blob: 063de1998ee3772626e45080091b0ad9015363e2 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Argyrios Kyrtzidis7268d972010-08-14 21:35:10 +000022#include "llvm/Support/Compiler.h"
Chris Lattner45762472010-02-03 21:24:49 +000023using namespace llvm;
24
25namespace {
26class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis7268d972010-08-14 21:35:10 +000027 X86MCCodeEmitter(const X86MCCodeEmitter &) ATTRIBUTE_UNUSED; // DONT IMPLEMENT
28 void operator=(const X86MCCodeEmitter &) ATTRIBUTE_UNUSED; // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000029 const TargetMachine &TM;
30 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000031 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000032 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000033public:
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000034 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000035 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000036 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000037 }
38
39 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000040
41 unsigned getNumFixupKinds() const {
Chris Lattner9fc05222010-07-07 22:27:31 +000042 return 5;
Daniel Dunbar73c55742010-02-09 22:59:55 +000043 }
44
Chris Lattner8d31de62010-02-11 21:27:18 +000045 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
46 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000047 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000049 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000050 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
51 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000052 };
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000053
Chris Lattner8d31de62010-02-11 21:27:18 +000054 if (Kind < FirstTargetFixupKind)
55 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000056
Chris Lattner8d31de62010-02-11 21:27:18 +000057 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000058 "Invalid kind!");
59 return Infos[Kind - FirstTargetFixupKind];
60 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000061
Chris Lattner28249d92010-02-05 01:53:19 +000062 static unsigned GetX86RegNum(const MCOperand &MO) {
63 return X86RegisterInfo::getX86RegNum(MO.getReg());
64 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000065
66 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
67 // 0-7 and the difference between the 2 groups is given by the REX prefix.
68 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
69 // in 1's complement form, example:
70 //
71 // ModRM field => XMM9 => 1
72 // VEX.VVVV => XMM9 => ~9
73 //
74 // See table 4-35 of Intel AVX Programming Reference for details.
75 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
76 unsigned OpNum) {
77 unsigned SrcReg = MI.getOperand(OpNum).getReg();
78 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000079 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
80 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000081 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000082
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000083 // The registers represented through VEX_VVVV should
84 // be encoded in 1's complement form.
85 return (~SrcRegNum) & 0xf;
86 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000087
Chris Lattner37ce80e2010-02-10 06:41:02 +000088 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000089 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000090 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000091 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000092
Chris Lattner37ce80e2010-02-10 06:41:02 +000093 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
94 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000095 // Output the constant in little endian byte order.
96 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000097 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000098 Val >>= 8;
99 }
100 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000101
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000102 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +0000103 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000104 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000105 SmallVectorImpl<MCFixup> &Fixups,
106 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000107
Chris Lattner28249d92010-02-05 01:53:19 +0000108 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
109 unsigned RM) {
110 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
111 return RM | (RegOpcode << 3) | (Mod << 6);
112 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000113
Chris Lattner28249d92010-02-05 01:53:19 +0000114 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000115 unsigned &CurByte, raw_ostream &OS) const {
116 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000117 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000118
Chris Lattner0e73c392010-02-05 06:16:07 +0000119 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000120 unsigned &CurByte, raw_ostream &OS) const {
121 // SIB byte is in the same format as the ModRMByte.
122 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000123 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000124
125
Chris Lattner1ac23b12010-02-05 02:18:40 +0000126 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000127 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000128 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000129 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000130
Daniel Dunbar73c55742010-02-09 22:59:55 +0000131 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000133
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000134 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000135 const MCInst &MI, const TargetInstrDesc &Desc,
136 raw_ostream &OS) const;
137
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000138 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
139 int MemOperand, const MCInst &MI,
140 raw_ostream &OS) const;
141
Chris Lattner834df192010-07-08 22:28:12 +0000142 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000143 const MCInst &MI, const TargetInstrDesc &Desc,
144 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000145};
146
147} // end anonymous namespace
148
149
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000150MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000151 TargetMachine &TM,
152 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000153 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000154}
155
156MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000157 TargetMachine &TM,
158 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000159 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000160}
161
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000162/// isDisp8 - Return true if this signed displacement fits in a 8-bit
163/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000164static bool isDisp8(int Value) {
165 return Value == (signed char)Value;
166}
167
Chris Lattnercf653392010-02-12 22:36:47 +0000168/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
169/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000170static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000171 unsigned Size = X86II::getSizeOfImm(TSFlags);
172 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000173
Chris Lattnercf653392010-02-12 22:36:47 +0000174 switch (Size) {
175 default: assert(0 && "Unknown immediate size");
176 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000177 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000178 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000179 case 8: assert(!isPCRel); return FK_Data_8;
180 }
181}
182
183
Chris Lattner0e73c392010-02-05 06:16:07 +0000184void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000185EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000186 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000187 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000188 // If this is a simple integer displacement that doesn't require a relocation,
189 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000190 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000191 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
192 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000193 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000194 return;
195 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000196
Chris Lattner835acab2010-02-12 23:00:36 +0000197 // If we have an immoffset, add it to the expression.
198 const MCExpr *Expr = DispOp.getExpr();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000199
Chris Lattnera08b5872010-02-16 05:03:17 +0000200 // If the fixup is pc-relative, we need to bias the value to be relative to
201 // the start of the field, not the end of the field.
202 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000203 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
204 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000205 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000206 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000207 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000208 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
209 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000210
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000211 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000212 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000213 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000214
Chris Lattner5dccfad2010-02-10 06:52:12 +0000215 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000216 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000217 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000218}
219
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
221 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000222 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000223 raw_ostream &OS,
224 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000225 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000226 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000227 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000228 const MCOperand &IndexReg = MI.getOperand(Op+2);
229 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000230
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000231 // Handle %rip relative addressing.
232 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000233 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
234 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000235 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000236
Chris Lattner0f53cf22010-03-18 18:10:56 +0000237 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000238
Chris Lattner0f53cf22010-03-18 18:10:56 +0000239 // movq loads are handled with a special relocation form which allows the
240 // linker to eliminate some loads for GOT references which end up in the
241 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000242 if (MI.getOpcode() == X86::MOV64rm ||
243 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000244 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000245
Chris Lattner835acab2010-02-12 23:00:36 +0000246 // rip-relative addressing is actually relative to the *next* instruction.
247 // Since an immediate can follow the mod/rm byte for an instruction, this
248 // means that we need to bias the immediate field of the instruction with
249 // the size of the immediate field. If we have this case, add it into the
250 // expression to emit.
251 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000252
Chris Lattner0f53cf22010-03-18 18:10:56 +0000253 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000254 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000255 return;
256 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000257
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000258 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000259
Chris Lattnera8168ec2010-02-09 21:57:34 +0000260 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000261 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000262 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
263 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000264
Chris Lattnera8168ec2010-02-09 21:57:34 +0000265 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000266 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000267 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
268 // encode to an R/M value of 4, which indicates that a SIB byte is
269 // present.
270 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000271 // If there is no base register and we're in 64-bit mode, we need a SIB
272 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
273 (!Is64BitMode || BaseReg != 0)) {
274
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000275 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000276 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000277 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000278 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000279 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000280
Chris Lattnera8168ec2010-02-09 21:57:34 +0000281 // If the base is not EBP/ESP and there is no displacement, use simple
282 // indirect register encoding, this handles addresses like [EAX]. The
283 // encoding for [EBP] with no displacement means [disp32] so we handle it
284 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000285 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000286 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000287 return;
288 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000289
Chris Lattnera8168ec2010-02-09 21:57:34 +0000290 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000291 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000292 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000293 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000294 return;
295 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000296
Chris Lattnera8168ec2010-02-09 21:57:34 +0000297 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000298 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000299 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000300 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000301 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000302
Chris Lattner0e73c392010-02-05 06:16:07 +0000303 // We need a SIB byte, so start by outputting the ModR/M byte first
304 assert(IndexReg.getReg() != X86::ESP &&
305 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000306
Chris Lattner0e73c392010-02-05 06:16:07 +0000307 bool ForceDisp32 = false;
308 bool ForceDisp8 = false;
309 if (BaseReg == 0) {
310 // If there is no base register, we emit the special case SIB byte with
311 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000312 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000313 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000314 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000315 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000316 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000317 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000318 } else if (Disp.getImm() == 0 &&
319 // Base reg can't be anything that ends up with '5' as the base
320 // reg, it is the magic [*] nomenclature that indicates no base.
321 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000322 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000323 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000324 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000325 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000326 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000327 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
328 } else {
329 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000330 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000331 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000332
Chris Lattner0e73c392010-02-05 06:16:07 +0000333 // Calculate what the SS field value should be...
334 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
335 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000336
Chris Lattner0e73c392010-02-05 06:16:07 +0000337 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000338 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000339 // Manual 2A, table 2-7. The displacement has already been output.
340 unsigned IndexRegNo;
341 if (IndexReg.getReg())
342 IndexRegNo = GetX86RegNum(IndexReg);
343 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
344 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000345 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000346 } else {
347 unsigned IndexRegNo;
348 if (IndexReg.getReg())
349 IndexRegNo = GetX86RegNum(IndexReg);
350 else
351 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000352 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000353 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000354
Chris Lattner0e73c392010-02-05 06:16:07 +0000355 // Do we need to output a displacement?
356 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000357 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000358 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000359 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000360}
361
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000362/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
363/// called VEX.
364void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000365 int MemOperand, const MCInst &MI,
366 const TargetInstrDesc &Desc,
367 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000368 bool HasVEX_4V = false;
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000369 if (TSFlags & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000370 HasVEX_4V = true;
371
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000372 // VEX_R: opcode externsion equivalent to REX.R in
373 // 1's complement (inverted) form
374 //
375 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
376 // 0: Same as REX_R=1 (64 bit mode only)
377 //
378 unsigned char VEX_R = 0x1;
379
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000380 // VEX_X: equivalent to REX.X, only used when a
381 // register is used for index in SIB Byte.
382 //
383 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
384 // 0: Same as REX.X=1 (64-bit mode only)
385 unsigned char VEX_X = 0x1;
386
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000387 // VEX_B:
388 //
389 // 1: Same as REX_B=0 (ignored in 32-bit mode)
390 // 0: Same as REX_B=1 (64 bit mode only)
391 //
392 unsigned char VEX_B = 0x1;
393
394 // VEX_W: opcode specific (use like REX.W, or used for
395 // opcode extension, or ignored, depending on the opcode byte)
396 unsigned char VEX_W = 0;
397
398 // VEX_5M (VEX m-mmmmm field):
399 //
400 // 0b00000: Reserved for future use
401 // 0b00001: implied 0F leading opcode
402 // 0b00010: implied 0F 38 leading opcode bytes
403 // 0b00011: implied 0F 3A leading opcode bytes
404 // 0b00100-0b11111: Reserved for future use
405 //
406 unsigned char VEX_5M = 0x1;
407
408 // VEX_4V (VEX vvvv field): a register specifier
409 // (in 1's complement form) or 1111 if unused.
410 unsigned char VEX_4V = 0xf;
411
412 // VEX_L (Vector Length):
413 //
414 // 0: scalar or 128-bit vector
415 // 1: 256-bit vector
416 //
417 unsigned char VEX_L = 0;
418
419 // VEX_PP: opcode extension providing equivalent
420 // functionality of a SIMD prefix
421 //
422 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000423 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000424 // 0b10: F3
425 // 0b11: F2
426 //
427 unsigned char VEX_PP = 0;
428
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000429 // Encode the operand size opcode prefix as needed.
430 if (TSFlags & X86II::OpSize)
431 VEX_PP = 0x01;
432
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000433 if (TSFlags & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000434 VEX_W = 1;
435
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000436 if (TSFlags & X86II::VEX_L)
437 VEX_L = 1;
438
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000439 switch (TSFlags & X86II::Op0Mask) {
440 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000441 case X86II::T8: // 0F 38
442 VEX_5M = 0x2;
443 break;
444 case X86II::TA: // 0F 3A
445 VEX_5M = 0x3;
446 break;
447 case X86II::TF: // F2 0F 38
448 VEX_PP = 0x3;
449 VEX_5M = 0x2;
450 break;
451 case X86II::XS: // F3 0F
452 VEX_PP = 0x2;
453 break;
454 case X86II::XD: // F2 0F
455 VEX_PP = 0x3;
456 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000457 case X86II::TB: // Bypass: Not used by VEX
458 case 0:
459 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000460 }
461
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000462 // Set the vector length to 256-bit if YMM0-YMM15 is used
463 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
464 if (!MI.getOperand(i).isReg())
465 continue;
466 unsigned SrcReg = MI.getOperand(i).getReg();
467 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
468 VEX_L = 1;
469 }
470
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000471 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000472 unsigned CurOp = 0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000473 bool IsDestMem = false;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000474
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000475 switch (TSFlags & X86II::FormMask) {
476 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000477 case X86II::MRMDestMem:
478 IsDestMem = true;
479 // The important info for the VEX prefix is never beyond the address
480 // registers. Don't check beyond that.
481 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000482 case X86II::MRM0m: case X86II::MRM1m:
483 case X86II::MRM2m: case X86II::MRM3m:
484 case X86II::MRM4m: case X86II::MRM5m:
485 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000486 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000487 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000488 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000489 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000490 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000491 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000492
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000493 if (HasVEX_4V) {
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000494 VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000495 CurOp++;
496 }
497
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000498 // To only check operands before the memory address ones, start
499 // the search from the begining
500 if (IsDestMem)
501 CurOp = 0;
502
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000503 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000504 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000505 if (TSFlags & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000506 NumOps--;
507
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000508 for (; CurOp != NumOps; ++CurOp) {
509 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000510 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
511 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000512 if (!VEX_B && MO.isReg() &&
513 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000514 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
515 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000516 }
517 break;
Bruno Cardoso Lopescf6ca032010-07-21 08:56:24 +0000518 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
519 if (!MI.getNumOperands())
520 break;
521
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000522 if (MI.getOperand(CurOp).isReg() &&
523 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
524 VEX_B = 0;
525
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000526 if (HasVEX_4V)
527 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
528
529 CurOp++;
530 for (; CurOp != NumOps; ++CurOp) {
531 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000532 if (MO.isReg() && !HasVEX_4V &&
533 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
534 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000535 }
536 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000537 }
538
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000539 // Emit segment override opcode prefix as needed.
540 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
541
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000542 // VEX opcode prefix can have 2 or 3 bytes
543 //
544 // 3 bytes:
545 // +-----+ +--------------+ +-------------------+
546 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
547 // +-----+ +--------------+ +-------------------+
548 // 2 bytes:
549 // +-----+ +-------------------+
550 // | C5h | | R | vvvv | L | pp |
551 // +-----+ +-------------------+
552 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000553 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
554
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000555 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000556 EmitByte(0xC5, CurByte, OS);
557 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
558 return;
559 }
560
561 // 3 byte VEX prefix
562 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000563 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000564 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
565}
566
Chris Lattner39a612e2010-02-05 22:10:22 +0000567/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
568/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
569/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000570static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000571 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000572 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000573 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000574 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000575
Chris Lattner39a612e2010-02-05 22:10:22 +0000576 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000577
Chris Lattner39a612e2010-02-05 22:10:22 +0000578 unsigned NumOps = MI.getNumOperands();
579 // FIXME: MCInst should explicitize the two-addrness.
580 bool isTwoAddr = NumOps > 1 &&
581 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000582
Chris Lattner39a612e2010-02-05 22:10:22 +0000583 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
584 unsigned i = isTwoAddr ? 1 : 0;
585 for (; i != NumOps; ++i) {
586 const MCOperand &MO = MI.getOperand(i);
587 if (!MO.isReg()) continue;
588 unsigned Reg = MO.getReg();
589 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000590 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
591 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000592 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000593 break;
594 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000595
Chris Lattner39a612e2010-02-05 22:10:22 +0000596 switch (TSFlags & X86II::FormMask) {
597 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
598 case X86II::MRMSrcReg:
599 if (MI.getOperand(0).isReg() &&
600 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000601 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000602 i = isTwoAddr ? 2 : 1;
603 for (; i != NumOps; ++i) {
604 const MCOperand &MO = MI.getOperand(i);
605 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000606 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000607 }
608 break;
609 case X86II::MRMSrcMem: {
610 if (MI.getOperand(0).isReg() &&
611 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000612 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000613 unsigned Bit = 0;
614 i = isTwoAddr ? 2 : 1;
615 for (; i != NumOps; ++i) {
616 const MCOperand &MO = MI.getOperand(i);
617 if (MO.isReg()) {
618 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000619 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000620 Bit++;
621 }
622 }
623 break;
624 }
625 case X86II::MRM0m: case X86II::MRM1m:
626 case X86II::MRM2m: case X86II::MRM3m:
627 case X86II::MRM4m: case X86II::MRM5m:
628 case X86II::MRM6m: case X86II::MRM7m:
629 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000630 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000631 i = isTwoAddr ? 1 : 0;
632 if (NumOps > e && MI.getOperand(e).isReg() &&
633 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000634 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000635 unsigned Bit = 0;
636 for (; i != e; ++i) {
637 const MCOperand &MO = MI.getOperand(i);
638 if (MO.isReg()) {
639 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000640 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000641 Bit++;
642 }
643 }
644 break;
645 }
646 default:
647 if (MI.getOperand(0).isReg() &&
648 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000649 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000650 i = isTwoAddr ? 2 : 1;
651 for (unsigned e = NumOps; i != e; ++i) {
652 const MCOperand &MO = MI.getOperand(i);
653 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000654 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000655 }
656 break;
657 }
658 return REX;
659}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000660
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000661/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
662void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
663 unsigned &CurByte, int MemOperand,
664 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000665 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000666 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000667 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000668 case 0:
669 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000670 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000671 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000672 default: assert(0 && "Unknown segment register!");
673 case 0: break;
674 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
675 case X86::SS: EmitByte(0x36, CurByte, OS); break;
676 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
677 case X86::ES: EmitByte(0x26, CurByte, OS); break;
678 case X86::FS: EmitByte(0x64, CurByte, OS); break;
679 case X86::GS: EmitByte(0x65, CurByte, OS); break;
680 }
681 }
682 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000683 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000684 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000685 break;
686 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000687 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000688 break;
689 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000690}
691
692/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
693///
694/// MemOperand is the operand # of the start of a memory operand if present. If
695/// Not present, it is -1.
696void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
697 int MemOperand, const MCInst &MI,
698 const TargetInstrDesc &Desc,
699 raw_ostream &OS) const {
700
701 // Emit the lock opcode prefix as needed.
702 if (TSFlags & X86II::LOCK)
703 EmitByte(0xF0, CurByte, OS);
704
705 // Emit segment override opcode prefix as needed.
706 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000707
Chris Lattner1e80f402010-02-03 21:57:59 +0000708 // Emit the repeat opcode prefix as needed.
709 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000710 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000711
Chris Lattner1e80f402010-02-03 21:57:59 +0000712 // Emit the operand size opcode prefix as needed.
713 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000714 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000715
Chris Lattner1e80f402010-02-03 21:57:59 +0000716 // Emit the address size opcode prefix as needed.
717 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000718 EmitByte(0x67, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000719
Chris Lattner1e80f402010-02-03 21:57:59 +0000720 bool Need0FPrefix = false;
721 switch (TSFlags & X86II::Op0Mask) {
722 default: assert(0 && "Invalid prefix!");
723 case 0: break; // No prefix!
724 case X86II::REP: break; // already handled.
725 case X86II::TB: // Two-byte opcode prefix
726 case X86II::T8: // 0F 38
727 case X86II::TA: // 0F 3A
728 Need0FPrefix = true;
729 break;
730 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000731 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000732 Need0FPrefix = true;
733 break;
734 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000735 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000736 Need0FPrefix = true;
737 break;
738 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000739 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000740 Need0FPrefix = true;
741 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000742 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
743 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
744 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
745 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
746 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
747 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
748 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
749 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000750 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000751
Chris Lattner1e80f402010-02-03 21:57:59 +0000752 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000753 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000754 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000755 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000756 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000757 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000758
Chris Lattner1e80f402010-02-03 21:57:59 +0000759 // 0x0F escape code must be emitted just before the opcode.
760 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000761 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000762
Chris Lattner1e80f402010-02-03 21:57:59 +0000763 // FIXME: Pull this up into previous switch if REX can be moved earlier.
764 switch (TSFlags & X86II::Op0Mask) {
765 case X86II::TF: // F2 0F 38
766 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000767 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000768 break;
769 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000770 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000771 break;
772 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000773}
774
775void X86MCCodeEmitter::
776EncodeInstruction(const MCInst &MI, raw_ostream &OS,
777 SmallVectorImpl<MCFixup> &Fixups) const {
778 unsigned Opcode = MI.getOpcode();
779 const TargetInstrDesc &Desc = TII.get(Opcode);
780 uint64_t TSFlags = Desc.TSFlags;
781
Chris Lattner757e8d62010-07-09 00:17:50 +0000782 // Pseudo instructions don't get encoded.
783 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
784 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000785
Chris Lattner834df192010-07-08 22:28:12 +0000786 // If this is a two-address instruction, skip one of the register operands.
787 // FIXME: This should be handled during MCInst lowering.
788 unsigned NumOps = Desc.getNumOperands();
789 unsigned CurOp = 0;
790 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
791 ++CurOp;
792 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
793 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
794 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000795
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000796 // Keep track of the current byte being emitted.
797 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000798
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000799 // Is this instruction encoded using the AVX VEX prefix?
800 bool HasVEXPrefix = false;
801
802 // It uses the VEX.VVVV field?
803 bool HasVEX_4V = false;
804
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000805 if (TSFlags & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000806 HasVEXPrefix = true;
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000807 if (TSFlags & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000808 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000809
Chris Lattner834df192010-07-08 22:28:12 +0000810 // Determine where the memory operand starts, if present.
811 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
812 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000813
Chris Lattner834df192010-07-08 22:28:12 +0000814 if (!HasVEXPrefix)
815 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
816 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000817 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000818
Chris Lattner74a21512010-02-05 19:24:13 +0000819 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000820 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000821 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000822 case X86II::MRMInitReg:
823 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000824 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000825 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000826 case X86II::Pseudo:
827 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000828 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000829 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000830 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000831
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000832 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000833 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000834 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000835
Chris Lattner28249d92010-02-05 01:53:19 +0000836 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000837 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000838 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000839 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000840 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000841 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000842
Chris Lattner1ac23b12010-02-05 02:18:40 +0000843 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000844 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000845 SrcRegNum = CurOp + X86::AddrNumOperands;
846
847 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
848 SrcRegNum++;
849
Chris Lattner1ac23b12010-02-05 02:18:40 +0000850 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000851 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000852 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000853 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000854 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000855
Chris Lattnerdaa45552010-02-05 19:04:37 +0000856 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000857 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000858 SrcRegNum = CurOp + 1;
859
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000860 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000861 SrcRegNum++;
862
863 EmitRegModRMByte(MI.getOperand(SrcRegNum),
864 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
865 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000866 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000867
Chris Lattnerdaa45552010-02-05 19:04:37 +0000868 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000869 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000870 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000871 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000872 ++AddrOperands;
873 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
874 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000875
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000876 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000877
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000878 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000879 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000880 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000881 break;
882 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000883
884 case X86II::MRM0r: case X86II::MRM1r:
885 case X86II::MRM2r: case X86II::MRM3r:
886 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000887 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000888 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
889 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000890 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000891 EmitRegModRMByte(MI.getOperand(CurOp++),
892 (TSFlags & X86II::FormMask)-X86II::MRM0r,
893 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000894 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000895 case X86II::MRM0m: case X86II::MRM1m:
896 case X86II::MRM2m: case X86II::MRM3m:
897 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000898 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000899 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000900 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000901 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000902 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000903 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000904 case X86II::MRM_C1:
905 EmitByte(BaseOpcode, CurByte, OS);
906 EmitByte(0xC1, CurByte, OS);
907 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000908 case X86II::MRM_C2:
909 EmitByte(BaseOpcode, CurByte, OS);
910 EmitByte(0xC2, CurByte, OS);
911 break;
912 case X86II::MRM_C3:
913 EmitByte(BaseOpcode, CurByte, OS);
914 EmitByte(0xC3, CurByte, OS);
915 break;
916 case X86II::MRM_C4:
917 EmitByte(BaseOpcode, CurByte, OS);
918 EmitByte(0xC4, CurByte, OS);
919 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000920 case X86II::MRM_C8:
921 EmitByte(BaseOpcode, CurByte, OS);
922 EmitByte(0xC8, CurByte, OS);
923 break;
924 case X86II::MRM_C9:
925 EmitByte(BaseOpcode, CurByte, OS);
926 EmitByte(0xC9, CurByte, OS);
927 break;
928 case X86II::MRM_E8:
929 EmitByte(BaseOpcode, CurByte, OS);
930 EmitByte(0xE8, CurByte, OS);
931 break;
932 case X86II::MRM_F0:
933 EmitByte(BaseOpcode, CurByte, OS);
934 EmitByte(0xF0, CurByte, OS);
935 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000936 case X86II::MRM_F8:
937 EmitByte(BaseOpcode, CurByte, OS);
938 EmitByte(0xF8, CurByte, OS);
939 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000940 case X86II::MRM_F9:
941 EmitByte(BaseOpcode, CurByte, OS);
942 EmitByte(0xF9, CurByte, OS);
943 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000944 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000945
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000946 // If there is a remaining operand, it must be a trailing immediate. Emit it
947 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000948 if (CurOp != NumOps) {
949 // The last source register of a 4 operand instruction in AVX is encoded
950 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000951 if (TSFlags & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000952 const MCOperand &MO = MI.getOperand(CurOp++);
953 bool IsExtReg =
954 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
955 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
956 RegNum |= GetX86RegNum(MO) << 4;
957 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
958 Fixups);
959 } else
960 EmitImmediate(MI.getOperand(CurOp++),
961 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
962 CurByte, OS, Fixups);
963 }
964
965
Chris Lattner28249d92010-02-05 01:53:19 +0000966#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000967 // FIXME: Verify.
968 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000969 errs() << "Cannot encode all operands of: ";
970 MI.dump();
971 errs() << '\n';
972 abort();
973 }
974#endif
Chris Lattner45762472010-02-03 21:24:49 +0000975}