blob: f1869c31d969bd3f64b0ca2173593a31ee990a92 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000027 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000061 <li><a href="#simpleconstants">Simple Constants</a></li>
62 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
64 <li><a href="#undefvalues">Undefined Values</a></li>
65 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000066 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000070 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000071 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000146 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 <li><a href="#otherops">Other Operations</a>
148 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000149 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
150 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000151 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
152 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000154 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000156 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000242 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000243 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000244 </ol>
245 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000246</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000251</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
Chris Lattner00950542001-06-06 20:29:01 +0000253<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000256
Misha Brukman9d0919f2003-11-08 01:05:38 +0000257<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000273different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
John Criswellc1f786c2005-05-13 22:25:59 +0000282<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Misha Brukman9d0919f2003-11-08 01:05:38 +0000293</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Misha Brukman9d0919f2003-11-08 01:05:38 +0000298<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Chris Lattner261efe92003-11-25 01:02:51 +0000300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000304
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000305<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000306<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000308</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner261efe92003-11-25 01:02:51 +0000311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000314automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000315the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000318</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Chris Lattnercc689392007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattner00950542001-06-06 20:29:01 +0000322<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Misha Brukman9d0919f2003-11-08 01:05:38 +0000326<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Reid Spencer2c452282007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000331 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Chris Lattner00950542001-06-06 20:29:01 +0000333<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000338 with quotes. Special characters may be escaped using "\xx" where xx is the
339 ASCII code for the character in hexadecimal. In this way, any character can
340 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000341
Reid Spencer2c452282007-08-07 14:34:28 +0000342 <li>Unnamed values are represented as an unsigned numeric value with their
343 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344
Reid Spencercc16dc32004-12-09 18:02:53 +0000345 <li>Constants, which are described in a <a href="#constants">section about
346 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000347</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348
Reid Spencer2c452282007-08-07 14:34:28 +0000349<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350don't need to worry about name clashes with reserved words, and the set of
351reserved words may be expanded in the future without penalty. Additionally,
352unnamed identifiers allow a compiler to quickly come up with a temporary
353variable without having to avoid symbol table conflicts.</p>
354
Chris Lattner261efe92003-11-25 01:02:51 +0000355<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000356languages. There are keywords for different opcodes
357('<tt><a href="#i_add">add</a></tt>',
358 '<tt><a href="#i_bitcast">bitcast</a></tt>',
359 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000360href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000362none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
364<p>Here is an example of LLVM code to multiply the integer variable
365'<tt>%X</tt>' by 8:</p>
366
Misha Brukman9d0919f2003-11-08 01:05:38 +0000367<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000368
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000369<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000373</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374
Misha Brukman9d0919f2003-11-08 01:05:38 +0000375<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000377<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000381</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Misha Brukman9d0919f2003-11-08 01:05:38 +0000383<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
388<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
389%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000391</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392
Chris Lattner261efe92003-11-25 01:02:51 +0000393<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
394important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Chris Lattner00950542001-06-06 20:29:01 +0000396<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
398 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
399 line.</li>
400
401 <li>Unnamed temporaries are created when the result of a computation is not
402 assigned to a named value.</li>
403
Misha Brukman9d0919f2003-11-08 01:05:38 +0000404 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405
Misha Brukman9d0919f2003-11-08 01:05:38 +0000406</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
John Criswelle4c57cc2005-05-12 16:52:32 +0000408<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409demonstrating instructions, we will follow an instruction with a comment that
410defines the type and name of value produced. Comments are shown in italic
411text.</p>
412
Misha Brukman9d0919f2003-11-08 01:05:38 +0000413</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000414
415<!-- *********************************************************************** -->
416<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
417<!-- *********************************************************************** -->
418
419<!-- ======================================================================= -->
420<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
421</div>
422
423<div class="doc_text">
424
425<p>LLVM programs are composed of "Module"s, each of which is a
426translation unit of the input programs. Each module consists of
427functions, global variables, and symbol table entries. Modules may be
428combined together with the LLVM linker, which merges function (and
429global variable) definitions, resolves forward declarations, and merges
430symbol table entries. Here is an example of the "hello world" module:</p>
431
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000432<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000433<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000434<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
435 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000436
437<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000438<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000439
440<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000441define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000442 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000443 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000444 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000445
446 <i>; Call puts function to write out the string to stdout...</i>
447 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000448 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000449 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000450 href="#i_ret">ret</a> i32 0<br>}<br>
451</pre>
452</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
454<p>This example is made up of a <a href="#globalvars">global variable</a>
455named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
456function, and a <a href="#functionstructure">function definition</a>
457for "<tt>main</tt>".</p>
458
Chris Lattnere5d947b2004-12-09 16:36:40 +0000459<p>In general, a module is made up of a list of global values,
460where both functions and global variables are global values. Global values are
461represented by a pointer to a memory location (in this case, a pointer to an
462array of char, and a pointer to a function), and have one of the following <a
463href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464
Chris Lattnere5d947b2004-12-09 16:36:40 +0000465</div>
466
467<!-- ======================================================================= -->
468<div class="doc_subsection">
469 <a name="linkage">Linkage Types</a>
470</div>
471
472<div class="doc_text">
473
474<p>
475All Global Variables and Functions have one of the following types of linkage:
476</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000477
478<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000480 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000481
482 <dd>Global values with internal linkage are only directly accessible by
483 objects in the current module. In particular, linking code into a module with
484 an internal global value may cause the internal to be renamed as necessary to
485 avoid collisions. Because the symbol is internal to the module, all
486 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000487 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
Chris Lattnerfa730212004-12-09 16:11:40 +0000490 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000491
Chris Lattner4887bd82007-01-14 06:51:48 +0000492 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
493 the same name when linkage occurs. This is typically used to implement
494 inline functions, templates, or other code which must be generated in each
495 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
496 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000497 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000498
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000499 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
500
501 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
502 linkage, except that unreferenced <tt>common</tt> globals may not be
503 discarded. This is used for globals that may be emitted in multiple
504 translation units, but that are not guaranteed to be emitted into every
505 translation unit that uses them. One example of this is tentative
506 definitions in C, such as "<tt>int X;</tt>" at global scope.
507 </dd>
508
Chris Lattnerfa730212004-12-09 16:11:40 +0000509 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000511 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
512 that some targets may choose to emit different assembly sequences for them
513 for target-dependent reasons. This is used for globals that are declared
514 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000515 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000516
Chris Lattnerfa730212004-12-09 16:11:40 +0000517 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000518
519 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
520 pointer to array type. When two global variables with appending linkage are
521 linked together, the two global arrays are appended together. This is the
522 LLVM, typesafe, equivalent of having the system linker append together
523 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000524 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000525
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000526 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000527 <dd>The semantics of this linkage follow the ELF object file model: the
528 symbol is weak until linked, if not linked, the symbol becomes null instead
529 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000531
Chris Lattnerfa730212004-12-09 16:11:40 +0000532 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000533
534 <dd>If none of the above identifiers are used, the global is externally
535 visible, meaning that it participates in linkage and can be used to resolve
536 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000537 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000538</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000539
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000540 <p>
541 The next two types of linkage are targeted for Microsoft Windows platform
542 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000543 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000544 </p>
545
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000546 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000547 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
548
549 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
550 or variable via a global pointer to a pointer that is set up by the DLL
551 exporting the symbol. On Microsoft Windows targets, the pointer name is
552 formed by combining <code>_imp__</code> and the function or variable name.
553 </dd>
554
555 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
556
557 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
558 pointer to a pointer in a DLL, so that it can be referenced with the
559 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
560 name is formed by combining <code>_imp__</code> and the function or variable
561 name.
562 </dd>
563
Chris Lattnerfa730212004-12-09 16:11:40 +0000564</dl>
565
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000566<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000567variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
568variable and was linked with this one, one of the two would be renamed,
569preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
570external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000571outside of the current module.</p>
572<p>It is illegal for a function <i>declaration</i>
573to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000574or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000575<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000576linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000577</div>
578
579<!-- ======================================================================= -->
580<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000581 <a name="callingconv">Calling Conventions</a>
582</div>
583
584<div class="doc_text">
585
586<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
587and <a href="#i_invoke">invokes</a> can all have an optional calling convention
588specified for the call. The calling convention of any pair of dynamic
589caller/callee must match, or the behavior of the program is undefined. The
590following calling conventions are supported by LLVM, and more may be added in
591the future:</p>
592
593<dl>
594 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
595
596 <dd>This calling convention (the default if no other calling convention is
597 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000598 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000599 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000600 </dd>
601
602 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
603
604 <dd>This calling convention attempts to make calls as fast as possible
605 (e.g. by passing things in registers). This calling convention allows the
606 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000607 without having to conform to an externally specified ABI (Application Binary
608 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000609 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
610 supported. This calling convention does not support varargs and requires the
611 prototype of all callees to exactly match the prototype of the function
612 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000613 </dd>
614
615 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
616
617 <dd>This calling convention attempts to make code in the caller as efficient
618 as possible under the assumption that the call is not commonly executed. As
619 such, these calls often preserve all registers so that the call does not break
620 any live ranges in the caller side. This calling convention does not support
621 varargs and requires the prototype of all callees to exactly match the
622 prototype of the function definition.
623 </dd>
624
Chris Lattnercfe6b372005-05-07 01:46:40 +0000625 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000626
627 <dd>Any calling convention may be specified by number, allowing
628 target-specific calling conventions to be used. Target specific calling
629 conventions start at 64.
630 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000631</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000632
633<p>More calling conventions can be added/defined on an as-needed basis, to
634support pascal conventions or any other well-known target-independent
635convention.</p>
636
637</div>
638
639<!-- ======================================================================= -->
640<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000641 <a name="visibility">Visibility Styles</a>
642</div>
643
644<div class="doc_text">
645
646<p>
647All Global Variables and Functions have one of the following visibility styles:
648</p>
649
650<dl>
651 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
652
Chris Lattnerd3eda892008-08-05 18:29:16 +0000653 <dd>On targets that use the ELF object file format, default visibility means
654 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000655 modules and, in shared libraries, means that the declared entity may be
656 overridden. On Darwin, default visibility means that the declaration is
657 visible to other modules. Default visibility corresponds to "external
658 linkage" in the language.
659 </dd>
660
661 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
662
663 <dd>Two declarations of an object with hidden visibility refer to the same
664 object if they are in the same shared object. Usually, hidden visibility
665 indicates that the symbol will not be placed into the dynamic symbol table,
666 so no other module (executable or shared library) can reference it
667 directly.
668 </dd>
669
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000670 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
671
672 <dd>On ELF, protected visibility indicates that the symbol will be placed in
673 the dynamic symbol table, but that references within the defining module will
674 bind to the local symbol. That is, the symbol cannot be overridden by another
675 module.
676 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000677</dl>
678
679</div>
680
681<!-- ======================================================================= -->
682<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000683 <a name="globalvars">Global Variables</a>
684</div>
685
686<div class="doc_text">
687
Chris Lattner3689a342005-02-12 19:30:21 +0000688<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000689instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000690an explicit section to be placed in, and may have an optional explicit alignment
691specified. A variable may be defined as "thread_local", which means that it
692will not be shared by threads (each thread will have a separated copy of the
693variable). A variable may be defined as a global "constant," which indicates
694that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000695optimization, allowing the global data to be placed in the read-only section of
696an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000697cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000698
699<p>
700LLVM explicitly allows <em>declarations</em> of global variables to be marked
701constant, even if the final definition of the global is not. This capability
702can be used to enable slightly better optimization of the program, but requires
703the language definition to guarantee that optimizations based on the
704'constantness' are valid for the translation units that do not include the
705definition.
706</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000707
708<p>As SSA values, global variables define pointer values that are in
709scope (i.e. they dominate) all basic blocks in the program. Global
710variables always define a pointer to their "content" type because they
711describe a region of memory, and all memory objects in LLVM are
712accessed through pointers.</p>
713
Christopher Lamb284d9922007-12-11 09:31:00 +0000714<p>A global variable may be declared to reside in a target-specifc numbered
715address space. For targets that support them, address spaces may affect how
716optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000717the variable. The default address space is zero. The address space qualifier
718must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000719
Chris Lattner88f6c462005-11-12 00:45:07 +0000720<p>LLVM allows an explicit section to be specified for globals. If the target
721supports it, it will emit globals to the section specified.</p>
722
Chris Lattner2cbdc452005-11-06 08:02:57 +0000723<p>An explicit alignment may be specified for a global. If not present, or if
724the alignment is set to zero, the alignment of the global is set by the target
725to whatever it feels convenient. If an explicit alignment is specified, the
726global is forced to have at least that much alignment. All alignments must be
727a power of 2.</p>
728
Christopher Lamb284d9922007-12-11 09:31:00 +0000729<p>For example, the following defines a global in a numbered address space with
730an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000731
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000732<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000733<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000734@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000735</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000736</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000737
Chris Lattnerfa730212004-12-09 16:11:40 +0000738</div>
739
740
741<!-- ======================================================================= -->
742<div class="doc_subsection">
743 <a name="functionstructure">Functions</a>
744</div>
745
746<div class="doc_text">
747
Reid Spencerca86e162006-12-31 07:07:53 +0000748<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
749an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000750<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000751<a href="#callingconv">calling convention</a>, a return type, an optional
752<a href="#paramattrs">parameter attribute</a> for the return type, a function
753name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000754<a href="#paramattrs">parameter attributes</a>), optional
755<a href="#fnattrs">function attributes</a>, an optional section,
756an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000757an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000758
759LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
760optional <a href="#linkage">linkage type</a>, an optional
761<a href="#visibility">visibility style</a>, an optional
762<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000763<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000764name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000765<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000766
Chris Lattnerd3eda892008-08-05 18:29:16 +0000767<p>A function definition contains a list of basic blocks, forming the CFG
768(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000769the function. Each basic block may optionally start with a label (giving the
770basic block a symbol table entry), contains a list of instructions, and ends
771with a <a href="#terminators">terminator</a> instruction (such as a branch or
772function return).</p>
773
Chris Lattner4a3c9012007-06-08 16:52:14 +0000774<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000775executed on entrance to the function, and it is not allowed to have predecessor
776basic blocks (i.e. there can not be any branches to the entry block of a
777function). Because the block can have no predecessors, it also cannot have any
778<a href="#i_phi">PHI nodes</a>.</p>
779
Chris Lattner88f6c462005-11-12 00:45:07 +0000780<p>LLVM allows an explicit section to be specified for functions. If the target
781supports it, it will emit functions to the section specified.</p>
782
Chris Lattner2cbdc452005-11-06 08:02:57 +0000783<p>An explicit alignment may be specified for a function. If not present, or if
784the alignment is set to zero, the alignment of the function is set by the target
785to whatever it feels convenient. If an explicit alignment is specified, the
786function is forced to have at least that much alignment. All alignments must be
787a power of 2.</p>
788
Devang Patel307e8ab2008-10-07 17:48:33 +0000789 <h5>Syntax:</h5>
790
791<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000792<tt>
793define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
794 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
795 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
796 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
797 [<a href="#gc">gc</a>] { ... }
798</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000799</div>
800
Chris Lattnerfa730212004-12-09 16:11:40 +0000801</div>
802
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000803
804<!-- ======================================================================= -->
805<div class="doc_subsection">
806 <a name="aliasstructure">Aliases</a>
807</div>
808<div class="doc_text">
809 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000810 function, global variable, another alias or bitcast of global value). Aliases
811 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000812 optional <a href="#visibility">visibility style</a>.</p>
813
814 <h5>Syntax:</h5>
815
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000816<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000817<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000818@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000819</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000820</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000821
822</div>
823
824
825
Chris Lattner4e9aba72006-01-23 23:23:47 +0000826<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000827<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
828<div class="doc_text">
829 <p>The return type and each parameter of a function type may have a set of
830 <i>parameter attributes</i> associated with them. Parameter attributes are
831 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000832 a function. Parameter attributes are considered to be part of the function,
833 not of the function type, so functions with different parameter attributes
834 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000835
Reid Spencer950e9f82007-01-15 18:27:39 +0000836 <p>Parameter attributes are simple keywords that follow the type specified. If
837 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000838 example:</p>
839
840<div class="doc_code">
841<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000842declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000843declare i32 @atoi(i8 zeroext)
844declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000845</pre>
846</div>
847
Duncan Sandsdc024672007-11-27 13:23:08 +0000848 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
849 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000850
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000851 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000852 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000853 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000854 <dd>This indicates to the code generator that the parameter or return value
855 should be zero-extended to a 32-bit value by the caller (for a parameter)
856 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000857
Reid Spencer9445e9a2007-07-19 23:13:04 +0000858 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000859 <dd>This indicates to the code generator that the parameter or return value
860 should be sign-extended to a 32-bit value by the caller (for a parameter)
861 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000862
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000863 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000864 <dd>This indicates that this parameter or return value should be treated
865 in a special target-dependent fashion during while emitting code for a
866 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000867 to memory, though some targets use it to distinguish between two different
868 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000869
Duncan Sandsedb05df2008-10-06 08:14:18 +0000870 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000871 <dd>This indicates that the pointer parameter should really be passed by
872 value to the function. The attribute implies that a hidden copy of the
873 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000874 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000875 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000876 value, but is also valid on pointers to scalars. The copy is considered to
877 belong to the caller not the callee (for example,
878 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000879 <tt>byval</tt> parameters). This is not a valid attribute for return
880 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000881
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000882 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000883 <dd>This indicates that the pointer parameter specifies the address of a
884 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000885 This pointer must be guaranteed by the caller to be valid: loads and stores
886 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000887 be applied to the first parameter. This is not a valid attribute for
888 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000889
Zhou Shengfebca342007-06-05 05:28:26 +0000890 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000891 <dd>This indicates that the parameter does not alias any global or any other
892 parameter. The caller is responsible for ensuring that this is the case,
Devang Patelf642f472008-10-06 18:50:38 +0000893 usually by placing the value in a stack allocation. This is not a valid
894 attribute for return values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000895
Duncan Sands50f19f52007-07-27 19:57:41 +0000896 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000897 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000898 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
899 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000900 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000901
Reid Spencerca86e162006-12-31 07:07:53 +0000902</div>
903
904<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000905<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000906 <a name="gc">Garbage Collector Names</a>
907</div>
908
909<div class="doc_text">
910<p>Each function may specify a garbage collector name, which is simply a
911string.</p>
912
913<div class="doc_code"><pre
914>define void @f() gc "name" { ...</pre></div>
915
916<p>The compiler declares the supported values of <i>name</i>. Specifying a
917collector which will cause the compiler to alter its output in order to support
918the named garbage collection algorithm.</p>
919</div>
920
921<!-- ======================================================================= -->
922<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000923 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000924</div>
925
926<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000927
928<p>Function attributes are set to communicate additional information about
929 a function. Function attributes are considered to be part of the function,
930 not of the function type, so functions with different parameter attributes
931 can have the same function type.</p>
932
933 <p>Function attributes are simple keywords that follow the type specified. If
934 multiple attributes are needed, they are space separated. For
935 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000936
937<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000938<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000939define void @f() noinline { ... }
940define void @f() alwaysinline { ... }
941define void @f() alwaysinline optsize { ... }
942define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000943</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000944</div>
945
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000946<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000947<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000948<dd>This attribute indicates that the inliner should attempt to inline this
949function into callers whenever possible, ignoring any active inlining size
950threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000951
Devang Patel2c9c3e72008-09-26 23:51:19 +0000952<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000953<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +0000954in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +0000955<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000956
Devang Patel2c9c3e72008-09-26 23:51:19 +0000957<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000958<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000959make choices that keep the code size of this function low, and otherwise do
960optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000961
Devang Patel2c9c3e72008-09-26 23:51:19 +0000962<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000963<dd>This function attribute indicates that the function never returns normally.
964This produces undefined behavior at runtime if the function ever does
965dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000966
967<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000968<dd>This function attribute indicates that the function never returns with an
969unwind or exceptional control flow. If the function does unwind, its runtime
970behavior is undefined.</dd>
971
972<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +0000973<dd>This attribute indicates that the function computes its result (or the
974exception it throws) based strictly on its arguments, without dereferencing any
975pointer arguments or otherwise accessing any mutable state (e.g. memory, control
976registers, etc) visible to caller functions. It does not write through any
977pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
978never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000979
Duncan Sandsedb05df2008-10-06 08:14:18 +0000980<dt><tt><a name="readonly">readonly</a></tt></dt>
981<dd>This attribute indicates that the function does not write through any
982pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
983or otherwise modify any state (e.g. memory, control registers, etc) visible to
984caller functions. It may dereference pointer arguments and read state that may
985be set in the caller. A readonly function always returns the same value (or
986throws the same exception) when called with the same set of arguments and global
987state.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000988</dl>
989
Devang Patelf8b94812008-09-04 23:05:13 +0000990</div>
991
992<!-- ======================================================================= -->
993<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000994 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000995</div>
996
997<div class="doc_text">
998<p>
999Modules may contain "module-level inline asm" blocks, which corresponds to the
1000GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1001LLVM and treated as a single unit, but may be separated in the .ll file if
1002desired. The syntax is very simple:
1003</p>
1004
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001005<div class="doc_code">
1006<pre>
1007module asm "inline asm code goes here"
1008module asm "more can go here"
1009</pre>
1010</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001011
1012<p>The strings can contain any character by escaping non-printable characters.
1013 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1014 for the number.
1015</p>
1016
1017<p>
1018 The inline asm code is simply printed to the machine code .s file when
1019 assembly code is generated.
1020</p>
1021</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001022
Reid Spencerde151942007-02-19 23:54:10 +00001023<!-- ======================================================================= -->
1024<div class="doc_subsection">
1025 <a name="datalayout">Data Layout</a>
1026</div>
1027
1028<div class="doc_text">
1029<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001030data is to be laid out in memory. The syntax for the data layout is simply:</p>
1031<pre> target datalayout = "<i>layout specification</i>"</pre>
1032<p>The <i>layout specification</i> consists of a list of specifications
1033separated by the minus sign character ('-'). Each specification starts with a
1034letter and may include other information after the letter to define some
1035aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001036<dl>
1037 <dt><tt>E</tt></dt>
1038 <dd>Specifies that the target lays out data in big-endian form. That is, the
1039 bits with the most significance have the lowest address location.</dd>
1040 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001041 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001042 the bits with the least significance have the lowest address location.</dd>
1043 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1044 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1045 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1046 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1047 too.</dd>
1048 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1049 <dd>This specifies the alignment for an integer type of a given bit
1050 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1051 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1052 <dd>This specifies the alignment for a vector type of a given bit
1053 <i>size</i>.</dd>
1054 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1055 <dd>This specifies the alignment for a floating point type of a given bit
1056 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1057 (double).</dd>
1058 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1059 <dd>This specifies the alignment for an aggregate type of a given bit
1060 <i>size</i>.</dd>
1061</dl>
1062<p>When constructing the data layout for a given target, LLVM starts with a
1063default set of specifications which are then (possibly) overriden by the
1064specifications in the <tt>datalayout</tt> keyword. The default specifications
1065are given in this list:</p>
1066<ul>
1067 <li><tt>E</tt> - big endian</li>
1068 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1069 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1070 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1071 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1072 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001073 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001074 alignment of 64-bits</li>
1075 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1076 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1077 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1078 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1079 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1080</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001081<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001082following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001083<ol>
1084 <li>If the type sought is an exact match for one of the specifications, that
1085 specification is used.</li>
1086 <li>If no match is found, and the type sought is an integer type, then the
1087 smallest integer type that is larger than the bitwidth of the sought type is
1088 used. If none of the specifications are larger than the bitwidth then the the
1089 largest integer type is used. For example, given the default specifications
1090 above, the i7 type will use the alignment of i8 (next largest) while both
1091 i65 and i256 will use the alignment of i64 (largest specified).</li>
1092 <li>If no match is found, and the type sought is a vector type, then the
1093 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001094 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1095 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001096</ol>
1097</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001098
Chris Lattner00950542001-06-06 20:29:01 +00001099<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001100<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1101<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001102
Misha Brukman9d0919f2003-11-08 01:05:38 +00001103<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001104
Misha Brukman9d0919f2003-11-08 01:05:38 +00001105<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001106intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001107optimizations to be performed on the intermediate representation directly,
1108without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001109extra analyses on the side before the transformation. A strong type
1110system makes it easier to read the generated code and enables novel
1111analyses and transformations that are not feasible to perform on normal
1112three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001113
1114</div>
1115
Chris Lattner00950542001-06-06 20:29:01 +00001116<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001117<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001118Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001119<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001120<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001121classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001122
1123<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001124 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001125 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001126 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001127 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001128 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001129 </tr>
1130 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001131 <td><a href="#t_floating">floating point</a></td>
1132 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001133 </tr>
1134 <tr>
1135 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001136 <td><a href="#t_integer">integer</a>,
1137 <a href="#t_floating">floating point</a>,
1138 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001139 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001140 <a href="#t_struct">structure</a>,
1141 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001142 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001143 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001144 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001145 <tr>
1146 <td><a href="#t_primitive">primitive</a></td>
1147 <td><a href="#t_label">label</a>,
1148 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001149 <a href="#t_floating">floating point</a>.</td>
1150 </tr>
1151 <tr>
1152 <td><a href="#t_derived">derived</a></td>
1153 <td><a href="#t_integer">integer</a>,
1154 <a href="#t_array">array</a>,
1155 <a href="#t_function">function</a>,
1156 <a href="#t_pointer">pointer</a>,
1157 <a href="#t_struct">structure</a>,
1158 <a href="#t_pstruct">packed structure</a>,
1159 <a href="#t_vector">vector</a>,
1160 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001161 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001162 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001163 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001164</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001165
Chris Lattner261efe92003-11-25 01:02:51 +00001166<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1167most important. Values of these types are the only ones which can be
1168produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001169instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001170</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001171
Chris Lattner00950542001-06-06 20:29:01 +00001172<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001173<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001174
Chris Lattner4f69f462008-01-04 04:32:38 +00001175<div class="doc_text">
1176<p>The primitive types are the fundamental building blocks of the LLVM
1177system.</p>
1178
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001179</div>
1180
Chris Lattner4f69f462008-01-04 04:32:38 +00001181<!-- _______________________________________________________________________ -->
1182<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1183
1184<div class="doc_text">
1185 <table>
1186 <tbody>
1187 <tr><th>Type</th><th>Description</th></tr>
1188 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1189 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1190 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1191 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1192 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1193 </tbody>
1194 </table>
1195</div>
1196
1197<!-- _______________________________________________________________________ -->
1198<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1199
1200<div class="doc_text">
1201<h5>Overview:</h5>
1202<p>The void type does not represent any value and has no size.</p>
1203
1204<h5>Syntax:</h5>
1205
1206<pre>
1207 void
1208</pre>
1209</div>
1210
1211<!-- _______________________________________________________________________ -->
1212<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1213
1214<div class="doc_text">
1215<h5>Overview:</h5>
1216<p>The label type represents code labels.</p>
1217
1218<h5>Syntax:</h5>
1219
1220<pre>
1221 label
1222</pre>
1223</div>
1224
1225
1226<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001227<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001228
Misha Brukman9d0919f2003-11-08 01:05:38 +00001229<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001230
Chris Lattner261efe92003-11-25 01:02:51 +00001231<p>The real power in LLVM comes from the derived types in the system.
1232This is what allows a programmer to represent arrays, functions,
1233pointers, and other useful types. Note that these derived types may be
1234recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001235
Misha Brukman9d0919f2003-11-08 01:05:38 +00001236</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001237
Chris Lattner00950542001-06-06 20:29:01 +00001238<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001239<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1240
1241<div class="doc_text">
1242
1243<h5>Overview:</h5>
1244<p>The integer type is a very simple derived type that simply specifies an
1245arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12462^23-1 (about 8 million) can be specified.</p>
1247
1248<h5>Syntax:</h5>
1249
1250<pre>
1251 iN
1252</pre>
1253
1254<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1255value.</p>
1256
1257<h5>Examples:</h5>
1258<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001259 <tbody>
1260 <tr>
1261 <td><tt>i1</tt></td>
1262 <td>a single-bit integer.</td>
1263 </tr><tr>
1264 <td><tt>i32</tt></td>
1265 <td>a 32-bit integer.</td>
1266 </tr><tr>
1267 <td><tt>i1942652</tt></td>
1268 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001269 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001270 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001271</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001272</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001273
1274<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001275<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001276
Misha Brukman9d0919f2003-11-08 01:05:38 +00001277<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001278
Chris Lattner00950542001-06-06 20:29:01 +00001279<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001280
Misha Brukman9d0919f2003-11-08 01:05:38 +00001281<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001282sequentially in memory. The array type requires a size (number of
1283elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001284
Chris Lattner7faa8832002-04-14 06:13:44 +00001285<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001286
1287<pre>
1288 [&lt;# elements&gt; x &lt;elementtype&gt;]
1289</pre>
1290
John Criswelle4c57cc2005-05-12 16:52:32 +00001291<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001292be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001293
Chris Lattner7faa8832002-04-14 06:13:44 +00001294<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001295<table class="layout">
1296 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001297 <td class="left"><tt>[40 x i32]</tt></td>
1298 <td class="left">Array of 40 32-bit integer values.</td>
1299 </tr>
1300 <tr class="layout">
1301 <td class="left"><tt>[41 x i32]</tt></td>
1302 <td class="left">Array of 41 32-bit integer values.</td>
1303 </tr>
1304 <tr class="layout">
1305 <td class="left"><tt>[4 x i8]</tt></td>
1306 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001307 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001308</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001309<p>Here are some examples of multidimensional arrays:</p>
1310<table class="layout">
1311 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001312 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1313 <td class="left">3x4 array of 32-bit integer values.</td>
1314 </tr>
1315 <tr class="layout">
1316 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1317 <td class="left">12x10 array of single precision floating point values.</td>
1318 </tr>
1319 <tr class="layout">
1320 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1321 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001322 </tr>
1323</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001324
John Criswell0ec250c2005-10-24 16:17:18 +00001325<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1326length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001327LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1328As a special case, however, zero length arrays are recognized to be variable
1329length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001330type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001331
Misha Brukman9d0919f2003-11-08 01:05:38 +00001332</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001333
Chris Lattner00950542001-06-06 20:29:01 +00001334<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001335<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001336<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001337
Chris Lattner00950542001-06-06 20:29:01 +00001338<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001339
Chris Lattner261efe92003-11-25 01:02:51 +00001340<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001341consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001342return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001343If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001344class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001345
Chris Lattner00950542001-06-06 20:29:01 +00001346<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001347
1348<pre>
1349 &lt;returntype list&gt; (&lt;parameter list&gt;)
1350</pre>
1351
John Criswell0ec250c2005-10-24 16:17:18 +00001352<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001353specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001354which indicates that the function takes a variable number of arguments.
1355Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001356 href="#int_varargs">variable argument handling intrinsic</a> functions.
1357'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1358<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001359
Chris Lattner00950542001-06-06 20:29:01 +00001360<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001361<table class="layout">
1362 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001363 <td class="left"><tt>i32 (i32)</tt></td>
1364 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001365 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001366 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001367 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001368 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001369 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1370 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001371 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001372 <tt>float</tt>.
1373 </td>
1374 </tr><tr class="layout">
1375 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1376 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001377 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001378 which returns an integer. This is the signature for <tt>printf</tt> in
1379 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001380 </td>
Devang Patela582f402008-03-24 05:35:41 +00001381 </tr><tr class="layout">
1382 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001383 <td class="left">A function taking an <tt>i32></tt>, returning two
1384 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001385 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001386 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001387</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001388
Misha Brukman9d0919f2003-11-08 01:05:38 +00001389</div>
Chris Lattner00950542001-06-06 20:29:01 +00001390<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001391<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001392<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001393<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001394<p>The structure type is used to represent a collection of data members
1395together in memory. The packing of the field types is defined to match
1396the ABI of the underlying processor. The elements of a structure may
1397be any type that has a size.</p>
1398<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1399and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1400field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1401instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001402<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001403<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001404<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001405<table class="layout">
1406 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001407 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1408 <td class="left">A triple of three <tt>i32</tt> values</td>
1409 </tr><tr class="layout">
1410 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1411 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1412 second element is a <a href="#t_pointer">pointer</a> to a
1413 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1414 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001415 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001416</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001417</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001418
Chris Lattner00950542001-06-06 20:29:01 +00001419<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001420<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1421</div>
1422<div class="doc_text">
1423<h5>Overview:</h5>
1424<p>The packed structure type is used to represent a collection of data members
1425together in memory. There is no padding between fields. Further, the alignment
1426of a packed structure is 1 byte. The elements of a packed structure may
1427be any type that has a size.</p>
1428<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1429and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1430field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1431instruction.</p>
1432<h5>Syntax:</h5>
1433<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1434<h5>Examples:</h5>
1435<table class="layout">
1436 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001437 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1438 <td class="left">A triple of three <tt>i32</tt> values</td>
1439 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001440 <td class="left">
1441<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001442 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1443 second element is a <a href="#t_pointer">pointer</a> to a
1444 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1445 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001446 </tr>
1447</table>
1448</div>
1449
1450<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001451<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001452<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001453<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001454<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001455reference to another object, which must live in memory. Pointer types may have
1456an optional address space attribute defining the target-specific numbered
1457address space where the pointed-to object resides. The default address space is
1458zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001459<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001460<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001461<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001462<table class="layout">
1463 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001464 <td class="left"><tt>[4x i32]*</tt></td>
1465 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1466 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1467 </tr>
1468 <tr class="layout">
1469 <td class="left"><tt>i32 (i32 *) *</tt></td>
1470 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001471 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001472 <tt>i32</tt>.</td>
1473 </tr>
1474 <tr class="layout">
1475 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1476 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1477 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001478 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001479</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001480</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001481
Chris Lattnera58561b2004-08-12 19:12:28 +00001482<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001483<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001484<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001485
Chris Lattnera58561b2004-08-12 19:12:28 +00001486<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001487
Reid Spencer485bad12007-02-15 03:07:05 +00001488<p>A vector type is a simple derived type that represents a vector
1489of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001490are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001491A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001492elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001493of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001494considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001495
Chris Lattnera58561b2004-08-12 19:12:28 +00001496<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001497
1498<pre>
1499 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1500</pre>
1501
John Criswellc1f786c2005-05-13 22:25:59 +00001502<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001503be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001504
Chris Lattnera58561b2004-08-12 19:12:28 +00001505<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001506
Reid Spencerd3f876c2004-11-01 08:19:36 +00001507<table class="layout">
1508 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001509 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1510 <td class="left">Vector of 4 32-bit integer values.</td>
1511 </tr>
1512 <tr class="layout">
1513 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1514 <td class="left">Vector of 8 32-bit floating-point values.</td>
1515 </tr>
1516 <tr class="layout">
1517 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1518 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001519 </tr>
1520</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001521</div>
1522
Chris Lattner69c11bb2005-04-25 17:34:15 +00001523<!-- _______________________________________________________________________ -->
1524<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1525<div class="doc_text">
1526
1527<h5>Overview:</h5>
1528
1529<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001530corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001531In LLVM, opaque types can eventually be resolved to any type (not just a
1532structure type).</p>
1533
1534<h5>Syntax:</h5>
1535
1536<pre>
1537 opaque
1538</pre>
1539
1540<h5>Examples:</h5>
1541
1542<table class="layout">
1543 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001544 <td class="left"><tt>opaque</tt></td>
1545 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001546 </tr>
1547</table>
1548</div>
1549
1550
Chris Lattnerc3f59762004-12-09 17:30:23 +00001551<!-- *********************************************************************** -->
1552<div class="doc_section"> <a name="constants">Constants</a> </div>
1553<!-- *********************************************************************** -->
1554
1555<div class="doc_text">
1556
1557<p>LLVM has several different basic types of constants. This section describes
1558them all and their syntax.</p>
1559
1560</div>
1561
1562<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001563<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001564
1565<div class="doc_text">
1566
1567<dl>
1568 <dt><b>Boolean constants</b></dt>
1569
1570 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001571 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001572 </dd>
1573
1574 <dt><b>Integer constants</b></dt>
1575
Reid Spencercc16dc32004-12-09 18:02:53 +00001576 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001577 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001578 integer types.
1579 </dd>
1580
1581 <dt><b>Floating point constants</b></dt>
1582
1583 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1584 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001585 notation (see below). The assembler requires the exact decimal value of
1586 a floating-point constant. For example, the assembler accepts 1.25 but
1587 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1588 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001589
1590 <dt><b>Null pointer constants</b></dt>
1591
John Criswell9e2485c2004-12-10 15:51:16 +00001592 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001593 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1594
1595</dl>
1596
John Criswell9e2485c2004-12-10 15:51:16 +00001597<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001598of floating point constants. For example, the form '<tt>double
15990x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16004.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001601(and the only time that they are generated by the disassembler) is when a
1602floating point constant must be emitted but it cannot be represented as a
1603decimal floating point number. For example, NaN's, infinities, and other
1604special values are represented in their IEEE hexadecimal format so that
1605assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001606
1607</div>
1608
1609<!-- ======================================================================= -->
1610<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1611</div>
1612
1613<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001614<p>Aggregate constants arise from aggregation of simple constants
1615and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001616
1617<dl>
1618 <dt><b>Structure constants</b></dt>
1619
1620 <dd>Structure constants are represented with notation similar to structure
1621 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001622 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1623 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001624 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001625 types of elements must match those specified by the type.
1626 </dd>
1627
1628 <dt><b>Array constants</b></dt>
1629
1630 <dd>Array constants are represented with notation similar to array type
1631 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001632 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001633 constants must have <a href="#t_array">array type</a>, and the number and
1634 types of elements must match those specified by the type.
1635 </dd>
1636
Reid Spencer485bad12007-02-15 03:07:05 +00001637 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001638
Reid Spencer485bad12007-02-15 03:07:05 +00001639 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001640 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001641 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001642 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001643 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001644 match those specified by the type.
1645 </dd>
1646
1647 <dt><b>Zero initialization</b></dt>
1648
1649 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1650 value to zero of <em>any</em> type, including scalar and aggregate types.
1651 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001652 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001653 initializers.
1654 </dd>
1655</dl>
1656
1657</div>
1658
1659<!-- ======================================================================= -->
1660<div class="doc_subsection">
1661 <a name="globalconstants">Global Variable and Function Addresses</a>
1662</div>
1663
1664<div class="doc_text">
1665
1666<p>The addresses of <a href="#globalvars">global variables</a> and <a
1667href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001668constants. These constants are explicitly referenced when the <a
1669href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001670href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1671file:</p>
1672
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001673<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001674<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001675@X = global i32 17
1676@Y = global i32 42
1677@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001678</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001679</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001680
1681</div>
1682
1683<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001684<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001685<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001686 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001687 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001688 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001689
Reid Spencer2dc45b82004-12-09 18:13:12 +00001690 <p>Undefined values indicate to the compiler that the program is well defined
1691 no matter what value is used, giving the compiler more freedom to optimize.
1692 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001693</div>
1694
1695<!-- ======================================================================= -->
1696<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1697</div>
1698
1699<div class="doc_text">
1700
1701<p>Constant expressions are used to allow expressions involving other constants
1702to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001703href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001704that does not have side effects (e.g. load and call are not supported). The
1705following is the syntax for constant expressions:</p>
1706
1707<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001708 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1709 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001710 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001711
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001712 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1713 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001714 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001715
1716 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1717 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001718 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001719
1720 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1721 <dd>Truncate a floating point constant to another floating point type. The
1722 size of CST must be larger than the size of TYPE. Both types must be
1723 floating point.</dd>
1724
1725 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1726 <dd>Floating point extend a constant to another type. The size of CST must be
1727 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1728
Reid Spencer1539a1c2007-07-31 14:40:14 +00001729 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001730 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001731 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1732 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1733 of the same number of elements. If the value won't fit in the integer type,
1734 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001735
Reid Spencerd4448792006-11-09 23:03:26 +00001736 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001737 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001738 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1739 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1740 of the same number of elements. If the value won't fit in the integer type,
1741 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001742
Reid Spencerd4448792006-11-09 23:03:26 +00001743 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001744 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001745 constant. TYPE must be a scalar or vector floating point type. CST must be of
1746 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1747 of the same number of elements. If the value won't fit in the floating point
1748 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001749
Reid Spencerd4448792006-11-09 23:03:26 +00001750 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001751 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001752 constant. TYPE must be a scalar or vector floating point type. CST must be of
1753 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1754 of the same number of elements. If the value won't fit in the floating point
1755 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001756
Reid Spencer5c0ef472006-11-11 23:08:07 +00001757 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1758 <dd>Convert a pointer typed constant to the corresponding integer constant
1759 TYPE must be an integer type. CST must be of pointer type. The CST value is
1760 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1761
1762 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1763 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1764 pointer type. CST must be of integer type. The CST value is zero extended,
1765 truncated, or unchanged to make it fit in a pointer size. This one is
1766 <i>really</i> dangerous!</dd>
1767
1768 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001769 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1770 identical (same number of bits). The conversion is done as if the CST value
1771 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001772 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001773 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001774 pointers it is only valid to cast to another pointer type. It is not valid
1775 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001776 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001777
1778 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1779
1780 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1781 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1782 instruction, the index list may have zero or more indexes, which are required
1783 to make sense for the type of "CSTPTR".</dd>
1784
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001785 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1786
1787 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001788 constants.</dd>
1789
1790 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1791 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1792
1793 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1794 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001795
Nate Begemanac80ade2008-05-12 19:01:56 +00001796 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1797 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1798
1799 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1800 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1801
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001802 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1803
1804 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001805 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001806
Robert Bocchino05ccd702006-01-15 20:48:27 +00001807 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1808
1809 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001810 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001811
Chris Lattnerc1989542006-04-08 00:13:41 +00001812
1813 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1814
1815 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001816 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001817
Chris Lattnerc3f59762004-12-09 17:30:23 +00001818 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1819
Reid Spencer2dc45b82004-12-09 18:13:12 +00001820 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1821 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001822 binary</a> operations. The constraints on operands are the same as those for
1823 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001824 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001825</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001826</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001827
Chris Lattner00950542001-06-06 20:29:01 +00001828<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001829<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1830<!-- *********************************************************************** -->
1831
1832<!-- ======================================================================= -->
1833<div class="doc_subsection">
1834<a name="inlineasm">Inline Assembler Expressions</a>
1835</div>
1836
1837<div class="doc_text">
1838
1839<p>
1840LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1841Module-Level Inline Assembly</a>) through the use of a special value. This
1842value represents the inline assembler as a string (containing the instructions
1843to emit), a list of operand constraints (stored as a string), and a flag that
1844indicates whether or not the inline asm expression has side effects. An example
1845inline assembler expression is:
1846</p>
1847
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001848<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001849<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001850i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001851</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001852</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001853
1854<p>
1855Inline assembler expressions may <b>only</b> be used as the callee operand of
1856a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1857</p>
1858
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001859<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001860<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001861%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001862</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001863</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001864
1865<p>
1866Inline asms with side effects not visible in the constraint list must be marked
1867as having side effects. This is done through the use of the
1868'<tt>sideeffect</tt>' keyword, like so:
1869</p>
1870
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001871<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001872<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001873call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001874</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001875</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001876
1877<p>TODO: The format of the asm and constraints string still need to be
1878documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001879need to be documented). This is probably best done by reference to another
1880document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001881</p>
1882
1883</div>
1884
1885<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001886<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1887<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001888
Misha Brukman9d0919f2003-11-08 01:05:38 +00001889<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001890
Chris Lattner261efe92003-11-25 01:02:51 +00001891<p>The LLVM instruction set consists of several different
1892classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001893instructions</a>, <a href="#binaryops">binary instructions</a>,
1894<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001895 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1896instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001897
Misha Brukman9d0919f2003-11-08 01:05:38 +00001898</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001899
Chris Lattner00950542001-06-06 20:29:01 +00001900<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001901<div class="doc_subsection"> <a name="terminators">Terminator
1902Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001903
Misha Brukman9d0919f2003-11-08 01:05:38 +00001904<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001905
Chris Lattner261efe92003-11-25 01:02:51 +00001906<p>As mentioned <a href="#functionstructure">previously</a>, every
1907basic block in a program ends with a "Terminator" instruction, which
1908indicates which block should be executed after the current block is
1909finished. These terminator instructions typically yield a '<tt>void</tt>'
1910value: they produce control flow, not values (the one exception being
1911the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001912<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001913 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1914instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001915the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1916 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1917 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001918
Misha Brukman9d0919f2003-11-08 01:05:38 +00001919</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001920
Chris Lattner00950542001-06-06 20:29:01 +00001921<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001922<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1923Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001924<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001925<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001926<pre>
1927 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001928 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001929</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001930
Chris Lattner00950542001-06-06 20:29:01 +00001931<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001932
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001933<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1934optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001935<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001936returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001937control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001938
Chris Lattner00950542001-06-06 20:29:01 +00001939<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001940
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001941<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1942the return value. The type of the return value must be a
1943'<a href="#t_firstclass">first class</a>' type.</p>
1944
1945<p>A function is not <a href="#wellformed">well formed</a> if
1946it it has a non-void return type and contains a '<tt>ret</tt>'
1947instruction with no return value or a return value with a type that
1948does not match its type, or if it has a void return type and contains
1949a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001950
Chris Lattner00950542001-06-06 20:29:01 +00001951<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001952
Chris Lattner261efe92003-11-25 01:02:51 +00001953<p>When the '<tt>ret</tt>' instruction is executed, control flow
1954returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001955 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001956the instruction after the call. If the caller was an "<a
1957 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001958at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001959returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00001960return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001961
Chris Lattner00950542001-06-06 20:29:01 +00001962<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001963
1964<pre>
1965 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001966 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001967 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001968</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001969</div>
Chris Lattner00950542001-06-06 20:29:01 +00001970<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001971<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001972<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001973<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001974<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001975</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001976<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001977<p>The '<tt>br</tt>' instruction is used to cause control flow to
1978transfer to a different basic block in the current function. There are
1979two forms of this instruction, corresponding to a conditional branch
1980and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001981<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001982<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001983single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001984unconditional form of the '<tt>br</tt>' instruction takes a single
1985'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001986<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001987<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001988argument is evaluated. If the value is <tt>true</tt>, control flows
1989to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1990control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001991<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001992<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001993 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001994</div>
Chris Lattner00950542001-06-06 20:29:01 +00001995<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001996<div class="doc_subsubsection">
1997 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1998</div>
1999
Misha Brukman9d0919f2003-11-08 01:05:38 +00002000<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002001<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002002
2003<pre>
2004 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2005</pre>
2006
Chris Lattner00950542001-06-06 20:29:01 +00002007<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002008
2009<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2010several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002011instruction, allowing a branch to occur to one of many possible
2012destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002013
2014
Chris Lattner00950542001-06-06 20:29:01 +00002015<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002016
2017<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2018comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2019an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2020table is not allowed to contain duplicate constant entries.</p>
2021
Chris Lattner00950542001-06-06 20:29:01 +00002022<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002023
Chris Lattner261efe92003-11-25 01:02:51 +00002024<p>The <tt>switch</tt> instruction specifies a table of values and
2025destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002026table is searched for the given value. If the value is found, control flow is
2027transfered to the corresponding destination; otherwise, control flow is
2028transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002029
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002030<h5>Implementation:</h5>
2031
2032<p>Depending on properties of the target machine and the particular
2033<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002034ways. For example, it could be generated as a series of chained conditional
2035branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002036
2037<h5>Example:</h5>
2038
2039<pre>
2040 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002041 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002042 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002043
2044 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002045 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002046
2047 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002048 switch i32 %val, label %otherwise [ i32 0, label %onzero
2049 i32 1, label %onone
2050 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002051</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002052</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002053
Chris Lattner00950542001-06-06 20:29:01 +00002054<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002055<div class="doc_subsubsection">
2056 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2057</div>
2058
Misha Brukman9d0919f2003-11-08 01:05:38 +00002059<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002060
Chris Lattner00950542001-06-06 20:29:01 +00002061<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002062
2063<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002064 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002065 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002066</pre>
2067
Chris Lattner6536cfe2002-05-06 22:08:29 +00002068<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002069
2070<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2071function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002072'<tt>normal</tt>' label or the
2073'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002074"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2075"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002076href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002077continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002078
Chris Lattner00950542001-06-06 20:29:01 +00002079<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002080
Misha Brukman9d0919f2003-11-08 01:05:38 +00002081<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002082
Chris Lattner00950542001-06-06 20:29:01 +00002083<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002084 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002085 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002086 convention</a> the call should use. If none is specified, the call defaults
2087 to using C calling conventions.
2088 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002089
2090 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2091 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2092 and '<tt>inreg</tt>' attributes are valid here.</li>
2093
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002094 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2095 function value being invoked. In most cases, this is a direct function
2096 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2097 an arbitrary pointer to function value.
2098 </li>
2099
2100 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2101 function to be invoked. </li>
2102
2103 <li>'<tt>function args</tt>': argument list whose types match the function
2104 signature argument types. If the function signature indicates the function
2105 accepts a variable number of arguments, the extra arguments can be
2106 specified. </li>
2107
2108 <li>'<tt>normal label</tt>': the label reached when the called function
2109 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2110
2111 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2112 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2113
Devang Patel307e8ab2008-10-07 17:48:33 +00002114 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002115 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2116 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002117</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002118
Chris Lattner00950542001-06-06 20:29:01 +00002119<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002120
Misha Brukman9d0919f2003-11-08 01:05:38 +00002121<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002122href="#i_call">call</a></tt>' instruction in most regards. The primary
2123difference is that it establishes an association with a label, which is used by
2124the runtime library to unwind the stack.</p>
2125
2126<p>This instruction is used in languages with destructors to ensure that proper
2127cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2128exception. Additionally, this is important for implementation of
2129'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2130
Chris Lattner00950542001-06-06 20:29:01 +00002131<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002132<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002133 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002134 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002135 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002136 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002137</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002138</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002139
2140
Chris Lattner27f71f22003-09-03 00:41:47 +00002141<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002142
Chris Lattner261efe92003-11-25 01:02:51 +00002143<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2144Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002145
Misha Brukman9d0919f2003-11-08 01:05:38 +00002146<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002147
Chris Lattner27f71f22003-09-03 00:41:47 +00002148<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002149<pre>
2150 unwind
2151</pre>
2152
Chris Lattner27f71f22003-09-03 00:41:47 +00002153<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002154
2155<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2156at the first callee in the dynamic call stack which used an <a
2157href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2158primarily used to implement exception handling.</p>
2159
Chris Lattner27f71f22003-09-03 00:41:47 +00002160<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002161
Chris Lattner72ed2002008-04-19 21:01:16 +00002162<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002163immediately halt. The dynamic call stack is then searched for the first <a
2164href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2165execution continues at the "exceptional" destination block specified by the
2166<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2167dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002168</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002169
2170<!-- _______________________________________________________________________ -->
2171
2172<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2173Instruction</a> </div>
2174
2175<div class="doc_text">
2176
2177<h5>Syntax:</h5>
2178<pre>
2179 unreachable
2180</pre>
2181
2182<h5>Overview:</h5>
2183
2184<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2185instruction is used to inform the optimizer that a particular portion of the
2186code is not reachable. This can be used to indicate that the code after a
2187no-return function cannot be reached, and other facts.</p>
2188
2189<h5>Semantics:</h5>
2190
2191<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2192</div>
2193
2194
2195
Chris Lattner00950542001-06-06 20:29:01 +00002196<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002197<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002198<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002199<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002200program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002201produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002202multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002203The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002204<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002205</div>
Chris Lattner00950542001-06-06 20:29:01 +00002206<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002207<div class="doc_subsubsection">
2208 <a name="i_add">'<tt>add</tt>' Instruction</a>
2209</div>
2210
Misha Brukman9d0919f2003-11-08 01:05:38 +00002211<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002212
Chris Lattner00950542001-06-06 20:29:01 +00002213<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002214
2215<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002216 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002217</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002218
Chris Lattner00950542001-06-06 20:29:01 +00002219<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002220
Misha Brukman9d0919f2003-11-08 01:05:38 +00002221<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002222
Chris Lattner00950542001-06-06 20:29:01 +00002223<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002224
2225<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2226 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2227 <a href="#t_vector">vector</a> values. Both arguments must have identical
2228 types.</p>
2229
Chris Lattner00950542001-06-06 20:29:01 +00002230<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002231
Misha Brukman9d0919f2003-11-08 01:05:38 +00002232<p>The value produced is the integer or floating point sum of the two
2233operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002234
Chris Lattner5ec89832008-01-28 00:36:27 +00002235<p>If an integer sum has unsigned overflow, the result returned is the
2236mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2237the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002238
Chris Lattner5ec89832008-01-28 00:36:27 +00002239<p>Because LLVM integers use a two's complement representation, this
2240instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002241
Chris Lattner00950542001-06-06 20:29:01 +00002242<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002243
2244<pre>
2245 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002246</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247</div>
Chris Lattner00950542001-06-06 20:29:01 +00002248<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002249<div class="doc_subsubsection">
2250 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2251</div>
2252
Misha Brukman9d0919f2003-11-08 01:05:38 +00002253<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002254
Chris Lattner00950542001-06-06 20:29:01 +00002255<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002256
2257<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002258 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002259</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002260
Chris Lattner00950542001-06-06 20:29:01 +00002261<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002262
Misha Brukman9d0919f2003-11-08 01:05:38 +00002263<p>The '<tt>sub</tt>' instruction returns the difference of its two
2264operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002265
2266<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2267'<tt>neg</tt>' instruction present in most other intermediate
2268representations.</p>
2269
Chris Lattner00950542001-06-06 20:29:01 +00002270<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002271
2272<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2273 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2274 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2275 types.</p>
2276
Chris Lattner00950542001-06-06 20:29:01 +00002277<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002278
Chris Lattner261efe92003-11-25 01:02:51 +00002279<p>The value produced is the integer or floating point difference of
2280the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002281
Chris Lattner5ec89832008-01-28 00:36:27 +00002282<p>If an integer difference has unsigned overflow, the result returned is the
2283mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2284the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002285
Chris Lattner5ec89832008-01-28 00:36:27 +00002286<p>Because LLVM integers use a two's complement representation, this
2287instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002288
Chris Lattner00950542001-06-06 20:29:01 +00002289<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002290<pre>
2291 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002292 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002293</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002294</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002295
Chris Lattner00950542001-06-06 20:29:01 +00002296<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002297<div class="doc_subsubsection">
2298 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2299</div>
2300
Misha Brukman9d0919f2003-11-08 01:05:38 +00002301<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002302
Chris Lattner00950542001-06-06 20:29:01 +00002303<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002304<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002305</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002306<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002307<p>The '<tt>mul</tt>' instruction returns the product of its two
2308operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002309
Chris Lattner00950542001-06-06 20:29:01 +00002310<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002311
2312<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2313href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2314or <a href="#t_vector">vector</a> values. Both arguments must have identical
2315types.</p>
2316
Chris Lattner00950542001-06-06 20:29:01 +00002317<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002318
Chris Lattner261efe92003-11-25 01:02:51 +00002319<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002320two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Chris Lattner5ec89832008-01-28 00:36:27 +00002322<p>If the result of an integer multiplication has unsigned overflow,
2323the result returned is the mathematical result modulo
23242<sup>n</sup>, where n is the bit width of the result.</p>
2325<p>Because LLVM integers use a two's complement representation, and the
2326result is the same width as the operands, this instruction returns the
2327correct result for both signed and unsigned integers. If a full product
2328(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2329should be sign-extended or zero-extended as appropriate to the
2330width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002331<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002332<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002333</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002334</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002335
Chris Lattner00950542001-06-06 20:29:01 +00002336<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002337<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2338</a></div>
2339<div class="doc_text">
2340<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002341<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002342</pre>
2343<h5>Overview:</h5>
2344<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2345operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002346
Reid Spencer1628cec2006-10-26 06:15:43 +00002347<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002348
Reid Spencer1628cec2006-10-26 06:15:43 +00002349<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002350<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2351values. Both arguments must have identical types.</p>
2352
Reid Spencer1628cec2006-10-26 06:15:43 +00002353<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002354
Chris Lattner5ec89832008-01-28 00:36:27 +00002355<p>The value produced is the unsigned integer quotient of the two operands.</p>
2356<p>Note that unsigned integer division and signed integer division are distinct
2357operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2358<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002359<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002360<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002361</pre>
2362</div>
2363<!-- _______________________________________________________________________ -->
2364<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2365</a> </div>
2366<div class="doc_text">
2367<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002368<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002369 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002370</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002371
Reid Spencer1628cec2006-10-26 06:15:43 +00002372<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002373
Reid Spencer1628cec2006-10-26 06:15:43 +00002374<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2375operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002376
Reid Spencer1628cec2006-10-26 06:15:43 +00002377<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002378
2379<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2380<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2381values. Both arguments must have identical types.</p>
2382
Reid Spencer1628cec2006-10-26 06:15:43 +00002383<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002384<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002385<p>Note that signed integer division and unsigned integer division are distinct
2386operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2387<p>Division by zero leads to undefined behavior. Overflow also leads to
2388undefined behavior; this is a rare case, but can occur, for example,
2389by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002390<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002391<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002392</pre>
2393</div>
2394<!-- _______________________________________________________________________ -->
2395<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002396Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002397<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002398<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002399<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002400 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002401</pre>
2402<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002403
Reid Spencer1628cec2006-10-26 06:15:43 +00002404<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002405operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002406
Chris Lattner261efe92003-11-25 01:02:51 +00002407<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002408
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002409<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002410<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2411of floating point values. Both arguments must have identical types.</p>
2412
Chris Lattner261efe92003-11-25 01:02:51 +00002413<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002414
Reid Spencer1628cec2006-10-26 06:15:43 +00002415<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002416
Chris Lattner261efe92003-11-25 01:02:51 +00002417<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002418
2419<pre>
2420 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002421</pre>
2422</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002423
Chris Lattner261efe92003-11-25 01:02:51 +00002424<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002425<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2426</div>
2427<div class="doc_text">
2428<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002429<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002430</pre>
2431<h5>Overview:</h5>
2432<p>The '<tt>urem</tt>' instruction returns the remainder from the
2433unsigned division of its two arguments.</p>
2434<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002435<p>The two arguments to the '<tt>urem</tt>' instruction must be
2436<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2437values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002438<h5>Semantics:</h5>
2439<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002440This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002441<p>Note that unsigned integer remainder and signed integer remainder are
2442distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2443<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002444<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002445<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002446</pre>
2447
2448</div>
2449<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002450<div class="doc_subsubsection">
2451 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2452</div>
2453
Chris Lattner261efe92003-11-25 01:02:51 +00002454<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002455
Chris Lattner261efe92003-11-25 01:02:51 +00002456<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002457
2458<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002459 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002460</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002461
Chris Lattner261efe92003-11-25 01:02:51 +00002462<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002463
Reid Spencer0a783f72006-11-02 01:53:59 +00002464<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002465signed division of its two operands. This instruction can also take
2466<a href="#t_vector">vector</a> versions of the values in which case
2467the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002468
Chris Lattner261efe92003-11-25 01:02:51 +00002469<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002470
Reid Spencer0a783f72006-11-02 01:53:59 +00002471<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002472<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2473values. Both arguments must have identical types.</p>
2474
Chris Lattner261efe92003-11-25 01:02:51 +00002475<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002476
Reid Spencer0a783f72006-11-02 01:53:59 +00002477<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002478has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2479operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002480a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002481 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002482Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002483please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002484Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002485<p>Note that signed integer remainder and unsigned integer remainder are
2486distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2487<p>Taking the remainder of a division by zero leads to undefined behavior.
2488Overflow also leads to undefined behavior; this is a rare case, but can occur,
2489for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2490(The remainder doesn't actually overflow, but this rule lets srem be
2491implemented using instructions that return both the result of the division
2492and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002493<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002494<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002495</pre>
2496
2497</div>
2498<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002499<div class="doc_subsubsection">
2500 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2501
Reid Spencer0a783f72006-11-02 01:53:59 +00002502<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002503
Reid Spencer0a783f72006-11-02 01:53:59 +00002504<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002505<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002506</pre>
2507<h5>Overview:</h5>
2508<p>The '<tt>frem</tt>' instruction returns the remainder from the
2509division of its two operands.</p>
2510<h5>Arguments:</h5>
2511<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002512<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2513of floating point values. Both arguments must have identical types.</p>
2514
Reid Spencer0a783f72006-11-02 01:53:59 +00002515<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002516
Chris Lattnera73afe02008-04-01 18:45:27 +00002517<p>This instruction returns the <i>remainder</i> of a division.
2518The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002519
Reid Spencer0a783f72006-11-02 01:53:59 +00002520<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002521
2522<pre>
2523 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002524</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002525</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002526
Reid Spencer8e11bf82007-02-02 13:57:07 +00002527<!-- ======================================================================= -->
2528<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2529Operations</a> </div>
2530<div class="doc_text">
2531<p>Bitwise binary operators are used to do various forms of
2532bit-twiddling in a program. They are generally very efficient
2533instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002534instructions. They require two operands of the same type, execute an operation on them,
2535and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002536</div>
2537
Reid Spencer569f2fa2007-01-31 21:39:12 +00002538<!-- _______________________________________________________________________ -->
2539<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2540Instruction</a> </div>
2541<div class="doc_text">
2542<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002543<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002544</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002545
Reid Spencer569f2fa2007-01-31 21:39:12 +00002546<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002547
Reid Spencer569f2fa2007-01-31 21:39:12 +00002548<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2549the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002550
Reid Spencer569f2fa2007-01-31 21:39:12 +00002551<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002552
Reid Spencer569f2fa2007-01-31 21:39:12 +00002553<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002554 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002555type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002556
Reid Spencer569f2fa2007-01-31 21:39:12 +00002557<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002558
Gabor Greiffb224a22008-08-07 21:46:00 +00002559<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2560where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2561equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002562
Reid Spencer569f2fa2007-01-31 21:39:12 +00002563<h5>Example:</h5><pre>
2564 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2565 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2566 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002567 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002568</pre>
2569</div>
2570<!-- _______________________________________________________________________ -->
2571<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2572Instruction</a> </div>
2573<div class="doc_text">
2574<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002575<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002576</pre>
2577
2578<h5>Overview:</h5>
2579<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002580operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002581
2582<h5>Arguments:</h5>
2583<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002584<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002585type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002586
2587<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002588
Reid Spencer569f2fa2007-01-31 21:39:12 +00002589<p>This instruction always performs a logical shift right operation. The most
2590significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002591shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2592the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002593
2594<h5>Example:</h5>
2595<pre>
2596 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2597 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2598 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2599 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002600 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002601</pre>
2602</div>
2603
Reid Spencer8e11bf82007-02-02 13:57:07 +00002604<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002605<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2606Instruction</a> </div>
2607<div class="doc_text">
2608
2609<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002610<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002611</pre>
2612
2613<h5>Overview:</h5>
2614<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002615operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002616
2617<h5>Arguments:</h5>
2618<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002619<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002620type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002621
2622<h5>Semantics:</h5>
2623<p>This instruction always performs an arithmetic shift right operation,
2624The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002625of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2626larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002627</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002628
2629<h5>Example:</h5>
2630<pre>
2631 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2632 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2633 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2634 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002635 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002636</pre>
2637</div>
2638
Chris Lattner00950542001-06-06 20:29:01 +00002639<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002640<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2641Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002642
Misha Brukman9d0919f2003-11-08 01:05:38 +00002643<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002644
Chris Lattner00950542001-06-06 20:29:01 +00002645<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002646
2647<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002648 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002649</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002650
Chris Lattner00950542001-06-06 20:29:01 +00002651<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002652
Chris Lattner261efe92003-11-25 01:02:51 +00002653<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2654its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002655
Chris Lattner00950542001-06-06 20:29:01 +00002656<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002657
2658<p>The two arguments to the '<tt>and</tt>' instruction must be
2659<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2660values. Both arguments must have identical types.</p>
2661
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002663<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002664<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002665<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002666<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002667 <tbody>
2668 <tr>
2669 <td>In0</td>
2670 <td>In1</td>
2671 <td>Out</td>
2672 </tr>
2673 <tr>
2674 <td>0</td>
2675 <td>0</td>
2676 <td>0</td>
2677 </tr>
2678 <tr>
2679 <td>0</td>
2680 <td>1</td>
2681 <td>0</td>
2682 </tr>
2683 <tr>
2684 <td>1</td>
2685 <td>0</td>
2686 <td>0</td>
2687 </tr>
2688 <tr>
2689 <td>1</td>
2690 <td>1</td>
2691 <td>1</td>
2692 </tr>
2693 </tbody>
2694</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002695</div>
Chris Lattner00950542001-06-06 20:29:01 +00002696<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002697<pre>
2698 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002699 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2700 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002701</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002702</div>
Chris Lattner00950542001-06-06 20:29:01 +00002703<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002704<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002705<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002706<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002707<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002708</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002709<h5>Overview:</h5>
2710<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2711or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002712<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002713
2714<p>The two arguments to the '<tt>or</tt>' instruction must be
2715<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2716values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002717<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002718<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002719<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002720<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002721<table border="1" cellspacing="0" cellpadding="4">
2722 <tbody>
2723 <tr>
2724 <td>In0</td>
2725 <td>In1</td>
2726 <td>Out</td>
2727 </tr>
2728 <tr>
2729 <td>0</td>
2730 <td>0</td>
2731 <td>0</td>
2732 </tr>
2733 <tr>
2734 <td>0</td>
2735 <td>1</td>
2736 <td>1</td>
2737 </tr>
2738 <tr>
2739 <td>1</td>
2740 <td>0</td>
2741 <td>1</td>
2742 </tr>
2743 <tr>
2744 <td>1</td>
2745 <td>1</td>
2746 <td>1</td>
2747 </tr>
2748 </tbody>
2749</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002750</div>
Chris Lattner00950542001-06-06 20:29:01 +00002751<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002752<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2753 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2754 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002755</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002756</div>
Chris Lattner00950542001-06-06 20:29:01 +00002757<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002758<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2759Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002760<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002761<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002762<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002763</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002764<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002765<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2766or of its two operands. The <tt>xor</tt> is used to implement the
2767"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002768<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002769<p>The two arguments to the '<tt>xor</tt>' instruction must be
2770<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2771values. Both arguments must have identical types.</p>
2772
Chris Lattner00950542001-06-06 20:29:01 +00002773<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002774
Misha Brukman9d0919f2003-11-08 01:05:38 +00002775<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002776<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002777<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002778<table border="1" cellspacing="0" cellpadding="4">
2779 <tbody>
2780 <tr>
2781 <td>In0</td>
2782 <td>In1</td>
2783 <td>Out</td>
2784 </tr>
2785 <tr>
2786 <td>0</td>
2787 <td>0</td>
2788 <td>0</td>
2789 </tr>
2790 <tr>
2791 <td>0</td>
2792 <td>1</td>
2793 <td>1</td>
2794 </tr>
2795 <tr>
2796 <td>1</td>
2797 <td>0</td>
2798 <td>1</td>
2799 </tr>
2800 <tr>
2801 <td>1</td>
2802 <td>1</td>
2803 <td>0</td>
2804 </tr>
2805 </tbody>
2806</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002807</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002808<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002809<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002810<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2811 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2812 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2813 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002814</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002815</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002816
Chris Lattner00950542001-06-06 20:29:01 +00002817<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002818<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002819 <a name="vectorops">Vector Operations</a>
2820</div>
2821
2822<div class="doc_text">
2823
2824<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002825target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002826vector-specific operations needed to process vectors effectively. While LLVM
2827does directly support these vector operations, many sophisticated algorithms
2828will want to use target-specific intrinsics to take full advantage of a specific
2829target.</p>
2830
2831</div>
2832
2833<!-- _______________________________________________________________________ -->
2834<div class="doc_subsubsection">
2835 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2836</div>
2837
2838<div class="doc_text">
2839
2840<h5>Syntax:</h5>
2841
2842<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002843 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002844</pre>
2845
2846<h5>Overview:</h5>
2847
2848<p>
2849The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002850element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002851</p>
2852
2853
2854<h5>Arguments:</h5>
2855
2856<p>
2857The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002858value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002859an index indicating the position from which to extract the element.
2860The index may be a variable.</p>
2861
2862<h5>Semantics:</h5>
2863
2864<p>
2865The result is a scalar of the same type as the element type of
2866<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2867<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2868results are undefined.
2869</p>
2870
2871<h5>Example:</h5>
2872
2873<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002874 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002875</pre>
2876</div>
2877
2878
2879<!-- _______________________________________________________________________ -->
2880<div class="doc_subsubsection">
2881 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2882</div>
2883
2884<div class="doc_text">
2885
2886<h5>Syntax:</h5>
2887
2888<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002889 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002890</pre>
2891
2892<h5>Overview:</h5>
2893
2894<p>
2895The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002896element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002897</p>
2898
2899
2900<h5>Arguments:</h5>
2901
2902<p>
2903The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002904value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002905scalar value whose type must equal the element type of the first
2906operand. The third operand is an index indicating the position at
2907which to insert the value. The index may be a variable.</p>
2908
2909<h5>Semantics:</h5>
2910
2911<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002912The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002913element values are those of <tt>val</tt> except at position
2914<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2915exceeds the length of <tt>val</tt>, the results are undefined.
2916</p>
2917
2918<h5>Example:</h5>
2919
2920<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002921 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002922</pre>
2923</div>
2924
2925<!-- _______________________________________________________________________ -->
2926<div class="doc_subsubsection">
2927 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2928</div>
2929
2930<div class="doc_text">
2931
2932<h5>Syntax:</h5>
2933
2934<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002935 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002936</pre>
2937
2938<h5>Overview:</h5>
2939
2940<p>
2941The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00002942from two input vectors, returning a vector with the same element type as
2943the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00002944</p>
2945
2946<h5>Arguments:</h5>
2947
2948<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002949The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2950with types that match each other. The third argument is a shuffle mask whose
2951element type is always 'i32'. The result of the instruction is a vector whose
2952length is the same as the shuffle mask and whose element type is the same as
2953the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00002954</p>
2955
2956<p>
2957The shuffle mask operand is required to be a constant vector with either
2958constant integer or undef values.
2959</p>
2960
2961<h5>Semantics:</h5>
2962
2963<p>
2964The elements of the two input vectors are numbered from left to right across
2965both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00002966the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00002967gets. The element selector may be undef (meaning "don't care") and the second
2968operand may be undef if performing a shuffle from only one vector.
2969</p>
2970
2971<h5>Example:</h5>
2972
2973<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002974 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002975 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002976 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2977 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00002978 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
2979 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
2980 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2981 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002982</pre>
2983</div>
2984
Tanya Lattner09474292006-04-14 19:24:33 +00002985
Chris Lattner3df241e2006-04-08 23:07:04 +00002986<!-- ======================================================================= -->
2987<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002988 <a name="aggregateops">Aggregate Operations</a>
2989</div>
2990
2991<div class="doc_text">
2992
2993<p>LLVM supports several instructions for working with aggregate values.
2994</p>
2995
2996</div>
2997
2998<!-- _______________________________________________________________________ -->
2999<div class="doc_subsubsection">
3000 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3001</div>
3002
3003<div class="doc_text">
3004
3005<h5>Syntax:</h5>
3006
3007<pre>
3008 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3009</pre>
3010
3011<h5>Overview:</h5>
3012
3013<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003014The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3015or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003016</p>
3017
3018
3019<h5>Arguments:</h5>
3020
3021<p>
3022The first operand of an '<tt>extractvalue</tt>' instruction is a
3023value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003024type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003025in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003026'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3027</p>
3028
3029<h5>Semantics:</h5>
3030
3031<p>
3032The result is the value at the position in the aggregate specified by
3033the index operands.
3034</p>
3035
3036<h5>Example:</h5>
3037
3038<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003039 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003040</pre>
3041</div>
3042
3043
3044<!-- _______________________________________________________________________ -->
3045<div class="doc_subsubsection">
3046 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3047</div>
3048
3049<div class="doc_text">
3050
3051<h5>Syntax:</h5>
3052
3053<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003054 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003055</pre>
3056
3057<h5>Overview:</h5>
3058
3059<p>
3060The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003061into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003062</p>
3063
3064
3065<h5>Arguments:</h5>
3066
3067<p>
3068The first operand of an '<tt>insertvalue</tt>' instruction is a
3069value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3070The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003071The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003072indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003073indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003074'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3075The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003076by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003077</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003078
3079<h5>Semantics:</h5>
3080
3081<p>
3082The result is an aggregate of the same type as <tt>val</tt>. Its
3083value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003084specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003085</p>
3086
3087<h5>Example:</h5>
3088
3089<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003090 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003091</pre>
3092</div>
3093
3094
3095<!-- ======================================================================= -->
3096<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003097 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003098</div>
3099
Misha Brukman9d0919f2003-11-08 01:05:38 +00003100<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003101
Chris Lattner261efe92003-11-25 01:02:51 +00003102<p>A key design point of an SSA-based representation is how it
3103represents memory. In LLVM, no memory locations are in SSA form, which
3104makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003105allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003106
Misha Brukman9d0919f2003-11-08 01:05:38 +00003107</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003108
Chris Lattner00950542001-06-06 20:29:01 +00003109<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003110<div class="doc_subsubsection">
3111 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3112</div>
3113
Misha Brukman9d0919f2003-11-08 01:05:38 +00003114<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003115
Chris Lattner00950542001-06-06 20:29:01 +00003116<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003117
3118<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003119 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003120</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003121
Chris Lattner00950542001-06-06 20:29:01 +00003122<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003123
Chris Lattner261efe92003-11-25 01:02:51 +00003124<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003125heap and returns a pointer to it. The object is always allocated in the generic
3126address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003127
Chris Lattner00950542001-06-06 20:29:01 +00003128<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003129
3130<p>The '<tt>malloc</tt>' instruction allocates
3131<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003132bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003133appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003134number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003135If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003136be aligned to at least that boundary. If not specified, or if zero, the target can
3137choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003138
Misha Brukman9d0919f2003-11-08 01:05:38 +00003139<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003140
Chris Lattner00950542001-06-06 20:29:01 +00003141<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003142
Chris Lattner261efe92003-11-25 01:02:51 +00003143<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003144a pointer is returned. The result of a zero byte allocattion is undefined. The
3145result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003146
Chris Lattner2cbdc452005-11-06 08:02:57 +00003147<h5>Example:</h5>
3148
3149<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003150 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003151
Bill Wendlingaac388b2007-05-29 09:42:13 +00003152 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3153 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3154 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3155 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3156 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003157</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003158</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003159
Chris Lattner00950542001-06-06 20:29:01 +00003160<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003161<div class="doc_subsubsection">
3162 <a name="i_free">'<tt>free</tt>' Instruction</a>
3163</div>
3164
Misha Brukman9d0919f2003-11-08 01:05:38 +00003165<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003166
Chris Lattner00950542001-06-06 20:29:01 +00003167<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003168
3169<pre>
3170 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003171</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003172
Chris Lattner00950542001-06-06 20:29:01 +00003173<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003174
Chris Lattner261efe92003-11-25 01:02:51 +00003175<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003176memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003177
Chris Lattner00950542001-06-06 20:29:01 +00003178<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003179
Chris Lattner261efe92003-11-25 01:02:51 +00003180<p>'<tt>value</tt>' shall be a pointer value that points to a value
3181that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3182instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003183
Chris Lattner00950542001-06-06 20:29:01 +00003184<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003185
John Criswell9e2485c2004-12-10 15:51:16 +00003186<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003187after this instruction executes. If the pointer is null, the operation
3188is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003189
Chris Lattner00950542001-06-06 20:29:01 +00003190<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003191
3192<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003193 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3194 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003195</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003196</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003197
Chris Lattner00950542001-06-06 20:29:01 +00003198<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003199<div class="doc_subsubsection">
3200 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3201</div>
3202
Misha Brukman9d0919f2003-11-08 01:05:38 +00003203<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003204
Chris Lattner00950542001-06-06 20:29:01 +00003205<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003206
3207<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003208 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003209</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003210
Chris Lattner00950542001-06-06 20:29:01 +00003211<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003212
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003213<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3214currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003215returns to its caller. The object is always allocated in the generic address
3216space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003217
Chris Lattner00950542001-06-06 20:29:01 +00003218<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003219
John Criswell9e2485c2004-12-10 15:51:16 +00003220<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003221bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003222appropriate type to the program. If "NumElements" is specified, it is the
3223number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003224If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003225to be aligned to at least that boundary. If not specified, or if zero, the target
3226can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003227
Misha Brukman9d0919f2003-11-08 01:05:38 +00003228<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003229
Chris Lattner00950542001-06-06 20:29:01 +00003230<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003231
Chris Lattner72ed2002008-04-19 21:01:16 +00003232<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3233there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003234memory is automatically released when the function returns. The '<tt>alloca</tt>'
3235instruction is commonly used to represent automatic variables that must
3236have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003237 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003238instructions), the memory is reclaimed. Allocating zero bytes
3239is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003240
Chris Lattner00950542001-06-06 20:29:01 +00003241<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003242
3243<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003244 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003245 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3246 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003247 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003248</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003249</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003250
Chris Lattner00950542001-06-06 20:29:01 +00003251<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003252<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3253Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003254<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003255<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003256<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003257<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003258<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003259<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003260<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003261address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003262 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003263marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003264the number or order of execution of this <tt>load</tt> with other
3265volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3266instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003267<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003268The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003269(that is, the alignment of the memory address). A value of 0 or an
3270omitted "align" argument means that the operation has the preferential
3271alignment for the target. It is the responsibility of the code emitter
3272to ensure that the alignment information is correct. Overestimating
3273the alignment results in an undefined behavior. Underestimating the
3274alignment may produce less efficient code. An alignment of 1 is always
3275safe.
3276</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003277<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003278<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003279<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003280<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003281 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003282 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3283 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003284</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003285</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003286<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003287<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3288Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003289<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003290<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003291<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3292 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003293</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003294<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003295<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003296<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003297<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003298to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003299operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3300of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003301operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003302optimizer is not allowed to modify the number or order of execution of
3303this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3304 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003305<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003306The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003307(that is, the alignment of the memory address). A value of 0 or an
3308omitted "align" argument means that the operation has the preferential
3309alignment for the target. It is the responsibility of the code emitter
3310to ensure that the alignment information is correct. Overestimating
3311the alignment results in an undefined behavior. Underestimating the
3312alignment may produce less efficient code. An alignment of 1 is always
3313safe.
3314</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003315<h5>Semantics:</h5>
3316<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3317at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003318<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003319<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003320 store i32 3, i32* %ptr <i>; yields {void}</i>
3321 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003322</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003323</div>
3324
Chris Lattner2b7d3202002-05-06 03:03:22 +00003325<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003326<div class="doc_subsubsection">
3327 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3328</div>
3329
Misha Brukman9d0919f2003-11-08 01:05:38 +00003330<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003331<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003332<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003333 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003334</pre>
3335
Chris Lattner7faa8832002-04-14 06:13:44 +00003336<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003337
3338<p>
3339The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003340subelement of an aggregate data structure. It performs address calculation only
3341and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003342
Chris Lattner7faa8832002-04-14 06:13:44 +00003343<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003344
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003345<p>The first argument is always a pointer, and forms the basis of the
3346calculation. The remaining arguments are indices, that indicate which of the
3347elements of the aggregate object are indexed. The interpretation of each index
3348is dependent on the type being indexed into. The first index always indexes the
3349pointer value given as the first argument, the second index indexes a value of
3350the type pointed to (not necessarily the value directly pointed to, since the
3351first index can be non-zero), etc. The first type indexed into must be a pointer
3352value, subsequent types can be arrays, vectors and structs. Note that subsequent
3353types being indexed into can never be pointers, since that would require loading
3354the pointer before continuing calculation.</p>
3355
3356<p>The type of each index argument depends on the type it is indexing into.
3357When indexing into a (packed) structure, only <tt>i32</tt> integer
3358<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3359only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3360will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003361
Chris Lattner261efe92003-11-25 01:02:51 +00003362<p>For example, let's consider a C code fragment and how it gets
3363compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003364
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003365<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003366<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003367struct RT {
3368 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003369 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003370 char C;
3371};
3372struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003373 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003374 double Y;
3375 struct RT Z;
3376};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003377
Chris Lattnercabc8462007-05-29 15:43:56 +00003378int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003379 return &amp;s[1].Z.B[5][13];
3380}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003381</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003382</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003383
Misha Brukman9d0919f2003-11-08 01:05:38 +00003384<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003385
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003386<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003387<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003388%RT = type { i8 , [10 x [20 x i32]], i8 }
3389%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003390
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003391define i32* %foo(%ST* %s) {
3392entry:
3393 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3394 ret i32* %reg
3395}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003396</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003397</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003398
Chris Lattner7faa8832002-04-14 06:13:44 +00003399<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003400
Misha Brukman9d0919f2003-11-08 01:05:38 +00003401<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003402type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003403}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003404the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3405i8 }</tt>' type, another structure. The third index indexes into the second
3406element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003407array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003408'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3409to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003410
Chris Lattner261efe92003-11-25 01:02:51 +00003411<p>Note that it is perfectly legal to index partially through a
3412structure, returning a pointer to an inner element. Because of this,
3413the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003414
3415<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003416 define i32* %foo(%ST* %s) {
3417 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003418 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3419 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003420 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3421 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3422 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003423 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003424</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003425
3426<p>Note that it is undefined to access an array out of bounds: array and
3427pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003428The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003429defined to be accessible as variable length arrays, which requires access
3430beyond the zero'th element.</p>
3431
Chris Lattner884a9702006-08-15 00:45:58 +00003432<p>The getelementptr instruction is often confusing. For some more insight
3433into how it works, see <a href="GetElementPtr.html">the getelementptr
3434FAQ</a>.</p>
3435
Chris Lattner7faa8832002-04-14 06:13:44 +00003436<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003437
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003438<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003439 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003440 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3441 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003442 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003443 <i>; yields i8*:eptr</i>
3444 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003445</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003446</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003447
Chris Lattner00950542001-06-06 20:29:01 +00003448<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003449<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003450</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003451<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003452<p>The instructions in this category are the conversion instructions (casting)
3453which all take a single operand and a type. They perform various bit conversions
3454on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003455</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003456
Chris Lattner6536cfe2002-05-06 22:08:29 +00003457<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003458<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003459 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3460</div>
3461<div class="doc_text">
3462
3463<h5>Syntax:</h5>
3464<pre>
3465 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3466</pre>
3467
3468<h5>Overview:</h5>
3469<p>
3470The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3471</p>
3472
3473<h5>Arguments:</h5>
3474<p>
3475The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3476be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003477and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003478type. The bit size of <tt>value</tt> must be larger than the bit size of
3479<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003480
3481<h5>Semantics:</h5>
3482<p>
3483The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003484and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3485larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3486It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003487
3488<h5>Example:</h5>
3489<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003490 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003491 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3492 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003493</pre>
3494</div>
3495
3496<!-- _______________________________________________________________________ -->
3497<div class="doc_subsubsection">
3498 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3499</div>
3500<div class="doc_text">
3501
3502<h5>Syntax:</h5>
3503<pre>
3504 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3505</pre>
3506
3507<h5>Overview:</h5>
3508<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3509<tt>ty2</tt>.</p>
3510
3511
3512<h5>Arguments:</h5>
3513<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003514<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3515also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003516<tt>value</tt> must be smaller than the bit size of the destination type,
3517<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003518
3519<h5>Semantics:</h5>
3520<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003521bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003522
Reid Spencerb5929522007-01-12 15:46:11 +00003523<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003524
3525<h5>Example:</h5>
3526<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003527 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003528 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003529</pre>
3530</div>
3531
3532<!-- _______________________________________________________________________ -->
3533<div class="doc_subsubsection">
3534 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3535</div>
3536<div class="doc_text">
3537
3538<h5>Syntax:</h5>
3539<pre>
3540 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3541</pre>
3542
3543<h5>Overview:</h5>
3544<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3545
3546<h5>Arguments:</h5>
3547<p>
3548The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003549<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3550also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003551<tt>value</tt> must be smaller than the bit size of the destination type,
3552<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003553
3554<h5>Semantics:</h5>
3555<p>
3556The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3557bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003558the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003559
Reid Spencerc78f3372007-01-12 03:35:51 +00003560<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003561
3562<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003563<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003564 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003565 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003566</pre>
3567</div>
3568
3569<!-- _______________________________________________________________________ -->
3570<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003571 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3572</div>
3573
3574<div class="doc_text">
3575
3576<h5>Syntax:</h5>
3577
3578<pre>
3579 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3580</pre>
3581
3582<h5>Overview:</h5>
3583<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3584<tt>ty2</tt>.</p>
3585
3586
3587<h5>Arguments:</h5>
3588<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3589 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3590cast it to. The size of <tt>value</tt> must be larger than the size of
3591<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3592<i>no-op cast</i>.</p>
3593
3594<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003595<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3596<a href="#t_floating">floating point</a> type to a smaller
3597<a href="#t_floating">floating point</a> type. If the value cannot fit within
3598the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003599
3600<h5>Example:</h5>
3601<pre>
3602 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3603 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3604</pre>
3605</div>
3606
3607<!-- _______________________________________________________________________ -->
3608<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003609 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3610</div>
3611<div class="doc_text">
3612
3613<h5>Syntax:</h5>
3614<pre>
3615 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3616</pre>
3617
3618<h5>Overview:</h5>
3619<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3620floating point value.</p>
3621
3622<h5>Arguments:</h5>
3623<p>The '<tt>fpext</tt>' instruction takes a
3624<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003625and a <a href="#t_floating">floating point</a> type to cast it to. The source
3626type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003627
3628<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003629<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003630<a href="#t_floating">floating point</a> type to a larger
3631<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003632used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003633<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003634
3635<h5>Example:</h5>
3636<pre>
3637 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3638 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3639</pre>
3640</div>
3641
3642<!-- _______________________________________________________________________ -->
3643<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003644 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003645</div>
3646<div class="doc_text">
3647
3648<h5>Syntax:</h5>
3649<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003650 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003651</pre>
3652
3653<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003654<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003655unsigned integer equivalent of type <tt>ty2</tt>.
3656</p>
3657
3658<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003659<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003660scalar or vector <a href="#t_floating">floating point</a> value, and a type
3661to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3662type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3663vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003664
3665<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003666<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003667<a href="#t_floating">floating point</a> operand into the nearest (rounding
3668towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3669the results are undefined.</p>
3670
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003671<h5>Example:</h5>
3672<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003673 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003674 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003675 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003676</pre>
3677</div>
3678
3679<!-- _______________________________________________________________________ -->
3680<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003681 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003682</div>
3683<div class="doc_text">
3684
3685<h5>Syntax:</h5>
3686<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003687 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003688</pre>
3689
3690<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003691<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003692<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003693</p>
3694
Chris Lattner6536cfe2002-05-06 22:08:29 +00003695<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003696<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003697scalar or vector <a href="#t_floating">floating point</a> value, and a type
3698to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3699type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3700vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003701
Chris Lattner6536cfe2002-05-06 22:08:29 +00003702<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003703<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003704<a href="#t_floating">floating point</a> operand into the nearest (rounding
3705towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3706the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003707
Chris Lattner33ba0d92001-07-09 00:26:23 +00003708<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003709<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003710 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003711 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003712 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003713</pre>
3714</div>
3715
3716<!-- _______________________________________________________________________ -->
3717<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003718 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003719</div>
3720<div class="doc_text">
3721
3722<h5>Syntax:</h5>
3723<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003724 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003725</pre>
3726
3727<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003728<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003729integer and converts that value to the <tt>ty2</tt> type.</p>
3730
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003731<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003732<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3733scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3734to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3735type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3736floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003737
3738<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003739<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003740integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003741the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003742
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003743<h5>Example:</h5>
3744<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003745 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003746 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003747</pre>
3748</div>
3749
3750<!-- _______________________________________________________________________ -->
3751<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003752 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003753</div>
3754<div class="doc_text">
3755
3756<h5>Syntax:</h5>
3757<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003758 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003759</pre>
3760
3761<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003762<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003763integer and converts that value to the <tt>ty2</tt> type.</p>
3764
3765<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003766<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3767scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3768to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3769type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3770floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003771
3772<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003773<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003774integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003775the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003776
3777<h5>Example:</h5>
3778<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003779 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003780 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003781</pre>
3782</div>
3783
3784<!-- _______________________________________________________________________ -->
3785<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003786 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3787</div>
3788<div class="doc_text">
3789
3790<h5>Syntax:</h5>
3791<pre>
3792 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3793</pre>
3794
3795<h5>Overview:</h5>
3796<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3797the integer type <tt>ty2</tt>.</p>
3798
3799<h5>Arguments:</h5>
3800<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003801must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003802<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003803
3804<h5>Semantics:</h5>
3805<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3806<tt>ty2</tt> by interpreting the pointer value as an integer and either
3807truncating or zero extending that value to the size of the integer type. If
3808<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3809<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003810are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3811change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003812
3813<h5>Example:</h5>
3814<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003815 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3816 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003817</pre>
3818</div>
3819
3820<!-- _______________________________________________________________________ -->
3821<div class="doc_subsubsection">
3822 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3823</div>
3824<div class="doc_text">
3825
3826<h5>Syntax:</h5>
3827<pre>
3828 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3829</pre>
3830
3831<h5>Overview:</h5>
3832<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3833a pointer type, <tt>ty2</tt>.</p>
3834
3835<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003836<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003837value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00003838<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003839
3840<h5>Semantics:</h5>
3841<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3842<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3843the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3844size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3845the size of a pointer then a zero extension is done. If they are the same size,
3846nothing is done (<i>no-op cast</i>).</p>
3847
3848<h5>Example:</h5>
3849<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003850 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3851 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3852 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003853</pre>
3854</div>
3855
3856<!-- _______________________________________________________________________ -->
3857<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003858 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003859</div>
3860<div class="doc_text">
3861
3862<h5>Syntax:</h5>
3863<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003864 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003865</pre>
3866
3867<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003868
Reid Spencer5c0ef472006-11-11 23:08:07 +00003869<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003870<tt>ty2</tt> without changing any bits.</p>
3871
3872<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003873
Reid Spencer5c0ef472006-11-11 23:08:07 +00003874<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003875a non-aggregate first class value, and a type to cast it to, which must also be
3876a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3877<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003878and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003879type is a pointer, the destination type must also be a pointer. This
3880instruction supports bitwise conversion of vectors to integers and to vectors
3881of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003882
3883<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003884<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003885<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3886this conversion. The conversion is done as if the <tt>value</tt> had been
3887stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3888converted to other pointer types with this instruction. To convert pointers to
3889other types, use the <a href="#i_inttoptr">inttoptr</a> or
3890<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003891
3892<h5>Example:</h5>
3893<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003894 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003895 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003896 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003897</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003898</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003899
Reid Spencer2fd21e62006-11-08 01:18:52 +00003900<!-- ======================================================================= -->
3901<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3902<div class="doc_text">
3903<p>The instructions in this category are the "miscellaneous"
3904instructions, which defy better classification.</p>
3905</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003906
3907<!-- _______________________________________________________________________ -->
3908<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3909</div>
3910<div class="doc_text">
3911<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003912<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003913</pre>
3914<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003915<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3916a vector of boolean values based on comparison
3917of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003918<h5>Arguments:</h5>
3919<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003920the condition code indicating the kind of comparison to perform. It is not
3921a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003922</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003923<ol>
3924 <li><tt>eq</tt>: equal</li>
3925 <li><tt>ne</tt>: not equal </li>
3926 <li><tt>ugt</tt>: unsigned greater than</li>
3927 <li><tt>uge</tt>: unsigned greater or equal</li>
3928 <li><tt>ult</tt>: unsigned less than</li>
3929 <li><tt>ule</tt>: unsigned less or equal</li>
3930 <li><tt>sgt</tt>: signed greater than</li>
3931 <li><tt>sge</tt>: signed greater or equal</li>
3932 <li><tt>slt</tt>: signed less than</li>
3933 <li><tt>sle</tt>: signed less or equal</li>
3934</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003935<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003936<a href="#t_pointer">pointer</a>
3937or integer <a href="#t_vector">vector</a> typed.
3938They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003939<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003940<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003941the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003942yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003943</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003944<ol>
3945 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3946 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3947 </li>
3948 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00003949 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003950 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003951 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003952 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003953 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003954 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003955 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003956 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003957 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003958 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003959 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003960 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003961 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003962 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003963 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003964 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003965 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003966</ol>
3967<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003968values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003969<p>If the operands are integer vectors, then they are compared
3970element by element. The result is an <tt>i1</tt> vector with
3971the same number of elements as the values being compared.
3972Otherwise, the result is an <tt>i1</tt>.
3973</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003974
3975<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003976<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3977 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3978 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3979 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3980 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3981 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003982</pre>
3983</div>
3984
3985<!-- _______________________________________________________________________ -->
3986<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3987</div>
3988<div class="doc_text">
3989<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003990<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003991</pre>
3992<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003993<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3994or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00003995of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003996<p>
3997If the operands are floating point scalars, then the result
3998type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3999</p>
4000<p>If the operands are floating point vectors, then the result type
4001is a vector of boolean with the same number of elements as the
4002operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004003<h5>Arguments:</h5>
4004<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004005the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004006a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004007<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004008 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004009 <li><tt>oeq</tt>: ordered and equal</li>
4010 <li><tt>ogt</tt>: ordered and greater than </li>
4011 <li><tt>oge</tt>: ordered and greater than or equal</li>
4012 <li><tt>olt</tt>: ordered and less than </li>
4013 <li><tt>ole</tt>: ordered and less than or equal</li>
4014 <li><tt>one</tt>: ordered and not equal</li>
4015 <li><tt>ord</tt>: ordered (no nans)</li>
4016 <li><tt>ueq</tt>: unordered or equal</li>
4017 <li><tt>ugt</tt>: unordered or greater than </li>
4018 <li><tt>uge</tt>: unordered or greater than or equal</li>
4019 <li><tt>ult</tt>: unordered or less than </li>
4020 <li><tt>ule</tt>: unordered or less than or equal</li>
4021 <li><tt>une</tt>: unordered or not equal</li>
4022 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004023 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004024</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004025<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004026<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004027<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4028either a <a href="#t_floating">floating point</a> type
4029or a <a href="#t_vector">vector</a> of floating point type.
4030They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004031<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004032<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004033according to the condition code given as <tt>cond</tt>.
4034If the operands are vectors, then the vectors are compared
4035element by element.
4036Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004037always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004038<ol>
4039 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004040 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004041 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004042 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004043 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004044 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004045 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004046 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004047 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004048 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004049 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004050 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004051 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004052 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4053 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004054 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004055 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004056 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004057 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004058 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004059 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004060 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004061 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004062 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004063 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004064 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004065 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004066 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4067</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004068
4069<h5>Example:</h5>
4070<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004071 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4072 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4073 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004074</pre>
4075</div>
4076
Reid Spencer2fd21e62006-11-08 01:18:52 +00004077<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004078<div class="doc_subsubsection">
4079 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4080</div>
4081<div class="doc_text">
4082<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004083<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004084</pre>
4085<h5>Overview:</h5>
4086<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4087element-wise comparison of its two integer vector operands.</p>
4088<h5>Arguments:</h5>
4089<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4090the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004091a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004092<ol>
4093 <li><tt>eq</tt>: equal</li>
4094 <li><tt>ne</tt>: not equal </li>
4095 <li><tt>ugt</tt>: unsigned greater than</li>
4096 <li><tt>uge</tt>: unsigned greater or equal</li>
4097 <li><tt>ult</tt>: unsigned less than</li>
4098 <li><tt>ule</tt>: unsigned less or equal</li>
4099 <li><tt>sgt</tt>: signed greater than</li>
4100 <li><tt>sge</tt>: signed greater or equal</li>
4101 <li><tt>slt</tt>: signed less than</li>
4102 <li><tt>sle</tt>: signed less or equal</li>
4103</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004104<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004105<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4106<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004107<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004108according to the condition code given as <tt>cond</tt>. The comparison yields a
4109<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4110identical type as the values being compared. The most significant bit in each
4111element is 1 if the element-wise comparison evaluates to true, and is 0
4112otherwise. All other bits of the result are undefined. The condition codes
4113are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004114instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004115
4116<h5>Example:</h5>
4117<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004118 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4119 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004120</pre>
4121</div>
4122
4123<!-- _______________________________________________________________________ -->
4124<div class="doc_subsubsection">
4125 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4126</div>
4127<div class="doc_text">
4128<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004129<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004130<h5>Overview:</h5>
4131<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4132element-wise comparison of its two floating point vector operands. The output
4133elements have the same width as the input elements.</p>
4134<h5>Arguments:</h5>
4135<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4136the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004137a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004138<ol>
4139 <li><tt>false</tt>: no comparison, always returns false</li>
4140 <li><tt>oeq</tt>: ordered and equal</li>
4141 <li><tt>ogt</tt>: ordered and greater than </li>
4142 <li><tt>oge</tt>: ordered and greater than or equal</li>
4143 <li><tt>olt</tt>: ordered and less than </li>
4144 <li><tt>ole</tt>: ordered and less than or equal</li>
4145 <li><tt>one</tt>: ordered and not equal</li>
4146 <li><tt>ord</tt>: ordered (no nans)</li>
4147 <li><tt>ueq</tt>: unordered or equal</li>
4148 <li><tt>ugt</tt>: unordered or greater than </li>
4149 <li><tt>uge</tt>: unordered or greater than or equal</li>
4150 <li><tt>ult</tt>: unordered or less than </li>
4151 <li><tt>ule</tt>: unordered or less than or equal</li>
4152 <li><tt>une</tt>: unordered or not equal</li>
4153 <li><tt>uno</tt>: unordered (either nans)</li>
4154 <li><tt>true</tt>: no comparison, always returns true</li>
4155</ol>
4156<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4157<a href="#t_floating">floating point</a> typed. They must also be identical
4158types.</p>
4159<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004160<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004161according to the condition code given as <tt>cond</tt>. The comparison yields a
4162<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4163an identical number of elements as the values being compared, and each element
4164having identical with to the width of the floating point elements. The most
4165significant bit in each element is 1 if the element-wise comparison evaluates to
4166true, and is 0 otherwise. All other bits of the result are undefined. The
4167condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004168<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004169
4170<h5>Example:</h5>
4171<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004172 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4173 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4174
4175 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4176 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004177</pre>
4178</div>
4179
4180<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004181<div class="doc_subsubsection">
4182 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4183</div>
4184
Reid Spencer2fd21e62006-11-08 01:18:52 +00004185<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004186
Reid Spencer2fd21e62006-11-08 01:18:52 +00004187<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004188
Reid Spencer2fd21e62006-11-08 01:18:52 +00004189<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4190<h5>Overview:</h5>
4191<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4192the SSA graph representing the function.</p>
4193<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004194
Jeff Cohenb627eab2007-04-29 01:07:00 +00004195<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004196field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4197as arguments, with one pair for each predecessor basic block of the
4198current block. Only values of <a href="#t_firstclass">first class</a>
4199type may be used as the value arguments to the PHI node. Only labels
4200may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004201
Reid Spencer2fd21e62006-11-08 01:18:52 +00004202<p>There must be no non-phi instructions between the start of a basic
4203block and the PHI instructions: i.e. PHI instructions must be first in
4204a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004205
Reid Spencer2fd21e62006-11-08 01:18:52 +00004206<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004207
Jeff Cohenb627eab2007-04-29 01:07:00 +00004208<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4209specified by the pair corresponding to the predecessor basic block that executed
4210just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004211
Reid Spencer2fd21e62006-11-08 01:18:52 +00004212<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004213<pre>
4214Loop: ; Infinite loop that counts from 0 on up...
4215 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4216 %nextindvar = add i32 %indvar, 1
4217 br label %Loop
4218</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004219</div>
4220
Chris Lattnercc37aae2004-03-12 05:50:16 +00004221<!-- _______________________________________________________________________ -->
4222<div class="doc_subsubsection">
4223 <a name="i_select">'<tt>select</tt>' Instruction</a>
4224</div>
4225
4226<div class="doc_text">
4227
4228<h5>Syntax:</h5>
4229
4230<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004231 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4232
Dan Gohman0e451ce2008-10-14 16:51:45 +00004233 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004234</pre>
4235
4236<h5>Overview:</h5>
4237
4238<p>
4239The '<tt>select</tt>' instruction is used to choose one value based on a
4240condition, without branching.
4241</p>
4242
4243
4244<h5>Arguments:</h5>
4245
4246<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004247The '<tt>select</tt>' instruction requires an 'i1' value or
4248a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004249condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004250type. If the val1/val2 are vectors and
4251the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004252individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004253</p>
4254
4255<h5>Semantics:</h5>
4256
4257<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004258If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004259value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004260</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004261<p>
4262If the condition is a vector of i1, then the value arguments must
4263be vectors of the same size, and the selection is done element
4264by element.
4265</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004266
4267<h5>Example:</h5>
4268
4269<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004270 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004271</pre>
4272</div>
4273
Robert Bocchino05ccd702006-01-15 20:48:27 +00004274
4275<!-- _______________________________________________________________________ -->
4276<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004277 <a name="i_call">'<tt>call</tt>' Instruction</a>
4278</div>
4279
Misha Brukman9d0919f2003-11-08 01:05:38 +00004280<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004281
Chris Lattner00950542001-06-06 20:29:01 +00004282<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004283<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004284 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004285</pre>
4286
Chris Lattner00950542001-06-06 20:29:01 +00004287<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004288
Misha Brukman9d0919f2003-11-08 01:05:38 +00004289<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004290
Chris Lattner00950542001-06-06 20:29:01 +00004291<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004292
Misha Brukman9d0919f2003-11-08 01:05:38 +00004293<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004294
Chris Lattner6536cfe2002-05-06 22:08:29 +00004295<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004296 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004297 <p>The optional "tail" marker indicates whether the callee function accesses
4298 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004299 function call is eligible for tail call optimization. Note that calls may
4300 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004301 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004302 </li>
4303 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004304 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004305 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004306 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004307 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004308
4309 <li>
4310 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4311 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4312 and '<tt>inreg</tt>' attributes are valid here.</p>
4313 </li>
4314
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004315 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004316 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4317 the type of the return value. Functions that return no value are marked
4318 <tt><a href="#t_void">void</a></tt>.</p>
4319 </li>
4320 <li>
4321 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4322 value being invoked. The argument types must match the types implied by
4323 this signature. This type can be omitted if the function is not varargs
4324 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004325 </li>
4326 <li>
4327 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4328 be invoked. In most cases, this is a direct function invocation, but
4329 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004330 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004331 </li>
4332 <li>
4333 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004334 function signature argument types. All arguments must be of
4335 <a href="#t_firstclass">first class</a> type. If the function signature
4336 indicates the function accepts a variable number of arguments, the extra
4337 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004338 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004339 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004340 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004341 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4342 '<tt>readnone</tt>' attributes are valid here.</p>
4343 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004344</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004345
Chris Lattner00950542001-06-06 20:29:01 +00004346<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004347
Chris Lattner261efe92003-11-25 01:02:51 +00004348<p>The '<tt>call</tt>' instruction is used to cause control flow to
4349transfer to a specified function, with its incoming arguments bound to
4350the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4351instruction in the called function, control flow continues with the
4352instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004353function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004354
Chris Lattner00950542001-06-06 20:29:01 +00004355<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004356
4357<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004358 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004359 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4360 %X = tail call i32 @foo() <i>; yields i32</i>
4361 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4362 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004363
4364 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004365 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004366 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4367 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004368 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004369 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004370</pre>
4371
Misha Brukman9d0919f2003-11-08 01:05:38 +00004372</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004373
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004374<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004375<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004376 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004377</div>
4378
Misha Brukman9d0919f2003-11-08 01:05:38 +00004379<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004380
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004381<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004382
4383<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004384 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004385</pre>
4386
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004387<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004388
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004389<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004390the "variable argument" area of a function call. It is used to implement the
4391<tt>va_arg</tt> macro in C.</p>
4392
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004393<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004394
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004395<p>This instruction takes a <tt>va_list*</tt> value and the type of
4396the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004397increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004398actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004399
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004400<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004401
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004402<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4403type from the specified <tt>va_list</tt> and causes the
4404<tt>va_list</tt> to point to the next argument. For more information,
4405see the variable argument handling <a href="#int_varargs">Intrinsic
4406Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004407
4408<p>It is legal for this instruction to be called in a function which does not
4409take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004410function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004411
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004412<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004413href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004414argument.</p>
4415
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004416<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004417
4418<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4419
Misha Brukman9d0919f2003-11-08 01:05:38 +00004420</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004421
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004422<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004423<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4424<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004425
Misha Brukman9d0919f2003-11-08 01:05:38 +00004426<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004427
4428<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004429well known names and semantics and are required to follow certain restrictions.
4430Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004431language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004432adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004433
John Criswellfc6b8952005-05-16 16:17:45 +00004434<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004435prefix is reserved in LLVM for intrinsic names; thus, function names may not
4436begin with this prefix. Intrinsic functions must always be external functions:
4437you cannot define the body of intrinsic functions. Intrinsic functions may
4438only be used in call or invoke instructions: it is illegal to take the address
4439of an intrinsic function. Additionally, because intrinsic functions are part
4440of the LLVM language, it is required if any are added that they be documented
4441here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004442
Chandler Carruth69940402007-08-04 01:51:18 +00004443<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4444a family of functions that perform the same operation but on different data
4445types. Because LLVM can represent over 8 million different integer types,
4446overloading is used commonly to allow an intrinsic function to operate on any
4447integer type. One or more of the argument types or the result type can be
4448overloaded to accept any integer type. Argument types may also be defined as
4449exactly matching a previous argument's type or the result type. This allows an
4450intrinsic function which accepts multiple arguments, but needs all of them to
4451be of the same type, to only be overloaded with respect to a single argument or
4452the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004453
Chandler Carruth69940402007-08-04 01:51:18 +00004454<p>Overloaded intrinsics will have the names of its overloaded argument types
4455encoded into its function name, each preceded by a period. Only those types
4456which are overloaded result in a name suffix. Arguments whose type is matched
4457against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4458take an integer of any width and returns an integer of exactly the same integer
4459width. This leads to a family of functions such as
4460<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4461Only one type, the return type, is overloaded, and only one type suffix is
4462required. Because the argument's type is matched against the return type, it
4463does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004464
4465<p>To learn how to add an intrinsic function, please see the
4466<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004467</p>
4468
Misha Brukman9d0919f2003-11-08 01:05:38 +00004469</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004470
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004471<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004472<div class="doc_subsection">
4473 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4474</div>
4475
Misha Brukman9d0919f2003-11-08 01:05:38 +00004476<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004477
Misha Brukman9d0919f2003-11-08 01:05:38 +00004478<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004479 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004480intrinsic functions. These functions are related to the similarly
4481named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004482
Chris Lattner261efe92003-11-25 01:02:51 +00004483<p>All of these functions operate on arguments that use a
4484target-specific value type "<tt>va_list</tt>". The LLVM assembly
4485language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004486transformations should be prepared to handle these functions regardless of
4487the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004488
Chris Lattner374ab302006-05-15 17:26:46 +00004489<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004490instruction and the variable argument handling intrinsic functions are
4491used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004492
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004493<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004494<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004495define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004496 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004497 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004498 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004499 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004500
4501 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004502 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004503
4504 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004505 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004506 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004507 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004508 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004509
4510 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004511 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004512 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004513}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004514
4515declare void @llvm.va_start(i8*)
4516declare void @llvm.va_copy(i8*, i8*)
4517declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004518</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004519</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004520
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004521</div>
4522
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004523<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004524<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004525 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004526</div>
4527
4528
Misha Brukman9d0919f2003-11-08 01:05:38 +00004529<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004530<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004531<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004532<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004533<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004534<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4535href="#i_va_arg">va_arg</a></tt>.</p>
4536
4537<h5>Arguments:</h5>
4538
Dan Gohman0e451ce2008-10-14 16:51:45 +00004539<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004540
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004541<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004542
Dan Gohman0e451ce2008-10-14 16:51:45 +00004543<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004544macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004545<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004546<tt>va_arg</tt> will produce the first variable argument passed to the function.
4547Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004548last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004549
Misha Brukman9d0919f2003-11-08 01:05:38 +00004550</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004551
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004552<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004553<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004554 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004555</div>
4556
Misha Brukman9d0919f2003-11-08 01:05:38 +00004557<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004558<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004559<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004560<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004561
Jeff Cohenb627eab2007-04-29 01:07:00 +00004562<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004563which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004564or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004565
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004566<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004567
Jeff Cohenb627eab2007-04-29 01:07:00 +00004568<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004569
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004570<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004571
Misha Brukman9d0919f2003-11-08 01:05:38 +00004572<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004573macro available in C. In a target-dependent way, it destroys the
4574<tt>va_list</tt> element to which the argument points. Calls to <a
4575href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4576<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4577<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004578
Misha Brukman9d0919f2003-11-08 01:05:38 +00004579</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004580
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004581<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004582<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004583 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004584</div>
4585
Misha Brukman9d0919f2003-11-08 01:05:38 +00004586<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004587
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004588<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004589
4590<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004591 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004592</pre>
4593
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004594<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004595
Jeff Cohenb627eab2007-04-29 01:07:00 +00004596<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4597from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004598
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004599<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004600
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004601<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004602The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004603
Chris Lattnerd7923912004-05-23 21:06:01 +00004604
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004605<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004606
Jeff Cohenb627eab2007-04-29 01:07:00 +00004607<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4608macro available in C. In a target-dependent way, it copies the source
4609<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4610intrinsic is necessary because the <tt><a href="#int_va_start">
4611llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4612example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004613
Misha Brukman9d0919f2003-11-08 01:05:38 +00004614</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004615
Chris Lattner33aec9e2004-02-12 17:01:32 +00004616<!-- ======================================================================= -->
4617<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004618 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4619</div>
4620
4621<div class="doc_text">
4622
4623<p>
4624LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004625Collection</a> (GC) requires the implementation and generation of these
4626intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004627These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004628stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004629href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004630Front-ends for type-safe garbage collected languages should generate these
4631intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4632href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4633</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004634
4635<p>The garbage collection intrinsics only operate on objects in the generic
4636 address space (address space zero).</p>
4637
Chris Lattnerd7923912004-05-23 21:06:01 +00004638</div>
4639
4640<!-- _______________________________________________________________________ -->
4641<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004642 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004643</div>
4644
4645<div class="doc_text">
4646
4647<h5>Syntax:</h5>
4648
4649<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004650 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004651</pre>
4652
4653<h5>Overview:</h5>
4654
John Criswell9e2485c2004-12-10 15:51:16 +00004655<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004656the code generator, and allows some metadata to be associated with it.</p>
4657
4658<h5>Arguments:</h5>
4659
4660<p>The first argument specifies the address of a stack object that contains the
4661root pointer. The second pointer (which must be either a constant or a global
4662value address) contains the meta-data to be associated with the root.</p>
4663
4664<h5>Semantics:</h5>
4665
Chris Lattner05d67092008-04-24 05:59:56 +00004666<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004667location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004668the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4669intrinsic may only be used in a function which <a href="#gc">specifies a GC
4670algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004671
4672</div>
4673
4674
4675<!-- _______________________________________________________________________ -->
4676<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004677 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004678</div>
4679
4680<div class="doc_text">
4681
4682<h5>Syntax:</h5>
4683
4684<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004685 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004686</pre>
4687
4688<h5>Overview:</h5>
4689
4690<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4691locations, allowing garbage collector implementations that require read
4692barriers.</p>
4693
4694<h5>Arguments:</h5>
4695
Chris Lattner80626e92006-03-14 20:02:51 +00004696<p>The second argument is the address to read from, which should be an address
4697allocated from the garbage collector. The first object is a pointer to the
4698start of the referenced object, if needed by the language runtime (otherwise
4699null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004700
4701<h5>Semantics:</h5>
4702
4703<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4704instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004705garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4706may only be used in a function which <a href="#gc">specifies a GC
4707algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004708
4709</div>
4710
4711
4712<!-- _______________________________________________________________________ -->
4713<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004714 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004715</div>
4716
4717<div class="doc_text">
4718
4719<h5>Syntax:</h5>
4720
4721<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004722 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004723</pre>
4724
4725<h5>Overview:</h5>
4726
4727<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4728locations, allowing garbage collector implementations that require write
4729barriers (such as generational or reference counting collectors).</p>
4730
4731<h5>Arguments:</h5>
4732
Chris Lattner80626e92006-03-14 20:02:51 +00004733<p>The first argument is the reference to store, the second is the start of the
4734object to store it to, and the third is the address of the field of Obj to
4735store to. If the runtime does not require a pointer to the object, Obj may be
4736null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004737
4738<h5>Semantics:</h5>
4739
4740<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4741instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004742garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4743may only be used in a function which <a href="#gc">specifies a GC
4744algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004745
4746</div>
4747
4748
4749
4750<!-- ======================================================================= -->
4751<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004752 <a name="int_codegen">Code Generator Intrinsics</a>
4753</div>
4754
4755<div class="doc_text">
4756<p>
4757These intrinsics are provided by LLVM to expose special features that may only
4758be implemented with code generator support.
4759</p>
4760
4761</div>
4762
4763<!-- _______________________________________________________________________ -->
4764<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004765 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004766</div>
4767
4768<div class="doc_text">
4769
4770<h5>Syntax:</h5>
4771<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004772 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004773</pre>
4774
4775<h5>Overview:</h5>
4776
4777<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004778The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4779target-specific value indicating the return address of the current function
4780or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004781</p>
4782
4783<h5>Arguments:</h5>
4784
4785<p>
4786The argument to this intrinsic indicates which function to return the address
4787for. Zero indicates the calling function, one indicates its caller, etc. The
4788argument is <b>required</b> to be a constant integer value.
4789</p>
4790
4791<h5>Semantics:</h5>
4792
4793<p>
4794The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4795the return address of the specified call frame, or zero if it cannot be
4796identified. The value returned by this intrinsic is likely to be incorrect or 0
4797for arguments other than zero, so it should only be used for debugging purposes.
4798</p>
4799
4800<p>
4801Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004802aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004803source-language caller.
4804</p>
4805</div>
4806
4807
4808<!-- _______________________________________________________________________ -->
4809<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004810 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004811</div>
4812
4813<div class="doc_text">
4814
4815<h5>Syntax:</h5>
4816<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004817 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004818</pre>
4819
4820<h5>Overview:</h5>
4821
4822<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004823The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4824target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004825</p>
4826
4827<h5>Arguments:</h5>
4828
4829<p>
4830The argument to this intrinsic indicates which function to return the frame
4831pointer for. Zero indicates the calling function, one indicates its caller,
4832etc. The argument is <b>required</b> to be a constant integer value.
4833</p>
4834
4835<h5>Semantics:</h5>
4836
4837<p>
4838The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4839the frame address of the specified call frame, or zero if it cannot be
4840identified. The value returned by this intrinsic is likely to be incorrect or 0
4841for arguments other than zero, so it should only be used for debugging purposes.
4842</p>
4843
4844<p>
4845Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004846aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004847source-language caller.
4848</p>
4849</div>
4850
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004851<!-- _______________________________________________________________________ -->
4852<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004853 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004854</div>
4855
4856<div class="doc_text">
4857
4858<h5>Syntax:</h5>
4859<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004860 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004861</pre>
4862
4863<h5>Overview:</h5>
4864
4865<p>
4866The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004867the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004868<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4869features like scoped automatic variable sized arrays in C99.
4870</p>
4871
4872<h5>Semantics:</h5>
4873
4874<p>
4875This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004876href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004877<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4878<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4879state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4880practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4881that were allocated after the <tt>llvm.stacksave</tt> was executed.
4882</p>
4883
4884</div>
4885
4886<!-- _______________________________________________________________________ -->
4887<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004888 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004889</div>
4890
4891<div class="doc_text">
4892
4893<h5>Syntax:</h5>
4894<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004895 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004896</pre>
4897
4898<h5>Overview:</h5>
4899
4900<p>
4901The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4902the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004903href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004904useful for implementing language features like scoped automatic variable sized
4905arrays in C99.
4906</p>
4907
4908<h5>Semantics:</h5>
4909
4910<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004911See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004912</p>
4913
4914</div>
4915
4916
4917<!-- _______________________________________________________________________ -->
4918<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004919 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004920</div>
4921
4922<div class="doc_text">
4923
4924<h5>Syntax:</h5>
4925<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004926 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004927</pre>
4928
4929<h5>Overview:</h5>
4930
4931
4932<p>
4933The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004934a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4935no
4936effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004937characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004938</p>
4939
4940<h5>Arguments:</h5>
4941
4942<p>
4943<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4944determining if the fetch should be for a read (0) or write (1), and
4945<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004946locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004947<tt>locality</tt> arguments must be constant integers.
4948</p>
4949
4950<h5>Semantics:</h5>
4951
4952<p>
4953This intrinsic does not modify the behavior of the program. In particular,
4954prefetches cannot trap and do not produce a value. On targets that support this
4955intrinsic, the prefetch can provide hints to the processor cache for better
4956performance.
4957</p>
4958
4959</div>
4960
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004961<!-- _______________________________________________________________________ -->
4962<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004963 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004964</div>
4965
4966<div class="doc_text">
4967
4968<h5>Syntax:</h5>
4969<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004970 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004971</pre>
4972
4973<h5>Overview:</h5>
4974
4975
4976<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004977The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004978(PC) in a region of
4979code to simulators and other tools. The method is target specific, but it is
4980expected that the marker will use exported symbols to transmit the PC of the
4981marker.
4982The marker makes no guarantees that it will remain with any specific instruction
4983after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004984optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004985correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004986</p>
4987
4988<h5>Arguments:</h5>
4989
4990<p>
4991<tt>id</tt> is a numerical id identifying the marker.
4992</p>
4993
4994<h5>Semantics:</h5>
4995
4996<p>
4997This intrinsic does not modify the behavior of the program. Backends that do not
4998support this intrinisic may ignore it.
4999</p>
5000
5001</div>
5002
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005003<!-- _______________________________________________________________________ -->
5004<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005005 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005006</div>
5007
5008<div class="doc_text">
5009
5010<h5>Syntax:</h5>
5011<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005012 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005013</pre>
5014
5015<h5>Overview:</h5>
5016
5017
5018<p>
5019The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5020counter register (or similar low latency, high accuracy clocks) on those targets
5021that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5022As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5023should only be used for small timings.
5024</p>
5025
5026<h5>Semantics:</h5>
5027
5028<p>
5029When directly supported, reading the cycle counter should not modify any memory.
5030Implementations are allowed to either return a application specific value or a
5031system wide value. On backends without support, this is lowered to a constant 0.
5032</p>
5033
5034</div>
5035
Chris Lattner10610642004-02-14 04:08:35 +00005036<!-- ======================================================================= -->
5037<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005038 <a name="int_libc">Standard C Library Intrinsics</a>
5039</div>
5040
5041<div class="doc_text">
5042<p>
Chris Lattner10610642004-02-14 04:08:35 +00005043LLVM provides intrinsics for a few important standard C library functions.
5044These intrinsics allow source-language front-ends to pass information about the
5045alignment of the pointer arguments to the code generator, providing opportunity
5046for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005047</p>
5048
5049</div>
5050
5051<!-- _______________________________________________________________________ -->
5052<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005053 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005054</div>
5055
5056<div class="doc_text">
5057
5058<h5>Syntax:</h5>
5059<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005060 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005061 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005062 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005063 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005064</pre>
5065
5066<h5>Overview:</h5>
5067
5068<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005069The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005070location to the destination location.
5071</p>
5072
5073<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005074Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5075intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005076</p>
5077
5078<h5>Arguments:</h5>
5079
5080<p>
5081The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005082the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005083specifying the number of bytes to copy, and the fourth argument is the alignment
5084of the source and destination locations.
5085</p>
5086
Chris Lattner3301ced2004-02-12 21:18:15 +00005087<p>
5088If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005089the caller guarantees that both the source and destination pointers are aligned
5090to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005091</p>
5092
Chris Lattner33aec9e2004-02-12 17:01:32 +00005093<h5>Semantics:</h5>
5094
5095<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005096The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005097location to the destination location, which are not allowed to overlap. It
5098copies "len" bytes of memory over. If the argument is known to be aligned to
5099some boundary, this can be specified as the fourth argument, otherwise it should
5100be set to 0 or 1.
5101</p>
5102</div>
5103
5104
Chris Lattner0eb51b42004-02-12 18:10:10 +00005105<!-- _______________________________________________________________________ -->
5106<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005107 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005108</div>
5109
5110<div class="doc_text">
5111
5112<h5>Syntax:</h5>
5113<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005114 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005115 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005116 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005117 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005118</pre>
5119
5120<h5>Overview:</h5>
5121
5122<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005123The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5124location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005125'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005126</p>
5127
5128<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005129Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5130intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005131</p>
5132
5133<h5>Arguments:</h5>
5134
5135<p>
5136The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005137the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005138specifying the number of bytes to copy, and the fourth argument is the alignment
5139of the source and destination locations.
5140</p>
5141
Chris Lattner3301ced2004-02-12 21:18:15 +00005142<p>
5143If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005144the caller guarantees that the source and destination pointers are aligned to
5145that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005146</p>
5147
Chris Lattner0eb51b42004-02-12 18:10:10 +00005148<h5>Semantics:</h5>
5149
5150<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005151The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005152location to the destination location, which may overlap. It
5153copies "len" bytes of memory over. If the argument is known to be aligned to
5154some boundary, this can be specified as the fourth argument, otherwise it should
5155be set to 0 or 1.
5156</p>
5157</div>
5158
Chris Lattner8ff75902004-01-06 05:31:32 +00005159
Chris Lattner10610642004-02-14 04:08:35 +00005160<!-- _______________________________________________________________________ -->
5161<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005162 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005163</div>
5164
5165<div class="doc_text">
5166
5167<h5>Syntax:</h5>
5168<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005169 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005170 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005171 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005172 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005173</pre>
5174
5175<h5>Overview:</h5>
5176
5177<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005178The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005179byte value.
5180</p>
5181
5182<p>
5183Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5184does not return a value, and takes an extra alignment argument.
5185</p>
5186
5187<h5>Arguments:</h5>
5188
5189<p>
5190The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005191byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005192argument specifying the number of bytes to fill, and the fourth argument is the
5193known alignment of destination location.
5194</p>
5195
5196<p>
5197If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005198the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005199</p>
5200
5201<h5>Semantics:</h5>
5202
5203<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005204The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5205the
Chris Lattner10610642004-02-14 04:08:35 +00005206destination location. If the argument is known to be aligned to some boundary,
5207this can be specified as the fourth argument, otherwise it should be set to 0 or
52081.
5209</p>
5210</div>
5211
5212
Chris Lattner32006282004-06-11 02:28:03 +00005213<!-- _______________________________________________________________________ -->
5214<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005215 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005216</div>
5217
5218<div class="doc_text">
5219
5220<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005221<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005222floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005223types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005224<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005225 declare float @llvm.sqrt.f32(float %Val)
5226 declare double @llvm.sqrt.f64(double %Val)
5227 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5228 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5229 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005230</pre>
5231
5232<h5>Overview:</h5>
5233
5234<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005235The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005236returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005237<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005238negative numbers other than -0.0 (which allows for better optimization, because
5239there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5240defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005241</p>
5242
5243<h5>Arguments:</h5>
5244
5245<p>
5246The argument and return value are floating point numbers of the same type.
5247</p>
5248
5249<h5>Semantics:</h5>
5250
5251<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005252This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005253floating point number.
5254</p>
5255</div>
5256
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005257<!-- _______________________________________________________________________ -->
5258<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005259 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005260</div>
5261
5262<div class="doc_text">
5263
5264<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005265<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005266floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005267types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005268<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005269 declare float @llvm.powi.f32(float %Val, i32 %power)
5270 declare double @llvm.powi.f64(double %Val, i32 %power)
5271 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5272 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5273 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005274</pre>
5275
5276<h5>Overview:</h5>
5277
5278<p>
5279The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5280specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005281multiplications is not defined. When a vector of floating point type is
5282used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005283</p>
5284
5285<h5>Arguments:</h5>
5286
5287<p>
5288The second argument is an integer power, and the first is a value to raise to
5289that power.
5290</p>
5291
5292<h5>Semantics:</h5>
5293
5294<p>
5295This function returns the first value raised to the second power with an
5296unspecified sequence of rounding operations.</p>
5297</div>
5298
Dan Gohman91c284c2007-10-15 20:30:11 +00005299<!-- _______________________________________________________________________ -->
5300<div class="doc_subsubsection">
5301 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5302</div>
5303
5304<div class="doc_text">
5305
5306<h5>Syntax:</h5>
5307<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5308floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005309types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005310<pre>
5311 declare float @llvm.sin.f32(float %Val)
5312 declare double @llvm.sin.f64(double %Val)
5313 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5314 declare fp128 @llvm.sin.f128(fp128 %Val)
5315 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5316</pre>
5317
5318<h5>Overview:</h5>
5319
5320<p>
5321The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5322</p>
5323
5324<h5>Arguments:</h5>
5325
5326<p>
5327The argument and return value are floating point numbers of the same type.
5328</p>
5329
5330<h5>Semantics:</h5>
5331
5332<p>
5333This function returns the sine of the specified operand, returning the
5334same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005335conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005336</div>
5337
5338<!-- _______________________________________________________________________ -->
5339<div class="doc_subsubsection">
5340 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5341</div>
5342
5343<div class="doc_text">
5344
5345<h5>Syntax:</h5>
5346<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5347floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005348types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005349<pre>
5350 declare float @llvm.cos.f32(float %Val)
5351 declare double @llvm.cos.f64(double %Val)
5352 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5353 declare fp128 @llvm.cos.f128(fp128 %Val)
5354 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5355</pre>
5356
5357<h5>Overview:</h5>
5358
5359<p>
5360The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5361</p>
5362
5363<h5>Arguments:</h5>
5364
5365<p>
5366The argument and return value are floating point numbers of the same type.
5367</p>
5368
5369<h5>Semantics:</h5>
5370
5371<p>
5372This function returns the cosine of the specified operand, returning the
5373same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005374conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005375</div>
5376
5377<!-- _______________________________________________________________________ -->
5378<div class="doc_subsubsection">
5379 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5380</div>
5381
5382<div class="doc_text">
5383
5384<h5>Syntax:</h5>
5385<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5386floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005387types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005388<pre>
5389 declare float @llvm.pow.f32(float %Val, float %Power)
5390 declare double @llvm.pow.f64(double %Val, double %Power)
5391 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5392 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5393 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5394</pre>
5395
5396<h5>Overview:</h5>
5397
5398<p>
5399The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5400specified (positive or negative) power.
5401</p>
5402
5403<h5>Arguments:</h5>
5404
5405<p>
5406The second argument is a floating point power, and the first is a value to
5407raise to that power.
5408</p>
5409
5410<h5>Semantics:</h5>
5411
5412<p>
5413This function returns the first value raised to the second power,
5414returning the
5415same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005416conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005417</div>
5418
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005419
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005420<!-- ======================================================================= -->
5421<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005422 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005423</div>
5424
5425<div class="doc_text">
5426<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005427LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005428These allow efficient code generation for some algorithms.
5429</p>
5430
5431</div>
5432
5433<!-- _______________________________________________________________________ -->
5434<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005435 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005436</div>
5437
5438<div class="doc_text">
5439
5440<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005441<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005442type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005443<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005444 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5445 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5446 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005447</pre>
5448
5449<h5>Overview:</h5>
5450
5451<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005452The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005453values with an even number of bytes (positive multiple of 16 bits). These are
5454useful for performing operations on data that is not in the target's native
5455byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005456</p>
5457
5458<h5>Semantics:</h5>
5459
5460<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005461The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005462and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5463intrinsic returns an i32 value that has the four bytes of the input i32
5464swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005465i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5466<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005467additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005468</p>
5469
5470</div>
5471
5472<!-- _______________________________________________________________________ -->
5473<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005474 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005475</div>
5476
5477<div class="doc_text">
5478
5479<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005480<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005481width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005482<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005483 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5484 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005485 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005486 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5487 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005488</pre>
5489
5490<h5>Overview:</h5>
5491
5492<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005493The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5494value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005495</p>
5496
5497<h5>Arguments:</h5>
5498
5499<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005500The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005501integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005502</p>
5503
5504<h5>Semantics:</h5>
5505
5506<p>
5507The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5508</p>
5509</div>
5510
5511<!-- _______________________________________________________________________ -->
5512<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005513 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005514</div>
5515
5516<div class="doc_text">
5517
5518<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005519<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005520integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005521<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005522 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5523 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005524 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005525 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5526 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005527</pre>
5528
5529<h5>Overview:</h5>
5530
5531<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005532The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5533leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005534</p>
5535
5536<h5>Arguments:</h5>
5537
5538<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005539The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005540integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005541</p>
5542
5543<h5>Semantics:</h5>
5544
5545<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005546The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5547in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005548of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005549</p>
5550</div>
Chris Lattner32006282004-06-11 02:28:03 +00005551
5552
Chris Lattnereff29ab2005-05-15 19:39:26 +00005553
5554<!-- _______________________________________________________________________ -->
5555<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005556 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005557</div>
5558
5559<div class="doc_text">
5560
5561<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005562<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005563integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005564<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005565 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5566 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005567 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005568 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5569 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005570</pre>
5571
5572<h5>Overview:</h5>
5573
5574<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005575The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5576trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005577</p>
5578
5579<h5>Arguments:</h5>
5580
5581<p>
5582The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005583integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005584</p>
5585
5586<h5>Semantics:</h5>
5587
5588<p>
5589The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5590in a variable. If the src == 0 then the result is the size in bits of the type
5591of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5592</p>
5593</div>
5594
Reid Spencer497d93e2007-04-01 08:27:01 +00005595<!-- _______________________________________________________________________ -->
5596<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005597 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005598</div>
5599
5600<div class="doc_text">
5601
5602<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005603<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005604on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005605<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005606 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5607 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005608</pre>
5609
5610<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005611<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005612range of bits from an integer value and returns them in the same bit width as
5613the original value.</p>
5614
5615<h5>Arguments:</h5>
5616<p>The first argument, <tt>%val</tt> and the result may be integer types of
5617any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005618arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005619
5620<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005621<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005622of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5623<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5624operates in forward mode.</p>
5625<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5626right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005627only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5628<ol>
5629 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5630 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5631 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5632 to determine the number of bits to retain.</li>
5633 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005634 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005635</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005636<p>In reverse mode, a similar computation is made except that the bits are
5637returned in the reverse order. So, for example, if <tt>X</tt> has the value
5638<tt>i16 0x0ACF (101011001111)</tt> and we apply
5639<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5640<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005641</div>
5642
Reid Spencerf86037f2007-04-11 23:23:49 +00005643<div class="doc_subsubsection">
5644 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5645</div>
5646
5647<div class="doc_text">
5648
5649<h5>Syntax:</h5>
5650<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005651on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005652<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005653 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5654 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005655</pre>
5656
5657<h5>Overview:</h5>
5658<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5659of bits in an integer value with another integer value. It returns the integer
5660with the replaced bits.</p>
5661
5662<h5>Arguments:</h5>
5663<p>The first argument, <tt>%val</tt> and the result may be integer types of
5664any bit width but they must have the same bit width. <tt>%val</tt> is the value
5665whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5666integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5667type since they specify only a bit index.</p>
5668
5669<h5>Semantics:</h5>
5670<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5671of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5672<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5673operates in forward mode.</p>
5674<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5675truncating it down to the size of the replacement area or zero extending it
5676up to that size.</p>
5677<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5678are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5679in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005680to the <tt>%hi</tt>th bit.</p>
Reid Spencerc6749c42007-05-14 16:50:20 +00005681<p>In reverse mode, a similar computation is made except that the bits are
5682reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005683<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005684<h5>Examples:</h5>
5685<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005686 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005687 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5688 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5689 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005690 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005691</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005692</div>
5693
Chris Lattner8ff75902004-01-06 05:31:32 +00005694<!-- ======================================================================= -->
5695<div class="doc_subsection">
5696 <a name="int_debugger">Debugger Intrinsics</a>
5697</div>
5698
5699<div class="doc_text">
5700<p>
5701The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5702are described in the <a
5703href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5704Debugging</a> document.
5705</p>
5706</div>
5707
5708
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005709<!-- ======================================================================= -->
5710<div class="doc_subsection">
5711 <a name="int_eh">Exception Handling Intrinsics</a>
5712</div>
5713
5714<div class="doc_text">
5715<p> The LLVM exception handling intrinsics (which all start with
5716<tt>llvm.eh.</tt> prefix), are described in the <a
5717href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5718Handling</a> document. </p>
5719</div>
5720
Tanya Lattner6d806e92007-06-15 20:50:54 +00005721<!-- ======================================================================= -->
5722<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005723 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005724</div>
5725
5726<div class="doc_text">
5727<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005728 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005729 the <tt>nest</tt> attribute, from a function. The result is a callable
5730 function pointer lacking the nest parameter - the caller does not need
5731 to provide a value for it. Instead, the value to use is stored in
5732 advance in a "trampoline", a block of memory usually allocated
5733 on the stack, which also contains code to splice the nest value into the
5734 argument list. This is used to implement the GCC nested function address
5735 extension.
5736</p>
5737<p>
5738 For example, if the function is
5739 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005740 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005741<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005742 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5743 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5744 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5745 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005746</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005747 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5748 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005749</div>
5750
5751<!-- _______________________________________________________________________ -->
5752<div class="doc_subsubsection">
5753 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5754</div>
5755<div class="doc_text">
5756<h5>Syntax:</h5>
5757<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005758declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005759</pre>
5760<h5>Overview:</h5>
5761<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005762 This fills the memory pointed to by <tt>tramp</tt> with code
5763 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005764</p>
5765<h5>Arguments:</h5>
5766<p>
5767 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5768 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5769 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005770 intrinsic. Note that the size and the alignment are target-specific - LLVM
5771 currently provides no portable way of determining them, so a front-end that
5772 generates this intrinsic needs to have some target-specific knowledge.
5773 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005774</p>
5775<h5>Semantics:</h5>
5776<p>
5777 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005778 dependent code, turning it into a function. A pointer to this function is
5779 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005780 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005781 before being called. The new function's signature is the same as that of
5782 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5783 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5784 of pointer type. Calling the new function is equivalent to calling
5785 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5786 missing <tt>nest</tt> argument. If, after calling
5787 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5788 modified, then the effect of any later call to the returned function pointer is
5789 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005790</p>
5791</div>
5792
5793<!-- ======================================================================= -->
5794<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005795 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5796</div>
5797
5798<div class="doc_text">
5799<p>
5800 These intrinsic functions expand the "universal IR" of LLVM to represent
5801 hardware constructs for atomic operations and memory synchronization. This
5802 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005803 is aimed at a low enough level to allow any programming models or APIs
5804 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005805 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5806 hardware behavior. Just as hardware provides a "universal IR" for source
5807 languages, it also provides a starting point for developing a "universal"
5808 atomic operation and synchronization IR.
5809</p>
5810<p>
5811 These do <em>not</em> form an API such as high-level threading libraries,
5812 software transaction memory systems, atomic primitives, and intrinsic
5813 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5814 application libraries. The hardware interface provided by LLVM should allow
5815 a clean implementation of all of these APIs and parallel programming models.
5816 No one model or paradigm should be selected above others unless the hardware
5817 itself ubiquitously does so.
5818
5819</p>
5820</div>
5821
5822<!-- _______________________________________________________________________ -->
5823<div class="doc_subsubsection">
5824 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5825</div>
5826<div class="doc_text">
5827<h5>Syntax:</h5>
5828<pre>
5829declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5830i1 &lt;device&gt; )
5831
5832</pre>
5833<h5>Overview:</h5>
5834<p>
5835 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5836 specific pairs of memory access types.
5837</p>
5838<h5>Arguments:</h5>
5839<p>
5840 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5841 The first four arguments enables a specific barrier as listed below. The fith
5842 argument specifies that the barrier applies to io or device or uncached memory.
5843
5844</p>
5845 <ul>
5846 <li><tt>ll</tt>: load-load barrier</li>
5847 <li><tt>ls</tt>: load-store barrier</li>
5848 <li><tt>sl</tt>: store-load barrier</li>
5849 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005850 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005851 </ul>
5852<h5>Semantics:</h5>
5853<p>
5854 This intrinsic causes the system to enforce some ordering constraints upon
5855 the loads and stores of the program. This barrier does not indicate
5856 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5857 which they occur. For any of the specified pairs of load and store operations
5858 (f.ex. load-load, or store-load), all of the first operations preceding the
5859 barrier will complete before any of the second operations succeeding the
5860 barrier begin. Specifically the semantics for each pairing is as follows:
5861</p>
5862 <ul>
5863 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5864 after the barrier begins.</li>
5865
5866 <li><tt>ls</tt>: All loads before the barrier must complete before any
5867 store after the barrier begins.</li>
5868 <li><tt>ss</tt>: All stores before the barrier must complete before any
5869 store after the barrier begins.</li>
5870 <li><tt>sl</tt>: All stores before the barrier must complete before any
5871 load after the barrier begins.</li>
5872 </ul>
5873<p>
5874 These semantics are applied with a logical "and" behavior when more than one
5875 is enabled in a single memory barrier intrinsic.
5876</p>
5877<p>
5878 Backends may implement stronger barriers than those requested when they do not
5879 support as fine grained a barrier as requested. Some architectures do not
5880 need all types of barriers and on such architectures, these become noops.
5881</p>
5882<h5>Example:</h5>
5883<pre>
5884%ptr = malloc i32
5885 store i32 4, %ptr
5886
5887%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5888 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5889 <i>; guarantee the above finishes</i>
5890 store i32 8, %ptr <i>; before this begins</i>
5891</pre>
5892</div>
5893
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005894<!-- _______________________________________________________________________ -->
5895<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005896 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005897</div>
5898<div class="doc_text">
5899<h5>Syntax:</h5>
5900<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005901 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5902 any integer bit width and for different address spaces. Not all targets
5903 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005904
5905<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005906declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5907declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5908declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5909declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005910
5911</pre>
5912<h5>Overview:</h5>
5913<p>
5914 This loads a value in memory and compares it to a given value. If they are
5915 equal, it stores a new value into the memory.
5916</p>
5917<h5>Arguments:</h5>
5918<p>
Mon P Wang28873102008-06-25 08:15:39 +00005919 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005920 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5921 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5922 this integer type. While any bit width integer may be used, targets may only
5923 lower representations they support in hardware.
5924
5925</p>
5926<h5>Semantics:</h5>
5927<p>
5928 This entire intrinsic must be executed atomically. It first loads the value
5929 in memory pointed to by <tt>ptr</tt> and compares it with the value
5930 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5931 loaded value is yielded in all cases. This provides the equivalent of an
5932 atomic compare-and-swap operation within the SSA framework.
5933</p>
5934<h5>Examples:</h5>
5935
5936<pre>
5937%ptr = malloc i32
5938 store i32 4, %ptr
5939
5940%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005941%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005942 <i>; yields {i32}:result1 = 4</i>
5943%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5944%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5945
5946%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005947%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005948 <i>; yields {i32}:result2 = 8</i>
5949%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5950
5951%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5952</pre>
5953</div>
5954
5955<!-- _______________________________________________________________________ -->
5956<div class="doc_subsubsection">
5957 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5958</div>
5959<div class="doc_text">
5960<h5>Syntax:</h5>
5961
5962<p>
5963 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5964 integer bit width. Not all targets support all bit widths however.</p>
5965<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005966declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5967declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5968declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5969declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005970
5971</pre>
5972<h5>Overview:</h5>
5973<p>
5974 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5975 the value from memory. It then stores the value in <tt>val</tt> in the memory
5976 at <tt>ptr</tt>.
5977</p>
5978<h5>Arguments:</h5>
5979
5980<p>
Mon P Wang28873102008-06-25 08:15:39 +00005981 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005982 <tt>val</tt> argument and the result must be integers of the same bit width.
5983 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5984 integer type. The targets may only lower integer representations they
5985 support.
5986</p>
5987<h5>Semantics:</h5>
5988<p>
5989 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5990 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5991 equivalent of an atomic swap operation within the SSA framework.
5992
5993</p>
5994<h5>Examples:</h5>
5995<pre>
5996%ptr = malloc i32
5997 store i32 4, %ptr
5998
5999%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006000%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006001 <i>; yields {i32}:result1 = 4</i>
6002%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6003%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6004
6005%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006006%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006007 <i>; yields {i32}:result2 = 8</i>
6008
6009%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6010%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6011</pre>
6012</div>
6013
6014<!-- _______________________________________________________________________ -->
6015<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006016 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006017
6018</div>
6019<div class="doc_text">
6020<h5>Syntax:</h5>
6021<p>
Mon P Wang28873102008-06-25 08:15:39 +00006022 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006023 integer bit width. Not all targets support all bit widths however.</p>
6024<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006025declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6026declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6027declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6028declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006029
6030</pre>
6031<h5>Overview:</h5>
6032<p>
6033 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6034 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6035</p>
6036<h5>Arguments:</h5>
6037<p>
6038
6039 The intrinsic takes two arguments, the first a pointer to an integer value
6040 and the second an integer value. The result is also an integer value. These
6041 integer types can have any bit width, but they must all have the same bit
6042 width. The targets may only lower integer representations they support.
6043</p>
6044<h5>Semantics:</h5>
6045<p>
6046 This intrinsic does a series of operations atomically. It first loads the
6047 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6048 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6049</p>
6050
6051<h5>Examples:</h5>
6052<pre>
6053%ptr = malloc i32
6054 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006055%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006056 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006057%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006058 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006059%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006060 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006061%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006062</pre>
6063</div>
6064
Mon P Wang28873102008-06-25 08:15:39 +00006065<!-- _______________________________________________________________________ -->
6066<div class="doc_subsubsection">
6067 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6068
6069</div>
6070<div class="doc_text">
6071<h5>Syntax:</h5>
6072<p>
6073 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006074 any integer bit width and for different address spaces. Not all targets
6075 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006076<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006077declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6078declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6079declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6080declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006081
6082</pre>
6083<h5>Overview:</h5>
6084<p>
6085 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6086 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6087</p>
6088<h5>Arguments:</h5>
6089<p>
6090
6091 The intrinsic takes two arguments, the first a pointer to an integer value
6092 and the second an integer value. The result is also an integer value. These
6093 integer types can have any bit width, but they must all have the same bit
6094 width. The targets may only lower integer representations they support.
6095</p>
6096<h5>Semantics:</h5>
6097<p>
6098 This intrinsic does a series of operations atomically. It first loads the
6099 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6100 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6101</p>
6102
6103<h5>Examples:</h5>
6104<pre>
6105%ptr = malloc i32
6106 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006107%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006108 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006109%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006110 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006111%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006112 <i>; yields {i32}:result3 = 2</i>
6113%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6114</pre>
6115</div>
6116
6117<!-- _______________________________________________________________________ -->
6118<div class="doc_subsubsection">
6119 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6120 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6121 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6122 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6123
6124</div>
6125<div class="doc_text">
6126<h5>Syntax:</h5>
6127<p>
6128 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6129 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006130 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6131 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006132<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006133declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6134declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6135declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6136declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006137
6138</pre>
6139
6140<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006141declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6142declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6143declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6144declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006145
6146</pre>
6147
6148<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006149declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6150declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6151declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6152declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006153
6154</pre>
6155
6156<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006157declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6158declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6159declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6160declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006161
6162</pre>
6163<h5>Overview:</h5>
6164<p>
6165 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6166 the value stored in memory at <tt>ptr</tt>. It yields the original value
6167 at <tt>ptr</tt>.
6168</p>
6169<h5>Arguments:</h5>
6170<p>
6171
6172 These intrinsics take two arguments, the first a pointer to an integer value
6173 and the second an integer value. The result is also an integer value. These
6174 integer types can have any bit width, but they must all have the same bit
6175 width. The targets may only lower integer representations they support.
6176</p>
6177<h5>Semantics:</h5>
6178<p>
6179 These intrinsics does a series of operations atomically. They first load the
6180 value stored at <tt>ptr</tt>. They then do the bitwise operation
6181 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6182 value stored at <tt>ptr</tt>.
6183</p>
6184
6185<h5>Examples:</h5>
6186<pre>
6187%ptr = malloc i32
6188 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006189%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006190 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006191%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006192 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006193%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006194 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006195%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006196 <i>; yields {i32}:result3 = FF</i>
6197%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6198</pre>
6199</div>
6200
6201
6202<!-- _______________________________________________________________________ -->
6203<div class="doc_subsubsection">
6204 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6205 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6206 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6207 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6208
6209</div>
6210<div class="doc_text">
6211<h5>Syntax:</h5>
6212<p>
6213 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6214 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006215 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6216 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006217 support all bit widths however.</p>
6218<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006219declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6220declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6221declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6222declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006223
6224</pre>
6225
6226<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006227declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6228declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6229declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6230declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006231
6232</pre>
6233
6234<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006235declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6236declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6237declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6238declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006239
6240</pre>
6241
6242<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006243declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6244declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6245declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6246declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006247
6248</pre>
6249<h5>Overview:</h5>
6250<p>
6251 These intrinsics takes the signed or unsigned minimum or maximum of
6252 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6253 original value at <tt>ptr</tt>.
6254</p>
6255<h5>Arguments:</h5>
6256<p>
6257
6258 These intrinsics take two arguments, the first a pointer to an integer value
6259 and the second an integer value. The result is also an integer value. These
6260 integer types can have any bit width, but they must all have the same bit
6261 width. The targets may only lower integer representations they support.
6262</p>
6263<h5>Semantics:</h5>
6264<p>
6265 These intrinsics does a series of operations atomically. They first load the
6266 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6267 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6268 the original value stored at <tt>ptr</tt>.
6269</p>
6270
6271<h5>Examples:</h5>
6272<pre>
6273%ptr = malloc i32
6274 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006275%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006276 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006277%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006278 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006279%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006280 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006281%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006282 <i>; yields {i32}:result3 = 8</i>
6283%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6284</pre>
6285</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006286
6287<!-- ======================================================================= -->
6288<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006289 <a name="int_general">General Intrinsics</a>
6290</div>
6291
6292<div class="doc_text">
6293<p> This class of intrinsics is designed to be generic and has
6294no specific purpose. </p>
6295</div>
6296
6297<!-- _______________________________________________________________________ -->
6298<div class="doc_subsubsection">
6299 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6300</div>
6301
6302<div class="doc_text">
6303
6304<h5>Syntax:</h5>
6305<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006306 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006307</pre>
6308
6309<h5>Overview:</h5>
6310
6311<p>
6312The '<tt>llvm.var.annotation</tt>' intrinsic
6313</p>
6314
6315<h5>Arguments:</h5>
6316
6317<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006318The first argument is a pointer to a value, the second is a pointer to a
6319global string, the third is a pointer to a global string which is the source
6320file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006321</p>
6322
6323<h5>Semantics:</h5>
6324
6325<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006326This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006327This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006328annotations. These have no other defined use, they are ignored by code
6329generation and optimization.
6330</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006331</div>
6332
Tanya Lattnerb6367882007-09-21 22:59:12 +00006333<!-- _______________________________________________________________________ -->
6334<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006335 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006336</div>
6337
6338<div class="doc_text">
6339
6340<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006341<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6342any integer bit width.
6343</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006344<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006345 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6346 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6347 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6348 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6349 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006350</pre>
6351
6352<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006353
6354<p>
6355The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006356</p>
6357
6358<h5>Arguments:</h5>
6359
6360<p>
6361The first argument is an integer value (result of some expression),
6362the second is a pointer to a global string, the third is a pointer to a global
6363string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006364It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006365</p>
6366
6367<h5>Semantics:</h5>
6368
6369<p>
6370This intrinsic allows annotations to be put on arbitrary expressions
6371with arbitrary strings. This can be useful for special purpose optimizations
6372that want to look for these annotations. These have no other defined use, they
6373are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006374</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006375</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006376
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006377<!-- _______________________________________________________________________ -->
6378<div class="doc_subsubsection">
6379 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6380</div>
6381
6382<div class="doc_text">
6383
6384<h5>Syntax:</h5>
6385<pre>
6386 declare void @llvm.trap()
6387</pre>
6388
6389<h5>Overview:</h5>
6390
6391<p>
6392The '<tt>llvm.trap</tt>' intrinsic
6393</p>
6394
6395<h5>Arguments:</h5>
6396
6397<p>
6398None
6399</p>
6400
6401<h5>Semantics:</h5>
6402
6403<p>
6404This intrinsics is lowered to the target dependent trap instruction. If the
6405target does not have a trap instruction, this intrinsic will be lowered to the
6406call of the abort() function.
6407</p>
6408</div>
6409
Chris Lattner00950542001-06-06 20:29:01 +00006410<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006411<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006412<address>
6413 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6414 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6415 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006416 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006417
6418 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006419 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006420 Last modified: $Date$
6421</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006422
Misha Brukman9d0919f2003-11-08 01:05:38 +00006423</body>
6424</html>