blob: 0f2afb2096c9888ec54fd3d1a0ac6a885f7f38d6 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
831 }
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
834 }
835
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000836 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837 // eliminate all the truncates.
838 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839 SmallVector<const SCEV *, 4> Operands;
840 bool hasTrunc = false;
841 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843 hasTrunc = isa<SCEVTruncateExpr>(S);
844 Operands.push_back(S);
845 }
846 if (!hasTrunc)
847 return getMulExpr(Operands, false, false);
848 }
849
Dan Gohman6864db62009-06-18 16:24:47 +0000850 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000852 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000856 }
857
Dan Gohmanf53462d2010-07-15 20:02:11 +0000858 // As a special case, fold trunc(undef) to undef. We don't want to
859 // know too much about SCEVUnknowns, but this special case is handy
860 // and harmless.
861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862 if (isa<UndefValue>(U->getValue()))
863 return getSCEV(UndefValue::get(Ty));
864
Dan Gohman420ab912010-06-25 18:47:08 +0000865 // The cast wasn't folded; create an explicit cast node. We can reuse
866 // the existing insert position since if we get here, we won't have
867 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000870 UniqueSCEVs.InsertNode(S, IP);
871 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000872}
873
Dan Gohman0bba49c2009-07-07 17:06:11 +0000874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000875 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000877 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000878 assert(isSCEVable(Ty) &&
879 "This is not a conversion to a SCEVable type!");
880 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000881
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000882 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884 return getConstant(
885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000887
Dan Gohman20900ca2009-04-22 16:20:48 +0000888 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000890 return getZeroExtendExpr(SZ->getOperand(), Ty);
891
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000892 // Before doing any expensive analysis, check to see if we've already
893 // computed a SCEV for this Op and Ty.
894 FoldingSetNodeID ID;
895 ID.AddInteger(scZeroExtend);
896 ID.AddPointer(Op);
897 ID.AddPointer(Ty);
898 void *IP = 0;
899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
Nick Lewycky630d85a2011-01-23 06:20:19 +0000901 // zext(trunc(x)) --> zext(x) or x or trunc(x)
902 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
903 // It's possible the bits taken off by the truncate were all zero bits. If
904 // so, we should be able to simplify this further.
905 const SCEV *X = ST->getOperand();
906 ConstantRange CR = getUnsignedRange(X);
907 unsigned OrigBits = CR.getBitWidth();
908 unsigned TruncBits = getTypeSizeInBits(ST->getType());
909 unsigned NewBits = getTypeSizeInBits(Ty);
910 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
911 CR.zextOrTrunc(NewBits))) {
912 if (NewBits > OrigBits) return getZeroExtendExpr(X, Ty);
913 if (NewBits < OrigBits) return getTruncateExpr(X, Ty);
914 return X;
915 }
916 }
917
Dan Gohman01ecca22009-04-27 20:16:15 +0000918 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000919 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000920 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000921 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000922 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000923 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000924 const SCEV *Start = AR->getStart();
925 const SCEV *Step = AR->getStepRecurrence(*this);
926 unsigned BitWidth = getTypeSizeInBits(AR->getType());
927 const Loop *L = AR->getLoop();
928
Dan Gohmaneb490a72009-07-25 01:22:26 +0000929 // If we have special knowledge that this addrec won't overflow,
930 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000931 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000932 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
933 getZeroExtendExpr(Step, Ty),
934 L);
935
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 // Check whether the backedge-taken count is SCEVCouldNotCompute.
937 // Note that this serves two purposes: It filters out loops that are
938 // simply not analyzable, and it covers the case where this code is
939 // being called from within backedge-taken count analysis, such that
940 // attempting to ask for the backedge-taken count would likely result
941 // in infinite recursion. In the later case, the analysis code will
942 // cope with a conservative value, and it will take care to purge
943 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000944 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000945 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000946 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000947 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000948
949 // Check whether the backedge-taken count can be losslessly casted to
950 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000951 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000952 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000953 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000954 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
955 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000956 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000957 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000958 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000959 const SCEV *Add = getAddExpr(Start, ZMul);
960 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000961 getAddExpr(getZeroExtendExpr(Start, WideTy),
962 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
963 getZeroExtendExpr(Step, WideTy)));
964 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000965 // Return the expression with the addrec on the outside.
966 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
967 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000968 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000969
970 // Similar to above, only this time treat the step value as signed.
971 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000972 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000973 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000974 OperandExtendedAdd =
975 getAddExpr(getZeroExtendExpr(Start, WideTy),
976 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
977 getSignExtendExpr(Step, WideTy)));
978 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000979 // Return the expression with the addrec on the outside.
980 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000982 L);
983 }
984
985 // If the backedge is guarded by a comparison with the pre-inc value
986 // the addrec is safe. Also, if the entry is guarded by a comparison
987 // with the start value and the backedge is guarded by a comparison
988 // with the post-inc value, the addrec is safe.
989 if (isKnownPositive(Step)) {
990 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
991 getUnsignedRange(Step).getUnsignedMax());
992 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000993 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000994 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
995 AR->getPostIncExpr(*this), N)))
996 // Return the expression with the addrec on the outside.
997 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
998 getZeroExtendExpr(Step, Ty),
999 L);
1000 } else if (isKnownNegative(Step)) {
1001 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1002 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001003 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1004 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1006 AR->getPostIncExpr(*this), N)))
1007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getSignExtendExpr(Step, Ty),
1010 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001011 }
1012 }
1013 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001014
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001015 // The cast wasn't folded; create an explicit cast node.
1016 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001018 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1019 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001020 UniqueSCEVs.InsertNode(S, IP);
1021 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001022}
1023
Dan Gohman0bba49c2009-07-07 17:06:11 +00001024const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001025 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001026 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001027 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001028 assert(isSCEVable(Ty) &&
1029 "This is not a conversion to a SCEVable type!");
1030 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001031
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001032 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001033 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1034 return getConstant(
1035 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1036 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001037
Dan Gohman20900ca2009-04-22 16:20:48 +00001038 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001039 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001040 return getSignExtendExpr(SS->getOperand(), Ty);
1041
Nick Lewycky73f565e2011-01-19 15:56:12 +00001042 // sext(zext(x)) --> zext(x)
1043 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1044 return getZeroExtendExpr(SZ->getOperand(), Ty);
1045
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001046 // Before doing any expensive analysis, check to see if we've already
1047 // computed a SCEV for this Op and Ty.
1048 FoldingSetNodeID ID;
1049 ID.AddInteger(scSignExtend);
1050 ID.AddPointer(Op);
1051 ID.AddPointer(Ty);
1052 void *IP = 0;
1053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1054
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001055 // If the input value is provably positive, build a zext instead.
1056 if (isKnownNonNegative(Op))
1057 return getZeroExtendExpr(Op, Ty);
1058
Nick Lewycky630d85a2011-01-23 06:20:19 +00001059 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1060 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1061 // It's possible the bits taken off by the truncate were all sign bits. If
1062 // so, we should be able to simplify this further.
1063 const SCEV *X = ST->getOperand();
1064 ConstantRange CR = getSignedRange(X);
1065 unsigned OrigBits = CR.getBitWidth();
1066 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1067 unsigned NewBits = getTypeSizeInBits(Ty);
1068 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1069 CR.sextOrTrunc(NewBits))) {
1070 if (NewBits > OrigBits) return getSignExtendExpr(X, Ty);
1071 if (NewBits < OrigBits) return getTruncateExpr(X, Ty);
1072 return X;
1073 }
1074 }
1075
Dan Gohman01ecca22009-04-27 20:16:15 +00001076 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001077 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001078 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001079 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001080 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001081 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001082 const SCEV *Start = AR->getStart();
1083 const SCEV *Step = AR->getStepRecurrence(*this);
1084 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1085 const Loop *L = AR->getLoop();
1086
Dan Gohmaneb490a72009-07-25 01:22:26 +00001087 // If we have special knowledge that this addrec won't overflow,
1088 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001089 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001090 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1091 getSignExtendExpr(Step, Ty),
1092 L);
1093
Dan Gohman01ecca22009-04-27 20:16:15 +00001094 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1095 // Note that this serves two purposes: It filters out loops that are
1096 // simply not analyzable, and it covers the case where this code is
1097 // being called from within backedge-taken count analysis, such that
1098 // attempting to ask for the backedge-taken count would likely result
1099 // in infinite recursion. In the later case, the analysis code will
1100 // cope with a conservative value, and it will take care to purge
1101 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001102 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001103 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001104 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001105 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001106
1107 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001108 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001109 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001110 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001111 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001112 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1113 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001114 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001115 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001116 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001117 const SCEV *Add = getAddExpr(Start, SMul);
1118 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001119 getAddExpr(getSignExtendExpr(Start, WideTy),
1120 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1121 getSignExtendExpr(Step, WideTy)));
1122 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001123 // Return the expression with the addrec on the outside.
1124 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001126 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001127
1128 // Similar to above, only this time treat the step value as unsigned.
1129 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001130 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001131 Add = getAddExpr(Start, UMul);
1132 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001133 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001134 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1135 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001136 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001137 // Return the expression with the addrec on the outside.
1138 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1139 getZeroExtendExpr(Step, Ty),
1140 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001141 }
1142
1143 // If the backedge is guarded by a comparison with the pre-inc value
1144 // the addrec is safe. Also, if the entry is guarded by a comparison
1145 // with the start value and the backedge is guarded by a comparison
1146 // with the post-inc value, the addrec is safe.
1147 if (isKnownPositive(Step)) {
1148 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1149 getSignedRange(Step).getSignedMax());
1150 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001151 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001152 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1153 AR->getPostIncExpr(*this), N)))
1154 // Return the expression with the addrec on the outside.
1155 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1156 getSignExtendExpr(Step, Ty),
1157 L);
1158 } else if (isKnownNegative(Step)) {
1159 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1160 getSignedRange(Step).getSignedMin());
1161 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001162 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001163 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1164 AR->getPostIncExpr(*this), N)))
1165 // Return the expression with the addrec on the outside.
1166 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1167 getSignExtendExpr(Step, Ty),
1168 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001169 }
1170 }
1171 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001172
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001173 // The cast wasn't folded; create an explicit cast node.
1174 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001176 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1177 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001178 UniqueSCEVs.InsertNode(S, IP);
1179 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001180}
1181
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001182/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1183/// unspecified bits out to the given type.
1184///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001185const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001186 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001187 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1188 "This is not an extending conversion!");
1189 assert(isSCEVable(Ty) &&
1190 "This is not a conversion to a SCEVable type!");
1191 Ty = getEffectiveSCEVType(Ty);
1192
1193 // Sign-extend negative constants.
1194 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1195 if (SC->getValue()->getValue().isNegative())
1196 return getSignExtendExpr(Op, Ty);
1197
1198 // Peel off a truncate cast.
1199 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001200 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001201 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1202 return getAnyExtendExpr(NewOp, Ty);
1203 return getTruncateOrNoop(NewOp, Ty);
1204 }
1205
1206 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001207 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001208 if (!isa<SCEVZeroExtendExpr>(ZExt))
1209 return ZExt;
1210
1211 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001212 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001213 if (!isa<SCEVSignExtendExpr>(SExt))
1214 return SExt;
1215
Dan Gohmana10756e2010-01-21 02:09:26 +00001216 // Force the cast to be folded into the operands of an addrec.
1217 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1218 SmallVector<const SCEV *, 4> Ops;
1219 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1220 I != E; ++I)
1221 Ops.push_back(getAnyExtendExpr(*I, Ty));
1222 return getAddRecExpr(Ops, AR->getLoop());
1223 }
1224
Dan Gohmanf53462d2010-07-15 20:02:11 +00001225 // As a special case, fold anyext(undef) to undef. We don't want to
1226 // know too much about SCEVUnknowns, but this special case is handy
1227 // and harmless.
1228 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1229 if (isa<UndefValue>(U->getValue()))
1230 return getSCEV(UndefValue::get(Ty));
1231
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001232 // If the expression is obviously signed, use the sext cast value.
1233 if (isa<SCEVSMaxExpr>(Op))
1234 return SExt;
1235
1236 // Absent any other information, use the zext cast value.
1237 return ZExt;
1238}
1239
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001240/// CollectAddOperandsWithScales - Process the given Ops list, which is
1241/// a list of operands to be added under the given scale, update the given
1242/// map. This is a helper function for getAddRecExpr. As an example of
1243/// what it does, given a sequence of operands that would form an add
1244/// expression like this:
1245///
1246/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1247///
1248/// where A and B are constants, update the map with these values:
1249///
1250/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1251///
1252/// and add 13 + A*B*29 to AccumulatedConstant.
1253/// This will allow getAddRecExpr to produce this:
1254///
1255/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1256///
1257/// This form often exposes folding opportunities that are hidden in
1258/// the original operand list.
1259///
1260/// Return true iff it appears that any interesting folding opportunities
1261/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1262/// the common case where no interesting opportunities are present, and
1263/// is also used as a check to avoid infinite recursion.
1264///
1265static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001266CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1267 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001268 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001269 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001270 const APInt &Scale,
1271 ScalarEvolution &SE) {
1272 bool Interesting = false;
1273
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001274 // Iterate over the add operands. They are sorted, with constants first.
1275 unsigned i = 0;
1276 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1277 ++i;
1278 // Pull a buried constant out to the outside.
1279 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1280 Interesting = true;
1281 AccumulatedConstant += Scale * C->getValue()->getValue();
1282 }
1283
1284 // Next comes everything else. We're especially interested in multiplies
1285 // here, but they're in the middle, so just visit the rest with one loop.
1286 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001287 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1288 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1289 APInt NewScale =
1290 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1291 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1292 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001293 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001294 Interesting |=
1295 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001296 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001297 NewScale, SE);
1298 } else {
1299 // A multiplication of a constant with some other value. Update
1300 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001301 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1302 const SCEV *Key = SE.getMulExpr(MulOps);
1303 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001304 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001305 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001306 NewOps.push_back(Pair.first->first);
1307 } else {
1308 Pair.first->second += NewScale;
1309 // The map already had an entry for this value, which may indicate
1310 // a folding opportunity.
1311 Interesting = true;
1312 }
1313 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001314 } else {
1315 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001316 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001317 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001318 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001319 NewOps.push_back(Pair.first->first);
1320 } else {
1321 Pair.first->second += Scale;
1322 // The map already had an entry for this value, which may indicate
1323 // a folding opportunity.
1324 Interesting = true;
1325 }
1326 }
1327 }
1328
1329 return Interesting;
1330}
1331
1332namespace {
1333 struct APIntCompare {
1334 bool operator()(const APInt &LHS, const APInt &RHS) const {
1335 return LHS.ult(RHS);
1336 }
1337 };
1338}
1339
Dan Gohman6c0866c2009-05-24 23:45:28 +00001340/// getAddExpr - Get a canonical add expression, or something simpler if
1341/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001342const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1343 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001344 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001345 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001346#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001347 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001348 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001349 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001350 "SCEVAddExpr operand types don't match!");
1351#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001352
Dan Gohmana10756e2010-01-21 02:09:26 +00001353 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1354 if (!HasNUW && HasNSW) {
1355 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001356 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1357 E = Ops.end(); I != E; ++I)
1358 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001359 All = false;
1360 break;
1361 }
1362 if (All) HasNUW = true;
1363 }
1364
Chris Lattner53e677a2004-04-02 20:23:17 +00001365 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001366 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001367
1368 // If there are any constants, fold them together.
1369 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001370 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001371 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001372 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001373 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001374 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001375 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1376 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001377 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001378 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001379 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001380 }
1381
1382 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001383 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001384 Ops.erase(Ops.begin());
1385 --Idx;
1386 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001387
Dan Gohmanbca091d2010-04-12 23:08:18 +00001388 if (Ops.size() == 1) return Ops[0];
1389 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001390
Dan Gohman68ff7762010-08-27 21:39:59 +00001391 // Okay, check to see if the same value occurs in the operand list more than
1392 // once. If so, merge them together into an multiply expression. Since we
1393 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001394 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001395 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001396 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001397 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001398 // Scan ahead to count how many equal operands there are.
1399 unsigned Count = 2;
1400 while (i+Count != e && Ops[i+Count] == Ops[i])
1401 ++Count;
1402 // Merge the values into a multiply.
1403 const SCEV *Scale = getConstant(Ty, Count);
1404 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1405 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001406 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001407 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001408 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001409 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001410 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001411 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001412 if (FoundMatch)
1413 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001414
Dan Gohman728c7f32009-05-08 21:03:19 +00001415 // Check for truncates. If all the operands are truncated from the same
1416 // type, see if factoring out the truncate would permit the result to be
1417 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1418 // if the contents of the resulting outer trunc fold to something simple.
1419 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1420 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1421 const Type *DstType = Trunc->getType();
1422 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001424 bool Ok = true;
1425 // Check all the operands to see if they can be represented in the
1426 // source type of the truncate.
1427 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1428 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1429 if (T->getOperand()->getType() != SrcType) {
1430 Ok = false;
1431 break;
1432 }
1433 LargeOps.push_back(T->getOperand());
1434 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001435 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001436 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001437 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001438 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1439 if (const SCEVTruncateExpr *T =
1440 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1441 if (T->getOperand()->getType() != SrcType) {
1442 Ok = false;
1443 break;
1444 }
1445 LargeMulOps.push_back(T->getOperand());
1446 } else if (const SCEVConstant *C =
1447 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001448 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001449 } else {
1450 Ok = false;
1451 break;
1452 }
1453 }
1454 if (Ok)
1455 LargeOps.push_back(getMulExpr(LargeMulOps));
1456 } else {
1457 Ok = false;
1458 break;
1459 }
1460 }
1461 if (Ok) {
1462 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001463 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001464 // If it folds to something simple, use it. Otherwise, don't.
1465 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1466 return getTruncateExpr(Fold, DstType);
1467 }
1468 }
1469
1470 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1472 ++Idx;
1473
1474 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001475 if (Idx < Ops.size()) {
1476 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001477 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001478 // If we have an add, expand the add operands onto the end of the operands
1479 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001481 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001482 DeletedAdd = true;
1483 }
1484
1485 // If we deleted at least one add, we added operands to the end of the list,
1486 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001487 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001488 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001489 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001490 }
1491
1492 // Skip over the add expression until we get to a multiply.
1493 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1494 ++Idx;
1495
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001496 // Check to see if there are any folding opportunities present with
1497 // operands multiplied by constant values.
1498 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1499 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001500 DenseMap<const SCEV *, APInt> M;
1501 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001502 APInt AccumulatedConstant(BitWidth, 0);
1503 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001504 Ops.data(), Ops.size(),
1505 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001506 // Some interesting folding opportunity is present, so its worthwhile to
1507 // re-generate the operands list. Group the operands by constant scale,
1508 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001509 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001510 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001511 E = NewOps.end(); I != E; ++I)
1512 MulOpLists[M.find(*I)->second].push_back(*I);
1513 // Re-generate the operands list.
1514 Ops.clear();
1515 if (AccumulatedConstant != 0)
1516 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001517 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1518 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001519 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001520 Ops.push_back(getMulExpr(getConstant(I->first),
1521 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001522 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001523 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001524 if (Ops.size() == 1)
1525 return Ops[0];
1526 return getAddExpr(Ops);
1527 }
1528 }
1529
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 // If we are adding something to a multiply expression, make sure the
1531 // something is not already an operand of the multiply. If so, merge it into
1532 // the multiply.
1533 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001534 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001536 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001537 if (isa<SCEVConstant>(MulOpSCEV))
1538 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001540 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001542 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001543 if (Mul->getNumOperands() != 2) {
1544 // If the multiply has more than two operands, we must get the
1545 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001546 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1547 Mul->op_begin()+MulOp);
1548 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001549 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001550 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001551 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001552 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001553 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001554 if (Ops.size() == 2) return OuterMul;
1555 if (AddOp < Idx) {
1556 Ops.erase(Ops.begin()+AddOp);
1557 Ops.erase(Ops.begin()+Idx-1);
1558 } else {
1559 Ops.erase(Ops.begin()+Idx);
1560 Ops.erase(Ops.begin()+AddOp-1);
1561 }
1562 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001563 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001565
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 // Check this multiply against other multiplies being added together.
1567 for (unsigned OtherMulIdx = Idx+1;
1568 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1569 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001570 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001571 // If MulOp occurs in OtherMul, we can fold the two multiplies
1572 // together.
1573 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1574 OMulOp != e; ++OMulOp)
1575 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1576 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001577 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001578 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001579 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001580 Mul->op_begin()+MulOp);
1581 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001582 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001583 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001584 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001586 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001587 OtherMul->op_begin()+OMulOp);
1588 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001589 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001590 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001591 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1592 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001594 Ops.erase(Ops.begin()+Idx);
1595 Ops.erase(Ops.begin()+OtherMulIdx-1);
1596 Ops.push_back(OuterMul);
1597 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 }
1599 }
1600 }
1601 }
1602
1603 // If there are any add recurrences in the operands list, see if any other
1604 // added values are loop invariant. If so, we can fold them into the
1605 // recurrence.
1606 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1607 ++Idx;
1608
1609 // Scan over all recurrences, trying to fold loop invariants into them.
1610 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1611 // Scan all of the other operands to this add and add them to the vector if
1612 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001613 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001614 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001615 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001616 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001617 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 LIOps.push_back(Ops[i]);
1619 Ops.erase(Ops.begin()+i);
1620 --i; --e;
1621 }
1622
1623 // If we found some loop invariants, fold them into the recurrence.
1624 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001625 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001626 LIOps.push_back(AddRec->getStart());
1627
Dan Gohman0bba49c2009-07-07 17:06:11 +00001628 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001629 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001630 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001631
Dan Gohmanb9f96512010-06-30 07:16:37 +00001632 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001633 // outer add and the inner addrec are guaranteed to have no overflow.
1634 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1635 HasNUW && AddRec->hasNoUnsignedWrap(),
1636 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001637
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 // If all of the other operands were loop invariant, we are done.
1639 if (Ops.size() == 1) return NewRec;
1640
1641 // Otherwise, add the folded AddRec by the non-liv parts.
1642 for (unsigned i = 0;; ++i)
1643 if (Ops[i] == AddRec) {
1644 Ops[i] = NewRec;
1645 break;
1646 }
Dan Gohman246b2562007-10-22 18:31:58 +00001647 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 }
1649
1650 // Okay, if there weren't any loop invariants to be folded, check to see if
1651 // there are multiple AddRec's with the same loop induction variable being
1652 // added together. If so, we can fold them.
1653 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001654 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1655 ++OtherIdx)
1656 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1657 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1658 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1659 AddRec->op_end());
1660 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1661 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001662 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001663 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001664 if (OtherAddRec->getLoop() == AddRecLoop) {
1665 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1666 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001667 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001668 AddRecOps.append(OtherAddRec->op_begin()+i,
1669 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001670 break;
1671 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001672 AddRecOps[i] = getAddExpr(AddRecOps[i],
1673 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001674 }
1675 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 }
Dan Gohman32527152010-08-27 20:45:56 +00001677 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1678 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 }
1680
1681 // Otherwise couldn't fold anything into this recurrence. Move onto the
1682 // next one.
1683 }
1684
1685 // Okay, it looks like we really DO need an add expr. Check to see if we
1686 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001687 FoldingSetNodeID ID;
1688 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001689 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1690 ID.AddPointer(Ops[i]);
1691 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001692 SCEVAddExpr *S =
1693 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1694 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001695 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1696 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001697 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1698 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001699 UniqueSCEVs.InsertNode(S, IP);
1700 }
Dan Gohman3645b012009-10-09 00:10:36 +00001701 if (HasNUW) S->setHasNoUnsignedWrap(true);
1702 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001703 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001704}
1705
Dan Gohman6c0866c2009-05-24 23:45:28 +00001706/// getMulExpr - Get a canonical multiply expression, or something simpler if
1707/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001708const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1709 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001711 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001712#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001713 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001714 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001715 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001716 "SCEVMulExpr operand types don't match!");
1717#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001718
Dan Gohmana10756e2010-01-21 02:09:26 +00001719 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1720 if (!HasNUW && HasNSW) {
1721 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001722 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1723 E = Ops.end(); I != E; ++I)
1724 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001725 All = false;
1726 break;
1727 }
1728 if (All) HasNUW = true;
1729 }
1730
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001732 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001733
1734 // If there are any constants, fold them together.
1735 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001736 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001737
1738 // C1*(C2+V) -> C1*C2 + C1*V
1739 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001740 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 if (Add->getNumOperands() == 2 &&
1742 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001743 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1744 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001745
Chris Lattner53e677a2004-04-02 20:23:17 +00001746 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001747 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001748 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001749 ConstantInt *Fold = ConstantInt::get(getContext(),
1750 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001751 RHSC->getValue()->getValue());
1752 Ops[0] = getConstant(Fold);
1753 Ops.erase(Ops.begin()+1); // Erase the folded element
1754 if (Ops.size() == 1) return Ops[0];
1755 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001756 }
1757
1758 // If we are left with a constant one being multiplied, strip it off.
1759 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1760 Ops.erase(Ops.begin());
1761 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001762 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 // If we have a multiply of zero, it will always be zero.
1764 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001765 } else if (Ops[0]->isAllOnesValue()) {
1766 // If we have a mul by -1 of an add, try distributing the -1 among the
1767 // add operands.
1768 if (Ops.size() == 2)
1769 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1770 SmallVector<const SCEV *, 4> NewOps;
1771 bool AnyFolded = false;
1772 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1773 I != E; ++I) {
1774 const SCEV *Mul = getMulExpr(Ops[0], *I);
1775 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1776 NewOps.push_back(Mul);
1777 }
1778 if (AnyFolded)
1779 return getAddExpr(NewOps);
1780 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001781 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001782
1783 if (Ops.size() == 1)
1784 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001785 }
1786
1787 // Skip over the add expression until we get to a multiply.
1788 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1789 ++Idx;
1790
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 // If there are mul operands inline them all into this expression.
1792 if (Idx < Ops.size()) {
1793 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001794 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001795 // If we have an mul, expand the mul operands onto the end of the operands
1796 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001798 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 DeletedMul = true;
1800 }
1801
1802 // If we deleted at least one mul, we added operands to the end of the list,
1803 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001804 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001805 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001806 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001807 }
1808
1809 // If there are any add recurrences in the operands list, see if any other
1810 // added values are loop invariant. If so, we can fold them into the
1811 // recurrence.
1812 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1813 ++Idx;
1814
1815 // Scan over all recurrences, trying to fold loop invariants into them.
1816 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1817 // Scan all of the other operands to this mul and add them to the vector if
1818 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001819 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001820 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001821 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001822 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001823 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001824 LIOps.push_back(Ops[i]);
1825 Ops.erase(Ops.begin()+i);
1826 --i; --e;
1827 }
1828
1829 // If we found some loop invariants, fold them into the recurrence.
1830 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001831 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001832 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001834 const SCEV *Scale = getMulExpr(LIOps);
1835 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1836 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001837
Dan Gohmanb9f96512010-06-30 07:16:37 +00001838 // Build the new addrec. Propagate the NUW and NSW flags if both the
1839 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001840 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001841 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001842 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001843
1844 // If all of the other operands were loop invariant, we are done.
1845 if (Ops.size() == 1) return NewRec;
1846
1847 // Otherwise, multiply the folded AddRec by the non-liv parts.
1848 for (unsigned i = 0;; ++i)
1849 if (Ops[i] == AddRec) {
1850 Ops[i] = NewRec;
1851 break;
1852 }
Dan Gohman246b2562007-10-22 18:31:58 +00001853 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001854 }
1855
1856 // Okay, if there weren't any loop invariants to be folded, check to see if
1857 // there are multiple AddRec's with the same loop induction variable being
1858 // multiplied together. If so, we can fold them.
1859 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001860 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1861 ++OtherIdx)
1862 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1863 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1864 // {A*C,+,F*D + G*B + B*D}<L>
1865 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1866 ++OtherIdx)
1867 if (const SCEVAddRecExpr *OtherAddRec =
1868 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1869 if (OtherAddRec->getLoop() == AddRecLoop) {
1870 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1871 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1872 const SCEV *B = F->getStepRecurrence(*this);
1873 const SCEV *D = G->getStepRecurrence(*this);
1874 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1875 getMulExpr(G, B),
1876 getMulExpr(B, D));
1877 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1878 F->getLoop());
1879 if (Ops.size() == 2) return NewAddRec;
1880 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1881 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1882 }
1883 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001884 }
1885
1886 // Otherwise couldn't fold anything into this recurrence. Move onto the
1887 // next one.
1888 }
1889
1890 // Okay, it looks like we really DO need an mul expr. Check to see if we
1891 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001892 FoldingSetNodeID ID;
1893 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001894 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1895 ID.AddPointer(Ops[i]);
1896 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001897 SCEVMulExpr *S =
1898 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1899 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001900 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1901 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001902 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1903 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001904 UniqueSCEVs.InsertNode(S, IP);
1905 }
Dan Gohman3645b012009-10-09 00:10:36 +00001906 if (HasNUW) S->setHasNoUnsignedWrap(true);
1907 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001908 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001909}
1910
Andreas Bolka8a11c982009-08-07 22:55:26 +00001911/// getUDivExpr - Get a canonical unsigned division expression, or something
1912/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001913const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1914 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001915 assert(getEffectiveSCEVType(LHS->getType()) ==
1916 getEffectiveSCEVType(RHS->getType()) &&
1917 "SCEVUDivExpr operand types don't match!");
1918
Dan Gohman622ed672009-05-04 22:02:23 +00001919 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001920 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001921 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001922 // If the denominator is zero, the result of the udiv is undefined. Don't
1923 // try to analyze it, because the resolution chosen here may differ from
1924 // the resolution chosen in other parts of the compiler.
1925 if (!RHSC->getValue()->isZero()) {
1926 // Determine if the division can be folded into the operands of
1927 // its operands.
1928 // TODO: Generalize this to non-constants by using known-bits information.
1929 const Type *Ty = LHS->getType();
1930 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001931 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001932 // For non-power-of-two values, effectively round the value up to the
1933 // nearest power of two.
1934 if (!RHSC->getValue()->getValue().isPowerOf2())
1935 ++MaxShiftAmt;
1936 const IntegerType *ExtTy =
1937 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1938 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1939 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1940 if (const SCEVConstant *Step =
1941 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1942 if (!Step->getValue()->getValue()
1943 .urem(RHSC->getValue()->getValue()) &&
1944 getZeroExtendExpr(AR, ExtTy) ==
1945 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1946 getZeroExtendExpr(Step, ExtTy),
1947 AR->getLoop())) {
1948 SmallVector<const SCEV *, 4> Operands;
1949 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1950 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1951 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001952 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001953 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1954 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1955 SmallVector<const SCEV *, 4> Operands;
1956 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1957 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1958 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1959 // Find an operand that's safely divisible.
1960 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1961 const SCEV *Op = M->getOperand(i);
1962 const SCEV *Div = getUDivExpr(Op, RHSC);
1963 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1964 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1965 M->op_end());
1966 Operands[i] = Div;
1967 return getMulExpr(Operands);
1968 }
1969 }
Dan Gohman185cf032009-05-08 20:18:49 +00001970 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001971 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1972 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1973 SmallVector<const SCEV *, 4> Operands;
1974 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1975 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1976 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1977 Operands.clear();
1978 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1979 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1980 if (isa<SCEVUDivExpr>(Op) ||
1981 getMulExpr(Op, RHS) != A->getOperand(i))
1982 break;
1983 Operands.push_back(Op);
1984 }
1985 if (Operands.size() == A->getNumOperands())
1986 return getAddExpr(Operands);
1987 }
1988 }
Dan Gohman185cf032009-05-08 20:18:49 +00001989
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001990 // Fold if both operands are constant.
1991 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1992 Constant *LHSCV = LHSC->getValue();
1993 Constant *RHSCV = RHSC->getValue();
1994 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1995 RHSCV)));
1996 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 }
1998 }
1999
Dan Gohman1c343752009-06-27 21:21:31 +00002000 FoldingSetNodeID ID;
2001 ID.AddInteger(scUDivExpr);
2002 ID.AddPointer(LHS);
2003 ID.AddPointer(RHS);
2004 void *IP = 0;
2005 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002006 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2007 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002008 UniqueSCEVs.InsertNode(S, IP);
2009 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002010}
2011
2012
Dan Gohman6c0866c2009-05-24 23:45:28 +00002013/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2014/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002015const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002016 const SCEV *Step, const Loop *L,
2017 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002018 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002019 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002020 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002021 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002022 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002023 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002024 }
2025
2026 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002027 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002028}
2029
Dan Gohman6c0866c2009-05-24 23:45:28 +00002030/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2031/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002032const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002033ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002034 const Loop *L,
2035 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002036 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002037#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002038 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002039 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002040 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002041 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002042 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002043 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002044 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002045#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002046
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002047 if (Operands.back()->isZero()) {
2048 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002049 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002050 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002051
Dan Gohmanbc028532010-02-19 18:49:22 +00002052 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2053 // use that information to infer NUW and NSW flags. However, computing a
2054 // BE count requires calling getAddRecExpr, so we may not yet have a
2055 // meaningful BE count at this point (and if we don't, we'd be stuck
2056 // with a SCEVCouldNotCompute as the cached BE count).
2057
Dan Gohmana10756e2010-01-21 02:09:26 +00002058 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2059 if (!HasNUW && HasNSW) {
2060 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002061 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2062 E = Operands.end(); I != E; ++I)
2063 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002064 All = false;
2065 break;
2066 }
2067 if (All) HasNUW = true;
2068 }
2069
Dan Gohmand9cc7492008-08-08 18:33:12 +00002070 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002071 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002072 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002073 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002074 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002075 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002076 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002077 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002078 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002079 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002080 // AddRecs require their operands be loop-invariant with respect to their
2081 // loops. Don't perform this transformation if it would break this
2082 // requirement.
2083 bool AllInvariant = true;
2084 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002085 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002086 AllInvariant = false;
2087 break;
2088 }
2089 if (AllInvariant) {
2090 NestedOperands[0] = getAddRecExpr(Operands, L);
2091 AllInvariant = true;
2092 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002093 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002094 AllInvariant = false;
2095 break;
2096 }
2097 if (AllInvariant)
2098 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002099 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002100 }
2101 // Reset Operands to its original state.
2102 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002103 }
2104 }
2105
Dan Gohman67847532010-01-19 22:27:22 +00002106 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2107 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002108 FoldingSetNodeID ID;
2109 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002110 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2111 ID.AddPointer(Operands[i]);
2112 ID.AddPointer(L);
2113 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002114 SCEVAddRecExpr *S =
2115 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2116 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002117 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2118 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002119 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2120 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002121 UniqueSCEVs.InsertNode(S, IP);
2122 }
Dan Gohman3645b012009-10-09 00:10:36 +00002123 if (HasNUW) S->setHasNoUnsignedWrap(true);
2124 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002125 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002126}
2127
Dan Gohman9311ef62009-06-24 14:49:00 +00002128const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2129 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002130 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002131 Ops.push_back(LHS);
2132 Ops.push_back(RHS);
2133 return getSMaxExpr(Ops);
2134}
2135
Dan Gohman0bba49c2009-07-07 17:06:11 +00002136const SCEV *
2137ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138 assert(!Ops.empty() && "Cannot get empty smax!");
2139 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002140#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002141 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002142 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002143 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002144 "SCEVSMaxExpr operand types don't match!");
2145#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002146
2147 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002148 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002149
2150 // If there are any constants, fold them together.
2151 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002152 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002153 ++Idx;
2154 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002155 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002157 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002158 APIntOps::smax(LHSC->getValue()->getValue(),
2159 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002160 Ops[0] = getConstant(Fold);
2161 Ops.erase(Ops.begin()+1); // Erase the folded element
2162 if (Ops.size() == 1) return Ops[0];
2163 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002164 }
2165
Dan Gohmane5aceed2009-06-24 14:46:22 +00002166 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002167 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2168 Ops.erase(Ops.begin());
2169 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002170 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2171 // If we have an smax with a constant maximum-int, it will always be
2172 // maximum-int.
2173 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002174 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002175
Dan Gohman3ab13122010-04-13 16:49:23 +00002176 if (Ops.size() == 1) return Ops[0];
2177 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002178
2179 // Find the first SMax
2180 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2181 ++Idx;
2182
2183 // Check to see if one of the operands is an SMax. If so, expand its operands
2184 // onto our operand list, and recurse to simplify.
2185 if (Idx < Ops.size()) {
2186 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002187 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002188 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002189 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002190 DeletedSMax = true;
2191 }
2192
2193 if (DeletedSMax)
2194 return getSMaxExpr(Ops);
2195 }
2196
2197 // Okay, check to see if the same value occurs in the operand list twice. If
2198 // so, delete one. Since we sorted the list, these values are required to
2199 // be adjacent.
2200 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002201 // X smax Y smax Y --> X smax Y
2202 // X smax Y --> X, if X is always greater than Y
2203 if (Ops[i] == Ops[i+1] ||
2204 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2205 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2206 --i; --e;
2207 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002208 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2209 --i; --e;
2210 }
2211
2212 if (Ops.size() == 1) return Ops[0];
2213
2214 assert(!Ops.empty() && "Reduced smax down to nothing!");
2215
Nick Lewycky3e630762008-02-20 06:48:22 +00002216 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002217 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002218 FoldingSetNodeID ID;
2219 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002220 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2221 ID.AddPointer(Ops[i]);
2222 void *IP = 0;
2223 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002224 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2225 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002226 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2227 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002228 UniqueSCEVs.InsertNode(S, IP);
2229 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002230}
2231
Dan Gohman9311ef62009-06-24 14:49:00 +00002232const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2233 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002234 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002235 Ops.push_back(LHS);
2236 Ops.push_back(RHS);
2237 return getUMaxExpr(Ops);
2238}
2239
Dan Gohman0bba49c2009-07-07 17:06:11 +00002240const SCEV *
2241ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002242 assert(!Ops.empty() && "Cannot get empty umax!");
2243 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002244#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002245 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002246 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002247 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002248 "SCEVUMaxExpr operand types don't match!");
2249#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002250
2251 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002252 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002253
2254 // If there are any constants, fold them together.
2255 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002256 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002257 ++Idx;
2258 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002259 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002260 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002261 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002262 APIntOps::umax(LHSC->getValue()->getValue(),
2263 RHSC->getValue()->getValue()));
2264 Ops[0] = getConstant(Fold);
2265 Ops.erase(Ops.begin()+1); // Erase the folded element
2266 if (Ops.size() == 1) return Ops[0];
2267 LHSC = cast<SCEVConstant>(Ops[0]);
2268 }
2269
Dan Gohmane5aceed2009-06-24 14:46:22 +00002270 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002271 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2272 Ops.erase(Ops.begin());
2273 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002274 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2275 // If we have an umax with a constant maximum-int, it will always be
2276 // maximum-int.
2277 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002278 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002279
Dan Gohman3ab13122010-04-13 16:49:23 +00002280 if (Ops.size() == 1) return Ops[0];
2281 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002282
2283 // Find the first UMax
2284 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2285 ++Idx;
2286
2287 // Check to see if one of the operands is a UMax. If so, expand its operands
2288 // onto our operand list, and recurse to simplify.
2289 if (Idx < Ops.size()) {
2290 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002291 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002292 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002293 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002294 DeletedUMax = true;
2295 }
2296
2297 if (DeletedUMax)
2298 return getUMaxExpr(Ops);
2299 }
2300
2301 // Okay, check to see if the same value occurs in the operand list twice. If
2302 // so, delete one. Since we sorted the list, these values are required to
2303 // be adjacent.
2304 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002305 // X umax Y umax Y --> X umax Y
2306 // X umax Y --> X, if X is always greater than Y
2307 if (Ops[i] == Ops[i+1] ||
2308 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2309 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2310 --i; --e;
2311 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002312 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2313 --i; --e;
2314 }
2315
2316 if (Ops.size() == 1) return Ops[0];
2317
2318 assert(!Ops.empty() && "Reduced umax down to nothing!");
2319
2320 // Okay, it looks like we really DO need a umax expr. Check to see if we
2321 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002322 FoldingSetNodeID ID;
2323 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002324 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2325 ID.AddPointer(Ops[i]);
2326 void *IP = 0;
2327 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002328 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2329 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002330 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2331 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002332 UniqueSCEVs.InsertNode(S, IP);
2333 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002334}
2335
Dan Gohman9311ef62009-06-24 14:49:00 +00002336const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2337 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002338 // ~smax(~x, ~y) == smin(x, y).
2339 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2340}
2341
Dan Gohman9311ef62009-06-24 14:49:00 +00002342const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2343 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002344 // ~umax(~x, ~y) == umin(x, y)
2345 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2346}
2347
Dan Gohman4f8eea82010-02-01 18:27:38 +00002348const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002349 // If we have TargetData, we can bypass creating a target-independent
2350 // constant expression and then folding it back into a ConstantInt.
2351 // This is just a compile-time optimization.
2352 if (TD)
2353 return getConstant(TD->getIntPtrType(getContext()),
2354 TD->getTypeAllocSize(AllocTy));
2355
Dan Gohman4f8eea82010-02-01 18:27:38 +00002356 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002358 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2359 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002360 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2361 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2362}
2363
2364const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2365 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2366 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002367 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2368 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002369 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2370 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2371}
2372
2373const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2374 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002375 // If we have TargetData, we can bypass creating a target-independent
2376 // constant expression and then folding it back into a ConstantInt.
2377 // This is just a compile-time optimization.
2378 if (TD)
2379 return getConstant(TD->getIntPtrType(getContext()),
2380 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2381
Dan Gohman0f5efe52010-01-28 02:15:55 +00002382 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002384 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2385 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002386 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002387 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002388}
2389
Dan Gohman4f8eea82010-02-01 18:27:38 +00002390const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2391 Constant *FieldNo) {
2392 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002393 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002394 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2395 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002396 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002397 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002398}
2399
Dan Gohman0bba49c2009-07-07 17:06:11 +00002400const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002401 // Don't attempt to do anything other than create a SCEVUnknown object
2402 // here. createSCEV only calls getUnknown after checking for all other
2403 // interesting possibilities, and any other code that calls getUnknown
2404 // is doing so in order to hide a value from SCEV canonicalization.
2405
Dan Gohman1c343752009-06-27 21:21:31 +00002406 FoldingSetNodeID ID;
2407 ID.AddInteger(scUnknown);
2408 ID.AddPointer(V);
2409 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002410 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2411 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2412 "Stale SCEVUnknown in uniquing map!");
2413 return S;
2414 }
2415 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2416 FirstUnknown);
2417 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002418 UniqueSCEVs.InsertNode(S, IP);
2419 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002420}
2421
Chris Lattner53e677a2004-04-02 20:23:17 +00002422//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002423// Basic SCEV Analysis and PHI Idiom Recognition Code
2424//
2425
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002426/// isSCEVable - Test if values of the given type are analyzable within
2427/// the SCEV framework. This primarily includes integer types, and it
2428/// can optionally include pointer types if the ScalarEvolution class
2429/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002430bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002431 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002432 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002433}
2434
2435/// getTypeSizeInBits - Return the size in bits of the specified type,
2436/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002437uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002438 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2439
2440 // If we have a TargetData, use it!
2441 if (TD)
2442 return TD->getTypeSizeInBits(Ty);
2443
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002444 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002445 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002446 return Ty->getPrimitiveSizeInBits();
2447
2448 // The only other support type is pointer. Without TargetData, conservatively
2449 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002450 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002451 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002452}
2453
2454/// getEffectiveSCEVType - Return a type with the same bitwidth as
2455/// the given type and which represents how SCEV will treat the given
2456/// type, for which isSCEVable must return true. For pointer types,
2457/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002458const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002459 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2460
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002461 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002462 return Ty;
2463
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002464 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002465 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002466 if (TD) return TD->getIntPtrType(getContext());
2467
2468 // Without TargetData, conservatively assume pointers are 64-bit.
2469 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002470}
Chris Lattner53e677a2004-04-02 20:23:17 +00002471
Dan Gohman0bba49c2009-07-07 17:06:11 +00002472const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002473 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002474}
2475
Chris Lattner53e677a2004-04-02 20:23:17 +00002476/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2477/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002478const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002479 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002480
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002481 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2482 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002484
2485 // The process of creating a SCEV for V may have caused other SCEVs
2486 // to have been created, so it's necessary to insert the new entry
2487 // from scratch, rather than trying to remember the insert position
2488 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002489 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002490 return S;
2491}
2492
Dan Gohman2d1be872009-04-16 03:18:22 +00002493/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2494///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002495const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002496 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002497 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002498 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002499
2500 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002501 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002502 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002503 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002504}
2505
2506/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002507const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002508 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002509 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002510 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002511
2512 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002513 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002514 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002515 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002516 return getMinusSCEV(AllOnes, V);
2517}
2518
Chris Lattner6038a632011-01-11 17:11:59 +00002519/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2520/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2521/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002522const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2523 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002524 // Fast path: X - X --> 0.
2525 if (LHS == RHS)
2526 return getConstant(LHS->getType(), 0);
2527
Dan Gohman2d1be872009-04-16 03:18:22 +00002528 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002529 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002530}
2531
2532/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2533/// input value to the specified type. If the type must be extended, it is zero
2534/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002535const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002536ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002537 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002538 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2539 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002540 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002541 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002542 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002543 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002544 return getTruncateExpr(V, Ty);
2545 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002546}
2547
2548/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2549/// input value to the specified type. If the type must be extended, it is sign
2550/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002551const SCEV *
2552ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002553 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002554 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002555 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2556 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002557 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002559 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002560 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002561 return getTruncateExpr(V, Ty);
2562 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002563}
2564
Dan Gohman467c4302009-05-13 03:46:30 +00002565/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2566/// input value to the specified type. If the type must be extended, it is zero
2567/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002568const SCEV *
2569ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002570 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002571 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2572 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002573 "Cannot noop or zero extend with non-integer arguments!");
2574 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2575 "getNoopOrZeroExtend cannot truncate!");
2576 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2577 return V; // No conversion
2578 return getZeroExtendExpr(V, Ty);
2579}
2580
2581/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2582/// input value to the specified type. If the type must be extended, it is sign
2583/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002584const SCEV *
2585ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002586 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002587 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2588 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002589 "Cannot noop or sign extend with non-integer arguments!");
2590 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2591 "getNoopOrSignExtend cannot truncate!");
2592 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2593 return V; // No conversion
2594 return getSignExtendExpr(V, Ty);
2595}
2596
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002597/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2598/// the input value to the specified type. If the type must be extended,
2599/// it is extended with unspecified bits. The conversion must not be
2600/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002601const SCEV *
2602ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002603 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002604 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2605 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002606 "Cannot noop or any extend with non-integer arguments!");
2607 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2608 "getNoopOrAnyExtend cannot truncate!");
2609 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2610 return V; // No conversion
2611 return getAnyExtendExpr(V, Ty);
2612}
2613
Dan Gohman467c4302009-05-13 03:46:30 +00002614/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2615/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002616const SCEV *
2617ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002618 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002619 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2620 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002621 "Cannot truncate or noop with non-integer arguments!");
2622 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2623 "getTruncateOrNoop cannot extend!");
2624 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2625 return V; // No conversion
2626 return getTruncateExpr(V, Ty);
2627}
2628
Dan Gohmana334aa72009-06-22 00:31:57 +00002629/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2630/// the types using zero-extension, and then perform a umax operation
2631/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002632const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2633 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002634 const SCEV *PromotedLHS = LHS;
2635 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002636
2637 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2638 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2639 else
2640 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2641
2642 return getUMaxExpr(PromotedLHS, PromotedRHS);
2643}
2644
Dan Gohmanc9759e82009-06-22 15:03:27 +00002645/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2646/// the types using zero-extension, and then perform a umin operation
2647/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002648const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2649 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002650 const SCEV *PromotedLHS = LHS;
2651 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002652
2653 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2654 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2655 else
2656 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2657
2658 return getUMinExpr(PromotedLHS, PromotedRHS);
2659}
2660
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002661/// PushDefUseChildren - Push users of the given Instruction
2662/// onto the given Worklist.
2663static void
2664PushDefUseChildren(Instruction *I,
2665 SmallVectorImpl<Instruction *> &Worklist) {
2666 // Push the def-use children onto the Worklist stack.
2667 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2668 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002669 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002670}
2671
2672/// ForgetSymbolicValue - This looks up computed SCEV values for all
2673/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002674/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002675/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002676void
Dan Gohman85669632010-02-25 06:57:05 +00002677ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002678 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002679 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002680
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002681 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002682 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002683 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002684 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002685 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002686
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002687 ValueExprMapType::iterator It =
2688 ValueExprMap.find(static_cast<Value *>(I));
2689 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002690 const SCEV *Old = It->second;
2691
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002692 // Short-circuit the def-use traversal if the symbolic name
2693 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002694 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002695 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002696
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002697 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002698 // structure, it's a PHI that's in the progress of being computed
2699 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2700 // additional loop trip count information isn't going to change anything.
2701 // In the second case, createNodeForPHI will perform the necessary
2702 // updates on its own when it gets to that point. In the third, we do
2703 // want to forget the SCEVUnknown.
2704 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002705 !isa<SCEVUnknown>(Old) ||
2706 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002707 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002708 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002709 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002710 }
2711
2712 PushDefUseChildren(I, Worklist);
2713 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002714}
Chris Lattner53e677a2004-04-02 20:23:17 +00002715
2716/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2717/// a loop header, making it a potential recurrence, or it doesn't.
2718///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002719const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002720 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2721 if (L->getHeader() == PN->getParent()) {
2722 // The loop may have multiple entrances or multiple exits; we can analyze
2723 // this phi as an addrec if it has a unique entry value and a unique
2724 // backedge value.
2725 Value *BEValueV = 0, *StartValueV = 0;
2726 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2727 Value *V = PN->getIncomingValue(i);
2728 if (L->contains(PN->getIncomingBlock(i))) {
2729 if (!BEValueV) {
2730 BEValueV = V;
2731 } else if (BEValueV != V) {
2732 BEValueV = 0;
2733 break;
2734 }
2735 } else if (!StartValueV) {
2736 StartValueV = V;
2737 } else if (StartValueV != V) {
2738 StartValueV = 0;
2739 break;
2740 }
2741 }
2742 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002743 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002744 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002745 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002746 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002747 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002748
2749 // Using this symbolic name for the PHI, analyze the value coming around
2750 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002751 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002752
2753 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2754 // has a special value for the first iteration of the loop.
2755
2756 // If the value coming around the backedge is an add with the symbolic
2757 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002758 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002759 // If there is a single occurrence of the symbolic value, replace it
2760 // with a recurrence.
2761 unsigned FoundIndex = Add->getNumOperands();
2762 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2763 if (Add->getOperand(i) == SymbolicName)
2764 if (FoundIndex == e) {
2765 FoundIndex = i;
2766 break;
2767 }
2768
2769 if (FoundIndex != Add->getNumOperands()) {
2770 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002771 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002772 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2773 if (i != FoundIndex)
2774 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002775 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002776
2777 // This is not a valid addrec if the step amount is varying each
2778 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002779 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002780 (isa<SCEVAddRecExpr>(Accum) &&
2781 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002782 bool HasNUW = false;
2783 bool HasNSW = false;
2784
2785 // If the increment doesn't overflow, then neither the addrec nor
2786 // the post-increment will overflow.
2787 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2788 if (OBO->hasNoUnsignedWrap())
2789 HasNUW = true;
2790 if (OBO->hasNoSignedWrap())
2791 HasNSW = true;
Chris Lattner96518702011-01-11 06:44:41 +00002792 } else if (const GEPOperator *GEP =
2793 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner6d5a2412011-01-09 02:28:48 +00002794 // If the increment is a GEP, then we know it won't perform an
2795 // unsigned overflow, because the address space cannot be
2796 // wrapped around.
Chris Lattner96518702011-01-11 06:44:41 +00002797 HasNUW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002798 }
2799
Dan Gohman27dead42010-04-12 07:49:36 +00002800 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002801 const SCEV *PHISCEV =
2802 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002803
Dan Gohmana10756e2010-01-21 02:09:26 +00002804 // Since the no-wrap flags are on the increment, they apply to the
2805 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002806 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002807 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2808 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002809
2810 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002811 // to be symbolic. We now need to go back and purge all of the
2812 // entries for the scalars that use the symbolic expression.
2813 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002814 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002815 return PHISCEV;
2816 }
2817 }
Dan Gohman622ed672009-05-04 22:02:23 +00002818 } else if (const SCEVAddRecExpr *AddRec =
2819 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002820 // Otherwise, this could be a loop like this:
2821 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2822 // In this case, j = {1,+,1} and BEValue is j.
2823 // Because the other in-value of i (0) fits the evolution of BEValue
2824 // i really is an addrec evolution.
2825 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002826 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002827
2828 // If StartVal = j.start - j.stride, we can use StartVal as the
2829 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002830 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002831 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002832 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002833 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002834
2835 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002836 // to be symbolic. We now need to go back and purge all of the
2837 // entries for the scalars that use the symbolic expression.
2838 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002839 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002840 return PHISCEV;
2841 }
2842 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002843 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002844 }
Dan Gohman27dead42010-04-12 07:49:36 +00002845 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002846
Dan Gohman85669632010-02-25 06:57:05 +00002847 // If the PHI has a single incoming value, follow that value, unless the
2848 // PHI's incoming blocks are in a different loop, in which case doing so
2849 // risks breaking LCSSA form. Instcombine would normally zap these, but
2850 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002851 if (Value *V = SimplifyInstruction(PN, TD, DT))
2852 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002853 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002854
Chris Lattner53e677a2004-04-02 20:23:17 +00002855 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002856 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002857}
2858
Dan Gohman26466c02009-05-08 20:26:55 +00002859/// createNodeForGEP - Expand GEP instructions into add and multiply
2860/// operations. This allows them to be analyzed by regular SCEV code.
2861///
Dan Gohmand281ed22009-12-18 02:09:29 +00002862const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002863
Dan Gohmanb9f96512010-06-30 07:16:37 +00002864 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2865 // Add expression, because the Instruction may be guarded by control flow
2866 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002867 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002868
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002869 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002870 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002871 // Don't attempt to analyze GEPs over unsized objects.
2872 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2873 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002874 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002875 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002876 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002877 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002878 I != E; ++I) {
2879 Value *Index = *I;
2880 // Compute the (potentially symbolic) offset in bytes for this index.
2881 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2882 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002883 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002884 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2885
Dan Gohmanb9f96512010-06-30 07:16:37 +00002886 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002887 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002888 } else {
2889 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002890 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2891 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002892 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002893 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2894
Dan Gohmanb9f96512010-06-30 07:16:37 +00002895 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002896 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002897
2898 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002899 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002900 }
2901 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002902
2903 // Get the SCEV for the GEP base.
2904 const SCEV *BaseS = getSCEV(Base);
2905
Dan Gohmanb9f96512010-06-30 07:16:37 +00002906 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002907 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002908}
2909
Nick Lewycky83bb0052007-11-22 07:59:40 +00002910/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2911/// guaranteed to end in (at every loop iteration). It is, at the same time,
2912/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2913/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002914uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002915ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002916 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002917 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002918
Dan Gohman622ed672009-05-04 22:02:23 +00002919 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002920 return std::min(GetMinTrailingZeros(T->getOperand()),
2921 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002922
Dan Gohman622ed672009-05-04 22:02:23 +00002923 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002924 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2925 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2926 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002927 }
2928
Dan Gohman622ed672009-05-04 22:02:23 +00002929 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002930 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2931 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2932 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002933 }
2934
Dan Gohman622ed672009-05-04 22:02:23 +00002935 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002936 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002937 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002938 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002939 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002940 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002941 }
2942
Dan Gohman622ed672009-05-04 22:02:23 +00002943 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002944 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002945 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2946 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002947 for (unsigned i = 1, e = M->getNumOperands();
2948 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002949 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002950 BitWidth);
2951 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002952 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002953
Dan Gohman622ed672009-05-04 22:02:23 +00002954 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002955 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002956 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002957 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002958 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002959 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002960 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002961
Dan Gohman622ed672009-05-04 22:02:23 +00002962 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002963 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002965 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002966 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002967 return MinOpRes;
2968 }
2969
Dan Gohman622ed672009-05-04 22:02:23 +00002970 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002971 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002972 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002973 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002974 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002975 return MinOpRes;
2976 }
2977
Dan Gohman2c364ad2009-06-19 23:29:04 +00002978 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2979 // For a SCEVUnknown, ask ValueTracking.
2980 unsigned BitWidth = getTypeSizeInBits(U->getType());
2981 APInt Mask = APInt::getAllOnesValue(BitWidth);
2982 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2983 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2984 return Zeros.countTrailingOnes();
2985 }
2986
2987 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002988 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002989}
Chris Lattner53e677a2004-04-02 20:23:17 +00002990
Dan Gohman85b05a22009-07-13 21:35:55 +00002991/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2992///
2993ConstantRange
2994ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002995 // See if we've computed this range already.
2996 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2997 if (I != UnsignedRanges.end())
2998 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002999
3000 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003001 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003002
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003003 unsigned BitWidth = getTypeSizeInBits(S->getType());
3004 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3005
3006 // If the value has known zeros, the maximum unsigned value will have those
3007 // known zeros as well.
3008 uint32_t TZ = GetMinTrailingZeros(S);
3009 if (TZ != 0)
3010 ConservativeResult =
3011 ConstantRange(APInt::getMinValue(BitWidth),
3012 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3013
Dan Gohman85b05a22009-07-13 21:35:55 +00003014 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3015 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3016 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3017 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003018 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003019 }
3020
3021 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3022 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3023 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3024 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003025 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003026 }
3027
3028 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3029 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3030 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3031 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003032 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003033 }
3034
3035 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3036 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3037 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3038 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003039 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003040 }
3041
3042 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3043 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3044 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003045 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003046 }
3047
3048 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3049 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003050 return setUnsignedRange(ZExt,
3051 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003052 }
3053
3054 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3055 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003056 return setUnsignedRange(SExt,
3057 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003058 }
3059
3060 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3061 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003062 return setUnsignedRange(Trunc,
3063 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 }
3065
Dan Gohman85b05a22009-07-13 21:35:55 +00003066 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003067 // If there's no unsigned wrap, the value will never be less than its
3068 // initial value.
3069 if (AddRec->hasNoUnsignedWrap())
3070 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003071 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003072 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003073 ConservativeResult.intersectWith(
3074 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003075
3076 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003077 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003078 const Type *Ty = AddRec->getType();
3079 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003080 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3081 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3083
3084 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003085 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003086
3087 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003088 ConstantRange StepRange = getSignedRange(Step);
3089 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3090 ConstantRange EndRange =
3091 StartRange.add(MaxBECountRange.multiply(StepRange));
3092
3093 // Check for overflow. This must be done with ConstantRange arithmetic
3094 // because we could be called from within the ScalarEvolution overflow
3095 // checking code.
3096 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3097 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3098 ConstantRange ExtMaxBECountRange =
3099 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3100 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3101 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3102 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003103 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003104
Dan Gohman85b05a22009-07-13 21:35:55 +00003105 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3106 EndRange.getUnsignedMin());
3107 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3108 EndRange.getUnsignedMax());
3109 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003110 return setUnsignedRange(AddRec, ConservativeResult);
3111 return setUnsignedRange(AddRec,
3112 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 }
3114 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003115
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003116 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003117 }
3118
3119 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3120 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003121 APInt Mask = APInt::getAllOnesValue(BitWidth);
3122 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3123 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003124 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003125 return setUnsignedRange(U, ConservativeResult);
3126 return setUnsignedRange(U,
3127 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003128 }
3129
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003130 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003131}
3132
Dan Gohman85b05a22009-07-13 21:35:55 +00003133/// getSignedRange - Determine the signed range for a particular SCEV.
3134///
3135ConstantRange
3136ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003137 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3138 if (I != SignedRanges.end())
3139 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003140
Dan Gohman85b05a22009-07-13 21:35:55 +00003141 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003142 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003143
Dan Gohman52fddd32010-01-26 04:40:18 +00003144 unsigned BitWidth = getTypeSizeInBits(S->getType());
3145 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3146
3147 // If the value has known zeros, the maximum signed value will have those
3148 // known zeros as well.
3149 uint32_t TZ = GetMinTrailingZeros(S);
3150 if (TZ != 0)
3151 ConservativeResult =
3152 ConstantRange(APInt::getSignedMinValue(BitWidth),
3153 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3154
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3156 ConstantRange X = getSignedRange(Add->getOperand(0));
3157 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3158 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003159 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003160 }
3161
Dan Gohman85b05a22009-07-13 21:35:55 +00003162 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3163 ConstantRange X = getSignedRange(Mul->getOperand(0));
3164 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3165 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003166 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003167 }
3168
Dan Gohman85b05a22009-07-13 21:35:55 +00003169 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3170 ConstantRange X = getSignedRange(SMax->getOperand(0));
3171 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3172 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003173 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003174 }
Dan Gohman62849c02009-06-24 01:05:09 +00003175
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3177 ConstantRange X = getSignedRange(UMax->getOperand(0));
3178 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3179 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003180 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003181 }
Dan Gohman62849c02009-06-24 01:05:09 +00003182
Dan Gohman85b05a22009-07-13 21:35:55 +00003183 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3184 ConstantRange X = getSignedRange(UDiv->getLHS());
3185 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003186 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003187 }
Dan Gohman62849c02009-06-24 01:05:09 +00003188
Dan Gohman85b05a22009-07-13 21:35:55 +00003189 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3190 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003191 return setSignedRange(ZExt,
3192 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003193 }
3194
3195 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3196 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003197 return setSignedRange(SExt,
3198 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003199 }
3200
3201 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3202 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003203 return setSignedRange(Trunc,
3204 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003205 }
3206
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003208 // If there's no signed wrap, and all the operands have the same sign or
3209 // zero, the value won't ever change sign.
3210 if (AddRec->hasNoSignedWrap()) {
3211 bool AllNonNeg = true;
3212 bool AllNonPos = true;
3213 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3214 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3215 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3216 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003217 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003218 ConservativeResult = ConservativeResult.intersectWith(
3219 ConstantRange(APInt(BitWidth, 0),
3220 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003221 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003222 ConservativeResult = ConservativeResult.intersectWith(
3223 ConstantRange(APInt::getSignedMinValue(BitWidth),
3224 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003225 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003226
3227 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003228 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003229 const Type *Ty = AddRec->getType();
3230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003231 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3232 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003233 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3234
3235 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003236 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003237
3238 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003239 ConstantRange StepRange = getSignedRange(Step);
3240 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3241 ConstantRange EndRange =
3242 StartRange.add(MaxBECountRange.multiply(StepRange));
3243
3244 // Check for overflow. This must be done with ConstantRange arithmetic
3245 // because we could be called from within the ScalarEvolution overflow
3246 // checking code.
3247 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3248 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3249 ConstantRange ExtMaxBECountRange =
3250 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3251 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3252 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3253 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003254 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003255
Dan Gohman85b05a22009-07-13 21:35:55 +00003256 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3257 EndRange.getSignedMin());
3258 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3259 EndRange.getSignedMax());
3260 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003261 return setSignedRange(AddRec, ConservativeResult);
3262 return setSignedRange(AddRec,
3263 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003264 }
Dan Gohman62849c02009-06-24 01:05:09 +00003265 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003266
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003267 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003268 }
3269
Dan Gohman2c364ad2009-06-19 23:29:04 +00003270 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3271 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003272 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003273 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003274 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3275 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003276 return setSignedRange(U, ConservativeResult);
3277 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003278 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003279 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003280 }
3281
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003282 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003283}
3284
Chris Lattner53e677a2004-04-02 20:23:17 +00003285/// createSCEV - We know that there is no SCEV for the specified value.
3286/// Analyze the expression.
3287///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003288const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003289 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003290 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003291
Dan Gohman6c459a22008-06-22 19:56:46 +00003292 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003293 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003294 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003295
3296 // Don't attempt to analyze instructions in blocks that aren't
3297 // reachable. Such instructions don't matter, and they aren't required
3298 // to obey basic rules for definitions dominating uses which this
3299 // analysis depends on.
3300 if (!DT->isReachableFromEntry(I->getParent()))
3301 return getUnknown(V);
3302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003303 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003304 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3305 return getConstant(CI);
3306 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003307 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003308 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3309 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003310 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003311 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003312
Dan Gohmanca178902009-07-17 20:47:02 +00003313 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003314 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003315 case Instruction::Add: {
3316 // The simple thing to do would be to just call getSCEV on both operands
3317 // and call getAddExpr with the result. However if we're looking at a
3318 // bunch of things all added together, this can be quite inefficient,
3319 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3320 // Instead, gather up all the operands and make a single getAddExpr call.
3321 // LLVM IR canonical form means we need only traverse the left operands.
3322 SmallVector<const SCEV *, 4> AddOps;
3323 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003324 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3325 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3326 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3327 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003328 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003329 const SCEV *Op1 = getSCEV(U->getOperand(1));
3330 if (Opcode == Instruction::Sub)
3331 AddOps.push_back(getNegativeSCEV(Op1));
3332 else
3333 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003334 }
3335 AddOps.push_back(getSCEV(U->getOperand(0)));
3336 return getAddExpr(AddOps);
3337 }
3338 case Instruction::Mul: {
3339 // See the Add code above.
3340 SmallVector<const SCEV *, 4> MulOps;
3341 MulOps.push_back(getSCEV(U->getOperand(1)));
3342 for (Value *Op = U->getOperand(0);
3343 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3344 Op = U->getOperand(0)) {
3345 U = cast<Operator>(Op);
3346 MulOps.push_back(getSCEV(U->getOperand(1)));
3347 }
3348 MulOps.push_back(getSCEV(U->getOperand(0)));
3349 return getMulExpr(MulOps);
3350 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003351 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003352 return getUDivExpr(getSCEV(U->getOperand(0)),
3353 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003354 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003355 return getMinusSCEV(getSCEV(U->getOperand(0)),
3356 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003357 case Instruction::And:
3358 // For an expression like x&255 that merely masks off the high bits,
3359 // use zext(trunc(x)) as the SCEV expression.
3360 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003361 if (CI->isNullValue())
3362 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003363 if (CI->isAllOnesValue())
3364 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003365 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003366
3367 // Instcombine's ShrinkDemandedConstant may strip bits out of
3368 // constants, obscuring what would otherwise be a low-bits mask.
3369 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3370 // knew about to reconstruct a low-bits mask value.
3371 unsigned LZ = A.countLeadingZeros();
3372 unsigned BitWidth = A.getBitWidth();
3373 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3374 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3375 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3376
3377 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3378
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003379 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003380 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003381 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003382 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003383 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003384 }
3385 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003386
Dan Gohman6c459a22008-06-22 19:56:46 +00003387 case Instruction::Or:
3388 // If the RHS of the Or is a constant, we may have something like:
3389 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3390 // optimizations will transparently handle this case.
3391 //
3392 // In order for this transformation to be safe, the LHS must be of the
3393 // form X*(2^n) and the Or constant must be less than 2^n.
3394 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003395 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003396 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003397 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003398 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3399 // Build a plain add SCEV.
3400 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3401 // If the LHS of the add was an addrec and it has no-wrap flags,
3402 // transfer the no-wrap flags, since an or won't introduce a wrap.
3403 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3404 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3405 if (OldAR->hasNoUnsignedWrap())
3406 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3407 if (OldAR->hasNoSignedWrap())
3408 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3409 }
3410 return S;
3411 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003412 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003413 break;
3414 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003415 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003416 // If the RHS of the xor is a signbit, then this is just an add.
3417 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003418 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003419 return getAddExpr(getSCEV(U->getOperand(0)),
3420 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003421
3422 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003423 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003424 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003425
3426 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3427 // This is a variant of the check for xor with -1, and it handles
3428 // the case where instcombine has trimmed non-demanded bits out
3429 // of an xor with -1.
3430 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3431 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3432 if (BO->getOpcode() == Instruction::And &&
3433 LCI->getValue() == CI->getValue())
3434 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003435 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003436 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003437 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003438 const Type *Z0Ty = Z0->getType();
3439 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3440
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003441 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003442 // mask off the high bits. Complement the operand and
3443 // re-apply the zext.
3444 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3445 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3446
3447 // If C is a single bit, it may be in the sign-bit position
3448 // before the zero-extend. In this case, represent the xor
3449 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003450 APInt Trunc = CI->getValue().trunc(Z0TySize);
3451 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003452 Trunc.isSignBit())
3453 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3454 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003455 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003456 }
3457 break;
3458
3459 case Instruction::Shl:
3460 // Turn shift left of a constant amount into a multiply.
3461 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003462 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003463
3464 // If the shift count is not less than the bitwidth, the result of
3465 // the shift is undefined. Don't try to analyze it, because the
3466 // resolution chosen here may differ from the resolution chosen in
3467 // other parts of the compiler.
3468 if (SA->getValue().uge(BitWidth))
3469 break;
3470
Owen Andersoneed707b2009-07-24 23:12:02 +00003471 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003472 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003473 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003474 }
3475 break;
3476
Nick Lewycky01eaf802008-07-07 06:15:49 +00003477 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003478 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003479 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003480 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003481
3482 // If the shift count is not less than the bitwidth, the result of
3483 // the shift is undefined. Don't try to analyze it, because the
3484 // resolution chosen here may differ from the resolution chosen in
3485 // other parts of the compiler.
3486 if (SA->getValue().uge(BitWidth))
3487 break;
3488
Owen Andersoneed707b2009-07-24 23:12:02 +00003489 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003490 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003491 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003492 }
3493 break;
3494
Dan Gohman4ee29af2009-04-21 02:26:00 +00003495 case Instruction::AShr:
3496 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3497 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003498 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003499 if (L->getOpcode() == Instruction::Shl &&
3500 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003501 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3502
3503 // If the shift count is not less than the bitwidth, the result of
3504 // the shift is undefined. Don't try to analyze it, because the
3505 // resolution chosen here may differ from the resolution chosen in
3506 // other parts of the compiler.
3507 if (CI->getValue().uge(BitWidth))
3508 break;
3509
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003510 uint64_t Amt = BitWidth - CI->getZExtValue();
3511 if (Amt == BitWidth)
3512 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003513 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003514 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003515 IntegerType::get(getContext(),
3516 Amt)),
3517 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003518 }
3519 break;
3520
Dan Gohman6c459a22008-06-22 19:56:46 +00003521 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003522 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003523
3524 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003525 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003526
3527 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003528 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003529
3530 case Instruction::BitCast:
3531 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003532 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003533 return getSCEV(U->getOperand(0));
3534 break;
3535
Dan Gohman4f8eea82010-02-01 18:27:38 +00003536 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3537 // lead to pointer expressions which cannot safely be expanded to GEPs,
3538 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3539 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003540
Dan Gohman26466c02009-05-08 20:26:55 +00003541 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003542 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003543
Dan Gohman6c459a22008-06-22 19:56:46 +00003544 case Instruction::PHI:
3545 return createNodeForPHI(cast<PHINode>(U));
3546
3547 case Instruction::Select:
3548 // This could be a smax or umax that was lowered earlier.
3549 // Try to recover it.
3550 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3551 Value *LHS = ICI->getOperand(0);
3552 Value *RHS = ICI->getOperand(1);
3553 switch (ICI->getPredicate()) {
3554 case ICmpInst::ICMP_SLT:
3555 case ICmpInst::ICMP_SLE:
3556 std::swap(LHS, RHS);
3557 // fall through
3558 case ICmpInst::ICMP_SGT:
3559 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003560 // a >s b ? a+x : b+x -> smax(a, b)+x
3561 // a >s b ? b+x : a+x -> smin(a, b)+x
3562 if (LHS->getType() == U->getType()) {
3563 const SCEV *LS = getSCEV(LHS);
3564 const SCEV *RS = getSCEV(RHS);
3565 const SCEV *LA = getSCEV(U->getOperand(1));
3566 const SCEV *RA = getSCEV(U->getOperand(2));
3567 const SCEV *LDiff = getMinusSCEV(LA, LS);
3568 const SCEV *RDiff = getMinusSCEV(RA, RS);
3569 if (LDiff == RDiff)
3570 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3571 LDiff = getMinusSCEV(LA, RS);
3572 RDiff = getMinusSCEV(RA, LS);
3573 if (LDiff == RDiff)
3574 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3575 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003576 break;
3577 case ICmpInst::ICMP_ULT:
3578 case ICmpInst::ICMP_ULE:
3579 std::swap(LHS, RHS);
3580 // fall through
3581 case ICmpInst::ICMP_UGT:
3582 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003583 // a >u b ? a+x : b+x -> umax(a, b)+x
3584 // a >u b ? b+x : a+x -> umin(a, b)+x
3585 if (LHS->getType() == U->getType()) {
3586 const SCEV *LS = getSCEV(LHS);
3587 const SCEV *RS = getSCEV(RHS);
3588 const SCEV *LA = getSCEV(U->getOperand(1));
3589 const SCEV *RA = getSCEV(U->getOperand(2));
3590 const SCEV *LDiff = getMinusSCEV(LA, LS);
3591 const SCEV *RDiff = getMinusSCEV(RA, RS);
3592 if (LDiff == RDiff)
3593 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3594 LDiff = getMinusSCEV(LA, RS);
3595 RDiff = getMinusSCEV(RA, LS);
3596 if (LDiff == RDiff)
3597 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3598 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003599 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003600 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003601 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3602 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003603 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003604 cast<ConstantInt>(RHS)->isZero()) {
3605 const SCEV *One = getConstant(LHS->getType(), 1);
3606 const SCEV *LS = getSCEV(LHS);
3607 const SCEV *LA = getSCEV(U->getOperand(1));
3608 const SCEV *RA = getSCEV(U->getOperand(2));
3609 const SCEV *LDiff = getMinusSCEV(LA, LS);
3610 const SCEV *RDiff = getMinusSCEV(RA, One);
3611 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003612 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003613 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003614 break;
3615 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003616 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3617 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003618 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003619 cast<ConstantInt>(RHS)->isZero()) {
3620 const SCEV *One = getConstant(LHS->getType(), 1);
3621 const SCEV *LS = getSCEV(LHS);
3622 const SCEV *LA = getSCEV(U->getOperand(1));
3623 const SCEV *RA = getSCEV(U->getOperand(2));
3624 const SCEV *LDiff = getMinusSCEV(LA, One);
3625 const SCEV *RDiff = getMinusSCEV(RA, LS);
3626 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003627 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003628 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003629 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003630 default:
3631 break;
3632 }
3633 }
3634
3635 default: // We cannot analyze this expression.
3636 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003637 }
3638
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003639 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003640}
3641
3642
3643
3644//===----------------------------------------------------------------------===//
3645// Iteration Count Computation Code
3646//
3647
Dan Gohman46bdfb02009-02-24 18:55:53 +00003648/// getBackedgeTakenCount - If the specified loop has a predictable
3649/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3650/// object. The backedge-taken count is the number of times the loop header
3651/// will be branched to from within the loop. This is one less than the
3652/// trip count of the loop, since it doesn't count the first iteration,
3653/// when the header is branched to from outside the loop.
3654///
3655/// Note that it is not valid to call this method on a loop without a
3656/// loop-invariant backedge-taken count (see
3657/// hasLoopInvariantBackedgeTakenCount).
3658///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003659const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003660 return getBackedgeTakenInfo(L).Exact;
3661}
3662
3663/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3664/// return the least SCEV value that is known never to be less than the
3665/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003666const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003667 return getBackedgeTakenInfo(L).Max;
3668}
3669
Dan Gohman59ae6b92009-07-08 19:23:34 +00003670/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3671/// onto the given Worklist.
3672static void
3673PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3674 BasicBlock *Header = L->getHeader();
3675
3676 // Push all Loop-header PHIs onto the Worklist stack.
3677 for (BasicBlock::iterator I = Header->begin();
3678 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3679 Worklist.push_back(PN);
3680}
3681
Dan Gohmana1af7572009-04-30 20:47:05 +00003682const ScalarEvolution::BackedgeTakenInfo &
3683ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003684 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003685 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003686 // update the value. The temporary CouldNotCompute value tells SCEV
3687 // code elsewhere that it shouldn't attempt to request a new
3688 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003689 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003690 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003691 if (!Pair.second)
3692 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003693
Chris Lattnerf1859892011-01-09 02:16:18 +00003694 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3695 if (BECount.Exact != getCouldNotCompute()) {
3696 assert(isLoopInvariant(BECount.Exact, L) &&
3697 isLoopInvariant(BECount.Max, L) &&
3698 "Computed backedge-taken count isn't loop invariant for loop!");
3699 ++NumTripCountsComputed;
3700
3701 // Update the value in the map.
3702 Pair.first->second = BECount;
3703 } else {
3704 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003705 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003706 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003707 if (isa<PHINode>(L->getHeader()->begin()))
3708 // Only count loops that have phi nodes as not being computable.
3709 ++NumTripCountsNotComputed;
3710 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003711
Chris Lattnerf1859892011-01-09 02:16:18 +00003712 // Now that we know more about the trip count for this loop, forget any
3713 // existing SCEV values for PHI nodes in this loop since they are only
3714 // conservative estimates made without the benefit of trip count
3715 // information. This is similar to the code in forgetLoop, except that
3716 // it handles SCEVUnknown PHI nodes specially.
3717 if (BECount.hasAnyInfo()) {
3718 SmallVector<Instruction *, 16> Worklist;
3719 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003720
Chris Lattnerf1859892011-01-09 02:16:18 +00003721 SmallPtrSet<Instruction *, 8> Visited;
3722 while (!Worklist.empty()) {
3723 Instruction *I = Worklist.pop_back_val();
3724 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003725
Chris Lattnerf1859892011-01-09 02:16:18 +00003726 ValueExprMapType::iterator It =
3727 ValueExprMap.find(static_cast<Value *>(I));
3728 if (It != ValueExprMap.end()) {
3729 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003730
Chris Lattnerf1859892011-01-09 02:16:18 +00003731 // SCEVUnknown for a PHI either means that it has an unrecognized
3732 // structure, or it's a PHI that's in the progress of being computed
3733 // by createNodeForPHI. In the former case, additional loop trip
3734 // count information isn't going to change anything. In the later
3735 // case, createNodeForPHI will perform the necessary updates on its
3736 // own when it gets to that point.
3737 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3738 forgetMemoizedResults(Old);
3739 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003740 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003741 if (PHINode *PN = dyn_cast<PHINode>(I))
3742 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003743 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003744
3745 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003746 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003747 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003748 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003749}
3750
Dan Gohman4c7279a2009-10-31 15:04:55 +00003751/// forgetLoop - This method should be called by the client when it has
3752/// changed a loop in a way that may effect ScalarEvolution's ability to
3753/// compute a trip count, or if the loop is deleted.
3754void ScalarEvolution::forgetLoop(const Loop *L) {
3755 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003756 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003757
Dan Gohman4c7279a2009-10-31 15:04:55 +00003758 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003759 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003760 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003761
Dan Gohman59ae6b92009-07-08 19:23:34 +00003762 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003763 while (!Worklist.empty()) {
3764 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003765 if (!Visited.insert(I)) continue;
3766
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003767 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3768 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003769 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003770 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003771 if (PHINode *PN = dyn_cast<PHINode>(I))
3772 ConstantEvolutionLoopExitValue.erase(PN);
3773 }
3774
3775 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003776 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003777
3778 // Forget all contained loops too, to avoid dangling entries in the
3779 // ValuesAtScopes map.
3780 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3781 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003782}
3783
Eric Christophere6cbfa62010-07-29 01:25:38 +00003784/// forgetValue - This method should be called by the client when it has
3785/// changed a value in a way that may effect its value, or which may
3786/// disconnect it from a def-use chain linking it to a loop.
3787void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003788 Instruction *I = dyn_cast<Instruction>(V);
3789 if (!I) return;
3790
3791 // Drop information about expressions based on loop-header PHIs.
3792 SmallVector<Instruction *, 16> Worklist;
3793 Worklist.push_back(I);
3794
3795 SmallPtrSet<Instruction *, 8> Visited;
3796 while (!Worklist.empty()) {
3797 I = Worklist.pop_back_val();
3798 if (!Visited.insert(I)) continue;
3799
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003800 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3801 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003802 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003803 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003804 if (PHINode *PN = dyn_cast<PHINode>(I))
3805 ConstantEvolutionLoopExitValue.erase(PN);
3806 }
3807
3808 PushDefUseChildren(I, Worklist);
3809 }
3810}
3811
Dan Gohman46bdfb02009-02-24 18:55:53 +00003812/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3813/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003814ScalarEvolution::BackedgeTakenInfo
3815ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003816 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003817 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003818
Dan Gohmana334aa72009-06-22 00:31:57 +00003819 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003820 const SCEV *BECount = getCouldNotCompute();
3821 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003822 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003823 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3824 BackedgeTakenInfo NewBTI =
3825 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003826
Dan Gohman1c343752009-06-27 21:21:31 +00003827 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003829 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003831 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003833 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003834 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003836 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 }
Dan Gohman1c343752009-06-27 21:21:31 +00003838 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003839 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003840 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003841 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003842 }
3843
3844 return BackedgeTakenInfo(BECount, MaxBECount);
3845}
3846
3847/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3848/// of the specified loop will execute if it exits via the specified block.
3849ScalarEvolution::BackedgeTakenInfo
3850ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3851 BasicBlock *ExitingBlock) {
3852
3853 // Okay, we've chosen an exiting block. See what condition causes us to
3854 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003855 //
3856 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003857 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003858 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003859 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003860
Chris Lattner8b0e3602007-01-07 02:24:26 +00003861 // At this point, we know we have a conditional branch that determines whether
3862 // the loop is exited. However, we don't know if the branch is executed each
3863 // time through the loop. If not, then the execution count of the branch will
3864 // not be equal to the trip count of the loop.
3865 //
3866 // Currently we check for this by checking to see if the Exit branch goes to
3867 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003868 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003869 // loop header. This is common for un-rotated loops.
3870 //
3871 // If both of those tests fail, walk up the unique predecessor chain to the
3872 // header, stopping if there is an edge that doesn't exit the loop. If the
3873 // header is reached, the execution count of the branch will be equal to the
3874 // trip count of the loop.
3875 //
3876 // More extensive analysis could be done to handle more cases here.
3877 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003878 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003879 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003880 ExitBr->getParent() != L->getHeader()) {
3881 // The simple checks failed, try climbing the unique predecessor chain
3882 // up to the header.
3883 bool Ok = false;
3884 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3885 BasicBlock *Pred = BB->getUniquePredecessor();
3886 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003887 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003888 TerminatorInst *PredTerm = Pred->getTerminator();
3889 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3890 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3891 if (PredSucc == BB)
3892 continue;
3893 // If the predecessor has a successor that isn't BB and isn't
3894 // outside the loop, assume the worst.
3895 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003896 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003897 }
3898 if (Pred == L->getHeader()) {
3899 Ok = true;
3900 break;
3901 }
3902 BB = Pred;
3903 }
3904 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003905 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003906 }
3907
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003908 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003909 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3910 ExitBr->getSuccessor(0),
3911 ExitBr->getSuccessor(1));
3912}
3913
3914/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3915/// backedge of the specified loop will execute if its exit condition
3916/// were a conditional branch of ExitCond, TBB, and FBB.
3917ScalarEvolution::BackedgeTakenInfo
3918ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3919 Value *ExitCond,
3920 BasicBlock *TBB,
3921 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003922 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003923 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3924 if (BO->getOpcode() == Instruction::And) {
3925 // Recurse on the operands of the and.
3926 BackedgeTakenInfo BTI0 =
3927 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3928 BackedgeTakenInfo BTI1 =
3929 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003930 const SCEV *BECount = getCouldNotCompute();
3931 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003932 if (L->contains(TBB)) {
3933 // Both conditions must be true for the loop to continue executing.
3934 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003935 if (BTI0.Exact == getCouldNotCompute() ||
3936 BTI1.Exact == getCouldNotCompute())
3937 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003938 else
3939 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003940 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003941 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003942 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003943 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003944 else
3945 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003946 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003947 // Both conditions must be true at the same time for the loop to exit.
3948 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003949 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003950 if (BTI0.Max == BTI1.Max)
3951 MaxBECount = BTI0.Max;
3952 if (BTI0.Exact == BTI1.Exact)
3953 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003954 }
3955
3956 return BackedgeTakenInfo(BECount, MaxBECount);
3957 }
3958 if (BO->getOpcode() == Instruction::Or) {
3959 // Recurse on the operands of the or.
3960 BackedgeTakenInfo BTI0 =
3961 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3962 BackedgeTakenInfo BTI1 =
3963 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003964 const SCEV *BECount = getCouldNotCompute();
3965 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003966 if (L->contains(FBB)) {
3967 // Both conditions must be false for the loop to continue executing.
3968 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003969 if (BTI0.Exact == getCouldNotCompute() ||
3970 BTI1.Exact == getCouldNotCompute())
3971 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003972 else
3973 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003974 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003975 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003976 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003977 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003978 else
3979 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003980 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003981 // Both conditions must be false at the same time for the loop to exit.
3982 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003983 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003984 if (BTI0.Max == BTI1.Max)
3985 MaxBECount = BTI0.Max;
3986 if (BTI0.Exact == BTI1.Exact)
3987 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003988 }
3989
3990 return BackedgeTakenInfo(BECount, MaxBECount);
3991 }
3992 }
3993
3994 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003995 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003996 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3997 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003998
Dan Gohman00cb5b72010-02-19 18:12:07 +00003999 // Check for a constant condition. These are normally stripped out by
4000 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4001 // preserve the CFG and is temporarily leaving constant conditions
4002 // in place.
4003 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4004 if (L->contains(FBB) == !CI->getZExtValue())
4005 // The backedge is always taken.
4006 return getCouldNotCompute();
4007 else
4008 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004009 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004010 }
4011
Eli Friedman361e54d2009-05-09 12:32:42 +00004012 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004013 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4014}
4015
Chris Lattner992efb02011-01-09 22:26:35 +00004016static const SCEVAddRecExpr *
4017isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
4018 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
4019
4020 // The SCEV must be an addrec of this loop.
4021 if (!SA || SA->getLoop() != L || !SA->isAffine())
4022 return 0;
4023
4024 // The SCEV must be known to not wrap in some way to be interesting.
4025 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
4026 return 0;
4027
4028 // The stride must be a constant so that we know if it is striding up or down.
4029 if (!isa<SCEVConstant>(SA->getOperand(1)))
4030 return 0;
4031 return SA;
4032}
4033
4034/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
4035/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
4036/// and this function returns the expression to use for x-y. We know and take
4037/// advantage of the fact that this subtraction is only being used in a
4038/// comparison by zero context.
4039///
4040static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4041 const Loop *L, ScalarEvolution &SE) {
4042 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4043 // wrap (either NSW or NUW), then we know that the value will either become
4044 // the other one (and thus the loop terminates), that the loop will terminate
4045 // through some other exit condition first, or that the loop has undefined
4046 // behavior. This information is useful when the addrec has a stride that is
4047 // != 1 or -1, because it means we can't "miss" the exit value.
4048 //
4049 // In any of these three cases, it is safe to turn the exit condition into a
4050 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4051 // but since we know that the "end cannot be missed" we can force the
4052 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4053 // that the AddRec *cannot* pass zero.
4054
4055 // See if LHS and RHS are addrec's we can handle.
4056 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4057 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4058
4059 // If neither addrec is interesting, just return a minus.
4060 if (RHSA == 0 && LHSA == 0)
4061 return SE.getMinusSCEV(LHS, RHS);
4062
4063 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4064 if (RHSA && LHSA == 0) {
4065 // Safe because a-b === b-a for comparisons against zero.
4066 std::swap(LHS, RHS);
4067 std::swap(LHSA, RHSA);
4068 }
4069
4070 // Handle the case when only one is advancing in a non-overflowing way.
4071 if (RHSA == 0) {
4072 // If RHS is loop varying, then we can't predict when LHS will cross it.
4073 if (!SE.isLoopInvariant(RHS, L))
4074 return SE.getMinusSCEV(LHS, RHS);
4075
4076 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4077 // is counting up until it crosses RHS (which must be larger than LHS). If
4078 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4079 const ConstantInt *Stride =
4080 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4081 if (Stride->getValue().isNegative())
4082 std::swap(LHS, RHS);
4083
4084 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4085 }
4086
4087 // If both LHS and RHS are interesting, we have something like:
4088 // a+i*4 != b+i*8.
4089 const ConstantInt *LHSStride =
4090 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4091 const ConstantInt *RHSStride =
4092 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4093
4094 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004095 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004096 if (LHSStride == RHSStride)
4097 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4098
4099 // If the signs of the strides differ, then the negative stride is counting
4100 // down to the positive stride.
4101 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4102 if (RHSStride->getValue().isNegative())
4103 std::swap(LHS, RHS);
4104 } else {
4105 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4106 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4107 // whether the strides are positive or negative.
4108 if (RHSStride->getValue().slt(LHSStride->getValue()))
4109 std::swap(LHS, RHS);
4110 }
4111
4112 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4113}
4114
Dan Gohmana334aa72009-06-22 00:31:57 +00004115/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4116/// backedge of the specified loop will execute if its exit condition
4117/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4118ScalarEvolution::BackedgeTakenInfo
4119ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4120 ICmpInst *ExitCond,
4121 BasicBlock *TBB,
4122 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004123
Reid Spencere4d87aa2006-12-23 06:05:41 +00004124 // If the condition was exit on true, convert the condition to exit on false
4125 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004126 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004127 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004128 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004129 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004130
4131 // Handle common loops like: for (X = "string"; *X; ++X)
4132 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4133 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004134 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004135 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004136 if (ItCnt.hasAnyInfo())
4137 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004138 }
4139
Dan Gohman0bba49c2009-07-07 17:06:11 +00004140 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4141 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004142
4143 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004144 LHS = getSCEVAtScope(LHS, L);
4145 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004146
Dan Gohman64a845e2009-06-24 04:48:43 +00004147 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004148 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004149 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004150 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004151 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004152 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004153 }
4154
Dan Gohman03557dc2010-05-03 16:35:17 +00004155 // Simplify the operands before analyzing them.
4156 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4157
Chris Lattner53e677a2004-04-02 20:23:17 +00004158 // If we have a comparison of a chrec against a constant, try to use value
4159 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004160 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4161 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004162 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004163 // Form the constant range.
4164 ConstantRange CompRange(
4165 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004166
Dan Gohman0bba49c2009-07-07 17:06:11 +00004167 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004168 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004169 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004170
Chris Lattner53e677a2004-04-02 20:23:17 +00004171 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004172 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004173 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004174 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4175 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004176 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004177 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004178 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004179 case ICmpInst::ICMP_EQ: { // while (X == Y)
4180 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004181 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4182 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004183 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004184 }
4185 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004186 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4187 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004188 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004189 }
4190 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004191 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4192 getNotSCEV(RHS), L, true);
4193 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004194 break;
4195 }
4196 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004197 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4198 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004199 break;
4200 }
4201 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004202 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4203 getNotSCEV(RHS), L, false);
4204 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004205 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004206 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004207 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004208#if 0
David Greene25e0e872009-12-23 22:18:14 +00004209 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004210 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004211 dbgs() << "[unsigned] ";
4212 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004213 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004214 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004215#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004216 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004217 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004218 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004219 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004220}
4221
Chris Lattner673e02b2004-10-12 01:49:27 +00004222static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004223EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4224 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004225 const SCEV *InVal = SE.getConstant(C);
4226 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004227 assert(isa<SCEVConstant>(Val) &&
4228 "Evaluation of SCEV at constant didn't fold correctly?");
4229 return cast<SCEVConstant>(Val)->getValue();
4230}
4231
4232/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4233/// and a GEP expression (missing the pointer index) indexing into it, return
4234/// the addressed element of the initializer or null if the index expression is
4235/// invalid.
4236static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004237GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004238 const std::vector<ConstantInt*> &Indices) {
4239 Constant *Init = GV->getInitializer();
4240 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004241 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004242 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4243 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4244 Init = cast<Constant>(CS->getOperand(Idx));
4245 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4246 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4247 Init = cast<Constant>(CA->getOperand(Idx));
4248 } else if (isa<ConstantAggregateZero>(Init)) {
4249 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4250 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004251 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004252 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4253 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004254 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004255 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004256 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004257 }
4258 return 0;
4259 } else {
4260 return 0; // Unknown initializer type
4261 }
4262 }
4263 return Init;
4264}
4265
Dan Gohman46bdfb02009-02-24 18:55:53 +00004266/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4267/// 'icmp op load X, cst', try to see if we can compute the backedge
4268/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004269ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004270ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4271 LoadInst *LI,
4272 Constant *RHS,
4273 const Loop *L,
4274 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004275 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004276
4277 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004278 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004279 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004280 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004281
4282 // Make sure that it is really a constant global we are gepping, with an
4283 // initializer, and make sure the first IDX is really 0.
4284 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004285 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004286 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4287 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004288 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004289
4290 // Okay, we allow one non-constant index into the GEP instruction.
4291 Value *VarIdx = 0;
4292 std::vector<ConstantInt*> Indexes;
4293 unsigned VarIdxNum = 0;
4294 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4295 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4296 Indexes.push_back(CI);
4297 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004298 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004299 VarIdx = GEP->getOperand(i);
4300 VarIdxNum = i-2;
4301 Indexes.push_back(0);
4302 }
4303
4304 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4305 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004306 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004307 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004308
4309 // We can only recognize very limited forms of loop index expressions, in
4310 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004311 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004312 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004313 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4314 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004315 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004316
4317 unsigned MaxSteps = MaxBruteForceIterations;
4318 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004319 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004320 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004321 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004322
4323 // Form the GEP offset.
4324 Indexes[VarIdxNum] = Val;
4325
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004326 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004327 if (Result == 0) break; // Cannot compute!
4328
4329 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004330 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004331 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004332 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004333#if 0
David Greene25e0e872009-12-23 22:18:14 +00004334 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004335 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4336 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004337#endif
4338 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004339 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004340 }
4341 }
Dan Gohman1c343752009-06-27 21:21:31 +00004342 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004343}
4344
4345
Chris Lattner3221ad02004-04-17 22:58:41 +00004346/// CanConstantFold - Return true if we can constant fold an instruction of the
4347/// specified type, assuming that all operands were constants.
4348static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004349 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004350 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4351 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004352
Chris Lattner3221ad02004-04-17 22:58:41 +00004353 if (const CallInst *CI = dyn_cast<CallInst>(I))
4354 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004355 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004356 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004357}
4358
Chris Lattner3221ad02004-04-17 22:58:41 +00004359/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4360/// in the loop that V is derived from. We allow arbitrary operations along the
4361/// way, but the operands of an operation must either be constants or a value
4362/// derived from a constant PHI. If this expression does not fit with these
4363/// constraints, return null.
4364static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4365 // If this is not an instruction, or if this is an instruction outside of the
4366 // loop, it can't be derived from a loop PHI.
4367 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004368 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004369
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004370 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004371 if (L->getHeader() == I->getParent())
4372 return PN;
4373 else
4374 // We don't currently keep track of the control flow needed to evaluate
4375 // PHIs, so we cannot handle PHIs inside of loops.
4376 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004377 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004378
4379 // If we won't be able to constant fold this expression even if the operands
4380 // are constants, return early.
4381 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004382
Chris Lattner3221ad02004-04-17 22:58:41 +00004383 // Otherwise, we can evaluate this instruction if all of its operands are
4384 // constant or derived from a PHI node themselves.
4385 PHINode *PHI = 0;
4386 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004387 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004388 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4389 if (P == 0) return 0; // Not evolving from PHI
4390 if (PHI == 0)
4391 PHI = P;
4392 else if (PHI != P)
4393 return 0; // Evolving from multiple different PHIs.
4394 }
4395
4396 // This is a expression evolving from a constant PHI!
4397 return PHI;
4398}
4399
4400/// EvaluateExpression - Given an expression that passes the
4401/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4402/// in the loop has the value PHIVal. If we can't fold this expression for some
4403/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004404static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4405 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004406 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004407 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004408 Instruction *I = cast<Instruction>(V);
4409
Dan Gohman9d4588f2010-06-22 13:15:46 +00004410 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004411
4412 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004413 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004414 if (Operands[i] == 0) return 0;
4415 }
4416
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004417 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004418 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004419 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004420 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004421 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004422}
4423
4424/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4425/// in the header of its containing loop, we know the loop executes a
4426/// constant number of times, and the PHI node is just a recurrence
4427/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004428Constant *
4429ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004430 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004431 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004432 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004433 ConstantEvolutionLoopExitValue.find(PN);
4434 if (I != ConstantEvolutionLoopExitValue.end())
4435 return I->second;
4436
Dan Gohmane0567812010-04-08 23:03:40 +00004437 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004438 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4439
4440 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4441
4442 // Since the loop is canonicalized, the PHI node must have two entries. One
4443 // entry must be a constant (coming in from outside of the loop), and the
4444 // second must be derived from the same PHI.
4445 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4446 Constant *StartCST =
4447 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4448 if (StartCST == 0)
4449 return RetVal = 0; // Must be a constant.
4450
4451 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004452 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4453 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004454 return RetVal = 0; // Not derived from same PHI.
4455
4456 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004457 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004458 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004459
Dan Gohman46bdfb02009-02-24 18:55:53 +00004460 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004461 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004462 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4463 if (IterationNum == NumIterations)
4464 return RetVal = PHIVal; // Got exit value!
4465
4466 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004467 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004468 if (NextPHI == PHIVal)
4469 return RetVal = NextPHI; // Stopped evolving!
4470 if (NextPHI == 0)
4471 return 0; // Couldn't evaluate!
4472 PHIVal = NextPHI;
4473 }
4474}
4475
Dan Gohman07ad19b2009-07-27 16:09:48 +00004476/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004477/// constant number of times (the condition evolves only from constants),
4478/// try to evaluate a few iterations of the loop until we get the exit
4479/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004480/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004481const SCEV *
4482ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4483 Value *Cond,
4484 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004485 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004486 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004487
Dan Gohmanb92654d2010-06-19 14:17:24 +00004488 // If the loop is canonicalized, the PHI will have exactly two entries.
4489 // That's the only form we support here.
4490 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4491
4492 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004493 // second must be derived from the same PHI.
4494 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4495 Constant *StartCST =
4496 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004497 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004498
4499 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004500 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4501 !isa<Constant>(BEValue))
4502 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004503
4504 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4505 // the loop symbolically to determine when the condition gets a value of
4506 // "ExitWhen".
4507 unsigned IterationNum = 0;
4508 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4509 for (Constant *PHIVal = StartCST;
4510 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004511 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004512 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004513
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004514 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004515 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004516
Reid Spencere8019bb2007-03-01 07:25:48 +00004517 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004518 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004519 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004520 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004521
Chris Lattner3221ad02004-04-17 22:58:41 +00004522 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004523 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004524 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004525 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004526 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004527 }
4528
4529 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004530 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004531}
4532
Dan Gohmane7125f42009-09-03 15:00:26 +00004533/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004534/// at the specified scope in the program. The L value specifies a loop
4535/// nest to evaluate the expression at, where null is the top-level or a
4536/// specified loop is immediately inside of the loop.
4537///
4538/// This method can be used to compute the exit value for a variable defined
4539/// in a loop by querying what the value will hold in the parent loop.
4540///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004541/// In the case that a relevant loop exit value cannot be computed, the
4542/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004543const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004544 // Check to see if we've folded this expression at this loop before.
4545 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4546 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4547 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4548 if (!Pair.second)
4549 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004550
Dan Gohman42214892009-08-31 21:15:23 +00004551 // Otherwise compute it.
4552 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004553 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004554 return C;
4555}
4556
4557const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004558 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004559
Nick Lewycky3e630762008-02-20 06:48:22 +00004560 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004561 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004562 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004563 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004564 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004565 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4566 if (PHINode *PN = dyn_cast<PHINode>(I))
4567 if (PN->getParent() == LI->getHeader()) {
4568 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004569 // to see if the loop that contains it has a known backedge-taken
4570 // count. If so, we may be able to force computation of the exit
4571 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004572 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004573 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004574 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004575 // Okay, we know how many times the containing loop executes. If
4576 // this is a constant evolving PHI node, get the final value at
4577 // the specified iteration number.
4578 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004579 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004580 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004581 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004582 }
4583 }
4584
Reid Spencer09906f32006-12-04 21:33:23 +00004585 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004586 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004587 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004588 // result. This is particularly useful for computing loop exit values.
4589 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004590 SmallVector<Constant *, 4> Operands;
4591 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004592 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4593 Value *Op = I->getOperand(i);
4594 if (Constant *C = dyn_cast<Constant>(Op)) {
4595 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004596 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004597 }
Dan Gohman11046452010-06-29 23:43:06 +00004598
4599 // If any of the operands is non-constant and if they are
4600 // non-integer and non-pointer, don't even try to analyze them
4601 // with scev techniques.
4602 if (!isSCEVable(Op->getType()))
4603 return V;
4604
4605 const SCEV *OrigV = getSCEV(Op);
4606 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4607 MadeImprovement |= OrigV != OpV;
4608
4609 Constant *C = 0;
4610 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4611 C = SC->getValue();
4612 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4613 C = dyn_cast<Constant>(SU->getValue());
4614 if (!C) return V;
4615 if (C->getType() != Op->getType())
4616 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4617 Op->getType(),
4618 false),
4619 C, Op->getType());
4620 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004621 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004622
Dan Gohman11046452010-06-29 23:43:06 +00004623 // Check to see if getSCEVAtScope actually made an improvement.
4624 if (MadeImprovement) {
4625 Constant *C = 0;
4626 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4627 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4628 Operands[0], Operands[1], TD);
4629 else
4630 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4631 &Operands[0], Operands.size(), TD);
4632 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004633 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004634 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004635 }
4636 }
4637
4638 // This is some other type of SCEVUnknown, just return it.
4639 return V;
4640 }
4641
Dan Gohman622ed672009-05-04 22:02:23 +00004642 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004643 // Avoid performing the look-up in the common case where the specified
4644 // expression has no loop-variant portions.
4645 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004646 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004647 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004648 // Okay, at least one of these operands is loop variant but might be
4649 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004650 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4651 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004652 NewOps.push_back(OpAtScope);
4653
4654 for (++i; i != e; ++i) {
4655 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004656 NewOps.push_back(OpAtScope);
4657 }
4658 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004659 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004660 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004661 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004662 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004663 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004664 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004665 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004666 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004667 }
4668 }
4669 // If we got here, all operands are loop invariant.
4670 return Comm;
4671 }
4672
Dan Gohman622ed672009-05-04 22:02:23 +00004673 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004674 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4675 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004676 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4677 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004678 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004679 }
4680
4681 // If this is a loop recurrence for a loop that does not contain L, then we
4682 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004683 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004684 // First, attempt to evaluate each operand.
4685 // Avoid performing the look-up in the common case where the specified
4686 // expression has no loop-variant portions.
4687 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4688 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4689 if (OpAtScope == AddRec->getOperand(i))
4690 continue;
4691
4692 // Okay, at least one of these operands is loop variant but might be
4693 // foldable. Build a new instance of the folded commutative expression.
4694 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4695 AddRec->op_begin()+i);
4696 NewOps.push_back(OpAtScope);
4697 for (++i; i != e; ++i)
4698 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4699
4700 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4701 break;
4702 }
4703
4704 // If the scope is outside the addrec's loop, evaluate it by using the
4705 // loop exit value of the addrec.
4706 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004707 // To evaluate this recurrence, we need to know how many times the AddRec
4708 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004709 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004710 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004711
Eli Friedmanb42a6262008-08-04 23:49:06 +00004712 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004713 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004714 }
Dan Gohman11046452010-06-29 23:43:06 +00004715
Dan Gohmand594e6f2009-05-24 23:25:42 +00004716 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004717 }
4718
Dan Gohman622ed672009-05-04 22:02:23 +00004719 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004720 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004721 if (Op == Cast->getOperand())
4722 return Cast; // must be loop invariant
4723 return getZeroExtendExpr(Op, Cast->getType());
4724 }
4725
Dan Gohman622ed672009-05-04 22:02:23 +00004726 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004727 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004728 if (Op == Cast->getOperand())
4729 return Cast; // must be loop invariant
4730 return getSignExtendExpr(Op, Cast->getType());
4731 }
4732
Dan Gohman622ed672009-05-04 22:02:23 +00004733 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004734 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004735 if (Op == Cast->getOperand())
4736 return Cast; // must be loop invariant
4737 return getTruncateExpr(Op, Cast->getType());
4738 }
4739
Torok Edwinc23197a2009-07-14 16:55:14 +00004740 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004741 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004742}
4743
Dan Gohman66a7e852009-05-08 20:38:54 +00004744/// getSCEVAtScope - This is a convenience function which does
4745/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004746const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004747 return getSCEVAtScope(getSCEV(V), L);
4748}
4749
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004750/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4751/// following equation:
4752///
4753/// A * X = B (mod N)
4754///
4755/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4756/// A and B isn't important.
4757///
4758/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004759static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004760 ScalarEvolution &SE) {
4761 uint32_t BW = A.getBitWidth();
4762 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4763 assert(A != 0 && "A must be non-zero.");
4764
4765 // 1. D = gcd(A, N)
4766 //
4767 // The gcd of A and N may have only one prime factor: 2. The number of
4768 // trailing zeros in A is its multiplicity
4769 uint32_t Mult2 = A.countTrailingZeros();
4770 // D = 2^Mult2
4771
4772 // 2. Check if B is divisible by D.
4773 //
4774 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4775 // is not less than multiplicity of this prime factor for D.
4776 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004777 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004778
4779 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4780 // modulo (N / D).
4781 //
4782 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4783 // bit width during computations.
4784 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4785 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004786 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004787 APInt I = AD.multiplicativeInverse(Mod);
4788
4789 // 4. Compute the minimum unsigned root of the equation:
4790 // I * (B / D) mod (N / D)
4791 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4792
4793 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4794 // bits.
4795 return SE.getConstant(Result.trunc(BW));
4796}
Chris Lattner53e677a2004-04-02 20:23:17 +00004797
4798/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4799/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4800/// might be the same) or two SCEVCouldNotCompute objects.
4801///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004802static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004803SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004804 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004805 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4806 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4807 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004808
Chris Lattner53e677a2004-04-02 20:23:17 +00004809 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004810 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004811 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004812 return std::make_pair(CNC, CNC);
4813 }
4814
Reid Spencere8019bb2007-03-01 07:25:48 +00004815 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004816 const APInt &L = LC->getValue()->getValue();
4817 const APInt &M = MC->getValue()->getValue();
4818 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004819 APInt Two(BitWidth, 2);
4820 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004821
Dan Gohman64a845e2009-06-24 04:48:43 +00004822 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004823 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004824 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004825 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4826 // The B coefficient is M-N/2
4827 APInt B(M);
4828 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004829
Reid Spencere8019bb2007-03-01 07:25:48 +00004830 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004831 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004832
Reid Spencere8019bb2007-03-01 07:25:48 +00004833 // Compute the B^2-4ac term.
4834 APInt SqrtTerm(B);
4835 SqrtTerm *= B;
4836 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004837
Reid Spencere8019bb2007-03-01 07:25:48 +00004838 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4839 // integer value or else APInt::sqrt() will assert.
4840 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004841
Dan Gohman64a845e2009-06-24 04:48:43 +00004842 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004843 // The divisions must be performed as signed divisions.
4844 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004845 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004846 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004847 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004848 return std::make_pair(CNC, CNC);
4849 }
4850
Owen Andersone922c022009-07-22 00:24:57 +00004851 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004852
4853 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004854 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004855 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004856 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004857
Dan Gohman64a845e2009-06-24 04:48:43 +00004858 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004859 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004860 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004861}
4862
4863/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004864/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004865ScalarEvolution::BackedgeTakenInfo
4866ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004867 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004868 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004869 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004870 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004871 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004872 }
4873
Dan Gohman35738ac2009-05-04 22:30:44 +00004874 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004875 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004876 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004877
Chris Lattner7975e3e2011-01-09 22:39:48 +00004878 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4879 // the quadratic equation to solve it.
4880 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4881 std::pair<const SCEV *,const SCEV *> Roots =
4882 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004883 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4884 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004885 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004886#if 0
David Greene25e0e872009-12-23 22:18:14 +00004887 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004888 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004889#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004890 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004891 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004892 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4893 R1->getValue(),
4894 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004895 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004896 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004897
Chris Lattner53e677a2004-04-02 20:23:17 +00004898 // We can only use this value if the chrec ends up with an exact zero
4899 // value at this index. When solving for "X*X != 5", for example, we
4900 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004901 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004902 if (Val->isZero())
4903 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004904 }
4905 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004906 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004907 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004908
Chris Lattner7975e3e2011-01-09 22:39:48 +00004909 // Otherwise we can only handle this if it is affine.
4910 if (!AddRec->isAffine())
4911 return getCouldNotCompute();
4912
4913 // If this is an affine expression, the execution count of this branch is
4914 // the minimum unsigned root of the following equation:
4915 //
4916 // Start + Step*N = 0 (mod 2^BW)
4917 //
4918 // equivalent to:
4919 //
4920 // Step*N = -Start (mod 2^BW)
4921 //
4922 // where BW is the common bit width of Start and Step.
4923
4924 // Get the initial value for the loop.
4925 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4926 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4927
Chris Lattner53e1d452011-01-09 22:58:47 +00004928 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4929 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4930 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4931 // the stride is. As such, NUW addrec's will always become zero in
4932 // "start / -stride" steps, and we know that the division is exact.
4933 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004934 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004935 return getUDivExpr(Start, getNegativeSCEV(Step));
4936
Chris Lattner7975e3e2011-01-09 22:39:48 +00004937 // For now we handle only constant steps.
4938 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4939 if (StepC == 0)
4940 return getCouldNotCompute();
4941
4942 // First, handle unitary steps.
4943 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4944 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4945
4946 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4947 return Start; // N = Start (as unsigned)
4948
4949 // Then, try to solve the above equation provided that Start is constant.
4950 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4951 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4952 -StartC->getValue()->getValue(),
4953 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004954 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004955}
4956
4957/// HowFarToNonZero - Return the number of times a backedge checking the
4958/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004959/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004960ScalarEvolution::BackedgeTakenInfo
4961ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004962 // Loops that look like: while (X == 0) are very strange indeed. We don't
4963 // handle them yet except for the trivial case. This could be expanded in the
4964 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004965
Chris Lattner53e677a2004-04-02 20:23:17 +00004966 // If the value is a constant, check to see if it is known to be non-zero
4967 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004968 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004969 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004970 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004971 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004972 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004973
Chris Lattner53e677a2004-04-02 20:23:17 +00004974 // We could implement others, but I really doubt anyone writes loops like
4975 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004976 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004977}
4978
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004979/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4980/// (which may not be an immediate predecessor) which has exactly one
4981/// successor from which BB is reachable, or null if no such block is
4982/// found.
4983///
Dan Gohman005752b2010-04-15 16:19:08 +00004984std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004985ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004986 // If the block has a unique predecessor, then there is no path from the
4987 // predecessor to the block that does not go through the direct edge
4988 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004989 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004990 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004991
4992 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004993 // If the header has a unique predecessor outside the loop, it must be
4994 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004995 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004996 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004997
Dan Gohman005752b2010-04-15 16:19:08 +00004998 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004999}
5000
Dan Gohman763bad12009-06-20 00:35:32 +00005001/// HasSameValue - SCEV structural equivalence is usually sufficient for
5002/// testing whether two expressions are equal, however for the purposes of
5003/// looking for a condition guarding a loop, it can be useful to be a little
5004/// more general, since a front-end may have replicated the controlling
5005/// expression.
5006///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005007static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005008 // Quick check to see if they are the same SCEV.
5009 if (A == B) return true;
5010
5011 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5012 // two different instructions with the same value. Check for this case.
5013 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5014 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5015 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5016 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005017 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005018 return true;
5019
5020 // Otherwise assume they may have a different value.
5021 return false;
5022}
5023
Dan Gohmane9796502010-04-24 01:28:42 +00005024/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5025/// predicate Pred. Return true iff any changes were made.
5026///
5027bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5028 const SCEV *&LHS, const SCEV *&RHS) {
5029 bool Changed = false;
5030
5031 // Canonicalize a constant to the right side.
5032 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5033 // Check for both operands constant.
5034 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5035 if (ConstantExpr::getICmp(Pred,
5036 LHSC->getValue(),
5037 RHSC->getValue())->isNullValue())
5038 goto trivially_false;
5039 else
5040 goto trivially_true;
5041 }
5042 // Otherwise swap the operands to put the constant on the right.
5043 std::swap(LHS, RHS);
5044 Pred = ICmpInst::getSwappedPredicate(Pred);
5045 Changed = true;
5046 }
5047
5048 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005049 // addrec's loop, put the addrec on the left. Also make a dominance check,
5050 // as both operands could be addrecs loop-invariant in each other's loop.
5051 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5052 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005053 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005054 std::swap(LHS, RHS);
5055 Pred = ICmpInst::getSwappedPredicate(Pred);
5056 Changed = true;
5057 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005058 }
Dan Gohmane9796502010-04-24 01:28:42 +00005059
5060 // If there's a constant operand, canonicalize comparisons with boundary
5061 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5062 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5063 const APInt &RA = RC->getValue()->getValue();
5064 switch (Pred) {
5065 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5066 case ICmpInst::ICMP_EQ:
5067 case ICmpInst::ICMP_NE:
5068 break;
5069 case ICmpInst::ICMP_UGE:
5070 if ((RA - 1).isMinValue()) {
5071 Pred = ICmpInst::ICMP_NE;
5072 RHS = getConstant(RA - 1);
5073 Changed = true;
5074 break;
5075 }
5076 if (RA.isMaxValue()) {
5077 Pred = ICmpInst::ICMP_EQ;
5078 Changed = true;
5079 break;
5080 }
5081 if (RA.isMinValue()) goto trivially_true;
5082
5083 Pred = ICmpInst::ICMP_UGT;
5084 RHS = getConstant(RA - 1);
5085 Changed = true;
5086 break;
5087 case ICmpInst::ICMP_ULE:
5088 if ((RA + 1).isMaxValue()) {
5089 Pred = ICmpInst::ICMP_NE;
5090 RHS = getConstant(RA + 1);
5091 Changed = true;
5092 break;
5093 }
5094 if (RA.isMinValue()) {
5095 Pred = ICmpInst::ICMP_EQ;
5096 Changed = true;
5097 break;
5098 }
5099 if (RA.isMaxValue()) goto trivially_true;
5100
5101 Pred = ICmpInst::ICMP_ULT;
5102 RHS = getConstant(RA + 1);
5103 Changed = true;
5104 break;
5105 case ICmpInst::ICMP_SGE:
5106 if ((RA - 1).isMinSignedValue()) {
5107 Pred = ICmpInst::ICMP_NE;
5108 RHS = getConstant(RA - 1);
5109 Changed = true;
5110 break;
5111 }
5112 if (RA.isMaxSignedValue()) {
5113 Pred = ICmpInst::ICMP_EQ;
5114 Changed = true;
5115 break;
5116 }
5117 if (RA.isMinSignedValue()) goto trivially_true;
5118
5119 Pred = ICmpInst::ICMP_SGT;
5120 RHS = getConstant(RA - 1);
5121 Changed = true;
5122 break;
5123 case ICmpInst::ICMP_SLE:
5124 if ((RA + 1).isMaxSignedValue()) {
5125 Pred = ICmpInst::ICMP_NE;
5126 RHS = getConstant(RA + 1);
5127 Changed = true;
5128 break;
5129 }
5130 if (RA.isMinSignedValue()) {
5131 Pred = ICmpInst::ICMP_EQ;
5132 Changed = true;
5133 break;
5134 }
5135 if (RA.isMaxSignedValue()) goto trivially_true;
5136
5137 Pred = ICmpInst::ICMP_SLT;
5138 RHS = getConstant(RA + 1);
5139 Changed = true;
5140 break;
5141 case ICmpInst::ICMP_UGT:
5142 if (RA.isMinValue()) {
5143 Pred = ICmpInst::ICMP_NE;
5144 Changed = true;
5145 break;
5146 }
5147 if ((RA + 1).isMaxValue()) {
5148 Pred = ICmpInst::ICMP_EQ;
5149 RHS = getConstant(RA + 1);
5150 Changed = true;
5151 break;
5152 }
5153 if (RA.isMaxValue()) goto trivially_false;
5154 break;
5155 case ICmpInst::ICMP_ULT:
5156 if (RA.isMaxValue()) {
5157 Pred = ICmpInst::ICMP_NE;
5158 Changed = true;
5159 break;
5160 }
5161 if ((RA - 1).isMinValue()) {
5162 Pred = ICmpInst::ICMP_EQ;
5163 RHS = getConstant(RA - 1);
5164 Changed = true;
5165 break;
5166 }
5167 if (RA.isMinValue()) goto trivially_false;
5168 break;
5169 case ICmpInst::ICMP_SGT:
5170 if (RA.isMinSignedValue()) {
5171 Pred = ICmpInst::ICMP_NE;
5172 Changed = true;
5173 break;
5174 }
5175 if ((RA + 1).isMaxSignedValue()) {
5176 Pred = ICmpInst::ICMP_EQ;
5177 RHS = getConstant(RA + 1);
5178 Changed = true;
5179 break;
5180 }
5181 if (RA.isMaxSignedValue()) goto trivially_false;
5182 break;
5183 case ICmpInst::ICMP_SLT:
5184 if (RA.isMaxSignedValue()) {
5185 Pred = ICmpInst::ICMP_NE;
5186 Changed = true;
5187 break;
5188 }
5189 if ((RA - 1).isMinSignedValue()) {
5190 Pred = ICmpInst::ICMP_EQ;
5191 RHS = getConstant(RA - 1);
5192 Changed = true;
5193 break;
5194 }
5195 if (RA.isMinSignedValue()) goto trivially_false;
5196 break;
5197 }
5198 }
5199
5200 // Check for obvious equality.
5201 if (HasSameValue(LHS, RHS)) {
5202 if (ICmpInst::isTrueWhenEqual(Pred))
5203 goto trivially_true;
5204 if (ICmpInst::isFalseWhenEqual(Pred))
5205 goto trivially_false;
5206 }
5207
Dan Gohman03557dc2010-05-03 16:35:17 +00005208 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5209 // adding or subtracting 1 from one of the operands.
5210 switch (Pred) {
5211 case ICmpInst::ICMP_SLE:
5212 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5213 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5214 /*HasNUW=*/false, /*HasNSW=*/true);
5215 Pred = ICmpInst::ICMP_SLT;
5216 Changed = true;
5217 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005218 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005219 /*HasNUW=*/false, /*HasNSW=*/true);
5220 Pred = ICmpInst::ICMP_SLT;
5221 Changed = true;
5222 }
5223 break;
5224 case ICmpInst::ICMP_SGE:
5225 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005226 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005227 /*HasNUW=*/false, /*HasNSW=*/true);
5228 Pred = ICmpInst::ICMP_SGT;
5229 Changed = true;
5230 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5231 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5232 /*HasNUW=*/false, /*HasNSW=*/true);
5233 Pred = ICmpInst::ICMP_SGT;
5234 Changed = true;
5235 }
5236 break;
5237 case ICmpInst::ICMP_ULE:
5238 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005239 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005240 /*HasNUW=*/true, /*HasNSW=*/false);
5241 Pred = ICmpInst::ICMP_ULT;
5242 Changed = true;
5243 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005244 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005245 /*HasNUW=*/true, /*HasNSW=*/false);
5246 Pred = ICmpInst::ICMP_ULT;
5247 Changed = true;
5248 }
5249 break;
5250 case ICmpInst::ICMP_UGE:
5251 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005252 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005253 /*HasNUW=*/true, /*HasNSW=*/false);
5254 Pred = ICmpInst::ICMP_UGT;
5255 Changed = true;
5256 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005257 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005258 /*HasNUW=*/true, /*HasNSW=*/false);
5259 Pred = ICmpInst::ICMP_UGT;
5260 Changed = true;
5261 }
5262 break;
5263 default:
5264 break;
5265 }
5266
Dan Gohmane9796502010-04-24 01:28:42 +00005267 // TODO: More simplifications are possible here.
5268
5269 return Changed;
5270
5271trivially_true:
5272 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005273 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005274 Pred = ICmpInst::ICMP_EQ;
5275 return true;
5276
5277trivially_false:
5278 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005279 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005280 Pred = ICmpInst::ICMP_NE;
5281 return true;
5282}
5283
Dan Gohman85b05a22009-07-13 21:35:55 +00005284bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5285 return getSignedRange(S).getSignedMax().isNegative();
5286}
5287
5288bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5289 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5290}
5291
5292bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5293 return !getSignedRange(S).getSignedMin().isNegative();
5294}
5295
5296bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5297 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5298}
5299
5300bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5301 return isKnownNegative(S) || isKnownPositive(S);
5302}
5303
5304bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5305 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005306 // Canonicalize the inputs first.
5307 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5308
Dan Gohman53c66ea2010-04-11 22:16:48 +00005309 // If LHS or RHS is an addrec, check to see if the condition is true in
5310 // every iteration of the loop.
5311 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5312 if (isLoopEntryGuardedByCond(
5313 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5314 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005315 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005316 return true;
5317 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5318 if (isLoopEntryGuardedByCond(
5319 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5320 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005321 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005322 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005323
Dan Gohman53c66ea2010-04-11 22:16:48 +00005324 // Otherwise see what can be done with known constant ranges.
5325 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5326}
5327
5328bool
5329ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5330 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005331 if (HasSameValue(LHS, RHS))
5332 return ICmpInst::isTrueWhenEqual(Pred);
5333
Dan Gohman53c66ea2010-04-11 22:16:48 +00005334 // This code is split out from isKnownPredicate because it is called from
5335 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005336 switch (Pred) {
5337 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005338 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005339 break;
5340 case ICmpInst::ICMP_SGT:
5341 Pred = ICmpInst::ICMP_SLT;
5342 std::swap(LHS, RHS);
5343 case ICmpInst::ICMP_SLT: {
5344 ConstantRange LHSRange = getSignedRange(LHS);
5345 ConstantRange RHSRange = getSignedRange(RHS);
5346 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5347 return true;
5348 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5349 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005350 break;
5351 }
5352 case ICmpInst::ICMP_SGE:
5353 Pred = ICmpInst::ICMP_SLE;
5354 std::swap(LHS, RHS);
5355 case ICmpInst::ICMP_SLE: {
5356 ConstantRange LHSRange = getSignedRange(LHS);
5357 ConstantRange RHSRange = getSignedRange(RHS);
5358 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5359 return true;
5360 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5361 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005362 break;
5363 }
5364 case ICmpInst::ICMP_UGT:
5365 Pred = ICmpInst::ICMP_ULT;
5366 std::swap(LHS, RHS);
5367 case ICmpInst::ICMP_ULT: {
5368 ConstantRange LHSRange = getUnsignedRange(LHS);
5369 ConstantRange RHSRange = getUnsignedRange(RHS);
5370 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5371 return true;
5372 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5373 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005374 break;
5375 }
5376 case ICmpInst::ICMP_UGE:
5377 Pred = ICmpInst::ICMP_ULE;
5378 std::swap(LHS, RHS);
5379 case ICmpInst::ICMP_ULE: {
5380 ConstantRange LHSRange = getUnsignedRange(LHS);
5381 ConstantRange RHSRange = getUnsignedRange(RHS);
5382 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5383 return true;
5384 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5385 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005386 break;
5387 }
5388 case ICmpInst::ICMP_NE: {
5389 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5390 return true;
5391 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5392 return true;
5393
5394 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5395 if (isKnownNonZero(Diff))
5396 return true;
5397 break;
5398 }
5399 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005400 // The check at the top of the function catches the case where
5401 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005402 break;
5403 }
5404 return false;
5405}
5406
5407/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5408/// protected by a conditional between LHS and RHS. This is used to
5409/// to eliminate casts.
5410bool
5411ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5412 ICmpInst::Predicate Pred,
5413 const SCEV *LHS, const SCEV *RHS) {
5414 // Interpret a null as meaning no loop, where there is obviously no guard
5415 // (interprocedural conditions notwithstanding).
5416 if (!L) return true;
5417
5418 BasicBlock *Latch = L->getLoopLatch();
5419 if (!Latch)
5420 return false;
5421
5422 BranchInst *LoopContinuePredicate =
5423 dyn_cast<BranchInst>(Latch->getTerminator());
5424 if (!LoopContinuePredicate ||
5425 LoopContinuePredicate->isUnconditional())
5426 return false;
5427
Dan Gohmanaf08a362010-08-10 23:46:30 +00005428 return isImpliedCond(Pred, LHS, RHS,
5429 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005430 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005431}
5432
Dan Gohman3948d0b2010-04-11 19:27:13 +00005433/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005434/// by a conditional between LHS and RHS. This is used to help avoid max
5435/// expressions in loop trip counts, and to eliminate casts.
5436bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005437ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5438 ICmpInst::Predicate Pred,
5439 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005440 // Interpret a null as meaning no loop, where there is obviously no guard
5441 // (interprocedural conditions notwithstanding).
5442 if (!L) return false;
5443
Dan Gohman859b4822009-05-18 15:36:09 +00005444 // Starting at the loop predecessor, climb up the predecessor chain, as long
5445 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005446 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005447 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005448 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005449 Pair.first;
5450 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005451
5452 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005453 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005454 if (!LoopEntryPredicate ||
5455 LoopEntryPredicate->isUnconditional())
5456 continue;
5457
Dan Gohmanaf08a362010-08-10 23:46:30 +00005458 if (isImpliedCond(Pred, LHS, RHS,
5459 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005460 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005461 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005462 }
5463
Dan Gohman38372182008-08-12 20:17:31 +00005464 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005465}
5466
Dan Gohman0f4b2852009-07-21 23:03:19 +00005467/// isImpliedCond - Test whether the condition described by Pred, LHS,
5468/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005469bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005470 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005471 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005472 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005473 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005474 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005475 if (BO->getOpcode() == Instruction::And) {
5476 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005477 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5478 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005479 } else if (BO->getOpcode() == Instruction::Or) {
5480 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005481 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5482 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005483 }
5484 }
5485
Dan Gohmanaf08a362010-08-10 23:46:30 +00005486 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005487 if (!ICI) return false;
5488
Dan Gohman85b05a22009-07-13 21:35:55 +00005489 // Bail if the ICmp's operands' types are wider than the needed type
5490 // before attempting to call getSCEV on them. This avoids infinite
5491 // recursion, since the analysis of widening casts can require loop
5492 // exit condition information for overflow checking, which would
5493 // lead back here.
5494 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005495 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005496 return false;
5497
Dan Gohman0f4b2852009-07-21 23:03:19 +00005498 // Now that we found a conditional branch that dominates the loop, check to
5499 // see if it is the comparison we are looking for.
5500 ICmpInst::Predicate FoundPred;
5501 if (Inverse)
5502 FoundPred = ICI->getInversePredicate();
5503 else
5504 FoundPred = ICI->getPredicate();
5505
5506 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5507 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005508
5509 // Balance the types. The case where FoundLHS' type is wider than
5510 // LHS' type is checked for above.
5511 if (getTypeSizeInBits(LHS->getType()) >
5512 getTypeSizeInBits(FoundLHS->getType())) {
5513 if (CmpInst::isSigned(Pred)) {
5514 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5515 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5516 } else {
5517 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5518 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5519 }
5520 }
5521
Dan Gohman0f4b2852009-07-21 23:03:19 +00005522 // Canonicalize the query to match the way instcombine will have
5523 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005524 if (SimplifyICmpOperands(Pred, LHS, RHS))
5525 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005526 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005527 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5528 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005529 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005530
5531 // Check to see if we can make the LHS or RHS match.
5532 if (LHS == FoundRHS || RHS == FoundLHS) {
5533 if (isa<SCEVConstant>(RHS)) {
5534 std::swap(FoundLHS, FoundRHS);
5535 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5536 } else {
5537 std::swap(LHS, RHS);
5538 Pred = ICmpInst::getSwappedPredicate(Pred);
5539 }
5540 }
5541
5542 // Check whether the found predicate is the same as the desired predicate.
5543 if (FoundPred == Pred)
5544 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5545
5546 // Check whether swapping the found predicate makes it the same as the
5547 // desired predicate.
5548 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5549 if (isa<SCEVConstant>(RHS))
5550 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5551 else
5552 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5553 RHS, LHS, FoundLHS, FoundRHS);
5554 }
5555
5556 // Check whether the actual condition is beyond sufficient.
5557 if (FoundPred == ICmpInst::ICMP_EQ)
5558 if (ICmpInst::isTrueWhenEqual(Pred))
5559 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5560 return true;
5561 if (Pred == ICmpInst::ICMP_NE)
5562 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5563 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5564 return true;
5565
5566 // Otherwise assume the worst.
5567 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005568}
5569
Dan Gohman0f4b2852009-07-21 23:03:19 +00005570/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005571/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005572/// and FoundRHS is true.
5573bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5574 const SCEV *LHS, const SCEV *RHS,
5575 const SCEV *FoundLHS,
5576 const SCEV *FoundRHS) {
5577 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5578 FoundLHS, FoundRHS) ||
5579 // ~x < ~y --> x > y
5580 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5581 getNotSCEV(FoundRHS),
5582 getNotSCEV(FoundLHS));
5583}
5584
5585/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005586/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005587/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005588bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005589ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5590 const SCEV *LHS, const SCEV *RHS,
5591 const SCEV *FoundLHS,
5592 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005593 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005594 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5595 case ICmpInst::ICMP_EQ:
5596 case ICmpInst::ICMP_NE:
5597 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5598 return true;
5599 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005600 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005601 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005602 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5603 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005604 return true;
5605 break;
5606 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005607 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005608 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5609 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005610 return true;
5611 break;
5612 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005613 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005614 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5615 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005616 return true;
5617 break;
5618 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005619 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005620 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5621 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005622 return true;
5623 break;
5624 }
5625
5626 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005627}
5628
Dan Gohman51f53b72009-06-21 23:46:38 +00005629/// getBECount - Subtract the end and start values and divide by the step,
5630/// rounding up, to get the number of times the backedge is executed. Return
5631/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005632const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005633 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005634 const SCEV *Step,
5635 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005636 assert(!isKnownNegative(Step) &&
5637 "This code doesn't handle negative strides yet!");
5638
Dan Gohman51f53b72009-06-21 23:46:38 +00005639 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005640 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005641 const SCEV *Diff = getMinusSCEV(End, Start);
5642 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005643
5644 // Add an adjustment to the difference between End and Start so that
5645 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005646 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005647
Dan Gohman1f96e672009-09-17 18:05:20 +00005648 if (!NoWrap) {
5649 // Check Add for unsigned overflow.
5650 // TODO: More sophisticated things could be done here.
5651 const Type *WideTy = IntegerType::get(getContext(),
5652 getTypeSizeInBits(Ty) + 1);
5653 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5654 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5655 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5656 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5657 return getCouldNotCompute();
5658 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005659
5660 return getUDivExpr(Add, Step);
5661}
5662
Chris Lattnerdb25de42005-08-15 23:33:51 +00005663/// HowManyLessThans - Return the number of times a backedge containing the
5664/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005665/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005666ScalarEvolution::BackedgeTakenInfo
5667ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5668 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005669 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005670 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005671
Dan Gohman35738ac2009-05-04 22:30:44 +00005672 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005673 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005674 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005675
Dan Gohman1f96e672009-09-17 18:05:20 +00005676 // Check to see if we have a flag which makes analysis easy.
5677 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5678 AddRec->hasNoUnsignedWrap();
5679
Chris Lattnerdb25de42005-08-15 23:33:51 +00005680 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005681 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005682 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005683
Dan Gohman52fddd32010-01-26 04:40:18 +00005684 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005685 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005686 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005687 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005688 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005689 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005690 // value and past the maximum value for its type in a single step.
5691 // Note that it's not sufficient to check NoWrap here, because even
5692 // though the value after a wrap is undefined, it's not undefined
5693 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005694 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005695 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005696 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005697 if (isSigned) {
5698 APInt Max = APInt::getSignedMaxValue(BitWidth);
5699 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5700 .slt(getSignedRange(RHS).getSignedMax()))
5701 return getCouldNotCompute();
5702 } else {
5703 APInt Max = APInt::getMaxValue(BitWidth);
5704 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5705 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5706 return getCouldNotCompute();
5707 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005708 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005709 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005710 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005711
Dan Gohmana1af7572009-04-30 20:47:05 +00005712 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5713 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5714 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005715 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005716
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005717 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005718 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005719
Dan Gohmana1af7572009-04-30 20:47:05 +00005720 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005721 const SCEV *MinStart = getConstant(isSigned ?
5722 getSignedRange(Start).getSignedMin() :
5723 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005724
Dan Gohmana1af7572009-04-30 20:47:05 +00005725 // If we know that the condition is true in order to enter the loop,
5726 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005727 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5728 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005729 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005730 if (!isLoopEntryGuardedByCond(L,
5731 isSigned ? ICmpInst::ICMP_SLT :
5732 ICmpInst::ICMP_ULT,
5733 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005734 End = isSigned ? getSMaxExpr(RHS, Start)
5735 : getUMaxExpr(RHS, Start);
5736
5737 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005738 const SCEV *MaxEnd = getConstant(isSigned ?
5739 getSignedRange(End).getSignedMax() :
5740 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005741
Dan Gohman52fddd32010-01-26 04:40:18 +00005742 // If MaxEnd is within a step of the maximum integer value in its type,
5743 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005744 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005745 // compute the correct value.
5746 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005747 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005748 MaxEnd = isSigned ?
5749 getSMinExpr(MaxEnd,
5750 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5751 StepMinusOne)) :
5752 getUMinExpr(MaxEnd,
5753 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5754 StepMinusOne));
5755
Dan Gohmana1af7572009-04-30 20:47:05 +00005756 // Finally, we subtract these two values and divide, rounding up, to get
5757 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005758 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005759
5760 // The maximum backedge count is similar, except using the minimum start
5761 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005762 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005763
5764 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005765 }
5766
Dan Gohman1c343752009-06-27 21:21:31 +00005767 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005768}
5769
Chris Lattner53e677a2004-04-02 20:23:17 +00005770/// getNumIterationsInRange - Return the number of iterations of this loop that
5771/// produce values in the specified constant range. Another way of looking at
5772/// this is that it returns the first iteration number where the value is not in
5773/// the condition, thus computing the exit count. If the iteration count can't
5774/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005775const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005776 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005777 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005778 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005779
5780 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005782 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005783 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005784 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005785 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005786 if (const SCEVAddRecExpr *ShiftedAddRec =
5787 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005788 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005789 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005790 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005791 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005792 }
5793
5794 // The only time we can solve this is when we have all constant indices.
5795 // Otherwise, we cannot determine the overflow conditions.
5796 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5797 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005798 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005799
5800
5801 // Okay at this point we know that all elements of the chrec are constants and
5802 // that the start element is zero.
5803
5804 // First check to see if the range contains zero. If not, the first
5805 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005806 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005807 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005808 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005809
Chris Lattner53e677a2004-04-02 20:23:17 +00005810 if (isAffine()) {
5811 // If this is an affine expression then we have this situation:
5812 // Solve {0,+,A} in Range === Ax in Range
5813
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005814 // We know that zero is in the range. If A is positive then we know that
5815 // the upper value of the range must be the first possible exit value.
5816 // If A is negative then the lower of the range is the last possible loop
5817 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005818 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005819 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5820 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005821
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005822 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005823 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005824 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005825
5826 // Evaluate at the exit value. If we really did fall out of the valid
5827 // range, then we computed our trip count, otherwise wrap around or other
5828 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005829 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005830 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005831 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005832
5833 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005834 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005835 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005836 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005837 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005838 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005839 } else if (isQuadratic()) {
5840 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5841 // quadratic equation to solve it. To do this, we must frame our problem in
5842 // terms of figuring out when zero is crossed, instead of when
5843 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005844 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005845 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005846 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005847
5848 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005849 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005850 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005851 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5852 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005853 if (R1) {
5854 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005855 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005856 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005857 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005858 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005859 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005860
Chris Lattner53e677a2004-04-02 20:23:17 +00005861 // Make sure the root is not off by one. The returned iteration should
5862 // not be in the range, but the previous one should be. When solving
5863 // for "X*X < 5", for example, we should not return a root of 2.
5864 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005865 R1->getValue(),
5866 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005867 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005868 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005869 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005870 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005871
Dan Gohman246b2562007-10-22 18:31:58 +00005872 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005873 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005874 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005875 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005876 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005877
Chris Lattner53e677a2004-04-02 20:23:17 +00005878 // If R1 was not in the range, then it is a good return value. Make
5879 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005880 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005881 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005882 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005883 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005884 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005885 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005886 }
5887 }
5888 }
5889
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005890 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005891}
5892
5893
5894
5895//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005896// SCEVCallbackVH Class Implementation
5897//===----------------------------------------------------------------------===//
5898
Dan Gohman1959b752009-05-19 19:22:47 +00005899void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005900 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005901 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5902 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005903 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005904 // this now dangles!
5905}
5906
Dan Gohman81f91212010-07-28 01:09:07 +00005907void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005908 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005909
Dan Gohman35738ac2009-05-04 22:30:44 +00005910 // Forget all the expressions associated with users of the old value,
5911 // so that future queries will recompute the expressions using the new
5912 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005913 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005914 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005915 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005916 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5917 UI != UE; ++UI)
5918 Worklist.push_back(*UI);
5919 while (!Worklist.empty()) {
5920 User *U = Worklist.pop_back_val();
5921 // Deleting the Old value will cause this to dangle. Postpone
5922 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005923 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005924 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005925 if (!Visited.insert(U))
5926 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005927 if (PHINode *PN = dyn_cast<PHINode>(U))
5928 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005929 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005930 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5931 UI != UE; ++UI)
5932 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005933 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005934 // Delete the Old value.
5935 if (PHINode *PN = dyn_cast<PHINode>(Old))
5936 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005937 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005938 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005939}
5940
Dan Gohman1959b752009-05-19 19:22:47 +00005941ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005942 : CallbackVH(V), SE(se) {}
5943
5944//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005945// ScalarEvolution Class Implementation
5946//===----------------------------------------------------------------------===//
5947
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005948ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005949 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005950 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005951}
5952
Chris Lattner53e677a2004-04-02 20:23:17 +00005953bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005954 this->F = &F;
5955 LI = &getAnalysis<LoopInfo>();
5956 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005957 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005958 return false;
5959}
5960
5961void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005962 // Iterate through all the SCEVUnknown instances and call their
5963 // destructors, so that they release their references to their values.
5964 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5965 U->~SCEVUnknown();
5966 FirstUnknown = 0;
5967
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005968 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005969 BackedgeTakenCounts.clear();
5970 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005971 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005972 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005973 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005974 UnsignedRanges.clear();
5975 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005976 UniqueSCEVs.clear();
5977 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005978}
5979
5980void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5981 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005982 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005983 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005984}
5985
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005986bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005987 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005988}
5989
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005990static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005991 const Loop *L) {
5992 // Print all inner loops first
5993 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5994 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005995
Dan Gohman30733292010-01-09 18:17:45 +00005996 OS << "Loop ";
5997 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5998 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005999
Dan Gohman5d984912009-12-18 01:14:11 +00006000 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006001 L->getExitBlocks(ExitBlocks);
6002 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006003 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006004
Dan Gohman46bdfb02009-02-24 18:55:53 +00006005 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6006 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006007 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006008 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006009 }
6010
Dan Gohman30733292010-01-09 18:17:45 +00006011 OS << "\n"
6012 "Loop ";
6013 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6014 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006015
6016 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6017 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6018 } else {
6019 OS << "Unpredictable max backedge-taken count. ";
6020 }
6021
6022 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006023}
6024
Dan Gohman5d984912009-12-18 01:14:11 +00006025void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006026 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006027 // out SCEV values of all instructions that are interesting. Doing
6028 // this potentially causes it to create new SCEV objects though,
6029 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006030 // observable from outside the class though, so casting away the
6031 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006032 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006033
Dan Gohman30733292010-01-09 18:17:45 +00006034 OS << "Classifying expressions for: ";
6035 WriteAsOperand(OS, F, /*PrintType=*/false);
6036 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006037 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006038 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006039 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006040 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006041 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006042 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006043
Dan Gohman0c689c52009-06-19 17:49:54 +00006044 const Loop *L = LI->getLoopFor((*I).getParent());
6045
Dan Gohman0bba49c2009-07-07 17:06:11 +00006046 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006047 if (AtUse != SV) {
6048 OS << " --> ";
6049 AtUse->print(OS);
6050 }
6051
6052 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006053 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006054 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006055 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006056 OS << "<<Unknown>>";
6057 } else {
6058 OS << *ExitValue;
6059 }
6060 }
6061
Chris Lattner53e677a2004-04-02 20:23:17 +00006062 OS << "\n";
6063 }
6064
Dan Gohman30733292010-01-09 18:17:45 +00006065 OS << "Determining loop execution counts for: ";
6066 WriteAsOperand(OS, F, /*PrintType=*/false);
6067 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006068 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6069 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006070}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006071
Dan Gohman714b5292010-11-17 23:21:44 +00006072ScalarEvolution::LoopDisposition
6073ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6074 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6075 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6076 Values.insert(std::make_pair(L, LoopVariant));
6077 if (!Pair.second)
6078 return Pair.first->second;
6079
6080 LoopDisposition D = computeLoopDisposition(S, L);
6081 return LoopDispositions[S][L] = D;
6082}
6083
6084ScalarEvolution::LoopDisposition
6085ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006086 switch (S->getSCEVType()) {
6087 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006088 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006089 case scTruncate:
6090 case scZeroExtend:
6091 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006092 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006093 case scAddRecExpr: {
6094 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6095
Dan Gohman714b5292010-11-17 23:21:44 +00006096 // If L is the addrec's loop, it's computable.
6097 if (AR->getLoop() == L)
6098 return LoopComputable;
6099
Dan Gohman17ead4f2010-11-17 21:23:15 +00006100 // Add recurrences are never invariant in the function-body (null loop).
6101 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006102 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006103
6104 // This recurrence is variant w.r.t. L if L contains AR's loop.
6105 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006106 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006107
6108 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6109 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006110 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006111
6112 // This recurrence is variant w.r.t. L if any of its operands
6113 // are variant.
6114 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6115 I != E; ++I)
6116 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006117 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006118
6119 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006120 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006121 }
6122 case scAddExpr:
6123 case scMulExpr:
6124 case scUMaxExpr:
6125 case scSMaxExpr: {
6126 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006127 bool HasVarying = false;
6128 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6129 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006130 LoopDisposition D = getLoopDisposition(*I, L);
6131 if (D == LoopVariant)
6132 return LoopVariant;
6133 if (D == LoopComputable)
6134 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006135 }
Dan Gohman714b5292010-11-17 23:21:44 +00006136 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006137 }
6138 case scUDivExpr: {
6139 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006140 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6141 if (LD == LoopVariant)
6142 return LoopVariant;
6143 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6144 if (RD == LoopVariant)
6145 return LoopVariant;
6146 return (LD == LoopInvariant && RD == LoopInvariant) ?
6147 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006148 }
6149 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006150 // All non-instruction values are loop invariant. All instructions are loop
6151 // invariant if they are not contained in the specified loop.
6152 // Instructions are never considered invariant in the function body
6153 // (null loop) because they are defined within the "loop".
6154 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6155 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6156 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006157 case scCouldNotCompute:
6158 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006159 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006160 default: break;
6161 }
6162 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006163 return LoopVariant;
6164}
6165
6166bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6167 return getLoopDisposition(S, L) == LoopInvariant;
6168}
6169
6170bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6171 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006172}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006173
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006174ScalarEvolution::BlockDisposition
6175ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6176 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6177 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6178 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6179 if (!Pair.second)
6180 return Pair.first->second;
6181
6182 BlockDisposition D = computeBlockDisposition(S, BB);
6183 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006184}
6185
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006186ScalarEvolution::BlockDisposition
6187ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006188 switch (S->getSCEVType()) {
6189 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006190 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006191 case scTruncate:
6192 case scZeroExtend:
6193 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006194 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006195 case scAddRecExpr: {
6196 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006197 // to test for proper dominance too, because the instruction which
6198 // produces the addrec's value is a PHI, and a PHI effectively properly
6199 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006200 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6201 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006202 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006203 }
6204 // FALL THROUGH into SCEVNAryExpr handling.
6205 case scAddExpr:
6206 case scMulExpr:
6207 case scUMaxExpr:
6208 case scSMaxExpr: {
6209 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006210 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006211 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006212 I != E; ++I) {
6213 BlockDisposition D = getBlockDisposition(*I, BB);
6214 if (D == DoesNotDominateBlock)
6215 return DoesNotDominateBlock;
6216 if (D == DominatesBlock)
6217 Proper = false;
6218 }
6219 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006220 }
6221 case scUDivExpr: {
6222 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006223 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6224 BlockDisposition LD = getBlockDisposition(LHS, BB);
6225 if (LD == DoesNotDominateBlock)
6226 return DoesNotDominateBlock;
6227 BlockDisposition RD = getBlockDisposition(RHS, BB);
6228 if (RD == DoesNotDominateBlock)
6229 return DoesNotDominateBlock;
6230 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6231 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006232 }
6233 case scUnknown:
6234 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006235 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6236 if (I->getParent() == BB)
6237 return DominatesBlock;
6238 if (DT->properlyDominates(I->getParent(), BB))
6239 return ProperlyDominatesBlock;
6240 return DoesNotDominateBlock;
6241 }
6242 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006243 case scCouldNotCompute:
6244 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006245 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006246 default: break;
6247 }
6248 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006249 return DoesNotDominateBlock;
6250}
6251
6252bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6253 return getBlockDisposition(S, BB) >= DominatesBlock;
6254}
6255
6256bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6257 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006258}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006259
6260bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6261 switch (S->getSCEVType()) {
6262 case scConstant:
6263 return false;
6264 case scTruncate:
6265 case scZeroExtend:
6266 case scSignExtend: {
6267 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6268 const SCEV *CastOp = Cast->getOperand();
6269 return Op == CastOp || hasOperand(CastOp, Op);
6270 }
6271 case scAddRecExpr:
6272 case scAddExpr:
6273 case scMulExpr:
6274 case scUMaxExpr:
6275 case scSMaxExpr: {
6276 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6277 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6278 I != E; ++I) {
6279 const SCEV *NAryOp = *I;
6280 if (NAryOp == Op || hasOperand(NAryOp, Op))
6281 return true;
6282 }
6283 return false;
6284 }
6285 case scUDivExpr: {
6286 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6287 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6288 return LHS == Op || hasOperand(LHS, Op) ||
6289 RHS == Op || hasOperand(RHS, Op);
6290 }
6291 case scUnknown:
6292 return false;
6293 case scCouldNotCompute:
6294 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6295 return false;
6296 default: break;
6297 }
6298 llvm_unreachable("Unknown SCEV kind!");
6299 return false;
6300}
Dan Gohman56a75682010-11-17 23:28:48 +00006301
6302void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6303 ValuesAtScopes.erase(S);
6304 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006305 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006306 UnsignedRanges.erase(S);
6307 SignedRanges.erase(S);
6308}