blob: c64cdf89ccb5c6092a2117b4a8fe28afc1a22b50 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000160 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000161 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNW) &&
165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168 OS << ">";
169 return;
170 }
171 case scAddExpr:
172 case scMulExpr:
173 case scUMaxExpr:
174 case scSMaxExpr: {
175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000176 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 switch (NAry->getSCEVType()) {
178 case scAddExpr: OpStr = " + "; break;
179 case scMulExpr: OpStr = " * "; break;
180 case scUMaxExpr: OpStr = " umax "; break;
181 case scSMaxExpr: OpStr = " smax "; break;
182 }
183 OS << "(";
184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185 I != E; ++I) {
186 OS << **I;
187 if (llvm::next(I) != E)
188 OS << OpStr;
189 }
190 OS << ")";
191 return;
192 }
193 case scUDivExpr: {
194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196 return;
197 }
198 case scUnknown: {
199 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000200 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 if (U->isSizeOf(AllocTy)) {
202 OS << "sizeof(" << *AllocTy << ")";
203 return;
204 }
205 if (U->isAlignOf(AllocTy)) {
206 OS << "alignof(" << *AllocTy << ")";
207 return;
208 }
Andrew Trick635f7182011-03-09 17:23:39 +0000209
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 Constant *FieldNo;
212 if (U->isOffsetOf(CTy, FieldNo)) {
213 OS << "offsetof(" << *CTy << ", ";
214 WriteAsOperand(OS, FieldNo, false);
215 OS << ")";
216 return;
217 }
Andrew Trick635f7182011-03-09 17:23:39 +0000218
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 // Otherwise just print it normally.
220 WriteAsOperand(OS, U->getValue(), false);
221 return;
222 }
223 case scCouldNotCompute:
224 OS << "***COULDNOTCOMPUTE***";
225 return;
226 default: break;
227 }
228 llvm_unreachable("Unknown SCEV kind!");
229}
230
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000231Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000232 switch (getSCEVType()) {
233 case scConstant:
234 return cast<SCEVConstant>(this)->getType();
235 case scTruncate:
236 case scZeroExtend:
237 case scSignExtend:
238 return cast<SCEVCastExpr>(this)->getType();
239 case scAddRecExpr:
240 case scMulExpr:
241 case scUMaxExpr:
242 case scSMaxExpr:
243 return cast<SCEVNAryExpr>(this)->getType();
244 case scAddExpr:
245 return cast<SCEVAddExpr>(this)->getType();
246 case scUDivExpr:
247 return cast<SCEVUDivExpr>(this)->getType();
248 case scUnknown:
249 return cast<SCEVUnknown>(this)->getType();
250 case scCouldNotCompute:
251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252 return 0;
253 default: break;
254 }
255 llvm_unreachable("Unknown SCEV kind!");
256 return 0;
257}
258
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000259bool SCEV::isZero() const {
260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261 return SC->getValue()->isZero();
262 return false;
263}
264
Dan Gohman70a1fe72009-05-18 15:22:39 +0000265bool SCEV::isOne() const {
266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267 return SC->getValue()->isOne();
268 return false;
269}
Chris Lattner53e677a2004-04-02 20:23:17 +0000270
Dan Gohman4d289bf2009-06-24 00:30:26 +0000271bool SCEV::isAllOnesValue() const {
272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273 return SC->getValue()->isAllOnesValue();
274 return false;
275}
276
Owen Anderson753ad612009-06-22 21:57:23 +0000277SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000279
Chris Lattner53e677a2004-04-02 20:23:17 +0000280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281 return S->getSCEVType() == scCouldNotCompute;
282}
283
Dan Gohman0bba49c2009-07-07 17:06:11 +0000284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000285 FoldingSetNodeID ID;
286 ID.AddInteger(scConstant);
287 ID.AddPointer(V);
288 void *IP = 0;
289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000291 UniqueSCEVs.InsertNode(S, IP);
292 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
Chris Lattner53e677a2004-04-02 20:23:17 +0000294
Dan Gohman0bba49c2009-07-07 17:06:11 +0000295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000296 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000297}
298
Dan Gohman0bba49c2009-07-07 17:06:11 +0000299const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000302 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000303}
304
Dan Gohman3bf63762010-06-18 19:54:20 +0000305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000306 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000308
Dan Gohman3bf63762010-06-18 19:54:20 +0000309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000310 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000311 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000314 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman3bf63762010-06-18 19:54:20 +0000317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000318 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Dan Gohman3bf63762010-06-18 19:54:20 +0000325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000327 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000330 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000331}
332
Dan Gohmanab37f502010-08-02 23:49:30 +0000333void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000334 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000335 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000336
337 // Remove this SCEVUnknown from the uniquing map.
338 SE->UniqueSCEVs.RemoveNode(this);
339
340 // Release the value.
341 setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000345 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000346 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000347
348 // Remove this SCEVUnknown from the uniquing map.
349 SE->UniqueSCEVs.RemoveNode(this);
350
351 // Update this SCEVUnknown to point to the new value. This is needed
352 // because there may still be outstanding SCEVs which still point to
353 // this SCEVUnknown.
354 setValPtr(New);
355}
356
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000359 if (VCE->getOpcode() == Instruction::PtrToInt)
360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000361 if (CE->getOpcode() == Instruction::GetElementPtr &&
362 CE->getOperand(0)->isNullValue() &&
363 CE->getNumOperands() == 2)
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365 if (CI->isOne()) {
366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367 ->getElementType();
368 return true;
369 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000370
371 return false;
372}
373
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000376 if (VCE->getOpcode() == Instruction::PtrToInt)
377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000378 if (CE->getOpcode() == Instruction::GetElementPtr &&
379 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000380 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000382 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (!STy->isPacked() &&
384 CE->getNumOperands() == 3 &&
385 CE->getOperand(1)->isNullValue()) {
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387 if (CI->isOne() &&
388 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000389 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000390 AllocTy = STy->getElementType(1);
391 return true;
392 }
393 }
394 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000395
396 return false;
397}
398
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getNumOperands() == 3 &&
405 CE->getOperand(0)->isNullValue() &&
406 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409 // Ignore vector types here so that ScalarEvolutionExpander doesn't
410 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000411 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000412 CTy = Ty;
413 FieldNo = CE->getOperand(2);
414 return true;
415 }
416 }
417
418 return false;
419}
420
Chris Lattner8d741b82004-06-20 06:23:15 +0000421//===----------------------------------------------------------------------===//
422// SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427 /// than the complexity of the RHS. This comparator is used to canonicalize
428 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000429 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000430 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000431 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000433
Dan Gohman67ef74e2010-08-27 15:26:01 +0000434 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000435 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000436 return compare(LHS, RHS) < 0;
437 }
438
439 // Return negative, zero, or positive, if LHS is less than, equal to, or
440 // greater than RHS, respectively. A three-way result allows recursive
441 // comparisons to be more efficient.
442 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000443 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000445 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000446
Dan Gohman72861302009-05-07 14:39:04 +0000447 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000450 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000451
Dan Gohman3bf63762010-06-18 19:54:20 +0000452 // Aside from the getSCEVType() ordering, the particular ordering
453 // isn't very important except that it's beneficial to be consistent,
454 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000455 switch (LType) {
456 case scUnknown: {
457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000459
460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000462 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000463
464 // Order pointer values after integer values. This helps SCEVExpander
465 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000466 bool LIsPointer = LV->getType()->isPointerTy(),
467 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000468 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000470
471 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000472 unsigned LID = LV->getValueID(),
473 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000474 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000476
477 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000478 if (const Argument *LA = dyn_cast<Argument>(LV)) {
479 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 }
483
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 // For instructions, compare their loop depth, and their operand
485 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488
489 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 const BasicBlock *LParent = LInst->getParent(),
491 *RParent = RInst->getParent();
492 if (LParent != RParent) {
493 unsigned LDepth = LI->getLoopDepth(LParent),
494 RDepth = LI->getLoopDepth(RParent);
495 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000496 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 unsigned LNumOps = LInst->getNumOperands(),
501 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 case scConstant: {
509 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000511
512 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000513 const APInt &LA = LC->getValue()->getValue();
514 const APInt &RA = RC->getValue()->getValue();
515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000516 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000517 return (int)LBitWidth - (int)RBitWidth;
518 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000519 }
520
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521 case scAddRecExpr: {
522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524
525 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527 if (LLoop != RLoop) {
528 unsigned LDepth = LLoop->getLoopDepth(),
529 RDepth = RLoop->getLoopDepth();
530 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000532 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Addrec complexity grows with operand count.
535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536 if (LNumOps != RNumOps)
537 return (int)LNumOps - (int)RNumOps;
538
539 // Lexicographically compare.
540 for (unsigned i = 0; i != LNumOps; ++i) {
541 long X = compare(LA->getOperand(i), RA->getOperand(i));
542 if (X != 0)
543 return X;
544 }
545
546 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 }
548
Dan Gohman67ef74e2010-08-27 15:26:01 +0000549 case scAddExpr:
550 case scMulExpr:
551 case scSMaxExpr:
552 case scUMaxExpr: {
553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558 for (unsigned i = 0; i != LNumOps; ++i) {
559 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560 return 1;
561 long X = compare(LC->getOperand(i), RC->getOperand(i));
562 if (X != 0)
563 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000564 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000566 }
567
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568 case scUDivExpr: {
569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571
572 // Lexicographically compare udiv expressions.
573 long X = compare(LC->getLHS(), RC->getLHS());
574 if (X != 0)
575 return X;
576 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scTruncate:
580 case scZeroExtend:
581 case scSignExtend: {
582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584
585 // Compare cast expressions by operand.
586 return compare(LC->getOperand(), RC->getOperand());
587 }
588
589 default:
590 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000591 }
592
593 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000595 }
596 };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000604/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000605/// results from this routine. In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000610 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 if (Ops.size() < 2) return; // Noop
612 if (Ops.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
614 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616 if (SCEVComplexityCompare(LI)(RHS, LHS))
617 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000618 return;
619 }
620
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 // Do the rough sort by complexity.
622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624 // Now that we are sorted by complexity, group elements of the same
625 // complexity. Note that this is, at worst, N^2, but the vector is likely to
626 // be extremely short in practice. Note that we take this approach because we
627 // do not want to depend on the addresses of the objects we are grouping.
628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629 const SCEV *S = Ops[i];
630 unsigned Complexity = S->getSCEVType();
631
632 // If there are any objects of the same complexity and same value as this
633 // one, group them.
634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635 if (Ops[j] == S) { // Found a duplicate.
636 // Move it to immediately after i'th element.
637 std::swap(Ops[i+1], Ops[j]);
638 ++i; // no need to rescan it.
639 if (i == e-2) return; // Done!
640 }
641 }
642 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000643}
644
Chris Lattner53e677a2004-04-02 20:23:17 +0000645
Chris Lattner53e677a2004-04-02 20:23:17 +0000646
647//===----------------------------------------------------------------------===//
648// Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
Eli Friedmanb42a6262008-08-04 23:49:06 +0000651/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000652/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000654 ScalarEvolution &SE,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000655 Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 // Handle the simplest case efficiently.
657 if (K == 1)
658 return SE.getTruncateOrZeroExtend(It, ResultTy);
659
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000660 // We are using the following formula for BC(It, K):
661 //
662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // Suppose, W is the bitwidth of the return value. We must be prepared for
665 // overflow. Hence, we must assure that the result of our computation is
666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
667 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000670 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676 // This formula is trivially equivalent to the previous formula. However,
677 // this formula can be implemented much more efficiently. The trick is that
678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679 // arithmetic. To do exact division in modular arithmetic, all we have
680 // to do is multiply by the inverse. Therefore, this step can be done at
681 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // The next issue is how to safely do the division by 2^T. The way this
684 // is done is by doing the multiplication step at a width of at least W + T
685 // bits. This way, the bottom W+T bits of the product are accurate. Then,
686 // when we perform the division by 2^T (which is equivalent to a right shift
687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
688 // truncated out after the division by 2^T.
689 //
690 // In comparison to just directly using the first formula, this technique
691 // is much more efficient; using the first formula requires W * K bits,
692 // but this formula less than W + K bits. Also, the first formula requires
693 // a division step, whereas this formula only requires multiplies and shifts.
694 //
695 // It doesn't matter whether the subtraction step is done in the calculation
696 // width or the input iteration count's width; if the subtraction overflows,
697 // the result must be zero anyway. We prefer here to do it in the width of
698 // the induction variable because it helps a lot for certain cases; CodeGen
699 // isn't smart enough to ignore the overflow, which leads to much less
700 // efficient code if the width of the subtraction is wider than the native
701 // register width.
702 //
703 // (It's possible to not widen at all by pulling out factors of 2 before
704 // the multiplication; for example, K=2 can be calculated as
705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706 // extra arithmetic, so it's not an obvious win, and it gets
707 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000708
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Protection from insane SCEVs; this bound is conservative,
710 // but it probably doesn't matter.
711 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000712 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000714 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000715
Eli Friedmanb42a6262008-08-04 23:49:06 +0000716 // Calculate K! / 2^T and T; we divide out the factors of two before
717 // multiplying for calculating K! / 2^T to avoid overflow.
718 // Other overflow doesn't matter because we only care about the bottom
719 // W bits of the result.
720 APInt OddFactorial(W, 1);
721 unsigned T = 1;
722 for (unsigned i = 3; i <= K; ++i) {
723 APInt Mult(W, i);
724 unsigned TwoFactors = Mult.countTrailingZeros();
725 T += TwoFactors;
726 Mult = Mult.lshr(TwoFactors);
727 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000728 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000731 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000732
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000733 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000734 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736 // Calculate the multiplicative inverse of K! / 2^T;
737 // this multiplication factor will perform the exact division by
738 // K! / 2^T.
739 APInt Mod = APInt::getSignedMinValue(W+1);
740 APInt MultiplyFactor = OddFactorial.zext(W+1);
741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742 MultiplyFactor = MultiplyFactor.trunc(W);
743
744 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000746 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000750 Dividend = SE.getMulExpr(Dividend,
751 SE.getTruncateOrZeroExtend(S, CalculationTy));
752 }
753
754 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756
757 // Truncate the result, and divide by K! / 2^T.
758
759 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000761}
762
Chris Lattner53e677a2004-04-02 20:23:17 +0000763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number. We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000769///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000770/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000771///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000773 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 // The computation is correct in the face of overflow provided that the
777 // multiplication is performed _after_ the evaluation of the binomial
778 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000780 if (isa<SCEVCouldNotCompute>(Coeff))
781 return Coeff;
782
783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000784 }
785 return Result;
786}
787
Chris Lattner53e677a2004-04-02 20:23:17 +0000788//===----------------------------------------------------------------------===//
789// SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000793 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000795 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000796 assert(isSCEVable(Ty) &&
797 "This is not a conversion to a SCEVable type!");
798 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000799
Dan Gohmanc050fd92009-07-13 20:50:19 +0000800 FoldingSetNodeID ID;
801 ID.AddInteger(scTruncate);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000807 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000809 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000812
Dan Gohman20900ca2009-04-22 16:20:48 +0000813 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000815 return getTruncateExpr(ST->getOperand(), Ty);
816
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000819 return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826 // eliminate all the truncates.
827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828 SmallVector<const SCEV *, 4> Operands;
829 bool hasTrunc = false;
830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832 hasTrunc = isa<SCEVTruncateExpr>(S);
833 Operands.push_back(S);
834 }
835 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000836 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000838 }
839
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841 // eliminate all the truncates.
842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843 SmallVector<const SCEV *, 4> Operands;
844 bool hasTrunc = false;
845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847 hasTrunc = isa<SCEVTruncateExpr>(S);
848 Operands.push_back(S);
849 }
850 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000851 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000853 }
854
Dan Gohman6864db62009-06-18 16:24:47 +0000855 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000861 }
862
Dan Gohmanf53462d2010-07-15 20:02:11 +0000863 // As a special case, fold trunc(undef) to undef. We don't want to
864 // know too much about SCEVUnknowns, but this special case is handy
865 // and harmless.
866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867 if (isa<UndefValue>(U->getValue()))
868 return getSCEV(UndefValue::get(Ty));
869
Dan Gohman420ab912010-06-25 18:47:08 +0000870 // The cast wasn't folded; create an explicit cast node. We can reuse
871 // the existing insert position since if we get here, we won't have
872 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000875 UniqueSCEVs.InsertNode(S, IP);
876 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877}
878
Dan Gohman0bba49c2009-07-07 17:06:11 +0000879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000880 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000882 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000883 assert(isSCEVable(Ty) &&
884 "This is not a conversion to a SCEVable type!");
885 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000886
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000887 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889 return getConstant(
890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000892
Dan Gohman20900ca2009-04-22 16:20:48 +0000893 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000895 return getZeroExtendExpr(SZ->getOperand(), Ty);
896
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000897 // Before doing any expensive analysis, check to see if we've already
898 // computed a SCEV for this Op and Ty.
899 FoldingSetNodeID ID;
900 ID.AddInteger(scZeroExtend);
901 ID.AddPointer(Op);
902 ID.AddPointer(Ty);
903 void *IP = 0;
904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
Nick Lewycky630d85a2011-01-23 06:20:19 +0000906 // zext(trunc(x)) --> zext(x) or x or trunc(x)
907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908 // It's possible the bits taken off by the truncate were all zero bits. If
909 // so, we should be able to simplify this further.
910 const SCEV *X = ST->getOperand();
911 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000912 unsigned TruncBits = getTypeSizeInBits(ST->getType());
913 unsigned NewBits = getTypeSizeInBits(Ty);
914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000915 CR.zextOrTrunc(NewBits)))
916 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000917 }
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000921 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000924 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000925 const SCEV *Start = AR->getStart();
926 const SCEV *Step = AR->getStepRecurrence(*this);
927 unsigned BitWidth = getTypeSizeInBits(AR->getType());
928 const Loop *L = AR->getLoop();
929
Dan Gohmaneb490a72009-07-25 01:22:26 +0000930 // If we have special knowledge that this addrec won't overflow,
931 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000932 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000935 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // Check whether the backedge-taken count is SCEVCouldNotCompute.
938 // Note that this serves two purposes: It filters out loops that are
939 // simply not analyzable, and it covers the case where this code is
940 // being called from within backedge-taken count analysis, such that
941 // attempting to ask for the backedge-taken count would likely result
942 // in infinite recursion. In the later case, the analysis code will
943 // cope with a conservative value, and it will take care to purge
944 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000947 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000949
950 // Check whether the backedge-taken count can be losslessly casted to
951 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000952 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000953 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *Add = getAddExpr(Start, ZMul);
961 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000962 getAddExpr(getZeroExtendExpr(Start, WideTy),
963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966 // Cache knowledge of AR NUW, which is propagated to this AddRec.
967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000968 // Return the expression with the addrec on the outside.
969 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000971 L, AR->getNoWrapFlags());
972 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 // Similar to above, only this time treat the step value as signed.
974 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000977 OperandExtendedAdd =
978 getAddExpr(getZeroExtendExpr(Start, WideTy),
979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982 // Cache knowledge of AR NW, which is propagated to this AddRec.
983 // Negative step causes unsigned wrap, but it still can't self-wrap.
984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000988 L, AR->getNoWrapFlags());
989 }
Dan Gohman85b05a22009-07-13 21:35:55 +0000990 }
991
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step)) {
997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998 getUnsignedRange(Step).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001002 AR->getPostIncExpr(*this), N))) {
1003 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001010 } else if (isKnownNegative(Step)) {
1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001016 AR->getPostIncExpr(*this), N))) {
1017 // Cache knowledge of AR NW, which is propagated to this AddRec.
1018 // Negative step causes unsigned wrap, but it still can't self-wrap.
1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001021 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001023 L, AR->getNoWrapFlags());
1024 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 }
1026 }
1027 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // The cast wasn't folded; create an explicit cast node.
1030 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001034 UniqueSCEVs.InsertNode(S, IP);
1035 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001036}
1037
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042 ICmpInst::Predicate *Pred,
1043 ScalarEvolution *SE) {
1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045 if (SE->isKnownPositive(Step)) {
1046 *Pred = ICmpInst::ICMP_SLT;
1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048 SE->getSignedRange(Step).getSignedMax());
1049 }
1050 if (SE->isKnownNegative(Step)) {
1051 *Pred = ICmpInst::ICMP_SGT;
1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053 SE->getSignedRange(Step).getSignedMin());
1054 }
1055 return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001065 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001066 ScalarEvolution *SE) {
1067 const Loop *L = AR->getLoop();
1068 const SCEV *Start = AR->getStart();
1069 const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071 // Check for a simple looking step prior to loop entry.
1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074 return 0;
1075
1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077 // same three conditions that getSignExtendedExpr checks.
1078
1079 // 1. NSW flags on the step increment.
1080 const SCEV *PreStart = SA->getOperand(1);
1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
Andrew Trickcf31f912011-06-01 19:14:56 +00001084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001085 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001086
1087 // 2. Direct overflow check on the step operation's expression.
1088 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001089 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001090 const SCEV *OperandExtendedStart =
1091 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1092 SE->getSignExtendExpr(Step, WideTy));
1093 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1094 // Cache knowledge of PreAR NSW.
1095 if (PreAR)
1096 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1097 // FIXME: this optimization needs a unit test
1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1099 return PreStart;
1100 }
1101
1102 // 3. Loop precondition.
1103 ICmpInst::Predicate Pred;
1104 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1105
Andrew Trickcf31f912011-06-01 19:14:56 +00001106 if (OverflowLimit &&
1107 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return PreStart;
1109 }
1110 return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001115 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116 ScalarEvolution *SE) {
1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118 if (!PreStart)
1119 return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122 SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
Dan Gohman0bba49c2009-07-07 17:06:11 +00001125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001126 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001128 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001129 assert(isSCEVable(Ty) &&
1130 "This is not a conversion to a SCEVable type!");
1131 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001132
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001133 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135 return getConstant(
1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001138
Dan Gohman20900ca2009-04-22 16:20:48 +00001139 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001141 return getSignExtendExpr(SS->getOperand(), Ty);
1142
Nick Lewycky73f565e2011-01-19 15:56:12 +00001143 // sext(zext(x)) --> zext(x)
1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145 return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001147 // Before doing any expensive analysis, check to see if we've already
1148 // computed a SCEV for this Op and Ty.
1149 FoldingSetNodeID ID;
1150 ID.AddInteger(scSignExtend);
1151 ID.AddPointer(Op);
1152 ID.AddPointer(Ty);
1153 void *IP = 0;
1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001156 // If the input value is provably positive, build a zext instead.
1157 if (isKnownNonNegative(Op))
1158 return getZeroExtendExpr(Op, Ty);
1159
Nick Lewycky630d85a2011-01-23 06:20:19 +00001160 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162 // It's possible the bits taken off by the truncate were all sign bits. If
1163 // so, we should be able to simplify this further.
1164 const SCEV *X = ST->getOperand();
1165 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001166 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167 unsigned NewBits = getTypeSizeInBits(Ty);
1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001169 CR.sextOrTrunc(NewBits)))
1170 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001171 }
1172
Dan Gohman01ecca22009-04-27 20:16:15 +00001173 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001174 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001175 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001178 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001179 const SCEV *Start = AR->getStart();
1180 const SCEV *Step = AR->getStepRecurrence(*this);
1181 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182 const Loop *L = AR->getLoop();
1183
Dan Gohmaneb490a72009-07-25 01:22:26 +00001184 // If we have special knowledge that this addrec won't overflow,
1185 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001186 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001188 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001189 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001190
Dan Gohman01ecca22009-04-27 20:16:15 +00001191 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192 // Note that this serves two purposes: It filters out loops that are
1193 // simply not analyzable, and it covers the case where this code is
1194 // being called from within backedge-taken count analysis, such that
1195 // attempting to ask for the backedge-taken count would likely result
1196 // in infinite recursion. In the later case, the analysis code will
1197 // cope with a conservative value, and it will take care to purge
1198 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001201 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001202 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001203
1204 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001205 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001206 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001207 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001208 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001211 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001212 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214 const SCEV *Add = getAddExpr(Start, SMul);
1215 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001216 getAddExpr(getSignExtendExpr(Start, WideTy),
1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001222 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001224 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001225 L, AR->getNoWrapFlags());
1226 }
Dan Gohman850f7912009-07-16 17:34:36 +00001227 // Similar to above, only this time treat the step value as unsigned.
1228 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001230 Add = getAddExpr(Start, UMul);
1231 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001232 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001238 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001240 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001241 L, AR->getNoWrapFlags());
1242 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001243 }
1244
1245 // If the backedge is guarded by a comparison with the pre-inc value
1246 // the addrec is safe. Also, if the entry is guarded by a comparison
1247 // with the start value and the backedge is guarded by a comparison
1248 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001249 ICmpInst::Predicate Pred;
1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251 if (OverflowLimit &&
1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255 OverflowLimit)))) {
1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259 getSignExtendExpr(Step, Ty),
1260 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001261 }
1262 }
1263 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001264
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001265 // The cast wasn't folded; create an explicit cast node.
1266 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001270 UniqueSCEVs.InsertNode(S, IP);
1271 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001272}
1273
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001278 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280 "This is not an extending conversion!");
1281 assert(isSCEVable(Ty) &&
1282 "This is not a conversion to a SCEVable type!");
1283 Ty = getEffectiveSCEVType(Ty);
1284
1285 // Sign-extend negative constants.
1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287 if (SC->getValue()->getValue().isNegative())
1288 return getSignExtendExpr(Op, Ty);
1289
1290 // Peel off a truncate cast.
1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001292 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294 return getAnyExtendExpr(NewOp, Ty);
1295 return getTruncateOrNoop(NewOp, Ty);
1296 }
1297
1298 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001300 if (!isa<SCEVZeroExtendExpr>(ZExt))
1301 return ZExt;
1302
1303 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001304 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305 if (!isa<SCEVSignExtendExpr>(SExt))
1306 return SExt;
1307
Dan Gohmana10756e2010-01-21 02:09:26 +00001308 // Force the cast to be folded into the operands of an addrec.
1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310 SmallVector<const SCEV *, 4> Ops;
1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312 I != E; ++I)
1313 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001315 }
1316
Dan Gohmanf53462d2010-07-15 20:02:11 +00001317 // As a special case, fold anyext(undef) to undef. We don't want to
1318 // know too much about SCEVUnknowns, but this special case is handy
1319 // and harmless.
1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321 if (isa<UndefValue>(U->getValue()))
1322 return getSCEV(UndefValue::get(Ty));
1323
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 // If the expression is obviously signed, use the sext cast value.
1325 if (isa<SCEVSMaxExpr>(Op))
1326 return SExt;
1327
1328 // Absent any other information, use the zext cast value.
1329 return ZExt;
1330}
1331
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001360 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001361 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001362 const APInt &Scale,
1363 ScalarEvolution &SE) {
1364 bool Interesting = false;
1365
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001366 // Iterate over the add operands. They are sorted, with constants first.
1367 unsigned i = 0;
1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369 ++i;
1370 // Pull a buried constant out to the outside.
1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372 Interesting = true;
1373 AccumulatedConstant += Scale * C->getValue()->getValue();
1374 }
1375
1376 // Next comes everything else. We're especially interested in multiplies
1377 // here, but they're in the middle, so just visit the rest with one loop.
1378 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381 APInt NewScale =
1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001386 Interesting |=
1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 NewScale, SE);
1390 } else {
1391 // A multiplication of a constant with some other value. Update
1392 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394 const SCEV *Key = SE.getMulExpr(MulOps);
1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001396 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001397 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001398 NewOps.push_back(Pair.first->first);
1399 } else {
1400 Pair.first->second += NewScale;
1401 // The map already had an entry for this value, which may indicate
1402 // a folding opportunity.
1403 Interesting = true;
1404 }
1405 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 } else {
1407 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001409 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001411 NewOps.push_back(Pair.first->first);
1412 } else {
1413 Pair.first->second += Scale;
1414 // The map already had an entry for this value, which may indicate
1415 // a folding opportunity.
1416 Interesting = true;
1417 }
1418 }
1419 }
1420
1421 return Interesting;
1422}
1423
1424namespace {
1425 struct APIntCompare {
1426 bool operator()(const APInt &LHS, const APInt &RHS) const {
1427 return LHS.ult(RHS);
1428 }
1429 };
1430}
1431
Dan Gohman6c0866c2009-05-24 23:45:28 +00001432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001435 SCEV::NoWrapFlags Flags) {
1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001438 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001439 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001440#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001441 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001442 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001444 "SCEVAddExpr operand types don't match!");
1445#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001446
Andrew Trick3228cc22011-03-14 16:50:06 +00001447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001448 // And vice-versa.
1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001452 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454 E = Ops.end(); I != E; ++I)
1455 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001456 All = false;
1457 break;
1458 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001460 }
1461
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001463 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464
1465 // If there are any constants, fold them together.
1466 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001469 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001472 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001474 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001475 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001476 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 }
1478
1479 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001480 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001481 Ops.erase(Ops.begin());
1482 --Idx;
1483 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001484
Dan Gohmanbca091d2010-04-12 23:08:18 +00001485 if (Ops.size() == 1) return Ops[0];
1486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Dan Gohman68ff7762010-08-27 21:39:59 +00001488 // Okay, check to see if the same value occurs in the operand list more than
1489 // once. If so, merge them together into an multiply expression. Since we
1490 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001491 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001492 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001495 // Scan ahead to count how many equal operands there are.
1496 unsigned Count = 2;
1497 while (i+Count != e && Ops[i+Count] == Ops[i])
1498 ++Count;
1499 // Merge the values into a multiply.
1500 const SCEV *Scale = getConstant(Ty, Count);
1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001504 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001506 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001507 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001509 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001510 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohman728c7f32009-05-08 21:03:19 +00001512 // Check for truncates. If all the operands are truncated from the same
1513 // type, see if factoring out the truncate would permit the result to be
1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515 // if the contents of the resulting outer trunc fold to something simple.
1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001518 Type *DstType = Trunc->getType();
1519 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001520 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001521 bool Ok = true;
1522 // Check all the operands to see if they can be represented in the
1523 // source type of the truncate.
1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526 if (T->getOperand()->getType() != SrcType) {
1527 Ok = false;
1528 break;
1529 }
1530 LargeOps.push_back(T->getOperand());
1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001532 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536 if (const SCEVTruncateExpr *T =
1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538 if (T->getOperand()->getType() != SrcType) {
1539 Ok = false;
1540 break;
1541 }
1542 LargeMulOps.push_back(T->getOperand());
1543 } else if (const SCEVConstant *C =
1544 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001546 } else {
1547 Ok = false;
1548 break;
1549 }
1550 }
1551 if (Ok)
1552 LargeOps.push_back(getMulExpr(LargeMulOps));
1553 } else {
1554 Ok = false;
1555 break;
1556 }
1557 }
1558 if (Ok) {
1559 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001560 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001561 // If it folds to something simple, use it. Otherwise, don't.
1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563 return getTruncateExpr(Fold, DstType);
1564 }
1565 }
1566
1567 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569 ++Idx;
1570
1571 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 if (Idx < Ops.size()) {
1573 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // If we have an add, expand the add operands onto the end of the operands
1576 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001578 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 DeletedAdd = true;
1580 }
1581
1582 // If we deleted at least one add, we added operands to the end of the list,
1583 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001584 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001586 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
1588
1589 // Skip over the add expression until we get to a multiply.
1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591 ++Idx;
1592
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001593 // Check to see if there are any folding opportunities present with
1594 // operands multiplied by constant values.
1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001597 DenseMap<const SCEV *, APInt> M;
1598 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001599 APInt AccumulatedConstant(BitWidth, 0);
1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001601 Ops.data(), Ops.size(),
1602 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001603 // Some interesting folding opportunity is present, so its worthwhile to
1604 // re-generate the operands list. Group the operands by constant scale,
1605 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001608 E = NewOps.end(); I != E; ++I)
1609 MulOpLists[M.find(*I)->second].push_back(*I);
1610 // Re-generate the operands list.
1611 Ops.clear();
1612 if (AccumulatedConstant != 0)
1613 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001616 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001617 Ops.push_back(getMulExpr(getConstant(I->first),
1618 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001619 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001620 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 if (Ops.size() == 1)
1622 return Ops[0];
1623 return getAddExpr(Ops);
1624 }
1625 }
1626
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 // If we are adding something to a multiply expression, make sure the
1628 // something is not already an operand of the multiply. If so, merge it into
1629 // the multiply.
1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001634 if (isa<SCEVConstant>(MulOpSCEV))
1635 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001637 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 if (Mul->getNumOperands() != 2) {
1641 // If the multiply has more than two operands, we must get the
1642 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644 Mul->op_begin()+MulOp);
1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001646 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001648 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001649 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 if (Ops.size() == 2) return OuterMul;
1652 if (AddOp < Idx) {
1653 Ops.erase(Ops.begin()+AddOp);
1654 Ops.erase(Ops.begin()+Idx-1);
1655 } else {
1656 Ops.erase(Ops.begin()+Idx);
1657 Ops.erase(Ops.begin()+AddOp-1);
1658 }
1659 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 // Check this multiply against other multiplies being added together.
1664 for (unsigned OtherMulIdx = Idx+1;
1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // If MulOp occurs in OtherMul, we can fold the two multiplies
1669 // together.
1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671 OMulOp != e; ++OMulOp)
1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001677 Mul->op_begin()+MulOp);
1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001679 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001684 OtherMul->op_begin()+OMulOp);
1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001686 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001691 Ops.erase(Ops.begin()+Idx);
1692 Ops.erase(Ops.begin()+OtherMulIdx-1);
1693 Ops.push_back(OuterMul);
1694 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 }
1696 }
1697 }
1698 }
1699
1700 // If there are any add recurrences in the operands list, see if any other
1701 // added values are loop invariant. If so, we can fold them into the
1702 // recurrence.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704 ++Idx;
1705
1706 // Scan over all recurrences, trying to fold loop invariants into them.
1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708 // Scan all of the other operands to this add and add them to the vector if
1709 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001710 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001712 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001714 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 LIOps.push_back(Ops[i]);
1716 Ops.erase(Ops.begin()+i);
1717 --i; --e;
1718 }
1719
1720 // If we found some loop invariants, fold them into the recurrence.
1721 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 LIOps.push_back(AddRec->getStart());
1724
Dan Gohman0bba49c2009-07-07 17:06:11 +00001725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001726 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001727 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001728
Dan Gohmanb9f96512010-06-30 07:16:37 +00001729 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001730 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001731 // Always propagate NW.
1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001734
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 // If all of the other operands were loop invariant, we are done.
1736 if (Ops.size() == 1) return NewRec;
1737
Nick Lewycky980e9f32011-09-06 05:08:09 +00001738 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 for (unsigned i = 0;; ++i)
1740 if (Ops[i] == AddRec) {
1741 Ops[i] = NewRec;
1742 break;
1743 }
Dan Gohman246b2562007-10-22 18:31:58 +00001744 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 }
1746
1747 // Okay, if there weren't any loop invariants to be folded, check to see if
1748 // there are multiple AddRec's with the same loop induction variable being
1749 // added together. If so, we can fold them.
1750 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752 ++OtherIdx)
1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756 AddRec->op_end());
1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001759 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001761 if (OtherAddRec->getLoop() == AddRecLoop) {
1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001764 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001765 AddRecOps.append(OtherAddRec->op_begin()+i,
1766 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001767 break;
1768 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001769 AddRecOps[i] = getAddExpr(AddRecOps[i],
1770 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001771 }
1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001774 // Step size has changed, so we cannot guarantee no self-wraparound.
1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001776 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 }
1778
1779 // Otherwise couldn't fold anything into this recurrence. Move onto the
1780 // next one.
1781 }
1782
1783 // Okay, it looks like we really DO need an add expr. Check to see if we
1784 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001785 FoldingSetNodeID ID;
1786 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001787 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788 ID.AddPointer(Ops[i]);
1789 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001790 SCEVAddExpr *S =
1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001797 UniqueSCEVs.InsertNode(S, IP);
1798 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001799 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001800 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001801}
1802
Dan Gohman6c0866c2009-05-24 23:45:28 +00001803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001806 SCEV::NoWrapFlags Flags) {
1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001810 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001811#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001812 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001813 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001815 "SCEVMulExpr operand types don't match!");
1816#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001817
Andrew Trick3228cc22011-03-14 16:50:06 +00001818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001819 // And vice-versa.
1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001823 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825 E = Ops.end(); I != E; ++I)
1826 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 All = false;
1828 break;
1829 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001831 }
1832
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001834 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
1836 // If there are any constants, fold them together.
1837 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001839
1840 // C1*(C2+V) -> C1*C2 + C1*V
1841 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (Add->getNumOperands() == 2 &&
1844 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001847
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001851 ConstantInt *Fold = ConstantInt::get(getContext(),
1852 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001853 RHSC->getValue()->getValue());
1854 Ops[0] = getConstant(Fold);
1855 Ops.erase(Ops.begin()+1); // Erase the folded element
1856 if (Ops.size() == 1) return Ops[0];
1857 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001858 }
1859
1860 // If we are left with a constant one being multiplied, strip it off.
1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862 Ops.erase(Ops.begin());
1863 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001865 // If we have a multiply of zero, it will always be zero.
1866 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001867 } else if (Ops[0]->isAllOnesValue()) {
1868 // If we have a mul by -1 of an add, try distributing the -1 among the
1869 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001870 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872 SmallVector<const SCEV *, 4> NewOps;
1873 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001876 const SCEV *Mul = getMulExpr(Ops[0], *I);
1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878 NewOps.push_back(Mul);
1879 }
1880 if (AnyFolded)
1881 return getAddExpr(NewOps);
1882 }
Andrew Tricka053b212011-03-14 17:38:54 +00001883 else if (const SCEVAddRecExpr *
1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885 // Negation preserves a recurrence's no self-wrap property.
1886 SmallVector<const SCEV *, 4> Operands;
1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888 E = AddRec->op_end(); I != E; ++I) {
1889 Operands.push_back(getMulExpr(Ops[0], *I));
1890 }
1891 return getAddRecExpr(Operands, AddRec->getLoop(),
1892 AddRec->getNoWrapFlags(SCEV::FlagNW));
1893 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001894 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001896
1897 if (Ops.size() == 1)
1898 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001899 }
1900
1901 // Skip over the add expression until we get to a multiply.
1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903 ++Idx;
1904
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 // If there are mul operands inline them all into this expression.
1906 if (Idx < Ops.size()) {
1907 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // If we have an mul, expand the mul operands onto the end of the operands
1910 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001912 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 DeletedMul = true;
1914 }
1915
1916 // If we deleted at least one mul, we added operands to the end of the list,
1917 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001918 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001919 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001920 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 }
1922
1923 // If there are any add recurrences in the operands list, see if any other
1924 // added values are loop invariant. If so, we can fold them into the
1925 // recurrence.
1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927 ++Idx;
1928
1929 // Scan over all recurrences, trying to fold loop invariants into them.
1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931 // Scan all of the other operands to this mul and add them to the vector if
1932 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001933 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001935 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001936 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001937 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001938 LIOps.push_back(Ops[i]);
1939 Ops.erase(Ops.begin()+i);
1940 --i; --e;
1941 }
1942
1943 // If we found some loop invariants, fold them into the recurrence.
1944 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001946 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001948 const SCEV *Scale = getMulExpr(LIOps);
1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001951
Dan Gohmanb9f96512010-06-30 07:16:37 +00001952 // Build the new addrec. Propagate the NUW and NSW flags if both the
1953 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00001954 //
1955 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001956 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00001957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001959
1960 // If all of the other operands were loop invariant, we are done.
1961 if (Ops.size() == 1) return NewRec;
1962
Nick Lewycky980e9f32011-09-06 05:08:09 +00001963 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 for (unsigned i = 0;; ++i)
1965 if (Ops[i] == AddRec) {
1966 Ops[i] = NewRec;
1967 break;
1968 }
Dan Gohman246b2562007-10-22 18:31:58 +00001969 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 }
1971
1972 // Okay, if there weren't any loop invariants to be folded, check to see if
1973 // there are multiple AddRec's with the same loop induction variable being
1974 // multiplied together. If so, we can fold them.
1975 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1977 ++OtherIdx)
1978 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckyfa151a72011-09-06 05:05:14 +00001979 // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
Dan Gohman6a0c1252010-08-31 22:52:12 +00001980 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1981 ++OtherIdx)
1982 if (const SCEVAddRecExpr *OtherAddRec =
1983 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1984 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckyfa151a72011-09-06 05:05:14 +00001985 const SCEV *A = AddRec->getStart();
1986 const SCEV *B = AddRec->getStepRecurrence(*this);
1987 const SCEV *C = OtherAddRec->getStart();
1988 const SCEV *D = OtherAddRec->getStepRecurrence(*this);
1989 const SCEV *NewStart = getMulExpr(A, C);
1990 const SCEV *BD = getMulExpr(B, D);
1991 const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
1992 getMulExpr(B, C), BD);
1993 const SCEV *NewSecondOrderStep =
1994 getMulExpr(BD, getConstant(BD->getType(), 2));
1995
1996 SmallVector<const SCEV *, 3> AddRecOps;
1997 AddRecOps.push_back(NewStart);
1998 AddRecOps.push_back(NewStep);
1999 AddRecOps.push_back(NewSecondOrderStep);
2000 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2001 AddRec->getLoop(),
Andrew Trick3228cc22011-03-14 16:50:06 +00002002 SCEV::FlagAnyWrap);
Dan Gohman6a0c1252010-08-31 22:52:12 +00002003 if (Ops.size() == 2) return NewAddRec;
2004 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2005 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2006 }
2007 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002008 }
2009
2010 // Otherwise couldn't fold anything into this recurrence. Move onto the
2011 // next one.
2012 }
2013
2014 // Okay, it looks like we really DO need an mul expr. Check to see if we
2015 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002016 FoldingSetNodeID ID;
2017 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002018 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2019 ID.AddPointer(Ops[i]);
2020 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002021 SCEVMulExpr *S =
2022 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2023 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002024 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2025 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002026 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2027 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002028 UniqueSCEVs.InsertNode(S, IP);
2029 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002030 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002031 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002032}
2033
Andreas Bolka8a11c982009-08-07 22:55:26 +00002034/// getUDivExpr - Get a canonical unsigned division expression, or something
2035/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002036const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2037 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002038 assert(getEffectiveSCEVType(LHS->getType()) ==
2039 getEffectiveSCEVType(RHS->getType()) &&
2040 "SCEVUDivExpr operand types don't match!");
2041
Dan Gohman622ed672009-05-04 22:02:23 +00002042 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002043 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002044 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002045 // If the denominator is zero, the result of the udiv is undefined. Don't
2046 // try to analyze it, because the resolution chosen here may differ from
2047 // the resolution chosen in other parts of the compiler.
2048 if (!RHSC->getValue()->isZero()) {
2049 // Determine if the division can be folded into the operands of
2050 // its operands.
2051 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002052 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002053 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002054 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002055 // For non-power-of-two values, effectively round the value up to the
2056 // nearest power of two.
2057 if (!RHSC->getValue()->getValue().isPowerOf2())
2058 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002059 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002060 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002061 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2062 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002063 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2064 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2065 const APInt &StepInt = Step->getValue()->getValue();
2066 const APInt &DivInt = RHSC->getValue()->getValue();
2067 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002068 getZeroExtendExpr(AR, ExtTy) ==
2069 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2070 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002071 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002072 SmallVector<const SCEV *, 4> Operands;
2073 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2074 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002075 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002076 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002077 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002078 /// Get a canonical UDivExpr for a recurrence.
2079 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2080 // We can currently only fold X%N if X is constant.
2081 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2082 if (StartC && !DivInt.urem(StepInt) &&
2083 getZeroExtendExpr(AR, ExtTy) ==
2084 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2085 getZeroExtendExpr(Step, ExtTy),
2086 AR->getLoop(), SCEV::FlagAnyWrap)) {
2087 const APInt &StartInt = StartC->getValue()->getValue();
2088 const APInt &StartRem = StartInt.urem(StepInt);
2089 if (StartRem != 0)
2090 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2091 AR->getLoop(), SCEV::FlagNW);
2092 }
2093 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002094 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2095 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2096 SmallVector<const SCEV *, 4> Operands;
2097 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2098 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2099 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2100 // Find an operand that's safely divisible.
2101 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2102 const SCEV *Op = M->getOperand(i);
2103 const SCEV *Div = getUDivExpr(Op, RHSC);
2104 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2105 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2106 M->op_end());
2107 Operands[i] = Div;
2108 return getMulExpr(Operands);
2109 }
2110 }
Dan Gohman185cf032009-05-08 20:18:49 +00002111 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002112 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002113 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002114 SmallVector<const SCEV *, 4> Operands;
2115 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2116 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2117 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2118 Operands.clear();
2119 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2120 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2121 if (isa<SCEVUDivExpr>(Op) ||
2122 getMulExpr(Op, RHS) != A->getOperand(i))
2123 break;
2124 Operands.push_back(Op);
2125 }
2126 if (Operands.size() == A->getNumOperands())
2127 return getAddExpr(Operands);
2128 }
2129 }
Dan Gohman185cf032009-05-08 20:18:49 +00002130
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002131 // Fold if both operands are constant.
2132 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2133 Constant *LHSCV = LHSC->getValue();
2134 Constant *RHSCV = RHSC->getValue();
2135 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2136 RHSCV)));
2137 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002138 }
2139 }
2140
Dan Gohman1c343752009-06-27 21:21:31 +00002141 FoldingSetNodeID ID;
2142 ID.AddInteger(scUDivExpr);
2143 ID.AddPointer(LHS);
2144 ID.AddPointer(RHS);
2145 void *IP = 0;
2146 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002147 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2148 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002149 UniqueSCEVs.InsertNode(S, IP);
2150 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002151}
2152
2153
Dan Gohman6c0866c2009-05-24 23:45:28 +00002154/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2155/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002156const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2157 const Loop *L,
2158 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002159 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002160 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002161 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002162 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002163 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002164 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002165 }
2166
2167 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002168 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002169}
2170
Dan Gohman6c0866c2009-05-24 23:45:28 +00002171/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2172/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002173const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002174ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002175 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002176 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002177#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002178 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002179 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002180 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002181 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002182 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002183 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002184 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002185#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002186
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002187 if (Operands.back()->isZero()) {
2188 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002189 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002190 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002191
Dan Gohmanbc028532010-02-19 18:49:22 +00002192 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2193 // use that information to infer NUW and NSW flags. However, computing a
2194 // BE count requires calling getAddRecExpr, so we may not yet have a
2195 // meaningful BE count at this point (and if we don't, we'd be stuck
2196 // with a SCEVCouldNotCompute as the cached BE count).
2197
Andrew Trick3228cc22011-03-14 16:50:06 +00002198 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002199 // And vice-versa.
2200 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2201 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2202 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002203 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002204 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2205 E = Operands.end(); I != E; ++I)
2206 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002207 All = false;
2208 break;
2209 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002210 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002211 }
2212
Dan Gohmand9cc7492008-08-08 18:33:12 +00002213 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002214 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002215 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002216 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002217 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002218 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002219 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002220 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002221 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002222 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002223 // AddRecs require their operands be loop-invariant with respect to their
2224 // loops. Don't perform this transformation if it would break this
2225 // requirement.
2226 bool AllInvariant = true;
2227 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002228 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002229 AllInvariant = false;
2230 break;
2231 }
2232 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002233 // Create a recurrence for the outer loop with the same step size.
2234 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002235 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2236 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002237 SCEV::NoWrapFlags OuterFlags =
2238 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002239
2240 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002241 AllInvariant = true;
2242 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002243 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002244 AllInvariant = false;
2245 break;
2246 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002247 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002248 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002249 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002250 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2251 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002252 SCEV::NoWrapFlags InnerFlags =
2253 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002254 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2255 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002256 }
2257 // Reset Operands to its original state.
2258 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002259 }
2260 }
2261
Dan Gohman67847532010-01-19 22:27:22 +00002262 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2263 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002264 FoldingSetNodeID ID;
2265 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002266 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2267 ID.AddPointer(Operands[i]);
2268 ID.AddPointer(L);
2269 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002270 SCEVAddRecExpr *S =
2271 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2272 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002273 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2274 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002275 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2276 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002277 UniqueSCEVs.InsertNode(S, IP);
2278 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002280 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002281}
2282
Dan Gohman9311ef62009-06-24 14:49:00 +00002283const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2284 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002285 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002286 Ops.push_back(LHS);
2287 Ops.push_back(RHS);
2288 return getSMaxExpr(Ops);
2289}
2290
Dan Gohman0bba49c2009-07-07 17:06:11 +00002291const SCEV *
2292ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002293 assert(!Ops.empty() && "Cannot get empty smax!");
2294 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002295#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002296 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002297 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002298 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002299 "SCEVSMaxExpr operand types don't match!");
2300#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002301
2302 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002303 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002304
2305 // If there are any constants, fold them together.
2306 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002307 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002308 ++Idx;
2309 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002310 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002311 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002312 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002313 APIntOps::smax(LHSC->getValue()->getValue(),
2314 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002315 Ops[0] = getConstant(Fold);
2316 Ops.erase(Ops.begin()+1); // Erase the folded element
2317 if (Ops.size() == 1) return Ops[0];
2318 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002319 }
2320
Dan Gohmane5aceed2009-06-24 14:46:22 +00002321 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002322 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2323 Ops.erase(Ops.begin());
2324 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002325 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2326 // If we have an smax with a constant maximum-int, it will always be
2327 // maximum-int.
2328 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002329 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002330
Dan Gohman3ab13122010-04-13 16:49:23 +00002331 if (Ops.size() == 1) return Ops[0];
2332 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002333
2334 // Find the first SMax
2335 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2336 ++Idx;
2337
2338 // Check to see if one of the operands is an SMax. If so, expand its operands
2339 // onto our operand list, and recurse to simplify.
2340 if (Idx < Ops.size()) {
2341 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002342 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002343 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002344 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002345 DeletedSMax = true;
2346 }
2347
2348 if (DeletedSMax)
2349 return getSMaxExpr(Ops);
2350 }
2351
2352 // Okay, check to see if the same value occurs in the operand list twice. If
2353 // so, delete one. Since we sorted the list, these values are required to
2354 // be adjacent.
2355 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002356 // X smax Y smax Y --> X smax Y
2357 // X smax Y --> X, if X is always greater than Y
2358 if (Ops[i] == Ops[i+1] ||
2359 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2360 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2361 --i; --e;
2362 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002363 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2364 --i; --e;
2365 }
2366
2367 if (Ops.size() == 1) return Ops[0];
2368
2369 assert(!Ops.empty() && "Reduced smax down to nothing!");
2370
Nick Lewycky3e630762008-02-20 06:48:22 +00002371 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002372 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002373 FoldingSetNodeID ID;
2374 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002375 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2376 ID.AddPointer(Ops[i]);
2377 void *IP = 0;
2378 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002379 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2380 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002381 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2382 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002383 UniqueSCEVs.InsertNode(S, IP);
2384 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002385}
2386
Dan Gohman9311ef62009-06-24 14:49:00 +00002387const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2388 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002389 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002390 Ops.push_back(LHS);
2391 Ops.push_back(RHS);
2392 return getUMaxExpr(Ops);
2393}
2394
Dan Gohman0bba49c2009-07-07 17:06:11 +00002395const SCEV *
2396ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002397 assert(!Ops.empty() && "Cannot get empty umax!");
2398 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002399#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002400 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002401 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002402 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002403 "SCEVUMaxExpr operand types don't match!");
2404#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002405
2406 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002407 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002408
2409 // If there are any constants, fold them together.
2410 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002411 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002412 ++Idx;
2413 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002414 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002415 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002416 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002417 APIntOps::umax(LHSC->getValue()->getValue(),
2418 RHSC->getValue()->getValue()));
2419 Ops[0] = getConstant(Fold);
2420 Ops.erase(Ops.begin()+1); // Erase the folded element
2421 if (Ops.size() == 1) return Ops[0];
2422 LHSC = cast<SCEVConstant>(Ops[0]);
2423 }
2424
Dan Gohmane5aceed2009-06-24 14:46:22 +00002425 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002426 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2427 Ops.erase(Ops.begin());
2428 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002429 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2430 // If we have an umax with a constant maximum-int, it will always be
2431 // maximum-int.
2432 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002433 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002434
Dan Gohman3ab13122010-04-13 16:49:23 +00002435 if (Ops.size() == 1) return Ops[0];
2436 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002437
2438 // Find the first UMax
2439 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2440 ++Idx;
2441
2442 // Check to see if one of the operands is a UMax. If so, expand its operands
2443 // onto our operand list, and recurse to simplify.
2444 if (Idx < Ops.size()) {
2445 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002446 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002447 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002448 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002449 DeletedUMax = true;
2450 }
2451
2452 if (DeletedUMax)
2453 return getUMaxExpr(Ops);
2454 }
2455
2456 // Okay, check to see if the same value occurs in the operand list twice. If
2457 // so, delete one. Since we sorted the list, these values are required to
2458 // be adjacent.
2459 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002460 // X umax Y umax Y --> X umax Y
2461 // X umax Y --> X, if X is always greater than Y
2462 if (Ops[i] == Ops[i+1] ||
2463 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2464 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2465 --i; --e;
2466 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002467 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2468 --i; --e;
2469 }
2470
2471 if (Ops.size() == 1) return Ops[0];
2472
2473 assert(!Ops.empty() && "Reduced umax down to nothing!");
2474
2475 // Okay, it looks like we really DO need a umax expr. Check to see if we
2476 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002477 FoldingSetNodeID ID;
2478 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002479 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2480 ID.AddPointer(Ops[i]);
2481 void *IP = 0;
2482 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002483 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2484 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002485 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2486 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002487 UniqueSCEVs.InsertNode(S, IP);
2488 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002489}
2490
Dan Gohman9311ef62009-06-24 14:49:00 +00002491const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2492 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002493 // ~smax(~x, ~y) == smin(x, y).
2494 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2495}
2496
Dan Gohman9311ef62009-06-24 14:49:00 +00002497const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2498 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002499 // ~umax(~x, ~y) == umin(x, y)
2500 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2501}
2502
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002503const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002504 // If we have TargetData, we can bypass creating a target-independent
2505 // constant expression and then folding it back into a ConstantInt.
2506 // This is just a compile-time optimization.
2507 if (TD)
2508 return getConstant(TD->getIntPtrType(getContext()),
2509 TD->getTypeAllocSize(AllocTy));
2510
Dan Gohman4f8eea82010-02-01 18:27:38 +00002511 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2512 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002513 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2514 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002515 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002516 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2517}
2518
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002519const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002520 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2521 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002522 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2523 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002524 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002525 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2526}
2527
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002528const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002529 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002530 // If we have TargetData, we can bypass creating a target-independent
2531 // constant expression and then folding it back into a ConstantInt.
2532 // This is just a compile-time optimization.
2533 if (TD)
2534 return getConstant(TD->getIntPtrType(getContext()),
2535 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2536
Dan Gohman0f5efe52010-01-28 02:15:55 +00002537 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2538 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002539 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2540 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002541 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002542 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002543}
2544
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002545const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002546 Constant *FieldNo) {
2547 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002548 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002549 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2550 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002551 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002552 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002553}
2554
Dan Gohman0bba49c2009-07-07 17:06:11 +00002555const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002556 // Don't attempt to do anything other than create a SCEVUnknown object
2557 // here. createSCEV only calls getUnknown after checking for all other
2558 // interesting possibilities, and any other code that calls getUnknown
2559 // is doing so in order to hide a value from SCEV canonicalization.
2560
Dan Gohman1c343752009-06-27 21:21:31 +00002561 FoldingSetNodeID ID;
2562 ID.AddInteger(scUnknown);
2563 ID.AddPointer(V);
2564 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002565 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2566 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2567 "Stale SCEVUnknown in uniquing map!");
2568 return S;
2569 }
2570 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2571 FirstUnknown);
2572 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002573 UniqueSCEVs.InsertNode(S, IP);
2574 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002575}
2576
Chris Lattner53e677a2004-04-02 20:23:17 +00002577//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002578// Basic SCEV Analysis and PHI Idiom Recognition Code
2579//
2580
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002581/// isSCEVable - Test if values of the given type are analyzable within
2582/// the SCEV framework. This primarily includes integer types, and it
2583/// can optionally include pointer types if the ScalarEvolution class
2584/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002585bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002586 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002587 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002588}
2589
2590/// getTypeSizeInBits - Return the size in bits of the specified type,
2591/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002592uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002593 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2594
2595 // If we have a TargetData, use it!
2596 if (TD)
2597 return TD->getTypeSizeInBits(Ty);
2598
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002599 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002600 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002601 return Ty->getPrimitiveSizeInBits();
2602
2603 // The only other support type is pointer. Without TargetData, conservatively
2604 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002605 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002606 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002607}
2608
2609/// getEffectiveSCEVType - Return a type with the same bitwidth as
2610/// the given type and which represents how SCEV will treat the given
2611/// type, for which isSCEVable must return true. For pointer types,
2612/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002613Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002614 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2615
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002616 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002617 return Ty;
2618
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002619 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002620 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002621 if (TD) return TD->getIntPtrType(getContext());
2622
2623 // Without TargetData, conservatively assume pointers are 64-bit.
2624 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002625}
Chris Lattner53e677a2004-04-02 20:23:17 +00002626
Dan Gohman0bba49c2009-07-07 17:06:11 +00002627const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002628 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002629}
2630
Chris Lattner53e677a2004-04-02 20:23:17 +00002631/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2632/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002633const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002634 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002635
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002636 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2637 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002638 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002639
2640 // The process of creating a SCEV for V may have caused other SCEVs
2641 // to have been created, so it's necessary to insert the new entry
2642 // from scratch, rather than trying to remember the insert position
2643 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002644 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002645 return S;
2646}
2647
Dan Gohman2d1be872009-04-16 03:18:22 +00002648/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2649///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002650const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002651 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002652 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002653 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002654
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002655 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002656 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002657 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002658 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002659}
2660
2661/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002662const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002663 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002664 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002665 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002666
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002667 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002668 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002669 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002670 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002671 return getMinusSCEV(AllOnes, V);
2672}
2673
Andrew Trick3228cc22011-03-14 16:50:06 +00002674/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002675const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002676 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002677 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2678
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002679 // Fast path: X - X --> 0.
2680 if (LHS == RHS)
2681 return getConstant(LHS->getType(), 0);
2682
Dan Gohman2d1be872009-04-16 03:18:22 +00002683 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002684 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002685}
2686
2687/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2688/// input value to the specified type. If the type must be extended, it is zero
2689/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002690const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002691ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2692 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002693 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2694 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002695 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002696 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002697 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002698 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002699 return getTruncateExpr(V, Ty);
2700 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002701}
2702
2703/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2704/// input value to the specified type. If the type must be extended, it is sign
2705/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002706const SCEV *
2707ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002708 Type *Ty) {
2709 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002710 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2711 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002712 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002713 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002714 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002715 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002716 return getTruncateExpr(V, Ty);
2717 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002718}
2719
Dan Gohman467c4302009-05-13 03:46:30 +00002720/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2721/// input value to the specified type. If the type must be extended, it is zero
2722/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002723const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002724ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2725 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002726 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2727 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002728 "Cannot noop or zero extend with non-integer arguments!");
2729 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2730 "getNoopOrZeroExtend cannot truncate!");
2731 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2732 return V; // No conversion
2733 return getZeroExtendExpr(V, Ty);
2734}
2735
2736/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2737/// input value to the specified type. If the type must be extended, it is sign
2738/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002739const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002740ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2741 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002742 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2743 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002744 "Cannot noop or sign extend with non-integer arguments!");
2745 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2746 "getNoopOrSignExtend cannot truncate!");
2747 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2748 return V; // No conversion
2749 return getSignExtendExpr(V, Ty);
2750}
2751
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002752/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2753/// the input value to the specified type. If the type must be extended,
2754/// it is extended with unspecified bits. The conversion must not be
2755/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002756const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002757ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2758 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002759 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2760 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002761 "Cannot noop or any extend with non-integer arguments!");
2762 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2763 "getNoopOrAnyExtend cannot truncate!");
2764 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2765 return V; // No conversion
2766 return getAnyExtendExpr(V, Ty);
2767}
2768
Dan Gohman467c4302009-05-13 03:46:30 +00002769/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2770/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002771const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002772ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2773 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002774 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2775 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002776 "Cannot truncate or noop with non-integer arguments!");
2777 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2778 "getTruncateOrNoop cannot extend!");
2779 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2780 return V; // No conversion
2781 return getTruncateExpr(V, Ty);
2782}
2783
Dan Gohmana334aa72009-06-22 00:31:57 +00002784/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2785/// the types using zero-extension, and then perform a umax operation
2786/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002787const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2788 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002789 const SCEV *PromotedLHS = LHS;
2790 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002791
2792 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2793 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2794 else
2795 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2796
2797 return getUMaxExpr(PromotedLHS, PromotedRHS);
2798}
2799
Dan Gohmanc9759e82009-06-22 15:03:27 +00002800/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2801/// the types using zero-extension, and then perform a umin operation
2802/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002803const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2804 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002805 const SCEV *PromotedLHS = LHS;
2806 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002807
2808 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2809 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2810 else
2811 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2812
2813 return getUMinExpr(PromotedLHS, PromotedRHS);
2814}
2815
Andrew Trickb12a7542011-03-17 23:51:11 +00002816/// getPointerBase - Transitively follow the chain of pointer-type operands
2817/// until reaching a SCEV that does not have a single pointer operand. This
2818/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2819/// but corner cases do exist.
2820const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2821 // A pointer operand may evaluate to a nonpointer expression, such as null.
2822 if (!V->getType()->isPointerTy())
2823 return V;
2824
2825 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2826 return getPointerBase(Cast->getOperand());
2827 }
2828 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2829 const SCEV *PtrOp = 0;
2830 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2831 I != E; ++I) {
2832 if ((*I)->getType()->isPointerTy()) {
2833 // Cannot find the base of an expression with multiple pointer operands.
2834 if (PtrOp)
2835 return V;
2836 PtrOp = *I;
2837 }
2838 }
2839 if (!PtrOp)
2840 return V;
2841 return getPointerBase(PtrOp);
2842 }
2843 return V;
2844}
2845
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002846/// PushDefUseChildren - Push users of the given Instruction
2847/// onto the given Worklist.
2848static void
2849PushDefUseChildren(Instruction *I,
2850 SmallVectorImpl<Instruction *> &Worklist) {
2851 // Push the def-use children onto the Worklist stack.
2852 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2853 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002854 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002855}
2856
2857/// ForgetSymbolicValue - This looks up computed SCEV values for all
2858/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002859/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002860/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002861void
Dan Gohman85669632010-02-25 06:57:05 +00002862ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002863 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002864 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002865
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002866 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002867 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002868 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002869 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002870 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002871
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002872 ValueExprMapType::iterator It =
2873 ValueExprMap.find(static_cast<Value *>(I));
2874 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002875 const SCEV *Old = It->second;
2876
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002877 // Short-circuit the def-use traversal if the symbolic name
2878 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002879 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002880 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002881
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002882 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002883 // structure, it's a PHI that's in the progress of being computed
2884 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2885 // additional loop trip count information isn't going to change anything.
2886 // In the second case, createNodeForPHI will perform the necessary
2887 // updates on its own when it gets to that point. In the third, we do
2888 // want to forget the SCEVUnknown.
2889 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002890 !isa<SCEVUnknown>(Old) ||
2891 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002892 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002893 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002894 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002895 }
2896
2897 PushDefUseChildren(I, Worklist);
2898 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002899}
Chris Lattner53e677a2004-04-02 20:23:17 +00002900
2901/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2902/// a loop header, making it a potential recurrence, or it doesn't.
2903///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002904const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002905 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2906 if (L->getHeader() == PN->getParent()) {
2907 // The loop may have multiple entrances or multiple exits; we can analyze
2908 // this phi as an addrec if it has a unique entry value and a unique
2909 // backedge value.
2910 Value *BEValueV = 0, *StartValueV = 0;
2911 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2912 Value *V = PN->getIncomingValue(i);
2913 if (L->contains(PN->getIncomingBlock(i))) {
2914 if (!BEValueV) {
2915 BEValueV = V;
2916 } else if (BEValueV != V) {
2917 BEValueV = 0;
2918 break;
2919 }
2920 } else if (!StartValueV) {
2921 StartValueV = V;
2922 } else if (StartValueV != V) {
2923 StartValueV = 0;
2924 break;
2925 }
2926 }
2927 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002928 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002929 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002930 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002931 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002932 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002933
2934 // Using this symbolic name for the PHI, analyze the value coming around
2935 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002936 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002937
2938 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2939 // has a special value for the first iteration of the loop.
2940
2941 // If the value coming around the backedge is an add with the symbolic
2942 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002943 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002944 // If there is a single occurrence of the symbolic value, replace it
2945 // with a recurrence.
2946 unsigned FoundIndex = Add->getNumOperands();
2947 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2948 if (Add->getOperand(i) == SymbolicName)
2949 if (FoundIndex == e) {
2950 FoundIndex = i;
2951 break;
2952 }
2953
2954 if (FoundIndex != Add->getNumOperands()) {
2955 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002956 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002957 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2958 if (i != FoundIndex)
2959 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002960 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002961
2962 // This is not a valid addrec if the step amount is varying each
2963 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002964 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002965 (isa<SCEVAddRecExpr>(Accum) &&
2966 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002967 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00002968
2969 // If the increment doesn't overflow, then neither the addrec nor
2970 // the post-increment will overflow.
2971 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2972 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002973 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002974 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002975 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00002976 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00002977 dyn_cast<GEPOperator>(BEValueV)) {
2978 // If the increment is an inbounds GEP, then we know the address
2979 // space cannot be wrapped around. We cannot make any guarantee
2980 // about signed or unsigned overflow because pointers are
2981 // unsigned but we may have a negative index from the base
2982 // pointer.
2983 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00002984 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002985 }
2986
Dan Gohman27dead42010-04-12 07:49:36 +00002987 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00002988 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002989
Dan Gohmana10756e2010-01-21 02:09:26 +00002990 // Since the no-wrap flags are on the increment, they apply to the
2991 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002992 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002993 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00002994 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002995
2996 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002997 // to be symbolic. We now need to go back and purge all of the
2998 // entries for the scalars that use the symbolic expression.
2999 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003000 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003001 return PHISCEV;
3002 }
3003 }
Dan Gohman622ed672009-05-04 22:02:23 +00003004 } else if (const SCEVAddRecExpr *AddRec =
3005 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003006 // Otherwise, this could be a loop like this:
3007 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3008 // In this case, j = {1,+,1} and BEValue is j.
3009 // Because the other in-value of i (0) fits the evolution of BEValue
3010 // i really is an addrec evolution.
3011 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003012 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003013
3014 // If StartVal = j.start - j.stride, we can use StartVal as the
3015 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003016 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003017 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003018 // FIXME: For constant StartVal, we should be able to infer
3019 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003020 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003021 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3022 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003023
3024 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003025 // to be symbolic. We now need to go back and purge all of the
3026 // entries for the scalars that use the symbolic expression.
3027 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003028 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003029 return PHISCEV;
3030 }
3031 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003032 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003033 }
Dan Gohman27dead42010-04-12 07:49:36 +00003034 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003035
Dan Gohman85669632010-02-25 06:57:05 +00003036 // If the PHI has a single incoming value, follow that value, unless the
3037 // PHI's incoming blocks are in a different loop, in which case doing so
3038 // risks breaking LCSSA form. Instcombine would normally zap these, but
3039 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003040 if (Value *V = SimplifyInstruction(PN, TD, DT))
3041 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003042 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003043
Chris Lattner53e677a2004-04-02 20:23:17 +00003044 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003045 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003046}
3047
Dan Gohman26466c02009-05-08 20:26:55 +00003048/// createNodeForGEP - Expand GEP instructions into add and multiply
3049/// operations. This allows them to be analyzed by regular SCEV code.
3050///
Dan Gohmand281ed22009-12-18 02:09:29 +00003051const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003052
Dan Gohmanb9f96512010-06-30 07:16:37 +00003053 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3054 // Add expression, because the Instruction may be guarded by control flow
3055 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003056 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003057 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003058
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003059 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003060 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003061 // Don't attempt to analyze GEPs over unsized objects.
3062 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3063 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003064 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003065 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003066 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003067 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003068 I != E; ++I) {
3069 Value *Index = *I;
3070 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003071 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003072 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003073 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003074 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3075
Dan Gohmanb9f96512010-06-30 07:16:37 +00003076 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003077 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003078 } else {
3079 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003080 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3081 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003082 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003083 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3084
Dan Gohmanb9f96512010-06-30 07:16:37 +00003085 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003086 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3087 isInBounds ? SCEV::FlagNSW :
3088 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003089
3090 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003091 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003092 }
3093 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003094
3095 // Get the SCEV for the GEP base.
3096 const SCEV *BaseS = getSCEV(Base);
3097
Dan Gohmanb9f96512010-06-30 07:16:37 +00003098 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003099 return getAddExpr(BaseS, TotalOffset,
3100 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003101}
3102
Nick Lewycky83bb0052007-11-22 07:59:40 +00003103/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3104/// guaranteed to end in (at every loop iteration). It is, at the same time,
3105/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3106/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003107uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003108ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003109 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003110 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003111
Dan Gohman622ed672009-05-04 22:02:23 +00003112 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003113 return std::min(GetMinTrailingZeros(T->getOperand()),
3114 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003115
Dan Gohman622ed672009-05-04 22:02:23 +00003116 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003117 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3118 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3119 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003120 }
3121
Dan Gohman622ed672009-05-04 22:02:23 +00003122 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003123 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3124 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3125 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003126 }
3127
Dan Gohman622ed672009-05-04 22:02:23 +00003128 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003129 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003130 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003131 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003132 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003133 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003134 }
3135
Dan Gohman622ed672009-05-04 22:02:23 +00003136 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003137 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003138 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3139 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003140 for (unsigned i = 1, e = M->getNumOperands();
3141 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003142 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003143 BitWidth);
3144 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003145 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003146
Dan Gohman622ed672009-05-04 22:02:23 +00003147 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003148 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003150 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003151 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003152 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003153 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003154
Dan Gohman622ed672009-05-04 22:02:23 +00003155 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003156 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003157 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003158 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003159 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003160 return MinOpRes;
3161 }
3162
Dan Gohman622ed672009-05-04 22:02:23 +00003163 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003164 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003165 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003166 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003167 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003168 return MinOpRes;
3169 }
3170
Dan Gohman2c364ad2009-06-19 23:29:04 +00003171 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3172 // For a SCEVUnknown, ask ValueTracking.
3173 unsigned BitWidth = getTypeSizeInBits(U->getType());
3174 APInt Mask = APInt::getAllOnesValue(BitWidth);
3175 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3176 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3177 return Zeros.countTrailingOnes();
3178 }
3179
3180 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003181 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003182}
Chris Lattner53e677a2004-04-02 20:23:17 +00003183
Dan Gohman85b05a22009-07-13 21:35:55 +00003184/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3185///
3186ConstantRange
3187ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003188 // See if we've computed this range already.
3189 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3190 if (I != UnsignedRanges.end())
3191 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003192
3193 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003194 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003195
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003196 unsigned BitWidth = getTypeSizeInBits(S->getType());
3197 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3198
3199 // If the value has known zeros, the maximum unsigned value will have those
3200 // known zeros as well.
3201 uint32_t TZ = GetMinTrailingZeros(S);
3202 if (TZ != 0)
3203 ConservativeResult =
3204 ConstantRange(APInt::getMinValue(BitWidth),
3205 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3206
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3208 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3209 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3210 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003211 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003212 }
3213
3214 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3215 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3216 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3217 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003218 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003219 }
3220
3221 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3222 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3223 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3224 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003225 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003226 }
3227
3228 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3229 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3230 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3231 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003232 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003233 }
3234
3235 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3236 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3237 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003238 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003239 }
3240
3241 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3242 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003243 return setUnsignedRange(ZExt,
3244 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003245 }
3246
3247 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3248 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003249 return setUnsignedRange(SExt,
3250 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003251 }
3252
3253 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3254 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003255 return setUnsignedRange(Trunc,
3256 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003257 }
3258
Dan Gohman85b05a22009-07-13 21:35:55 +00003259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003260 // If there's no unsigned wrap, the value will never be less than its
3261 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003262 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003263 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003264 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003265 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003266 ConservativeResult.intersectWith(
3267 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003268
3269 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003270 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003271 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003272 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003273 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3274 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003275 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3276
3277 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003278 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003279
3280 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003281 ConstantRange StepRange = getSignedRange(Step);
3282 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3283 ConstantRange EndRange =
3284 StartRange.add(MaxBECountRange.multiply(StepRange));
3285
3286 // Check for overflow. This must be done with ConstantRange arithmetic
3287 // because we could be called from within the ScalarEvolution overflow
3288 // checking code.
3289 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3290 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3291 ConstantRange ExtMaxBECountRange =
3292 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3293 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3294 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3295 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003296 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003297
Dan Gohman85b05a22009-07-13 21:35:55 +00003298 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3299 EndRange.getUnsignedMin());
3300 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3301 EndRange.getUnsignedMax());
3302 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003303 return setUnsignedRange(AddRec, ConservativeResult);
3304 return setUnsignedRange(AddRec,
3305 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003306 }
3307 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003308
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003309 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003310 }
3311
3312 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3313 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003314 APInt Mask = APInt::getAllOnesValue(BitWidth);
3315 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3316 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003317 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003318 return setUnsignedRange(U, ConservativeResult);
3319 return setUnsignedRange(U,
3320 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003321 }
3322
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003323 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003324}
3325
Dan Gohman85b05a22009-07-13 21:35:55 +00003326/// getSignedRange - Determine the signed range for a particular SCEV.
3327///
3328ConstantRange
3329ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003330 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003331 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3332 if (I != SignedRanges.end())
3333 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003334
Dan Gohman85b05a22009-07-13 21:35:55 +00003335 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003336 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337
Dan Gohman52fddd32010-01-26 04:40:18 +00003338 unsigned BitWidth = getTypeSizeInBits(S->getType());
3339 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3340
3341 // If the value has known zeros, the maximum signed value will have those
3342 // known zeros as well.
3343 uint32_t TZ = GetMinTrailingZeros(S);
3344 if (TZ != 0)
3345 ConservativeResult =
3346 ConstantRange(APInt::getSignedMinValue(BitWidth),
3347 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3348
Dan Gohman85b05a22009-07-13 21:35:55 +00003349 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3350 ConstantRange X = getSignedRange(Add->getOperand(0));
3351 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3352 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003353 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003354 }
3355
Dan Gohman85b05a22009-07-13 21:35:55 +00003356 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3357 ConstantRange X = getSignedRange(Mul->getOperand(0));
3358 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3359 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003360 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003361 }
3362
Dan Gohman85b05a22009-07-13 21:35:55 +00003363 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3364 ConstantRange X = getSignedRange(SMax->getOperand(0));
3365 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3366 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003367 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003368 }
Dan Gohman62849c02009-06-24 01:05:09 +00003369
Dan Gohman85b05a22009-07-13 21:35:55 +00003370 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3371 ConstantRange X = getSignedRange(UMax->getOperand(0));
3372 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3373 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003374 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003375 }
Dan Gohman62849c02009-06-24 01:05:09 +00003376
Dan Gohman85b05a22009-07-13 21:35:55 +00003377 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3378 ConstantRange X = getSignedRange(UDiv->getLHS());
3379 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003380 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003381 }
Dan Gohman62849c02009-06-24 01:05:09 +00003382
Dan Gohman85b05a22009-07-13 21:35:55 +00003383 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3384 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003385 return setSignedRange(ZExt,
3386 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003387 }
3388
3389 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3390 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003391 return setSignedRange(SExt,
3392 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003393 }
3394
3395 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3396 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003397 return setSignedRange(Trunc,
3398 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003399 }
3400
Dan Gohman85b05a22009-07-13 21:35:55 +00003401 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003402 // If there's no signed wrap, and all the operands have the same sign or
3403 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003404 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003405 bool AllNonNeg = true;
3406 bool AllNonPos = true;
3407 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3408 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3409 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3410 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003411 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003412 ConservativeResult = ConservativeResult.intersectWith(
3413 ConstantRange(APInt(BitWidth, 0),
3414 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003415 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003416 ConservativeResult = ConservativeResult.intersectWith(
3417 ConstantRange(APInt::getSignedMinValue(BitWidth),
3418 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003419 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003420
3421 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003422 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003423 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003424 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003425 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3426 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003427 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3428
3429 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003430 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003431
3432 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003433 ConstantRange StepRange = getSignedRange(Step);
3434 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3435 ConstantRange EndRange =
3436 StartRange.add(MaxBECountRange.multiply(StepRange));
3437
3438 // Check for overflow. This must be done with ConstantRange arithmetic
3439 // because we could be called from within the ScalarEvolution overflow
3440 // checking code.
3441 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3442 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3443 ConstantRange ExtMaxBECountRange =
3444 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3445 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3446 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3447 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003448 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003449
Dan Gohman85b05a22009-07-13 21:35:55 +00003450 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3451 EndRange.getSignedMin());
3452 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3453 EndRange.getSignedMax());
3454 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003455 return setSignedRange(AddRec, ConservativeResult);
3456 return setSignedRange(AddRec,
3457 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003458 }
Dan Gohman62849c02009-06-24 01:05:09 +00003459 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003460
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003461 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003462 }
3463
Dan Gohman2c364ad2009-06-19 23:29:04 +00003464 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3465 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003466 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003467 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003468 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3469 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(U, ConservativeResult);
3471 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003473 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003474 }
3475
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003477}
3478
Chris Lattner53e677a2004-04-02 20:23:17 +00003479/// createSCEV - We know that there is no SCEV for the specified value.
3480/// Analyze the expression.
3481///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003482const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003483 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003484 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003485
Dan Gohman6c459a22008-06-22 19:56:46 +00003486 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003487 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003488 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003489
3490 // Don't attempt to analyze instructions in blocks that aren't
3491 // reachable. Such instructions don't matter, and they aren't required
3492 // to obey basic rules for definitions dominating uses which this
3493 // analysis depends on.
3494 if (!DT->isReachableFromEntry(I->getParent()))
3495 return getUnknown(V);
3496 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003497 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003498 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3499 return getConstant(CI);
3500 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003501 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003502 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3503 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003504 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003505 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003506
Dan Gohmanca178902009-07-17 20:47:02 +00003507 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003508 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003509 case Instruction::Add: {
3510 // The simple thing to do would be to just call getSCEV on both operands
3511 // and call getAddExpr with the result. However if we're looking at a
3512 // bunch of things all added together, this can be quite inefficient,
3513 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3514 // Instead, gather up all the operands and make a single getAddExpr call.
3515 // LLVM IR canonical form means we need only traverse the left operands.
3516 SmallVector<const SCEV *, 4> AddOps;
3517 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003518 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3519 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3520 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3521 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003522 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003523 const SCEV *Op1 = getSCEV(U->getOperand(1));
3524 if (Opcode == Instruction::Sub)
3525 AddOps.push_back(getNegativeSCEV(Op1));
3526 else
3527 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003528 }
3529 AddOps.push_back(getSCEV(U->getOperand(0)));
3530 return getAddExpr(AddOps);
3531 }
3532 case Instruction::Mul: {
3533 // See the Add code above.
3534 SmallVector<const SCEV *, 4> MulOps;
3535 MulOps.push_back(getSCEV(U->getOperand(1)));
3536 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003537 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003538 Op = U->getOperand(0)) {
3539 U = cast<Operator>(Op);
3540 MulOps.push_back(getSCEV(U->getOperand(1)));
3541 }
3542 MulOps.push_back(getSCEV(U->getOperand(0)));
3543 return getMulExpr(MulOps);
3544 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003545 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003546 return getUDivExpr(getSCEV(U->getOperand(0)),
3547 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003548 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003549 return getMinusSCEV(getSCEV(U->getOperand(0)),
3550 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003551 case Instruction::And:
3552 // For an expression like x&255 that merely masks off the high bits,
3553 // use zext(trunc(x)) as the SCEV expression.
3554 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003555 if (CI->isNullValue())
3556 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003557 if (CI->isAllOnesValue())
3558 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003559 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003560
3561 // Instcombine's ShrinkDemandedConstant may strip bits out of
3562 // constants, obscuring what would otherwise be a low-bits mask.
3563 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3564 // knew about to reconstruct a low-bits mask value.
3565 unsigned LZ = A.countLeadingZeros();
3566 unsigned BitWidth = A.getBitWidth();
3567 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3568 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3569 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3570
3571 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3572
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003573 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003574 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003575 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003576 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003577 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003578 }
3579 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003580
Dan Gohman6c459a22008-06-22 19:56:46 +00003581 case Instruction::Or:
3582 // If the RHS of the Or is a constant, we may have something like:
3583 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3584 // optimizations will transparently handle this case.
3585 //
3586 // In order for this transformation to be safe, the LHS must be of the
3587 // form X*(2^n) and the Or constant must be less than 2^n.
3588 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003589 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003590 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003591 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003592 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3593 // Build a plain add SCEV.
3594 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3595 // If the LHS of the add was an addrec and it has no-wrap flags,
3596 // transfer the no-wrap flags, since an or won't introduce a wrap.
3597 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3598 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003599 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3600 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003601 }
3602 return S;
3603 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003604 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003605 break;
3606 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003607 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003608 // If the RHS of the xor is a signbit, then this is just an add.
3609 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003610 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003611 return getAddExpr(getSCEV(U->getOperand(0)),
3612 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003613
3614 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003615 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003616 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003617
3618 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3619 // This is a variant of the check for xor with -1, and it handles
3620 // the case where instcombine has trimmed non-demanded bits out
3621 // of an xor with -1.
3622 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3623 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3624 if (BO->getOpcode() == Instruction::And &&
3625 LCI->getValue() == CI->getValue())
3626 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003627 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003628 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003629 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003630 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003631 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3632
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003633 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003634 // mask off the high bits. Complement the operand and
3635 // re-apply the zext.
3636 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3637 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3638
3639 // If C is a single bit, it may be in the sign-bit position
3640 // before the zero-extend. In this case, represent the xor
3641 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003642 APInt Trunc = CI->getValue().trunc(Z0TySize);
3643 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003644 Trunc.isSignBit())
3645 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3646 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003647 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003648 }
3649 break;
3650
3651 case Instruction::Shl:
3652 // Turn shift left of a constant amount into a multiply.
3653 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003654 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003655
3656 // If the shift count is not less than the bitwidth, the result of
3657 // the shift is undefined. Don't try to analyze it, because the
3658 // resolution chosen here may differ from the resolution chosen in
3659 // other parts of the compiler.
3660 if (SA->getValue().uge(BitWidth))
3661 break;
3662
Owen Andersoneed707b2009-07-24 23:12:02 +00003663 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003664 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003665 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003666 }
3667 break;
3668
Nick Lewycky01eaf802008-07-07 06:15:49 +00003669 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003670 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003671 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003672 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003673
3674 // If the shift count is not less than the bitwidth, the result of
3675 // the shift is undefined. Don't try to analyze it, because the
3676 // resolution chosen here may differ from the resolution chosen in
3677 // other parts of the compiler.
3678 if (SA->getValue().uge(BitWidth))
3679 break;
3680
Owen Andersoneed707b2009-07-24 23:12:02 +00003681 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003682 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003683 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003684 }
3685 break;
3686
Dan Gohman4ee29af2009-04-21 02:26:00 +00003687 case Instruction::AShr:
3688 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3689 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003690 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003691 if (L->getOpcode() == Instruction::Shl &&
3692 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003693 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3694
3695 // If the shift count is not less than the bitwidth, the result of
3696 // the shift is undefined. Don't try to analyze it, because the
3697 // resolution chosen here may differ from the resolution chosen in
3698 // other parts of the compiler.
3699 if (CI->getValue().uge(BitWidth))
3700 break;
3701
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003702 uint64_t Amt = BitWidth - CI->getZExtValue();
3703 if (Amt == BitWidth)
3704 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003705 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003706 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003707 IntegerType::get(getContext(),
3708 Amt)),
3709 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003710 }
3711 break;
3712
Dan Gohman6c459a22008-06-22 19:56:46 +00003713 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003714 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003715
3716 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003717 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003718
3719 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003720 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003721
3722 case Instruction::BitCast:
3723 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003724 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003725 return getSCEV(U->getOperand(0));
3726 break;
3727
Dan Gohman4f8eea82010-02-01 18:27:38 +00003728 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3729 // lead to pointer expressions which cannot safely be expanded to GEPs,
3730 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3731 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003732
Dan Gohman26466c02009-05-08 20:26:55 +00003733 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003734 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003735
Dan Gohman6c459a22008-06-22 19:56:46 +00003736 case Instruction::PHI:
3737 return createNodeForPHI(cast<PHINode>(U));
3738
3739 case Instruction::Select:
3740 // This could be a smax or umax that was lowered earlier.
3741 // Try to recover it.
3742 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3743 Value *LHS = ICI->getOperand(0);
3744 Value *RHS = ICI->getOperand(1);
3745 switch (ICI->getPredicate()) {
3746 case ICmpInst::ICMP_SLT:
3747 case ICmpInst::ICMP_SLE:
3748 std::swap(LHS, RHS);
3749 // fall through
3750 case ICmpInst::ICMP_SGT:
3751 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003752 // a >s b ? a+x : b+x -> smax(a, b)+x
3753 // a >s b ? b+x : a+x -> smin(a, b)+x
3754 if (LHS->getType() == U->getType()) {
3755 const SCEV *LS = getSCEV(LHS);
3756 const SCEV *RS = getSCEV(RHS);
3757 const SCEV *LA = getSCEV(U->getOperand(1));
3758 const SCEV *RA = getSCEV(U->getOperand(2));
3759 const SCEV *LDiff = getMinusSCEV(LA, LS);
3760 const SCEV *RDiff = getMinusSCEV(RA, RS);
3761 if (LDiff == RDiff)
3762 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3763 LDiff = getMinusSCEV(LA, RS);
3764 RDiff = getMinusSCEV(RA, LS);
3765 if (LDiff == RDiff)
3766 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3767 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003768 break;
3769 case ICmpInst::ICMP_ULT:
3770 case ICmpInst::ICMP_ULE:
3771 std::swap(LHS, RHS);
3772 // fall through
3773 case ICmpInst::ICMP_UGT:
3774 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003775 // a >u b ? a+x : b+x -> umax(a, b)+x
3776 // a >u b ? b+x : a+x -> umin(a, b)+x
3777 if (LHS->getType() == U->getType()) {
3778 const SCEV *LS = getSCEV(LHS);
3779 const SCEV *RS = getSCEV(RHS);
3780 const SCEV *LA = getSCEV(U->getOperand(1));
3781 const SCEV *RA = getSCEV(U->getOperand(2));
3782 const SCEV *LDiff = getMinusSCEV(LA, LS);
3783 const SCEV *RDiff = getMinusSCEV(RA, RS);
3784 if (LDiff == RDiff)
3785 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3786 LDiff = getMinusSCEV(LA, RS);
3787 RDiff = getMinusSCEV(RA, LS);
3788 if (LDiff == RDiff)
3789 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3790 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003791 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003792 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003793 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3794 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003795 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003796 cast<ConstantInt>(RHS)->isZero()) {
3797 const SCEV *One = getConstant(LHS->getType(), 1);
3798 const SCEV *LS = getSCEV(LHS);
3799 const SCEV *LA = getSCEV(U->getOperand(1));
3800 const SCEV *RA = getSCEV(U->getOperand(2));
3801 const SCEV *LDiff = getMinusSCEV(LA, LS);
3802 const SCEV *RDiff = getMinusSCEV(RA, One);
3803 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003804 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003805 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003806 break;
3807 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003808 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3809 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003810 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003811 cast<ConstantInt>(RHS)->isZero()) {
3812 const SCEV *One = getConstant(LHS->getType(), 1);
3813 const SCEV *LS = getSCEV(LHS);
3814 const SCEV *LA = getSCEV(U->getOperand(1));
3815 const SCEV *RA = getSCEV(U->getOperand(2));
3816 const SCEV *LDiff = getMinusSCEV(LA, One);
3817 const SCEV *RDiff = getMinusSCEV(RA, LS);
3818 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003819 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003820 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003821 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003822 default:
3823 break;
3824 }
3825 }
3826
3827 default: // We cannot analyze this expression.
3828 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003829 }
3830
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003831 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003832}
3833
3834
3835
3836//===----------------------------------------------------------------------===//
3837// Iteration Count Computation Code
3838//
3839
Andrew Trickb1831c62011-08-11 23:36:16 +00003840/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3841/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3842/// or not constant. Will also return 0 if the maximum trip count is very large
3843/// (>= 2^32)
3844unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3845 BasicBlock *ExitBlock) {
3846 const SCEVConstant *ExitCount =
3847 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3848 if (!ExitCount)
3849 return 0;
3850
3851 ConstantInt *ExitConst = ExitCount->getValue();
3852
3853 // Guard against huge trip counts.
3854 if (ExitConst->getValue().getActiveBits() > 32)
3855 return 0;
3856
3857 // In case of integer overflow, this returns 0, which is correct.
3858 return ((unsigned)ExitConst->getZExtValue()) + 1;
3859}
3860
3861/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3862/// trip count of this loop as a normal unsigned value, if possible. This
3863/// means that the actual trip count is always a multiple of the returned
3864/// value (don't forget the trip count could very well be zero as well!).
3865///
3866/// Returns 1 if the trip count is unknown or not guaranteed to be the
3867/// multiple of a constant (which is also the case if the trip count is simply
3868/// constant, use getSmallConstantTripCount for that case), Will also return 1
3869/// if the trip count is very large (>= 2^32).
3870unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3871 BasicBlock *ExitBlock) {
3872 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3873 if (ExitCount == getCouldNotCompute())
3874 return 1;
3875
3876 // Get the trip count from the BE count by adding 1.
3877 const SCEV *TCMul = getAddExpr(ExitCount,
3878 getConstant(ExitCount->getType(), 1));
3879 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3880 // to factor simple cases.
3881 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3882 TCMul = Mul->getOperand(0);
3883
3884 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3885 if (!MulC)
3886 return 1;
3887
3888 ConstantInt *Result = MulC->getValue();
3889
3890 // Guard against huge trip counts.
3891 if (!Result || Result->getValue().getActiveBits() > 32)
3892 return 1;
3893
3894 return (unsigned)Result->getZExtValue();
3895}
3896
Andrew Trick5116ff62011-07-26 17:19:55 +00003897// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003898// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003899// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003900const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3901 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003902}
3903
Dan Gohman46bdfb02009-02-24 18:55:53 +00003904/// getBackedgeTakenCount - If the specified loop has a predictable
3905/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3906/// object. The backedge-taken count is the number of times the loop header
3907/// will be branched to from within the loop. This is one less than the
3908/// trip count of the loop, since it doesn't count the first iteration,
3909/// when the header is branched to from outside the loop.
3910///
3911/// Note that it is not valid to call this method on a loop without a
3912/// loop-invariant backedge-taken count (see
3913/// hasLoopInvariantBackedgeTakenCount).
3914///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003915const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003916 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003917}
3918
3919/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3920/// return the least SCEV value that is known never to be less than the
3921/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003922const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003923 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003924}
3925
Dan Gohman59ae6b92009-07-08 19:23:34 +00003926/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3927/// onto the given Worklist.
3928static void
3929PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3930 BasicBlock *Header = L->getHeader();
3931
3932 // Push all Loop-header PHIs onto the Worklist stack.
3933 for (BasicBlock::iterator I = Header->begin();
3934 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3935 Worklist.push_back(PN);
3936}
3937
Dan Gohmana1af7572009-04-30 20:47:05 +00003938const ScalarEvolution::BackedgeTakenInfo &
3939ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003940 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003941 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003942 // update the value. The temporary CouldNotCompute value tells SCEV
3943 // code elsewhere that it shouldn't attempt to request a new
3944 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00003945 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00003946 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003947 if (!Pair.second)
3948 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003949
Andrew Trick5116ff62011-07-26 17:19:55 +00003950 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3951 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3952 // must be cleared in this scope.
3953 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3954
3955 if (Result.getExact(this) != getCouldNotCompute()) {
3956 assert(isLoopInvariant(Result.getExact(this), L) &&
3957 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00003958 "Computed backedge-taken count isn't loop invariant for loop!");
3959 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00003960 }
3961 else if (Result.getMax(this) == getCouldNotCompute() &&
3962 isa<PHINode>(L->getHeader()->begin())) {
3963 // Only count loops that have phi nodes as not being computable.
3964 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00003965 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003966
Chris Lattnerf1859892011-01-09 02:16:18 +00003967 // Now that we know more about the trip count for this loop, forget any
3968 // existing SCEV values for PHI nodes in this loop since they are only
3969 // conservative estimates made without the benefit of trip count
3970 // information. This is similar to the code in forgetLoop, except that
3971 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00003972 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00003973 SmallVector<Instruction *, 16> Worklist;
3974 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003975
Chris Lattnerf1859892011-01-09 02:16:18 +00003976 SmallPtrSet<Instruction *, 8> Visited;
3977 while (!Worklist.empty()) {
3978 Instruction *I = Worklist.pop_back_val();
3979 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003980
Chris Lattnerf1859892011-01-09 02:16:18 +00003981 ValueExprMapType::iterator It =
3982 ValueExprMap.find(static_cast<Value *>(I));
3983 if (It != ValueExprMap.end()) {
3984 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003985
Chris Lattnerf1859892011-01-09 02:16:18 +00003986 // SCEVUnknown for a PHI either means that it has an unrecognized
3987 // structure, or it's a PHI that's in the progress of being computed
3988 // by createNodeForPHI. In the former case, additional loop trip
3989 // count information isn't going to change anything. In the later
3990 // case, createNodeForPHI will perform the necessary updates on its
3991 // own when it gets to that point.
3992 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3993 forgetMemoizedResults(Old);
3994 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003995 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003996 if (PHINode *PN = dyn_cast<PHINode>(I))
3997 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003998 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003999
4000 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004001 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004002 }
Dan Gohman308bec32011-04-25 22:48:29 +00004003
4004 // Re-lookup the insert position, since the call to
4005 // ComputeBackedgeTakenCount above could result in a
4006 // recusive call to getBackedgeTakenInfo (on a different
4007 // loop), which would invalidate the iterator computed
4008 // earlier.
4009 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004010}
4011
Dan Gohman4c7279a2009-10-31 15:04:55 +00004012/// forgetLoop - This method should be called by the client when it has
4013/// changed a loop in a way that may effect ScalarEvolution's ability to
4014/// compute a trip count, or if the loop is deleted.
4015void ScalarEvolution::forgetLoop(const Loop *L) {
4016 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004017 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4018 BackedgeTakenCounts.find(L);
4019 if (BTCPos != BackedgeTakenCounts.end()) {
4020 BTCPos->second.clear();
4021 BackedgeTakenCounts.erase(BTCPos);
4022 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004023
Dan Gohman4c7279a2009-10-31 15:04:55 +00004024 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004025 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004026 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004027
Dan Gohman59ae6b92009-07-08 19:23:34 +00004028 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004029 while (!Worklist.empty()) {
4030 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004031 if (!Visited.insert(I)) continue;
4032
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004033 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4034 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004035 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004036 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004037 if (PHINode *PN = dyn_cast<PHINode>(I))
4038 ConstantEvolutionLoopExitValue.erase(PN);
4039 }
4040
4041 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004042 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004043
4044 // Forget all contained loops too, to avoid dangling entries in the
4045 // ValuesAtScopes map.
4046 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4047 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004048}
4049
Eric Christophere6cbfa62010-07-29 01:25:38 +00004050/// forgetValue - This method should be called by the client when it has
4051/// changed a value in a way that may effect its value, or which may
4052/// disconnect it from a def-use chain linking it to a loop.
4053void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004054 Instruction *I = dyn_cast<Instruction>(V);
4055 if (!I) return;
4056
4057 // Drop information about expressions based on loop-header PHIs.
4058 SmallVector<Instruction *, 16> Worklist;
4059 Worklist.push_back(I);
4060
4061 SmallPtrSet<Instruction *, 8> Visited;
4062 while (!Worklist.empty()) {
4063 I = Worklist.pop_back_val();
4064 if (!Visited.insert(I)) continue;
4065
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004066 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4067 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004068 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004069 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004070 if (PHINode *PN = dyn_cast<PHINode>(I))
4071 ConstantEvolutionLoopExitValue.erase(PN);
4072 }
4073
4074 PushDefUseChildren(I, Worklist);
4075 }
4076}
4077
Andrew Trick5116ff62011-07-26 17:19:55 +00004078/// getExact - Get the exact loop backedge taken count considering all loop
4079/// exits. If all exits are computable, this is the minimum computed count.
4080const SCEV *
4081ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4082 // If any exits were not computable, the loop is not computable.
4083 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4084
4085 // We need at least one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004086 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004087 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4088
4089 const SCEV *BECount = 0;
4090 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4091 ENT != 0; ENT = ENT->getNextExit()) {
4092
4093 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4094
4095 if (!BECount)
4096 BECount = ENT->ExactNotTaken;
4097 else
4098 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4099 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004100 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004101 return BECount;
4102}
4103
4104/// getExact - Get the exact not taken count for this loop exit.
4105const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004106ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004107 ScalarEvolution *SE) const {
4108 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4109 ENT != 0; ENT = ENT->getNextExit()) {
4110
Andrew Trickfcb43562011-08-02 04:23:35 +00004111 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004112 return ENT->ExactNotTaken;
4113 }
4114 return SE->getCouldNotCompute();
4115}
4116
4117/// getMax - Get the max backedge taken count for the loop.
4118const SCEV *
4119ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4120 return Max ? Max : SE->getCouldNotCompute();
4121}
4122
4123/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4124/// computable exit into a persistent ExitNotTakenInfo array.
4125ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4126 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4127 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4128
4129 if (!Complete)
4130 ExitNotTaken.setIncomplete();
4131
4132 unsigned NumExits = ExitCounts.size();
4133 if (NumExits == 0) return;
4134
Andrew Trickfcb43562011-08-02 04:23:35 +00004135 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004136 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4137 if (NumExits == 1) return;
4138
4139 // Handle the rare case of multiple computable exits.
4140 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4141
4142 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4143 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4144 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004145 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004146 ENT->ExactNotTaken = ExitCounts[i].second;
4147 }
4148}
4149
4150/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4151void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004152 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004153 ExitNotTaken.ExactNotTaken = 0;
4154 delete[] ExitNotTaken.getNextExit();
4155}
4156
Dan Gohman46bdfb02009-02-24 18:55:53 +00004157/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4158/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004159ScalarEvolution::BackedgeTakenInfo
4160ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004161 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004162 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004163
Dan Gohmana334aa72009-06-22 00:31:57 +00004164 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004165 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004166 bool CouldComputeBECount = true;
4167 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004168 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004169 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4170 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004171 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004172 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004173 CouldComputeBECount = false;
4174 else
4175 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4176
Dan Gohman1c343752009-06-27 21:21:31 +00004177 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004178 MaxBECount = EL.Max;
4179 else if (EL.Max != getCouldNotCompute())
4180 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004181 }
4182
Andrew Trick5116ff62011-07-26 17:19:55 +00004183 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004184}
4185
Andrew Trick5116ff62011-07-26 17:19:55 +00004186/// ComputeExitLimit - Compute the number of times the backedge of the specified
4187/// loop will execute if it exits via the specified block.
4188ScalarEvolution::ExitLimit
4189ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004190
4191 // Okay, we've chosen an exiting block. See what condition causes us to
4192 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004193 //
4194 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004195 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004196 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004197 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004198
Chris Lattner8b0e3602007-01-07 02:24:26 +00004199 // At this point, we know we have a conditional branch that determines whether
4200 // the loop is exited. However, we don't know if the branch is executed each
4201 // time through the loop. If not, then the execution count of the branch will
4202 // not be equal to the trip count of the loop.
4203 //
4204 // Currently we check for this by checking to see if the Exit branch goes to
4205 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004206 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004207 // loop header. This is common for un-rotated loops.
4208 //
4209 // If both of those tests fail, walk up the unique predecessor chain to the
4210 // header, stopping if there is an edge that doesn't exit the loop. If the
4211 // header is reached, the execution count of the branch will be equal to the
4212 // trip count of the loop.
4213 //
4214 // More extensive analysis could be done to handle more cases here.
4215 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004216 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004217 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004218 ExitBr->getParent() != L->getHeader()) {
4219 // The simple checks failed, try climbing the unique predecessor chain
4220 // up to the header.
4221 bool Ok = false;
4222 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4223 BasicBlock *Pred = BB->getUniquePredecessor();
4224 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004225 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004226 TerminatorInst *PredTerm = Pred->getTerminator();
4227 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4228 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4229 if (PredSucc == BB)
4230 continue;
4231 // If the predecessor has a successor that isn't BB and isn't
4232 // outside the loop, assume the worst.
4233 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004234 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004235 }
4236 if (Pred == L->getHeader()) {
4237 Ok = true;
4238 break;
4239 }
4240 BB = Pred;
4241 }
4242 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004243 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004244 }
4245
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004246 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004247 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4248 ExitBr->getSuccessor(0),
4249 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004250}
4251
Andrew Trick5116ff62011-07-26 17:19:55 +00004252/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004253/// backedge of the specified loop will execute if its exit condition
4254/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004255ScalarEvolution::ExitLimit
4256ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4257 Value *ExitCond,
4258 BasicBlock *TBB,
4259 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004260 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004261 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4262 if (BO->getOpcode() == Instruction::And) {
4263 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004264 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4265 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004266 const SCEV *BECount = getCouldNotCompute();
4267 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004268 if (L->contains(TBB)) {
4269 // Both conditions must be true for the loop to continue executing.
4270 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004271 if (EL0.Exact == getCouldNotCompute() ||
4272 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004273 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004274 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004275 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4276 if (EL0.Max == getCouldNotCompute())
4277 MaxBECount = EL1.Max;
4278 else if (EL1.Max == getCouldNotCompute())
4279 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004280 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004281 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004282 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004283 // Both conditions must be true at the same time for the loop to exit.
4284 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004285 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004286 if (EL0.Max == EL1.Max)
4287 MaxBECount = EL0.Max;
4288 if (EL0.Exact == EL1.Exact)
4289 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004290 }
4291
Andrew Trick5116ff62011-07-26 17:19:55 +00004292 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004293 }
4294 if (BO->getOpcode() == Instruction::Or) {
4295 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004296 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4297 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004298 const SCEV *BECount = getCouldNotCompute();
4299 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004300 if (L->contains(FBB)) {
4301 // Both conditions must be false for the loop to continue executing.
4302 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004303 if (EL0.Exact == getCouldNotCompute() ||
4304 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004305 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004306 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004307 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4308 if (EL0.Max == getCouldNotCompute())
4309 MaxBECount = EL1.Max;
4310 else if (EL1.Max == getCouldNotCompute())
4311 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004312 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004313 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004314 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004315 // Both conditions must be false at the same time for the loop to exit.
4316 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004317 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004318 if (EL0.Max == EL1.Max)
4319 MaxBECount = EL0.Max;
4320 if (EL0.Exact == EL1.Exact)
4321 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004322 }
4323
Andrew Trick5116ff62011-07-26 17:19:55 +00004324 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004325 }
4326 }
4327
4328 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004329 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004330 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004331 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004332
Dan Gohman00cb5b72010-02-19 18:12:07 +00004333 // Check for a constant condition. These are normally stripped out by
4334 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4335 // preserve the CFG and is temporarily leaving constant conditions
4336 // in place.
4337 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4338 if (L->contains(FBB) == !CI->getZExtValue())
4339 // The backedge is always taken.
4340 return getCouldNotCompute();
4341 else
4342 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004343 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004344 }
4345
Eli Friedman361e54d2009-05-09 12:32:42 +00004346 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004347 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004348}
4349
Andrew Trick5116ff62011-07-26 17:19:55 +00004350/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004351/// backedge of the specified loop will execute if its exit condition
4352/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004353ScalarEvolution::ExitLimit
4354ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4355 ICmpInst *ExitCond,
4356 BasicBlock *TBB,
4357 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004358
Reid Spencere4d87aa2006-12-23 06:05:41 +00004359 // If the condition was exit on true, convert the condition to exit on false
4360 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004361 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004362 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004363 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004364 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004365
4366 // Handle common loops like: for (X = "string"; *X; ++X)
4367 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4368 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004369 ExitLimit ItCnt =
4370 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004371 if (ItCnt.hasAnyInfo())
4372 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004373 }
4374
Dan Gohman0bba49c2009-07-07 17:06:11 +00004375 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4376 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004377
4378 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004379 LHS = getSCEVAtScope(LHS, L);
4380 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004381
Dan Gohman64a845e2009-06-24 04:48:43 +00004382 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004383 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004384 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004385 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004386 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004387 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004388 }
4389
Dan Gohman03557dc2010-05-03 16:35:17 +00004390 // Simplify the operands before analyzing them.
4391 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4392
Chris Lattner53e677a2004-04-02 20:23:17 +00004393 // If we have a comparison of a chrec against a constant, try to use value
4394 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004395 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4396 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004397 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004398 // Form the constant range.
4399 ConstantRange CompRange(
4400 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004401
Dan Gohman0bba49c2009-07-07 17:06:11 +00004402 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004403 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004404 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004405
Chris Lattner53e677a2004-04-02 20:23:17 +00004406 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004407 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004408 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004409 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4410 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004411 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004412 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004413 case ICmpInst::ICMP_EQ: { // while (X == Y)
4414 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004415 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4416 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004417 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004418 }
4419 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004420 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4421 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004422 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004423 }
4424 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004425 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004426 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004427 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004428 break;
4429 }
4430 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004431 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4432 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004433 break;
4434 }
4435 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004436 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004437 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004438 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004439 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004440 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004441 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004442#if 0
David Greene25e0e872009-12-23 22:18:14 +00004443 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004444 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004445 dbgs() << "[unsigned] ";
4446 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004447 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004448 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004449#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004450 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004451 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004452 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004453}
4454
Chris Lattner673e02b2004-10-12 01:49:27 +00004455static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004456EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4457 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004458 const SCEV *InVal = SE.getConstant(C);
4459 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004460 assert(isa<SCEVConstant>(Val) &&
4461 "Evaluation of SCEV at constant didn't fold correctly?");
4462 return cast<SCEVConstant>(Val)->getValue();
4463}
4464
4465/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4466/// and a GEP expression (missing the pointer index) indexing into it, return
4467/// the addressed element of the initializer or null if the index expression is
4468/// invalid.
4469static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004470GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004471 const std::vector<ConstantInt*> &Indices) {
4472 Constant *Init = GV->getInitializer();
4473 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004474 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004475 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4476 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4477 Init = cast<Constant>(CS->getOperand(Idx));
4478 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4479 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4480 Init = cast<Constant>(CA->getOperand(Idx));
4481 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004482 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004483 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004484 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004485 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004486 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004487 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004488 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004489 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004490 }
4491 return 0;
4492 } else {
4493 return 0; // Unknown initializer type
4494 }
4495 }
4496 return Init;
4497}
4498
Andrew Trick5116ff62011-07-26 17:19:55 +00004499/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004500/// 'icmp op load X, cst', try to see if we can compute the backedge
4501/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004502ScalarEvolution::ExitLimit
4503ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4504 LoadInst *LI,
4505 Constant *RHS,
4506 const Loop *L,
4507 ICmpInst::Predicate predicate) {
4508
Dan Gohman1c343752009-06-27 21:21:31 +00004509 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004510
4511 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004512 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004513 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004514 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004515
4516 // Make sure that it is really a constant global we are gepping, with an
4517 // initializer, and make sure the first IDX is really 0.
4518 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004519 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004520 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4521 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004522 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004523
4524 // Okay, we allow one non-constant index into the GEP instruction.
4525 Value *VarIdx = 0;
4526 std::vector<ConstantInt*> Indexes;
4527 unsigned VarIdxNum = 0;
4528 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4529 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4530 Indexes.push_back(CI);
4531 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004532 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004533 VarIdx = GEP->getOperand(i);
4534 VarIdxNum = i-2;
4535 Indexes.push_back(0);
4536 }
4537
4538 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4539 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004540 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004541 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004542
4543 // We can only recognize very limited forms of loop index expressions, in
4544 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004545 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004546 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004547 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4548 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004549 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004550
4551 unsigned MaxSteps = MaxBruteForceIterations;
4552 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004553 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004554 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004555 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004556
4557 // Form the GEP offset.
4558 Indexes[VarIdxNum] = Val;
4559
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004560 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004561 if (Result == 0) break; // Cannot compute!
4562
4563 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004564 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004565 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004566 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004567#if 0
David Greene25e0e872009-12-23 22:18:14 +00004568 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004569 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4570 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004571#endif
4572 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004573 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004574 }
4575 }
Dan Gohman1c343752009-06-27 21:21:31 +00004576 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004577}
4578
4579
Chris Lattner3221ad02004-04-17 22:58:41 +00004580/// CanConstantFold - Return true if we can constant fold an instruction of the
4581/// specified type, assuming that all operands were constants.
4582static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004583 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004584 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4585 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004586
Chris Lattner3221ad02004-04-17 22:58:41 +00004587 if (const CallInst *CI = dyn_cast<CallInst>(I))
4588 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004589 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004590 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004591}
4592
Chris Lattner3221ad02004-04-17 22:58:41 +00004593/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4594/// in the loop that V is derived from. We allow arbitrary operations along the
4595/// way, but the operands of an operation must either be constants or a value
4596/// derived from a constant PHI. If this expression does not fit with these
4597/// constraints, return null.
4598static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4599 // If this is not an instruction, or if this is an instruction outside of the
4600 // loop, it can't be derived from a loop PHI.
4601 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004602 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004603
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004604 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004605 if (L->getHeader() == I->getParent())
4606 return PN;
4607 else
4608 // We don't currently keep track of the control flow needed to evaluate
4609 // PHIs, so we cannot handle PHIs inside of loops.
4610 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004611 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004612
4613 // If we won't be able to constant fold this expression even if the operands
4614 // are constants, return early.
4615 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004616
Chris Lattner3221ad02004-04-17 22:58:41 +00004617 // Otherwise, we can evaluate this instruction if all of its operands are
4618 // constant or derived from a PHI node themselves.
4619 PHINode *PHI = 0;
4620 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004621 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004622 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4623 if (P == 0) return 0; // Not evolving from PHI
4624 if (PHI == 0)
4625 PHI = P;
4626 else if (PHI != P)
4627 return 0; // Evolving from multiple different PHIs.
4628 }
4629
4630 // This is a expression evolving from a constant PHI!
4631 return PHI;
4632}
4633
4634/// EvaluateExpression - Given an expression that passes the
4635/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4636/// in the loop has the value PHIVal. If we can't fold this expression for some
4637/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004638static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4639 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004640 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004641 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004642 Instruction *I = cast<Instruction>(V);
4643
Dan Gohman9d4588f2010-06-22 13:15:46 +00004644 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004645
4646 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004647 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004648 if (Operands[i] == 0) return 0;
4649 }
4650
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004651 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004652 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004653 Operands[1], TD);
Jay Foad1d2f5692011-07-19 13:32:40 +00004654 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004655}
4656
4657/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4658/// in the header of its containing loop, we know the loop executes a
4659/// constant number of times, and the PHI node is just a recurrence
4660/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004661Constant *
4662ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004663 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004664 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004665 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004666 ConstantEvolutionLoopExitValue.find(PN);
4667 if (I != ConstantEvolutionLoopExitValue.end())
4668 return I->second;
4669
Dan Gohmane0567812010-04-08 23:03:40 +00004670 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004671 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4672
4673 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4674
4675 // Since the loop is canonicalized, the PHI node must have two entries. One
4676 // entry must be a constant (coming in from outside of the loop), and the
4677 // second must be derived from the same PHI.
4678 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4679 Constant *StartCST =
4680 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4681 if (StartCST == 0)
4682 return RetVal = 0; // Must be a constant.
4683
4684 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004685 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4686 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004687 return RetVal = 0; // Not derived from same PHI.
4688
4689 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004690 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004691 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004692
Dan Gohman46bdfb02009-02-24 18:55:53 +00004693 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004694 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004695 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4696 if (IterationNum == NumIterations)
4697 return RetVal = PHIVal; // Got exit value!
4698
4699 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004700 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004701 if (NextPHI == PHIVal)
4702 return RetVal = NextPHI; // Stopped evolving!
4703 if (NextPHI == 0)
4704 return 0; // Couldn't evaluate!
4705 PHIVal = NextPHI;
4706 }
4707}
4708
Andrew Trick5116ff62011-07-26 17:19:55 +00004709/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004710/// constant number of times (the condition evolves only from constants),
4711/// try to evaluate a few iterations of the loop until we get the exit
4712/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004713/// evaluate the trip count of the loop, return getCouldNotCompute().
Andrew Trick5116ff62011-07-26 17:19:55 +00004714const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4715 Value *Cond,
4716 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004717 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004718 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004719
Dan Gohmanb92654d2010-06-19 14:17:24 +00004720 // If the loop is canonicalized, the PHI will have exactly two entries.
4721 // That's the only form we support here.
4722 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4723
4724 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004725 // second must be derived from the same PHI.
4726 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4727 Constant *StartCST =
4728 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004729 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004730
4731 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004732 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4733 !isa<Constant>(BEValue))
4734 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004735
4736 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4737 // the loop symbolically to determine when the condition gets a value of
4738 // "ExitWhen".
4739 unsigned IterationNum = 0;
4740 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4741 for (Constant *PHIVal = StartCST;
4742 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004743 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004744 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004745
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004746 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004747 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004748
Reid Spencere8019bb2007-03-01 07:25:48 +00004749 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004750 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004751 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004752 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004753
Chris Lattner3221ad02004-04-17 22:58:41 +00004754 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004755 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004756 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004757 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004758 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004759 }
4760
4761 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004762 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004763}
4764
Dan Gohmane7125f42009-09-03 15:00:26 +00004765/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004766/// at the specified scope in the program. The L value specifies a loop
4767/// nest to evaluate the expression at, where null is the top-level or a
4768/// specified loop is immediately inside of the loop.
4769///
4770/// This method can be used to compute the exit value for a variable defined
4771/// in a loop by querying what the value will hold in the parent loop.
4772///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004773/// In the case that a relevant loop exit value cannot be computed, the
4774/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004775const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004776 // Check to see if we've folded this expression at this loop before.
4777 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4778 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4779 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4780 if (!Pair.second)
4781 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004782
Dan Gohman42214892009-08-31 21:15:23 +00004783 // Otherwise compute it.
4784 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004785 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004786 return C;
4787}
4788
4789const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004790 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004791
Nick Lewycky3e630762008-02-20 06:48:22 +00004792 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004793 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004794 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004795 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004796 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004797 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4798 if (PHINode *PN = dyn_cast<PHINode>(I))
4799 if (PN->getParent() == LI->getHeader()) {
4800 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004801 // to see if the loop that contains it has a known backedge-taken
4802 // count. If so, we may be able to force computation of the exit
4803 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004804 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004805 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004806 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004807 // Okay, we know how many times the containing loop executes. If
4808 // this is a constant evolving PHI node, get the final value at
4809 // the specified iteration number.
4810 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004811 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004812 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004813 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004814 }
4815 }
4816
Reid Spencer09906f32006-12-04 21:33:23 +00004817 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004818 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004819 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004820 // result. This is particularly useful for computing loop exit values.
4821 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004822 SmallVector<Constant *, 4> Operands;
4823 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004824 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4825 Value *Op = I->getOperand(i);
4826 if (Constant *C = dyn_cast<Constant>(Op)) {
4827 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004828 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004829 }
Dan Gohman11046452010-06-29 23:43:06 +00004830
4831 // If any of the operands is non-constant and if they are
4832 // non-integer and non-pointer, don't even try to analyze them
4833 // with scev techniques.
4834 if (!isSCEVable(Op->getType()))
4835 return V;
4836
4837 const SCEV *OrigV = getSCEV(Op);
4838 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4839 MadeImprovement |= OrigV != OpV;
4840
4841 Constant *C = 0;
4842 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4843 C = SC->getValue();
4844 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4845 C = dyn_cast<Constant>(SU->getValue());
4846 if (!C) return V;
4847 if (C->getType() != Op->getType())
4848 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4849 Op->getType(),
4850 false),
4851 C, Op->getType());
4852 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004853 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004854
Dan Gohman11046452010-06-29 23:43:06 +00004855 // Check to see if getSCEVAtScope actually made an improvement.
4856 if (MadeImprovement) {
4857 Constant *C = 0;
4858 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4859 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4860 Operands[0], Operands[1], TD);
4861 else
4862 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Jay Foad1d2f5692011-07-19 13:32:40 +00004863 Operands, TD);
Dan Gohman11046452010-06-29 23:43:06 +00004864 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004865 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004866 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004867 }
4868 }
4869
4870 // This is some other type of SCEVUnknown, just return it.
4871 return V;
4872 }
4873
Dan Gohman622ed672009-05-04 22:02:23 +00004874 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004875 // Avoid performing the look-up in the common case where the specified
4876 // expression has no loop-variant portions.
4877 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004878 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004879 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004880 // Okay, at least one of these operands is loop variant but might be
4881 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004882 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4883 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004884 NewOps.push_back(OpAtScope);
4885
4886 for (++i; i != e; ++i) {
4887 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004888 NewOps.push_back(OpAtScope);
4889 }
4890 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004891 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004892 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004893 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004894 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004895 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004896 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004897 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004898 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004899 }
4900 }
4901 // If we got here, all operands are loop invariant.
4902 return Comm;
4903 }
4904
Dan Gohman622ed672009-05-04 22:02:23 +00004905 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004906 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4907 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004908 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4909 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004910 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004911 }
4912
4913 // If this is a loop recurrence for a loop that does not contain L, then we
4914 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004915 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004916 // First, attempt to evaluate each operand.
4917 // Avoid performing the look-up in the common case where the specified
4918 // expression has no loop-variant portions.
4919 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4920 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4921 if (OpAtScope == AddRec->getOperand(i))
4922 continue;
4923
4924 // Okay, at least one of these operands is loop variant but might be
4925 // foldable. Build a new instance of the folded commutative expression.
4926 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4927 AddRec->op_begin()+i);
4928 NewOps.push_back(OpAtScope);
4929 for (++i; i != e; ++i)
4930 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4931
Andrew Trick3f95c882011-04-27 01:21:25 +00004932 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00004933 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00004934 AddRec->getNoWrapFlags(SCEV::FlagNW));
4935 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00004936 // The addrec may be folded to a nonrecurrence, for example, if the
4937 // induction variable is multiplied by zero after constant folding. Go
4938 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00004939 if (!AddRec)
4940 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00004941 break;
4942 }
4943
4944 // If the scope is outside the addrec's loop, evaluate it by using the
4945 // loop exit value of the addrec.
4946 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004947 // To evaluate this recurrence, we need to know how many times the AddRec
4948 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004949 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004950 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004951
Eli Friedmanb42a6262008-08-04 23:49:06 +00004952 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004953 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004954 }
Dan Gohman11046452010-06-29 23:43:06 +00004955
Dan Gohmand594e6f2009-05-24 23:25:42 +00004956 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004957 }
4958
Dan Gohman622ed672009-05-04 22:02:23 +00004959 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004960 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004961 if (Op == Cast->getOperand())
4962 return Cast; // must be loop invariant
4963 return getZeroExtendExpr(Op, Cast->getType());
4964 }
4965
Dan Gohman622ed672009-05-04 22:02:23 +00004966 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004967 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004968 if (Op == Cast->getOperand())
4969 return Cast; // must be loop invariant
4970 return getSignExtendExpr(Op, Cast->getType());
4971 }
4972
Dan Gohman622ed672009-05-04 22:02:23 +00004973 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004974 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004975 if (Op == Cast->getOperand())
4976 return Cast; // must be loop invariant
4977 return getTruncateExpr(Op, Cast->getType());
4978 }
4979
Torok Edwinc23197a2009-07-14 16:55:14 +00004980 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004981 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004982}
4983
Dan Gohman66a7e852009-05-08 20:38:54 +00004984/// getSCEVAtScope - This is a convenience function which does
4985/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004986const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004987 return getSCEVAtScope(getSCEV(V), L);
4988}
4989
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004990/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4991/// following equation:
4992///
4993/// A * X = B (mod N)
4994///
4995/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4996/// A and B isn't important.
4997///
4998/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004999static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005000 ScalarEvolution &SE) {
5001 uint32_t BW = A.getBitWidth();
5002 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5003 assert(A != 0 && "A must be non-zero.");
5004
5005 // 1. D = gcd(A, N)
5006 //
5007 // The gcd of A and N may have only one prime factor: 2. The number of
5008 // trailing zeros in A is its multiplicity
5009 uint32_t Mult2 = A.countTrailingZeros();
5010 // D = 2^Mult2
5011
5012 // 2. Check if B is divisible by D.
5013 //
5014 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5015 // is not less than multiplicity of this prime factor for D.
5016 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005017 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005018
5019 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5020 // modulo (N / D).
5021 //
5022 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5023 // bit width during computations.
5024 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5025 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005026 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005027 APInt I = AD.multiplicativeInverse(Mod);
5028
5029 // 4. Compute the minimum unsigned root of the equation:
5030 // I * (B / D) mod (N / D)
5031 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5032
5033 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5034 // bits.
5035 return SE.getConstant(Result.trunc(BW));
5036}
Chris Lattner53e677a2004-04-02 20:23:17 +00005037
5038/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5039/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5040/// might be the same) or two SCEVCouldNotCompute objects.
5041///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005042static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005043SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005044 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005045 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5046 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5047 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005048
Chris Lattner53e677a2004-04-02 20:23:17 +00005049 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005050 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005051 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005052 return std::make_pair(CNC, CNC);
5053 }
5054
Reid Spencere8019bb2007-03-01 07:25:48 +00005055 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005056 const APInt &L = LC->getValue()->getValue();
5057 const APInt &M = MC->getValue()->getValue();
5058 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005059 APInt Two(BitWidth, 2);
5060 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005061
Dan Gohman64a845e2009-06-24 04:48:43 +00005062 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005063 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005064 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005065 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5066 // The B coefficient is M-N/2
5067 APInt B(M);
5068 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005069
Reid Spencere8019bb2007-03-01 07:25:48 +00005070 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005071 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005072
Reid Spencere8019bb2007-03-01 07:25:48 +00005073 // Compute the B^2-4ac term.
5074 APInt SqrtTerm(B);
5075 SqrtTerm *= B;
5076 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005077
Reid Spencere8019bb2007-03-01 07:25:48 +00005078 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5079 // integer value or else APInt::sqrt() will assert.
5080 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005081
Dan Gohman64a845e2009-06-24 04:48:43 +00005082 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005083 // The divisions must be performed as signed divisions.
5084 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00005085 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005086 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005087 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005088 return std::make_pair(CNC, CNC);
5089 }
5090
Owen Andersone922c022009-07-22 00:24:57 +00005091 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005092
5093 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005094 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005095 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005096 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005097
Dan Gohman64a845e2009-06-24 04:48:43 +00005098 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005099 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00005100 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005101}
5102
5103/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005104/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005105///
5106/// This is only used for loops with a "x != y" exit test. The exit condition is
5107/// now expressed as a single expression, V = x-y. So the exit test is
5108/// effectively V != 0. We know and take advantage of the fact that this
5109/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005110ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005111ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005112 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005113 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005114 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005115 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005116 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005117 }
5118
Dan Gohman35738ac2009-05-04 22:30:44 +00005119 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005120 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005121 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005122
Chris Lattner7975e3e2011-01-09 22:39:48 +00005123 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5124 // the quadratic equation to solve it.
5125 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5126 std::pair<const SCEV *,const SCEV *> Roots =
5127 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005128 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5129 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005130 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005131#if 0
David Greene25e0e872009-12-23 22:18:14 +00005132 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005133 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005134#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005135 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005136 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005137 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5138 R1->getValue(),
5139 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005140 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005141 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005142
Chris Lattner53e677a2004-04-02 20:23:17 +00005143 // We can only use this value if the chrec ends up with an exact zero
5144 // value at this index. When solving for "X*X != 5", for example, we
5145 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005146 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005147 if (Val->isZero())
5148 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005149 }
5150 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005151 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005152 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005153
Chris Lattner7975e3e2011-01-09 22:39:48 +00005154 // Otherwise we can only handle this if it is affine.
5155 if (!AddRec->isAffine())
5156 return getCouldNotCompute();
5157
5158 // If this is an affine expression, the execution count of this branch is
5159 // the minimum unsigned root of the following equation:
5160 //
5161 // Start + Step*N = 0 (mod 2^BW)
5162 //
5163 // equivalent to:
5164 //
5165 // Step*N = -Start (mod 2^BW)
5166 //
5167 // where BW is the common bit width of Start and Step.
5168
5169 // Get the initial value for the loop.
5170 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5171 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5172
5173 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005174 //
5175 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5176 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5177 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5178 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005179 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5180 if (StepC == 0)
5181 return getCouldNotCompute();
5182
Andrew Trick3228cc22011-03-14 16:50:06 +00005183 // For positive steps (counting up until unsigned overflow):
5184 // N = -Start/Step (as unsigned)
5185 // For negative steps (counting down to zero):
5186 // N = Start/-Step
5187 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005188 bool CountDown = StepC->getValue()->getValue().isNegative();
5189 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005190
5191 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005192 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5193 // N = Distance (as unsigned)
Nick Lewyckyb2840fd2011-09-06 02:43:13 +00005194 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5195 return Distance;
Andrew Trick635f7182011-03-09 17:23:39 +00005196
Andrew Trickdcfd4042011-03-14 17:28:02 +00005197 // If the recurrence is known not to wraparound, unsigned divide computes the
5198 // back edge count. We know that the value will either become zero (and thus
5199 // the loop terminates), that the loop will terminate through some other exit
5200 // condition first, or that the loop has undefined behavior. This means
5201 // we can't "miss" the exit value, even with nonunit stride.
5202 //
5203 // FIXME: Prove that loops always exhibits *acceptable* undefined
5204 // behavior. Loops must exhibit defined behavior until a wrapped value is
5205 // actually used. So the trip count computed by udiv could be smaller than the
5206 // number of well-defined iterations.
5207 if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5208 // FIXME: We really want an "isexact" bit for udiv.
5209 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005210
5211 // Then, try to solve the above equation provided that Start is constant.
5212 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5213 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5214 -StartC->getValue()->getValue(),
5215 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005216 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005217}
5218
5219/// HowFarToNonZero - Return the number of times a backedge checking the
5220/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005221/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005222ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005223ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005224 // Loops that look like: while (X == 0) are very strange indeed. We don't
5225 // handle them yet except for the trivial case. This could be expanded in the
5226 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005227
Chris Lattner53e677a2004-04-02 20:23:17 +00005228 // If the value is a constant, check to see if it is known to be non-zero
5229 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005230 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005231 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005232 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005233 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005234 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005235
Chris Lattner53e677a2004-04-02 20:23:17 +00005236 // We could implement others, but I really doubt anyone writes loops like
5237 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005238 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005239}
5240
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005241/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5242/// (which may not be an immediate predecessor) which has exactly one
5243/// successor from which BB is reachable, or null if no such block is
5244/// found.
5245///
Dan Gohman005752b2010-04-15 16:19:08 +00005246std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005247ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005248 // If the block has a unique predecessor, then there is no path from the
5249 // predecessor to the block that does not go through the direct edge
5250 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005251 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005252 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005253
5254 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005255 // If the header has a unique predecessor outside the loop, it must be
5256 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005257 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005258 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005259
Dan Gohman005752b2010-04-15 16:19:08 +00005260 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005261}
5262
Dan Gohman763bad12009-06-20 00:35:32 +00005263/// HasSameValue - SCEV structural equivalence is usually sufficient for
5264/// testing whether two expressions are equal, however for the purposes of
5265/// looking for a condition guarding a loop, it can be useful to be a little
5266/// more general, since a front-end may have replicated the controlling
5267/// expression.
5268///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005269static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005270 // Quick check to see if they are the same SCEV.
5271 if (A == B) return true;
5272
5273 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5274 // two different instructions with the same value. Check for this case.
5275 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5276 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5277 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5278 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005279 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005280 return true;
5281
5282 // Otherwise assume they may have a different value.
5283 return false;
5284}
5285
Dan Gohmane9796502010-04-24 01:28:42 +00005286/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5287/// predicate Pred. Return true iff any changes were made.
5288///
5289bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5290 const SCEV *&LHS, const SCEV *&RHS) {
5291 bool Changed = false;
5292
5293 // Canonicalize a constant to the right side.
5294 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5295 // Check for both operands constant.
5296 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5297 if (ConstantExpr::getICmp(Pred,
5298 LHSC->getValue(),
5299 RHSC->getValue())->isNullValue())
5300 goto trivially_false;
5301 else
5302 goto trivially_true;
5303 }
5304 // Otherwise swap the operands to put the constant on the right.
5305 std::swap(LHS, RHS);
5306 Pred = ICmpInst::getSwappedPredicate(Pred);
5307 Changed = true;
5308 }
5309
5310 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005311 // addrec's loop, put the addrec on the left. Also make a dominance check,
5312 // as both operands could be addrecs loop-invariant in each other's loop.
5313 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5314 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005315 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005316 std::swap(LHS, RHS);
5317 Pred = ICmpInst::getSwappedPredicate(Pred);
5318 Changed = true;
5319 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005320 }
Dan Gohmane9796502010-04-24 01:28:42 +00005321
5322 // If there's a constant operand, canonicalize comparisons with boundary
5323 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5324 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5325 const APInt &RA = RC->getValue()->getValue();
5326 switch (Pred) {
5327 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5328 case ICmpInst::ICMP_EQ:
5329 case ICmpInst::ICMP_NE:
5330 break;
5331 case ICmpInst::ICMP_UGE:
5332 if ((RA - 1).isMinValue()) {
5333 Pred = ICmpInst::ICMP_NE;
5334 RHS = getConstant(RA - 1);
5335 Changed = true;
5336 break;
5337 }
5338 if (RA.isMaxValue()) {
5339 Pred = ICmpInst::ICMP_EQ;
5340 Changed = true;
5341 break;
5342 }
5343 if (RA.isMinValue()) goto trivially_true;
5344
5345 Pred = ICmpInst::ICMP_UGT;
5346 RHS = getConstant(RA - 1);
5347 Changed = true;
5348 break;
5349 case ICmpInst::ICMP_ULE:
5350 if ((RA + 1).isMaxValue()) {
5351 Pred = ICmpInst::ICMP_NE;
5352 RHS = getConstant(RA + 1);
5353 Changed = true;
5354 break;
5355 }
5356 if (RA.isMinValue()) {
5357 Pred = ICmpInst::ICMP_EQ;
5358 Changed = true;
5359 break;
5360 }
5361 if (RA.isMaxValue()) goto trivially_true;
5362
5363 Pred = ICmpInst::ICMP_ULT;
5364 RHS = getConstant(RA + 1);
5365 Changed = true;
5366 break;
5367 case ICmpInst::ICMP_SGE:
5368 if ((RA - 1).isMinSignedValue()) {
5369 Pred = ICmpInst::ICMP_NE;
5370 RHS = getConstant(RA - 1);
5371 Changed = true;
5372 break;
5373 }
5374 if (RA.isMaxSignedValue()) {
5375 Pred = ICmpInst::ICMP_EQ;
5376 Changed = true;
5377 break;
5378 }
5379 if (RA.isMinSignedValue()) goto trivially_true;
5380
5381 Pred = ICmpInst::ICMP_SGT;
5382 RHS = getConstant(RA - 1);
5383 Changed = true;
5384 break;
5385 case ICmpInst::ICMP_SLE:
5386 if ((RA + 1).isMaxSignedValue()) {
5387 Pred = ICmpInst::ICMP_NE;
5388 RHS = getConstant(RA + 1);
5389 Changed = true;
5390 break;
5391 }
5392 if (RA.isMinSignedValue()) {
5393 Pred = ICmpInst::ICMP_EQ;
5394 Changed = true;
5395 break;
5396 }
5397 if (RA.isMaxSignedValue()) goto trivially_true;
5398
5399 Pred = ICmpInst::ICMP_SLT;
5400 RHS = getConstant(RA + 1);
5401 Changed = true;
5402 break;
5403 case ICmpInst::ICMP_UGT:
5404 if (RA.isMinValue()) {
5405 Pred = ICmpInst::ICMP_NE;
5406 Changed = true;
5407 break;
5408 }
5409 if ((RA + 1).isMaxValue()) {
5410 Pred = ICmpInst::ICMP_EQ;
5411 RHS = getConstant(RA + 1);
5412 Changed = true;
5413 break;
5414 }
5415 if (RA.isMaxValue()) goto trivially_false;
5416 break;
5417 case ICmpInst::ICMP_ULT:
5418 if (RA.isMaxValue()) {
5419 Pred = ICmpInst::ICMP_NE;
5420 Changed = true;
5421 break;
5422 }
5423 if ((RA - 1).isMinValue()) {
5424 Pred = ICmpInst::ICMP_EQ;
5425 RHS = getConstant(RA - 1);
5426 Changed = true;
5427 break;
5428 }
5429 if (RA.isMinValue()) goto trivially_false;
5430 break;
5431 case ICmpInst::ICMP_SGT:
5432 if (RA.isMinSignedValue()) {
5433 Pred = ICmpInst::ICMP_NE;
5434 Changed = true;
5435 break;
5436 }
5437 if ((RA + 1).isMaxSignedValue()) {
5438 Pred = ICmpInst::ICMP_EQ;
5439 RHS = getConstant(RA + 1);
5440 Changed = true;
5441 break;
5442 }
5443 if (RA.isMaxSignedValue()) goto trivially_false;
5444 break;
5445 case ICmpInst::ICMP_SLT:
5446 if (RA.isMaxSignedValue()) {
5447 Pred = ICmpInst::ICMP_NE;
5448 Changed = true;
5449 break;
5450 }
5451 if ((RA - 1).isMinSignedValue()) {
5452 Pred = ICmpInst::ICMP_EQ;
5453 RHS = getConstant(RA - 1);
5454 Changed = true;
5455 break;
5456 }
5457 if (RA.isMinSignedValue()) goto trivially_false;
5458 break;
5459 }
5460 }
5461
5462 // Check for obvious equality.
5463 if (HasSameValue(LHS, RHS)) {
5464 if (ICmpInst::isTrueWhenEqual(Pred))
5465 goto trivially_true;
5466 if (ICmpInst::isFalseWhenEqual(Pred))
5467 goto trivially_false;
5468 }
5469
Dan Gohman03557dc2010-05-03 16:35:17 +00005470 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5471 // adding or subtracting 1 from one of the operands.
5472 switch (Pred) {
5473 case ICmpInst::ICMP_SLE:
5474 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5475 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005476 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005477 Pred = ICmpInst::ICMP_SLT;
5478 Changed = true;
5479 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005480 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005481 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005482 Pred = ICmpInst::ICMP_SLT;
5483 Changed = true;
5484 }
5485 break;
5486 case ICmpInst::ICMP_SGE:
5487 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005488 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005489 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005490 Pred = ICmpInst::ICMP_SGT;
5491 Changed = true;
5492 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5493 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005494 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005495 Pred = ICmpInst::ICMP_SGT;
5496 Changed = true;
5497 }
5498 break;
5499 case ICmpInst::ICMP_ULE:
5500 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005501 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005502 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005503 Pred = ICmpInst::ICMP_ULT;
5504 Changed = true;
5505 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005506 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005507 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005508 Pred = ICmpInst::ICMP_ULT;
5509 Changed = true;
5510 }
5511 break;
5512 case ICmpInst::ICMP_UGE:
5513 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005514 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005515 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005516 Pred = ICmpInst::ICMP_UGT;
5517 Changed = true;
5518 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005519 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005520 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005521 Pred = ICmpInst::ICMP_UGT;
5522 Changed = true;
5523 }
5524 break;
5525 default:
5526 break;
5527 }
5528
Dan Gohmane9796502010-04-24 01:28:42 +00005529 // TODO: More simplifications are possible here.
5530
5531 return Changed;
5532
5533trivially_true:
5534 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005535 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005536 Pred = ICmpInst::ICMP_EQ;
5537 return true;
5538
5539trivially_false:
5540 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005541 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005542 Pred = ICmpInst::ICMP_NE;
5543 return true;
5544}
5545
Dan Gohman85b05a22009-07-13 21:35:55 +00005546bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5547 return getSignedRange(S).getSignedMax().isNegative();
5548}
5549
5550bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5551 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5552}
5553
5554bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5555 return !getSignedRange(S).getSignedMin().isNegative();
5556}
5557
5558bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5559 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5560}
5561
5562bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5563 return isKnownNegative(S) || isKnownPositive(S);
5564}
5565
5566bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5567 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005568 // Canonicalize the inputs first.
5569 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5570
Dan Gohman53c66ea2010-04-11 22:16:48 +00005571 // If LHS or RHS is an addrec, check to see if the condition is true in
5572 // every iteration of the loop.
5573 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5574 if (isLoopEntryGuardedByCond(
5575 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5576 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005577 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005578 return true;
5579 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5580 if (isLoopEntryGuardedByCond(
5581 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5582 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005583 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005584 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005585
Dan Gohman53c66ea2010-04-11 22:16:48 +00005586 // Otherwise see what can be done with known constant ranges.
5587 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5588}
5589
5590bool
5591ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5592 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005593 if (HasSameValue(LHS, RHS))
5594 return ICmpInst::isTrueWhenEqual(Pred);
5595
Dan Gohman53c66ea2010-04-11 22:16:48 +00005596 // This code is split out from isKnownPredicate because it is called from
5597 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005598 switch (Pred) {
5599 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005600 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005601 break;
5602 case ICmpInst::ICMP_SGT:
5603 Pred = ICmpInst::ICMP_SLT;
5604 std::swap(LHS, RHS);
5605 case ICmpInst::ICMP_SLT: {
5606 ConstantRange LHSRange = getSignedRange(LHS);
5607 ConstantRange RHSRange = getSignedRange(RHS);
5608 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5609 return true;
5610 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5611 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005612 break;
5613 }
5614 case ICmpInst::ICMP_SGE:
5615 Pred = ICmpInst::ICMP_SLE;
5616 std::swap(LHS, RHS);
5617 case ICmpInst::ICMP_SLE: {
5618 ConstantRange LHSRange = getSignedRange(LHS);
5619 ConstantRange RHSRange = getSignedRange(RHS);
5620 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5621 return true;
5622 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5623 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005624 break;
5625 }
5626 case ICmpInst::ICMP_UGT:
5627 Pred = ICmpInst::ICMP_ULT;
5628 std::swap(LHS, RHS);
5629 case ICmpInst::ICMP_ULT: {
5630 ConstantRange LHSRange = getUnsignedRange(LHS);
5631 ConstantRange RHSRange = getUnsignedRange(RHS);
5632 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5633 return true;
5634 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5635 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005636 break;
5637 }
5638 case ICmpInst::ICMP_UGE:
5639 Pred = ICmpInst::ICMP_ULE;
5640 std::swap(LHS, RHS);
5641 case ICmpInst::ICMP_ULE: {
5642 ConstantRange LHSRange = getUnsignedRange(LHS);
5643 ConstantRange RHSRange = getUnsignedRange(RHS);
5644 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5645 return true;
5646 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5647 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005648 break;
5649 }
5650 case ICmpInst::ICMP_NE: {
5651 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5652 return true;
5653 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5654 return true;
5655
5656 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5657 if (isKnownNonZero(Diff))
5658 return true;
5659 break;
5660 }
5661 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005662 // The check at the top of the function catches the case where
5663 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005664 break;
5665 }
5666 return false;
5667}
5668
5669/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5670/// protected by a conditional between LHS and RHS. This is used to
5671/// to eliminate casts.
5672bool
5673ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5674 ICmpInst::Predicate Pred,
5675 const SCEV *LHS, const SCEV *RHS) {
5676 // Interpret a null as meaning no loop, where there is obviously no guard
5677 // (interprocedural conditions notwithstanding).
5678 if (!L) return true;
5679
5680 BasicBlock *Latch = L->getLoopLatch();
5681 if (!Latch)
5682 return false;
5683
5684 BranchInst *LoopContinuePredicate =
5685 dyn_cast<BranchInst>(Latch->getTerminator());
5686 if (!LoopContinuePredicate ||
5687 LoopContinuePredicate->isUnconditional())
5688 return false;
5689
Dan Gohmanaf08a362010-08-10 23:46:30 +00005690 return isImpliedCond(Pred, LHS, RHS,
5691 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005692 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005693}
5694
Dan Gohman3948d0b2010-04-11 19:27:13 +00005695/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005696/// by a conditional between LHS and RHS. This is used to help avoid max
5697/// expressions in loop trip counts, and to eliminate casts.
5698bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005699ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5700 ICmpInst::Predicate Pred,
5701 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005702 // Interpret a null as meaning no loop, where there is obviously no guard
5703 // (interprocedural conditions notwithstanding).
5704 if (!L) return false;
5705
Dan Gohman859b4822009-05-18 15:36:09 +00005706 // Starting at the loop predecessor, climb up the predecessor chain, as long
5707 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005708 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005709 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005710 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005711 Pair.first;
5712 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005713
5714 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005715 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005716 if (!LoopEntryPredicate ||
5717 LoopEntryPredicate->isUnconditional())
5718 continue;
5719
Dan Gohmanaf08a362010-08-10 23:46:30 +00005720 if (isImpliedCond(Pred, LHS, RHS,
5721 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005722 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005723 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005724 }
5725
Dan Gohman38372182008-08-12 20:17:31 +00005726 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005727}
5728
Dan Gohman0f4b2852009-07-21 23:03:19 +00005729/// isImpliedCond - Test whether the condition described by Pred, LHS,
5730/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005731bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005732 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005733 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005734 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005735 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005736 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005737 if (BO->getOpcode() == Instruction::And) {
5738 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005739 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5740 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005741 } else if (BO->getOpcode() == Instruction::Or) {
5742 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005743 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5744 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005745 }
5746 }
5747
Dan Gohmanaf08a362010-08-10 23:46:30 +00005748 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005749 if (!ICI) return false;
5750
Dan Gohman85b05a22009-07-13 21:35:55 +00005751 // Bail if the ICmp's operands' types are wider than the needed type
5752 // before attempting to call getSCEV on them. This avoids infinite
5753 // recursion, since the analysis of widening casts can require loop
5754 // exit condition information for overflow checking, which would
5755 // lead back here.
5756 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005757 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005758 return false;
5759
Dan Gohman0f4b2852009-07-21 23:03:19 +00005760 // Now that we found a conditional branch that dominates the loop, check to
5761 // see if it is the comparison we are looking for.
5762 ICmpInst::Predicate FoundPred;
5763 if (Inverse)
5764 FoundPred = ICI->getInversePredicate();
5765 else
5766 FoundPred = ICI->getPredicate();
5767
5768 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5769 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005770
5771 // Balance the types. The case where FoundLHS' type is wider than
5772 // LHS' type is checked for above.
5773 if (getTypeSizeInBits(LHS->getType()) >
5774 getTypeSizeInBits(FoundLHS->getType())) {
5775 if (CmpInst::isSigned(Pred)) {
5776 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5777 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5778 } else {
5779 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5780 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5781 }
5782 }
5783
Dan Gohman0f4b2852009-07-21 23:03:19 +00005784 // Canonicalize the query to match the way instcombine will have
5785 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005786 if (SimplifyICmpOperands(Pred, LHS, RHS))
5787 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005788 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005789 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5790 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005791 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005792
5793 // Check to see if we can make the LHS or RHS match.
5794 if (LHS == FoundRHS || RHS == FoundLHS) {
5795 if (isa<SCEVConstant>(RHS)) {
5796 std::swap(FoundLHS, FoundRHS);
5797 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5798 } else {
5799 std::swap(LHS, RHS);
5800 Pred = ICmpInst::getSwappedPredicate(Pred);
5801 }
5802 }
5803
5804 // Check whether the found predicate is the same as the desired predicate.
5805 if (FoundPred == Pred)
5806 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5807
5808 // Check whether swapping the found predicate makes it the same as the
5809 // desired predicate.
5810 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5811 if (isa<SCEVConstant>(RHS))
5812 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5813 else
5814 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5815 RHS, LHS, FoundLHS, FoundRHS);
5816 }
5817
5818 // Check whether the actual condition is beyond sufficient.
5819 if (FoundPred == ICmpInst::ICMP_EQ)
5820 if (ICmpInst::isTrueWhenEqual(Pred))
5821 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5822 return true;
5823 if (Pred == ICmpInst::ICMP_NE)
5824 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5825 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5826 return true;
5827
5828 // Otherwise assume the worst.
5829 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005830}
5831
Dan Gohman0f4b2852009-07-21 23:03:19 +00005832/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005833/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005834/// and FoundRHS is true.
5835bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5836 const SCEV *LHS, const SCEV *RHS,
5837 const SCEV *FoundLHS,
5838 const SCEV *FoundRHS) {
5839 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5840 FoundLHS, FoundRHS) ||
5841 // ~x < ~y --> x > y
5842 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5843 getNotSCEV(FoundRHS),
5844 getNotSCEV(FoundLHS));
5845}
5846
5847/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005848/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005849/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005850bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005851ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5852 const SCEV *LHS, const SCEV *RHS,
5853 const SCEV *FoundLHS,
5854 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005855 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005856 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5857 case ICmpInst::ICMP_EQ:
5858 case ICmpInst::ICMP_NE:
5859 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5860 return true;
5861 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005862 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005863 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005864 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5865 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005866 return true;
5867 break;
5868 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005869 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005870 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5871 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005872 return true;
5873 break;
5874 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005875 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005876 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5877 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005878 return true;
5879 break;
5880 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005881 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005882 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5883 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005884 return true;
5885 break;
5886 }
5887
5888 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005889}
5890
Dan Gohman51f53b72009-06-21 23:46:38 +00005891/// getBECount - Subtract the end and start values and divide by the step,
5892/// rounding up, to get the number of times the backedge is executed. Return
5893/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005894const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005895 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005896 const SCEV *Step,
5897 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005898 assert(!isKnownNegative(Step) &&
5899 "This code doesn't handle negative strides yet!");
5900
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005901 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00005902
5903 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5904 // here because SCEV may not be able to determine that the unsigned division
5905 // after rounding is zero.
5906 if (Start == End)
5907 return getConstant(Ty, 0);
5908
Dan Gohmandeff6212010-05-03 22:09:21 +00005909 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005910 const SCEV *Diff = getMinusSCEV(End, Start);
5911 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005912
5913 // Add an adjustment to the difference between End and Start so that
5914 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005915 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005916
Dan Gohman1f96e672009-09-17 18:05:20 +00005917 if (!NoWrap) {
5918 // Check Add for unsigned overflow.
5919 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005920 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00005921 getTypeSizeInBits(Ty) + 1);
5922 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5923 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5924 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5925 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5926 return getCouldNotCompute();
5927 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005928
5929 return getUDivExpr(Add, Step);
5930}
5931
Chris Lattnerdb25de42005-08-15 23:33:51 +00005932/// HowManyLessThans - Return the number of times a backedge containing the
5933/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005934/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00005935ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00005936ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5937 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005938 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005939 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005940
Dan Gohman35738ac2009-05-04 22:30:44 +00005941 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005942 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005943 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005944
Dan Gohman1f96e672009-09-17 18:05:20 +00005945 // Check to see if we have a flag which makes analysis easy.
Andrew Trick3228cc22011-03-14 16:50:06 +00005946 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5947 AddRec->getNoWrapFlags(SCEV::FlagNUW);
Dan Gohman1f96e672009-09-17 18:05:20 +00005948
Chris Lattnerdb25de42005-08-15 23:33:51 +00005949 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005950 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005951 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005952
Dan Gohman52fddd32010-01-26 04:40:18 +00005953 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005954 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005955 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005956 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005957 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005958 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005959 // value and past the maximum value for its type in a single step.
5960 // Note that it's not sufficient to check NoWrap here, because even
5961 // though the value after a wrap is undefined, it's not undefined
5962 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005963 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005964 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005965 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005966 if (isSigned) {
5967 APInt Max = APInt::getSignedMaxValue(BitWidth);
5968 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5969 .slt(getSignedRange(RHS).getSignedMax()))
5970 return getCouldNotCompute();
5971 } else {
5972 APInt Max = APInt::getMaxValue(BitWidth);
5973 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5974 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5975 return getCouldNotCompute();
5976 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005977 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005978 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005979 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005980
Dan Gohmana1af7572009-04-30 20:47:05 +00005981 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5982 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5983 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005984 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005985
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005986 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005987 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005988
Dan Gohmana1af7572009-04-30 20:47:05 +00005989 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005990 const SCEV *MinStart = getConstant(isSigned ?
5991 getSignedRange(Start).getSignedMin() :
5992 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005993
Dan Gohmana1af7572009-04-30 20:47:05 +00005994 // If we know that the condition is true in order to enter the loop,
5995 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005996 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5997 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005998 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005999 if (!isLoopEntryGuardedByCond(L,
6000 isSigned ? ICmpInst::ICMP_SLT :
6001 ICmpInst::ICMP_ULT,
6002 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006003 End = isSigned ? getSMaxExpr(RHS, Start)
6004 : getUMaxExpr(RHS, Start);
6005
6006 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006007 const SCEV *MaxEnd = getConstant(isSigned ?
6008 getSignedRange(End).getSignedMax() :
6009 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006010
Dan Gohman52fddd32010-01-26 04:40:18 +00006011 // If MaxEnd is within a step of the maximum integer value in its type,
6012 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006013 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006014 // compute the correct value.
6015 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006016 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006017 MaxEnd = isSigned ?
6018 getSMinExpr(MaxEnd,
6019 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6020 StepMinusOne)) :
6021 getUMinExpr(MaxEnd,
6022 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6023 StepMinusOne));
6024
Dan Gohmana1af7572009-04-30 20:47:05 +00006025 // Finally, we subtract these two values and divide, rounding up, to get
6026 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006027 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006028
6029 // The maximum backedge count is similar, except using the minimum start
6030 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006031 // If we already have an exact constant BECount, use it instead.
6032 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6033 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6034
6035 // If the stride is nonconstant, and NoWrap == true, then
6036 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6037 // exact BECount and invalid MaxBECount, which should be avoided to catch
6038 // more optimization opportunities.
6039 if (isa<SCEVCouldNotCompute>(MaxBECount))
6040 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006041
Andrew Trick5116ff62011-07-26 17:19:55 +00006042 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006043 }
6044
Dan Gohman1c343752009-06-27 21:21:31 +00006045 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006046}
6047
Chris Lattner53e677a2004-04-02 20:23:17 +00006048/// getNumIterationsInRange - Return the number of iterations of this loop that
6049/// produce values in the specified constant range. Another way of looking at
6050/// this is that it returns the first iteration number where the value is not in
6051/// the condition, thus computing the exit count. If the iteration count can't
6052/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006053const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006054 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006055 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006056 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006057
6058 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006059 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006060 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006061 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006062 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006063 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006064 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006065 if (const SCEVAddRecExpr *ShiftedAddRec =
6066 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006067 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006068 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006069 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006070 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006071 }
6072
6073 // The only time we can solve this is when we have all constant indices.
6074 // Otherwise, we cannot determine the overflow conditions.
6075 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6076 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006077 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006078
6079
6080 // Okay at this point we know that all elements of the chrec are constants and
6081 // that the start element is zero.
6082
6083 // First check to see if the range contains zero. If not, the first
6084 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006085 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006086 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006087 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006088
Chris Lattner53e677a2004-04-02 20:23:17 +00006089 if (isAffine()) {
6090 // If this is an affine expression then we have this situation:
6091 // Solve {0,+,A} in Range === Ax in Range
6092
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006093 // We know that zero is in the range. If A is positive then we know that
6094 // the upper value of the range must be the first possible exit value.
6095 // If A is negative then the lower of the range is the last possible loop
6096 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006097 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006098 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6099 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006100
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006101 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006102 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006103 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006104
6105 // Evaluate at the exit value. If we really did fall out of the valid
6106 // range, then we computed our trip count, otherwise wrap around or other
6107 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006108 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006109 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006110 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006111
6112 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006113 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006114 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006115 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006116 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006117 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006118 } else if (isQuadratic()) {
6119 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6120 // quadratic equation to solve it. To do this, we must frame our problem in
6121 // terms of figuring out when zero is crossed, instead of when
6122 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006123 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006124 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006125 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6126 // getNoWrapFlags(FlagNW)
6127 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006128
6129 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006130 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006131 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006132 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6133 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006134 if (R1) {
6135 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006136 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006137 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006138 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006139 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006140 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006141
Chris Lattner53e677a2004-04-02 20:23:17 +00006142 // Make sure the root is not off by one. The returned iteration should
6143 // not be in the range, but the previous one should be. When solving
6144 // for "X*X < 5", for example, we should not return a root of 2.
6145 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006146 R1->getValue(),
6147 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006148 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006149 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006150 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006151 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006152
Dan Gohman246b2562007-10-22 18:31:58 +00006153 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006154 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006155 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006156 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006157 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006158
Chris Lattner53e677a2004-04-02 20:23:17 +00006159 // If R1 was not in the range, then it is a good return value. Make
6160 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006161 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006162 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006163 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006164 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006165 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006166 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006167 }
6168 }
6169 }
6170
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006171 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006172}
6173
6174
6175
6176//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006177// SCEVCallbackVH Class Implementation
6178//===----------------------------------------------------------------------===//
6179
Dan Gohman1959b752009-05-19 19:22:47 +00006180void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006181 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006182 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6183 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006184 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006185 // this now dangles!
6186}
6187
Dan Gohman81f91212010-07-28 01:09:07 +00006188void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006189 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006190
Dan Gohman35738ac2009-05-04 22:30:44 +00006191 // Forget all the expressions associated with users of the old value,
6192 // so that future queries will recompute the expressions using the new
6193 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006194 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006195 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006196 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006197 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6198 UI != UE; ++UI)
6199 Worklist.push_back(*UI);
6200 while (!Worklist.empty()) {
6201 User *U = Worklist.pop_back_val();
6202 // Deleting the Old value will cause this to dangle. Postpone
6203 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006204 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006205 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006206 if (!Visited.insert(U))
6207 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006208 if (PHINode *PN = dyn_cast<PHINode>(U))
6209 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006210 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006211 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6212 UI != UE; ++UI)
6213 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006214 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006215 // Delete the Old value.
6216 if (PHINode *PN = dyn_cast<PHINode>(Old))
6217 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006218 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006219 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006220}
6221
Dan Gohman1959b752009-05-19 19:22:47 +00006222ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006223 : CallbackVH(V), SE(se) {}
6224
6225//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006226// ScalarEvolution Class Implementation
6227//===----------------------------------------------------------------------===//
6228
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006229ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006230 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006231 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006232}
6233
Chris Lattner53e677a2004-04-02 20:23:17 +00006234bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006235 this->F = &F;
6236 LI = &getAnalysis<LoopInfo>();
6237 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006238 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006239 return false;
6240}
6241
6242void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006243 // Iterate through all the SCEVUnknown instances and call their
6244 // destructors, so that they release their references to their values.
6245 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6246 U->~SCEVUnknown();
6247 FirstUnknown = 0;
6248
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006249 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006250
6251 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6252 // that a loop had multiple computable exits.
6253 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6254 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6255 I != E; ++I) {
6256 I->second.clear();
6257 }
6258
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006259 BackedgeTakenCounts.clear();
6260 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006261 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006262 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006263 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006264 UnsignedRanges.clear();
6265 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006266 UniqueSCEVs.clear();
6267 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006268}
6269
6270void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6271 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006272 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006273 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006274}
6275
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006276bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006277 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006278}
6279
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006280static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006281 const Loop *L) {
6282 // Print all inner loops first
6283 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6284 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006285
Dan Gohman30733292010-01-09 18:17:45 +00006286 OS << "Loop ";
6287 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6288 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006289
Dan Gohman5d984912009-12-18 01:14:11 +00006290 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006291 L->getExitBlocks(ExitBlocks);
6292 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006293 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006294
Dan Gohman46bdfb02009-02-24 18:55:53 +00006295 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6296 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006297 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006298 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006299 }
6300
Dan Gohman30733292010-01-09 18:17:45 +00006301 OS << "\n"
6302 "Loop ";
6303 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6304 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006305
6306 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6307 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6308 } else {
6309 OS << "Unpredictable max backedge-taken count. ";
6310 }
6311
6312 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006313}
6314
Dan Gohman5d984912009-12-18 01:14:11 +00006315void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006316 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006317 // out SCEV values of all instructions that are interesting. Doing
6318 // this potentially causes it to create new SCEV objects though,
6319 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006320 // observable from outside the class though, so casting away the
6321 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006322 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006323
Dan Gohman30733292010-01-09 18:17:45 +00006324 OS << "Classifying expressions for: ";
6325 WriteAsOperand(OS, F, /*PrintType=*/false);
6326 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006327 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006328 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006329 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006330 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006331 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006332 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006333
Dan Gohman0c689c52009-06-19 17:49:54 +00006334 const Loop *L = LI->getLoopFor((*I).getParent());
6335
Dan Gohman0bba49c2009-07-07 17:06:11 +00006336 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006337 if (AtUse != SV) {
6338 OS << " --> ";
6339 AtUse->print(OS);
6340 }
6341
6342 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006343 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006344 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006345 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006346 OS << "<<Unknown>>";
6347 } else {
6348 OS << *ExitValue;
6349 }
6350 }
6351
Chris Lattner53e677a2004-04-02 20:23:17 +00006352 OS << "\n";
6353 }
6354
Dan Gohman30733292010-01-09 18:17:45 +00006355 OS << "Determining loop execution counts for: ";
6356 WriteAsOperand(OS, F, /*PrintType=*/false);
6357 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006358 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6359 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006360}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006361
Dan Gohman714b5292010-11-17 23:21:44 +00006362ScalarEvolution::LoopDisposition
6363ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6364 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6365 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6366 Values.insert(std::make_pair(L, LoopVariant));
6367 if (!Pair.second)
6368 return Pair.first->second;
6369
6370 LoopDisposition D = computeLoopDisposition(S, L);
6371 return LoopDispositions[S][L] = D;
6372}
6373
6374ScalarEvolution::LoopDisposition
6375ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006376 switch (S->getSCEVType()) {
6377 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006378 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006379 case scTruncate:
6380 case scZeroExtend:
6381 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006382 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006383 case scAddRecExpr: {
6384 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6385
Dan Gohman714b5292010-11-17 23:21:44 +00006386 // If L is the addrec's loop, it's computable.
6387 if (AR->getLoop() == L)
6388 return LoopComputable;
6389
Dan Gohman17ead4f2010-11-17 21:23:15 +00006390 // Add recurrences are never invariant in the function-body (null loop).
6391 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006392 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006393
6394 // This recurrence is variant w.r.t. L if L contains AR's loop.
6395 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006396 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006397
6398 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6399 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006400 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006401
6402 // This recurrence is variant w.r.t. L if any of its operands
6403 // are variant.
6404 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6405 I != E; ++I)
6406 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006407 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006408
6409 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006410 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006411 }
6412 case scAddExpr:
6413 case scMulExpr:
6414 case scUMaxExpr:
6415 case scSMaxExpr: {
6416 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006417 bool HasVarying = false;
6418 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6419 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006420 LoopDisposition D = getLoopDisposition(*I, L);
6421 if (D == LoopVariant)
6422 return LoopVariant;
6423 if (D == LoopComputable)
6424 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006425 }
Dan Gohman714b5292010-11-17 23:21:44 +00006426 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006427 }
6428 case scUDivExpr: {
6429 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006430 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6431 if (LD == LoopVariant)
6432 return LoopVariant;
6433 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6434 if (RD == LoopVariant)
6435 return LoopVariant;
6436 return (LD == LoopInvariant && RD == LoopInvariant) ?
6437 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006438 }
6439 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006440 // All non-instruction values are loop invariant. All instructions are loop
6441 // invariant if they are not contained in the specified loop.
6442 // Instructions are never considered invariant in the function body
6443 // (null loop) because they are defined within the "loop".
6444 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6445 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6446 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006447 case scCouldNotCompute:
6448 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006449 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006450 default: break;
6451 }
6452 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006453 return LoopVariant;
6454}
6455
6456bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6457 return getLoopDisposition(S, L) == LoopInvariant;
6458}
6459
6460bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6461 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006462}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006463
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006464ScalarEvolution::BlockDisposition
6465ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6466 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6467 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6468 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6469 if (!Pair.second)
6470 return Pair.first->second;
6471
6472 BlockDisposition D = computeBlockDisposition(S, BB);
6473 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006474}
6475
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006476ScalarEvolution::BlockDisposition
6477ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006478 switch (S->getSCEVType()) {
6479 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006480 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006481 case scTruncate:
6482 case scZeroExtend:
6483 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006484 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006485 case scAddRecExpr: {
6486 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006487 // to test for proper dominance too, because the instruction which
6488 // produces the addrec's value is a PHI, and a PHI effectively properly
6489 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006490 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6491 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006492 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006493 }
6494 // FALL THROUGH into SCEVNAryExpr handling.
6495 case scAddExpr:
6496 case scMulExpr:
6497 case scUMaxExpr:
6498 case scSMaxExpr: {
6499 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006500 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006501 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006502 I != E; ++I) {
6503 BlockDisposition D = getBlockDisposition(*I, BB);
6504 if (D == DoesNotDominateBlock)
6505 return DoesNotDominateBlock;
6506 if (D == DominatesBlock)
6507 Proper = false;
6508 }
6509 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006510 }
6511 case scUDivExpr: {
6512 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006513 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6514 BlockDisposition LD = getBlockDisposition(LHS, BB);
6515 if (LD == DoesNotDominateBlock)
6516 return DoesNotDominateBlock;
6517 BlockDisposition RD = getBlockDisposition(RHS, BB);
6518 if (RD == DoesNotDominateBlock)
6519 return DoesNotDominateBlock;
6520 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6521 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006522 }
6523 case scUnknown:
6524 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006525 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6526 if (I->getParent() == BB)
6527 return DominatesBlock;
6528 if (DT->properlyDominates(I->getParent(), BB))
6529 return ProperlyDominatesBlock;
6530 return DoesNotDominateBlock;
6531 }
6532 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006533 case scCouldNotCompute:
6534 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006535 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006536 default: break;
6537 }
6538 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006539 return DoesNotDominateBlock;
6540}
6541
6542bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6543 return getBlockDisposition(S, BB) >= DominatesBlock;
6544}
6545
6546bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6547 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006548}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006549
6550bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6551 switch (S->getSCEVType()) {
6552 case scConstant:
6553 return false;
6554 case scTruncate:
6555 case scZeroExtend:
6556 case scSignExtend: {
6557 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6558 const SCEV *CastOp = Cast->getOperand();
6559 return Op == CastOp || hasOperand(CastOp, Op);
6560 }
6561 case scAddRecExpr:
6562 case scAddExpr:
6563 case scMulExpr:
6564 case scUMaxExpr:
6565 case scSMaxExpr: {
6566 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6567 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6568 I != E; ++I) {
6569 const SCEV *NAryOp = *I;
6570 if (NAryOp == Op || hasOperand(NAryOp, Op))
6571 return true;
6572 }
6573 return false;
6574 }
6575 case scUDivExpr: {
6576 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6577 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6578 return LHS == Op || hasOperand(LHS, Op) ||
6579 RHS == Op || hasOperand(RHS, Op);
6580 }
6581 case scUnknown:
6582 return false;
6583 case scCouldNotCompute:
6584 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6585 return false;
6586 default: break;
6587 }
6588 llvm_unreachable("Unknown SCEV kind!");
6589 return false;
6590}
Dan Gohman56a75682010-11-17 23:28:48 +00006591
6592void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6593 ValuesAtScopes.erase(S);
6594 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006595 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006596 UnsignedRanges.erase(S);
6597 SignedRanges.erase(S);
6598}