blob: 63602ffaa78dff2bd493a64d9e3040fa24b5af31 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
831 }
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
834 }
835
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000836 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837 // eliminate all the truncates.
838 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839 SmallVector<const SCEV *, 4> Operands;
840 bool hasTrunc = false;
841 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843 hasTrunc = isa<SCEVTruncateExpr>(S);
844 Operands.push_back(S);
845 }
846 if (!hasTrunc)
847 return getMulExpr(Operands, false, false);
848 }
849
Dan Gohman6864db62009-06-18 16:24:47 +0000850 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000852 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000856 }
857
Dan Gohmanf53462d2010-07-15 20:02:11 +0000858 // As a special case, fold trunc(undef) to undef. We don't want to
859 // know too much about SCEVUnknowns, but this special case is handy
860 // and harmless.
861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862 if (isa<UndefValue>(U->getValue()))
863 return getSCEV(UndefValue::get(Ty));
864
Dan Gohman420ab912010-06-25 18:47:08 +0000865 // The cast wasn't folded; create an explicit cast node. We can reuse
866 // the existing insert position since if we get here, we won't have
867 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000870 UniqueSCEVs.InsertNode(S, IP);
871 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000872}
873
Dan Gohman0bba49c2009-07-07 17:06:11 +0000874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000875 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000877 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000878 assert(isSCEVable(Ty) &&
879 "This is not a conversion to a SCEVable type!");
880 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000881
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000882 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884 return getConstant(
885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000887
Dan Gohman20900ca2009-04-22 16:20:48 +0000888 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000890 return getZeroExtendExpr(SZ->getOperand(), Ty);
891
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000892 // Before doing any expensive analysis, check to see if we've already
893 // computed a SCEV for this Op and Ty.
894 FoldingSetNodeID ID;
895 ID.AddInteger(scZeroExtend);
896 ID.AddPointer(Op);
897 ID.AddPointer(Ty);
898 void *IP = 0;
899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
Dan Gohman01ecca22009-04-27 20:16:15 +0000901 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000902 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000904 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000906 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000907 const SCEV *Start = AR->getStart();
908 const SCEV *Step = AR->getStepRecurrence(*this);
909 unsigned BitWidth = getTypeSizeInBits(AR->getType());
910 const Loop *L = AR->getLoop();
911
Dan Gohmaneb490a72009-07-25 01:22:26 +0000912 // If we have special knowledge that this addrec won't overflow,
913 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000914 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000915 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
916 getZeroExtendExpr(Step, Ty),
917 L);
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // Check whether the backedge-taken count is SCEVCouldNotCompute.
920 // Note that this serves two purposes: It filters out loops that are
921 // simply not analyzable, and it covers the case where this code is
922 // being called from within backedge-taken count analysis, such that
923 // attempting to ask for the backedge-taken count would likely result
924 // in infinite recursion. In the later case, the analysis code will
925 // cope with a conservative value, and it will take care to purge
926 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000927 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000928 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000929 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000931
932 // Check whether the backedge-taken count can be losslessly casted to
933 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000934 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000935 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000936 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000937 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
938 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000939 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000940 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000941 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000942 const SCEV *Add = getAddExpr(Start, ZMul);
943 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000944 getAddExpr(getZeroExtendExpr(Start, WideTy),
945 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
946 getZeroExtendExpr(Step, WideTy)));
947 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // Return the expression with the addrec on the outside.
949 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
950 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000951 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000952
953 // Similar to above, only this time treat the step value as signed.
954 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000955 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000956 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000957 OperandExtendedAdd =
958 getAddExpr(getZeroExtendExpr(Start, WideTy),
959 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
960 getSignExtendExpr(Step, WideTy)));
961 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000965 L);
966 }
967
968 // If the backedge is guarded by a comparison with the pre-inc value
969 // the addrec is safe. Also, if the entry is guarded by a comparison
970 // with the start value and the backedge is guarded by a comparison
971 // with the post-inc value, the addrec is safe.
972 if (isKnownPositive(Step)) {
973 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
974 getUnsignedRange(Step).getUnsignedMax());
975 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000976 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000977 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
978 AR->getPostIncExpr(*this), N)))
979 // Return the expression with the addrec on the outside.
980 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981 getZeroExtendExpr(Step, Ty),
982 L);
983 } else if (isKnownNegative(Step)) {
984 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
985 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000986 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
987 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000988 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
989 AR->getPostIncExpr(*this), N)))
990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getSignExtendExpr(Step, Ty),
993 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000994 }
995 }
996 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000997
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000998 // The cast wasn't folded; create an explicit cast node.
999 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001001 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1002 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001003 UniqueSCEVs.InsertNode(S, IP);
1004 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001005}
1006
Dan Gohman0bba49c2009-07-07 17:06:11 +00001007const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001008 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001009 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001010 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001011 assert(isSCEVable(Ty) &&
1012 "This is not a conversion to a SCEVable type!");
1013 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001014
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001015 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001016 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1017 return getConstant(
1018 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1019 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001020
Dan Gohman20900ca2009-04-22 16:20:48 +00001021 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001022 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001023 return getSignExtendExpr(SS->getOperand(), Ty);
1024
Nick Lewycky73f565e2011-01-19 15:56:12 +00001025 // sext(zext(x)) --> zext(x)
1026 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1027 return getZeroExtendExpr(SZ->getOperand(), Ty);
1028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // Before doing any expensive analysis, check to see if we've already
1030 // computed a SCEV for this Op and Ty.
1031 FoldingSetNodeID ID;
1032 ID.AddInteger(scSignExtend);
1033 ID.AddPointer(Op);
1034 ID.AddPointer(Ty);
1035 void *IP = 0;
1036 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1037
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001038 // If the input value is provably positive, build a zext instead.
1039 if (isKnownNonNegative(Op))
1040 return getZeroExtendExpr(Op, Ty);
1041
Dan Gohman01ecca22009-04-27 20:16:15 +00001042 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001043 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001044 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001045 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001046 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001047 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001048 const SCEV *Start = AR->getStart();
1049 const SCEV *Step = AR->getStepRecurrence(*this);
1050 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1051 const Loop *L = AR->getLoop();
1052
Dan Gohmaneb490a72009-07-25 01:22:26 +00001053 // If we have special knowledge that this addrec won't overflow,
1054 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001055 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001056 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1057 getSignExtendExpr(Step, Ty),
1058 L);
1059
Dan Gohman01ecca22009-04-27 20:16:15 +00001060 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1061 // Note that this serves two purposes: It filters out loops that are
1062 // simply not analyzable, and it covers the case where this code is
1063 // being called from within backedge-taken count analysis, such that
1064 // attempting to ask for the backedge-taken count would likely result
1065 // in infinite recursion. In the later case, the analysis code will
1066 // cope with a conservative value, and it will take care to purge
1067 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001068 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001069 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001070 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001071 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001072
1073 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001074 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001075 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001076 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001077 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001078 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1079 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001080 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001081 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001082 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001083 const SCEV *Add = getAddExpr(Start, SMul);
1084 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001085 getAddExpr(getSignExtendExpr(Start, WideTy),
1086 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1087 getSignExtendExpr(Step, WideTy)));
1088 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001089 // Return the expression with the addrec on the outside.
1090 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1091 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001092 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001093
1094 // Similar to above, only this time treat the step value as unsigned.
1095 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001096 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001097 Add = getAddExpr(Start, UMul);
1098 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001099 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001100 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1101 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001102 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001103 // Return the expression with the addrec on the outside.
1104 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1105 getZeroExtendExpr(Step, Ty),
1106 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 }
1108
1109 // If the backedge is guarded by a comparison with the pre-inc value
1110 // the addrec is safe. Also, if the entry is guarded by a comparison
1111 // with the start value and the backedge is guarded by a comparison
1112 // with the post-inc value, the addrec is safe.
1113 if (isKnownPositive(Step)) {
1114 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1115 getSignedRange(Step).getSignedMax());
1116 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001117 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001118 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1119 AR->getPostIncExpr(*this), N)))
1120 // Return the expression with the addrec on the outside.
1121 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1122 getSignExtendExpr(Step, Ty),
1123 L);
1124 } else if (isKnownNegative(Step)) {
1125 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1126 getSignedRange(Step).getSignedMin());
1127 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001128 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001129 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1130 AR->getPostIncExpr(*this), N)))
1131 // Return the expression with the addrec on the outside.
1132 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1133 getSignExtendExpr(Step, Ty),
1134 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001135 }
1136 }
1137 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001138
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001139 // The cast wasn't folded; create an explicit cast node.
1140 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001141 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001142 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1143 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001144 UniqueSCEVs.InsertNode(S, IP);
1145 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001146}
1147
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001148/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1149/// unspecified bits out to the given type.
1150///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001152 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1154 "This is not an extending conversion!");
1155 assert(isSCEVable(Ty) &&
1156 "This is not a conversion to a SCEVable type!");
1157 Ty = getEffectiveSCEVType(Ty);
1158
1159 // Sign-extend negative constants.
1160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1161 if (SC->getValue()->getValue().isNegative())
1162 return getSignExtendExpr(Op, Ty);
1163
1164 // Peel off a truncate cast.
1165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001166 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1168 return getAnyExtendExpr(NewOp, Ty);
1169 return getTruncateOrNoop(NewOp, Ty);
1170 }
1171
1172 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001174 if (!isa<SCEVZeroExtendExpr>(ZExt))
1175 return ZExt;
1176
1177 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001178 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001179 if (!isa<SCEVSignExtendExpr>(SExt))
1180 return SExt;
1181
Dan Gohmana10756e2010-01-21 02:09:26 +00001182 // Force the cast to be folded into the operands of an addrec.
1183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1184 SmallVector<const SCEV *, 4> Ops;
1185 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1186 I != E; ++I)
1187 Ops.push_back(getAnyExtendExpr(*I, Ty));
1188 return getAddRecExpr(Ops, AR->getLoop());
1189 }
1190
Dan Gohmanf53462d2010-07-15 20:02:11 +00001191 // As a special case, fold anyext(undef) to undef. We don't want to
1192 // know too much about SCEVUnknowns, but this special case is handy
1193 // and harmless.
1194 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1195 if (isa<UndefValue>(U->getValue()))
1196 return getSCEV(UndefValue::get(Ty));
1197
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001198 // If the expression is obviously signed, use the sext cast value.
1199 if (isa<SCEVSMaxExpr>(Op))
1200 return SExt;
1201
1202 // Absent any other information, use the zext cast value.
1203 return ZExt;
1204}
1205
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001206/// CollectAddOperandsWithScales - Process the given Ops list, which is
1207/// a list of operands to be added under the given scale, update the given
1208/// map. This is a helper function for getAddRecExpr. As an example of
1209/// what it does, given a sequence of operands that would form an add
1210/// expression like this:
1211///
1212/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1213///
1214/// where A and B are constants, update the map with these values:
1215///
1216/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1217///
1218/// and add 13 + A*B*29 to AccumulatedConstant.
1219/// This will allow getAddRecExpr to produce this:
1220///
1221/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1222///
1223/// This form often exposes folding opportunities that are hidden in
1224/// the original operand list.
1225///
1226/// Return true iff it appears that any interesting folding opportunities
1227/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1228/// the common case where no interesting opportunities are present, and
1229/// is also used as a check to avoid infinite recursion.
1230///
1231static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001232CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1233 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001234 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001235 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001236 const APInt &Scale,
1237 ScalarEvolution &SE) {
1238 bool Interesting = false;
1239
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001240 // Iterate over the add operands. They are sorted, with constants first.
1241 unsigned i = 0;
1242 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1243 ++i;
1244 // Pull a buried constant out to the outside.
1245 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1246 Interesting = true;
1247 AccumulatedConstant += Scale * C->getValue()->getValue();
1248 }
1249
1250 // Next comes everything else. We're especially interested in multiplies
1251 // here, but they're in the middle, so just visit the rest with one loop.
1252 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001253 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1254 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1255 APInt NewScale =
1256 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1257 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1258 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001259 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001260 Interesting |=
1261 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001262 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001263 NewScale, SE);
1264 } else {
1265 // A multiplication of a constant with some other value. Update
1266 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001267 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1268 const SCEV *Key = SE.getMulExpr(MulOps);
1269 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001270 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001271 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001272 NewOps.push_back(Pair.first->first);
1273 } else {
1274 Pair.first->second += NewScale;
1275 // The map already had an entry for this value, which may indicate
1276 // a folding opportunity.
1277 Interesting = true;
1278 }
1279 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001280 } else {
1281 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001282 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001283 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001284 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001285 NewOps.push_back(Pair.first->first);
1286 } else {
1287 Pair.first->second += Scale;
1288 // The map already had an entry for this value, which may indicate
1289 // a folding opportunity.
1290 Interesting = true;
1291 }
1292 }
1293 }
1294
1295 return Interesting;
1296}
1297
1298namespace {
1299 struct APIntCompare {
1300 bool operator()(const APInt &LHS, const APInt &RHS) const {
1301 return LHS.ult(RHS);
1302 }
1303 };
1304}
1305
Dan Gohman6c0866c2009-05-24 23:45:28 +00001306/// getAddExpr - Get a canonical add expression, or something simpler if
1307/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001308const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1309 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001311 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001312#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001313 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001314 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001315 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001316 "SCEVAddExpr operand types don't match!");
1317#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001318
Dan Gohmana10756e2010-01-21 02:09:26 +00001319 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1320 if (!HasNUW && HasNSW) {
1321 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001322 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1323 E = Ops.end(); I != E; ++I)
1324 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001325 All = false;
1326 break;
1327 }
1328 if (All) HasNUW = true;
1329 }
1330
Chris Lattner53e677a2004-04-02 20:23:17 +00001331 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001332 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001333
1334 // If there are any constants, fold them together.
1335 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001336 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001337 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001338 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001339 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001340 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001341 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1342 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001343 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001344 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001345 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001346 }
1347
1348 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001349 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001350 Ops.erase(Ops.begin());
1351 --Idx;
1352 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001353
Dan Gohmanbca091d2010-04-12 23:08:18 +00001354 if (Ops.size() == 1) return Ops[0];
1355 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001356
Dan Gohman68ff7762010-08-27 21:39:59 +00001357 // Okay, check to see if the same value occurs in the operand list more than
1358 // once. If so, merge them together into an multiply expression. Since we
1359 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001360 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001361 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001362 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001363 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001364 // Scan ahead to count how many equal operands there are.
1365 unsigned Count = 2;
1366 while (i+Count != e && Ops[i+Count] == Ops[i])
1367 ++Count;
1368 // Merge the values into a multiply.
1369 const SCEV *Scale = getConstant(Ty, Count);
1370 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1371 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001372 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001373 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001374 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001375 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001376 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001377 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001378 if (FoundMatch)
1379 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001380
Dan Gohman728c7f32009-05-08 21:03:19 +00001381 // Check for truncates. If all the operands are truncated from the same
1382 // type, see if factoring out the truncate would permit the result to be
1383 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1384 // if the contents of the resulting outer trunc fold to something simple.
1385 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1386 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1387 const Type *DstType = Trunc->getType();
1388 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001389 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001390 bool Ok = true;
1391 // Check all the operands to see if they can be represented in the
1392 // source type of the truncate.
1393 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1394 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1395 if (T->getOperand()->getType() != SrcType) {
1396 Ok = false;
1397 break;
1398 }
1399 LargeOps.push_back(T->getOperand());
1400 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001401 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001402 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001403 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001404 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1405 if (const SCEVTruncateExpr *T =
1406 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1407 if (T->getOperand()->getType() != SrcType) {
1408 Ok = false;
1409 break;
1410 }
1411 LargeMulOps.push_back(T->getOperand());
1412 } else if (const SCEVConstant *C =
1413 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001414 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001415 } else {
1416 Ok = false;
1417 break;
1418 }
1419 }
1420 if (Ok)
1421 LargeOps.push_back(getMulExpr(LargeMulOps));
1422 } else {
1423 Ok = false;
1424 break;
1425 }
1426 }
1427 if (Ok) {
1428 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001429 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001430 // If it folds to something simple, use it. Otherwise, don't.
1431 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1432 return getTruncateExpr(Fold, DstType);
1433 }
1434 }
1435
1436 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001437 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1438 ++Idx;
1439
1440 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001441 if (Idx < Ops.size()) {
1442 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001443 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001444 // If we have an add, expand the add operands onto the end of the operands
1445 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001446 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001447 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001448 DeletedAdd = true;
1449 }
1450
1451 // If we deleted at least one add, we added operands to the end of the list,
1452 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001453 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001454 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001455 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 }
1457
1458 // Skip over the add expression until we get to a multiply.
1459 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1460 ++Idx;
1461
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001462 // Check to see if there are any folding opportunities present with
1463 // operands multiplied by constant values.
1464 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1465 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001466 DenseMap<const SCEV *, APInt> M;
1467 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001468 APInt AccumulatedConstant(BitWidth, 0);
1469 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001470 Ops.data(), Ops.size(),
1471 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001472 // Some interesting folding opportunity is present, so its worthwhile to
1473 // re-generate the operands list. Group the operands by constant scale,
1474 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001475 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001476 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001477 E = NewOps.end(); I != E; ++I)
1478 MulOpLists[M.find(*I)->second].push_back(*I);
1479 // Re-generate the operands list.
1480 Ops.clear();
1481 if (AccumulatedConstant != 0)
1482 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001483 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1484 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001485 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001486 Ops.push_back(getMulExpr(getConstant(I->first),
1487 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001488 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001489 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001490 if (Ops.size() == 1)
1491 return Ops[0];
1492 return getAddExpr(Ops);
1493 }
1494 }
1495
Chris Lattner53e677a2004-04-02 20:23:17 +00001496 // If we are adding something to a multiply expression, make sure the
1497 // something is not already an operand of the multiply. If so, merge it into
1498 // the multiply.
1499 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001500 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001502 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001503 if (isa<SCEVConstant>(MulOpSCEV))
1504 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001506 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001508 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 if (Mul->getNumOperands() != 2) {
1510 // If the multiply has more than two operands, we must get the
1511 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001512 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1513 Mul->op_begin()+MulOp);
1514 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001515 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001517 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001518 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001519 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 if (Ops.size() == 2) return OuterMul;
1521 if (AddOp < Idx) {
1522 Ops.erase(Ops.begin()+AddOp);
1523 Ops.erase(Ops.begin()+Idx-1);
1524 } else {
1525 Ops.erase(Ops.begin()+Idx);
1526 Ops.erase(Ops.begin()+AddOp-1);
1527 }
1528 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001529 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001531
Chris Lattner53e677a2004-04-02 20:23:17 +00001532 // Check this multiply against other multiplies being added together.
1533 for (unsigned OtherMulIdx = Idx+1;
1534 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1535 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001536 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 // If MulOp occurs in OtherMul, we can fold the two multiplies
1538 // together.
1539 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1540 OMulOp != e; ++OMulOp)
1541 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1542 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001544 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001545 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001546 Mul->op_begin()+MulOp);
1547 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001548 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001549 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001550 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001551 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001552 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001553 OtherMul->op_begin()+OMulOp);
1554 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001555 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001557 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1558 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001559 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001560 Ops.erase(Ops.begin()+Idx);
1561 Ops.erase(Ops.begin()+OtherMulIdx-1);
1562 Ops.push_back(OuterMul);
1563 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 }
1565 }
1566 }
1567 }
1568
1569 // If there are any add recurrences in the operands list, see if any other
1570 // added values are loop invariant. If so, we can fold them into the
1571 // recurrence.
1572 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1573 ++Idx;
1574
1575 // Scan over all recurrences, trying to fold loop invariants into them.
1576 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1577 // Scan all of the other operands to this add and add them to the vector if
1578 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001579 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001580 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001581 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001583 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 LIOps.push_back(Ops[i]);
1585 Ops.erase(Ops.begin()+i);
1586 --i; --e;
1587 }
1588
1589 // If we found some loop invariants, fold them into the recurrence.
1590 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001591 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 LIOps.push_back(AddRec->getStart());
1593
Dan Gohman0bba49c2009-07-07 17:06:11 +00001594 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001595 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001596 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001597
Dan Gohmanb9f96512010-06-30 07:16:37 +00001598 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001599 // outer add and the inner addrec are guaranteed to have no overflow.
1600 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1601 HasNUW && AddRec->hasNoUnsignedWrap(),
1602 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001603
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 // If all of the other operands were loop invariant, we are done.
1605 if (Ops.size() == 1) return NewRec;
1606
1607 // Otherwise, add the folded AddRec by the non-liv parts.
1608 for (unsigned i = 0;; ++i)
1609 if (Ops[i] == AddRec) {
1610 Ops[i] = NewRec;
1611 break;
1612 }
Dan Gohman246b2562007-10-22 18:31:58 +00001613 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 }
1615
1616 // Okay, if there weren't any loop invariants to be folded, check to see if
1617 // there are multiple AddRec's with the same loop induction variable being
1618 // added together. If so, we can fold them.
1619 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001620 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1621 ++OtherIdx)
1622 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1623 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1624 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1625 AddRec->op_end());
1626 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1627 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001628 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001629 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001630 if (OtherAddRec->getLoop() == AddRecLoop) {
1631 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1632 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001633 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001634 AddRecOps.append(OtherAddRec->op_begin()+i,
1635 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001636 break;
1637 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001638 AddRecOps[i] = getAddExpr(AddRecOps[i],
1639 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001640 }
1641 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001642 }
Dan Gohman32527152010-08-27 20:45:56 +00001643 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1644 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 }
1646
1647 // Otherwise couldn't fold anything into this recurrence. Move onto the
1648 // next one.
1649 }
1650
1651 // Okay, it looks like we really DO need an add expr. Check to see if we
1652 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001653 FoldingSetNodeID ID;
1654 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001655 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1656 ID.AddPointer(Ops[i]);
1657 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001658 SCEVAddExpr *S =
1659 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1660 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001661 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1662 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001663 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1664 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001665 UniqueSCEVs.InsertNode(S, IP);
1666 }
Dan Gohman3645b012009-10-09 00:10:36 +00001667 if (HasNUW) S->setHasNoUnsignedWrap(true);
1668 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001669 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001670}
1671
Dan Gohman6c0866c2009-05-24 23:45:28 +00001672/// getMulExpr - Get a canonical multiply expression, or something simpler if
1673/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001674const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1675 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001677 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001678#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001679 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001680 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001681 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001682 "SCEVMulExpr operand types don't match!");
1683#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001684
Dan Gohmana10756e2010-01-21 02:09:26 +00001685 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1686 if (!HasNUW && HasNSW) {
1687 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001688 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1689 E = Ops.end(); I != E; ++I)
1690 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001691 All = false;
1692 break;
1693 }
1694 if (All) HasNUW = true;
1695 }
1696
Chris Lattner53e677a2004-04-02 20:23:17 +00001697 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001698 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001699
1700 // If there are any constants, fold them together.
1701 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001702 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001703
1704 // C1*(C2+V) -> C1*C2 + C1*V
1705 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001706 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 if (Add->getNumOperands() == 2 &&
1708 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001709 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1710 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001711
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001713 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001715 ConstantInt *Fold = ConstantInt::get(getContext(),
1716 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001717 RHSC->getValue()->getValue());
1718 Ops[0] = getConstant(Fold);
1719 Ops.erase(Ops.begin()+1); // Erase the folded element
1720 if (Ops.size() == 1) return Ops[0];
1721 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 }
1723
1724 // If we are left with a constant one being multiplied, strip it off.
1725 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1726 Ops.erase(Ops.begin());
1727 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001728 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 // If we have a multiply of zero, it will always be zero.
1730 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001731 } else if (Ops[0]->isAllOnesValue()) {
1732 // If we have a mul by -1 of an add, try distributing the -1 among the
1733 // add operands.
1734 if (Ops.size() == 2)
1735 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1736 SmallVector<const SCEV *, 4> NewOps;
1737 bool AnyFolded = false;
1738 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1739 I != E; ++I) {
1740 const SCEV *Mul = getMulExpr(Ops[0], *I);
1741 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1742 NewOps.push_back(Mul);
1743 }
1744 if (AnyFolded)
1745 return getAddExpr(NewOps);
1746 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001747 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001748
1749 if (Ops.size() == 1)
1750 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001751 }
1752
1753 // Skip over the add expression until we get to a multiply.
1754 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1755 ++Idx;
1756
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 // If there are mul operands inline them all into this expression.
1758 if (Idx < Ops.size()) {
1759 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001760 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001761 // If we have an mul, expand the mul operands onto the end of the operands
1762 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001764 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 DeletedMul = true;
1766 }
1767
1768 // If we deleted at least one mul, we added operands to the end of the list,
1769 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001770 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001771 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001772 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
1774
1775 // If there are any add recurrences in the operands list, see if any other
1776 // added values are loop invariant. If so, we can fold them into the
1777 // recurrence.
1778 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1779 ++Idx;
1780
1781 // Scan over all recurrences, trying to fold loop invariants into them.
1782 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1783 // Scan all of the other operands to this mul and add them to the vector if
1784 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001785 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001786 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001787 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001789 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001790 LIOps.push_back(Ops[i]);
1791 Ops.erase(Ops.begin()+i);
1792 --i; --e;
1793 }
1794
1795 // If we found some loop invariants, fold them into the recurrence.
1796 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001797 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001798 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001800 const SCEV *Scale = getMulExpr(LIOps);
1801 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1802 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001803
Dan Gohmanb9f96512010-06-30 07:16:37 +00001804 // Build the new addrec. Propagate the NUW and NSW flags if both the
1805 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001806 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001807 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001808 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001809
1810 // If all of the other operands were loop invariant, we are done.
1811 if (Ops.size() == 1) return NewRec;
1812
1813 // Otherwise, multiply the folded AddRec by the non-liv parts.
1814 for (unsigned i = 0;; ++i)
1815 if (Ops[i] == AddRec) {
1816 Ops[i] = NewRec;
1817 break;
1818 }
Dan Gohman246b2562007-10-22 18:31:58 +00001819 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001820 }
1821
1822 // Okay, if there weren't any loop invariants to be folded, check to see if
1823 // there are multiple AddRec's with the same loop induction variable being
1824 // multiplied together. If so, we can fold them.
1825 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001826 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1827 ++OtherIdx)
1828 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1829 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1830 // {A*C,+,F*D + G*B + B*D}<L>
1831 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1832 ++OtherIdx)
1833 if (const SCEVAddRecExpr *OtherAddRec =
1834 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1835 if (OtherAddRec->getLoop() == AddRecLoop) {
1836 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1837 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1838 const SCEV *B = F->getStepRecurrence(*this);
1839 const SCEV *D = G->getStepRecurrence(*this);
1840 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1841 getMulExpr(G, B),
1842 getMulExpr(B, D));
1843 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1844 F->getLoop());
1845 if (Ops.size() == 2) return NewAddRec;
1846 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1847 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1848 }
1849 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 }
1851
1852 // Otherwise couldn't fold anything into this recurrence. Move onto the
1853 // next one.
1854 }
1855
1856 // Okay, it looks like we really DO need an mul expr. Check to see if we
1857 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001858 FoldingSetNodeID ID;
1859 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001860 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1861 ID.AddPointer(Ops[i]);
1862 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001863 SCEVMulExpr *S =
1864 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1865 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001866 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1867 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001868 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1869 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001870 UniqueSCEVs.InsertNode(S, IP);
1871 }
Dan Gohman3645b012009-10-09 00:10:36 +00001872 if (HasNUW) S->setHasNoUnsignedWrap(true);
1873 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001874 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001875}
1876
Andreas Bolka8a11c982009-08-07 22:55:26 +00001877/// getUDivExpr - Get a canonical unsigned division expression, or something
1878/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001879const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1880 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001881 assert(getEffectiveSCEVType(LHS->getType()) ==
1882 getEffectiveSCEVType(RHS->getType()) &&
1883 "SCEVUDivExpr operand types don't match!");
1884
Dan Gohman622ed672009-05-04 22:02:23 +00001885 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001886 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001887 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001888 // If the denominator is zero, the result of the udiv is undefined. Don't
1889 // try to analyze it, because the resolution chosen here may differ from
1890 // the resolution chosen in other parts of the compiler.
1891 if (!RHSC->getValue()->isZero()) {
1892 // Determine if the division can be folded into the operands of
1893 // its operands.
1894 // TODO: Generalize this to non-constants by using known-bits information.
1895 const Type *Ty = LHS->getType();
1896 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001897 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001898 // For non-power-of-two values, effectively round the value up to the
1899 // nearest power of two.
1900 if (!RHSC->getValue()->getValue().isPowerOf2())
1901 ++MaxShiftAmt;
1902 const IntegerType *ExtTy =
1903 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1904 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1906 if (const SCEVConstant *Step =
1907 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1908 if (!Step->getValue()->getValue()
1909 .urem(RHSC->getValue()->getValue()) &&
1910 getZeroExtendExpr(AR, ExtTy) ==
1911 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1912 getZeroExtendExpr(Step, ExtTy),
1913 AR->getLoop())) {
1914 SmallVector<const SCEV *, 4> Operands;
1915 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1916 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1917 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001918 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001919 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1920 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1921 SmallVector<const SCEV *, 4> Operands;
1922 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1923 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1924 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1925 // Find an operand that's safely divisible.
1926 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1927 const SCEV *Op = M->getOperand(i);
1928 const SCEV *Div = getUDivExpr(Op, RHSC);
1929 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1930 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1931 M->op_end());
1932 Operands[i] = Div;
1933 return getMulExpr(Operands);
1934 }
1935 }
Dan Gohman185cf032009-05-08 20:18:49 +00001936 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001937 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1938 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1939 SmallVector<const SCEV *, 4> Operands;
1940 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1941 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1942 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1943 Operands.clear();
1944 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1945 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1946 if (isa<SCEVUDivExpr>(Op) ||
1947 getMulExpr(Op, RHS) != A->getOperand(i))
1948 break;
1949 Operands.push_back(Op);
1950 }
1951 if (Operands.size() == A->getNumOperands())
1952 return getAddExpr(Operands);
1953 }
1954 }
Dan Gohman185cf032009-05-08 20:18:49 +00001955
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001956 // Fold if both operands are constant.
1957 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1958 Constant *LHSCV = LHSC->getValue();
1959 Constant *RHSCV = RHSC->getValue();
1960 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1961 RHSCV)));
1962 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 }
1964 }
1965
Dan Gohman1c343752009-06-27 21:21:31 +00001966 FoldingSetNodeID ID;
1967 ID.AddInteger(scUDivExpr);
1968 ID.AddPointer(LHS);
1969 ID.AddPointer(RHS);
1970 void *IP = 0;
1971 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001972 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1973 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001974 UniqueSCEVs.InsertNode(S, IP);
1975 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001976}
1977
1978
Dan Gohman6c0866c2009-05-24 23:45:28 +00001979/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1980/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001981const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001982 const SCEV *Step, const Loop *L,
1983 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001984 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001985 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001986 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001987 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001988 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001989 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001990 }
1991
1992 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001993 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001994}
1995
Dan Gohman6c0866c2009-05-24 23:45:28 +00001996/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1997/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001998const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001999ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002000 const Loop *L,
2001 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002002 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002003#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002004 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002005 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002006 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002007 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002008 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002009 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002010 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002011#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002012
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002013 if (Operands.back()->isZero()) {
2014 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002015 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002016 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002017
Dan Gohmanbc028532010-02-19 18:49:22 +00002018 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2019 // use that information to infer NUW and NSW flags. However, computing a
2020 // BE count requires calling getAddRecExpr, so we may not yet have a
2021 // meaningful BE count at this point (and if we don't, we'd be stuck
2022 // with a SCEVCouldNotCompute as the cached BE count).
2023
Dan Gohmana10756e2010-01-21 02:09:26 +00002024 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2025 if (!HasNUW && HasNSW) {
2026 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002027 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2028 E = Operands.end(); I != E; ++I)
2029 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002030 All = false;
2031 break;
2032 }
2033 if (All) HasNUW = true;
2034 }
2035
Dan Gohmand9cc7492008-08-08 18:33:12 +00002036 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002037 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002038 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002039 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002040 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002041 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002042 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002043 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002044 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002045 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002046 // AddRecs require their operands be loop-invariant with respect to their
2047 // loops. Don't perform this transformation if it would break this
2048 // requirement.
2049 bool AllInvariant = true;
2050 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002051 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002052 AllInvariant = false;
2053 break;
2054 }
2055 if (AllInvariant) {
2056 NestedOperands[0] = getAddRecExpr(Operands, L);
2057 AllInvariant = true;
2058 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002059 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002060 AllInvariant = false;
2061 break;
2062 }
2063 if (AllInvariant)
2064 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002065 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002066 }
2067 // Reset Operands to its original state.
2068 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002069 }
2070 }
2071
Dan Gohman67847532010-01-19 22:27:22 +00002072 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2073 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002074 FoldingSetNodeID ID;
2075 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002076 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2077 ID.AddPointer(Operands[i]);
2078 ID.AddPointer(L);
2079 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002080 SCEVAddRecExpr *S =
2081 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2082 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002083 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2084 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002085 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2086 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002087 UniqueSCEVs.InsertNode(S, IP);
2088 }
Dan Gohman3645b012009-10-09 00:10:36 +00002089 if (HasNUW) S->setHasNoUnsignedWrap(true);
2090 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002091 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002092}
2093
Dan Gohman9311ef62009-06-24 14:49:00 +00002094const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2095 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002096 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002097 Ops.push_back(LHS);
2098 Ops.push_back(RHS);
2099 return getSMaxExpr(Ops);
2100}
2101
Dan Gohman0bba49c2009-07-07 17:06:11 +00002102const SCEV *
2103ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002104 assert(!Ops.empty() && "Cannot get empty smax!");
2105 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002106#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002107 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002108 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002109 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002110 "SCEVSMaxExpr operand types don't match!");
2111#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002112
2113 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002114 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002115
2116 // If there are any constants, fold them together.
2117 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002118 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002119 ++Idx;
2120 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002121 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002122 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002123 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002124 APIntOps::smax(LHSC->getValue()->getValue(),
2125 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002126 Ops[0] = getConstant(Fold);
2127 Ops.erase(Ops.begin()+1); // Erase the folded element
2128 if (Ops.size() == 1) return Ops[0];
2129 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002130 }
2131
Dan Gohmane5aceed2009-06-24 14:46:22 +00002132 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002133 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2134 Ops.erase(Ops.begin());
2135 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002136 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2137 // If we have an smax with a constant maximum-int, it will always be
2138 // maximum-int.
2139 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002140 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002141
Dan Gohman3ab13122010-04-13 16:49:23 +00002142 if (Ops.size() == 1) return Ops[0];
2143 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002144
2145 // Find the first SMax
2146 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2147 ++Idx;
2148
2149 // Check to see if one of the operands is an SMax. If so, expand its operands
2150 // onto our operand list, and recurse to simplify.
2151 if (Idx < Ops.size()) {
2152 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002153 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002154 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002155 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156 DeletedSMax = true;
2157 }
2158
2159 if (DeletedSMax)
2160 return getSMaxExpr(Ops);
2161 }
2162
2163 // Okay, check to see if the same value occurs in the operand list twice. If
2164 // so, delete one. Since we sorted the list, these values are required to
2165 // be adjacent.
2166 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002167 // X smax Y smax Y --> X smax Y
2168 // X smax Y --> X, if X is always greater than Y
2169 if (Ops[i] == Ops[i+1] ||
2170 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2171 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2172 --i; --e;
2173 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002174 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2175 --i; --e;
2176 }
2177
2178 if (Ops.size() == 1) return Ops[0];
2179
2180 assert(!Ops.empty() && "Reduced smax down to nothing!");
2181
Nick Lewycky3e630762008-02-20 06:48:22 +00002182 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002183 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002184 FoldingSetNodeID ID;
2185 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002186 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2187 ID.AddPointer(Ops[i]);
2188 void *IP = 0;
2189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002190 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2191 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002192 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2193 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002194 UniqueSCEVs.InsertNode(S, IP);
2195 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002196}
2197
Dan Gohman9311ef62009-06-24 14:49:00 +00002198const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2199 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002200 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002201 Ops.push_back(LHS);
2202 Ops.push_back(RHS);
2203 return getUMaxExpr(Ops);
2204}
2205
Dan Gohman0bba49c2009-07-07 17:06:11 +00002206const SCEV *
2207ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002208 assert(!Ops.empty() && "Cannot get empty umax!");
2209 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002210#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002211 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002212 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002213 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002214 "SCEVUMaxExpr operand types don't match!");
2215#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002216
2217 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002218 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002219
2220 // If there are any constants, fold them together.
2221 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002223 ++Idx;
2224 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002225 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002226 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002227 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002228 APIntOps::umax(LHSC->getValue()->getValue(),
2229 RHSC->getValue()->getValue()));
2230 Ops[0] = getConstant(Fold);
2231 Ops.erase(Ops.begin()+1); // Erase the folded element
2232 if (Ops.size() == 1) return Ops[0];
2233 LHSC = cast<SCEVConstant>(Ops[0]);
2234 }
2235
Dan Gohmane5aceed2009-06-24 14:46:22 +00002236 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002237 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2238 Ops.erase(Ops.begin());
2239 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002240 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2241 // If we have an umax with a constant maximum-int, it will always be
2242 // maximum-int.
2243 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002244 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002245
Dan Gohman3ab13122010-04-13 16:49:23 +00002246 if (Ops.size() == 1) return Ops[0];
2247 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002248
2249 // Find the first UMax
2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2251 ++Idx;
2252
2253 // Check to see if one of the operands is a UMax. If so, expand its operands
2254 // onto our operand list, and recurse to simplify.
2255 if (Idx < Ops.size()) {
2256 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002257 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002258 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002259 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002260 DeletedUMax = true;
2261 }
2262
2263 if (DeletedUMax)
2264 return getUMaxExpr(Ops);
2265 }
2266
2267 // Okay, check to see if the same value occurs in the operand list twice. If
2268 // so, delete one. Since we sorted the list, these values are required to
2269 // be adjacent.
2270 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002271 // X umax Y umax Y --> X umax Y
2272 // X umax Y --> X, if X is always greater than Y
2273 if (Ops[i] == Ops[i+1] ||
2274 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2275 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2276 --i; --e;
2277 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002278 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2279 --i; --e;
2280 }
2281
2282 if (Ops.size() == 1) return Ops[0];
2283
2284 assert(!Ops.empty() && "Reduced umax down to nothing!");
2285
2286 // Okay, it looks like we really DO need a umax expr. Check to see if we
2287 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002288 FoldingSetNodeID ID;
2289 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291 ID.AddPointer(Ops[i]);
2292 void *IP = 0;
2293 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002294 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2295 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002296 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2297 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002298 UniqueSCEVs.InsertNode(S, IP);
2299 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002300}
2301
Dan Gohman9311ef62009-06-24 14:49:00 +00002302const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2303 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002304 // ~smax(~x, ~y) == smin(x, y).
2305 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2306}
2307
Dan Gohman9311ef62009-06-24 14:49:00 +00002308const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2309 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002310 // ~umax(~x, ~y) == umin(x, y)
2311 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2312}
2313
Dan Gohman4f8eea82010-02-01 18:27:38 +00002314const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002315 // If we have TargetData, we can bypass creating a target-independent
2316 // constant expression and then folding it back into a ConstantInt.
2317 // This is just a compile-time optimization.
2318 if (TD)
2319 return getConstant(TD->getIntPtrType(getContext()),
2320 TD->getTypeAllocSize(AllocTy));
2321
Dan Gohman4f8eea82010-02-01 18:27:38 +00002322 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002324 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2325 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002326 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2327 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2328}
2329
2330const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2331 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002333 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2334 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002335 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2336 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2337}
2338
2339const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2340 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002341 // If we have TargetData, we can bypass creating a target-independent
2342 // constant expression and then folding it back into a ConstantInt.
2343 // This is just a compile-time optimization.
2344 if (TD)
2345 return getConstant(TD->getIntPtrType(getContext()),
2346 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2347
Dan Gohman0f5efe52010-01-28 02:15:55 +00002348 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2349 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002350 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2351 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002352 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002353 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002354}
2355
Dan Gohman4f8eea82010-02-01 18:27:38 +00002356const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2357 Constant *FieldNo) {
2358 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002360 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2361 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002362 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002363 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002364}
2365
Dan Gohman0bba49c2009-07-07 17:06:11 +00002366const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002367 // Don't attempt to do anything other than create a SCEVUnknown object
2368 // here. createSCEV only calls getUnknown after checking for all other
2369 // interesting possibilities, and any other code that calls getUnknown
2370 // is doing so in order to hide a value from SCEV canonicalization.
2371
Dan Gohman1c343752009-06-27 21:21:31 +00002372 FoldingSetNodeID ID;
2373 ID.AddInteger(scUnknown);
2374 ID.AddPointer(V);
2375 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002376 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2377 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2378 "Stale SCEVUnknown in uniquing map!");
2379 return S;
2380 }
2381 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2382 FirstUnknown);
2383 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002384 UniqueSCEVs.InsertNode(S, IP);
2385 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002386}
2387
Chris Lattner53e677a2004-04-02 20:23:17 +00002388//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002389// Basic SCEV Analysis and PHI Idiom Recognition Code
2390//
2391
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002392/// isSCEVable - Test if values of the given type are analyzable within
2393/// the SCEV framework. This primarily includes integer types, and it
2394/// can optionally include pointer types if the ScalarEvolution class
2395/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002396bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002397 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002398 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002399}
2400
2401/// getTypeSizeInBits - Return the size in bits of the specified type,
2402/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002403uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002404 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2405
2406 // If we have a TargetData, use it!
2407 if (TD)
2408 return TD->getTypeSizeInBits(Ty);
2409
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002410 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002411 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002412 return Ty->getPrimitiveSizeInBits();
2413
2414 // The only other support type is pointer. Without TargetData, conservatively
2415 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002416 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002417 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002418}
2419
2420/// getEffectiveSCEVType - Return a type with the same bitwidth as
2421/// the given type and which represents how SCEV will treat the given
2422/// type, for which isSCEVable must return true. For pointer types,
2423/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002424const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002425 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2426
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002427 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002428 return Ty;
2429
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002430 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002431 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002432 if (TD) return TD->getIntPtrType(getContext());
2433
2434 // Without TargetData, conservatively assume pointers are 64-bit.
2435 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002436}
Chris Lattner53e677a2004-04-02 20:23:17 +00002437
Dan Gohman0bba49c2009-07-07 17:06:11 +00002438const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002439 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002440}
2441
Chris Lattner53e677a2004-04-02 20:23:17 +00002442/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2443/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002444const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002445 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002446
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002447 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2448 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002449 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002450
2451 // The process of creating a SCEV for V may have caused other SCEVs
2452 // to have been created, so it's necessary to insert the new entry
2453 // from scratch, rather than trying to remember the insert position
2454 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002455 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002456 return S;
2457}
2458
Dan Gohman2d1be872009-04-16 03:18:22 +00002459/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2460///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002461const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002462 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002463 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002464 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002465
2466 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002467 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002468 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002469 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002470}
2471
2472/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002473const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002474 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002475 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002476 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002477
2478 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002479 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002480 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002481 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002482 return getMinusSCEV(AllOnes, V);
2483}
2484
Chris Lattner6038a632011-01-11 17:11:59 +00002485/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2486/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2487/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002488const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2489 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002490 // Fast path: X - X --> 0.
2491 if (LHS == RHS)
2492 return getConstant(LHS->getType(), 0);
2493
Dan Gohman2d1be872009-04-16 03:18:22 +00002494 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002495 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002496}
2497
2498/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2499/// input value to the specified type. If the type must be extended, it is zero
2500/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002501const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002502ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002503 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2505 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002506 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002507 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002508 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002509 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002510 return getTruncateExpr(V, Ty);
2511 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002512}
2513
2514/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2515/// input value to the specified type. If the type must be extended, it is sign
2516/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002517const SCEV *
2518ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002519 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002520 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002521 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2522 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002523 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002525 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002526 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002527 return getTruncateExpr(V, Ty);
2528 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002529}
2530
Dan Gohman467c4302009-05-13 03:46:30 +00002531/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2532/// input value to the specified type. If the type must be extended, it is zero
2533/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002534const SCEV *
2535ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002536 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2538 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002539 "Cannot noop or zero extend with non-integer arguments!");
2540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2541 "getNoopOrZeroExtend cannot truncate!");
2542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2543 return V; // No conversion
2544 return getZeroExtendExpr(V, Ty);
2545}
2546
2547/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2548/// input value to the specified type. If the type must be extended, it is sign
2549/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002550const SCEV *
2551ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002552 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002553 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2554 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002555 "Cannot noop or sign extend with non-integer arguments!");
2556 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2557 "getNoopOrSignExtend cannot truncate!");
2558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2559 return V; // No conversion
2560 return getSignExtendExpr(V, Ty);
2561}
2562
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002563/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2564/// the input value to the specified type. If the type must be extended,
2565/// it is extended with unspecified bits. The conversion must not be
2566/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002567const SCEV *
2568ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002569 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2571 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002572 "Cannot noop or any extend with non-integer arguments!");
2573 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2574 "getNoopOrAnyExtend cannot truncate!");
2575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2576 return V; // No conversion
2577 return getAnyExtendExpr(V, Ty);
2578}
2579
Dan Gohman467c4302009-05-13 03:46:30 +00002580/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2581/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002582const SCEV *
2583ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002584 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002585 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2586 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002587 "Cannot truncate or noop with non-integer arguments!");
2588 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2589 "getTruncateOrNoop cannot extend!");
2590 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2591 return V; // No conversion
2592 return getTruncateExpr(V, Ty);
2593}
2594
Dan Gohmana334aa72009-06-22 00:31:57 +00002595/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2596/// the types using zero-extension, and then perform a umax operation
2597/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002598const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2599 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002600 const SCEV *PromotedLHS = LHS;
2601 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002602
2603 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2604 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2605 else
2606 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2607
2608 return getUMaxExpr(PromotedLHS, PromotedRHS);
2609}
2610
Dan Gohmanc9759e82009-06-22 15:03:27 +00002611/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2612/// the types using zero-extension, and then perform a umin operation
2613/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002614const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2615 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002616 const SCEV *PromotedLHS = LHS;
2617 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002618
2619 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2620 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2621 else
2622 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2623
2624 return getUMinExpr(PromotedLHS, PromotedRHS);
2625}
2626
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002627/// PushDefUseChildren - Push users of the given Instruction
2628/// onto the given Worklist.
2629static void
2630PushDefUseChildren(Instruction *I,
2631 SmallVectorImpl<Instruction *> &Worklist) {
2632 // Push the def-use children onto the Worklist stack.
2633 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2634 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002635 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002636}
2637
2638/// ForgetSymbolicValue - This looks up computed SCEV values for all
2639/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002640/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002641/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002642void
Dan Gohman85669632010-02-25 06:57:05 +00002643ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002644 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002645 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002646
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002647 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002648 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002649 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002650 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002651 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002652
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002653 ValueExprMapType::iterator It =
2654 ValueExprMap.find(static_cast<Value *>(I));
2655 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002656 const SCEV *Old = It->second;
2657
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002658 // Short-circuit the def-use traversal if the symbolic name
2659 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002660 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002661 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002662
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002663 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002664 // structure, it's a PHI that's in the progress of being computed
2665 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2666 // additional loop trip count information isn't going to change anything.
2667 // In the second case, createNodeForPHI will perform the necessary
2668 // updates on its own when it gets to that point. In the third, we do
2669 // want to forget the SCEVUnknown.
2670 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002671 !isa<SCEVUnknown>(Old) ||
2672 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002673 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002674 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002675 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002676 }
2677
2678 PushDefUseChildren(I, Worklist);
2679 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002680}
Chris Lattner53e677a2004-04-02 20:23:17 +00002681
2682/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2683/// a loop header, making it a potential recurrence, or it doesn't.
2684///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002685const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002686 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2687 if (L->getHeader() == PN->getParent()) {
2688 // The loop may have multiple entrances or multiple exits; we can analyze
2689 // this phi as an addrec if it has a unique entry value and a unique
2690 // backedge value.
2691 Value *BEValueV = 0, *StartValueV = 0;
2692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2693 Value *V = PN->getIncomingValue(i);
2694 if (L->contains(PN->getIncomingBlock(i))) {
2695 if (!BEValueV) {
2696 BEValueV = V;
2697 } else if (BEValueV != V) {
2698 BEValueV = 0;
2699 break;
2700 }
2701 } else if (!StartValueV) {
2702 StartValueV = V;
2703 } else if (StartValueV != V) {
2704 StartValueV = 0;
2705 break;
2706 }
2707 }
2708 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002709 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002710 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002711 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002712 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002713 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002714
2715 // Using this symbolic name for the PHI, analyze the value coming around
2716 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002717 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002718
2719 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2720 // has a special value for the first iteration of the loop.
2721
2722 // If the value coming around the backedge is an add with the symbolic
2723 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002725 // If there is a single occurrence of the symbolic value, replace it
2726 // with a recurrence.
2727 unsigned FoundIndex = Add->getNumOperands();
2728 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2729 if (Add->getOperand(i) == SymbolicName)
2730 if (FoundIndex == e) {
2731 FoundIndex = i;
2732 break;
2733 }
2734
2735 if (FoundIndex != Add->getNumOperands()) {
2736 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002737 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002738 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2739 if (i != FoundIndex)
2740 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002741 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002742
2743 // This is not a valid addrec if the step amount is varying each
2744 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002745 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002746 (isa<SCEVAddRecExpr>(Accum) &&
2747 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002748 bool HasNUW = false;
2749 bool HasNSW = false;
2750
2751 // If the increment doesn't overflow, then neither the addrec nor
2752 // the post-increment will overflow.
2753 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2754 if (OBO->hasNoUnsignedWrap())
2755 HasNUW = true;
2756 if (OBO->hasNoSignedWrap())
2757 HasNSW = true;
Chris Lattner96518702011-01-11 06:44:41 +00002758 } else if (const GEPOperator *GEP =
2759 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner6d5a2412011-01-09 02:28:48 +00002760 // If the increment is a GEP, then we know it won't perform an
2761 // unsigned overflow, because the address space cannot be
2762 // wrapped around.
Chris Lattner96518702011-01-11 06:44:41 +00002763 HasNUW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002764 }
2765
Dan Gohman27dead42010-04-12 07:49:36 +00002766 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002767 const SCEV *PHISCEV =
2768 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002769
Dan Gohmana10756e2010-01-21 02:09:26 +00002770 // Since the no-wrap flags are on the increment, they apply to the
2771 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002772 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002773 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2774 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002775
2776 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002777 // to be symbolic. We now need to go back and purge all of the
2778 // entries for the scalars that use the symbolic expression.
2779 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002780 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002781 return PHISCEV;
2782 }
2783 }
Dan Gohman622ed672009-05-04 22:02:23 +00002784 } else if (const SCEVAddRecExpr *AddRec =
2785 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002786 // Otherwise, this could be a loop like this:
2787 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2788 // In this case, j = {1,+,1} and BEValue is j.
2789 // Because the other in-value of i (0) fits the evolution of BEValue
2790 // i really is an addrec evolution.
2791 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002792 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002793
2794 // If StartVal = j.start - j.stride, we can use StartVal as the
2795 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002796 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002797 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002798 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002799 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002800
2801 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002802 // to be symbolic. We now need to go back and purge all of the
2803 // entries for the scalars that use the symbolic expression.
2804 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002805 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002806 return PHISCEV;
2807 }
2808 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002809 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002810 }
Dan Gohman27dead42010-04-12 07:49:36 +00002811 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002812
Dan Gohman85669632010-02-25 06:57:05 +00002813 // If the PHI has a single incoming value, follow that value, unless the
2814 // PHI's incoming blocks are in a different loop, in which case doing so
2815 // risks breaking LCSSA form. Instcombine would normally zap these, but
2816 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002817 if (Value *V = SimplifyInstruction(PN, TD, DT))
2818 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002819 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002820
Chris Lattner53e677a2004-04-02 20:23:17 +00002821 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002822 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002823}
2824
Dan Gohman26466c02009-05-08 20:26:55 +00002825/// createNodeForGEP - Expand GEP instructions into add and multiply
2826/// operations. This allows them to be analyzed by regular SCEV code.
2827///
Dan Gohmand281ed22009-12-18 02:09:29 +00002828const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002829
Dan Gohmanb9f96512010-06-30 07:16:37 +00002830 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2831 // Add expression, because the Instruction may be guarded by control flow
2832 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002833 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002834
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002835 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002836 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002837 // Don't attempt to analyze GEPs over unsized objects.
2838 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2839 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002840 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002841 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002842 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002843 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002844 I != E; ++I) {
2845 Value *Index = *I;
2846 // Compute the (potentially symbolic) offset in bytes for this index.
2847 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2848 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002849 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002850 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2851
Dan Gohmanb9f96512010-06-30 07:16:37 +00002852 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002853 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002854 } else {
2855 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002856 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2857 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002858 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002859 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2860
Dan Gohmanb9f96512010-06-30 07:16:37 +00002861 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002862 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002863
2864 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002865 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002866 }
2867 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002868
2869 // Get the SCEV for the GEP base.
2870 const SCEV *BaseS = getSCEV(Base);
2871
Dan Gohmanb9f96512010-06-30 07:16:37 +00002872 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002873 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002874}
2875
Nick Lewycky83bb0052007-11-22 07:59:40 +00002876/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2877/// guaranteed to end in (at every loop iteration). It is, at the same time,
2878/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2879/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002880uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002881ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002882 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002883 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002884
Dan Gohman622ed672009-05-04 22:02:23 +00002885 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886 return std::min(GetMinTrailingZeros(T->getOperand()),
2887 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002888
Dan Gohman622ed672009-05-04 22:02:23 +00002889 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002890 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2891 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2892 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002893 }
2894
Dan Gohman622ed672009-05-04 22:02:23 +00002895 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2897 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2898 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002899 }
2900
Dan Gohman622ed672009-05-04 22:02:23 +00002901 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002902 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002903 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002904 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002905 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002906 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002907 }
2908
Dan Gohman622ed672009-05-04 22:02:23 +00002909 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002910 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002911 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2912 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002913 for (unsigned i = 1, e = M->getNumOperands();
2914 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002915 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002916 BitWidth);
2917 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002918 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002919
Dan Gohman622ed672009-05-04 22:02:23 +00002920 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002921 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002923 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002924 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002925 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002926 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002927
Dan Gohman622ed672009-05-04 22:02:23 +00002928 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002929 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002930 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002931 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002932 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002933 return MinOpRes;
2934 }
2935
Dan Gohman622ed672009-05-04 22:02:23 +00002936 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002937 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002938 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002939 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002940 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002941 return MinOpRes;
2942 }
2943
Dan Gohman2c364ad2009-06-19 23:29:04 +00002944 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2945 // For a SCEVUnknown, ask ValueTracking.
2946 unsigned BitWidth = getTypeSizeInBits(U->getType());
2947 APInt Mask = APInt::getAllOnesValue(BitWidth);
2948 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2949 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2950 return Zeros.countTrailingOnes();
2951 }
2952
2953 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002954 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002955}
Chris Lattner53e677a2004-04-02 20:23:17 +00002956
Dan Gohman85b05a22009-07-13 21:35:55 +00002957/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2958///
2959ConstantRange
2960ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002961 // See if we've computed this range already.
2962 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2963 if (I != UnsignedRanges.end())
2964 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002965
2966 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002967 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002968
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002969 unsigned BitWidth = getTypeSizeInBits(S->getType());
2970 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2971
2972 // If the value has known zeros, the maximum unsigned value will have those
2973 // known zeros as well.
2974 uint32_t TZ = GetMinTrailingZeros(S);
2975 if (TZ != 0)
2976 ConservativeResult =
2977 ConstantRange(APInt::getMinValue(BitWidth),
2978 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2979
Dan Gohman85b05a22009-07-13 21:35:55 +00002980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2981 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2982 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2983 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002984 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002985 }
2986
2987 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2988 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2989 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2990 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002991 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002992 }
2993
2994 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2995 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2996 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2997 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002998 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002999 }
3000
3001 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3002 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3003 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3004 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003005 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003006 }
3007
3008 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3009 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3010 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003011 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003012 }
3013
3014 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3015 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003016 return setUnsignedRange(ZExt,
3017 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003018 }
3019
3020 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3021 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003022 return setUnsignedRange(SExt,
3023 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003024 }
3025
3026 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3027 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003028 return setUnsignedRange(Trunc,
3029 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003030 }
3031
Dan Gohman85b05a22009-07-13 21:35:55 +00003032 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003033 // If there's no unsigned wrap, the value will never be less than its
3034 // initial value.
3035 if (AddRec->hasNoUnsignedWrap())
3036 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003037 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003038 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003039 ConservativeResult.intersectWith(
3040 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003041
3042 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003043 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003044 const Type *Ty = AddRec->getType();
3045 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003046 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3047 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003048 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3049
3050 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003051 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003052
3053 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003054 ConstantRange StepRange = getSignedRange(Step);
3055 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3056 ConstantRange EndRange =
3057 StartRange.add(MaxBECountRange.multiply(StepRange));
3058
3059 // Check for overflow. This must be done with ConstantRange arithmetic
3060 // because we could be called from within the ScalarEvolution overflow
3061 // checking code.
3062 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3063 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3064 ConstantRange ExtMaxBECountRange =
3065 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3066 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3067 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3068 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003069 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003070
Dan Gohman85b05a22009-07-13 21:35:55 +00003071 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3072 EndRange.getUnsignedMin());
3073 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3074 EndRange.getUnsignedMax());
3075 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003076 return setUnsignedRange(AddRec, ConservativeResult);
3077 return setUnsignedRange(AddRec,
3078 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003079 }
3080 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003081
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003082 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003083 }
3084
3085 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3086 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003087 APInt Mask = APInt::getAllOnesValue(BitWidth);
3088 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3089 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003090 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003091 return setUnsignedRange(U, ConservativeResult);
3092 return setUnsignedRange(U,
3093 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003094 }
3095
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003096 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003097}
3098
Dan Gohman85b05a22009-07-13 21:35:55 +00003099/// getSignedRange - Determine the signed range for a particular SCEV.
3100///
3101ConstantRange
3102ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003103 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3104 if (I != SignedRanges.end())
3105 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003106
Dan Gohman85b05a22009-07-13 21:35:55 +00003107 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003108 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003109
Dan Gohman52fddd32010-01-26 04:40:18 +00003110 unsigned BitWidth = getTypeSizeInBits(S->getType());
3111 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3112
3113 // If the value has known zeros, the maximum signed value will have those
3114 // known zeros as well.
3115 uint32_t TZ = GetMinTrailingZeros(S);
3116 if (TZ != 0)
3117 ConservativeResult =
3118 ConstantRange(APInt::getSignedMinValue(BitWidth),
3119 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3120
Dan Gohman85b05a22009-07-13 21:35:55 +00003121 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3122 ConstantRange X = getSignedRange(Add->getOperand(0));
3123 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3124 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003125 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003126 }
3127
Dan Gohman85b05a22009-07-13 21:35:55 +00003128 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3129 ConstantRange X = getSignedRange(Mul->getOperand(0));
3130 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3131 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003132 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003133 }
3134
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3136 ConstantRange X = getSignedRange(SMax->getOperand(0));
3137 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3138 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003139 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003140 }
Dan Gohman62849c02009-06-24 01:05:09 +00003141
Dan Gohman85b05a22009-07-13 21:35:55 +00003142 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3143 ConstantRange X = getSignedRange(UMax->getOperand(0));
3144 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3145 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003146 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003147 }
Dan Gohman62849c02009-06-24 01:05:09 +00003148
Dan Gohman85b05a22009-07-13 21:35:55 +00003149 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3150 ConstantRange X = getSignedRange(UDiv->getLHS());
3151 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003152 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003153 }
Dan Gohman62849c02009-06-24 01:05:09 +00003154
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3156 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003157 return setSignedRange(ZExt,
3158 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003159 }
3160
3161 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3162 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003163 return setSignedRange(SExt,
3164 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003165 }
3166
3167 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3168 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003169 return setSignedRange(Trunc,
3170 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003171 }
3172
Dan Gohman85b05a22009-07-13 21:35:55 +00003173 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003174 // If there's no signed wrap, and all the operands have the same sign or
3175 // zero, the value won't ever change sign.
3176 if (AddRec->hasNoSignedWrap()) {
3177 bool AllNonNeg = true;
3178 bool AllNonPos = true;
3179 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3180 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3181 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3182 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003183 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003184 ConservativeResult = ConservativeResult.intersectWith(
3185 ConstantRange(APInt(BitWidth, 0),
3186 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003187 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003188 ConservativeResult = ConservativeResult.intersectWith(
3189 ConstantRange(APInt::getSignedMinValue(BitWidth),
3190 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003191 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003192
3193 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003194 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003195 const Type *Ty = AddRec->getType();
3196 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003197 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3198 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003199 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3200
3201 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003202 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003203
3204 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003205 ConstantRange StepRange = getSignedRange(Step);
3206 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3207 ConstantRange EndRange =
3208 StartRange.add(MaxBECountRange.multiply(StepRange));
3209
3210 // Check for overflow. This must be done with ConstantRange arithmetic
3211 // because we could be called from within the ScalarEvolution overflow
3212 // checking code.
3213 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3214 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3215 ConstantRange ExtMaxBECountRange =
3216 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3217 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3218 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3219 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003220 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003221
Dan Gohman85b05a22009-07-13 21:35:55 +00003222 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3223 EndRange.getSignedMin());
3224 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3225 EndRange.getSignedMax());
3226 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003227 return setSignedRange(AddRec, ConservativeResult);
3228 return setSignedRange(AddRec,
3229 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003230 }
Dan Gohman62849c02009-06-24 01:05:09 +00003231 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003232
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003233 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003234 }
3235
Dan Gohman2c364ad2009-06-19 23:29:04 +00003236 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3237 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003238 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003239 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3241 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003242 return setSignedRange(U, ConservativeResult);
3243 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003244 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003245 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 }
3247
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003248 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003249}
3250
Chris Lattner53e677a2004-04-02 20:23:17 +00003251/// createSCEV - We know that there is no SCEV for the specified value.
3252/// Analyze the expression.
3253///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003254const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003255 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003256 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003257
Dan Gohman6c459a22008-06-22 19:56:46 +00003258 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003259 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003260 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003261
3262 // Don't attempt to analyze instructions in blocks that aren't
3263 // reachable. Such instructions don't matter, and they aren't required
3264 // to obey basic rules for definitions dominating uses which this
3265 // analysis depends on.
3266 if (!DT->isReachableFromEntry(I->getParent()))
3267 return getUnknown(V);
3268 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003269 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003270 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3271 return getConstant(CI);
3272 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003273 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003274 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3275 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003276 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003277 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003278
Dan Gohmanca178902009-07-17 20:47:02 +00003279 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003280 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003281 case Instruction::Add: {
3282 // The simple thing to do would be to just call getSCEV on both operands
3283 // and call getAddExpr with the result. However if we're looking at a
3284 // bunch of things all added together, this can be quite inefficient,
3285 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3286 // Instead, gather up all the operands and make a single getAddExpr call.
3287 // LLVM IR canonical form means we need only traverse the left operands.
3288 SmallVector<const SCEV *, 4> AddOps;
3289 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003290 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3291 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3292 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3293 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003294 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003295 const SCEV *Op1 = getSCEV(U->getOperand(1));
3296 if (Opcode == Instruction::Sub)
3297 AddOps.push_back(getNegativeSCEV(Op1));
3298 else
3299 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003300 }
3301 AddOps.push_back(getSCEV(U->getOperand(0)));
3302 return getAddExpr(AddOps);
3303 }
3304 case Instruction::Mul: {
3305 // See the Add code above.
3306 SmallVector<const SCEV *, 4> MulOps;
3307 MulOps.push_back(getSCEV(U->getOperand(1)));
3308 for (Value *Op = U->getOperand(0);
3309 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3310 Op = U->getOperand(0)) {
3311 U = cast<Operator>(Op);
3312 MulOps.push_back(getSCEV(U->getOperand(1)));
3313 }
3314 MulOps.push_back(getSCEV(U->getOperand(0)));
3315 return getMulExpr(MulOps);
3316 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003317 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003318 return getUDivExpr(getSCEV(U->getOperand(0)),
3319 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003320 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003321 return getMinusSCEV(getSCEV(U->getOperand(0)),
3322 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003323 case Instruction::And:
3324 // For an expression like x&255 that merely masks off the high bits,
3325 // use zext(trunc(x)) as the SCEV expression.
3326 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003327 if (CI->isNullValue())
3328 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003329 if (CI->isAllOnesValue())
3330 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003331 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003332
3333 // Instcombine's ShrinkDemandedConstant may strip bits out of
3334 // constants, obscuring what would otherwise be a low-bits mask.
3335 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3336 // knew about to reconstruct a low-bits mask value.
3337 unsigned LZ = A.countLeadingZeros();
3338 unsigned BitWidth = A.getBitWidth();
3339 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3340 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3341 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3342
3343 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3344
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003345 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003346 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003347 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003348 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003349 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003350 }
3351 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003352
Dan Gohman6c459a22008-06-22 19:56:46 +00003353 case Instruction::Or:
3354 // If the RHS of the Or is a constant, we may have something like:
3355 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3356 // optimizations will transparently handle this case.
3357 //
3358 // In order for this transformation to be safe, the LHS must be of the
3359 // form X*(2^n) and the Or constant must be less than 2^n.
3360 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003361 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003362 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003363 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003364 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3365 // Build a plain add SCEV.
3366 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3367 // If the LHS of the add was an addrec and it has no-wrap flags,
3368 // transfer the no-wrap flags, since an or won't introduce a wrap.
3369 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3370 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3371 if (OldAR->hasNoUnsignedWrap())
3372 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3373 if (OldAR->hasNoSignedWrap())
3374 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3375 }
3376 return S;
3377 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003378 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003379 break;
3380 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003381 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003382 // If the RHS of the xor is a signbit, then this is just an add.
3383 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003384 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003385 return getAddExpr(getSCEV(U->getOperand(0)),
3386 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003387
3388 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003389 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003390 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003391
3392 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3393 // This is a variant of the check for xor with -1, and it handles
3394 // the case where instcombine has trimmed non-demanded bits out
3395 // of an xor with -1.
3396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3397 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3398 if (BO->getOpcode() == Instruction::And &&
3399 LCI->getValue() == CI->getValue())
3400 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003401 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003402 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003403 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003404 const Type *Z0Ty = Z0->getType();
3405 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3406
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003407 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003408 // mask off the high bits. Complement the operand and
3409 // re-apply the zext.
3410 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3411 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3412
3413 // If C is a single bit, it may be in the sign-bit position
3414 // before the zero-extend. In this case, represent the xor
3415 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003416 APInt Trunc = CI->getValue().trunc(Z0TySize);
3417 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003418 Trunc.isSignBit())
3419 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3420 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003421 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003422 }
3423 break;
3424
3425 case Instruction::Shl:
3426 // Turn shift left of a constant amount into a multiply.
3427 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003428 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003429
3430 // If the shift count is not less than the bitwidth, the result of
3431 // the shift is undefined. Don't try to analyze it, because the
3432 // resolution chosen here may differ from the resolution chosen in
3433 // other parts of the compiler.
3434 if (SA->getValue().uge(BitWidth))
3435 break;
3436
Owen Andersoneed707b2009-07-24 23:12:02 +00003437 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003438 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003439 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003440 }
3441 break;
3442
Nick Lewycky01eaf802008-07-07 06:15:49 +00003443 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003444 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003445 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003446 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003447
3448 // If the shift count is not less than the bitwidth, the result of
3449 // the shift is undefined. Don't try to analyze it, because the
3450 // resolution chosen here may differ from the resolution chosen in
3451 // other parts of the compiler.
3452 if (SA->getValue().uge(BitWidth))
3453 break;
3454
Owen Andersoneed707b2009-07-24 23:12:02 +00003455 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003456 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003457 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003458 }
3459 break;
3460
Dan Gohman4ee29af2009-04-21 02:26:00 +00003461 case Instruction::AShr:
3462 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3463 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003464 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003465 if (L->getOpcode() == Instruction::Shl &&
3466 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003467 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3468
3469 // If the shift count is not less than the bitwidth, the result of
3470 // the shift is undefined. Don't try to analyze it, because the
3471 // resolution chosen here may differ from the resolution chosen in
3472 // other parts of the compiler.
3473 if (CI->getValue().uge(BitWidth))
3474 break;
3475
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003476 uint64_t Amt = BitWidth - CI->getZExtValue();
3477 if (Amt == BitWidth)
3478 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003479 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003480 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003481 IntegerType::get(getContext(),
3482 Amt)),
3483 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003484 }
3485 break;
3486
Dan Gohman6c459a22008-06-22 19:56:46 +00003487 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003488 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003489
3490 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003491 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003492
3493 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003494 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003495
3496 case Instruction::BitCast:
3497 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003498 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003499 return getSCEV(U->getOperand(0));
3500 break;
3501
Dan Gohman4f8eea82010-02-01 18:27:38 +00003502 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3503 // lead to pointer expressions which cannot safely be expanded to GEPs,
3504 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3505 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003506
Dan Gohman26466c02009-05-08 20:26:55 +00003507 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003508 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003509
Dan Gohman6c459a22008-06-22 19:56:46 +00003510 case Instruction::PHI:
3511 return createNodeForPHI(cast<PHINode>(U));
3512
3513 case Instruction::Select:
3514 // This could be a smax or umax that was lowered earlier.
3515 // Try to recover it.
3516 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3517 Value *LHS = ICI->getOperand(0);
3518 Value *RHS = ICI->getOperand(1);
3519 switch (ICI->getPredicate()) {
3520 case ICmpInst::ICMP_SLT:
3521 case ICmpInst::ICMP_SLE:
3522 std::swap(LHS, RHS);
3523 // fall through
3524 case ICmpInst::ICMP_SGT:
3525 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003526 // a >s b ? a+x : b+x -> smax(a, b)+x
3527 // a >s b ? b+x : a+x -> smin(a, b)+x
3528 if (LHS->getType() == U->getType()) {
3529 const SCEV *LS = getSCEV(LHS);
3530 const SCEV *RS = getSCEV(RHS);
3531 const SCEV *LA = getSCEV(U->getOperand(1));
3532 const SCEV *RA = getSCEV(U->getOperand(2));
3533 const SCEV *LDiff = getMinusSCEV(LA, LS);
3534 const SCEV *RDiff = getMinusSCEV(RA, RS);
3535 if (LDiff == RDiff)
3536 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3537 LDiff = getMinusSCEV(LA, RS);
3538 RDiff = getMinusSCEV(RA, LS);
3539 if (LDiff == RDiff)
3540 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3541 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003542 break;
3543 case ICmpInst::ICMP_ULT:
3544 case ICmpInst::ICMP_ULE:
3545 std::swap(LHS, RHS);
3546 // fall through
3547 case ICmpInst::ICMP_UGT:
3548 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003549 // a >u b ? a+x : b+x -> umax(a, b)+x
3550 // a >u b ? b+x : a+x -> umin(a, b)+x
3551 if (LHS->getType() == U->getType()) {
3552 const SCEV *LS = getSCEV(LHS);
3553 const SCEV *RS = getSCEV(RHS);
3554 const SCEV *LA = getSCEV(U->getOperand(1));
3555 const SCEV *RA = getSCEV(U->getOperand(2));
3556 const SCEV *LDiff = getMinusSCEV(LA, LS);
3557 const SCEV *RDiff = getMinusSCEV(RA, RS);
3558 if (LDiff == RDiff)
3559 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3560 LDiff = getMinusSCEV(LA, RS);
3561 RDiff = getMinusSCEV(RA, LS);
3562 if (LDiff == RDiff)
3563 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3564 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003565 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003566 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003567 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3568 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003569 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003570 cast<ConstantInt>(RHS)->isZero()) {
3571 const SCEV *One = getConstant(LHS->getType(), 1);
3572 const SCEV *LS = getSCEV(LHS);
3573 const SCEV *LA = getSCEV(U->getOperand(1));
3574 const SCEV *RA = getSCEV(U->getOperand(2));
3575 const SCEV *LDiff = getMinusSCEV(LA, LS);
3576 const SCEV *RDiff = getMinusSCEV(RA, One);
3577 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003578 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003579 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003580 break;
3581 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003582 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3583 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003584 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003585 cast<ConstantInt>(RHS)->isZero()) {
3586 const SCEV *One = getConstant(LHS->getType(), 1);
3587 const SCEV *LS = getSCEV(LHS);
3588 const SCEV *LA = getSCEV(U->getOperand(1));
3589 const SCEV *RA = getSCEV(U->getOperand(2));
3590 const SCEV *LDiff = getMinusSCEV(LA, One);
3591 const SCEV *RDiff = getMinusSCEV(RA, LS);
3592 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003593 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003594 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003595 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003596 default:
3597 break;
3598 }
3599 }
3600
3601 default: // We cannot analyze this expression.
3602 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003603 }
3604
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003605 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003606}
3607
3608
3609
3610//===----------------------------------------------------------------------===//
3611// Iteration Count Computation Code
3612//
3613
Dan Gohman46bdfb02009-02-24 18:55:53 +00003614/// getBackedgeTakenCount - If the specified loop has a predictable
3615/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3616/// object. The backedge-taken count is the number of times the loop header
3617/// will be branched to from within the loop. This is one less than the
3618/// trip count of the loop, since it doesn't count the first iteration,
3619/// when the header is branched to from outside the loop.
3620///
3621/// Note that it is not valid to call this method on a loop without a
3622/// loop-invariant backedge-taken count (see
3623/// hasLoopInvariantBackedgeTakenCount).
3624///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003625const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003626 return getBackedgeTakenInfo(L).Exact;
3627}
3628
3629/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3630/// return the least SCEV value that is known never to be less than the
3631/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003632const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003633 return getBackedgeTakenInfo(L).Max;
3634}
3635
Dan Gohman59ae6b92009-07-08 19:23:34 +00003636/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3637/// onto the given Worklist.
3638static void
3639PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3640 BasicBlock *Header = L->getHeader();
3641
3642 // Push all Loop-header PHIs onto the Worklist stack.
3643 for (BasicBlock::iterator I = Header->begin();
3644 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3645 Worklist.push_back(PN);
3646}
3647
Dan Gohmana1af7572009-04-30 20:47:05 +00003648const ScalarEvolution::BackedgeTakenInfo &
3649ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003650 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003651 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003652 // update the value. The temporary CouldNotCompute value tells SCEV
3653 // code elsewhere that it shouldn't attempt to request a new
3654 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003655 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003656 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003657 if (!Pair.second)
3658 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003659
Chris Lattnerf1859892011-01-09 02:16:18 +00003660 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3661 if (BECount.Exact != getCouldNotCompute()) {
3662 assert(isLoopInvariant(BECount.Exact, L) &&
3663 isLoopInvariant(BECount.Max, L) &&
3664 "Computed backedge-taken count isn't loop invariant for loop!");
3665 ++NumTripCountsComputed;
3666
3667 // Update the value in the map.
3668 Pair.first->second = BECount;
3669 } else {
3670 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003671 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003672 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003673 if (isa<PHINode>(L->getHeader()->begin()))
3674 // Only count loops that have phi nodes as not being computable.
3675 ++NumTripCountsNotComputed;
3676 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003677
Chris Lattnerf1859892011-01-09 02:16:18 +00003678 // Now that we know more about the trip count for this loop, forget any
3679 // existing SCEV values for PHI nodes in this loop since they are only
3680 // conservative estimates made without the benefit of trip count
3681 // information. This is similar to the code in forgetLoop, except that
3682 // it handles SCEVUnknown PHI nodes specially.
3683 if (BECount.hasAnyInfo()) {
3684 SmallVector<Instruction *, 16> Worklist;
3685 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003686
Chris Lattnerf1859892011-01-09 02:16:18 +00003687 SmallPtrSet<Instruction *, 8> Visited;
3688 while (!Worklist.empty()) {
3689 Instruction *I = Worklist.pop_back_val();
3690 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003691
Chris Lattnerf1859892011-01-09 02:16:18 +00003692 ValueExprMapType::iterator It =
3693 ValueExprMap.find(static_cast<Value *>(I));
3694 if (It != ValueExprMap.end()) {
3695 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003696
Chris Lattnerf1859892011-01-09 02:16:18 +00003697 // SCEVUnknown for a PHI either means that it has an unrecognized
3698 // structure, or it's a PHI that's in the progress of being computed
3699 // by createNodeForPHI. In the former case, additional loop trip
3700 // count information isn't going to change anything. In the later
3701 // case, createNodeForPHI will perform the necessary updates on its
3702 // own when it gets to that point.
3703 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3704 forgetMemoizedResults(Old);
3705 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003706 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003707 if (PHINode *PN = dyn_cast<PHINode>(I))
3708 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003709 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003710
3711 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003712 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003713 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003714 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003715}
3716
Dan Gohman4c7279a2009-10-31 15:04:55 +00003717/// forgetLoop - This method should be called by the client when it has
3718/// changed a loop in a way that may effect ScalarEvolution's ability to
3719/// compute a trip count, or if the loop is deleted.
3720void ScalarEvolution::forgetLoop(const Loop *L) {
3721 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003722 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003723
Dan Gohman4c7279a2009-10-31 15:04:55 +00003724 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003725 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003726 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003727
Dan Gohman59ae6b92009-07-08 19:23:34 +00003728 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003729 while (!Worklist.empty()) {
3730 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003731 if (!Visited.insert(I)) continue;
3732
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003733 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3734 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003735 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003736 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003737 if (PHINode *PN = dyn_cast<PHINode>(I))
3738 ConstantEvolutionLoopExitValue.erase(PN);
3739 }
3740
3741 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003742 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003743
3744 // Forget all contained loops too, to avoid dangling entries in the
3745 // ValuesAtScopes map.
3746 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3747 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003748}
3749
Eric Christophere6cbfa62010-07-29 01:25:38 +00003750/// forgetValue - This method should be called by the client when it has
3751/// changed a value in a way that may effect its value, or which may
3752/// disconnect it from a def-use chain linking it to a loop.
3753void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003754 Instruction *I = dyn_cast<Instruction>(V);
3755 if (!I) return;
3756
3757 // Drop information about expressions based on loop-header PHIs.
3758 SmallVector<Instruction *, 16> Worklist;
3759 Worklist.push_back(I);
3760
3761 SmallPtrSet<Instruction *, 8> Visited;
3762 while (!Worklist.empty()) {
3763 I = Worklist.pop_back_val();
3764 if (!Visited.insert(I)) continue;
3765
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003766 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3767 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003768 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003769 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003770 if (PHINode *PN = dyn_cast<PHINode>(I))
3771 ConstantEvolutionLoopExitValue.erase(PN);
3772 }
3773
3774 PushDefUseChildren(I, Worklist);
3775 }
3776}
3777
Dan Gohman46bdfb02009-02-24 18:55:53 +00003778/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3779/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003780ScalarEvolution::BackedgeTakenInfo
3781ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003782 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003783 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003784
Dan Gohmana334aa72009-06-22 00:31:57 +00003785 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003786 const SCEV *BECount = getCouldNotCompute();
3787 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003788 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003789 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3790 BackedgeTakenInfo NewBTI =
3791 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003792
Dan Gohman1c343752009-06-27 21:21:31 +00003793 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003795 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003796 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003797 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003798 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003799 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003800 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003801 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003802 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003803 }
Dan Gohman1c343752009-06-27 21:21:31 +00003804 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003805 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003806 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003807 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003808 }
3809
3810 return BackedgeTakenInfo(BECount, MaxBECount);
3811}
3812
3813/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3814/// of the specified loop will execute if it exits via the specified block.
3815ScalarEvolution::BackedgeTakenInfo
3816ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3817 BasicBlock *ExitingBlock) {
3818
3819 // Okay, we've chosen an exiting block. See what condition causes us to
3820 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003821 //
3822 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003823 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003824 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003825 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003826
Chris Lattner8b0e3602007-01-07 02:24:26 +00003827 // At this point, we know we have a conditional branch that determines whether
3828 // the loop is exited. However, we don't know if the branch is executed each
3829 // time through the loop. If not, then the execution count of the branch will
3830 // not be equal to the trip count of the loop.
3831 //
3832 // Currently we check for this by checking to see if the Exit branch goes to
3833 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003834 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 // loop header. This is common for un-rotated loops.
3836 //
3837 // If both of those tests fail, walk up the unique predecessor chain to the
3838 // header, stopping if there is an edge that doesn't exit the loop. If the
3839 // header is reached, the execution count of the branch will be equal to the
3840 // trip count of the loop.
3841 //
3842 // More extensive analysis could be done to handle more cases here.
3843 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003844 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003845 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 ExitBr->getParent() != L->getHeader()) {
3847 // The simple checks failed, try climbing the unique predecessor chain
3848 // up to the header.
3849 bool Ok = false;
3850 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3851 BasicBlock *Pred = BB->getUniquePredecessor();
3852 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003853 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003854 TerminatorInst *PredTerm = Pred->getTerminator();
3855 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3856 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3857 if (PredSucc == BB)
3858 continue;
3859 // If the predecessor has a successor that isn't BB and isn't
3860 // outside the loop, assume the worst.
3861 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003862 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003863 }
3864 if (Pred == L->getHeader()) {
3865 Ok = true;
3866 break;
3867 }
3868 BB = Pred;
3869 }
3870 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003871 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003872 }
3873
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003874 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003875 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3876 ExitBr->getSuccessor(0),
3877 ExitBr->getSuccessor(1));
3878}
3879
3880/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3881/// backedge of the specified loop will execute if its exit condition
3882/// were a conditional branch of ExitCond, TBB, and FBB.
3883ScalarEvolution::BackedgeTakenInfo
3884ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3885 Value *ExitCond,
3886 BasicBlock *TBB,
3887 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003888 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003889 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3890 if (BO->getOpcode() == Instruction::And) {
3891 // Recurse on the operands of the and.
3892 BackedgeTakenInfo BTI0 =
3893 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3894 BackedgeTakenInfo BTI1 =
3895 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003896 const SCEV *BECount = getCouldNotCompute();
3897 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003898 if (L->contains(TBB)) {
3899 // Both conditions must be true for the loop to continue executing.
3900 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003901 if (BTI0.Exact == getCouldNotCompute() ||
3902 BTI1.Exact == getCouldNotCompute())
3903 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003904 else
3905 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003906 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003907 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003908 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003909 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003910 else
3911 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003912 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003913 // Both conditions must be true at the same time for the loop to exit.
3914 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003916 if (BTI0.Max == BTI1.Max)
3917 MaxBECount = BTI0.Max;
3918 if (BTI0.Exact == BTI1.Exact)
3919 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003920 }
3921
3922 return BackedgeTakenInfo(BECount, MaxBECount);
3923 }
3924 if (BO->getOpcode() == Instruction::Or) {
3925 // Recurse on the operands of the or.
3926 BackedgeTakenInfo BTI0 =
3927 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3928 BackedgeTakenInfo BTI1 =
3929 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003930 const SCEV *BECount = getCouldNotCompute();
3931 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003932 if (L->contains(FBB)) {
3933 // Both conditions must be false for the loop to continue executing.
3934 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003935 if (BTI0.Exact == getCouldNotCompute() ||
3936 BTI1.Exact == getCouldNotCompute())
3937 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003938 else
3939 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003940 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003941 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003942 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003943 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003944 else
3945 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003946 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003947 // Both conditions must be false at the same time for the loop to exit.
3948 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003949 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003950 if (BTI0.Max == BTI1.Max)
3951 MaxBECount = BTI0.Max;
3952 if (BTI0.Exact == BTI1.Exact)
3953 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003954 }
3955
3956 return BackedgeTakenInfo(BECount, MaxBECount);
3957 }
3958 }
3959
3960 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003961 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003962 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3963 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003964
Dan Gohman00cb5b72010-02-19 18:12:07 +00003965 // Check for a constant condition. These are normally stripped out by
3966 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3967 // preserve the CFG and is temporarily leaving constant conditions
3968 // in place.
3969 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3970 if (L->contains(FBB) == !CI->getZExtValue())
3971 // The backedge is always taken.
3972 return getCouldNotCompute();
3973 else
3974 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003975 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003976 }
3977
Eli Friedman361e54d2009-05-09 12:32:42 +00003978 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003979 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3980}
3981
Chris Lattner992efb02011-01-09 22:26:35 +00003982static const SCEVAddRecExpr *
3983isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3984 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3985
3986 // The SCEV must be an addrec of this loop.
3987 if (!SA || SA->getLoop() != L || !SA->isAffine())
3988 return 0;
3989
3990 // The SCEV must be known to not wrap in some way to be interesting.
3991 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3992 return 0;
3993
3994 // The stride must be a constant so that we know if it is striding up or down.
3995 if (!isa<SCEVConstant>(SA->getOperand(1)))
3996 return 0;
3997 return SA;
3998}
3999
4000/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
4001/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
4002/// and this function returns the expression to use for x-y. We know and take
4003/// advantage of the fact that this subtraction is only being used in a
4004/// comparison by zero context.
4005///
4006static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4007 const Loop *L, ScalarEvolution &SE) {
4008 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4009 // wrap (either NSW or NUW), then we know that the value will either become
4010 // the other one (and thus the loop terminates), that the loop will terminate
4011 // through some other exit condition first, or that the loop has undefined
4012 // behavior. This information is useful when the addrec has a stride that is
4013 // != 1 or -1, because it means we can't "miss" the exit value.
4014 //
4015 // In any of these three cases, it is safe to turn the exit condition into a
4016 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4017 // but since we know that the "end cannot be missed" we can force the
4018 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4019 // that the AddRec *cannot* pass zero.
4020
4021 // See if LHS and RHS are addrec's we can handle.
4022 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4023 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4024
4025 // If neither addrec is interesting, just return a minus.
4026 if (RHSA == 0 && LHSA == 0)
4027 return SE.getMinusSCEV(LHS, RHS);
4028
4029 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4030 if (RHSA && LHSA == 0) {
4031 // Safe because a-b === b-a for comparisons against zero.
4032 std::swap(LHS, RHS);
4033 std::swap(LHSA, RHSA);
4034 }
4035
4036 // Handle the case when only one is advancing in a non-overflowing way.
4037 if (RHSA == 0) {
4038 // If RHS is loop varying, then we can't predict when LHS will cross it.
4039 if (!SE.isLoopInvariant(RHS, L))
4040 return SE.getMinusSCEV(LHS, RHS);
4041
4042 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4043 // is counting up until it crosses RHS (which must be larger than LHS). If
4044 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4045 const ConstantInt *Stride =
4046 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4047 if (Stride->getValue().isNegative())
4048 std::swap(LHS, RHS);
4049
4050 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4051 }
4052
4053 // If both LHS and RHS are interesting, we have something like:
4054 // a+i*4 != b+i*8.
4055 const ConstantInt *LHSStride =
4056 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4057 const ConstantInt *RHSStride =
4058 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4059
4060 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004061 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004062 if (LHSStride == RHSStride)
4063 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4064
4065 // If the signs of the strides differ, then the negative stride is counting
4066 // down to the positive stride.
4067 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4068 if (RHSStride->getValue().isNegative())
4069 std::swap(LHS, RHS);
4070 } else {
4071 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4072 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4073 // whether the strides are positive or negative.
4074 if (RHSStride->getValue().slt(LHSStride->getValue()))
4075 std::swap(LHS, RHS);
4076 }
4077
4078 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4079}
4080
Dan Gohmana334aa72009-06-22 00:31:57 +00004081/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4082/// backedge of the specified loop will execute if its exit condition
4083/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4084ScalarEvolution::BackedgeTakenInfo
4085ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4086 ICmpInst *ExitCond,
4087 BasicBlock *TBB,
4088 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004089
Reid Spencere4d87aa2006-12-23 06:05:41 +00004090 // If the condition was exit on true, convert the condition to exit on false
4091 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004092 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004093 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004094 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004095 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004096
4097 // Handle common loops like: for (X = "string"; *X; ++X)
4098 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4099 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004100 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004101 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004102 if (ItCnt.hasAnyInfo())
4103 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004104 }
4105
Dan Gohman0bba49c2009-07-07 17:06:11 +00004106 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4107 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004108
4109 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004110 LHS = getSCEVAtScope(LHS, L);
4111 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004112
Dan Gohman64a845e2009-06-24 04:48:43 +00004113 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004114 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004115 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004116 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004117 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004118 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004119 }
4120
Dan Gohman03557dc2010-05-03 16:35:17 +00004121 // Simplify the operands before analyzing them.
4122 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4123
Chris Lattner53e677a2004-04-02 20:23:17 +00004124 // If we have a comparison of a chrec against a constant, try to use value
4125 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004126 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4127 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004128 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004129 // Form the constant range.
4130 ConstantRange CompRange(
4131 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004132
Dan Gohman0bba49c2009-07-07 17:06:11 +00004133 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004134 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004135 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004136
Chris Lattner53e677a2004-04-02 20:23:17 +00004137 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004138 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004139 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004140 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4141 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004142 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004143 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004144 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004145 case ICmpInst::ICMP_EQ: { // while (X == Y)
4146 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004147 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4148 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004149 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004150 }
4151 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004152 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4153 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004154 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004155 }
4156 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004157 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4158 getNotSCEV(RHS), L, true);
4159 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004160 break;
4161 }
4162 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004163 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4164 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004165 break;
4166 }
4167 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004168 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4169 getNotSCEV(RHS), L, false);
4170 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004171 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004172 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004173 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004174#if 0
David Greene25e0e872009-12-23 22:18:14 +00004175 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004176 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004177 dbgs() << "[unsigned] ";
4178 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004179 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004180 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004181#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004182 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004183 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004184 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004185 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004186}
4187
Chris Lattner673e02b2004-10-12 01:49:27 +00004188static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004189EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4190 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004191 const SCEV *InVal = SE.getConstant(C);
4192 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004193 assert(isa<SCEVConstant>(Val) &&
4194 "Evaluation of SCEV at constant didn't fold correctly?");
4195 return cast<SCEVConstant>(Val)->getValue();
4196}
4197
4198/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4199/// and a GEP expression (missing the pointer index) indexing into it, return
4200/// the addressed element of the initializer or null if the index expression is
4201/// invalid.
4202static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004203GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004204 const std::vector<ConstantInt*> &Indices) {
4205 Constant *Init = GV->getInitializer();
4206 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004207 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004208 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4209 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4210 Init = cast<Constant>(CS->getOperand(Idx));
4211 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4212 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4213 Init = cast<Constant>(CA->getOperand(Idx));
4214 } else if (isa<ConstantAggregateZero>(Init)) {
4215 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4216 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004217 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004218 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4219 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004220 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004221 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004222 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004223 }
4224 return 0;
4225 } else {
4226 return 0; // Unknown initializer type
4227 }
4228 }
4229 return Init;
4230}
4231
Dan Gohman46bdfb02009-02-24 18:55:53 +00004232/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4233/// 'icmp op load X, cst', try to see if we can compute the backedge
4234/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004235ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004236ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4237 LoadInst *LI,
4238 Constant *RHS,
4239 const Loop *L,
4240 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004241 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004242
4243 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004244 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004245 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004246 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004247
4248 // Make sure that it is really a constant global we are gepping, with an
4249 // initializer, and make sure the first IDX is really 0.
4250 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004251 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004252 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4253 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004254 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004255
4256 // Okay, we allow one non-constant index into the GEP instruction.
4257 Value *VarIdx = 0;
4258 std::vector<ConstantInt*> Indexes;
4259 unsigned VarIdxNum = 0;
4260 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4261 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4262 Indexes.push_back(CI);
4263 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004264 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004265 VarIdx = GEP->getOperand(i);
4266 VarIdxNum = i-2;
4267 Indexes.push_back(0);
4268 }
4269
4270 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4271 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004272 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004273 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004274
4275 // We can only recognize very limited forms of loop index expressions, in
4276 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004277 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004278 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004279 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4280 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004281 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004282
4283 unsigned MaxSteps = MaxBruteForceIterations;
4284 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004285 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004286 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004287 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004288
4289 // Form the GEP offset.
4290 Indexes[VarIdxNum] = Val;
4291
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004292 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004293 if (Result == 0) break; // Cannot compute!
4294
4295 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004296 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004297 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004298 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004299#if 0
David Greene25e0e872009-12-23 22:18:14 +00004300 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004301 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4302 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004303#endif
4304 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004305 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004306 }
4307 }
Dan Gohman1c343752009-06-27 21:21:31 +00004308 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004309}
4310
4311
Chris Lattner3221ad02004-04-17 22:58:41 +00004312/// CanConstantFold - Return true if we can constant fold an instruction of the
4313/// specified type, assuming that all operands were constants.
4314static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004315 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004316 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4317 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004318
Chris Lattner3221ad02004-04-17 22:58:41 +00004319 if (const CallInst *CI = dyn_cast<CallInst>(I))
4320 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004321 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004322 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004323}
4324
Chris Lattner3221ad02004-04-17 22:58:41 +00004325/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4326/// in the loop that V is derived from. We allow arbitrary operations along the
4327/// way, but the operands of an operation must either be constants or a value
4328/// derived from a constant PHI. If this expression does not fit with these
4329/// constraints, return null.
4330static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4331 // If this is not an instruction, or if this is an instruction outside of the
4332 // loop, it can't be derived from a loop PHI.
4333 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004334 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004335
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004336 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004337 if (L->getHeader() == I->getParent())
4338 return PN;
4339 else
4340 // We don't currently keep track of the control flow needed to evaluate
4341 // PHIs, so we cannot handle PHIs inside of loops.
4342 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004343 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004344
4345 // If we won't be able to constant fold this expression even if the operands
4346 // are constants, return early.
4347 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004348
Chris Lattner3221ad02004-04-17 22:58:41 +00004349 // Otherwise, we can evaluate this instruction if all of its operands are
4350 // constant or derived from a PHI node themselves.
4351 PHINode *PHI = 0;
4352 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004353 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004354 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4355 if (P == 0) return 0; // Not evolving from PHI
4356 if (PHI == 0)
4357 PHI = P;
4358 else if (PHI != P)
4359 return 0; // Evolving from multiple different PHIs.
4360 }
4361
4362 // This is a expression evolving from a constant PHI!
4363 return PHI;
4364}
4365
4366/// EvaluateExpression - Given an expression that passes the
4367/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4368/// in the loop has the value PHIVal. If we can't fold this expression for some
4369/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004370static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4371 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004372 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004373 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004374 Instruction *I = cast<Instruction>(V);
4375
Dan Gohman9d4588f2010-06-22 13:15:46 +00004376 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004377
4378 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004379 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004380 if (Operands[i] == 0) return 0;
4381 }
4382
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004383 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004384 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004385 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004386 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004387 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004388}
4389
4390/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4391/// in the header of its containing loop, we know the loop executes a
4392/// constant number of times, and the PHI node is just a recurrence
4393/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004394Constant *
4395ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004396 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004397 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004398 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004399 ConstantEvolutionLoopExitValue.find(PN);
4400 if (I != ConstantEvolutionLoopExitValue.end())
4401 return I->second;
4402
Dan Gohmane0567812010-04-08 23:03:40 +00004403 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004404 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4405
4406 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4407
4408 // Since the loop is canonicalized, the PHI node must have two entries. One
4409 // entry must be a constant (coming in from outside of the loop), and the
4410 // second must be derived from the same PHI.
4411 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4412 Constant *StartCST =
4413 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4414 if (StartCST == 0)
4415 return RetVal = 0; // Must be a constant.
4416
4417 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004418 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4419 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004420 return RetVal = 0; // Not derived from same PHI.
4421
4422 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004423 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004424 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004425
Dan Gohman46bdfb02009-02-24 18:55:53 +00004426 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004427 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004428 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4429 if (IterationNum == NumIterations)
4430 return RetVal = PHIVal; // Got exit value!
4431
4432 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004433 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004434 if (NextPHI == PHIVal)
4435 return RetVal = NextPHI; // Stopped evolving!
4436 if (NextPHI == 0)
4437 return 0; // Couldn't evaluate!
4438 PHIVal = NextPHI;
4439 }
4440}
4441
Dan Gohman07ad19b2009-07-27 16:09:48 +00004442/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004443/// constant number of times (the condition evolves only from constants),
4444/// try to evaluate a few iterations of the loop until we get the exit
4445/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004446/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004447const SCEV *
4448ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4449 Value *Cond,
4450 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004451 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004452 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004453
Dan Gohmanb92654d2010-06-19 14:17:24 +00004454 // If the loop is canonicalized, the PHI will have exactly two entries.
4455 // That's the only form we support here.
4456 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4457
4458 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004459 // second must be derived from the same PHI.
4460 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4461 Constant *StartCST =
4462 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004463 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004464
4465 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004466 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4467 !isa<Constant>(BEValue))
4468 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004469
4470 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4471 // the loop symbolically to determine when the condition gets a value of
4472 // "ExitWhen".
4473 unsigned IterationNum = 0;
4474 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4475 for (Constant *PHIVal = StartCST;
4476 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004477 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004478 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004479
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004480 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004481 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004482
Reid Spencere8019bb2007-03-01 07:25:48 +00004483 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004484 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004485 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004487
Chris Lattner3221ad02004-04-17 22:58:41 +00004488 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004489 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004490 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004491 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004492 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004493 }
4494
4495 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004496 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004497}
4498
Dan Gohmane7125f42009-09-03 15:00:26 +00004499/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004500/// at the specified scope in the program. The L value specifies a loop
4501/// nest to evaluate the expression at, where null is the top-level or a
4502/// specified loop is immediately inside of the loop.
4503///
4504/// This method can be used to compute the exit value for a variable defined
4505/// in a loop by querying what the value will hold in the parent loop.
4506///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004507/// In the case that a relevant loop exit value cannot be computed, the
4508/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004509const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004510 // Check to see if we've folded this expression at this loop before.
4511 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4512 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4513 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4514 if (!Pair.second)
4515 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004516
Dan Gohman42214892009-08-31 21:15:23 +00004517 // Otherwise compute it.
4518 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004519 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004520 return C;
4521}
4522
4523const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004524 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004525
Nick Lewycky3e630762008-02-20 06:48:22 +00004526 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004527 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004528 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004529 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004530 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004531 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4532 if (PHINode *PN = dyn_cast<PHINode>(I))
4533 if (PN->getParent() == LI->getHeader()) {
4534 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004535 // to see if the loop that contains it has a known backedge-taken
4536 // count. If so, we may be able to force computation of the exit
4537 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004538 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004539 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004540 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004541 // Okay, we know how many times the containing loop executes. If
4542 // this is a constant evolving PHI node, get the final value at
4543 // the specified iteration number.
4544 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004545 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004546 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004547 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004548 }
4549 }
4550
Reid Spencer09906f32006-12-04 21:33:23 +00004551 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004552 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004553 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004554 // result. This is particularly useful for computing loop exit values.
4555 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004556 SmallVector<Constant *, 4> Operands;
4557 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004558 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4559 Value *Op = I->getOperand(i);
4560 if (Constant *C = dyn_cast<Constant>(Op)) {
4561 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004562 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004563 }
Dan Gohman11046452010-06-29 23:43:06 +00004564
4565 // If any of the operands is non-constant and if they are
4566 // non-integer and non-pointer, don't even try to analyze them
4567 // with scev techniques.
4568 if (!isSCEVable(Op->getType()))
4569 return V;
4570
4571 const SCEV *OrigV = getSCEV(Op);
4572 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4573 MadeImprovement |= OrigV != OpV;
4574
4575 Constant *C = 0;
4576 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4577 C = SC->getValue();
4578 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4579 C = dyn_cast<Constant>(SU->getValue());
4580 if (!C) return V;
4581 if (C->getType() != Op->getType())
4582 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4583 Op->getType(),
4584 false),
4585 C, Op->getType());
4586 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004587 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004588
Dan Gohman11046452010-06-29 23:43:06 +00004589 // Check to see if getSCEVAtScope actually made an improvement.
4590 if (MadeImprovement) {
4591 Constant *C = 0;
4592 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4593 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4594 Operands[0], Operands[1], TD);
4595 else
4596 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4597 &Operands[0], Operands.size(), TD);
4598 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004599 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004600 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004601 }
4602 }
4603
4604 // This is some other type of SCEVUnknown, just return it.
4605 return V;
4606 }
4607
Dan Gohman622ed672009-05-04 22:02:23 +00004608 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 // Avoid performing the look-up in the common case where the specified
4610 // expression has no loop-variant portions.
4611 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004612 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004613 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 // Okay, at least one of these operands is loop variant but might be
4615 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004616 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4617 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004618 NewOps.push_back(OpAtScope);
4619
4620 for (++i; i != e; ++i) {
4621 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004622 NewOps.push_back(OpAtScope);
4623 }
4624 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004625 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004626 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004627 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004628 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004629 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004630 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004631 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004632 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004633 }
4634 }
4635 // If we got here, all operands are loop invariant.
4636 return Comm;
4637 }
4638
Dan Gohman622ed672009-05-04 22:02:23 +00004639 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004640 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4641 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004642 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4643 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004644 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004645 }
4646
4647 // If this is a loop recurrence for a loop that does not contain L, then we
4648 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004649 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004650 // First, attempt to evaluate each operand.
4651 // Avoid performing the look-up in the common case where the specified
4652 // expression has no loop-variant portions.
4653 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4654 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4655 if (OpAtScope == AddRec->getOperand(i))
4656 continue;
4657
4658 // Okay, at least one of these operands is loop variant but might be
4659 // foldable. Build a new instance of the folded commutative expression.
4660 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4661 AddRec->op_begin()+i);
4662 NewOps.push_back(OpAtScope);
4663 for (++i; i != e; ++i)
4664 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4665
4666 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4667 break;
4668 }
4669
4670 // If the scope is outside the addrec's loop, evaluate it by using the
4671 // loop exit value of the addrec.
4672 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004673 // To evaluate this recurrence, we need to know how many times the AddRec
4674 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004675 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004676 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004677
Eli Friedmanb42a6262008-08-04 23:49:06 +00004678 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004679 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004680 }
Dan Gohman11046452010-06-29 23:43:06 +00004681
Dan Gohmand594e6f2009-05-24 23:25:42 +00004682 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004683 }
4684
Dan Gohman622ed672009-05-04 22:02:23 +00004685 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004686 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004687 if (Op == Cast->getOperand())
4688 return Cast; // must be loop invariant
4689 return getZeroExtendExpr(Op, Cast->getType());
4690 }
4691
Dan Gohman622ed672009-05-04 22:02:23 +00004692 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004693 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004694 if (Op == Cast->getOperand())
4695 return Cast; // must be loop invariant
4696 return getSignExtendExpr(Op, Cast->getType());
4697 }
4698
Dan Gohman622ed672009-05-04 22:02:23 +00004699 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004700 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004701 if (Op == Cast->getOperand())
4702 return Cast; // must be loop invariant
4703 return getTruncateExpr(Op, Cast->getType());
4704 }
4705
Torok Edwinc23197a2009-07-14 16:55:14 +00004706 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004707 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004708}
4709
Dan Gohman66a7e852009-05-08 20:38:54 +00004710/// getSCEVAtScope - This is a convenience function which does
4711/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004712const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004713 return getSCEVAtScope(getSCEV(V), L);
4714}
4715
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004716/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4717/// following equation:
4718///
4719/// A * X = B (mod N)
4720///
4721/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4722/// A and B isn't important.
4723///
4724/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004725static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004726 ScalarEvolution &SE) {
4727 uint32_t BW = A.getBitWidth();
4728 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4729 assert(A != 0 && "A must be non-zero.");
4730
4731 // 1. D = gcd(A, N)
4732 //
4733 // The gcd of A and N may have only one prime factor: 2. The number of
4734 // trailing zeros in A is its multiplicity
4735 uint32_t Mult2 = A.countTrailingZeros();
4736 // D = 2^Mult2
4737
4738 // 2. Check if B is divisible by D.
4739 //
4740 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4741 // is not less than multiplicity of this prime factor for D.
4742 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004743 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004744
4745 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4746 // modulo (N / D).
4747 //
4748 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4749 // bit width during computations.
4750 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4751 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004752 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004753 APInt I = AD.multiplicativeInverse(Mod);
4754
4755 // 4. Compute the minimum unsigned root of the equation:
4756 // I * (B / D) mod (N / D)
4757 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4758
4759 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4760 // bits.
4761 return SE.getConstant(Result.trunc(BW));
4762}
Chris Lattner53e677a2004-04-02 20:23:17 +00004763
4764/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4765/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4766/// might be the same) or two SCEVCouldNotCompute objects.
4767///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004768static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004769SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004770 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004771 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4772 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4773 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004774
Chris Lattner53e677a2004-04-02 20:23:17 +00004775 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004776 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004777 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004778 return std::make_pair(CNC, CNC);
4779 }
4780
Reid Spencere8019bb2007-03-01 07:25:48 +00004781 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004782 const APInt &L = LC->getValue()->getValue();
4783 const APInt &M = MC->getValue()->getValue();
4784 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004785 APInt Two(BitWidth, 2);
4786 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004787
Dan Gohman64a845e2009-06-24 04:48:43 +00004788 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004789 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004790 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004791 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4792 // The B coefficient is M-N/2
4793 APInt B(M);
4794 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004795
Reid Spencere8019bb2007-03-01 07:25:48 +00004796 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004797 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004798
Reid Spencere8019bb2007-03-01 07:25:48 +00004799 // Compute the B^2-4ac term.
4800 APInt SqrtTerm(B);
4801 SqrtTerm *= B;
4802 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004803
Reid Spencere8019bb2007-03-01 07:25:48 +00004804 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4805 // integer value or else APInt::sqrt() will assert.
4806 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004807
Dan Gohman64a845e2009-06-24 04:48:43 +00004808 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004809 // The divisions must be performed as signed divisions.
4810 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004811 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004812 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004813 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004814 return std::make_pair(CNC, CNC);
4815 }
4816
Owen Andersone922c022009-07-22 00:24:57 +00004817 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004818
4819 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004820 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004821 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004822 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004823
Dan Gohman64a845e2009-06-24 04:48:43 +00004824 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004825 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004826 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004827}
4828
4829/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004830/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004831ScalarEvolution::BackedgeTakenInfo
4832ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004833 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004834 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004835 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004836 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004837 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004838 }
4839
Dan Gohman35738ac2009-05-04 22:30:44 +00004840 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004841 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004842 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004843
Chris Lattner7975e3e2011-01-09 22:39:48 +00004844 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4845 // the quadratic equation to solve it.
4846 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4847 std::pair<const SCEV *,const SCEV *> Roots =
4848 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004849 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4850 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004851 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004852#if 0
David Greene25e0e872009-12-23 22:18:14 +00004853 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004854 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004855#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004856 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004857 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004858 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4859 R1->getValue(),
4860 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004861 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004862 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004863
Chris Lattner53e677a2004-04-02 20:23:17 +00004864 // We can only use this value if the chrec ends up with an exact zero
4865 // value at this index. When solving for "X*X != 5", for example, we
4866 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004867 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004868 if (Val->isZero())
4869 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004870 }
4871 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004872 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004873 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004874
Chris Lattner7975e3e2011-01-09 22:39:48 +00004875 // Otherwise we can only handle this if it is affine.
4876 if (!AddRec->isAffine())
4877 return getCouldNotCompute();
4878
4879 // If this is an affine expression, the execution count of this branch is
4880 // the minimum unsigned root of the following equation:
4881 //
4882 // Start + Step*N = 0 (mod 2^BW)
4883 //
4884 // equivalent to:
4885 //
4886 // Step*N = -Start (mod 2^BW)
4887 //
4888 // where BW is the common bit width of Start and Step.
4889
4890 // Get the initial value for the loop.
4891 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4892 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4893
Chris Lattner53e1d452011-01-09 22:58:47 +00004894 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4895 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4896 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4897 // the stride is. As such, NUW addrec's will always become zero in
4898 // "start / -stride" steps, and we know that the division is exact.
4899 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004900 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004901 return getUDivExpr(Start, getNegativeSCEV(Step));
4902
Chris Lattner7975e3e2011-01-09 22:39:48 +00004903 // For now we handle only constant steps.
4904 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4905 if (StepC == 0)
4906 return getCouldNotCompute();
4907
4908 // First, handle unitary steps.
4909 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4910 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4911
4912 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4913 return Start; // N = Start (as unsigned)
4914
4915 // Then, try to solve the above equation provided that Start is constant.
4916 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4917 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4918 -StartC->getValue()->getValue(),
4919 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004920 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004921}
4922
4923/// HowFarToNonZero - Return the number of times a backedge checking the
4924/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004925/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004926ScalarEvolution::BackedgeTakenInfo
4927ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004928 // Loops that look like: while (X == 0) are very strange indeed. We don't
4929 // handle them yet except for the trivial case. This could be expanded in the
4930 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004931
Chris Lattner53e677a2004-04-02 20:23:17 +00004932 // If the value is a constant, check to see if it is known to be non-zero
4933 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004934 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004935 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004936 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004937 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004938 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004939
Chris Lattner53e677a2004-04-02 20:23:17 +00004940 // We could implement others, but I really doubt anyone writes loops like
4941 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004942 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004943}
4944
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004945/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4946/// (which may not be an immediate predecessor) which has exactly one
4947/// successor from which BB is reachable, or null if no such block is
4948/// found.
4949///
Dan Gohman005752b2010-04-15 16:19:08 +00004950std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004951ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004952 // If the block has a unique predecessor, then there is no path from the
4953 // predecessor to the block that does not go through the direct edge
4954 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004955 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004956 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004957
4958 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004959 // If the header has a unique predecessor outside the loop, it must be
4960 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004961 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004962 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004963
Dan Gohman005752b2010-04-15 16:19:08 +00004964 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004965}
4966
Dan Gohman763bad12009-06-20 00:35:32 +00004967/// HasSameValue - SCEV structural equivalence is usually sufficient for
4968/// testing whether two expressions are equal, however for the purposes of
4969/// looking for a condition guarding a loop, it can be useful to be a little
4970/// more general, since a front-end may have replicated the controlling
4971/// expression.
4972///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004973static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004974 // Quick check to see if they are the same SCEV.
4975 if (A == B) return true;
4976
4977 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4978 // two different instructions with the same value. Check for this case.
4979 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4980 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4981 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4982 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004983 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004984 return true;
4985
4986 // Otherwise assume they may have a different value.
4987 return false;
4988}
4989
Dan Gohmane9796502010-04-24 01:28:42 +00004990/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4991/// predicate Pred. Return true iff any changes were made.
4992///
4993bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4994 const SCEV *&LHS, const SCEV *&RHS) {
4995 bool Changed = false;
4996
4997 // Canonicalize a constant to the right side.
4998 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4999 // Check for both operands constant.
5000 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5001 if (ConstantExpr::getICmp(Pred,
5002 LHSC->getValue(),
5003 RHSC->getValue())->isNullValue())
5004 goto trivially_false;
5005 else
5006 goto trivially_true;
5007 }
5008 // Otherwise swap the operands to put the constant on the right.
5009 std::swap(LHS, RHS);
5010 Pred = ICmpInst::getSwappedPredicate(Pred);
5011 Changed = true;
5012 }
5013
5014 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005015 // addrec's loop, put the addrec on the left. Also make a dominance check,
5016 // as both operands could be addrecs loop-invariant in each other's loop.
5017 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5018 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005019 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005020 std::swap(LHS, RHS);
5021 Pred = ICmpInst::getSwappedPredicate(Pred);
5022 Changed = true;
5023 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005024 }
Dan Gohmane9796502010-04-24 01:28:42 +00005025
5026 // If there's a constant operand, canonicalize comparisons with boundary
5027 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5028 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5029 const APInt &RA = RC->getValue()->getValue();
5030 switch (Pred) {
5031 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5032 case ICmpInst::ICMP_EQ:
5033 case ICmpInst::ICMP_NE:
5034 break;
5035 case ICmpInst::ICMP_UGE:
5036 if ((RA - 1).isMinValue()) {
5037 Pred = ICmpInst::ICMP_NE;
5038 RHS = getConstant(RA - 1);
5039 Changed = true;
5040 break;
5041 }
5042 if (RA.isMaxValue()) {
5043 Pred = ICmpInst::ICMP_EQ;
5044 Changed = true;
5045 break;
5046 }
5047 if (RA.isMinValue()) goto trivially_true;
5048
5049 Pred = ICmpInst::ICMP_UGT;
5050 RHS = getConstant(RA - 1);
5051 Changed = true;
5052 break;
5053 case ICmpInst::ICMP_ULE:
5054 if ((RA + 1).isMaxValue()) {
5055 Pred = ICmpInst::ICMP_NE;
5056 RHS = getConstant(RA + 1);
5057 Changed = true;
5058 break;
5059 }
5060 if (RA.isMinValue()) {
5061 Pred = ICmpInst::ICMP_EQ;
5062 Changed = true;
5063 break;
5064 }
5065 if (RA.isMaxValue()) goto trivially_true;
5066
5067 Pred = ICmpInst::ICMP_ULT;
5068 RHS = getConstant(RA + 1);
5069 Changed = true;
5070 break;
5071 case ICmpInst::ICMP_SGE:
5072 if ((RA - 1).isMinSignedValue()) {
5073 Pred = ICmpInst::ICMP_NE;
5074 RHS = getConstant(RA - 1);
5075 Changed = true;
5076 break;
5077 }
5078 if (RA.isMaxSignedValue()) {
5079 Pred = ICmpInst::ICMP_EQ;
5080 Changed = true;
5081 break;
5082 }
5083 if (RA.isMinSignedValue()) goto trivially_true;
5084
5085 Pred = ICmpInst::ICMP_SGT;
5086 RHS = getConstant(RA - 1);
5087 Changed = true;
5088 break;
5089 case ICmpInst::ICMP_SLE:
5090 if ((RA + 1).isMaxSignedValue()) {
5091 Pred = ICmpInst::ICMP_NE;
5092 RHS = getConstant(RA + 1);
5093 Changed = true;
5094 break;
5095 }
5096 if (RA.isMinSignedValue()) {
5097 Pred = ICmpInst::ICMP_EQ;
5098 Changed = true;
5099 break;
5100 }
5101 if (RA.isMaxSignedValue()) goto trivially_true;
5102
5103 Pred = ICmpInst::ICMP_SLT;
5104 RHS = getConstant(RA + 1);
5105 Changed = true;
5106 break;
5107 case ICmpInst::ICMP_UGT:
5108 if (RA.isMinValue()) {
5109 Pred = ICmpInst::ICMP_NE;
5110 Changed = true;
5111 break;
5112 }
5113 if ((RA + 1).isMaxValue()) {
5114 Pred = ICmpInst::ICMP_EQ;
5115 RHS = getConstant(RA + 1);
5116 Changed = true;
5117 break;
5118 }
5119 if (RA.isMaxValue()) goto trivially_false;
5120 break;
5121 case ICmpInst::ICMP_ULT:
5122 if (RA.isMaxValue()) {
5123 Pred = ICmpInst::ICMP_NE;
5124 Changed = true;
5125 break;
5126 }
5127 if ((RA - 1).isMinValue()) {
5128 Pred = ICmpInst::ICMP_EQ;
5129 RHS = getConstant(RA - 1);
5130 Changed = true;
5131 break;
5132 }
5133 if (RA.isMinValue()) goto trivially_false;
5134 break;
5135 case ICmpInst::ICMP_SGT:
5136 if (RA.isMinSignedValue()) {
5137 Pred = ICmpInst::ICMP_NE;
5138 Changed = true;
5139 break;
5140 }
5141 if ((RA + 1).isMaxSignedValue()) {
5142 Pred = ICmpInst::ICMP_EQ;
5143 RHS = getConstant(RA + 1);
5144 Changed = true;
5145 break;
5146 }
5147 if (RA.isMaxSignedValue()) goto trivially_false;
5148 break;
5149 case ICmpInst::ICMP_SLT:
5150 if (RA.isMaxSignedValue()) {
5151 Pred = ICmpInst::ICMP_NE;
5152 Changed = true;
5153 break;
5154 }
5155 if ((RA - 1).isMinSignedValue()) {
5156 Pred = ICmpInst::ICMP_EQ;
5157 RHS = getConstant(RA - 1);
5158 Changed = true;
5159 break;
5160 }
5161 if (RA.isMinSignedValue()) goto trivially_false;
5162 break;
5163 }
5164 }
5165
5166 // Check for obvious equality.
5167 if (HasSameValue(LHS, RHS)) {
5168 if (ICmpInst::isTrueWhenEqual(Pred))
5169 goto trivially_true;
5170 if (ICmpInst::isFalseWhenEqual(Pred))
5171 goto trivially_false;
5172 }
5173
Dan Gohman03557dc2010-05-03 16:35:17 +00005174 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5175 // adding or subtracting 1 from one of the operands.
5176 switch (Pred) {
5177 case ICmpInst::ICMP_SLE:
5178 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5179 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5180 /*HasNUW=*/false, /*HasNSW=*/true);
5181 Pred = ICmpInst::ICMP_SLT;
5182 Changed = true;
5183 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005184 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005185 /*HasNUW=*/false, /*HasNSW=*/true);
5186 Pred = ICmpInst::ICMP_SLT;
5187 Changed = true;
5188 }
5189 break;
5190 case ICmpInst::ICMP_SGE:
5191 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005192 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005193 /*HasNUW=*/false, /*HasNSW=*/true);
5194 Pred = ICmpInst::ICMP_SGT;
5195 Changed = true;
5196 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5197 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5198 /*HasNUW=*/false, /*HasNSW=*/true);
5199 Pred = ICmpInst::ICMP_SGT;
5200 Changed = true;
5201 }
5202 break;
5203 case ICmpInst::ICMP_ULE:
5204 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005205 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005206 /*HasNUW=*/true, /*HasNSW=*/false);
5207 Pred = ICmpInst::ICMP_ULT;
5208 Changed = true;
5209 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005210 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005211 /*HasNUW=*/true, /*HasNSW=*/false);
5212 Pred = ICmpInst::ICMP_ULT;
5213 Changed = true;
5214 }
5215 break;
5216 case ICmpInst::ICMP_UGE:
5217 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005218 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005219 /*HasNUW=*/true, /*HasNSW=*/false);
5220 Pred = ICmpInst::ICMP_UGT;
5221 Changed = true;
5222 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005223 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005224 /*HasNUW=*/true, /*HasNSW=*/false);
5225 Pred = ICmpInst::ICMP_UGT;
5226 Changed = true;
5227 }
5228 break;
5229 default:
5230 break;
5231 }
5232
Dan Gohmane9796502010-04-24 01:28:42 +00005233 // TODO: More simplifications are possible here.
5234
5235 return Changed;
5236
5237trivially_true:
5238 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005239 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005240 Pred = ICmpInst::ICMP_EQ;
5241 return true;
5242
5243trivially_false:
5244 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005245 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005246 Pred = ICmpInst::ICMP_NE;
5247 return true;
5248}
5249
Dan Gohman85b05a22009-07-13 21:35:55 +00005250bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5251 return getSignedRange(S).getSignedMax().isNegative();
5252}
5253
5254bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5255 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5256}
5257
5258bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5259 return !getSignedRange(S).getSignedMin().isNegative();
5260}
5261
5262bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5263 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5264}
5265
5266bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5267 return isKnownNegative(S) || isKnownPositive(S);
5268}
5269
5270bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5271 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005272 // Canonicalize the inputs first.
5273 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5274
Dan Gohman53c66ea2010-04-11 22:16:48 +00005275 // If LHS or RHS is an addrec, check to see if the condition is true in
5276 // every iteration of the loop.
5277 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5278 if (isLoopEntryGuardedByCond(
5279 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5280 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005281 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005282 return true;
5283 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5284 if (isLoopEntryGuardedByCond(
5285 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5286 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005287 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005288 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005289
Dan Gohman53c66ea2010-04-11 22:16:48 +00005290 // Otherwise see what can be done with known constant ranges.
5291 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5292}
5293
5294bool
5295ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5296 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005297 if (HasSameValue(LHS, RHS))
5298 return ICmpInst::isTrueWhenEqual(Pred);
5299
Dan Gohman53c66ea2010-04-11 22:16:48 +00005300 // This code is split out from isKnownPredicate because it is called from
5301 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005302 switch (Pred) {
5303 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005304 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005305 break;
5306 case ICmpInst::ICMP_SGT:
5307 Pred = ICmpInst::ICMP_SLT;
5308 std::swap(LHS, RHS);
5309 case ICmpInst::ICMP_SLT: {
5310 ConstantRange LHSRange = getSignedRange(LHS);
5311 ConstantRange RHSRange = getSignedRange(RHS);
5312 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5313 return true;
5314 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5315 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005316 break;
5317 }
5318 case ICmpInst::ICMP_SGE:
5319 Pred = ICmpInst::ICMP_SLE;
5320 std::swap(LHS, RHS);
5321 case ICmpInst::ICMP_SLE: {
5322 ConstantRange LHSRange = getSignedRange(LHS);
5323 ConstantRange RHSRange = getSignedRange(RHS);
5324 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5325 return true;
5326 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5327 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005328 break;
5329 }
5330 case ICmpInst::ICMP_UGT:
5331 Pred = ICmpInst::ICMP_ULT;
5332 std::swap(LHS, RHS);
5333 case ICmpInst::ICMP_ULT: {
5334 ConstantRange LHSRange = getUnsignedRange(LHS);
5335 ConstantRange RHSRange = getUnsignedRange(RHS);
5336 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5337 return true;
5338 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5339 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005340 break;
5341 }
5342 case ICmpInst::ICMP_UGE:
5343 Pred = ICmpInst::ICMP_ULE;
5344 std::swap(LHS, RHS);
5345 case ICmpInst::ICMP_ULE: {
5346 ConstantRange LHSRange = getUnsignedRange(LHS);
5347 ConstantRange RHSRange = getUnsignedRange(RHS);
5348 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5349 return true;
5350 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5351 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005352 break;
5353 }
5354 case ICmpInst::ICMP_NE: {
5355 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5356 return true;
5357 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5358 return true;
5359
5360 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5361 if (isKnownNonZero(Diff))
5362 return true;
5363 break;
5364 }
5365 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005366 // The check at the top of the function catches the case where
5367 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005368 break;
5369 }
5370 return false;
5371}
5372
5373/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5374/// protected by a conditional between LHS and RHS. This is used to
5375/// to eliminate casts.
5376bool
5377ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5378 ICmpInst::Predicate Pred,
5379 const SCEV *LHS, const SCEV *RHS) {
5380 // Interpret a null as meaning no loop, where there is obviously no guard
5381 // (interprocedural conditions notwithstanding).
5382 if (!L) return true;
5383
5384 BasicBlock *Latch = L->getLoopLatch();
5385 if (!Latch)
5386 return false;
5387
5388 BranchInst *LoopContinuePredicate =
5389 dyn_cast<BranchInst>(Latch->getTerminator());
5390 if (!LoopContinuePredicate ||
5391 LoopContinuePredicate->isUnconditional())
5392 return false;
5393
Dan Gohmanaf08a362010-08-10 23:46:30 +00005394 return isImpliedCond(Pred, LHS, RHS,
5395 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005396 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005397}
5398
Dan Gohman3948d0b2010-04-11 19:27:13 +00005399/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005400/// by a conditional between LHS and RHS. This is used to help avoid max
5401/// expressions in loop trip counts, and to eliminate casts.
5402bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005403ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5404 ICmpInst::Predicate Pred,
5405 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005406 // Interpret a null as meaning no loop, where there is obviously no guard
5407 // (interprocedural conditions notwithstanding).
5408 if (!L) return false;
5409
Dan Gohman859b4822009-05-18 15:36:09 +00005410 // Starting at the loop predecessor, climb up the predecessor chain, as long
5411 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005412 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005413 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005414 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005415 Pair.first;
5416 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005417
5418 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005419 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005420 if (!LoopEntryPredicate ||
5421 LoopEntryPredicate->isUnconditional())
5422 continue;
5423
Dan Gohmanaf08a362010-08-10 23:46:30 +00005424 if (isImpliedCond(Pred, LHS, RHS,
5425 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005426 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005427 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005428 }
5429
Dan Gohman38372182008-08-12 20:17:31 +00005430 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005431}
5432
Dan Gohman0f4b2852009-07-21 23:03:19 +00005433/// isImpliedCond - Test whether the condition described by Pred, LHS,
5434/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005435bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005436 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005437 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005438 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005439 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005440 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005441 if (BO->getOpcode() == Instruction::And) {
5442 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005443 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5444 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005445 } else if (BO->getOpcode() == Instruction::Or) {
5446 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005447 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5448 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005449 }
5450 }
5451
Dan Gohmanaf08a362010-08-10 23:46:30 +00005452 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005453 if (!ICI) return false;
5454
Dan Gohman85b05a22009-07-13 21:35:55 +00005455 // Bail if the ICmp's operands' types are wider than the needed type
5456 // before attempting to call getSCEV on them. This avoids infinite
5457 // recursion, since the analysis of widening casts can require loop
5458 // exit condition information for overflow checking, which would
5459 // lead back here.
5460 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005461 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005462 return false;
5463
Dan Gohman0f4b2852009-07-21 23:03:19 +00005464 // Now that we found a conditional branch that dominates the loop, check to
5465 // see if it is the comparison we are looking for.
5466 ICmpInst::Predicate FoundPred;
5467 if (Inverse)
5468 FoundPred = ICI->getInversePredicate();
5469 else
5470 FoundPred = ICI->getPredicate();
5471
5472 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5473 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005474
5475 // Balance the types. The case where FoundLHS' type is wider than
5476 // LHS' type is checked for above.
5477 if (getTypeSizeInBits(LHS->getType()) >
5478 getTypeSizeInBits(FoundLHS->getType())) {
5479 if (CmpInst::isSigned(Pred)) {
5480 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5481 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5482 } else {
5483 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5484 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5485 }
5486 }
5487
Dan Gohman0f4b2852009-07-21 23:03:19 +00005488 // Canonicalize the query to match the way instcombine will have
5489 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005490 if (SimplifyICmpOperands(Pred, LHS, RHS))
5491 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005492 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005493 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5494 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005495 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005496
5497 // Check to see if we can make the LHS or RHS match.
5498 if (LHS == FoundRHS || RHS == FoundLHS) {
5499 if (isa<SCEVConstant>(RHS)) {
5500 std::swap(FoundLHS, FoundRHS);
5501 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5502 } else {
5503 std::swap(LHS, RHS);
5504 Pred = ICmpInst::getSwappedPredicate(Pred);
5505 }
5506 }
5507
5508 // Check whether the found predicate is the same as the desired predicate.
5509 if (FoundPred == Pred)
5510 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5511
5512 // Check whether swapping the found predicate makes it the same as the
5513 // desired predicate.
5514 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5515 if (isa<SCEVConstant>(RHS))
5516 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5517 else
5518 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5519 RHS, LHS, FoundLHS, FoundRHS);
5520 }
5521
5522 // Check whether the actual condition is beyond sufficient.
5523 if (FoundPred == ICmpInst::ICMP_EQ)
5524 if (ICmpInst::isTrueWhenEqual(Pred))
5525 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5526 return true;
5527 if (Pred == ICmpInst::ICMP_NE)
5528 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5529 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5530 return true;
5531
5532 // Otherwise assume the worst.
5533 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005534}
5535
Dan Gohman0f4b2852009-07-21 23:03:19 +00005536/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005537/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005538/// and FoundRHS is true.
5539bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5540 const SCEV *LHS, const SCEV *RHS,
5541 const SCEV *FoundLHS,
5542 const SCEV *FoundRHS) {
5543 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5544 FoundLHS, FoundRHS) ||
5545 // ~x < ~y --> x > y
5546 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5547 getNotSCEV(FoundRHS),
5548 getNotSCEV(FoundLHS));
5549}
5550
5551/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005552/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005553/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005554bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005555ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5556 const SCEV *LHS, const SCEV *RHS,
5557 const SCEV *FoundLHS,
5558 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005559 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005560 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5561 case ICmpInst::ICMP_EQ:
5562 case ICmpInst::ICMP_NE:
5563 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5564 return true;
5565 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005566 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005567 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005568 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5569 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005570 return true;
5571 break;
5572 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005573 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005574 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5575 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005576 return true;
5577 break;
5578 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005579 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005580 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5581 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005582 return true;
5583 break;
5584 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005585 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005586 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5587 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005588 return true;
5589 break;
5590 }
5591
5592 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005593}
5594
Dan Gohman51f53b72009-06-21 23:46:38 +00005595/// getBECount - Subtract the end and start values and divide by the step,
5596/// rounding up, to get the number of times the backedge is executed. Return
5597/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005598const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005599 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005600 const SCEV *Step,
5601 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005602 assert(!isKnownNegative(Step) &&
5603 "This code doesn't handle negative strides yet!");
5604
Dan Gohman51f53b72009-06-21 23:46:38 +00005605 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005606 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005607 const SCEV *Diff = getMinusSCEV(End, Start);
5608 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005609
5610 // Add an adjustment to the difference between End and Start so that
5611 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005612 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005613
Dan Gohman1f96e672009-09-17 18:05:20 +00005614 if (!NoWrap) {
5615 // Check Add for unsigned overflow.
5616 // TODO: More sophisticated things could be done here.
5617 const Type *WideTy = IntegerType::get(getContext(),
5618 getTypeSizeInBits(Ty) + 1);
5619 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5620 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5621 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5622 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5623 return getCouldNotCompute();
5624 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005625
5626 return getUDivExpr(Add, Step);
5627}
5628
Chris Lattnerdb25de42005-08-15 23:33:51 +00005629/// HowManyLessThans - Return the number of times a backedge containing the
5630/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005631/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005632ScalarEvolution::BackedgeTakenInfo
5633ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5634 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005635 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005636 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005637
Dan Gohman35738ac2009-05-04 22:30:44 +00005638 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005639 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005640 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005641
Dan Gohman1f96e672009-09-17 18:05:20 +00005642 // Check to see if we have a flag which makes analysis easy.
5643 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5644 AddRec->hasNoUnsignedWrap();
5645
Chris Lattnerdb25de42005-08-15 23:33:51 +00005646 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005647 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005648 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005649
Dan Gohman52fddd32010-01-26 04:40:18 +00005650 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005651 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005652 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005653 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005654 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005655 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005656 // value and past the maximum value for its type in a single step.
5657 // Note that it's not sufficient to check NoWrap here, because even
5658 // though the value after a wrap is undefined, it's not undefined
5659 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005660 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005661 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005662 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005663 if (isSigned) {
5664 APInt Max = APInt::getSignedMaxValue(BitWidth);
5665 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5666 .slt(getSignedRange(RHS).getSignedMax()))
5667 return getCouldNotCompute();
5668 } else {
5669 APInt Max = APInt::getMaxValue(BitWidth);
5670 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5671 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5672 return getCouldNotCompute();
5673 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005674 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005675 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005676 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005677
Dan Gohmana1af7572009-04-30 20:47:05 +00005678 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5679 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5680 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005681 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005682
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005683 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005684 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005685
Dan Gohmana1af7572009-04-30 20:47:05 +00005686 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005687 const SCEV *MinStart = getConstant(isSigned ?
5688 getSignedRange(Start).getSignedMin() :
5689 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005690
Dan Gohmana1af7572009-04-30 20:47:05 +00005691 // If we know that the condition is true in order to enter the loop,
5692 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005693 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5694 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005695 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005696 if (!isLoopEntryGuardedByCond(L,
5697 isSigned ? ICmpInst::ICMP_SLT :
5698 ICmpInst::ICMP_ULT,
5699 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005700 End = isSigned ? getSMaxExpr(RHS, Start)
5701 : getUMaxExpr(RHS, Start);
5702
5703 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005704 const SCEV *MaxEnd = getConstant(isSigned ?
5705 getSignedRange(End).getSignedMax() :
5706 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005707
Dan Gohman52fddd32010-01-26 04:40:18 +00005708 // If MaxEnd is within a step of the maximum integer value in its type,
5709 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005710 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005711 // compute the correct value.
5712 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005713 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005714 MaxEnd = isSigned ?
5715 getSMinExpr(MaxEnd,
5716 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5717 StepMinusOne)) :
5718 getUMinExpr(MaxEnd,
5719 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5720 StepMinusOne));
5721
Dan Gohmana1af7572009-04-30 20:47:05 +00005722 // Finally, we subtract these two values and divide, rounding up, to get
5723 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005724 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005725
5726 // The maximum backedge count is similar, except using the minimum start
5727 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005728 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005729
5730 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005731 }
5732
Dan Gohman1c343752009-06-27 21:21:31 +00005733 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005734}
5735
Chris Lattner53e677a2004-04-02 20:23:17 +00005736/// getNumIterationsInRange - Return the number of iterations of this loop that
5737/// produce values in the specified constant range. Another way of looking at
5738/// this is that it returns the first iteration number where the value is not in
5739/// the condition, thus computing the exit count. If the iteration count can't
5740/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005741const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005742 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005743 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005744 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005745
5746 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005747 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005748 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005749 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005750 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005751 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005752 if (const SCEVAddRecExpr *ShiftedAddRec =
5753 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005754 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005755 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005756 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005757 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005758 }
5759
5760 // The only time we can solve this is when we have all constant indices.
5761 // Otherwise, we cannot determine the overflow conditions.
5762 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5763 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005764 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005765
5766
5767 // Okay at this point we know that all elements of the chrec are constants and
5768 // that the start element is zero.
5769
5770 // First check to see if the range contains zero. If not, the first
5771 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005772 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005773 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005774 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005775
Chris Lattner53e677a2004-04-02 20:23:17 +00005776 if (isAffine()) {
5777 // If this is an affine expression then we have this situation:
5778 // Solve {0,+,A} in Range === Ax in Range
5779
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005780 // We know that zero is in the range. If A is positive then we know that
5781 // the upper value of the range must be the first possible exit value.
5782 // If A is negative then the lower of the range is the last possible loop
5783 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005784 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005785 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5786 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005787
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005788 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005789 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005790 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005791
5792 // Evaluate at the exit value. If we really did fall out of the valid
5793 // range, then we computed our trip count, otherwise wrap around or other
5794 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005795 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005796 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005797 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005798
5799 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005800 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005801 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005802 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005803 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005804 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005805 } else if (isQuadratic()) {
5806 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5807 // quadratic equation to solve it. To do this, we must frame our problem in
5808 // terms of figuring out when zero is crossed, instead of when
5809 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005810 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005811 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005812 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005813
5814 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005815 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005816 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005817 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5818 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005819 if (R1) {
5820 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005821 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005822 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005823 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005824 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005825 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005826
Chris Lattner53e677a2004-04-02 20:23:17 +00005827 // Make sure the root is not off by one. The returned iteration should
5828 // not be in the range, but the previous one should be. When solving
5829 // for "X*X < 5", for example, we should not return a root of 2.
5830 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005831 R1->getValue(),
5832 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005833 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005834 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005835 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005836 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005837
Dan Gohman246b2562007-10-22 18:31:58 +00005838 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005839 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005840 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005841 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005842 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005843
Chris Lattner53e677a2004-04-02 20:23:17 +00005844 // If R1 was not in the range, then it is a good return value. Make
5845 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005846 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005847 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005848 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005849 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005850 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005851 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005852 }
5853 }
5854 }
5855
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005856 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005857}
5858
5859
5860
5861//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005862// SCEVCallbackVH Class Implementation
5863//===----------------------------------------------------------------------===//
5864
Dan Gohman1959b752009-05-19 19:22:47 +00005865void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005866 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005867 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5868 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005869 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005870 // this now dangles!
5871}
5872
Dan Gohman81f91212010-07-28 01:09:07 +00005873void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005874 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005875
Dan Gohman35738ac2009-05-04 22:30:44 +00005876 // Forget all the expressions associated with users of the old value,
5877 // so that future queries will recompute the expressions using the new
5878 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005879 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005880 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005881 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005882 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5883 UI != UE; ++UI)
5884 Worklist.push_back(*UI);
5885 while (!Worklist.empty()) {
5886 User *U = Worklist.pop_back_val();
5887 // Deleting the Old value will cause this to dangle. Postpone
5888 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005889 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005890 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005891 if (!Visited.insert(U))
5892 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005893 if (PHINode *PN = dyn_cast<PHINode>(U))
5894 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005895 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005896 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5897 UI != UE; ++UI)
5898 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005899 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005900 // Delete the Old value.
5901 if (PHINode *PN = dyn_cast<PHINode>(Old))
5902 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005903 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005904 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005905}
5906
Dan Gohman1959b752009-05-19 19:22:47 +00005907ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005908 : CallbackVH(V), SE(se) {}
5909
5910//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005911// ScalarEvolution Class Implementation
5912//===----------------------------------------------------------------------===//
5913
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005914ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005915 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005916 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005917}
5918
Chris Lattner53e677a2004-04-02 20:23:17 +00005919bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005920 this->F = &F;
5921 LI = &getAnalysis<LoopInfo>();
5922 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005923 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005924 return false;
5925}
5926
5927void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005928 // Iterate through all the SCEVUnknown instances and call their
5929 // destructors, so that they release their references to their values.
5930 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5931 U->~SCEVUnknown();
5932 FirstUnknown = 0;
5933
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005934 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005935 BackedgeTakenCounts.clear();
5936 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005937 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005938 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005939 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005940 UnsignedRanges.clear();
5941 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005942 UniqueSCEVs.clear();
5943 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005944}
5945
5946void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5947 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005948 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005949 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005950}
5951
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005952bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005953 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005954}
5955
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005956static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005957 const Loop *L) {
5958 // Print all inner loops first
5959 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5960 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005961
Dan Gohman30733292010-01-09 18:17:45 +00005962 OS << "Loop ";
5963 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5964 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005965
Dan Gohman5d984912009-12-18 01:14:11 +00005966 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005967 L->getExitBlocks(ExitBlocks);
5968 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005969 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005970
Dan Gohman46bdfb02009-02-24 18:55:53 +00005971 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5972 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005973 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005974 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005975 }
5976
Dan Gohman30733292010-01-09 18:17:45 +00005977 OS << "\n"
5978 "Loop ";
5979 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5980 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005981
5982 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5983 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5984 } else {
5985 OS << "Unpredictable max backedge-taken count. ";
5986 }
5987
5988 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005989}
5990
Dan Gohman5d984912009-12-18 01:14:11 +00005991void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005992 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005993 // out SCEV values of all instructions that are interesting. Doing
5994 // this potentially causes it to create new SCEV objects though,
5995 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005996 // observable from outside the class though, so casting away the
5997 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005998 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005999
Dan Gohman30733292010-01-09 18:17:45 +00006000 OS << "Classifying expressions for: ";
6001 WriteAsOperand(OS, F, /*PrintType=*/false);
6002 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006003 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006004 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006005 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006006 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006007 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006008 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006009
Dan Gohman0c689c52009-06-19 17:49:54 +00006010 const Loop *L = LI->getLoopFor((*I).getParent());
6011
Dan Gohman0bba49c2009-07-07 17:06:11 +00006012 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006013 if (AtUse != SV) {
6014 OS << " --> ";
6015 AtUse->print(OS);
6016 }
6017
6018 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006019 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006020 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006021 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006022 OS << "<<Unknown>>";
6023 } else {
6024 OS << *ExitValue;
6025 }
6026 }
6027
Chris Lattner53e677a2004-04-02 20:23:17 +00006028 OS << "\n";
6029 }
6030
Dan Gohman30733292010-01-09 18:17:45 +00006031 OS << "Determining loop execution counts for: ";
6032 WriteAsOperand(OS, F, /*PrintType=*/false);
6033 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006034 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6035 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006036}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006037
Dan Gohman714b5292010-11-17 23:21:44 +00006038ScalarEvolution::LoopDisposition
6039ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6040 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6041 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6042 Values.insert(std::make_pair(L, LoopVariant));
6043 if (!Pair.second)
6044 return Pair.first->second;
6045
6046 LoopDisposition D = computeLoopDisposition(S, L);
6047 return LoopDispositions[S][L] = D;
6048}
6049
6050ScalarEvolution::LoopDisposition
6051ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006052 switch (S->getSCEVType()) {
6053 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006054 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006055 case scTruncate:
6056 case scZeroExtend:
6057 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006058 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006059 case scAddRecExpr: {
6060 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6061
Dan Gohman714b5292010-11-17 23:21:44 +00006062 // If L is the addrec's loop, it's computable.
6063 if (AR->getLoop() == L)
6064 return LoopComputable;
6065
Dan Gohman17ead4f2010-11-17 21:23:15 +00006066 // Add recurrences are never invariant in the function-body (null loop).
6067 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006068 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006069
6070 // This recurrence is variant w.r.t. L if L contains AR's loop.
6071 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006072 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006073
6074 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6075 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006076 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006077
6078 // This recurrence is variant w.r.t. L if any of its operands
6079 // are variant.
6080 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6081 I != E; ++I)
6082 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006083 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006084
6085 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006086 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006087 }
6088 case scAddExpr:
6089 case scMulExpr:
6090 case scUMaxExpr:
6091 case scSMaxExpr: {
6092 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006093 bool HasVarying = false;
6094 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6095 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006096 LoopDisposition D = getLoopDisposition(*I, L);
6097 if (D == LoopVariant)
6098 return LoopVariant;
6099 if (D == LoopComputable)
6100 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006101 }
Dan Gohman714b5292010-11-17 23:21:44 +00006102 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006103 }
6104 case scUDivExpr: {
6105 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006106 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6107 if (LD == LoopVariant)
6108 return LoopVariant;
6109 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6110 if (RD == LoopVariant)
6111 return LoopVariant;
6112 return (LD == LoopInvariant && RD == LoopInvariant) ?
6113 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006114 }
6115 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006116 // All non-instruction values are loop invariant. All instructions are loop
6117 // invariant if they are not contained in the specified loop.
6118 // Instructions are never considered invariant in the function body
6119 // (null loop) because they are defined within the "loop".
6120 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6121 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6122 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006123 case scCouldNotCompute:
6124 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006125 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006126 default: break;
6127 }
6128 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006129 return LoopVariant;
6130}
6131
6132bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6133 return getLoopDisposition(S, L) == LoopInvariant;
6134}
6135
6136bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6137 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006138}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006139
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006140ScalarEvolution::BlockDisposition
6141ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6142 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6143 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6144 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6145 if (!Pair.second)
6146 return Pair.first->second;
6147
6148 BlockDisposition D = computeBlockDisposition(S, BB);
6149 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006150}
6151
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006152ScalarEvolution::BlockDisposition
6153ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006154 switch (S->getSCEVType()) {
6155 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006156 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006157 case scTruncate:
6158 case scZeroExtend:
6159 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006160 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006161 case scAddRecExpr: {
6162 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006163 // to test for proper dominance too, because the instruction which
6164 // produces the addrec's value is a PHI, and a PHI effectively properly
6165 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006166 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6167 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006168 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006169 }
6170 // FALL THROUGH into SCEVNAryExpr handling.
6171 case scAddExpr:
6172 case scMulExpr:
6173 case scUMaxExpr:
6174 case scSMaxExpr: {
6175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006176 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006178 I != E; ++I) {
6179 BlockDisposition D = getBlockDisposition(*I, BB);
6180 if (D == DoesNotDominateBlock)
6181 return DoesNotDominateBlock;
6182 if (D == DominatesBlock)
6183 Proper = false;
6184 }
6185 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006186 }
6187 case scUDivExpr: {
6188 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006189 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6190 BlockDisposition LD = getBlockDisposition(LHS, BB);
6191 if (LD == DoesNotDominateBlock)
6192 return DoesNotDominateBlock;
6193 BlockDisposition RD = getBlockDisposition(RHS, BB);
6194 if (RD == DoesNotDominateBlock)
6195 return DoesNotDominateBlock;
6196 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6197 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006198 }
6199 case scUnknown:
6200 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006201 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6202 if (I->getParent() == BB)
6203 return DominatesBlock;
6204 if (DT->properlyDominates(I->getParent(), BB))
6205 return ProperlyDominatesBlock;
6206 return DoesNotDominateBlock;
6207 }
6208 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006209 case scCouldNotCompute:
6210 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006211 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006212 default: break;
6213 }
6214 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006215 return DoesNotDominateBlock;
6216}
6217
6218bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6219 return getBlockDisposition(S, BB) >= DominatesBlock;
6220}
6221
6222bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6223 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006224}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006225
6226bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6227 switch (S->getSCEVType()) {
6228 case scConstant:
6229 return false;
6230 case scTruncate:
6231 case scZeroExtend:
6232 case scSignExtend: {
6233 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6234 const SCEV *CastOp = Cast->getOperand();
6235 return Op == CastOp || hasOperand(CastOp, Op);
6236 }
6237 case scAddRecExpr:
6238 case scAddExpr:
6239 case scMulExpr:
6240 case scUMaxExpr:
6241 case scSMaxExpr: {
6242 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6243 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6244 I != E; ++I) {
6245 const SCEV *NAryOp = *I;
6246 if (NAryOp == Op || hasOperand(NAryOp, Op))
6247 return true;
6248 }
6249 return false;
6250 }
6251 case scUDivExpr: {
6252 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6253 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6254 return LHS == Op || hasOperand(LHS, Op) ||
6255 RHS == Op || hasOperand(RHS, Op);
6256 }
6257 case scUnknown:
6258 return false;
6259 case scCouldNotCompute:
6260 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6261 return false;
6262 default: break;
6263 }
6264 llvm_unreachable("Unknown SCEV kind!");
6265 return false;
6266}
Dan Gohman56a75682010-11-17 23:28:48 +00006267
6268void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6269 ValuesAtScopes.erase(S);
6270 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006271 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006272 UnsignedRanges.erase(S);
6273 SignedRanges.erase(S);
6274}