blob: 2e7e0636378df8a7fee742ec7903bab97864757b [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000018#include "X86.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "X86RegisterInfo.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Chris Lattner72614082002-10-25 22:55:53 +000021
Brian Gaeked0fde302003-11-11 22:41:34 +000022namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000023 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000024 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000025
Chris Lattner7fbe9722006-10-20 17:42:20 +000026namespace X86 {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +000027 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
36
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
39
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
42 };
43
44
Chris Lattner7fbe9722006-10-20 17:42:20 +000045 // X86 specific condition code. These correspond to X86_*_COND in
46 // X86InstrInfo.td. They must be kept in synch.
47 enum CondCode {
48 COND_A = 0,
49 COND_AE = 1,
50 COND_B = 2,
51 COND_BE = 3,
52 COND_E = 4,
53 COND_G = 5,
54 COND_GE = 6,
55 COND_L = 7,
56 COND_LE = 8,
57 COND_NE = 9,
58 COND_NO = 10,
59 COND_NP = 11,
60 COND_NS = 12,
Dan Gohman653456c2009-01-07 00:15:08 +000061 COND_O = 13,
62 COND_P = 14,
63 COND_S = 15,
Dan Gohman279c22e2008-10-21 03:29:32 +000064
65 // Artificial condition codes. These are used by AnalyzeBranch
66 // to indicate a block terminated with two conditional branches to
67 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
68 // which can't be represented on x86 with a single condition. These
69 // are never used in MachineInstrs.
70 COND_NE_OR_P,
71 COND_NP_OR_E,
72
Chris Lattner7fbe9722006-10-20 17:42:20 +000073 COND_INVALID
74 };
Christopher Lamb6634e262008-03-13 05:47:01 +000075
Chris Lattner7fbe9722006-10-20 17:42:20 +000076 // Turn condition code into conditional branch opcode.
77 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000078
79 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
80 /// e.g. turning COND_E to COND_NE.
81 CondCode GetOppositeBranchCondition(X86::CondCode CC);
82
Chris Lattner7fbe9722006-10-20 17:42:20 +000083}
84
Chris Lattner9d177402002-10-30 01:09:34 +000085/// X86II - This namespace holds all of the target specific flags that
86/// instruction info tracks.
87///
88namespace X86II {
Chris Lattner3b6b36d2009-07-10 06:29:59 +000089 /// Target Operand Flag enum.
90 enum TOF {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000091 //===------------------------------------------------------------------===//
Chris Lattnerac5e8872009-06-25 17:38:33 +000092 // X86 Specific MachineOperand flags.
93
Dan Gohman01a76ce2009-10-05 15:52:08 +000094 MO_NO_FLAG,
Chris Lattnerac5e8872009-06-25 17:38:33 +000095
96 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
97 /// relocation of:
Chris Lattner55e7c822009-06-26 00:43:52 +000098 /// SYMBOL_LABEL + [. - PICBASELABEL]
Dan Gohman01a76ce2009-10-05 15:52:08 +000099 MO_GOT_ABSOLUTE_ADDRESS,
Chris Lattnerac5e8872009-06-25 17:38:33 +0000100
Chris Lattner55e7c822009-06-26 00:43:52 +0000101 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
102 /// immediate should get the value of the symbol minus the PIC base label:
103 /// SYMBOL_LABEL - PICBASELABEL
Dan Gohman01a76ce2009-10-05 15:52:08 +0000104 MO_PIC_BASE_OFFSET,
Chris Lattner55e7c822009-06-26 00:43:52 +0000105
Chris Lattnerb903bed2009-06-26 21:20:29 +0000106 /// MO_GOT - On a symbol operand this indicates that the immediate is the
107 /// offset to the GOT entry for the symbol name from the base of the GOT.
108 ///
109 /// See the X86-64 ELF ABI supplement for more details.
110 /// SYMBOL_LABEL @GOT
Dan Gohman01a76ce2009-10-05 15:52:08 +0000111 MO_GOT,
Chris Lattner55e7c822009-06-26 00:43:52 +0000112
Chris Lattnerb903bed2009-06-26 21:20:29 +0000113 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
114 /// the offset to the location of the symbol name from the base of the GOT.
115 ///
116 /// See the X86-64 ELF ABI supplement for more details.
117 /// SYMBOL_LABEL @GOTOFF
Dan Gohman01a76ce2009-10-05 15:52:08 +0000118 MO_GOTOFF,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000119
120 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
121 /// offset to the GOT entry for the symbol name from the current code
122 /// location.
123 ///
124 /// See the X86-64 ELF ABI supplement for more details.
125 /// SYMBOL_LABEL @GOTPCREL
Dan Gohman01a76ce2009-10-05 15:52:08 +0000126 MO_GOTPCREL,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000127
128 /// MO_PLT - On a symbol operand this indicates that the immediate is
129 /// offset to the PLT entry of symbol name from the current code location.
130 ///
131 /// See the X86-64 ELF ABI supplement for more details.
132 /// SYMBOL_LABEL @PLT
Dan Gohman01a76ce2009-10-05 15:52:08 +0000133 MO_PLT,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000134
135 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
136 /// some TLS offset.
137 ///
138 /// See 'ELF Handling for Thread-Local Storage' for more details.
139 /// SYMBOL_LABEL @TLSGD
Dan Gohman01a76ce2009-10-05 15:52:08 +0000140 MO_TLSGD,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000141
142 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
143 /// some TLS offset.
144 ///
145 /// See 'ELF Handling for Thread-Local Storage' for more details.
146 /// SYMBOL_LABEL @GOTTPOFF
Dan Gohman01a76ce2009-10-05 15:52:08 +0000147 MO_GOTTPOFF,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000148
149 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
150 /// some TLS offset.
151 ///
152 /// See 'ELF Handling for Thread-Local Storage' for more details.
153 /// SYMBOL_LABEL @INDNTPOFF
Dan Gohman01a76ce2009-10-05 15:52:08 +0000154 MO_INDNTPOFF,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000155
156 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
157 /// some TLS offset.
158 ///
159 /// See 'ELF Handling for Thread-Local Storage' for more details.
160 /// SYMBOL_LABEL @TPOFF
Dan Gohman01a76ce2009-10-05 15:52:08 +0000161 MO_TPOFF,
Chris Lattnerb903bed2009-06-26 21:20:29 +0000162
163 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
164 /// some TLS offset.
165 ///
166 /// See 'ELF Handling for Thread-Local Storage' for more details.
167 /// SYMBOL_LABEL @NTPOFF
Dan Gohman01a76ce2009-10-05 15:52:08 +0000168 MO_NTPOFF,
Chris Lattnerac5e8872009-06-25 17:38:33 +0000169
Chris Lattner4aa21aa2009-07-09 00:58:53 +0000170 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
171 /// reference is actually to the "__imp_FOO" symbol. This is used for
172 /// dllimport linkage on windows.
Dan Gohman01a76ce2009-10-05 15:52:08 +0000173 MO_DLLIMPORT,
Chris Lattner4aa21aa2009-07-09 00:58:53 +0000174
Chris Lattner74e726e2009-07-09 05:27:35 +0000175 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
176 /// reference is actually to the "FOO$stub" symbol. This is used for calls
177 /// and jumps to external functions on Tiger and before.
Dan Gohman01a76ce2009-10-05 15:52:08 +0000178 MO_DARWIN_STUB,
Chris Lattner74e726e2009-07-09 05:27:35 +0000179
Chris Lattner75cdf272009-07-09 06:59:17 +0000180 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
181 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
182 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
Dan Gohman01a76ce2009-10-05 15:52:08 +0000183 MO_DARWIN_NONLAZY,
Chris Lattner75cdf272009-07-09 06:59:17 +0000184
185 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
186 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
187 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
Dan Gohman01a76ce2009-10-05 15:52:08 +0000188 MO_DARWIN_NONLAZY_PIC_BASE,
Chris Lattner75cdf272009-07-09 06:59:17 +0000189
Chris Lattner75cdf272009-07-09 06:59:17 +0000190 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
191 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
192 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
193 /// stub.
Eric Christopher30ef0e52010-06-03 04:07:48 +0000194 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
195
196 /// MO_TLVP - On a symbol operand this indicates that the immediate is
197 /// some TLS offset.
198 ///
199 /// This is the TLS offset for the Darwin TLS mechanism.
200 MO_TLVP,
201
202 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
203 /// is some TLS offset from the picbase.
204 ///
205 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
206 MO_TLVP_PIC_BASE
Chris Lattner281bada2009-07-10 06:06:17 +0000207 };
208}
209
Chris Lattner3b6b36d2009-07-10 06:29:59 +0000210/// isGlobalStubReference - Return true if the specified TargetFlag operand is
Chris Lattner281bada2009-07-10 06:06:17 +0000211/// a reference to a stub for a global, not the global itself.
Chris Lattner3b6b36d2009-07-10 06:29:59 +0000212inline static bool isGlobalStubReference(unsigned char TargetFlag) {
213 switch (TargetFlag) {
Chris Lattner281bada2009-07-10 06:06:17 +0000214 case X86II::MO_DLLIMPORT: // dllimport stub.
215 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
216 case X86II::MO_GOT: // normal GOT reference.
217 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
218 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
219 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
Chris Lattner281bada2009-07-10 06:06:17 +0000220 return true;
221 default:
222 return false;
223 }
224}
Chris Lattner7478ab82009-07-10 07:33:30 +0000225
226/// isGlobalRelativeToPICBase - Return true if the specified global value
227/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
228/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
229inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
230 switch (TargetFlag) {
231 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
232 case X86II::MO_GOT: // isPICStyleGOT: other global.
233 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
234 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
235 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
Eric Christopher30ef0e52010-06-03 04:07:48 +0000236 case X86II::MO_TLVP: // ??? Pretty sure..
Chris Lattner7478ab82009-07-10 07:33:30 +0000237 return true;
238 default:
239 return false;
240 }
241}
Chris Lattner281bada2009-07-10 06:06:17 +0000242
243/// X86II - This namespace holds all of the target specific flags that
244/// instruction info tracks.
245///
246namespace X86II {
247 enum {
Chris Lattnerac5e8872009-06-25 17:38:33 +0000248 //===------------------------------------------------------------------===//
249 // Instruction encodings. These are the standard/most common forms for X86
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000250 // instructions.
251 //
252
Chris Lattner4c299f52002-12-25 05:09:59 +0000253 // PseudoFrm - This represents an instruction that is a pseudo instruction
254 // or one that has not been implemented yet. It is illegal to code generate
255 // it, but tolerated for intermediate implementation stages.
256 Pseudo = 0,
257
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000258 /// Raw - This form is for instructions that don't have any operands, so
259 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +0000260 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000261
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000262 /// AddRegFrm - This form is used for instructions like 'push r32' that have
263 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000264 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000265
266 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
267 /// to specify a destination, which in this case is a register.
268 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000269 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000270
271 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
272 /// to specify a destination, which in this case is memory.
273 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000274 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000275
276 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
277 /// to specify a source, which in this case is a register.
278 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000279 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000280
281 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
282 /// to specify a source, which in this case is memory.
283 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000284 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000285
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000286 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000287 /// a Mod/RM byte, and use the middle field to hold extended opcode
288 /// information. In the intel manual these are represented as /0, /1, ...
289 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000290
Chris Lattner85b39f22002-11-21 17:08:49 +0000291 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000292 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
293 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000294
295 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000296 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
297 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000298
Evan Cheng3c55c542006-02-01 06:13:50 +0000299 // MRMInitReg - This form is used for instructions whose source and
300 // destinations are the same register.
301 MRMInitReg = 32,
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000302
303 //// MRM_C1 - A mod/rm byte of exactly 0xC1.
304 MRM_C1 = 33,
Chris Lattnera599de22010-02-13 00:41:14 +0000305 MRM_C2 = 34,
306 MRM_C3 = 35,
307 MRM_C4 = 36,
308 MRM_C8 = 37,
309 MRM_C9 = 38,
310 MRM_E8 = 39,
311 MRM_F0 = 40,
312 MRM_F8 = 41,
Chris Lattnerb7790332010-02-13 03:42:24 +0000313 MRM_F9 = 42,
Chris Lattner40cc3f82010-09-17 18:02:29 +0000314
315 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
316 /// immediates, the first of which is a 16-bit immediate (specified by
317 /// the imm encoding) and the second is a 8-bit fixed value.
318 RawFrmImm8 = 43,
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000319
320 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
321 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
322 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
323 /// manual, this operand is described as pntr16:32 and pntr16:16
Chris Lattner40cc3f82010-09-17 18:02:29 +0000324 RawFrmImm16 = 44,
Evan Cheng3c55c542006-02-01 06:13:50 +0000325
326 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000327
328 //===------------------------------------------------------------------===//
329 // Actual flags...
330
Chris Lattner11e53e32002-11-21 01:32:55 +0000331 // OpSize - Set if this instruction requires an operand size prefix (0x66),
332 // which most often indicates that the instruction operates on 16 bit data
333 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000334 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000335
Evan Cheng25ab6902006-09-08 06:48:29 +0000336 // AsSize - Set if this instruction requires an operand size prefix (0x67),
337 // which most often indicates that the instruction address 16 bit address
338 // instead of 32 bit address (or 32 bit address in 64 bit mode).
339 AdSize = 1 << 7,
340
341 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000342 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000343 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
344 // used to obtain the setting of this field. If no bits in this field is
345 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000346 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000347 Op0Shift = 8,
Chris Lattnerc96f6d62010-02-12 01:55:31 +0000348 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000349
350 // TB - TwoByte - Set if this instruction has a two byte opcode, which
351 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000352 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000353
Chris Lattner915e5e52004-02-12 17:53:22 +0000354 // REP - The 0xF3 prefix byte indicating repetition of the following
355 // instruction.
356 REP = 2 << Op0Shift,
357
Chris Lattner4c299f52002-12-25 05:09:59 +0000358 // D8-DF - These escape opcodes are used by the floating point unit. These
359 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000360 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
361 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
362 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
363 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000364
Nate Begemanf63be7d2005-07-06 18:59:04 +0000365 // XS, XD - These prefix codes are for single and double precision scalar
366 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000367 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
368
369 // T8, TA - Prefix after the 0x0F prefix.
370 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Eric Christopherb4dc13c2009-08-08 21:55:08 +0000371
372 // TF - Prefix before and after 0x0F
373 TF = 15 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000374
Chris Lattner0c514f42003-01-13 00:49:24 +0000375 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000376 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
377 // They are used to specify GPRs and SSE registers, 64-bit operand size,
378 // etc. We only cares about REX.W and REX.R bits and only the former is
379 // statically determined.
380 //
Chris Lattnerc96f6d62010-02-12 01:55:31 +0000381 REXShift = 12,
Evan Cheng25ab6902006-09-08 06:48:29 +0000382 REX_W = 1 << REXShift,
383
384 //===------------------------------------------------------------------===//
385 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000386 // unused so that we can tell if we forgot to set a value.
Chris Lattnerc96f6d62010-02-12 01:55:31 +0000387 ImmShift = 13,
Chris Lattnera0331192010-02-12 22:27:07 +0000388 ImmMask = 7 << ImmShift,
389 Imm8 = 1 << ImmShift,
390 Imm8PCRel = 2 << ImmShift,
391 Imm16 = 3 << ImmShift,
Chris Lattner9fc05222010-07-07 22:27:31 +0000392 Imm16PCRel = 4 << ImmShift,
393 Imm32 = 5 << ImmShift,
394 Imm32PCRel = 6 << ImmShift,
395 Imm64 = 7 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000396
Chris Lattner0c514f42003-01-13 00:49:24 +0000397 //===------------------------------------------------------------------===//
398 // FP Instruction Classification... Zero is non-fp instruction.
399
Chris Lattner2959b6e2003-08-06 15:32:20 +0000400 // FPTypeMask - Mask for all of the FP types...
Chris Lattnerc96f6d62010-02-12 01:55:31 +0000401 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000402 FPTypeMask = 7 << FPTypeShift,
403
Chris Lattner79b13732004-01-30 22:24:18 +0000404 // NotFP - The default, set for instructions that do not use FP registers.
405 NotFP = 0 << FPTypeShift,
406
Chris Lattner0c514f42003-01-13 00:49:24 +0000407 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000408 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000409
410 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000411 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000412
413 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
414 // result back to ST(0). For example, fcos, fsqrt, etc.
415 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000416 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000417
418 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
419 // explicit argument, storing the result to either ST(0) or the implicit
420 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000421 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000422
Chris Lattnerab8decc2004-06-11 04:41:24 +0000423 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
424 // explicit argument, but have no destination. Example: fucom, fucomi, ...
425 CompareFP = 5 << FPTypeShift,
426
Chris Lattner1c54a852004-03-31 22:02:13 +0000427 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000428 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000429
Chris Lattner0c514f42003-01-13 00:49:24 +0000430 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000431 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000432
Andrew Lenharthea7da502008-03-01 13:37:02 +0000433 // Lock prefix
Chris Lattnerc96f6d62010-02-12 01:55:31 +0000434 LOCKShift = 19,
Andrew Lenharthea7da502008-03-01 13:37:02 +0000435 LOCK = 1 << LOCKShift,
436
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000437 // Segment override prefixes. Currently we just need ability to address
438 // stuff in gs and fs segments.
Chris Lattnerc96f6d62010-02-12 01:55:31 +0000439 SegOvrShift = 20,
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000440 SegOvrMask = 3 << SegOvrShift,
441 FS = 1 << SegOvrShift,
442 GS = 2 << SegOvrShift,
443
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +0000444 // Execution domain for SSE instructions in bits 22, 23.
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +0000445 // 0 in bits 22-23 means normal, non-SSE instruction.
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +0000446 SSEDomainShift = 22,
447
Evan Cheng25ab6902006-09-08 06:48:29 +0000448 OpcodeShift = 24,
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000449 OpcodeMask = 0xFF << OpcodeShift,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000450
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000451 //===------------------------------------------------------------------===//
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000452 // VEX - The opcode prefix used by AVX instructions
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000453 VEX = 1U << 0,
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000454
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000455 // VEX_W - Has a opcode specific functionality, but is used in the same
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000456 // way as REX_W is for regular SSE instructions.
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000457 VEX_W = 1U << 1,
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000458
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000459 // VEX_4V - Used to specify an additional AVX/SSE register. Several 2
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000460 // address instructions in SSE are represented as 3 address ones in AVX
461 // and the additional register is encoded in VEX_VVVV prefix.
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000462 VEX_4V = 1U << 2,
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000463
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000464 // VEX_I8IMM - Specifies that the last register used in a AVX instruction,
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000465 // must be encoded in the i8 immediate field. This usually happens in
466 // instructions with 4 operands.
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000467 VEX_I8IMM = 1U << 3,
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000468
469 // VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
470 // instruction uses 256-bit wide registers. This is usually auto detected if
471 // a VR256 register is used, but some AVX instructions also have this field
472 // marked when using a f256 memory references.
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000473 VEX_L = 1U << 4
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000474 };
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000475
Chris Lattner74a21512010-02-05 19:24:13 +0000476 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
477 // specified machine instruction.
478 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000479 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
Chris Lattner74a21512010-02-05 19:24:13 +0000480 return TSFlags >> X86II::OpcodeShift;
481 }
482
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000483 static inline bool hasImm(uint64_t TSFlags) {
Chris Lattner835acab2010-02-12 23:00:36 +0000484 return (TSFlags & X86II::ImmMask) != 0;
485 }
486
Chris Lattner74a21512010-02-05 19:24:13 +0000487 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
488 /// of the specified instruction.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000489 static inline unsigned getSizeOfImm(uint64_t TSFlags) {
Chris Lattner74a21512010-02-05 19:24:13 +0000490 switch (TSFlags & X86II::ImmMask) {
491 default: assert(0 && "Unknown immediate size");
Chris Lattnera0331192010-02-12 22:27:07 +0000492 case X86II::Imm8:
493 case X86II::Imm8PCRel: return 1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000494 case X86II::Imm16:
495 case X86II::Imm16PCRel: return 2;
Chris Lattnera0331192010-02-12 22:27:07 +0000496 case X86II::Imm32:
497 case X86II::Imm32PCRel: return 4;
498 case X86II::Imm64: return 8;
499 }
500 }
501
502 /// isImmPCRel - Return true if the immediate of the specified instruction's
503 /// TSFlags indicates that it is pc relative.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000504 static inline unsigned isImmPCRel(uint64_t TSFlags) {
Chris Lattnera0331192010-02-12 22:27:07 +0000505 switch (TSFlags & X86II::ImmMask) {
Chris Lattner751e1122010-07-08 22:27:06 +0000506 default: assert(0 && "Unknown immediate size");
507 case X86II::Imm8PCRel:
508 case X86II::Imm16PCRel:
509 case X86II::Imm32PCRel:
510 return true;
511 case X86II::Imm8:
512 case X86II::Imm16:
513 case X86II::Imm32:
514 case X86II::Imm64:
515 return false;
Chris Lattner74a21512010-02-05 19:24:13 +0000516 }
Chris Lattner751e1122010-07-08 22:27:06 +0000517 }
518
519 /// getMemoryOperandNo - The function returns the MCInst operand # for the
520 /// first field of the memory operand. If the instruction doesn't have a
521 /// memory operand, this returns -1.
522 ///
523 /// Note that this ignores tied operands. If there is a tied register which
524 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
525 /// counted as one operand.
526 ///
527 static inline int getMemoryOperandNo(uint64_t TSFlags) {
528 switch (TSFlags & X86II::FormMask) {
529 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
530 default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
531 case X86II::Pseudo:
532 case X86II::RawFrm:
533 case X86II::AddRegFrm:
534 case X86II::MRMDestReg:
535 case X86II::MRMSrcReg:
Chris Lattner40cc3f82010-09-17 18:02:29 +0000536 case X86II::RawFrmImm8:
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000537 case X86II::RawFrmImm16:
Chris Lattner751e1122010-07-08 22:27:06 +0000538 return -1;
539 case X86II::MRMDestMem:
540 return 0;
541 case X86II::MRMSrcMem: {
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000542 bool HasVEX_4V = (TSFlags >> 32) & X86II::VEX_4V;
Chris Lattner751e1122010-07-08 22:27:06 +0000543 unsigned FirstMemOp = 1;
544 if (HasVEX_4V)
545 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
546
547 // FIXME: Maybe lea should have its own form? This is a horrible hack.
548 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
549 // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
550 return FirstMemOp;
551 }
552 case X86II::MRM0r: case X86II::MRM1r:
553 case X86II::MRM2r: case X86II::MRM3r:
554 case X86II::MRM4r: case X86II::MRM5r:
555 case X86II::MRM6r: case X86II::MRM7r:
556 return -1;
557 case X86II::MRM0m: case X86II::MRM1m:
558 case X86II::MRM2m: case X86II::MRM3m:
559 case X86II::MRM4m: case X86II::MRM5m:
560 case X86II::MRM6m: case X86II::MRM7m:
561 return 0;
562 case X86II::MRM_C1:
563 case X86II::MRM_C2:
564 case X86II::MRM_C3:
565 case X86II::MRM_C4:
566 case X86II::MRM_C8:
567 case X86II::MRM_C9:
568 case X86II::MRM_E8:
569 case X86II::MRM_F0:
570 case X86II::MRM_F8:
571 case X86II::MRM_F9:
572 return -1;
573 }
574 }
Chris Lattner9d177402002-10-30 01:09:34 +0000575}
576
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000577inline static bool isScale(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000578 return MO.isImm() &&
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000579 (MO.getImm() == 1 || MO.getImm() == 2 ||
580 MO.getImm() == 4 || MO.getImm() == 8);
581}
582
Rafael Espindola094fad32009-04-08 21:14:34 +0000583inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmand735b802008-10-03 15:45:36 +0000584 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000585 return Op+4 <= MI->getNumOperands() &&
Dan Gohmand735b802008-10-03 15:45:36 +0000586 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
587 MI->getOperand(Op+2).isReg() &&
588 (MI->getOperand(Op+3).isImm() ||
589 MI->getOperand(Op+3).isGlobal() ||
590 MI->getOperand(Op+3).isCPI() ||
591 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000592}
593
Rafael Espindola094fad32009-04-08 21:14:34 +0000594inline static bool isMem(const MachineInstr *MI, unsigned Op) {
595 if (MI->getOperand(Op).isFI()) return true;
596 return Op+5 <= MI->getNumOperands() &&
597 MI->getOperand(Op+4).isReg() &&
598 isLeaMem(MI, Op);
599}
600
Chris Lattner64105522008-01-01 01:03:04 +0000601class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000602 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000603 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000604
605 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
606 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
607 ///
Evan Chengf9b36f02009-07-15 06:10:07 +0000608 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
609 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
610 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
611 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
Owen Anderson43dbe052008-01-07 01:35:02 +0000612
613 /// MemOp2RegOpTable - Load / store unfolding opcode map.
614 ///
615 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +0000616
Chris Lattner72614082002-10-25 22:55:53 +0000617public:
Dan Gohman950a4c42008-03-25 22:06:05 +0000618 explicit X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000619
Chris Lattner3501fea2003-01-14 22:00:31 +0000620 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000621 /// such, whenever a client has an instance of instruction info, it should
622 /// always be able to get register info as well (through this method).
623 ///
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +0000624 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Chris Lattner72614082002-10-25 22:55:53 +0000625
Evan Cheng7da9ecf2010-01-13 00:30:23 +0000626 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
627 /// extension instruction. That is, it's like a copy where it's legal for the
628 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
629 /// true, then it's expected the pre-extension value is available as a subreg
630 /// of the result register. This also returns the sub-register index in
631 /// SubIdx.
632 virtual bool isCoalescableExtInstr(const MachineInstr &MI,
633 unsigned &SrcReg, unsigned &DstReg,
634 unsigned &SubIdx) const;
Evan Chenga5a81d72010-01-12 00:09:37 +0000635
Dan Gohmancbad42c2008-11-18 19:49:32 +0000636 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
David Greenedda39782009-11-13 00:29:53 +0000637 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
638 /// stack locations as well. This uses a heuristic so it isn't
639 /// reliable for correctness.
640 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
641 int &FrameIndex) const;
David Greeneb87bc952009-11-12 20:55:29 +0000642
643 /// hasLoadFromStackSlot - If the specified machine instruction has
644 /// a load from a stack slot, return true along with the FrameIndex
David Greene29dbf502009-12-04 22:38:46 +0000645 /// of the loaded stack slot and the machine mem operand containing
646 /// the reference. If not, return false. Unlike
David Greeneb87bc952009-11-12 20:55:29 +0000647 /// isLoadFromStackSlot, this returns true for any instructions that
648 /// loads from the stack. This is a hint only and may not catch all
649 /// cases.
David Greene29dbf502009-12-04 22:38:46 +0000650 bool hasLoadFromStackSlot(const MachineInstr *MI,
651 const MachineMemOperand *&MMO,
652 int &FrameIndex) const;
David Greeneb87bc952009-11-12 20:55:29 +0000653
Dan Gohmancbad42c2008-11-18 19:49:32 +0000654 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
David Greenedda39782009-11-13 00:29:53 +0000655 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
656 /// stack locations as well. This uses a heuristic so it isn't
657 /// reliable for correctness.
658 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
659 int &FrameIndex) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000660
David Greeneb87bc952009-11-12 20:55:29 +0000661 /// hasStoreToStackSlot - If the specified machine instruction has a
662 /// store to a stack slot, return true along with the FrameIndex of
David Greene29dbf502009-12-04 22:38:46 +0000663 /// the loaded stack slot and the machine mem operand containing the
664 /// reference. If not, return false. Unlike isStoreToStackSlot,
665 /// this returns true for any instructions that loads from the
666 /// stack. This is a hint only and may not catch all cases.
667 bool hasStoreToStackSlot(const MachineInstr *MI,
668 const MachineMemOperand *&MMO,
669 int &FrameIndex) const;
David Greeneb87bc952009-11-12 20:55:29 +0000670
Dan Gohman3731bc02009-10-10 00:34:18 +0000671 bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
672 AliasAnalysis *AA) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000673 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
Evan Cheng37844532009-07-16 09:20:10 +0000674 unsigned DestReg, unsigned SubIdx,
Evan Chengd57cdd52009-11-14 02:55:43 +0000675 const MachineInstr *Orig,
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +0000676 const TargetRegisterInfo &TRI) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000677
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000678 /// convertToThreeAddress - This method must be implemented by targets that
679 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
680 /// may be able to convert a two-address instruction into a true
681 /// three-address instruction on demand. This allows the X86 target (for
682 /// example) to convert ADD and SHL instructions into LEA instructions if they
683 /// would require register copies due to two-addressness.
684 ///
685 /// This method returns a null pointer if the transformation cannot be
686 /// performed, otherwise it returns the new instruction.
687 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000688 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
689 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000690 LiveVariables *LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000691
Chris Lattner41e431b2005-01-19 07:11:01 +0000692 /// commuteInstruction - We have a few instructions that must be hacked on to
693 /// commute them.
694 ///
Evan Cheng58dcb0e2008-06-16 07:33:11 +0000695 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000696
Chris Lattner7fbe9722006-10-20 17:42:20 +0000697 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000698 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000699 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
700 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +0000701 SmallVectorImpl<MachineOperand> &Cond,
702 bool AllowModify) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000703 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
704 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
705 MachineBasicBlock *FBB,
Stuart Hastings3bf91252010-06-17 22:43:56 +0000706 const SmallVectorImpl<MachineOperand> &Cond,
707 DebugLoc DL) const;
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +0000708 virtual void copyPhysReg(MachineBasicBlock &MBB,
709 MachineBasicBlock::iterator MI, DebugLoc DL,
710 unsigned DestReg, unsigned SrcReg,
711 bool KillSrc) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000712 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
713 MachineBasicBlock::iterator MI,
714 unsigned SrcReg, bool isKill, int FrameIndex,
Evan Cheng746ad692010-05-06 19:06:44 +0000715 const TargetRegisterClass *RC,
716 const TargetRegisterInfo *TRI) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000717
718 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
719 SmallVectorImpl<MachineOperand> &Addr,
720 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +0000721 MachineInstr::mmo_iterator MMOBegin,
722 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +0000723 SmallVectorImpl<MachineInstr*> &NewMIs) const;
724
725 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
726 MachineBasicBlock::iterator MI,
727 unsigned DestReg, int FrameIndex,
Evan Cheng746ad692010-05-06 19:06:44 +0000728 const TargetRegisterClass *RC,
729 const TargetRegisterInfo *TRI) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000730
731 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
732 SmallVectorImpl<MachineOperand> &Addr,
733 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +0000734 MachineInstr::mmo_iterator MMOBegin,
735 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +0000736 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000737
738 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
739 MachineBasicBlock::iterator MI,
Evan Cheng2457f2c2010-05-22 01:47:14 +0000740 const std::vector<CalleeSavedInfo> &CSI,
741 const TargetRegisterInfo *TRI) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000742
743 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
744 MachineBasicBlock::iterator MI,
Evan Cheng2457f2c2010-05-22 01:47:14 +0000745 const std::vector<CalleeSavedInfo> &CSI,
746 const TargetRegisterInfo *TRI) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000747
Evan Cheng962021b2010-04-26 07:38:55 +0000748 virtual
749 MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
Evan Cheng8601a3d2010-04-29 01:13:30 +0000750 int FrameIx, uint64_t Offset,
Evan Cheng962021b2010-04-26 07:38:55 +0000751 const MDNode *MDPtr,
752 DebugLoc DL) const;
753
Owen Anderson43dbe052008-01-07 01:35:02 +0000754 /// foldMemoryOperand - If this target supports it, fold a load or store of
755 /// the specified stack slot into the specified machine instruction for the
756 /// specified operand(s). If this is possible, the target should perform the
757 /// folding and return true, otherwise it should return false. If it folds
758 /// the instruction, it is likely that the MachineInstruction the iterator
759 /// references has been changed.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000760 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
761 MachineInstr* MI,
762 const SmallVectorImpl<unsigned> &Ops,
763 int FrameIndex) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000764
765 /// foldMemoryOperand - Same as the previous version except it allows folding
766 /// of any load and store from / to any address, not just from a specific
767 /// stack slot.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000768 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
769 MachineInstr* MI,
770 const SmallVectorImpl<unsigned> &Ops,
771 MachineInstr* LoadMI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000772
773 /// canFoldMemoryOperand - Returns true if the specified load / store is
774 /// folding is possible.
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000775 virtual bool canFoldMemoryOperand(const MachineInstr*,
776 const SmallVectorImpl<unsigned> &) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000777
778 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
779 /// a store or a load and a store into two or more instruction. If this is
780 /// possible, returns true as well as the new instructions by reference.
781 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
782 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
783 SmallVectorImpl<MachineInstr*> &NewMIs) const;
784
785 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
786 SmallVectorImpl<SDNode*> &NewNodes) const;
787
788 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
789 /// instruction after load / store are unfolded from an instruction of the
790 /// specified opcode. It returns zero if the specified unfolding is not
Dan Gohman0115e162009-10-30 22:18:41 +0000791 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
792 /// index of the operand which will hold the register holding the loaded
793 /// value.
Owen Anderson43dbe052008-01-07 01:35:02 +0000794 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman0115e162009-10-30 22:18:41 +0000795 bool UnfoldLoad, bool UnfoldStore,
796 unsigned *LoadRegIndex = 0) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000797
Evan Cheng96dc1152010-01-22 03:34:51 +0000798 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
799 /// to determine if two loads are loading from the same base address. It
800 /// should only return true if the base pointers are the same and the
801 /// only differences between the two addresses are the offset. It also returns
802 /// the offsets by reference.
803 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
804 int64_t &Offset1, int64_t &Offset2) const;
805
806 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
807 /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
808 /// be scheduled togther. On some targets if two loads are loading from
809 /// addresses in the same cache line, it's better if they are scheduled
810 /// together. This function takes two integers that represent the load offsets
811 /// from the common base address. It returns true if it decides it's desirable
812 /// to schedule the two loads together. "NumLoads" is the number of loads that
813 /// have already been scheduled after Load1.
814 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
815 int64_t Offset1, int64_t Offset2,
816 unsigned NumLoads) const;
817
Chris Lattneree9eb412010-04-26 23:37:21 +0000818 virtual void getNoopForMachoTarget(MCInst &NopInst) const;
819
Owen Anderson44eb65c2008-08-14 22:49:33 +0000820 virtual
821 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000822
Evan Cheng4350eb82009-02-06 17:17:30 +0000823 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
824 /// instruction that defines the specified register class.
825 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng23066282008-10-27 07:14:50 +0000826
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000827 static bool isX86_64NonExtLowByteReg(unsigned reg) {
828 return (reg == X86::SPL || reg == X86::BPL ||
829 reg == X86::SIL || reg == X86::DIL);
830 }
831
Chris Lattner39a612e2010-02-05 22:10:22 +0000832 static bool isX86_64ExtendedReg(const MachineOperand &MO) {
833 if (!MO.isReg()) return false;
834 return isX86_64ExtendedReg(MO.getReg());
835 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000836
Chris Lattner39a612e2010-02-05 22:10:22 +0000837 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
838 /// higher) register? e.g. r8, xmm8, xmm13, etc.
839 static bool isX86_64ExtendedReg(unsigned RegNo);
840
Dan Gohman57c3dac2008-09-30 00:58:23 +0000841 /// getGlobalBaseReg - Return a virtual register initialized with the
842 /// the global base register value. Output instructions required to
843 /// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +0000844 ///
Dan Gohman57c3dac2008-09-30 00:58:23 +0000845 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohman8b746962008-09-23 18:22:58 +0000846
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +0000847 /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
848 /// and a bitmask of possible arguments to SetSSEDomain ase the second.
849 std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
850
851 /// SetSSEDomain - Set the SSEDomain of MI.
852 void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +0000853
Chris Lattnerbeac75d2010-09-05 02:18:34 +0000854 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
855 MachineInstr* MI,
856 unsigned OpNum,
857 const SmallVectorImpl<MachineOperand> &MOs,
858 unsigned Size, unsigned Alignment) const;
859
Owen Anderson43dbe052008-01-07 01:35:02 +0000860private:
Evan Cheng656e5142009-12-11 06:01:48 +0000861 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
862 MachineFunction::iterator &MFI,
863 MachineBasicBlock::iterator &MBBI,
864 LiveVariables *LV) const;
865
David Greeneb87bc952009-11-12 20:55:29 +0000866 /// isFrameOperand - Return true and the FrameIndex if the specified
867 /// operand and follow operands form a reference to the stack frame.
868 bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
869 int &FrameIndex) const;
Chris Lattner72614082002-10-25 22:55:53 +0000870};
871
Brian Gaeked0fde302003-11-11 22:41:34 +0000872} // End llvm namespace
873
Chris Lattner72614082002-10-25 22:55:53 +0000874#endif