blob: 633ddd49d74d095cc64aa3444f3cf456afe94e17 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000034 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner9fc05222010-07-07 22:27:31 +000041 return 5;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000048 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000049 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
50 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000051 };
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000052
Chris Lattner8d31de62010-02-11 21:27:18 +000053 if (Kind < FirstTargetFixupKind)
54 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000055
Chris Lattner8d31de62010-02-11 21:27:18 +000056 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000057 "Invalid kind!");
58 return Infos[Kind - FirstTargetFixupKind];
59 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000060
Chris Lattner28249d92010-02-05 01:53:19 +000061 static unsigned GetX86RegNum(const MCOperand &MO) {
62 return X86RegisterInfo::getX86RegNum(MO.getReg());
63 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000064
65 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
66 // 0-7 and the difference between the 2 groups is given by the REX prefix.
67 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
68 // in 1's complement form, example:
69 //
70 // ModRM field => XMM9 => 1
71 // VEX.VVVV => XMM9 => ~9
72 //
73 // See table 4-35 of Intel AVX Programming Reference for details.
74 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
75 unsigned OpNum) {
76 unsigned SrcReg = MI.getOperand(OpNum).getReg();
77 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000078 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
79 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000080 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000081
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000082 // The registers represented through VEX_VVVV should
83 // be encoded in 1's complement form.
84 return (~SrcRegNum) & 0xf;
85 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000086
Chris Lattner37ce80e2010-02-10 06:41:02 +000087 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000088 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000089 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000090 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000091
Chris Lattner37ce80e2010-02-10 06:41:02 +000092 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
93 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000094 // Output the constant in little endian byte order.
95 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000097 Val >>= 8;
98 }
99 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000100
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000101 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +0000102 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000103 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000104 SmallVectorImpl<MCFixup> &Fixups,
105 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000106
Chris Lattner28249d92010-02-05 01:53:19 +0000107 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
108 unsigned RM) {
109 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
110 return RM | (RegOpcode << 3) | (Mod << 6);
111 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000112
Chris Lattner28249d92010-02-05 01:53:19 +0000113 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000114 unsigned &CurByte, raw_ostream &OS) const {
115 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000116 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000117
Chris Lattner0e73c392010-02-05 06:16:07 +0000118 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000119 unsigned &CurByte, raw_ostream &OS) const {
120 // SIB byte is in the same format as the ModRMByte.
121 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000122 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000123
124
Chris Lattner1ac23b12010-02-05 02:18:40 +0000125 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000126 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000127 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000128 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000129
Daniel Dunbar73c55742010-02-09 22:59:55 +0000130 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
131 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000132
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000133 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000134 const MCInst &MI, const TargetInstrDesc &Desc,
135 raw_ostream &OS) const;
136
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000137 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
138 int MemOperand, const MCInst &MI,
139 raw_ostream &OS) const;
140
Chris Lattner834df192010-07-08 22:28:12 +0000141 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000142 const MCInst &MI, const TargetInstrDesc &Desc,
143 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000144};
145
146} // end anonymous namespace
147
148
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000149MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000150 TargetMachine &TM,
151 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000152 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000153}
154
155MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000156 TargetMachine &TM,
157 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000158 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000159}
160
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000161/// isDisp8 - Return true if this signed displacement fits in a 8-bit
162/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000163static bool isDisp8(int Value) {
164 return Value == (signed char)Value;
165}
166
Chris Lattnercf653392010-02-12 22:36:47 +0000167/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
168/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000169static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000170 unsigned Size = X86II::getSizeOfImm(TSFlags);
171 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000172
Chris Lattnercf653392010-02-12 22:36:47 +0000173 switch (Size) {
174 default: assert(0 && "Unknown immediate size");
175 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000176 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000177 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000178 case 8: assert(!isPCRel); return FK_Data_8;
179 }
180}
181
182
Chris Lattner0e73c392010-02-05 06:16:07 +0000183void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000184EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000185 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000186 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000187 // If this is a simple integer displacement that doesn't require a relocation,
188 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000189 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000190 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
191 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000192 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000193 return;
194 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000195
Chris Lattner835acab2010-02-12 23:00:36 +0000196 // If we have an immoffset, add it to the expression.
197 const MCExpr *Expr = DispOp.getExpr();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000198
Chris Lattnera08b5872010-02-16 05:03:17 +0000199 // If the fixup is pc-relative, we need to bias the value to be relative to
200 // the start of the field, not the end of the field.
201 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000202 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
203 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000204 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000205 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000206 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000207 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
208 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000209
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000210 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000211 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000212 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000213
Chris Lattner5dccfad2010-02-10 06:52:12 +0000214 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000215 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000216 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000217}
218
Chris Lattner1ac23b12010-02-05 02:18:40 +0000219void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
220 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000221 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000222 raw_ostream &OS,
223 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000224 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000225 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000226 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000227 const MCOperand &IndexReg = MI.getOperand(Op+2);
228 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000229
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000230 // Handle %rip relative addressing.
231 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000232 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
233 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000234 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000235
Chris Lattner0f53cf22010-03-18 18:10:56 +0000236 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000237
Chris Lattner0f53cf22010-03-18 18:10:56 +0000238 // movq loads are handled with a special relocation form which allows the
239 // linker to eliminate some loads for GOT references which end up in the
240 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000241 if (MI.getOpcode() == X86::MOV64rm ||
242 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000243 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000244
Chris Lattner835acab2010-02-12 23:00:36 +0000245 // rip-relative addressing is actually relative to the *next* instruction.
246 // Since an immediate can follow the mod/rm byte for an instruction, this
247 // means that we need to bias the immediate field of the instruction with
248 // the size of the immediate field. If we have this case, add it into the
249 // expression to emit.
250 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000251
Chris Lattner0f53cf22010-03-18 18:10:56 +0000252 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000253 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000254 return;
255 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000256
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000257 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000258
Chris Lattnera8168ec2010-02-09 21:57:34 +0000259 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000260 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000261 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
262 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000263
Chris Lattnera8168ec2010-02-09 21:57:34 +0000264 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000265 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000266 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
267 // encode to an R/M value of 4, which indicates that a SIB byte is
268 // present.
269 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000270 // If there is no base register and we're in 64-bit mode, we need a SIB
271 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
272 (!Is64BitMode || BaseReg != 0)) {
273
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000274 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000275 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000276 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000277 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000278 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000279
Chris Lattnera8168ec2010-02-09 21:57:34 +0000280 // If the base is not EBP/ESP and there is no displacement, use simple
281 // indirect register encoding, this handles addresses like [EAX]. The
282 // encoding for [EBP] with no displacement means [disp32] so we handle it
283 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000284 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000285 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000286 return;
287 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000288
Chris Lattnera8168ec2010-02-09 21:57:34 +0000289 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000290 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000291 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000292 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000293 return;
294 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000295
Chris Lattnera8168ec2010-02-09 21:57:34 +0000296 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000297 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000298 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000299 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000300 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000301
Chris Lattner0e73c392010-02-05 06:16:07 +0000302 // We need a SIB byte, so start by outputting the ModR/M byte first
303 assert(IndexReg.getReg() != X86::ESP &&
304 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000305
Chris Lattner0e73c392010-02-05 06:16:07 +0000306 bool ForceDisp32 = false;
307 bool ForceDisp8 = false;
308 if (BaseReg == 0) {
309 // If there is no base register, we emit the special case SIB byte with
310 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000311 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000312 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000313 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000314 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000315 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000316 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000317 } else if (Disp.getImm() == 0 &&
318 // Base reg can't be anything that ends up with '5' as the base
319 // reg, it is the magic [*] nomenclature that indicates no base.
320 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000321 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000322 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000323 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000324 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000325 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000326 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
327 } else {
328 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000329 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000330 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000331
Chris Lattner0e73c392010-02-05 06:16:07 +0000332 // Calculate what the SS field value should be...
333 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
334 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000335
Chris Lattner0e73c392010-02-05 06:16:07 +0000336 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000337 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000338 // Manual 2A, table 2-7. The displacement has already been output.
339 unsigned IndexRegNo;
340 if (IndexReg.getReg())
341 IndexRegNo = GetX86RegNum(IndexReg);
342 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
343 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000344 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000345 } else {
346 unsigned IndexRegNo;
347 if (IndexReg.getReg())
348 IndexRegNo = GetX86RegNum(IndexReg);
349 else
350 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000351 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000352 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000353
Chris Lattner0e73c392010-02-05 06:16:07 +0000354 // Do we need to output a displacement?
355 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000356 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000357 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000358 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000359}
360
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000361/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
362/// called VEX.
363void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000364 int MemOperand, const MCInst &MI,
365 const TargetInstrDesc &Desc,
366 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000367 bool HasVEX_4V = false;
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000368 if (TSFlags & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000369 HasVEX_4V = true;
370
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000371 // VEX_R: opcode externsion equivalent to REX.R in
372 // 1's complement (inverted) form
373 //
374 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
375 // 0: Same as REX_R=1 (64 bit mode only)
376 //
377 unsigned char VEX_R = 0x1;
378
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000379 // VEX_X: equivalent to REX.X, only used when a
380 // register is used for index in SIB Byte.
381 //
382 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
383 // 0: Same as REX.X=1 (64-bit mode only)
384 unsigned char VEX_X = 0x1;
385
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000386 // VEX_B:
387 //
388 // 1: Same as REX_B=0 (ignored in 32-bit mode)
389 // 0: Same as REX_B=1 (64 bit mode only)
390 //
391 unsigned char VEX_B = 0x1;
392
393 // VEX_W: opcode specific (use like REX.W, or used for
394 // opcode extension, or ignored, depending on the opcode byte)
395 unsigned char VEX_W = 0;
396
397 // VEX_5M (VEX m-mmmmm field):
398 //
399 // 0b00000: Reserved for future use
400 // 0b00001: implied 0F leading opcode
401 // 0b00010: implied 0F 38 leading opcode bytes
402 // 0b00011: implied 0F 3A leading opcode bytes
403 // 0b00100-0b11111: Reserved for future use
404 //
405 unsigned char VEX_5M = 0x1;
406
407 // VEX_4V (VEX vvvv field): a register specifier
408 // (in 1's complement form) or 1111 if unused.
409 unsigned char VEX_4V = 0xf;
410
411 // VEX_L (Vector Length):
412 //
413 // 0: scalar or 128-bit vector
414 // 1: 256-bit vector
415 //
416 unsigned char VEX_L = 0;
417
418 // VEX_PP: opcode extension providing equivalent
419 // functionality of a SIMD prefix
420 //
421 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000422 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000423 // 0b10: F3
424 // 0b11: F2
425 //
426 unsigned char VEX_PP = 0;
427
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000428 // Encode the operand size opcode prefix as needed.
429 if (TSFlags & X86II::OpSize)
430 VEX_PP = 0x01;
431
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000432 if (TSFlags & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000433 VEX_W = 1;
434
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000435 switch (TSFlags & X86II::Op0Mask) {
436 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000437 case X86II::T8: // 0F 38
438 VEX_5M = 0x2;
439 break;
440 case X86II::TA: // 0F 3A
441 VEX_5M = 0x3;
442 break;
443 case X86II::TF: // F2 0F 38
444 VEX_PP = 0x3;
445 VEX_5M = 0x2;
446 break;
447 case X86II::XS: // F3 0F
448 VEX_PP = 0x2;
449 break;
450 case X86II::XD: // F2 0F
451 VEX_PP = 0x3;
452 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000453 case X86II::TB: // Bypass: Not used by VEX
454 case 0:
455 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000456 }
457
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000458 // Set the vector length to 256-bit if YMM0-YMM15 is used
459 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
460 if (!MI.getOperand(i).isReg())
461 continue;
462 unsigned SrcReg = MI.getOperand(i).getReg();
463 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
464 VEX_L = 1;
465 }
466
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000467 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000468 unsigned CurOp = 0;
469
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000470 switch (TSFlags & X86II::FormMask) {
471 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000472 case X86II::MRM0m: case X86II::MRM1m:
473 case X86II::MRM2m: case X86II::MRM3m:
474 case X86II::MRM4m: case X86II::MRM5m:
475 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000476 case X86II::MRMDestMem:
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000477 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000478 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000479 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000480 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000481 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000482 VEX_R = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000483
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000484 // CurOp and NumOps are equal when VEX_R represents a register used
485 // to index a memory destination (which is the last operand)
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000486 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000487
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000488 if (HasVEX_4V) {
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000489 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000490 CurOp++;
491 }
492
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000493 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000494 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000495 if (TSFlags & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000496 NumOps--;
497
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000498 for (; CurOp != NumOps; ++CurOp) {
499 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000500 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
501 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000502 if (!VEX_B && MO.isReg() &&
503 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000504 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
505 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000506 }
507 break;
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000508 default: // MRMDestReg, MRM0r-MRM7r
509 if (MI.getOperand(CurOp).isReg() &&
510 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
511 VEX_B = 0;
512
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000513 if (HasVEX_4V)
514 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
515
516 CurOp++;
517 for (; CurOp != NumOps; ++CurOp) {
518 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000519 if (MO.isReg() && !HasVEX_4V &&
520 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
521 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000522 }
523 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000524 assert(0 && "Not implemented!");
525 }
526
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000527 // Emit segment override opcode prefix as needed.
528 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
529
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000530 // VEX opcode prefix can have 2 or 3 bytes
531 //
532 // 3 bytes:
533 // +-----+ +--------------+ +-------------------+
534 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
535 // +-----+ +--------------+ +-------------------+
536 // 2 bytes:
537 // +-----+ +-------------------+
538 // | C5h | | R | vvvv | L | pp |
539 // +-----+ +-------------------+
540 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000541 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
542
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000543 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000544 EmitByte(0xC5, CurByte, OS);
545 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
546 return;
547 }
548
549 // 3 byte VEX prefix
550 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000551 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000552 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
553}
554
Chris Lattner39a612e2010-02-05 22:10:22 +0000555/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
556/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
557/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000558static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000559 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000560 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000561 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000562 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000563
Chris Lattner39a612e2010-02-05 22:10:22 +0000564 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000565
Chris Lattner39a612e2010-02-05 22:10:22 +0000566 unsigned NumOps = MI.getNumOperands();
567 // FIXME: MCInst should explicitize the two-addrness.
568 bool isTwoAddr = NumOps > 1 &&
569 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000570
Chris Lattner39a612e2010-02-05 22:10:22 +0000571 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
572 unsigned i = isTwoAddr ? 1 : 0;
573 for (; i != NumOps; ++i) {
574 const MCOperand &MO = MI.getOperand(i);
575 if (!MO.isReg()) continue;
576 unsigned Reg = MO.getReg();
577 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000578 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
579 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000580 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000581 break;
582 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000583
Chris Lattner39a612e2010-02-05 22:10:22 +0000584 switch (TSFlags & X86II::FormMask) {
585 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
586 case X86II::MRMSrcReg:
587 if (MI.getOperand(0).isReg() &&
588 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000589 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000590 i = isTwoAddr ? 2 : 1;
591 for (; i != NumOps; ++i) {
592 const MCOperand &MO = MI.getOperand(i);
593 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000594 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000595 }
596 break;
597 case X86II::MRMSrcMem: {
598 if (MI.getOperand(0).isReg() &&
599 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000600 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000601 unsigned Bit = 0;
602 i = isTwoAddr ? 2 : 1;
603 for (; i != NumOps; ++i) {
604 const MCOperand &MO = MI.getOperand(i);
605 if (MO.isReg()) {
606 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000607 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000608 Bit++;
609 }
610 }
611 break;
612 }
613 case X86II::MRM0m: case X86II::MRM1m:
614 case X86II::MRM2m: case X86II::MRM3m:
615 case X86II::MRM4m: case X86II::MRM5m:
616 case X86II::MRM6m: case X86II::MRM7m:
617 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000618 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000619 i = isTwoAddr ? 1 : 0;
620 if (NumOps > e && MI.getOperand(e).isReg() &&
621 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000622 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000623 unsigned Bit = 0;
624 for (; i != e; ++i) {
625 const MCOperand &MO = MI.getOperand(i);
626 if (MO.isReg()) {
627 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000628 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000629 Bit++;
630 }
631 }
632 break;
633 }
634 default:
635 if (MI.getOperand(0).isReg() &&
636 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000637 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000638 i = isTwoAddr ? 2 : 1;
639 for (unsigned e = NumOps; i != e; ++i) {
640 const MCOperand &MO = MI.getOperand(i);
641 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000642 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000643 }
644 break;
645 }
646 return REX;
647}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000648
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000649/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
650void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
651 unsigned &CurByte, int MemOperand,
652 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000653 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000654 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000655 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000656 case 0:
657 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000658 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000659 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000660 default: assert(0 && "Unknown segment register!");
661 case 0: break;
662 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
663 case X86::SS: EmitByte(0x36, CurByte, OS); break;
664 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
665 case X86::ES: EmitByte(0x26, CurByte, OS); break;
666 case X86::FS: EmitByte(0x64, CurByte, OS); break;
667 case X86::GS: EmitByte(0x65, CurByte, OS); break;
668 }
669 }
670 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000671 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000672 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000673 break;
674 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000675 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000676 break;
677 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000678}
679
680/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
681///
682/// MemOperand is the operand # of the start of a memory operand if present. If
683/// Not present, it is -1.
684void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
685 int MemOperand, const MCInst &MI,
686 const TargetInstrDesc &Desc,
687 raw_ostream &OS) const {
688
689 // Emit the lock opcode prefix as needed.
690 if (TSFlags & X86II::LOCK)
691 EmitByte(0xF0, CurByte, OS);
692
693 // Emit segment override opcode prefix as needed.
694 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000695
Chris Lattner1e80f402010-02-03 21:57:59 +0000696 // Emit the repeat opcode prefix as needed.
697 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000698 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000699
Chris Lattner1e80f402010-02-03 21:57:59 +0000700 // Emit the operand size opcode prefix as needed.
701 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000702 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000703
Chris Lattner1e80f402010-02-03 21:57:59 +0000704 // Emit the address size opcode prefix as needed.
705 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000706 EmitByte(0x67, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000707
Chris Lattner1e80f402010-02-03 21:57:59 +0000708 bool Need0FPrefix = false;
709 switch (TSFlags & X86II::Op0Mask) {
710 default: assert(0 && "Invalid prefix!");
711 case 0: break; // No prefix!
712 case X86II::REP: break; // already handled.
713 case X86II::TB: // Two-byte opcode prefix
714 case X86II::T8: // 0F 38
715 case X86II::TA: // 0F 3A
716 Need0FPrefix = true;
717 break;
718 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000719 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000720 Need0FPrefix = true;
721 break;
722 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000723 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000724 Need0FPrefix = true;
725 break;
726 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000727 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000728 Need0FPrefix = true;
729 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000730 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
731 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
732 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
733 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
734 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
735 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
736 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
737 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000738 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000739
Chris Lattner1e80f402010-02-03 21:57:59 +0000740 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000741 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000742 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000743 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000744 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000745 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000746
Chris Lattner1e80f402010-02-03 21:57:59 +0000747 // 0x0F escape code must be emitted just before the opcode.
748 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000749 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000750
Chris Lattner1e80f402010-02-03 21:57:59 +0000751 // FIXME: Pull this up into previous switch if REX can be moved earlier.
752 switch (TSFlags & X86II::Op0Mask) {
753 case X86II::TF: // F2 0F 38
754 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000755 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000756 break;
757 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000758 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000759 break;
760 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000761}
762
763void X86MCCodeEmitter::
764EncodeInstruction(const MCInst &MI, raw_ostream &OS,
765 SmallVectorImpl<MCFixup> &Fixups) const {
766 unsigned Opcode = MI.getOpcode();
767 const TargetInstrDesc &Desc = TII.get(Opcode);
768 uint64_t TSFlags = Desc.TSFlags;
769
Chris Lattner757e8d62010-07-09 00:17:50 +0000770 // Pseudo instructions don't get encoded.
771 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
772 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000773
Chris Lattner834df192010-07-08 22:28:12 +0000774 // If this is a two-address instruction, skip one of the register operands.
775 // FIXME: This should be handled during MCInst lowering.
776 unsigned NumOps = Desc.getNumOperands();
777 unsigned CurOp = 0;
778 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
779 ++CurOp;
780 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
781 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
782 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000783
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000784 // Keep track of the current byte being emitted.
785 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000786
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000787 // Is this instruction encoded using the AVX VEX prefix?
788 bool HasVEXPrefix = false;
789
790 // It uses the VEX.VVVV field?
791 bool HasVEX_4V = false;
792
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000793 if (TSFlags & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000794 HasVEXPrefix = true;
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000795 if (TSFlags & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000796 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000797
Chris Lattner834df192010-07-08 22:28:12 +0000798 // Determine where the memory operand starts, if present.
799 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
800 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000801
Chris Lattner834df192010-07-08 22:28:12 +0000802 if (!HasVEXPrefix)
803 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
804 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000805 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000806
Chris Lattner74a21512010-02-05 19:24:13 +0000807 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000808 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000809 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000810 case X86II::MRMInitReg:
811 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000812 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000813 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000814 case X86II::Pseudo:
815 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000816 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000817 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000818 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000819
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000820 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000821 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000822 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000823
Chris Lattner28249d92010-02-05 01:53:19 +0000824 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000825 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000826 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000827 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000828 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000829 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000830
Chris Lattner1ac23b12010-02-05 02:18:40 +0000831 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000832 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000833 EmitMemModRMByte(MI, CurOp,
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000834 GetX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000835 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000836 CurOp += X86::AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000837 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000838
Chris Lattnerdaa45552010-02-05 19:04:37 +0000839 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000840 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000841 SrcRegNum = CurOp + 1;
842
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000843 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000844 SrcRegNum++;
845
846 EmitRegModRMByte(MI.getOperand(SrcRegNum),
847 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
848 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000849 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000850
Chris Lattnerdaa45552010-02-05 19:04:37 +0000851 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000852 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000853 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000854 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000855 ++AddrOperands;
856 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
857 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000858
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000859 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000860
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000861 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000862 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000863 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000864 break;
865 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000866
867 case X86II::MRM0r: case X86II::MRM1r:
868 case X86II::MRM2r: case X86II::MRM3r:
869 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000870 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000871 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
872 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000873 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000874 EmitRegModRMByte(MI.getOperand(CurOp++),
875 (TSFlags & X86II::FormMask)-X86II::MRM0r,
876 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000877 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000878 case X86II::MRM0m: case X86II::MRM1m:
879 case X86II::MRM2m: case X86II::MRM3m:
880 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000881 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000882 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000883 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000884 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000885 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000886 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000887 case X86II::MRM_C1:
888 EmitByte(BaseOpcode, CurByte, OS);
889 EmitByte(0xC1, CurByte, OS);
890 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000891 case X86II::MRM_C2:
892 EmitByte(BaseOpcode, CurByte, OS);
893 EmitByte(0xC2, CurByte, OS);
894 break;
895 case X86II::MRM_C3:
896 EmitByte(BaseOpcode, CurByte, OS);
897 EmitByte(0xC3, CurByte, OS);
898 break;
899 case X86II::MRM_C4:
900 EmitByte(BaseOpcode, CurByte, OS);
901 EmitByte(0xC4, CurByte, OS);
902 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000903 case X86II::MRM_C8:
904 EmitByte(BaseOpcode, CurByte, OS);
905 EmitByte(0xC8, CurByte, OS);
906 break;
907 case X86II::MRM_C9:
908 EmitByte(BaseOpcode, CurByte, OS);
909 EmitByte(0xC9, CurByte, OS);
910 break;
911 case X86II::MRM_E8:
912 EmitByte(BaseOpcode, CurByte, OS);
913 EmitByte(0xE8, CurByte, OS);
914 break;
915 case X86II::MRM_F0:
916 EmitByte(BaseOpcode, CurByte, OS);
917 EmitByte(0xF0, CurByte, OS);
918 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000919 case X86II::MRM_F8:
920 EmitByte(BaseOpcode, CurByte, OS);
921 EmitByte(0xF8, CurByte, OS);
922 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000923 case X86II::MRM_F9:
924 EmitByte(BaseOpcode, CurByte, OS);
925 EmitByte(0xF9, CurByte, OS);
926 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000927 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000928
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000929 // If there is a remaining operand, it must be a trailing immediate. Emit it
930 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000931 if (CurOp != NumOps) {
932 // The last source register of a 4 operand instruction in AVX is encoded
933 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Bruno Cardoso Lopesbe95c152010-07-09 01:56:45 +0000934 if (TSFlags & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000935 const MCOperand &MO = MI.getOperand(CurOp++);
936 bool IsExtReg =
937 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
938 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
939 RegNum |= GetX86RegNum(MO) << 4;
940 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
941 Fixups);
942 } else
943 EmitImmediate(MI.getOperand(CurOp++),
944 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
945 CurByte, OS, Fixups);
946 }
947
948
Chris Lattner28249d92010-02-05 01:53:19 +0000949#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000950 // FIXME: Verify.
951 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000952 errs() << "Cannot encode all operands of: ";
953 MI.dump();
954 errs() << '\n';
955 abort();
956 }
957#endif
Chris Lattner45762472010-02-03 21:24:49 +0000958}