
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003833 case Instruction::AShr:
3834 case Instruction::SExt:
3835 // For these operations, one bit of the input is replicated across
3836 // multiple output bits. A replicated poison bit is still poison.
3837 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003838
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003839 case Instruction::ICmp:
3840 // Comparing poison with any value yields poison. This is why, for
3841 // instance, x s< (x +nsw 1) can be folded to true.
3842 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003843
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003844 default:
3845 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003846 }
3847}
3848
3849const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3850 switch (I->getOpcode()) {
3851 case Instruction::Store:
3852 return cast<StoreInst>(I)->getPointerOperand();
3853
3854 case Instruction::Load:
3855 return cast<LoadInst>(I)->getPointerOperand();
3856
3857 case Instruction::AtomicCmpXchg:
3858 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3859
3860 case Instruction::AtomicRMW:
3861 return cast<AtomicRMWInst>(I)->getPointerOperand();
3862
3863 case Instruction::UDiv:
3864 case Instruction::SDiv:
3865 case Instruction::URem:
3866 case Instruction::SRem:
3867 return I->getOperand(1);
3868
3869 default:
3870 return nullptr;
3871 }
3872}
3873
3874bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3875 // We currently only look for uses of poison values within the same basic
3876 // block, as that makes it easier to guarantee that the uses will be
3877 // executed given that PoisonI is executed.
3878 //
3879 // FIXME: Expand this to consider uses beyond the same basic block. To do
3880 // this, look out for the distinction between post-dominance and strong
3881 // post-dominance.
3882 const BasicBlock *BB = PoisonI->getParent();
3883
3884 // Set of instructions that we have proved will yield poison if PoisonI
3885 // does.
3886 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003887 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003888 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003889 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003890
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003891 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003892
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003893 unsigned Iter = 0;
3894 while (Iter++ < MaxDepth) {
3895 for (auto &I : make_range(Begin, End)) {
3896 if (&I != PoisonI) {
3897 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3898 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3899 return true;
3900 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3901 return false;
3902 }
3903
3904 // Mark poison that propagates from I through uses of I.
3905 if (YieldsPoison.count(&I)) {
3906 for (const User *User : I.users()) {
3907 const Instruction *UserI = cast<Instruction>(User);
3908 if (propagatesFullPoison(UserI))
3909 YieldsPoison.insert(User);
3910 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003911 }
3912 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003913
3914 if (auto *NextBB = BB->getSingleSuccessor()) {
3915 if (Visited.insert(NextBB).second) {
3916 BB = NextBB;
3917 Begin = BB->getFirstNonPHI()->getIterator();
3918 End = BB->end();
3919 continue;
3920 }
3921 }
3922
3923 break;
3924 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003925 return false;
3926}
3927
Pete Cooper35b00d52016-08-13 01:05:32 +00003928static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003929 if (FMF.noNaNs())
3930 return true;
3931
3932 if (auto *C = dyn_cast<ConstantFP>(V))
3933 return !C->isNaN();
3934 return false;
3935}
3936
Pete Cooper35b00d52016-08-13 01:05:32 +00003937static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003938 if (auto *C = dyn_cast<ConstantFP>(V))
3939 return !C->isZero();
3940 return false;
3941}
3942
Sanjay Patel819f0962016-11-13 19:30:19 +00003943/// Match non-obvious integer minimum and maximum sequences.
3944static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3945 Value *CmpLHS, Value *CmpRHS,
3946 Value *TrueVal, Value *FalseVal,
3947 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003948 // Assume success. If there's no match, callers should not use these anyway.
3949 LHS = TrueVal;
3950 RHS = FalseVal;
3951
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003952 // Recognize variations of:
3953 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3954 const APInt *C1;
3955 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3956 const APInt *C2;
3957
3958 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3959 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003960 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003961 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003962
3963 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3964 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003965 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003966 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003967
3968 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3969 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003970 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003971 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003972
3973 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3974 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003975 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003976 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003977 }
3978
Sanjay Patel819f0962016-11-13 19:30:19 +00003979 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3980 return {SPF_UNKNOWN, SPNB_NA, false};
3981
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003982 // Z = X -nsw Y
3983 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3984 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3985 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003986 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003987 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003988
3989 // Z = X -nsw Y
3990 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3991 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3992 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003993 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003994 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003995
Sanjay Patel819f0962016-11-13 19:30:19 +00003996 if (!match(CmpRHS, m_APInt(C1)))
3997 return {SPF_UNKNOWN, SPNB_NA, false};
3998
3999 // An unsigned min/max can be written with a signed compare.
4000 const APInt *C2;
4001 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4002 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4003 // Is the sign bit set?
4004 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4005 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004006 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004007 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004008
4009 // Is the sign bit clear?
4010 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4011 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4012 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004013 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004014 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004015 }
4016
4017 // Look through 'not' ops to find disguised signed min/max.
4018 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4019 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4020 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004021 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004022 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004023
4024 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4025 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4026 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004027 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004028 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004029
4030 return {SPF_UNKNOWN, SPNB_NA, false};
4031}
4032
James Molloy134bec22015-08-11 09:12:57 +00004033static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4034 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004035 Value *CmpLHS, Value *CmpRHS,
4036 Value *TrueVal, Value *FalseVal,
4037 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004038 LHS = CmpLHS;
4039 RHS = CmpRHS;
4040
James Molloy134bec22015-08-11 09:12:57 +00004041 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4042 // return inconsistent results between implementations.
4043 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4044 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4045 // Therefore we behave conservatively and only proceed if at least one of the
4046 // operands is known to not be zero, or if we don't care about signed zeroes.
4047 switch (Pred) {
4048 default: break;
4049 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4050 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4051 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4052 !isKnownNonZero(CmpRHS))
4053 return {SPF_UNKNOWN, SPNB_NA, false};
4054 }
4055
4056 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4057 bool Ordered = false;
4058
4059 // When given one NaN and one non-NaN input:
4060 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4061 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4062 // ordered comparison fails), which could be NaN or non-NaN.
4063 // so here we discover exactly what NaN behavior is required/accepted.
4064 if (CmpInst::isFPPredicate(Pred)) {
4065 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4066 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4067
4068 if (LHSSafe && RHSSafe) {
4069 // Both operands are known non-NaN.
4070 NaNBehavior = SPNB_RETURNS_ANY;
4071 } else if (CmpInst::isOrdered(Pred)) {
4072 // An ordered comparison will return false when given a NaN, so it
4073 // returns the RHS.
4074 Ordered = true;
4075 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004076 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004077 NaNBehavior = SPNB_RETURNS_NAN;
4078 else if (RHSSafe)
4079 NaNBehavior = SPNB_RETURNS_OTHER;
4080 else
4081 // Completely unsafe.
4082 return {SPF_UNKNOWN, SPNB_NA, false};
4083 } else {
4084 Ordered = false;
4085 // An unordered comparison will return true when given a NaN, so it
4086 // returns the LHS.
4087 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004088 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004089 NaNBehavior = SPNB_RETURNS_OTHER;
4090 else if (RHSSafe)
4091 NaNBehavior = SPNB_RETURNS_NAN;
4092 else
4093 // Completely unsafe.
4094 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004095 }
4096 }
4097
James Molloy71b91c22015-05-11 14:42:20 +00004098 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004099 std::swap(CmpLHS, CmpRHS);
4100 Pred = CmpInst::getSwappedPredicate(Pred);
4101 if (NaNBehavior == SPNB_RETURNS_NAN)
4102 NaNBehavior = SPNB_RETURNS_OTHER;
4103 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4104 NaNBehavior = SPNB_RETURNS_NAN;
4105 Ordered = !Ordered;
4106 }
4107
4108 // ([if]cmp X, Y) ? X : Y
4109 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004110 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004111 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004112 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004113 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004114 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004115 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004116 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004117 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004118 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004119 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4120 case FCmpInst::FCMP_UGT:
4121 case FCmpInst::FCMP_UGE:
4122 case FCmpInst::FCMP_OGT:
4123 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4124 case FCmpInst::FCMP_ULT:
4125 case FCmpInst::FCMP_ULE:
4126 case FCmpInst::FCMP_OLT:
4127 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004128 }
4129 }
4130
Sanjay Patele372aec2016-10-27 15:26:10 +00004131 const APInt *C1;
4132 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004133 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4134 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4135
4136 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4137 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004138 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004139 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004140 }
4141
4142 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4143 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004144 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004145 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004146 }
4147 }
James Molloy71b91c22015-05-11 14:42:20 +00004148 }
4149
Sanjay Patel819f0962016-11-13 19:30:19 +00004150 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004151}
James Molloy270ef8c2015-05-15 16:04:50 +00004152
James Molloy569cea62015-09-02 17:25:25 +00004153static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4154 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004155 auto *Cast1 = dyn_cast<CastInst>(V1);
4156 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004157 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004158
Sanjay Patel14a4b812017-01-29 16:34:57 +00004159 *CastOp = Cast1->getOpcode();
4160 Type *SrcTy = Cast1->getSrcTy();
4161 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4162 // If V1 and V2 are both the same cast from the same type, look through V1.
4163 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4164 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004165 return nullptr;
4166 }
4167
Sanjay Patel14a4b812017-01-29 16:34:57 +00004168 auto *C = dyn_cast<Constant>(V2);
4169 if (!C)
4170 return nullptr;
4171
David Majnemerd2a074b2016-04-29 18:40:34 +00004172 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004173 switch (*CastOp) {
4174 case Instruction::ZExt:
4175 if (CmpI->isUnsigned())
4176 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4177 break;
4178 case Instruction::SExt:
4179 if (CmpI->isSigned())
4180 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4181 break;
4182 case Instruction::Trunc:
4183 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4184 break;
4185 case Instruction::FPTrunc:
4186 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4187 break;
4188 case Instruction::FPExt:
4189 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4190 break;
4191 case Instruction::FPToUI:
4192 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4193 break;
4194 case Instruction::FPToSI:
4195 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4196 break;
4197 case Instruction::UIToFP:
4198 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4199 break;
4200 case Instruction::SIToFP:
4201 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4202 break;
4203 default:
4204 break;
4205 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004206
4207 if (!CastedTo)
4208 return nullptr;
4209
David Majnemerd2a074b2016-04-29 18:40:34 +00004210 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004211 Constant *CastedBack =
4212 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004213 if (CastedBack != C)
4214 return nullptr;
4215
4216 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004217}
4218
Sanjay Patele8dc0902016-05-23 17:57:54 +00004219SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004220 Instruction::CastOps *CastOp) {
4221 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004222 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004223
James Molloy134bec22015-08-11 09:12:57 +00004224 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4225 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004226
James Molloy134bec22015-08-11 09:12:57 +00004227 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004228 Value *CmpLHS = CmpI->getOperand(0);
4229 Value *CmpRHS = CmpI->getOperand(1);
4230 Value *TrueVal = SI->getTrueValue();
4231 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004232 FastMathFlags FMF;
4233 if (isa<FPMathOperator>(CmpI))
4234 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004235
4236 // Bail out early.
4237 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004238 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004239
4240 // Deal with type mismatches.
4241 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004242 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004243 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004244 cast<CastInst>(TrueVal)->getOperand(0), C,
4245 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004246 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004247 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004248 C, cast<CastInst>(FalseVal)->getOperand(0),
4249 LHS, RHS);
4250 }
James Molloy134bec22015-08-11 09:12:57 +00004251 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004252 LHS, RHS);
4253}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004254
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004255/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004256static bool isTruePredicate(CmpInst::Predicate Pred,
4257 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004258 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004259 AssumptionCache *AC, const Instruction *CxtI,
4260 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004261 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004262 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4263 return true;
4264
4265 switch (Pred) {
4266 default:
4267 return false;
4268
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004269 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004270 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004271
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004272 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004273 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004274 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004275 return false;
4276 }
4277
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004278 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004279 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004280
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004281 // LHS u<= LHS +_{nuw} C for any C
4282 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004283 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004284
4285 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004286 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4287 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004288 const APInt *&CA, const APInt *&CB) {
4289 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4290 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4291 return true;
4292
4293 // If X & C == 0 then (X | C) == X +_{nuw} C
4294 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4295 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4296 unsigned BitWidth = CA->getBitWidth();
4297 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004298 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004299
4300 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4301 return true;
4302 }
4303
4304 return false;
4305 };
4306
Pete Cooper35b00d52016-08-13 01:05:32 +00004307 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004308 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004309 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4310 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004311
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004312 return false;
4313 }
4314 }
4315}
4316
4317/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004318/// ALHS ARHS" is true. Otherwise, return None.
4319static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004320isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4321 const Value *ARHS, const Value *BLHS,
4322 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004323 unsigned Depth, AssumptionCache *AC,
4324 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004325 switch (Pred) {
4326 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004327 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004328
4329 case CmpInst::ICMP_SLT:
4330 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004331 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004332 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004333 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004334 return true;
4335 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004336
4337 case CmpInst::ICMP_ULT:
4338 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004339 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4340 DT) &&
4341 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004342 return true;
4343 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004344 }
4345}
4346
Chad Rosier226a7342016-05-05 17:41:19 +00004347/// Return true if the operands of the two compares match. IsSwappedOps is true
4348/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004349static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4350 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004351 bool &IsSwappedOps) {
4352
4353 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4354 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4355 return IsMatchingOps || IsSwappedOps;
4356}
4357
Chad Rosier41dd31f2016-04-20 19:15:26 +00004358/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4359/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4360/// BRHS" is false. Otherwise, return None if we can't infer anything.
4361static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004362 const Value *ALHS,
4363 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004364 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004365 const Value *BLHS,
4366 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004367 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004368 // Canonicalize the operands so they're matching.
4369 if (IsSwappedOps) {
4370 std::swap(BLHS, BRHS);
4371 BPred = ICmpInst::getSwappedPredicate(BPred);
4372 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004373 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004374 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004375 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004376 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004377
Chad Rosier41dd31f2016-04-20 19:15:26 +00004378 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004379}
4380
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004381/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4382/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4383/// C2" is false. Otherwise, return None if we can't infer anything.
4384static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004385isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4386 const ConstantInt *C1,
4387 CmpInst::Predicate BPred,
4388 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004389 assert(ALHS == BLHS && "LHS operands must match.");
4390 ConstantRange DomCR =
4391 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4392 ConstantRange CR =
4393 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4394 ConstantRange Intersection = DomCR.intersectWith(CR);
4395 ConstantRange Difference = DomCR.difference(CR);
4396 if (Intersection.isEmptySet())
4397 return false;
4398 if (Difference.isEmptySet())
4399 return true;
4400 return None;
4401}
4402
Pete Cooper35b00d52016-08-13 01:05:32 +00004403Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004404 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004405 unsigned Depth, AssumptionCache *AC,
4406 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004407 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004408 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4409 if (LHS->getType() != RHS->getType())
4410 return None;
4411
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004412 Type *OpTy = LHS->getType();
4413 assert(OpTy->getScalarType()->isIntegerTy(1));
4414
4415 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004416 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004417 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004418
4419 if (OpTy->isVectorTy())
4420 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004421 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004422 assert(OpTy->isIntegerTy(1) && "implied by above");
4423
4424 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004425 Value *ALHS, *ARHS;
4426 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004427
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004428 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4429 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004430 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004431
Chad Rosiere2cbd132016-04-25 17:23:36 +00004432 if (InvertAPred)
4433 APred = CmpInst::getInversePredicate(APred);
4434
Chad Rosier226a7342016-05-05 17:41:19 +00004435 // Can we infer anything when the two compares have matching operands?
4436 bool IsSwappedOps;
4437 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4438 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4439 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004440 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004441 // No amount of additional analysis will infer the second condition, so
4442 // early exit.
4443 return None;
4444 }
4445
4446 // Can we infer anything when the LHS operands match and the RHS operands are
4447 // constants (not necessarily matching)?
4448 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4449 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4450 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4451 cast<ConstantInt>(BRHS)))
4452 return Implication;
4453 // No amount of additional analysis will infer the second condition, so
4454 // early exit.
4455 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004456 }
4457
Chad Rosier41dd31f2016-04-20 19:15:26 +00004458 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004459 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4460 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004461
Chad Rosier41dd31f2016-04-20 19:15:26 +00004462 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004463}