blob: c10af50dd597dd7ac958caf28e7adcf72dae3cd4 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
831 }
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
834 }
835
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000836 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837 // eliminate all the truncates.
838 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839 SmallVector<const SCEV *, 4> Operands;
840 bool hasTrunc = false;
841 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843 hasTrunc = isa<SCEVTruncateExpr>(S);
844 Operands.push_back(S);
845 }
846 if (!hasTrunc)
847 return getMulExpr(Operands, false, false);
848 }
849
Dan Gohman6864db62009-06-18 16:24:47 +0000850 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000852 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000856 }
857
Dan Gohmanf53462d2010-07-15 20:02:11 +0000858 // As a special case, fold trunc(undef) to undef. We don't want to
859 // know too much about SCEVUnknowns, but this special case is handy
860 // and harmless.
861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862 if (isa<UndefValue>(U->getValue()))
863 return getSCEV(UndefValue::get(Ty));
864
Dan Gohman420ab912010-06-25 18:47:08 +0000865 // The cast wasn't folded; create an explicit cast node. We can reuse
866 // the existing insert position since if we get here, we won't have
867 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000870 UniqueSCEVs.InsertNode(S, IP);
871 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000872}
873
Dan Gohman0bba49c2009-07-07 17:06:11 +0000874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000875 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000877 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000878 assert(isSCEVable(Ty) &&
879 "This is not a conversion to a SCEVable type!");
880 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000881
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000882 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884 return getConstant(
885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000887
Dan Gohman20900ca2009-04-22 16:20:48 +0000888 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000890 return getZeroExtendExpr(SZ->getOperand(), Ty);
891
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000892 // Before doing any expensive analysis, check to see if we've already
893 // computed a SCEV for this Op and Ty.
894 FoldingSetNodeID ID;
895 ID.AddInteger(scZeroExtend);
896 ID.AddPointer(Op);
897 ID.AddPointer(Ty);
898 void *IP = 0;
899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
Nick Lewycky630d85a2011-01-23 06:20:19 +0000901 // zext(trunc(x)) --> zext(x) or x or trunc(x)
902 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
903 // It's possible the bits taken off by the truncate were all zero bits. If
904 // so, we should be able to simplify this further.
905 const SCEV *X = ST->getOperand();
906 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000907 unsigned TruncBits = getTypeSizeInBits(ST->getType());
908 unsigned NewBits = getTypeSizeInBits(Ty);
909 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000910 CR.zextOrTrunc(NewBits)))
911 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000912 }
913
Dan Gohman01ecca22009-04-27 20:16:15 +0000914 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000915 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000916 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000917 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000918 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000920 const SCEV *Start = AR->getStart();
921 const SCEV *Step = AR->getStepRecurrence(*this);
922 unsigned BitWidth = getTypeSizeInBits(AR->getType());
923 const Loop *L = AR->getLoop();
924
Dan Gohmaneb490a72009-07-25 01:22:26 +0000925 // If we have special knowledge that this addrec won't overflow,
926 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000927 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000928 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
929 getZeroExtendExpr(Step, Ty),
930 L);
931
Dan Gohman01ecca22009-04-27 20:16:15 +0000932 // Check whether the backedge-taken count is SCEVCouldNotCompute.
933 // Note that this serves two purposes: It filters out loops that are
934 // simply not analyzable, and it covers the case where this code is
935 // being called from within backedge-taken count analysis, such that
936 // attempting to ask for the backedge-taken count would likely result
937 // in infinite recursion. In the later case, the analysis code will
938 // cope with a conservative value, and it will take care to purge
939 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000940 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000941 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000942 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000943 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000944
945 // Check whether the backedge-taken count can be losslessly casted to
946 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000947 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000948 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000949 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000950 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
951 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000952 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000953 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000954 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000955 const SCEV *Add = getAddExpr(Start, ZMul);
956 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000957 getAddExpr(getZeroExtendExpr(Start, WideTy),
958 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
959 getZeroExtendExpr(Step, WideTy)));
960 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000961 // Return the expression with the addrec on the outside.
962 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
963 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000964 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000965
966 // Similar to above, only this time treat the step value as signed.
967 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000968 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000969 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000970 OperandExtendedAdd =
971 getAddExpr(getZeroExtendExpr(Start, WideTy),
972 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
973 getSignExtendExpr(Step, WideTy)));
974 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000975 // Return the expression with the addrec on the outside.
976 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
977 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000978 L);
979 }
980
981 // If the backedge is guarded by a comparison with the pre-inc value
982 // the addrec is safe. Also, if the entry is guarded by a comparison
983 // with the start value and the backedge is guarded by a comparison
984 // with the post-inc value, the addrec is safe.
985 if (isKnownPositive(Step)) {
986 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
987 getUnsignedRange(Step).getUnsignedMax());
988 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000989 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000990 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
991 AR->getPostIncExpr(*this), N)))
992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
995 L);
996 } else if (isKnownNegative(Step)) {
997 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
998 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1002 AR->getPostIncExpr(*this), N)))
1003 // Return the expression with the addrec on the outside.
1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1005 getSignExtendExpr(Step, Ty),
1006 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001007 }
1008 }
1009 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001010
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001011 // The cast wasn't folded; create an explicit cast node.
1012 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001013 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001014 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1015 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001016 UniqueSCEVs.InsertNode(S, IP);
1017 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001018}
1019
Dan Gohman0bba49c2009-07-07 17:06:11 +00001020const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001021 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001022 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001023 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001024 assert(isSCEVable(Ty) &&
1025 "This is not a conversion to a SCEVable type!");
1026 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001027
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001028 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001029 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1030 return getConstant(
1031 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1032 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001033
Dan Gohman20900ca2009-04-22 16:20:48 +00001034 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001035 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001036 return getSignExtendExpr(SS->getOperand(), Ty);
1037
Nick Lewycky73f565e2011-01-19 15:56:12 +00001038 // sext(zext(x)) --> zext(x)
1039 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1040 return getZeroExtendExpr(SZ->getOperand(), Ty);
1041
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001042 // Before doing any expensive analysis, check to see if we've already
1043 // computed a SCEV for this Op and Ty.
1044 FoldingSetNodeID ID;
1045 ID.AddInteger(scSignExtend);
1046 ID.AddPointer(Op);
1047 ID.AddPointer(Ty);
1048 void *IP = 0;
1049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1050
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001051 // If the input value is provably positive, build a zext instead.
1052 if (isKnownNonNegative(Op))
1053 return getZeroExtendExpr(Op, Ty);
1054
Nick Lewycky630d85a2011-01-23 06:20:19 +00001055 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1056 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1057 // It's possible the bits taken off by the truncate were all sign bits. If
1058 // so, we should be able to simplify this further.
1059 const SCEV *X = ST->getOperand();
1060 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001061 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1062 unsigned NewBits = getTypeSizeInBits(Ty);
1063 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001064 CR.sextOrTrunc(NewBits)))
1065 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001066 }
1067
Dan Gohman01ecca22009-04-27 20:16:15 +00001068 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001069 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001070 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001071 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001072 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001073 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001074 const SCEV *Start = AR->getStart();
1075 const SCEV *Step = AR->getStepRecurrence(*this);
1076 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1077 const Loop *L = AR->getLoop();
1078
Dan Gohmaneb490a72009-07-25 01:22:26 +00001079 // If we have special knowledge that this addrec won't overflow,
1080 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001081 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001082 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083 getSignExtendExpr(Step, Ty),
1084 L);
1085
Dan Gohman01ecca22009-04-27 20:16:15 +00001086 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1087 // Note that this serves two purposes: It filters out loops that are
1088 // simply not analyzable, and it covers the case where this code is
1089 // being called from within backedge-taken count analysis, such that
1090 // attempting to ask for the backedge-taken count would likely result
1091 // in infinite recursion. In the later case, the analysis code will
1092 // cope with a conservative value, and it will take care to purge
1093 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001094 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001095 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001096 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001097 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001098
1099 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001100 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001101 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001102 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001103 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001104 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1105 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001106 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001107 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001108 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001109 const SCEV *Add = getAddExpr(Start, SMul);
1110 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001111 getAddExpr(getSignExtendExpr(Start, WideTy),
1112 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1113 getSignExtendExpr(Step, WideTy)));
1114 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001115 // Return the expression with the addrec on the outside.
1116 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1117 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001118 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001119
1120 // Similar to above, only this time treat the step value as unsigned.
1121 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001122 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001123 Add = getAddExpr(Start, UMul);
1124 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001125 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001126 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1127 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001128 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001129 // Return the expression with the addrec on the outside.
1130 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1131 getZeroExtendExpr(Step, Ty),
1132 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001133 }
1134
1135 // If the backedge is guarded by a comparison with the pre-inc value
1136 // the addrec is safe. Also, if the entry is guarded by a comparison
1137 // with the start value and the backedge is guarded by a comparison
1138 // with the post-inc value, the addrec is safe.
1139 if (isKnownPositive(Step)) {
1140 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1141 getSignedRange(Step).getSignedMax());
1142 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001143 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001144 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1145 AR->getPostIncExpr(*this), N)))
1146 // Return the expression with the addrec on the outside.
1147 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1148 getSignExtendExpr(Step, Ty),
1149 L);
1150 } else if (isKnownNegative(Step)) {
1151 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1152 getSignedRange(Step).getSignedMin());
1153 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001154 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001155 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1156 AR->getPostIncExpr(*this), N)))
1157 // Return the expression with the addrec on the outside.
1158 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1159 getSignExtendExpr(Step, Ty),
1160 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001161 }
1162 }
1163 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001164
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001165 // The cast wasn't folded; create an explicit cast node.
1166 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001167 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001168 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1169 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001170 UniqueSCEVs.InsertNode(S, IP);
1171 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001172}
1173
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001174/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1175/// unspecified bits out to the given type.
1176///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001177const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001178 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001179 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1180 "This is not an extending conversion!");
1181 assert(isSCEVable(Ty) &&
1182 "This is not a conversion to a SCEVable type!");
1183 Ty = getEffectiveSCEVType(Ty);
1184
1185 // Sign-extend negative constants.
1186 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1187 if (SC->getValue()->getValue().isNegative())
1188 return getSignExtendExpr(Op, Ty);
1189
1190 // Peel off a truncate cast.
1191 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001192 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001193 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1194 return getAnyExtendExpr(NewOp, Ty);
1195 return getTruncateOrNoop(NewOp, Ty);
1196 }
1197
1198 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001199 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001200 if (!isa<SCEVZeroExtendExpr>(ZExt))
1201 return ZExt;
1202
1203 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001204 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001205 if (!isa<SCEVSignExtendExpr>(SExt))
1206 return SExt;
1207
Dan Gohmana10756e2010-01-21 02:09:26 +00001208 // Force the cast to be folded into the operands of an addrec.
1209 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1210 SmallVector<const SCEV *, 4> Ops;
1211 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1212 I != E; ++I)
1213 Ops.push_back(getAnyExtendExpr(*I, Ty));
1214 return getAddRecExpr(Ops, AR->getLoop());
1215 }
1216
Dan Gohmanf53462d2010-07-15 20:02:11 +00001217 // As a special case, fold anyext(undef) to undef. We don't want to
1218 // know too much about SCEVUnknowns, but this special case is handy
1219 // and harmless.
1220 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1221 if (isa<UndefValue>(U->getValue()))
1222 return getSCEV(UndefValue::get(Ty));
1223
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001224 // If the expression is obviously signed, use the sext cast value.
1225 if (isa<SCEVSMaxExpr>(Op))
1226 return SExt;
1227
1228 // Absent any other information, use the zext cast value.
1229 return ZExt;
1230}
1231
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001232/// CollectAddOperandsWithScales - Process the given Ops list, which is
1233/// a list of operands to be added under the given scale, update the given
1234/// map. This is a helper function for getAddRecExpr. As an example of
1235/// what it does, given a sequence of operands that would form an add
1236/// expression like this:
1237///
1238/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1239///
1240/// where A and B are constants, update the map with these values:
1241///
1242/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1243///
1244/// and add 13 + A*B*29 to AccumulatedConstant.
1245/// This will allow getAddRecExpr to produce this:
1246///
1247/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1248///
1249/// This form often exposes folding opportunities that are hidden in
1250/// the original operand list.
1251///
1252/// Return true iff it appears that any interesting folding opportunities
1253/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1254/// the common case where no interesting opportunities are present, and
1255/// is also used as a check to avoid infinite recursion.
1256///
1257static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001258CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1259 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001260 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001261 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001262 const APInt &Scale,
1263 ScalarEvolution &SE) {
1264 bool Interesting = false;
1265
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001266 // Iterate over the add operands. They are sorted, with constants first.
1267 unsigned i = 0;
1268 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1269 ++i;
1270 // Pull a buried constant out to the outside.
1271 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1272 Interesting = true;
1273 AccumulatedConstant += Scale * C->getValue()->getValue();
1274 }
1275
1276 // Next comes everything else. We're especially interested in multiplies
1277 // here, but they're in the middle, so just visit the rest with one loop.
1278 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001279 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1280 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1281 APInt NewScale =
1282 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1283 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1284 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001285 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001286 Interesting |=
1287 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001288 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001289 NewScale, SE);
1290 } else {
1291 // A multiplication of a constant with some other value. Update
1292 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001293 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1294 const SCEV *Key = SE.getMulExpr(MulOps);
1295 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001296 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001297 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001298 NewOps.push_back(Pair.first->first);
1299 } else {
1300 Pair.first->second += NewScale;
1301 // The map already had an entry for this value, which may indicate
1302 // a folding opportunity.
1303 Interesting = true;
1304 }
1305 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001306 } else {
1307 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001308 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001309 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001310 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001311 NewOps.push_back(Pair.first->first);
1312 } else {
1313 Pair.first->second += Scale;
1314 // The map already had an entry for this value, which may indicate
1315 // a folding opportunity.
1316 Interesting = true;
1317 }
1318 }
1319 }
1320
1321 return Interesting;
1322}
1323
1324namespace {
1325 struct APIntCompare {
1326 bool operator()(const APInt &LHS, const APInt &RHS) const {
1327 return LHS.ult(RHS);
1328 }
1329 };
1330}
1331
Dan Gohman6c0866c2009-05-24 23:45:28 +00001332/// getAddExpr - Get a canonical add expression, or something simpler if
1333/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001334const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1335 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001337 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001338#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001339 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001340 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001341 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001342 "SCEVAddExpr operand types don't match!");
1343#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001344
Dan Gohmana10756e2010-01-21 02:09:26 +00001345 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1346 if (!HasNUW && HasNSW) {
1347 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001348 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1349 E = Ops.end(); I != E; ++I)
1350 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001351 All = false;
1352 break;
1353 }
1354 if (All) HasNUW = true;
1355 }
1356
Chris Lattner53e677a2004-04-02 20:23:17 +00001357 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001358 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001359
1360 // If there are any constants, fold them together.
1361 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001362 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001363 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001364 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001365 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001366 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001367 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1368 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001369 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001370 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001371 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001372 }
1373
1374 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001375 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001376 Ops.erase(Ops.begin());
1377 --Idx;
1378 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001379
Dan Gohmanbca091d2010-04-12 23:08:18 +00001380 if (Ops.size() == 1) return Ops[0];
1381 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001382
Dan Gohman68ff7762010-08-27 21:39:59 +00001383 // Okay, check to see if the same value occurs in the operand list more than
1384 // once. If so, merge them together into an multiply expression. Since we
1385 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001386 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001387 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001388 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001389 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001390 // Scan ahead to count how many equal operands there are.
1391 unsigned Count = 2;
1392 while (i+Count != e && Ops[i+Count] == Ops[i])
1393 ++Count;
1394 // Merge the values into a multiply.
1395 const SCEV *Scale = getConstant(Ty, Count);
1396 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1397 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001399 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001400 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001401 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001402 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001404 if (FoundMatch)
1405 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001406
Dan Gohman728c7f32009-05-08 21:03:19 +00001407 // Check for truncates. If all the operands are truncated from the same
1408 // type, see if factoring out the truncate would permit the result to be
1409 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1410 // if the contents of the resulting outer trunc fold to something simple.
1411 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1412 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1413 const Type *DstType = Trunc->getType();
1414 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001415 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001416 bool Ok = true;
1417 // Check all the operands to see if they can be represented in the
1418 // source type of the truncate.
1419 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1420 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1421 if (T->getOperand()->getType() != SrcType) {
1422 Ok = false;
1423 break;
1424 }
1425 LargeOps.push_back(T->getOperand());
1426 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001427 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001428 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001429 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001430 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1431 if (const SCEVTruncateExpr *T =
1432 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1433 if (T->getOperand()->getType() != SrcType) {
1434 Ok = false;
1435 break;
1436 }
1437 LargeMulOps.push_back(T->getOperand());
1438 } else if (const SCEVConstant *C =
1439 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001440 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001441 } else {
1442 Ok = false;
1443 break;
1444 }
1445 }
1446 if (Ok)
1447 LargeOps.push_back(getMulExpr(LargeMulOps));
1448 } else {
1449 Ok = false;
1450 break;
1451 }
1452 }
1453 if (Ok) {
1454 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001455 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001456 // If it folds to something simple, use it. Otherwise, don't.
1457 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1458 return getTruncateExpr(Fold, DstType);
1459 }
1460 }
1461
1462 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001463 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1464 ++Idx;
1465
1466 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001467 if (Idx < Ops.size()) {
1468 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001469 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 // If we have an add, expand the add operands onto the end of the operands
1471 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001473 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 DeletedAdd = true;
1475 }
1476
1477 // If we deleted at least one add, we added operands to the end of the list,
1478 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001479 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001481 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001482 }
1483
1484 // Skip over the add expression until we get to a multiply.
1485 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1486 ++Idx;
1487
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001488 // Check to see if there are any folding opportunities present with
1489 // operands multiplied by constant values.
1490 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1491 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001492 DenseMap<const SCEV *, APInt> M;
1493 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001494 APInt AccumulatedConstant(BitWidth, 0);
1495 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001496 Ops.data(), Ops.size(),
1497 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001498 // Some interesting folding opportunity is present, so its worthwhile to
1499 // re-generate the operands list. Group the operands by constant scale,
1500 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001501 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001502 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001503 E = NewOps.end(); I != E; ++I)
1504 MulOpLists[M.find(*I)->second].push_back(*I);
1505 // Re-generate the operands list.
1506 Ops.clear();
1507 if (AccumulatedConstant != 0)
1508 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001509 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1510 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001511 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001512 Ops.push_back(getMulExpr(getConstant(I->first),
1513 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001514 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001515 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001516 if (Ops.size() == 1)
1517 return Ops[0];
1518 return getAddExpr(Ops);
1519 }
1520 }
1521
Chris Lattner53e677a2004-04-02 20:23:17 +00001522 // If we are adding something to a multiply expression, make sure the
1523 // something is not already an operand of the multiply. If so, merge it into
1524 // the multiply.
1525 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001526 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001527 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001528 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001529 if (isa<SCEVConstant>(MulOpSCEV))
1530 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001532 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 if (Mul->getNumOperands() != 2) {
1536 // If the multiply has more than two operands, we must get the
1537 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001538 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1539 Mul->op_begin()+MulOp);
1540 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001541 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001542 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001543 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001544 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001545 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 if (Ops.size() == 2) return OuterMul;
1547 if (AddOp < Idx) {
1548 Ops.erase(Ops.begin()+AddOp);
1549 Ops.erase(Ops.begin()+Idx-1);
1550 } else {
1551 Ops.erase(Ops.begin()+Idx);
1552 Ops.erase(Ops.begin()+AddOp-1);
1553 }
1554 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001555 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001557
Chris Lattner53e677a2004-04-02 20:23:17 +00001558 // Check this multiply against other multiplies being added together.
1559 for (unsigned OtherMulIdx = Idx+1;
1560 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1561 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001562 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 // If MulOp occurs in OtherMul, we can fold the two multiplies
1564 // together.
1565 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1566 OMulOp != e; ++OMulOp)
1567 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1568 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001569 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001570 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001571 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001572 Mul->op_begin()+MulOp);
1573 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001574 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001576 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001578 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001579 OtherMul->op_begin()+OMulOp);
1580 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001581 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001583 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1584 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001586 Ops.erase(Ops.begin()+Idx);
1587 Ops.erase(Ops.begin()+OtherMulIdx-1);
1588 Ops.push_back(OuterMul);
1589 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001590 }
1591 }
1592 }
1593 }
1594
1595 // If there are any add recurrences in the operands list, see if any other
1596 // added values are loop invariant. If so, we can fold them into the
1597 // recurrence.
1598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1599 ++Idx;
1600
1601 // Scan over all recurrences, trying to fold loop invariants into them.
1602 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1603 // Scan all of the other operands to this add and add them to the vector if
1604 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001605 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001606 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001607 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001609 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 LIOps.push_back(Ops[i]);
1611 Ops.erase(Ops.begin()+i);
1612 --i; --e;
1613 }
1614
1615 // If we found some loop invariants, fold them into the recurrence.
1616 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001617 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 LIOps.push_back(AddRec->getStart());
1619
Dan Gohman0bba49c2009-07-07 17:06:11 +00001620 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001621 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001622 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001623
Dan Gohmanb9f96512010-06-30 07:16:37 +00001624 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001625 // outer add and the inner addrec are guaranteed to have no overflow.
1626 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1627 HasNUW && AddRec->hasNoUnsignedWrap(),
1628 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001629
Chris Lattner53e677a2004-04-02 20:23:17 +00001630 // If all of the other operands were loop invariant, we are done.
1631 if (Ops.size() == 1) return NewRec;
1632
1633 // Otherwise, add the folded AddRec by the non-liv parts.
1634 for (unsigned i = 0;; ++i)
1635 if (Ops[i] == AddRec) {
1636 Ops[i] = NewRec;
1637 break;
1638 }
Dan Gohman246b2562007-10-22 18:31:58 +00001639 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 }
1641
1642 // Okay, if there weren't any loop invariants to be folded, check to see if
1643 // there are multiple AddRec's with the same loop induction variable being
1644 // added together. If so, we can fold them.
1645 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001646 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1647 ++OtherIdx)
1648 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1649 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1650 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1651 AddRec->op_end());
1652 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1653 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001654 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001655 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001656 if (OtherAddRec->getLoop() == AddRecLoop) {
1657 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1658 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001659 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001660 AddRecOps.append(OtherAddRec->op_begin()+i,
1661 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001662 break;
1663 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001664 AddRecOps[i] = getAddExpr(AddRecOps[i],
1665 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001666 }
1667 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 }
Dan Gohman32527152010-08-27 20:45:56 +00001669 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1670 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 }
1672
1673 // Otherwise couldn't fold anything into this recurrence. Move onto the
1674 // next one.
1675 }
1676
1677 // Okay, it looks like we really DO need an add expr. Check to see if we
1678 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001679 FoldingSetNodeID ID;
1680 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001681 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1682 ID.AddPointer(Ops[i]);
1683 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001684 SCEVAddExpr *S =
1685 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1686 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001687 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1688 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001689 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1690 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001691 UniqueSCEVs.InsertNode(S, IP);
1692 }
Dan Gohman3645b012009-10-09 00:10:36 +00001693 if (HasNUW) S->setHasNoUnsignedWrap(true);
1694 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001695 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001696}
1697
Dan Gohman6c0866c2009-05-24 23:45:28 +00001698/// getMulExpr - Get a canonical multiply expression, or something simpler if
1699/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001700const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1701 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001703 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001704#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001705 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001706 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001707 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001708 "SCEVMulExpr operand types don't match!");
1709#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001710
Dan Gohmana10756e2010-01-21 02:09:26 +00001711 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1712 if (!HasNUW && HasNSW) {
1713 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001714 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1715 E = Ops.end(); I != E; ++I)
1716 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001717 All = false;
1718 break;
1719 }
1720 if (All) HasNUW = true;
1721 }
1722
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001724 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001725
1726 // If there are any constants, fold them together.
1727 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001728 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001729
1730 // C1*(C2+V) -> C1*C2 + C1*V
1731 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001732 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 if (Add->getNumOperands() == 2 &&
1734 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001735 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1736 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001737
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001739 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001740 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001741 ConstantInt *Fold = ConstantInt::get(getContext(),
1742 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001743 RHSC->getValue()->getValue());
1744 Ops[0] = getConstant(Fold);
1745 Ops.erase(Ops.begin()+1); // Erase the folded element
1746 if (Ops.size() == 1) return Ops[0];
1747 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001748 }
1749
1750 // If we are left with a constant one being multiplied, strip it off.
1751 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1752 Ops.erase(Ops.begin());
1753 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001754 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 // If we have a multiply of zero, it will always be zero.
1756 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001757 } else if (Ops[0]->isAllOnesValue()) {
1758 // If we have a mul by -1 of an add, try distributing the -1 among the
1759 // add operands.
1760 if (Ops.size() == 2)
1761 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1762 SmallVector<const SCEV *, 4> NewOps;
1763 bool AnyFolded = false;
1764 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1765 I != E; ++I) {
1766 const SCEV *Mul = getMulExpr(Ops[0], *I);
1767 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1768 NewOps.push_back(Mul);
1769 }
1770 if (AnyFolded)
1771 return getAddExpr(NewOps);
1772 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001774
1775 if (Ops.size() == 1)
1776 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 }
1778
1779 // Skip over the add expression until we get to a multiply.
1780 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1781 ++Idx;
1782
Chris Lattner53e677a2004-04-02 20:23:17 +00001783 // If there are mul operands inline them all into this expression.
1784 if (Idx < Ops.size()) {
1785 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001786 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001787 // If we have an mul, expand the mul operands onto the end of the operands
1788 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001790 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 DeletedMul = true;
1792 }
1793
1794 // If we deleted at least one mul, we added operands to the end of the list,
1795 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001796 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001798 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 }
1800
1801 // If there are any add recurrences in the operands list, see if any other
1802 // added values are loop invariant. If so, we can fold them into the
1803 // recurrence.
1804 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1805 ++Idx;
1806
1807 // Scan over all recurrences, trying to fold loop invariants into them.
1808 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1809 // Scan all of the other operands to this mul and add them to the vector if
1810 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001811 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001812 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001813 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001815 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001816 LIOps.push_back(Ops[i]);
1817 Ops.erase(Ops.begin()+i);
1818 --i; --e;
1819 }
1820
1821 // If we found some loop invariants, fold them into the recurrence.
1822 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001823 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001824 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001825 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001826 const SCEV *Scale = getMulExpr(LIOps);
1827 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1828 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001829
Dan Gohmanb9f96512010-06-30 07:16:37 +00001830 // Build the new addrec. Propagate the NUW and NSW flags if both the
1831 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001832 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001833 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001834 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
1836 // If all of the other operands were loop invariant, we are done.
1837 if (Ops.size() == 1) return NewRec;
1838
1839 // Otherwise, multiply the folded AddRec by the non-liv parts.
1840 for (unsigned i = 0;; ++i)
1841 if (Ops[i] == AddRec) {
1842 Ops[i] = NewRec;
1843 break;
1844 }
Dan Gohman246b2562007-10-22 18:31:58 +00001845 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001846 }
1847
1848 // Okay, if there weren't any loop invariants to be folded, check to see if
1849 // there are multiple AddRec's with the same loop induction variable being
1850 // multiplied together. If so, we can fold them.
1851 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001852 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1853 ++OtherIdx)
1854 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1855 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1856 // {A*C,+,F*D + G*B + B*D}<L>
1857 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1858 ++OtherIdx)
1859 if (const SCEVAddRecExpr *OtherAddRec =
1860 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1861 if (OtherAddRec->getLoop() == AddRecLoop) {
1862 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1863 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1864 const SCEV *B = F->getStepRecurrence(*this);
1865 const SCEV *D = G->getStepRecurrence(*this);
1866 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1867 getMulExpr(G, B),
1868 getMulExpr(B, D));
1869 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1870 F->getLoop());
1871 if (Ops.size() == 2) return NewAddRec;
1872 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1873 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1874 }
1875 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001876 }
1877
1878 // Otherwise couldn't fold anything into this recurrence. Move onto the
1879 // next one.
1880 }
1881
1882 // Okay, it looks like we really DO need an mul expr. Check to see if we
1883 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001884 FoldingSetNodeID ID;
1885 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001886 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1887 ID.AddPointer(Ops[i]);
1888 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001889 SCEVMulExpr *S =
1890 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1891 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001892 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1893 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001894 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1895 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001896 UniqueSCEVs.InsertNode(S, IP);
1897 }
Dan Gohman3645b012009-10-09 00:10:36 +00001898 if (HasNUW) S->setHasNoUnsignedWrap(true);
1899 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001900 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001901}
1902
Andreas Bolka8a11c982009-08-07 22:55:26 +00001903/// getUDivExpr - Get a canonical unsigned division expression, or something
1904/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001905const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1906 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001907 assert(getEffectiveSCEVType(LHS->getType()) ==
1908 getEffectiveSCEVType(RHS->getType()) &&
1909 "SCEVUDivExpr operand types don't match!");
1910
Dan Gohman622ed672009-05-04 22:02:23 +00001911 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001912 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001913 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001914 // If the denominator is zero, the result of the udiv is undefined. Don't
1915 // try to analyze it, because the resolution chosen here may differ from
1916 // the resolution chosen in other parts of the compiler.
1917 if (!RHSC->getValue()->isZero()) {
1918 // Determine if the division can be folded into the operands of
1919 // its operands.
1920 // TODO: Generalize this to non-constants by using known-bits information.
1921 const Type *Ty = LHS->getType();
1922 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001923 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001924 // For non-power-of-two values, effectively round the value up to the
1925 // nearest power of two.
1926 if (!RHSC->getValue()->getValue().isPowerOf2())
1927 ++MaxShiftAmt;
1928 const IntegerType *ExtTy =
1929 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1930 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1932 if (const SCEVConstant *Step =
1933 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1934 if (!Step->getValue()->getValue()
1935 .urem(RHSC->getValue()->getValue()) &&
1936 getZeroExtendExpr(AR, ExtTy) ==
1937 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1938 getZeroExtendExpr(Step, ExtTy),
1939 AR->getLoop())) {
1940 SmallVector<const SCEV *, 4> Operands;
1941 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1942 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1943 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001944 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001945 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1946 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1947 SmallVector<const SCEV *, 4> Operands;
1948 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1949 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1950 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1951 // Find an operand that's safely divisible.
1952 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1953 const SCEV *Op = M->getOperand(i);
1954 const SCEV *Div = getUDivExpr(Op, RHSC);
1955 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1956 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1957 M->op_end());
1958 Operands[i] = Div;
1959 return getMulExpr(Operands);
1960 }
1961 }
Dan Gohman185cf032009-05-08 20:18:49 +00001962 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001963 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1964 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1965 SmallVector<const SCEV *, 4> Operands;
1966 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1967 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1968 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1969 Operands.clear();
1970 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1971 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1972 if (isa<SCEVUDivExpr>(Op) ||
1973 getMulExpr(Op, RHS) != A->getOperand(i))
1974 break;
1975 Operands.push_back(Op);
1976 }
1977 if (Operands.size() == A->getNumOperands())
1978 return getAddExpr(Operands);
1979 }
1980 }
Dan Gohman185cf032009-05-08 20:18:49 +00001981
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001982 // Fold if both operands are constant.
1983 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1984 Constant *LHSCV = LHSC->getValue();
1985 Constant *RHSCV = RHSC->getValue();
1986 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1987 RHSCV)));
1988 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001989 }
1990 }
1991
Dan Gohman1c343752009-06-27 21:21:31 +00001992 FoldingSetNodeID ID;
1993 ID.AddInteger(scUDivExpr);
1994 ID.AddPointer(LHS);
1995 ID.AddPointer(RHS);
1996 void *IP = 0;
1997 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001998 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1999 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002000 UniqueSCEVs.InsertNode(S, IP);
2001 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002002}
2003
2004
Dan Gohman6c0866c2009-05-24 23:45:28 +00002005/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2006/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002007const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002008 const SCEV *Step, const Loop *L,
2009 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002010 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002011 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002012 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002013 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002014 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002015 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002016 }
2017
2018 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002019 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002020}
2021
Dan Gohman6c0866c2009-05-24 23:45:28 +00002022/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2023/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002024const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002025ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002026 const Loop *L,
2027 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002028 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002029#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002030 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002031 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002032 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002033 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002034 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002035 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002036 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002037#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002038
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002039 if (Operands.back()->isZero()) {
2040 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002041 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002042 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002043
Dan Gohmanbc028532010-02-19 18:49:22 +00002044 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2045 // use that information to infer NUW and NSW flags. However, computing a
2046 // BE count requires calling getAddRecExpr, so we may not yet have a
2047 // meaningful BE count at this point (and if we don't, we'd be stuck
2048 // with a SCEVCouldNotCompute as the cached BE count).
2049
Dan Gohmana10756e2010-01-21 02:09:26 +00002050 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2051 if (!HasNUW && HasNSW) {
2052 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002053 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2054 E = Operands.end(); I != E; ++I)
2055 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002056 All = false;
2057 break;
2058 }
2059 if (All) HasNUW = true;
2060 }
2061
Dan Gohmand9cc7492008-08-08 18:33:12 +00002062 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002063 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002064 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002065 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002066 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002067 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002068 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002069 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002070 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002071 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002072 // AddRecs require their operands be loop-invariant with respect to their
2073 // loops. Don't perform this transformation if it would break this
2074 // requirement.
2075 bool AllInvariant = true;
2076 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002077 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002078 AllInvariant = false;
2079 break;
2080 }
2081 if (AllInvariant) {
2082 NestedOperands[0] = getAddRecExpr(Operands, L);
2083 AllInvariant = true;
2084 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002085 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002086 AllInvariant = false;
2087 break;
2088 }
2089 if (AllInvariant)
2090 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002091 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002092 }
2093 // Reset Operands to its original state.
2094 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002095 }
2096 }
2097
Dan Gohman67847532010-01-19 22:27:22 +00002098 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2099 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002100 FoldingSetNodeID ID;
2101 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002102 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2103 ID.AddPointer(Operands[i]);
2104 ID.AddPointer(L);
2105 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002106 SCEVAddRecExpr *S =
2107 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2108 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002109 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2110 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002111 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2112 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002113 UniqueSCEVs.InsertNode(S, IP);
2114 }
Dan Gohman3645b012009-10-09 00:10:36 +00002115 if (HasNUW) S->setHasNoUnsignedWrap(true);
2116 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002117 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002118}
2119
Dan Gohman9311ef62009-06-24 14:49:00 +00002120const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2121 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002122 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002123 Ops.push_back(LHS);
2124 Ops.push_back(RHS);
2125 return getSMaxExpr(Ops);
2126}
2127
Dan Gohman0bba49c2009-07-07 17:06:11 +00002128const SCEV *
2129ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002130 assert(!Ops.empty() && "Cannot get empty smax!");
2131 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002132#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002133 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002134 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002135 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002136 "SCEVSMaxExpr operand types don't match!");
2137#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138
2139 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002140 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002141
2142 // If there are any constants, fold them together.
2143 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002144 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002145 ++Idx;
2146 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002147 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002148 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002149 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002150 APIntOps::smax(LHSC->getValue()->getValue(),
2151 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002152 Ops[0] = getConstant(Fold);
2153 Ops.erase(Ops.begin()+1); // Erase the folded element
2154 if (Ops.size() == 1) return Ops[0];
2155 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156 }
2157
Dan Gohmane5aceed2009-06-24 14:46:22 +00002158 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002159 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2160 Ops.erase(Ops.begin());
2161 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002162 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2163 // If we have an smax with a constant maximum-int, it will always be
2164 // maximum-int.
2165 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002166 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002167
Dan Gohman3ab13122010-04-13 16:49:23 +00002168 if (Ops.size() == 1) return Ops[0];
2169 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002170
2171 // Find the first SMax
2172 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2173 ++Idx;
2174
2175 // Check to see if one of the operands is an SMax. If so, expand its operands
2176 // onto our operand list, and recurse to simplify.
2177 if (Idx < Ops.size()) {
2178 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002179 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002180 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002181 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002182 DeletedSMax = true;
2183 }
2184
2185 if (DeletedSMax)
2186 return getSMaxExpr(Ops);
2187 }
2188
2189 // Okay, check to see if the same value occurs in the operand list twice. If
2190 // so, delete one. Since we sorted the list, these values are required to
2191 // be adjacent.
2192 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002193 // X smax Y smax Y --> X smax Y
2194 // X smax Y --> X, if X is always greater than Y
2195 if (Ops[i] == Ops[i+1] ||
2196 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2197 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2198 --i; --e;
2199 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002200 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2201 --i; --e;
2202 }
2203
2204 if (Ops.size() == 1) return Ops[0];
2205
2206 assert(!Ops.empty() && "Reduced smax down to nothing!");
2207
Nick Lewycky3e630762008-02-20 06:48:22 +00002208 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002209 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002210 FoldingSetNodeID ID;
2211 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002212 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2213 ID.AddPointer(Ops[i]);
2214 void *IP = 0;
2215 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002216 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2217 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002218 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2219 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002220 UniqueSCEVs.InsertNode(S, IP);
2221 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002222}
2223
Dan Gohman9311ef62009-06-24 14:49:00 +00002224const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2225 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002226 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002227 Ops.push_back(LHS);
2228 Ops.push_back(RHS);
2229 return getUMaxExpr(Ops);
2230}
2231
Dan Gohman0bba49c2009-07-07 17:06:11 +00002232const SCEV *
2233ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002234 assert(!Ops.empty() && "Cannot get empty umax!");
2235 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002236#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002237 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002238 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002239 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002240 "SCEVUMaxExpr operand types don't match!");
2241#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002242
2243 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002244 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002245
2246 // If there are any constants, fold them together.
2247 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002248 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002249 ++Idx;
2250 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002251 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002252 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002253 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002254 APIntOps::umax(LHSC->getValue()->getValue(),
2255 RHSC->getValue()->getValue()));
2256 Ops[0] = getConstant(Fold);
2257 Ops.erase(Ops.begin()+1); // Erase the folded element
2258 if (Ops.size() == 1) return Ops[0];
2259 LHSC = cast<SCEVConstant>(Ops[0]);
2260 }
2261
Dan Gohmane5aceed2009-06-24 14:46:22 +00002262 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002263 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2264 Ops.erase(Ops.begin());
2265 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002266 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2267 // If we have an umax with a constant maximum-int, it will always be
2268 // maximum-int.
2269 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002270 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002271
Dan Gohman3ab13122010-04-13 16:49:23 +00002272 if (Ops.size() == 1) return Ops[0];
2273 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002274
2275 // Find the first UMax
2276 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2277 ++Idx;
2278
2279 // Check to see if one of the operands is a UMax. If so, expand its operands
2280 // onto our operand list, and recurse to simplify.
2281 if (Idx < Ops.size()) {
2282 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002283 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002284 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002285 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002286 DeletedUMax = true;
2287 }
2288
2289 if (DeletedUMax)
2290 return getUMaxExpr(Ops);
2291 }
2292
2293 // Okay, check to see if the same value occurs in the operand list twice. If
2294 // so, delete one. Since we sorted the list, these values are required to
2295 // be adjacent.
2296 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002297 // X umax Y umax Y --> X umax Y
2298 // X umax Y --> X, if X is always greater than Y
2299 if (Ops[i] == Ops[i+1] ||
2300 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2301 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2302 --i; --e;
2303 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002304 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2305 --i; --e;
2306 }
2307
2308 if (Ops.size() == 1) return Ops[0];
2309
2310 assert(!Ops.empty() && "Reduced umax down to nothing!");
2311
2312 // Okay, it looks like we really DO need a umax expr. Check to see if we
2313 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002314 FoldingSetNodeID ID;
2315 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002316 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2317 ID.AddPointer(Ops[i]);
2318 void *IP = 0;
2319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002320 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2321 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002322 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2323 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002324 UniqueSCEVs.InsertNode(S, IP);
2325 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002326}
2327
Dan Gohman9311ef62009-06-24 14:49:00 +00002328const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2329 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002330 // ~smax(~x, ~y) == smin(x, y).
2331 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2332}
2333
Dan Gohman9311ef62009-06-24 14:49:00 +00002334const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2335 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002336 // ~umax(~x, ~y) == umin(x, y)
2337 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2338}
2339
Dan Gohman4f8eea82010-02-01 18:27:38 +00002340const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002341 // If we have TargetData, we can bypass creating a target-independent
2342 // constant expression and then folding it back into a ConstantInt.
2343 // This is just a compile-time optimization.
2344 if (TD)
2345 return getConstant(TD->getIntPtrType(getContext()),
2346 TD->getTypeAllocSize(AllocTy));
2347
Dan Gohman4f8eea82010-02-01 18:27:38 +00002348 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2349 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002350 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2351 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002352 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2353 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2354}
2355
2356const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2357 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2358 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002359 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2360 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002361 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2362 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2363}
2364
2365const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2366 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002367 // If we have TargetData, we can bypass creating a target-independent
2368 // constant expression and then folding it back into a ConstantInt.
2369 // This is just a compile-time optimization.
2370 if (TD)
2371 return getConstant(TD->getIntPtrType(getContext()),
2372 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2373
Dan Gohman0f5efe52010-01-28 02:15:55 +00002374 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2375 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002376 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2377 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002378 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002379 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002380}
2381
Dan Gohman4f8eea82010-02-01 18:27:38 +00002382const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2383 Constant *FieldNo) {
2384 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002386 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2387 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002388 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002389 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002390}
2391
Dan Gohman0bba49c2009-07-07 17:06:11 +00002392const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002393 // Don't attempt to do anything other than create a SCEVUnknown object
2394 // here. createSCEV only calls getUnknown after checking for all other
2395 // interesting possibilities, and any other code that calls getUnknown
2396 // is doing so in order to hide a value from SCEV canonicalization.
2397
Dan Gohman1c343752009-06-27 21:21:31 +00002398 FoldingSetNodeID ID;
2399 ID.AddInteger(scUnknown);
2400 ID.AddPointer(V);
2401 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002402 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2403 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2404 "Stale SCEVUnknown in uniquing map!");
2405 return S;
2406 }
2407 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2408 FirstUnknown);
2409 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002410 UniqueSCEVs.InsertNode(S, IP);
2411 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002412}
2413
Chris Lattner53e677a2004-04-02 20:23:17 +00002414//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002415// Basic SCEV Analysis and PHI Idiom Recognition Code
2416//
2417
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002418/// isSCEVable - Test if values of the given type are analyzable within
2419/// the SCEV framework. This primarily includes integer types, and it
2420/// can optionally include pointer types if the ScalarEvolution class
2421/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002422bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002423 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002424 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002425}
2426
2427/// getTypeSizeInBits - Return the size in bits of the specified type,
2428/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002429uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002430 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2431
2432 // If we have a TargetData, use it!
2433 if (TD)
2434 return TD->getTypeSizeInBits(Ty);
2435
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002436 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002437 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002438 return Ty->getPrimitiveSizeInBits();
2439
2440 // The only other support type is pointer. Without TargetData, conservatively
2441 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002442 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002443 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002444}
2445
2446/// getEffectiveSCEVType - Return a type with the same bitwidth as
2447/// the given type and which represents how SCEV will treat the given
2448/// type, for which isSCEVable must return true. For pointer types,
2449/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002450const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002451 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2452
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002453 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002454 return Ty;
2455
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002456 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002457 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002458 if (TD) return TD->getIntPtrType(getContext());
2459
2460 // Without TargetData, conservatively assume pointers are 64-bit.
2461 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002462}
Chris Lattner53e677a2004-04-02 20:23:17 +00002463
Dan Gohman0bba49c2009-07-07 17:06:11 +00002464const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002465 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002466}
2467
Chris Lattner53e677a2004-04-02 20:23:17 +00002468/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2469/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002470const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002471 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002472
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002473 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2474 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002475 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002476
2477 // The process of creating a SCEV for V may have caused other SCEVs
2478 // to have been created, so it's necessary to insert the new entry
2479 // from scratch, rather than trying to remember the insert position
2480 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002481 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002482 return S;
2483}
2484
Dan Gohman2d1be872009-04-16 03:18:22 +00002485/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2486///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002487const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002488 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002489 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002490 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002491
2492 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002493 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002494 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002495 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002496}
2497
2498/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002499const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002500 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002501 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002502 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002503
2504 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002505 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002506 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002507 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002508 return getMinusSCEV(AllOnes, V);
2509}
2510
Chris Lattner6038a632011-01-11 17:11:59 +00002511/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2512/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2513/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002514const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2515 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002516 // Fast path: X - X --> 0.
2517 if (LHS == RHS)
2518 return getConstant(LHS->getType(), 0);
2519
Dan Gohman2d1be872009-04-16 03:18:22 +00002520 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002521 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002522}
2523
2524/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2525/// input value to the specified type. If the type must be extended, it is zero
2526/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002527const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002528ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002529 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002530 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2531 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002532 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002533 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002534 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002535 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002536 return getTruncateExpr(V, Ty);
2537 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002538}
2539
2540/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2541/// input value to the specified type. If the type must be extended, it is sign
2542/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002543const SCEV *
2544ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002545 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002546 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002547 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2548 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002549 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002550 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002551 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002552 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002553 return getTruncateExpr(V, Ty);
2554 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002555}
2556
Dan Gohman467c4302009-05-13 03:46:30 +00002557/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2558/// input value to the specified type. If the type must be extended, it is zero
2559/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002560const SCEV *
2561ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002562 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002563 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2564 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002565 "Cannot noop or zero extend with non-integer arguments!");
2566 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2567 "getNoopOrZeroExtend cannot truncate!");
2568 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2569 return V; // No conversion
2570 return getZeroExtendExpr(V, Ty);
2571}
2572
2573/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2574/// input value to the specified type. If the type must be extended, it is sign
2575/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002576const SCEV *
2577ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002578 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002579 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2580 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002581 "Cannot noop or sign extend with non-integer arguments!");
2582 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2583 "getNoopOrSignExtend cannot truncate!");
2584 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2585 return V; // No conversion
2586 return getSignExtendExpr(V, Ty);
2587}
2588
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002589/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2590/// the input value to the specified type. If the type must be extended,
2591/// it is extended with unspecified bits. The conversion must not be
2592/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002593const SCEV *
2594ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002595 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002596 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2597 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002598 "Cannot noop or any extend with non-integer arguments!");
2599 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2600 "getNoopOrAnyExtend cannot truncate!");
2601 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2602 return V; // No conversion
2603 return getAnyExtendExpr(V, Ty);
2604}
2605
Dan Gohman467c4302009-05-13 03:46:30 +00002606/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2607/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002608const SCEV *
2609ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002610 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002611 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2612 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002613 "Cannot truncate or noop with non-integer arguments!");
2614 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2615 "getTruncateOrNoop cannot extend!");
2616 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2617 return V; // No conversion
2618 return getTruncateExpr(V, Ty);
2619}
2620
Dan Gohmana334aa72009-06-22 00:31:57 +00002621/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2622/// the types using zero-extension, and then perform a umax operation
2623/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002624const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2625 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002626 const SCEV *PromotedLHS = LHS;
2627 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002628
2629 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2630 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2631 else
2632 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2633
2634 return getUMaxExpr(PromotedLHS, PromotedRHS);
2635}
2636
Dan Gohmanc9759e82009-06-22 15:03:27 +00002637/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2638/// the types using zero-extension, and then perform a umin operation
2639/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002640const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2641 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002642 const SCEV *PromotedLHS = LHS;
2643 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002644
2645 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2646 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2647 else
2648 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2649
2650 return getUMinExpr(PromotedLHS, PromotedRHS);
2651}
2652
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002653/// PushDefUseChildren - Push users of the given Instruction
2654/// onto the given Worklist.
2655static void
2656PushDefUseChildren(Instruction *I,
2657 SmallVectorImpl<Instruction *> &Worklist) {
2658 // Push the def-use children onto the Worklist stack.
2659 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2660 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002661 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002662}
2663
2664/// ForgetSymbolicValue - This looks up computed SCEV values for all
2665/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002666/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002667/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002668void
Dan Gohman85669632010-02-25 06:57:05 +00002669ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002670 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002671 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002672
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002673 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002674 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002675 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002676 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002677 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002678
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002679 ValueExprMapType::iterator It =
2680 ValueExprMap.find(static_cast<Value *>(I));
2681 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002682 const SCEV *Old = It->second;
2683
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002684 // Short-circuit the def-use traversal if the symbolic name
2685 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002686 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002687 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002688
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002689 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002690 // structure, it's a PHI that's in the progress of being computed
2691 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2692 // additional loop trip count information isn't going to change anything.
2693 // In the second case, createNodeForPHI will perform the necessary
2694 // updates on its own when it gets to that point. In the third, we do
2695 // want to forget the SCEVUnknown.
2696 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002697 !isa<SCEVUnknown>(Old) ||
2698 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002699 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002700 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002701 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002702 }
2703
2704 PushDefUseChildren(I, Worklist);
2705 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002706}
Chris Lattner53e677a2004-04-02 20:23:17 +00002707
2708/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2709/// a loop header, making it a potential recurrence, or it doesn't.
2710///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002711const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002712 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2713 if (L->getHeader() == PN->getParent()) {
2714 // The loop may have multiple entrances or multiple exits; we can analyze
2715 // this phi as an addrec if it has a unique entry value and a unique
2716 // backedge value.
2717 Value *BEValueV = 0, *StartValueV = 0;
2718 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2719 Value *V = PN->getIncomingValue(i);
2720 if (L->contains(PN->getIncomingBlock(i))) {
2721 if (!BEValueV) {
2722 BEValueV = V;
2723 } else if (BEValueV != V) {
2724 BEValueV = 0;
2725 break;
2726 }
2727 } else if (!StartValueV) {
2728 StartValueV = V;
2729 } else if (StartValueV != V) {
2730 StartValueV = 0;
2731 break;
2732 }
2733 }
2734 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002735 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002736 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002737 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002738 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002739 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002740
2741 // Using this symbolic name for the PHI, analyze the value coming around
2742 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002743 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002744
2745 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2746 // has a special value for the first iteration of the loop.
2747
2748 // If the value coming around the backedge is an add with the symbolic
2749 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002750 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002751 // If there is a single occurrence of the symbolic value, replace it
2752 // with a recurrence.
2753 unsigned FoundIndex = Add->getNumOperands();
2754 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2755 if (Add->getOperand(i) == SymbolicName)
2756 if (FoundIndex == e) {
2757 FoundIndex = i;
2758 break;
2759 }
2760
2761 if (FoundIndex != Add->getNumOperands()) {
2762 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002763 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002764 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2765 if (i != FoundIndex)
2766 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002767 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002768
2769 // This is not a valid addrec if the step amount is varying each
2770 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002771 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002772 (isa<SCEVAddRecExpr>(Accum) &&
2773 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002774 bool HasNUW = false;
2775 bool HasNSW = false;
2776
2777 // If the increment doesn't overflow, then neither the addrec nor
2778 // the post-increment will overflow.
2779 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2780 if (OBO->hasNoUnsignedWrap())
2781 HasNUW = true;
2782 if (OBO->hasNoSignedWrap())
2783 HasNSW = true;
Chris Lattner96518702011-01-11 06:44:41 +00002784 } else if (const GEPOperator *GEP =
2785 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner6d5a2412011-01-09 02:28:48 +00002786 // If the increment is a GEP, then we know it won't perform an
2787 // unsigned overflow, because the address space cannot be
2788 // wrapped around.
Chris Lattner96518702011-01-11 06:44:41 +00002789 HasNUW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002790 }
2791
Dan Gohman27dead42010-04-12 07:49:36 +00002792 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002793 const SCEV *PHISCEV =
2794 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002795
Dan Gohmana10756e2010-01-21 02:09:26 +00002796 // Since the no-wrap flags are on the increment, they apply to the
2797 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002798 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002799 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2800 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002801
2802 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002803 // to be symbolic. We now need to go back and purge all of the
2804 // entries for the scalars that use the symbolic expression.
2805 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002806 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002807 return PHISCEV;
2808 }
2809 }
Dan Gohman622ed672009-05-04 22:02:23 +00002810 } else if (const SCEVAddRecExpr *AddRec =
2811 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002812 // Otherwise, this could be a loop like this:
2813 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2814 // In this case, j = {1,+,1} and BEValue is j.
2815 // Because the other in-value of i (0) fits the evolution of BEValue
2816 // i really is an addrec evolution.
2817 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002818 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002819
2820 // If StartVal = j.start - j.stride, we can use StartVal as the
2821 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002822 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002823 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002824 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002825 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002826
2827 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002828 // to be symbolic. We now need to go back and purge all of the
2829 // entries for the scalars that use the symbolic expression.
2830 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002831 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002832 return PHISCEV;
2833 }
2834 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002835 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002836 }
Dan Gohman27dead42010-04-12 07:49:36 +00002837 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002838
Dan Gohman85669632010-02-25 06:57:05 +00002839 // If the PHI has a single incoming value, follow that value, unless the
2840 // PHI's incoming blocks are in a different loop, in which case doing so
2841 // risks breaking LCSSA form. Instcombine would normally zap these, but
2842 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002843 if (Value *V = SimplifyInstruction(PN, TD, DT))
2844 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002845 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002846
Chris Lattner53e677a2004-04-02 20:23:17 +00002847 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002848 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002849}
2850
Dan Gohman26466c02009-05-08 20:26:55 +00002851/// createNodeForGEP - Expand GEP instructions into add and multiply
2852/// operations. This allows them to be analyzed by regular SCEV code.
2853///
Dan Gohmand281ed22009-12-18 02:09:29 +00002854const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002855
Dan Gohmanb9f96512010-06-30 07:16:37 +00002856 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2857 // Add expression, because the Instruction may be guarded by control flow
2858 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002859 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002860
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002861 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002862 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002863 // Don't attempt to analyze GEPs over unsized objects.
2864 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2865 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002866 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002867 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002868 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002869 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002870 I != E; ++I) {
2871 Value *Index = *I;
2872 // Compute the (potentially symbolic) offset in bytes for this index.
2873 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2874 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002875 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002876 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2877
Dan Gohmanb9f96512010-06-30 07:16:37 +00002878 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002879 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002880 } else {
2881 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002882 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2883 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002884 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002885 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2886
Dan Gohmanb9f96512010-06-30 07:16:37 +00002887 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002888 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002889
2890 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002891 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002892 }
2893 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002894
2895 // Get the SCEV for the GEP base.
2896 const SCEV *BaseS = getSCEV(Base);
2897
Dan Gohmanb9f96512010-06-30 07:16:37 +00002898 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002899 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002900}
2901
Nick Lewycky83bb0052007-11-22 07:59:40 +00002902/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2903/// guaranteed to end in (at every loop iteration). It is, at the same time,
2904/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2905/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002906uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002907ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002908 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002909 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002910
Dan Gohman622ed672009-05-04 22:02:23 +00002911 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002912 return std::min(GetMinTrailingZeros(T->getOperand()),
2913 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002914
Dan Gohman622ed672009-05-04 22:02:23 +00002915 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002916 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2917 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2918 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002919 }
2920
Dan Gohman622ed672009-05-04 22:02:23 +00002921 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2923 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2924 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002925 }
2926
Dan Gohman622ed672009-05-04 22:02:23 +00002927 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002928 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002929 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002930 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002931 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002932 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002933 }
2934
Dan Gohman622ed672009-05-04 22:02:23 +00002935 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002936 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002937 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2938 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002939 for (unsigned i = 1, e = M->getNumOperands();
2940 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002941 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002942 BitWidth);
2943 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002944 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002945
Dan Gohman622ed672009-05-04 22:02:23 +00002946 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002947 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002948 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002949 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002951 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002952 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002953
Dan Gohman622ed672009-05-04 22:02:23 +00002954 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002955 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002956 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002957 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002958 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002959 return MinOpRes;
2960 }
2961
Dan Gohman622ed672009-05-04 22:02:23 +00002962 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002963 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002965 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002966 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002967 return MinOpRes;
2968 }
2969
Dan Gohman2c364ad2009-06-19 23:29:04 +00002970 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2971 // For a SCEVUnknown, ask ValueTracking.
2972 unsigned BitWidth = getTypeSizeInBits(U->getType());
2973 APInt Mask = APInt::getAllOnesValue(BitWidth);
2974 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2975 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2976 return Zeros.countTrailingOnes();
2977 }
2978
2979 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002980 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002981}
Chris Lattner53e677a2004-04-02 20:23:17 +00002982
Dan Gohman85b05a22009-07-13 21:35:55 +00002983/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2984///
2985ConstantRange
2986ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002987 // See if we've computed this range already.
2988 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2989 if (I != UnsignedRanges.end())
2990 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002991
2992 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002993 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002994
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002995 unsigned BitWidth = getTypeSizeInBits(S->getType());
2996 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2997
2998 // If the value has known zeros, the maximum unsigned value will have those
2999 // known zeros as well.
3000 uint32_t TZ = GetMinTrailingZeros(S);
3001 if (TZ != 0)
3002 ConservativeResult =
3003 ConstantRange(APInt::getMinValue(BitWidth),
3004 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3005
Dan Gohman85b05a22009-07-13 21:35:55 +00003006 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3007 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3008 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3009 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003010 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003011 }
3012
3013 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3014 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3015 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3016 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003017 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003018 }
3019
3020 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3021 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3022 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3023 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003024 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003025 }
3026
3027 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3028 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3029 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3030 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003031 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003032 }
3033
3034 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3035 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3036 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003037 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003038 }
3039
3040 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3041 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003042 return setUnsignedRange(ZExt,
3043 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003044 }
3045
3046 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3047 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003048 return setUnsignedRange(SExt,
3049 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003050 }
3051
3052 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3053 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003054 return setUnsignedRange(Trunc,
3055 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003056 }
3057
Dan Gohman85b05a22009-07-13 21:35:55 +00003058 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003059 // If there's no unsigned wrap, the value will never be less than its
3060 // initial value.
3061 if (AddRec->hasNoUnsignedWrap())
3062 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003063 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003064 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003065 ConservativeResult.intersectWith(
3066 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003067
3068 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003069 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003070 const Type *Ty = AddRec->getType();
3071 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003072 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3073 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3075
3076 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003077 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003078
3079 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003080 ConstantRange StepRange = getSignedRange(Step);
3081 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3082 ConstantRange EndRange =
3083 StartRange.add(MaxBECountRange.multiply(StepRange));
3084
3085 // Check for overflow. This must be done with ConstantRange arithmetic
3086 // because we could be called from within the ScalarEvolution overflow
3087 // checking code.
3088 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3089 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3090 ConstantRange ExtMaxBECountRange =
3091 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3092 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3093 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3094 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003095 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003096
Dan Gohman85b05a22009-07-13 21:35:55 +00003097 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3098 EndRange.getUnsignedMin());
3099 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3100 EndRange.getUnsignedMax());
3101 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003102 return setUnsignedRange(AddRec, ConservativeResult);
3103 return setUnsignedRange(AddRec,
3104 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003105 }
3106 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003107
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003108 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003109 }
3110
3111 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3112 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003113 APInt Mask = APInt::getAllOnesValue(BitWidth);
3114 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3115 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003116 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003117 return setUnsignedRange(U, ConservativeResult);
3118 return setUnsignedRange(U,
3119 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003120 }
3121
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003122 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003123}
3124
Dan Gohman85b05a22009-07-13 21:35:55 +00003125/// getSignedRange - Determine the signed range for a particular SCEV.
3126///
3127ConstantRange
3128ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003129 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003130 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3131 if (I != SignedRanges.end())
3132 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003133
Dan Gohman85b05a22009-07-13 21:35:55 +00003134 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003135 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003136
Dan Gohman52fddd32010-01-26 04:40:18 +00003137 unsigned BitWidth = getTypeSizeInBits(S->getType());
3138 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3139
3140 // If the value has known zeros, the maximum signed value will have those
3141 // known zeros as well.
3142 uint32_t TZ = GetMinTrailingZeros(S);
3143 if (TZ != 0)
3144 ConservativeResult =
3145 ConstantRange(APInt::getSignedMinValue(BitWidth),
3146 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3147
Dan Gohman85b05a22009-07-13 21:35:55 +00003148 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3149 ConstantRange X = getSignedRange(Add->getOperand(0));
3150 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3151 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003152 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003153 }
3154
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3156 ConstantRange X = getSignedRange(Mul->getOperand(0));
3157 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3158 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003159 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003160 }
3161
Dan Gohman85b05a22009-07-13 21:35:55 +00003162 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3163 ConstantRange X = getSignedRange(SMax->getOperand(0));
3164 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3165 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003166 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003167 }
Dan Gohman62849c02009-06-24 01:05:09 +00003168
Dan Gohman85b05a22009-07-13 21:35:55 +00003169 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3170 ConstantRange X = getSignedRange(UMax->getOperand(0));
3171 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3172 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003173 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003174 }
Dan Gohman62849c02009-06-24 01:05:09 +00003175
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3177 ConstantRange X = getSignedRange(UDiv->getLHS());
3178 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003179 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003180 }
Dan Gohman62849c02009-06-24 01:05:09 +00003181
Dan Gohman85b05a22009-07-13 21:35:55 +00003182 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3183 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003184 return setSignedRange(ZExt,
3185 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003186 }
3187
3188 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3189 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003190 return setSignedRange(SExt,
3191 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003192 }
3193
3194 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3195 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003196 return setSignedRange(Trunc,
3197 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003198 }
3199
Dan Gohman85b05a22009-07-13 21:35:55 +00003200 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003201 // If there's no signed wrap, and all the operands have the same sign or
3202 // zero, the value won't ever change sign.
3203 if (AddRec->hasNoSignedWrap()) {
3204 bool AllNonNeg = true;
3205 bool AllNonPos = true;
3206 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3207 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3208 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3209 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003210 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003211 ConservativeResult = ConservativeResult.intersectWith(
3212 ConstantRange(APInt(BitWidth, 0),
3213 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003214 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003215 ConservativeResult = ConservativeResult.intersectWith(
3216 ConstantRange(APInt::getSignedMinValue(BitWidth),
3217 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003218 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003219
3220 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003221 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003222 const Type *Ty = AddRec->getType();
3223 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003224 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3225 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003226 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3227
3228 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003229 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003230
3231 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003232 ConstantRange StepRange = getSignedRange(Step);
3233 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3234 ConstantRange EndRange =
3235 StartRange.add(MaxBECountRange.multiply(StepRange));
3236
3237 // Check for overflow. This must be done with ConstantRange arithmetic
3238 // because we could be called from within the ScalarEvolution overflow
3239 // checking code.
3240 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3241 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3242 ConstantRange ExtMaxBECountRange =
3243 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3244 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3245 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3246 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003247 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003248
Dan Gohman85b05a22009-07-13 21:35:55 +00003249 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3250 EndRange.getSignedMin());
3251 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3252 EndRange.getSignedMax());
3253 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003254 return setSignedRange(AddRec, ConservativeResult);
3255 return setSignedRange(AddRec,
3256 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003257 }
Dan Gohman62849c02009-06-24 01:05:09 +00003258 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003259
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003260 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003261 }
3262
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3264 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003265 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003266 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003267 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3268 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003269 return setSignedRange(U, ConservativeResult);
3270 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003271 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003272 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003273 }
3274
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003275 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003276}
3277
Chris Lattner53e677a2004-04-02 20:23:17 +00003278/// createSCEV - We know that there is no SCEV for the specified value.
3279/// Analyze the expression.
3280///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003281const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003282 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003283 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003284
Dan Gohman6c459a22008-06-22 19:56:46 +00003285 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003286 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003287 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003288
3289 // Don't attempt to analyze instructions in blocks that aren't
3290 // reachable. Such instructions don't matter, and they aren't required
3291 // to obey basic rules for definitions dominating uses which this
3292 // analysis depends on.
3293 if (!DT->isReachableFromEntry(I->getParent()))
3294 return getUnknown(V);
3295 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003296 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003297 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3298 return getConstant(CI);
3299 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003300 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003301 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3302 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003303 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003304 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003305
Dan Gohmanca178902009-07-17 20:47:02 +00003306 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003307 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003308 case Instruction::Add: {
3309 // The simple thing to do would be to just call getSCEV on both operands
3310 // and call getAddExpr with the result. However if we're looking at a
3311 // bunch of things all added together, this can be quite inefficient,
3312 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3313 // Instead, gather up all the operands and make a single getAddExpr call.
3314 // LLVM IR canonical form means we need only traverse the left operands.
3315 SmallVector<const SCEV *, 4> AddOps;
3316 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003317 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3318 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3319 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3320 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003321 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003322 const SCEV *Op1 = getSCEV(U->getOperand(1));
3323 if (Opcode == Instruction::Sub)
3324 AddOps.push_back(getNegativeSCEV(Op1));
3325 else
3326 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003327 }
3328 AddOps.push_back(getSCEV(U->getOperand(0)));
3329 return getAddExpr(AddOps);
3330 }
3331 case Instruction::Mul: {
3332 // See the Add code above.
3333 SmallVector<const SCEV *, 4> MulOps;
3334 MulOps.push_back(getSCEV(U->getOperand(1)));
3335 for (Value *Op = U->getOperand(0);
3336 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3337 Op = U->getOperand(0)) {
3338 U = cast<Operator>(Op);
3339 MulOps.push_back(getSCEV(U->getOperand(1)));
3340 }
3341 MulOps.push_back(getSCEV(U->getOperand(0)));
3342 return getMulExpr(MulOps);
3343 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003344 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003345 return getUDivExpr(getSCEV(U->getOperand(0)),
3346 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003347 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003348 return getMinusSCEV(getSCEV(U->getOperand(0)),
3349 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003350 case Instruction::And:
3351 // For an expression like x&255 that merely masks off the high bits,
3352 // use zext(trunc(x)) as the SCEV expression.
3353 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003354 if (CI->isNullValue())
3355 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003356 if (CI->isAllOnesValue())
3357 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003358 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003359
3360 // Instcombine's ShrinkDemandedConstant may strip bits out of
3361 // constants, obscuring what would otherwise be a low-bits mask.
3362 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3363 // knew about to reconstruct a low-bits mask value.
3364 unsigned LZ = A.countLeadingZeros();
3365 unsigned BitWidth = A.getBitWidth();
3366 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3367 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3368 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3369
3370 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3371
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003372 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003373 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003374 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003375 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003376 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003377 }
3378 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003379
Dan Gohman6c459a22008-06-22 19:56:46 +00003380 case Instruction::Or:
3381 // If the RHS of the Or is a constant, we may have something like:
3382 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3383 // optimizations will transparently handle this case.
3384 //
3385 // In order for this transformation to be safe, the LHS must be of the
3386 // form X*(2^n) and the Or constant must be less than 2^n.
3387 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003388 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003389 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003390 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003391 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3392 // Build a plain add SCEV.
3393 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3394 // If the LHS of the add was an addrec and it has no-wrap flags,
3395 // transfer the no-wrap flags, since an or won't introduce a wrap.
3396 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3397 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3398 if (OldAR->hasNoUnsignedWrap())
3399 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3400 if (OldAR->hasNoSignedWrap())
3401 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3402 }
3403 return S;
3404 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003405 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003406 break;
3407 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003408 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003409 // If the RHS of the xor is a signbit, then this is just an add.
3410 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003411 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003412 return getAddExpr(getSCEV(U->getOperand(0)),
3413 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003414
3415 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003416 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003417 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003418
3419 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3420 // This is a variant of the check for xor with -1, and it handles
3421 // the case where instcombine has trimmed non-demanded bits out
3422 // of an xor with -1.
3423 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3424 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3425 if (BO->getOpcode() == Instruction::And &&
3426 LCI->getValue() == CI->getValue())
3427 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003428 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003429 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003430 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003431 const Type *Z0Ty = Z0->getType();
3432 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3433
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003434 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003435 // mask off the high bits. Complement the operand and
3436 // re-apply the zext.
3437 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3438 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3439
3440 // If C is a single bit, it may be in the sign-bit position
3441 // before the zero-extend. In this case, represent the xor
3442 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003443 APInt Trunc = CI->getValue().trunc(Z0TySize);
3444 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003445 Trunc.isSignBit())
3446 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3447 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003448 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003449 }
3450 break;
3451
3452 case Instruction::Shl:
3453 // Turn shift left of a constant amount into a multiply.
3454 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003455 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003456
3457 // If the shift count is not less than the bitwidth, the result of
3458 // the shift is undefined. Don't try to analyze it, because the
3459 // resolution chosen here may differ from the resolution chosen in
3460 // other parts of the compiler.
3461 if (SA->getValue().uge(BitWidth))
3462 break;
3463
Owen Andersoneed707b2009-07-24 23:12:02 +00003464 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003465 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003466 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003467 }
3468 break;
3469
Nick Lewycky01eaf802008-07-07 06:15:49 +00003470 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003471 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003472 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003473 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003474
3475 // If the shift count is not less than the bitwidth, the result of
3476 // the shift is undefined. Don't try to analyze it, because the
3477 // resolution chosen here may differ from the resolution chosen in
3478 // other parts of the compiler.
3479 if (SA->getValue().uge(BitWidth))
3480 break;
3481
Owen Andersoneed707b2009-07-24 23:12:02 +00003482 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003483 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003484 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003485 }
3486 break;
3487
Dan Gohman4ee29af2009-04-21 02:26:00 +00003488 case Instruction::AShr:
3489 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3490 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003491 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003492 if (L->getOpcode() == Instruction::Shl &&
3493 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003494 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3495
3496 // If the shift count is not less than the bitwidth, the result of
3497 // the shift is undefined. Don't try to analyze it, because the
3498 // resolution chosen here may differ from the resolution chosen in
3499 // other parts of the compiler.
3500 if (CI->getValue().uge(BitWidth))
3501 break;
3502
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003503 uint64_t Amt = BitWidth - CI->getZExtValue();
3504 if (Amt == BitWidth)
3505 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003506 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003507 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003508 IntegerType::get(getContext(),
3509 Amt)),
3510 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003511 }
3512 break;
3513
Dan Gohman6c459a22008-06-22 19:56:46 +00003514 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003515 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003516
3517 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003518 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003519
3520 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003521 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003522
3523 case Instruction::BitCast:
3524 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003525 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003526 return getSCEV(U->getOperand(0));
3527 break;
3528
Dan Gohman4f8eea82010-02-01 18:27:38 +00003529 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3530 // lead to pointer expressions which cannot safely be expanded to GEPs,
3531 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3532 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003533
Dan Gohman26466c02009-05-08 20:26:55 +00003534 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003535 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003536
Dan Gohman6c459a22008-06-22 19:56:46 +00003537 case Instruction::PHI:
3538 return createNodeForPHI(cast<PHINode>(U));
3539
3540 case Instruction::Select:
3541 // This could be a smax or umax that was lowered earlier.
3542 // Try to recover it.
3543 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3544 Value *LHS = ICI->getOperand(0);
3545 Value *RHS = ICI->getOperand(1);
3546 switch (ICI->getPredicate()) {
3547 case ICmpInst::ICMP_SLT:
3548 case ICmpInst::ICMP_SLE:
3549 std::swap(LHS, RHS);
3550 // fall through
3551 case ICmpInst::ICMP_SGT:
3552 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003553 // a >s b ? a+x : b+x -> smax(a, b)+x
3554 // a >s b ? b+x : a+x -> smin(a, b)+x
3555 if (LHS->getType() == U->getType()) {
3556 const SCEV *LS = getSCEV(LHS);
3557 const SCEV *RS = getSCEV(RHS);
3558 const SCEV *LA = getSCEV(U->getOperand(1));
3559 const SCEV *RA = getSCEV(U->getOperand(2));
3560 const SCEV *LDiff = getMinusSCEV(LA, LS);
3561 const SCEV *RDiff = getMinusSCEV(RA, RS);
3562 if (LDiff == RDiff)
3563 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3564 LDiff = getMinusSCEV(LA, RS);
3565 RDiff = getMinusSCEV(RA, LS);
3566 if (LDiff == RDiff)
3567 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3568 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003569 break;
3570 case ICmpInst::ICMP_ULT:
3571 case ICmpInst::ICMP_ULE:
3572 std::swap(LHS, RHS);
3573 // fall through
3574 case ICmpInst::ICMP_UGT:
3575 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003576 // a >u b ? a+x : b+x -> umax(a, b)+x
3577 // a >u b ? b+x : a+x -> umin(a, b)+x
3578 if (LHS->getType() == U->getType()) {
3579 const SCEV *LS = getSCEV(LHS);
3580 const SCEV *RS = getSCEV(RHS);
3581 const SCEV *LA = getSCEV(U->getOperand(1));
3582 const SCEV *RA = getSCEV(U->getOperand(2));
3583 const SCEV *LDiff = getMinusSCEV(LA, LS);
3584 const SCEV *RDiff = getMinusSCEV(RA, RS);
3585 if (LDiff == RDiff)
3586 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3587 LDiff = getMinusSCEV(LA, RS);
3588 RDiff = getMinusSCEV(RA, LS);
3589 if (LDiff == RDiff)
3590 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3591 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003592 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003593 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003594 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3595 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003596 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003597 cast<ConstantInt>(RHS)->isZero()) {
3598 const SCEV *One = getConstant(LHS->getType(), 1);
3599 const SCEV *LS = getSCEV(LHS);
3600 const SCEV *LA = getSCEV(U->getOperand(1));
3601 const SCEV *RA = getSCEV(U->getOperand(2));
3602 const SCEV *LDiff = getMinusSCEV(LA, LS);
3603 const SCEV *RDiff = getMinusSCEV(RA, One);
3604 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003605 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003606 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003607 break;
3608 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003609 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3610 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003611 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003612 cast<ConstantInt>(RHS)->isZero()) {
3613 const SCEV *One = getConstant(LHS->getType(), 1);
3614 const SCEV *LS = getSCEV(LHS);
3615 const SCEV *LA = getSCEV(U->getOperand(1));
3616 const SCEV *RA = getSCEV(U->getOperand(2));
3617 const SCEV *LDiff = getMinusSCEV(LA, One);
3618 const SCEV *RDiff = getMinusSCEV(RA, LS);
3619 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003620 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003621 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003622 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003623 default:
3624 break;
3625 }
3626 }
3627
3628 default: // We cannot analyze this expression.
3629 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003630 }
3631
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003632 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003633}
3634
3635
3636
3637//===----------------------------------------------------------------------===//
3638// Iteration Count Computation Code
3639//
3640
Dan Gohman46bdfb02009-02-24 18:55:53 +00003641/// getBackedgeTakenCount - If the specified loop has a predictable
3642/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3643/// object. The backedge-taken count is the number of times the loop header
3644/// will be branched to from within the loop. This is one less than the
3645/// trip count of the loop, since it doesn't count the first iteration,
3646/// when the header is branched to from outside the loop.
3647///
3648/// Note that it is not valid to call this method on a loop without a
3649/// loop-invariant backedge-taken count (see
3650/// hasLoopInvariantBackedgeTakenCount).
3651///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003652const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003653 return getBackedgeTakenInfo(L).Exact;
3654}
3655
3656/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3657/// return the least SCEV value that is known never to be less than the
3658/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003659const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003660 return getBackedgeTakenInfo(L).Max;
3661}
3662
Dan Gohman59ae6b92009-07-08 19:23:34 +00003663/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3664/// onto the given Worklist.
3665static void
3666PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3667 BasicBlock *Header = L->getHeader();
3668
3669 // Push all Loop-header PHIs onto the Worklist stack.
3670 for (BasicBlock::iterator I = Header->begin();
3671 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3672 Worklist.push_back(PN);
3673}
3674
Dan Gohmana1af7572009-04-30 20:47:05 +00003675const ScalarEvolution::BackedgeTakenInfo &
3676ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003677 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003678 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003679 // update the value. The temporary CouldNotCompute value tells SCEV
3680 // code elsewhere that it shouldn't attempt to request a new
3681 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003682 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003683 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003684 if (!Pair.second)
3685 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003686
Chris Lattnerf1859892011-01-09 02:16:18 +00003687 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3688 if (BECount.Exact != getCouldNotCompute()) {
3689 assert(isLoopInvariant(BECount.Exact, L) &&
3690 isLoopInvariant(BECount.Max, L) &&
3691 "Computed backedge-taken count isn't loop invariant for loop!");
3692 ++NumTripCountsComputed;
3693
3694 // Update the value in the map.
3695 Pair.first->second = BECount;
3696 } else {
3697 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003698 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003699 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003700 if (isa<PHINode>(L->getHeader()->begin()))
3701 // Only count loops that have phi nodes as not being computable.
3702 ++NumTripCountsNotComputed;
3703 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003704
Chris Lattnerf1859892011-01-09 02:16:18 +00003705 // Now that we know more about the trip count for this loop, forget any
3706 // existing SCEV values for PHI nodes in this loop since they are only
3707 // conservative estimates made without the benefit of trip count
3708 // information. This is similar to the code in forgetLoop, except that
3709 // it handles SCEVUnknown PHI nodes specially.
3710 if (BECount.hasAnyInfo()) {
3711 SmallVector<Instruction *, 16> Worklist;
3712 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003713
Chris Lattnerf1859892011-01-09 02:16:18 +00003714 SmallPtrSet<Instruction *, 8> Visited;
3715 while (!Worklist.empty()) {
3716 Instruction *I = Worklist.pop_back_val();
3717 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003718
Chris Lattnerf1859892011-01-09 02:16:18 +00003719 ValueExprMapType::iterator It =
3720 ValueExprMap.find(static_cast<Value *>(I));
3721 if (It != ValueExprMap.end()) {
3722 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003723
Chris Lattnerf1859892011-01-09 02:16:18 +00003724 // SCEVUnknown for a PHI either means that it has an unrecognized
3725 // structure, or it's a PHI that's in the progress of being computed
3726 // by createNodeForPHI. In the former case, additional loop trip
3727 // count information isn't going to change anything. In the later
3728 // case, createNodeForPHI will perform the necessary updates on its
3729 // own when it gets to that point.
3730 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3731 forgetMemoizedResults(Old);
3732 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003733 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003734 if (PHINode *PN = dyn_cast<PHINode>(I))
3735 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003736 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003737
3738 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003739 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003740 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003741 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003742}
3743
Dan Gohman4c7279a2009-10-31 15:04:55 +00003744/// forgetLoop - This method should be called by the client when it has
3745/// changed a loop in a way that may effect ScalarEvolution's ability to
3746/// compute a trip count, or if the loop is deleted.
3747void ScalarEvolution::forgetLoop(const Loop *L) {
3748 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003749 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003750
Dan Gohman4c7279a2009-10-31 15:04:55 +00003751 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003752 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003753 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003754
Dan Gohman59ae6b92009-07-08 19:23:34 +00003755 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003756 while (!Worklist.empty()) {
3757 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003758 if (!Visited.insert(I)) continue;
3759
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003760 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3761 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003762 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003763 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003764 if (PHINode *PN = dyn_cast<PHINode>(I))
3765 ConstantEvolutionLoopExitValue.erase(PN);
3766 }
3767
3768 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003769 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003770
3771 // Forget all contained loops too, to avoid dangling entries in the
3772 // ValuesAtScopes map.
3773 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3774 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003775}
3776
Eric Christophere6cbfa62010-07-29 01:25:38 +00003777/// forgetValue - This method should be called by the client when it has
3778/// changed a value in a way that may effect its value, or which may
3779/// disconnect it from a def-use chain linking it to a loop.
3780void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003781 Instruction *I = dyn_cast<Instruction>(V);
3782 if (!I) return;
3783
3784 // Drop information about expressions based on loop-header PHIs.
3785 SmallVector<Instruction *, 16> Worklist;
3786 Worklist.push_back(I);
3787
3788 SmallPtrSet<Instruction *, 8> Visited;
3789 while (!Worklist.empty()) {
3790 I = Worklist.pop_back_val();
3791 if (!Visited.insert(I)) continue;
3792
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003793 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3794 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003795 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003796 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003797 if (PHINode *PN = dyn_cast<PHINode>(I))
3798 ConstantEvolutionLoopExitValue.erase(PN);
3799 }
3800
3801 PushDefUseChildren(I, Worklist);
3802 }
3803}
3804
Dan Gohman46bdfb02009-02-24 18:55:53 +00003805/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3806/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003807ScalarEvolution::BackedgeTakenInfo
3808ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003809 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003810 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003811
Dan Gohmana334aa72009-06-22 00:31:57 +00003812 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003813 const SCEV *BECount = getCouldNotCompute();
3814 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003815 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003816 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3817 BackedgeTakenInfo NewBTI =
3818 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003819
Dan Gohman1c343752009-06-27 21:21:31 +00003820 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003821 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003822 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003823 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003824 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003826 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003827 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003829 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 }
Dan Gohman1c343752009-06-27 21:21:31 +00003831 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003832 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003833 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003834 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 }
3836
3837 return BackedgeTakenInfo(BECount, MaxBECount);
3838}
3839
3840/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3841/// of the specified loop will execute if it exits via the specified block.
3842ScalarEvolution::BackedgeTakenInfo
3843ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3844 BasicBlock *ExitingBlock) {
3845
3846 // Okay, we've chosen an exiting block. See what condition causes us to
3847 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003848 //
3849 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003850 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003851 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003852 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003853
Chris Lattner8b0e3602007-01-07 02:24:26 +00003854 // At this point, we know we have a conditional branch that determines whether
3855 // the loop is exited. However, we don't know if the branch is executed each
3856 // time through the loop. If not, then the execution count of the branch will
3857 // not be equal to the trip count of the loop.
3858 //
3859 // Currently we check for this by checking to see if the Exit branch goes to
3860 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003861 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003862 // loop header. This is common for un-rotated loops.
3863 //
3864 // If both of those tests fail, walk up the unique predecessor chain to the
3865 // header, stopping if there is an edge that doesn't exit the loop. If the
3866 // header is reached, the execution count of the branch will be equal to the
3867 // trip count of the loop.
3868 //
3869 // More extensive analysis could be done to handle more cases here.
3870 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003871 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003872 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 ExitBr->getParent() != L->getHeader()) {
3874 // The simple checks failed, try climbing the unique predecessor chain
3875 // up to the header.
3876 bool Ok = false;
3877 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3878 BasicBlock *Pred = BB->getUniquePredecessor();
3879 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003880 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003881 TerminatorInst *PredTerm = Pred->getTerminator();
3882 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3883 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3884 if (PredSucc == BB)
3885 continue;
3886 // If the predecessor has a successor that isn't BB and isn't
3887 // outside the loop, assume the worst.
3888 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003889 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003890 }
3891 if (Pred == L->getHeader()) {
3892 Ok = true;
3893 break;
3894 }
3895 BB = Pred;
3896 }
3897 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003898 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003899 }
3900
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003901 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003902 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3903 ExitBr->getSuccessor(0),
3904 ExitBr->getSuccessor(1));
3905}
3906
3907/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3908/// backedge of the specified loop will execute if its exit condition
3909/// were a conditional branch of ExitCond, TBB, and FBB.
3910ScalarEvolution::BackedgeTakenInfo
3911ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3912 Value *ExitCond,
3913 BasicBlock *TBB,
3914 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003915 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003916 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3917 if (BO->getOpcode() == Instruction::And) {
3918 // Recurse on the operands of the and.
3919 BackedgeTakenInfo BTI0 =
3920 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3921 BackedgeTakenInfo BTI1 =
3922 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003923 const SCEV *BECount = getCouldNotCompute();
3924 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003925 if (L->contains(TBB)) {
3926 // Both conditions must be true for the loop to continue executing.
3927 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003928 if (BTI0.Exact == getCouldNotCompute() ||
3929 BTI1.Exact == getCouldNotCompute())
3930 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003931 else
3932 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003933 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003934 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003935 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003936 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003937 else
3938 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003940 // Both conditions must be true at the same time for the loop to exit.
3941 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003942 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003943 if (BTI0.Max == BTI1.Max)
3944 MaxBECount = BTI0.Max;
3945 if (BTI0.Exact == BTI1.Exact)
3946 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003947 }
3948
3949 return BackedgeTakenInfo(BECount, MaxBECount);
3950 }
3951 if (BO->getOpcode() == Instruction::Or) {
3952 // Recurse on the operands of the or.
3953 BackedgeTakenInfo BTI0 =
3954 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3955 BackedgeTakenInfo BTI1 =
3956 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003957 const SCEV *BECount = getCouldNotCompute();
3958 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003959 if (L->contains(FBB)) {
3960 // Both conditions must be false for the loop to continue executing.
3961 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003962 if (BTI0.Exact == getCouldNotCompute() ||
3963 BTI1.Exact == getCouldNotCompute())
3964 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003965 else
3966 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003967 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003968 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003969 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003970 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003971 else
3972 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003973 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003974 // Both conditions must be false at the same time for the loop to exit.
3975 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003976 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003977 if (BTI0.Max == BTI1.Max)
3978 MaxBECount = BTI0.Max;
3979 if (BTI0.Exact == BTI1.Exact)
3980 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003981 }
3982
3983 return BackedgeTakenInfo(BECount, MaxBECount);
3984 }
3985 }
3986
3987 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003988 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003989 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3990 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003991
Dan Gohman00cb5b72010-02-19 18:12:07 +00003992 // Check for a constant condition. These are normally stripped out by
3993 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3994 // preserve the CFG and is temporarily leaving constant conditions
3995 // in place.
3996 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3997 if (L->contains(FBB) == !CI->getZExtValue())
3998 // The backedge is always taken.
3999 return getCouldNotCompute();
4000 else
4001 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004002 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004003 }
4004
Eli Friedman361e54d2009-05-09 12:32:42 +00004005 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004006 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4007}
4008
Chris Lattner992efb02011-01-09 22:26:35 +00004009static const SCEVAddRecExpr *
4010isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
4011 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
4012
4013 // The SCEV must be an addrec of this loop.
4014 if (!SA || SA->getLoop() != L || !SA->isAffine())
4015 return 0;
4016
4017 // The SCEV must be known to not wrap in some way to be interesting.
4018 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
4019 return 0;
4020
4021 // The stride must be a constant so that we know if it is striding up or down.
4022 if (!isa<SCEVConstant>(SA->getOperand(1)))
4023 return 0;
4024 return SA;
4025}
4026
4027/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
4028/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
4029/// and this function returns the expression to use for x-y. We know and take
4030/// advantage of the fact that this subtraction is only being used in a
4031/// comparison by zero context.
4032///
4033static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4034 const Loop *L, ScalarEvolution &SE) {
4035 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4036 // wrap (either NSW or NUW), then we know that the value will either become
4037 // the other one (and thus the loop terminates), that the loop will terminate
4038 // through some other exit condition first, or that the loop has undefined
4039 // behavior. This information is useful when the addrec has a stride that is
4040 // != 1 or -1, because it means we can't "miss" the exit value.
4041 //
4042 // In any of these three cases, it is safe to turn the exit condition into a
4043 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4044 // but since we know that the "end cannot be missed" we can force the
4045 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4046 // that the AddRec *cannot* pass zero.
4047
4048 // See if LHS and RHS are addrec's we can handle.
4049 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4050 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4051
4052 // If neither addrec is interesting, just return a minus.
4053 if (RHSA == 0 && LHSA == 0)
4054 return SE.getMinusSCEV(LHS, RHS);
4055
4056 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4057 if (RHSA && LHSA == 0) {
4058 // Safe because a-b === b-a for comparisons against zero.
4059 std::swap(LHS, RHS);
4060 std::swap(LHSA, RHSA);
4061 }
4062
4063 // Handle the case when only one is advancing in a non-overflowing way.
4064 if (RHSA == 0) {
4065 // If RHS is loop varying, then we can't predict when LHS will cross it.
4066 if (!SE.isLoopInvariant(RHS, L))
4067 return SE.getMinusSCEV(LHS, RHS);
4068
4069 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4070 // is counting up until it crosses RHS (which must be larger than LHS). If
4071 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4072 const ConstantInt *Stride =
4073 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4074 if (Stride->getValue().isNegative())
4075 std::swap(LHS, RHS);
4076
4077 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4078 }
4079
4080 // If both LHS and RHS are interesting, we have something like:
4081 // a+i*4 != b+i*8.
4082 const ConstantInt *LHSStride =
4083 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4084 const ConstantInt *RHSStride =
4085 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4086
4087 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004088 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004089 if (LHSStride == RHSStride)
4090 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4091
4092 // If the signs of the strides differ, then the negative stride is counting
4093 // down to the positive stride.
4094 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4095 if (RHSStride->getValue().isNegative())
4096 std::swap(LHS, RHS);
4097 } else {
4098 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4099 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4100 // whether the strides are positive or negative.
4101 if (RHSStride->getValue().slt(LHSStride->getValue()))
4102 std::swap(LHS, RHS);
4103 }
4104
4105 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4106}
4107
Dan Gohmana334aa72009-06-22 00:31:57 +00004108/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4109/// backedge of the specified loop will execute if its exit condition
4110/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4111ScalarEvolution::BackedgeTakenInfo
4112ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4113 ICmpInst *ExitCond,
4114 BasicBlock *TBB,
4115 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004116
Reid Spencere4d87aa2006-12-23 06:05:41 +00004117 // If the condition was exit on true, convert the condition to exit on false
4118 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004119 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004120 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004121 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004122 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004123
4124 // Handle common loops like: for (X = "string"; *X; ++X)
4125 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4126 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004127 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004128 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004129 if (ItCnt.hasAnyInfo())
4130 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004131 }
4132
Dan Gohman0bba49c2009-07-07 17:06:11 +00004133 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4134 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004135
4136 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004137 LHS = getSCEVAtScope(LHS, L);
4138 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004139
Dan Gohman64a845e2009-06-24 04:48:43 +00004140 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004141 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004142 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004143 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004144 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004145 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004146 }
4147
Dan Gohman03557dc2010-05-03 16:35:17 +00004148 // Simplify the operands before analyzing them.
4149 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4150
Chris Lattner53e677a2004-04-02 20:23:17 +00004151 // If we have a comparison of a chrec against a constant, try to use value
4152 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004153 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4154 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004155 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004156 // Form the constant range.
4157 ConstantRange CompRange(
4158 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004159
Dan Gohman0bba49c2009-07-07 17:06:11 +00004160 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004161 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004162 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004163
Chris Lattner53e677a2004-04-02 20:23:17 +00004164 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004165 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004166 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004167 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4168 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004169 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004170 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004171 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004172 case ICmpInst::ICMP_EQ: { // while (X == Y)
4173 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004174 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4175 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004176 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004177 }
4178 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004179 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4180 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004181 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004182 }
4183 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004184 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4185 getNotSCEV(RHS), L, true);
4186 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004187 break;
4188 }
4189 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004190 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4191 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004192 break;
4193 }
4194 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004195 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4196 getNotSCEV(RHS), L, false);
4197 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004198 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004199 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004200 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004201#if 0
David Greene25e0e872009-12-23 22:18:14 +00004202 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004203 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004204 dbgs() << "[unsigned] ";
4205 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004206 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004207 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004208#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004209 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004210 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004211 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004212 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004213}
4214
Chris Lattner673e02b2004-10-12 01:49:27 +00004215static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004216EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4217 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004218 const SCEV *InVal = SE.getConstant(C);
4219 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004220 assert(isa<SCEVConstant>(Val) &&
4221 "Evaluation of SCEV at constant didn't fold correctly?");
4222 return cast<SCEVConstant>(Val)->getValue();
4223}
4224
4225/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4226/// and a GEP expression (missing the pointer index) indexing into it, return
4227/// the addressed element of the initializer or null if the index expression is
4228/// invalid.
4229static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004230GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004231 const std::vector<ConstantInt*> &Indices) {
4232 Constant *Init = GV->getInitializer();
4233 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004234 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004235 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4236 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4237 Init = cast<Constant>(CS->getOperand(Idx));
4238 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4239 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4240 Init = cast<Constant>(CA->getOperand(Idx));
4241 } else if (isa<ConstantAggregateZero>(Init)) {
4242 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4243 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004244 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004245 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4246 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004247 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004248 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004249 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004250 }
4251 return 0;
4252 } else {
4253 return 0; // Unknown initializer type
4254 }
4255 }
4256 return Init;
4257}
4258
Dan Gohman46bdfb02009-02-24 18:55:53 +00004259/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4260/// 'icmp op load X, cst', try to see if we can compute the backedge
4261/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004262ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004263ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4264 LoadInst *LI,
4265 Constant *RHS,
4266 const Loop *L,
4267 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004268 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004269
4270 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004271 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004272 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004273 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004274
4275 // Make sure that it is really a constant global we are gepping, with an
4276 // initializer, and make sure the first IDX is really 0.
4277 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004278 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004279 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4280 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004281 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004282
4283 // Okay, we allow one non-constant index into the GEP instruction.
4284 Value *VarIdx = 0;
4285 std::vector<ConstantInt*> Indexes;
4286 unsigned VarIdxNum = 0;
4287 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4288 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4289 Indexes.push_back(CI);
4290 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004291 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004292 VarIdx = GEP->getOperand(i);
4293 VarIdxNum = i-2;
4294 Indexes.push_back(0);
4295 }
4296
4297 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4298 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004299 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004300 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004301
4302 // We can only recognize very limited forms of loop index expressions, in
4303 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004304 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004305 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004306 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4307 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004308 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004309
4310 unsigned MaxSteps = MaxBruteForceIterations;
4311 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004312 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004313 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004314 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004315
4316 // Form the GEP offset.
4317 Indexes[VarIdxNum] = Val;
4318
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004319 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004320 if (Result == 0) break; // Cannot compute!
4321
4322 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004323 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004324 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004325 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004326#if 0
David Greene25e0e872009-12-23 22:18:14 +00004327 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004328 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4329 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004330#endif
4331 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004332 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004333 }
4334 }
Dan Gohman1c343752009-06-27 21:21:31 +00004335 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004336}
4337
4338
Chris Lattner3221ad02004-04-17 22:58:41 +00004339/// CanConstantFold - Return true if we can constant fold an instruction of the
4340/// specified type, assuming that all operands were constants.
4341static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004342 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004343 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4344 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004345
Chris Lattner3221ad02004-04-17 22:58:41 +00004346 if (const CallInst *CI = dyn_cast<CallInst>(I))
4347 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004348 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004349 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004350}
4351
Chris Lattner3221ad02004-04-17 22:58:41 +00004352/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4353/// in the loop that V is derived from. We allow arbitrary operations along the
4354/// way, but the operands of an operation must either be constants or a value
4355/// derived from a constant PHI. If this expression does not fit with these
4356/// constraints, return null.
4357static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4358 // If this is not an instruction, or if this is an instruction outside of the
4359 // loop, it can't be derived from a loop PHI.
4360 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004361 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004362
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004363 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004364 if (L->getHeader() == I->getParent())
4365 return PN;
4366 else
4367 // We don't currently keep track of the control flow needed to evaluate
4368 // PHIs, so we cannot handle PHIs inside of loops.
4369 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004370 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004371
4372 // If we won't be able to constant fold this expression even if the operands
4373 // are constants, return early.
4374 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004375
Chris Lattner3221ad02004-04-17 22:58:41 +00004376 // Otherwise, we can evaluate this instruction if all of its operands are
4377 // constant or derived from a PHI node themselves.
4378 PHINode *PHI = 0;
4379 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004380 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004381 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4382 if (P == 0) return 0; // Not evolving from PHI
4383 if (PHI == 0)
4384 PHI = P;
4385 else if (PHI != P)
4386 return 0; // Evolving from multiple different PHIs.
4387 }
4388
4389 // This is a expression evolving from a constant PHI!
4390 return PHI;
4391}
4392
4393/// EvaluateExpression - Given an expression that passes the
4394/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4395/// in the loop has the value PHIVal. If we can't fold this expression for some
4396/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004397static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4398 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004399 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004400 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004401 Instruction *I = cast<Instruction>(V);
4402
Dan Gohman9d4588f2010-06-22 13:15:46 +00004403 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004404
4405 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004406 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004407 if (Operands[i] == 0) return 0;
4408 }
4409
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004410 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004411 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004412 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004413 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004414 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004415}
4416
4417/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4418/// in the header of its containing loop, we know the loop executes a
4419/// constant number of times, and the PHI node is just a recurrence
4420/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004421Constant *
4422ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004423 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004424 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004425 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004426 ConstantEvolutionLoopExitValue.find(PN);
4427 if (I != ConstantEvolutionLoopExitValue.end())
4428 return I->second;
4429
Dan Gohmane0567812010-04-08 23:03:40 +00004430 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004431 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4432
4433 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4434
4435 // Since the loop is canonicalized, the PHI node must have two entries. One
4436 // entry must be a constant (coming in from outside of the loop), and the
4437 // second must be derived from the same PHI.
4438 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4439 Constant *StartCST =
4440 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4441 if (StartCST == 0)
4442 return RetVal = 0; // Must be a constant.
4443
4444 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004445 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4446 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004447 return RetVal = 0; // Not derived from same PHI.
4448
4449 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004450 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004451 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004452
Dan Gohman46bdfb02009-02-24 18:55:53 +00004453 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004454 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004455 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4456 if (IterationNum == NumIterations)
4457 return RetVal = PHIVal; // Got exit value!
4458
4459 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004460 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004461 if (NextPHI == PHIVal)
4462 return RetVal = NextPHI; // Stopped evolving!
4463 if (NextPHI == 0)
4464 return 0; // Couldn't evaluate!
4465 PHIVal = NextPHI;
4466 }
4467}
4468
Dan Gohman07ad19b2009-07-27 16:09:48 +00004469/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004470/// constant number of times (the condition evolves only from constants),
4471/// try to evaluate a few iterations of the loop until we get the exit
4472/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004473/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004474const SCEV *
4475ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4476 Value *Cond,
4477 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004478 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004479 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004480
Dan Gohmanb92654d2010-06-19 14:17:24 +00004481 // If the loop is canonicalized, the PHI will have exactly two entries.
4482 // That's the only form we support here.
4483 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4484
4485 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004486 // second must be derived from the same PHI.
4487 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4488 Constant *StartCST =
4489 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004490 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004491
4492 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004493 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4494 !isa<Constant>(BEValue))
4495 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004496
4497 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4498 // the loop symbolically to determine when the condition gets a value of
4499 // "ExitWhen".
4500 unsigned IterationNum = 0;
4501 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4502 for (Constant *PHIVal = StartCST;
4503 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004504 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004505 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004506
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004507 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004508 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004509
Reid Spencere8019bb2007-03-01 07:25:48 +00004510 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004511 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004512 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004513 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004514
Chris Lattner3221ad02004-04-17 22:58:41 +00004515 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004516 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004517 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004518 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004519 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004520 }
4521
4522 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004523 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004524}
4525
Dan Gohmane7125f42009-09-03 15:00:26 +00004526/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004527/// at the specified scope in the program. The L value specifies a loop
4528/// nest to evaluate the expression at, where null is the top-level or a
4529/// specified loop is immediately inside of the loop.
4530///
4531/// This method can be used to compute the exit value for a variable defined
4532/// in a loop by querying what the value will hold in the parent loop.
4533///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004534/// In the case that a relevant loop exit value cannot be computed, the
4535/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004536const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004537 // Check to see if we've folded this expression at this loop before.
4538 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4539 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4540 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4541 if (!Pair.second)
4542 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004543
Dan Gohman42214892009-08-31 21:15:23 +00004544 // Otherwise compute it.
4545 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004546 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004547 return C;
4548}
4549
4550const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004551 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004552
Nick Lewycky3e630762008-02-20 06:48:22 +00004553 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004554 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004555 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004556 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004557 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004558 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4559 if (PHINode *PN = dyn_cast<PHINode>(I))
4560 if (PN->getParent() == LI->getHeader()) {
4561 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004562 // to see if the loop that contains it has a known backedge-taken
4563 // count. If so, we may be able to force computation of the exit
4564 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004565 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004566 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004567 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004568 // Okay, we know how many times the containing loop executes. If
4569 // this is a constant evolving PHI node, get the final value at
4570 // the specified iteration number.
4571 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004572 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004573 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004574 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004575 }
4576 }
4577
Reid Spencer09906f32006-12-04 21:33:23 +00004578 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004579 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004580 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004581 // result. This is particularly useful for computing loop exit values.
4582 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004583 SmallVector<Constant *, 4> Operands;
4584 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004585 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4586 Value *Op = I->getOperand(i);
4587 if (Constant *C = dyn_cast<Constant>(Op)) {
4588 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004589 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004590 }
Dan Gohman11046452010-06-29 23:43:06 +00004591
4592 // If any of the operands is non-constant and if they are
4593 // non-integer and non-pointer, don't even try to analyze them
4594 // with scev techniques.
4595 if (!isSCEVable(Op->getType()))
4596 return V;
4597
4598 const SCEV *OrigV = getSCEV(Op);
4599 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4600 MadeImprovement |= OrigV != OpV;
4601
4602 Constant *C = 0;
4603 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4604 C = SC->getValue();
4605 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4606 C = dyn_cast<Constant>(SU->getValue());
4607 if (!C) return V;
4608 if (C->getType() != Op->getType())
4609 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4610 Op->getType(),
4611 false),
4612 C, Op->getType());
4613 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004614 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004615
Dan Gohman11046452010-06-29 23:43:06 +00004616 // Check to see if getSCEVAtScope actually made an improvement.
4617 if (MadeImprovement) {
4618 Constant *C = 0;
4619 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4620 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4621 Operands[0], Operands[1], TD);
4622 else
4623 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4624 &Operands[0], Operands.size(), TD);
4625 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004626 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004627 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004628 }
4629 }
4630
4631 // This is some other type of SCEVUnknown, just return it.
4632 return V;
4633 }
4634
Dan Gohman622ed672009-05-04 22:02:23 +00004635 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004636 // Avoid performing the look-up in the common case where the specified
4637 // expression has no loop-variant portions.
4638 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004639 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004640 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004641 // Okay, at least one of these operands is loop variant but might be
4642 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004643 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4644 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004645 NewOps.push_back(OpAtScope);
4646
4647 for (++i; i != e; ++i) {
4648 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004649 NewOps.push_back(OpAtScope);
4650 }
4651 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004652 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004653 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004654 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004655 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004656 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004657 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004658 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004659 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004660 }
4661 }
4662 // If we got here, all operands are loop invariant.
4663 return Comm;
4664 }
4665
Dan Gohman622ed672009-05-04 22:02:23 +00004666 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004667 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4668 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004669 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4670 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004671 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004672 }
4673
4674 // If this is a loop recurrence for a loop that does not contain L, then we
4675 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004676 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004677 // First, attempt to evaluate each operand.
4678 // Avoid performing the look-up in the common case where the specified
4679 // expression has no loop-variant portions.
4680 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4681 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4682 if (OpAtScope == AddRec->getOperand(i))
4683 continue;
4684
4685 // Okay, at least one of these operands is loop variant but might be
4686 // foldable. Build a new instance of the folded commutative expression.
4687 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4688 AddRec->op_begin()+i);
4689 NewOps.push_back(OpAtScope);
4690 for (++i; i != e; ++i)
4691 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4692
4693 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4694 break;
4695 }
4696
4697 // If the scope is outside the addrec's loop, evaluate it by using the
4698 // loop exit value of the addrec.
4699 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004700 // To evaluate this recurrence, we need to know how many times the AddRec
4701 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004702 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004703 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004704
Eli Friedmanb42a6262008-08-04 23:49:06 +00004705 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004706 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004707 }
Dan Gohman11046452010-06-29 23:43:06 +00004708
Dan Gohmand594e6f2009-05-24 23:25:42 +00004709 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004710 }
4711
Dan Gohman622ed672009-05-04 22:02:23 +00004712 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004713 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004714 if (Op == Cast->getOperand())
4715 return Cast; // must be loop invariant
4716 return getZeroExtendExpr(Op, Cast->getType());
4717 }
4718
Dan Gohman622ed672009-05-04 22:02:23 +00004719 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004720 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004721 if (Op == Cast->getOperand())
4722 return Cast; // must be loop invariant
4723 return getSignExtendExpr(Op, Cast->getType());
4724 }
4725
Dan Gohman622ed672009-05-04 22:02:23 +00004726 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004727 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004728 if (Op == Cast->getOperand())
4729 return Cast; // must be loop invariant
4730 return getTruncateExpr(Op, Cast->getType());
4731 }
4732
Torok Edwinc23197a2009-07-14 16:55:14 +00004733 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004734 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004735}
4736
Dan Gohman66a7e852009-05-08 20:38:54 +00004737/// getSCEVAtScope - This is a convenience function which does
4738/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004739const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004740 return getSCEVAtScope(getSCEV(V), L);
4741}
4742
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004743/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4744/// following equation:
4745///
4746/// A * X = B (mod N)
4747///
4748/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4749/// A and B isn't important.
4750///
4751/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004752static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004753 ScalarEvolution &SE) {
4754 uint32_t BW = A.getBitWidth();
4755 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4756 assert(A != 0 && "A must be non-zero.");
4757
4758 // 1. D = gcd(A, N)
4759 //
4760 // The gcd of A and N may have only one prime factor: 2. The number of
4761 // trailing zeros in A is its multiplicity
4762 uint32_t Mult2 = A.countTrailingZeros();
4763 // D = 2^Mult2
4764
4765 // 2. Check if B is divisible by D.
4766 //
4767 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4768 // is not less than multiplicity of this prime factor for D.
4769 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004770 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004771
4772 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4773 // modulo (N / D).
4774 //
4775 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4776 // bit width during computations.
4777 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4778 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004779 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004780 APInt I = AD.multiplicativeInverse(Mod);
4781
4782 // 4. Compute the minimum unsigned root of the equation:
4783 // I * (B / D) mod (N / D)
4784 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4785
4786 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4787 // bits.
4788 return SE.getConstant(Result.trunc(BW));
4789}
Chris Lattner53e677a2004-04-02 20:23:17 +00004790
4791/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4792/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4793/// might be the same) or two SCEVCouldNotCompute objects.
4794///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004795static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004796SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004797 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004798 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4799 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4800 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004801
Chris Lattner53e677a2004-04-02 20:23:17 +00004802 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004803 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004804 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004805 return std::make_pair(CNC, CNC);
4806 }
4807
Reid Spencere8019bb2007-03-01 07:25:48 +00004808 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004809 const APInt &L = LC->getValue()->getValue();
4810 const APInt &M = MC->getValue()->getValue();
4811 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004812 APInt Two(BitWidth, 2);
4813 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004814
Dan Gohman64a845e2009-06-24 04:48:43 +00004815 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004816 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004817 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004818 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4819 // The B coefficient is M-N/2
4820 APInt B(M);
4821 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004822
Reid Spencere8019bb2007-03-01 07:25:48 +00004823 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004824 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004825
Reid Spencere8019bb2007-03-01 07:25:48 +00004826 // Compute the B^2-4ac term.
4827 APInt SqrtTerm(B);
4828 SqrtTerm *= B;
4829 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004830
Reid Spencere8019bb2007-03-01 07:25:48 +00004831 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4832 // integer value or else APInt::sqrt() will assert.
4833 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004834
Dan Gohman64a845e2009-06-24 04:48:43 +00004835 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004836 // The divisions must be performed as signed divisions.
4837 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004838 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004839 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004840 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004841 return std::make_pair(CNC, CNC);
4842 }
4843
Owen Andersone922c022009-07-22 00:24:57 +00004844 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004845
4846 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004847 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004848 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004849 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004850
Dan Gohman64a845e2009-06-24 04:48:43 +00004851 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004852 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004853 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004854}
4855
4856/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004857/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004858ScalarEvolution::BackedgeTakenInfo
4859ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004860 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004861 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004862 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004863 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004864 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004865 }
4866
Dan Gohman35738ac2009-05-04 22:30:44 +00004867 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004868 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004869 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004870
Chris Lattner7975e3e2011-01-09 22:39:48 +00004871 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4872 // the quadratic equation to solve it.
4873 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4874 std::pair<const SCEV *,const SCEV *> Roots =
4875 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004876 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4877 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004878 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004879#if 0
David Greene25e0e872009-12-23 22:18:14 +00004880 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004881 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004882#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004883 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004884 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004885 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4886 R1->getValue(),
4887 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004888 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004889 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004890
Chris Lattner53e677a2004-04-02 20:23:17 +00004891 // We can only use this value if the chrec ends up with an exact zero
4892 // value at this index. When solving for "X*X != 5", for example, we
4893 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004894 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004895 if (Val->isZero())
4896 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004897 }
4898 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004899 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004900 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004901
Chris Lattner7975e3e2011-01-09 22:39:48 +00004902 // Otherwise we can only handle this if it is affine.
4903 if (!AddRec->isAffine())
4904 return getCouldNotCompute();
4905
4906 // If this is an affine expression, the execution count of this branch is
4907 // the minimum unsigned root of the following equation:
4908 //
4909 // Start + Step*N = 0 (mod 2^BW)
4910 //
4911 // equivalent to:
4912 //
4913 // Step*N = -Start (mod 2^BW)
4914 //
4915 // where BW is the common bit width of Start and Step.
4916
4917 // Get the initial value for the loop.
4918 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4919 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4920
Chris Lattner53e1d452011-01-09 22:58:47 +00004921 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4922 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4923 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4924 // the stride is. As such, NUW addrec's will always become zero in
4925 // "start / -stride" steps, and we know that the division is exact.
4926 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004927 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004928 return getUDivExpr(Start, getNegativeSCEV(Step));
4929
Chris Lattner7975e3e2011-01-09 22:39:48 +00004930 // For now we handle only constant steps.
4931 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4932 if (StepC == 0)
4933 return getCouldNotCompute();
4934
4935 // First, handle unitary steps.
4936 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4937 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4938
4939 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4940 return Start; // N = Start (as unsigned)
4941
4942 // Then, try to solve the above equation provided that Start is constant.
4943 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4944 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4945 -StartC->getValue()->getValue(),
4946 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004947 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004948}
4949
4950/// HowFarToNonZero - Return the number of times a backedge checking the
4951/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004952/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004953ScalarEvolution::BackedgeTakenInfo
4954ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004955 // Loops that look like: while (X == 0) are very strange indeed. We don't
4956 // handle them yet except for the trivial case. This could be expanded in the
4957 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004958
Chris Lattner53e677a2004-04-02 20:23:17 +00004959 // If the value is a constant, check to see if it is known to be non-zero
4960 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004961 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004962 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004963 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004964 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004965 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004966
Chris Lattner53e677a2004-04-02 20:23:17 +00004967 // We could implement others, but I really doubt anyone writes loops like
4968 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004969 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004970}
4971
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004972/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4973/// (which may not be an immediate predecessor) which has exactly one
4974/// successor from which BB is reachable, or null if no such block is
4975/// found.
4976///
Dan Gohman005752b2010-04-15 16:19:08 +00004977std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004978ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004979 // If the block has a unique predecessor, then there is no path from the
4980 // predecessor to the block that does not go through the direct edge
4981 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004982 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004983 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004984
4985 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004986 // If the header has a unique predecessor outside the loop, it must be
4987 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004988 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004989 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004990
Dan Gohman005752b2010-04-15 16:19:08 +00004991 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004992}
4993
Dan Gohman763bad12009-06-20 00:35:32 +00004994/// HasSameValue - SCEV structural equivalence is usually sufficient for
4995/// testing whether two expressions are equal, however for the purposes of
4996/// looking for a condition guarding a loop, it can be useful to be a little
4997/// more general, since a front-end may have replicated the controlling
4998/// expression.
4999///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005000static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005001 // Quick check to see if they are the same SCEV.
5002 if (A == B) return true;
5003
5004 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5005 // two different instructions with the same value. Check for this case.
5006 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5007 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5008 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5009 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005010 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005011 return true;
5012
5013 // Otherwise assume they may have a different value.
5014 return false;
5015}
5016
Dan Gohmane9796502010-04-24 01:28:42 +00005017/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5018/// predicate Pred. Return true iff any changes were made.
5019///
5020bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5021 const SCEV *&LHS, const SCEV *&RHS) {
5022 bool Changed = false;
5023
5024 // Canonicalize a constant to the right side.
5025 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5026 // Check for both operands constant.
5027 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5028 if (ConstantExpr::getICmp(Pred,
5029 LHSC->getValue(),
5030 RHSC->getValue())->isNullValue())
5031 goto trivially_false;
5032 else
5033 goto trivially_true;
5034 }
5035 // Otherwise swap the operands to put the constant on the right.
5036 std::swap(LHS, RHS);
5037 Pred = ICmpInst::getSwappedPredicate(Pred);
5038 Changed = true;
5039 }
5040
5041 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005042 // addrec's loop, put the addrec on the left. Also make a dominance check,
5043 // as both operands could be addrecs loop-invariant in each other's loop.
5044 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5045 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005046 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005047 std::swap(LHS, RHS);
5048 Pred = ICmpInst::getSwappedPredicate(Pred);
5049 Changed = true;
5050 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005051 }
Dan Gohmane9796502010-04-24 01:28:42 +00005052
5053 // If there's a constant operand, canonicalize comparisons with boundary
5054 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5055 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5056 const APInt &RA = RC->getValue()->getValue();
5057 switch (Pred) {
5058 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5059 case ICmpInst::ICMP_EQ:
5060 case ICmpInst::ICMP_NE:
5061 break;
5062 case ICmpInst::ICMP_UGE:
5063 if ((RA - 1).isMinValue()) {
5064 Pred = ICmpInst::ICMP_NE;
5065 RHS = getConstant(RA - 1);
5066 Changed = true;
5067 break;
5068 }
5069 if (RA.isMaxValue()) {
5070 Pred = ICmpInst::ICMP_EQ;
5071 Changed = true;
5072 break;
5073 }
5074 if (RA.isMinValue()) goto trivially_true;
5075
5076 Pred = ICmpInst::ICMP_UGT;
5077 RHS = getConstant(RA - 1);
5078 Changed = true;
5079 break;
5080 case ICmpInst::ICMP_ULE:
5081 if ((RA + 1).isMaxValue()) {
5082 Pred = ICmpInst::ICMP_NE;
5083 RHS = getConstant(RA + 1);
5084 Changed = true;
5085 break;
5086 }
5087 if (RA.isMinValue()) {
5088 Pred = ICmpInst::ICMP_EQ;
5089 Changed = true;
5090 break;
5091 }
5092 if (RA.isMaxValue()) goto trivially_true;
5093
5094 Pred = ICmpInst::ICMP_ULT;
5095 RHS = getConstant(RA + 1);
5096 Changed = true;
5097 break;
5098 case ICmpInst::ICMP_SGE:
5099 if ((RA - 1).isMinSignedValue()) {
5100 Pred = ICmpInst::ICMP_NE;
5101 RHS = getConstant(RA - 1);
5102 Changed = true;
5103 break;
5104 }
5105 if (RA.isMaxSignedValue()) {
5106 Pred = ICmpInst::ICMP_EQ;
5107 Changed = true;
5108 break;
5109 }
5110 if (RA.isMinSignedValue()) goto trivially_true;
5111
5112 Pred = ICmpInst::ICMP_SGT;
5113 RHS = getConstant(RA - 1);
5114 Changed = true;
5115 break;
5116 case ICmpInst::ICMP_SLE:
5117 if ((RA + 1).isMaxSignedValue()) {
5118 Pred = ICmpInst::ICMP_NE;
5119 RHS = getConstant(RA + 1);
5120 Changed = true;
5121 break;
5122 }
5123 if (RA.isMinSignedValue()) {
5124 Pred = ICmpInst::ICMP_EQ;
5125 Changed = true;
5126 break;
5127 }
5128 if (RA.isMaxSignedValue()) goto trivially_true;
5129
5130 Pred = ICmpInst::ICMP_SLT;
5131 RHS = getConstant(RA + 1);
5132 Changed = true;
5133 break;
5134 case ICmpInst::ICMP_UGT:
5135 if (RA.isMinValue()) {
5136 Pred = ICmpInst::ICMP_NE;
5137 Changed = true;
5138 break;
5139 }
5140 if ((RA + 1).isMaxValue()) {
5141 Pred = ICmpInst::ICMP_EQ;
5142 RHS = getConstant(RA + 1);
5143 Changed = true;
5144 break;
5145 }
5146 if (RA.isMaxValue()) goto trivially_false;
5147 break;
5148 case ICmpInst::ICMP_ULT:
5149 if (RA.isMaxValue()) {
5150 Pred = ICmpInst::ICMP_NE;
5151 Changed = true;
5152 break;
5153 }
5154 if ((RA - 1).isMinValue()) {
5155 Pred = ICmpInst::ICMP_EQ;
5156 RHS = getConstant(RA - 1);
5157 Changed = true;
5158 break;
5159 }
5160 if (RA.isMinValue()) goto trivially_false;
5161 break;
5162 case ICmpInst::ICMP_SGT:
5163 if (RA.isMinSignedValue()) {
5164 Pred = ICmpInst::ICMP_NE;
5165 Changed = true;
5166 break;
5167 }
5168 if ((RA + 1).isMaxSignedValue()) {
5169 Pred = ICmpInst::ICMP_EQ;
5170 RHS = getConstant(RA + 1);
5171 Changed = true;
5172 break;
5173 }
5174 if (RA.isMaxSignedValue()) goto trivially_false;
5175 break;
5176 case ICmpInst::ICMP_SLT:
5177 if (RA.isMaxSignedValue()) {
5178 Pred = ICmpInst::ICMP_NE;
5179 Changed = true;
5180 break;
5181 }
5182 if ((RA - 1).isMinSignedValue()) {
5183 Pred = ICmpInst::ICMP_EQ;
5184 RHS = getConstant(RA - 1);
5185 Changed = true;
5186 break;
5187 }
5188 if (RA.isMinSignedValue()) goto trivially_false;
5189 break;
5190 }
5191 }
5192
5193 // Check for obvious equality.
5194 if (HasSameValue(LHS, RHS)) {
5195 if (ICmpInst::isTrueWhenEqual(Pred))
5196 goto trivially_true;
5197 if (ICmpInst::isFalseWhenEqual(Pred))
5198 goto trivially_false;
5199 }
5200
Dan Gohman03557dc2010-05-03 16:35:17 +00005201 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5202 // adding or subtracting 1 from one of the operands.
5203 switch (Pred) {
5204 case ICmpInst::ICMP_SLE:
5205 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5206 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5207 /*HasNUW=*/false, /*HasNSW=*/true);
5208 Pred = ICmpInst::ICMP_SLT;
5209 Changed = true;
5210 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005211 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005212 /*HasNUW=*/false, /*HasNSW=*/true);
5213 Pred = ICmpInst::ICMP_SLT;
5214 Changed = true;
5215 }
5216 break;
5217 case ICmpInst::ICMP_SGE:
5218 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005219 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005220 /*HasNUW=*/false, /*HasNSW=*/true);
5221 Pred = ICmpInst::ICMP_SGT;
5222 Changed = true;
5223 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5224 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5225 /*HasNUW=*/false, /*HasNSW=*/true);
5226 Pred = ICmpInst::ICMP_SGT;
5227 Changed = true;
5228 }
5229 break;
5230 case ICmpInst::ICMP_ULE:
5231 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005232 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005233 /*HasNUW=*/true, /*HasNSW=*/false);
5234 Pred = ICmpInst::ICMP_ULT;
5235 Changed = true;
5236 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005237 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005238 /*HasNUW=*/true, /*HasNSW=*/false);
5239 Pred = ICmpInst::ICMP_ULT;
5240 Changed = true;
5241 }
5242 break;
5243 case ICmpInst::ICMP_UGE:
5244 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005245 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005246 /*HasNUW=*/true, /*HasNSW=*/false);
5247 Pred = ICmpInst::ICMP_UGT;
5248 Changed = true;
5249 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005250 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005251 /*HasNUW=*/true, /*HasNSW=*/false);
5252 Pred = ICmpInst::ICMP_UGT;
5253 Changed = true;
5254 }
5255 break;
5256 default:
5257 break;
5258 }
5259
Dan Gohmane9796502010-04-24 01:28:42 +00005260 // TODO: More simplifications are possible here.
5261
5262 return Changed;
5263
5264trivially_true:
5265 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005266 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005267 Pred = ICmpInst::ICMP_EQ;
5268 return true;
5269
5270trivially_false:
5271 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005272 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005273 Pred = ICmpInst::ICMP_NE;
5274 return true;
5275}
5276
Dan Gohman85b05a22009-07-13 21:35:55 +00005277bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5278 return getSignedRange(S).getSignedMax().isNegative();
5279}
5280
5281bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5282 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5283}
5284
5285bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5286 return !getSignedRange(S).getSignedMin().isNegative();
5287}
5288
5289bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5290 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5291}
5292
5293bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5294 return isKnownNegative(S) || isKnownPositive(S);
5295}
5296
5297bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5298 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005299 // Canonicalize the inputs first.
5300 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5301
Dan Gohman53c66ea2010-04-11 22:16:48 +00005302 // If LHS or RHS is an addrec, check to see if the condition is true in
5303 // every iteration of the loop.
5304 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5305 if (isLoopEntryGuardedByCond(
5306 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5307 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005308 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005309 return true;
5310 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5311 if (isLoopEntryGuardedByCond(
5312 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5313 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005314 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005315 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005316
Dan Gohman53c66ea2010-04-11 22:16:48 +00005317 // Otherwise see what can be done with known constant ranges.
5318 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5319}
5320
5321bool
5322ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5323 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005324 if (HasSameValue(LHS, RHS))
5325 return ICmpInst::isTrueWhenEqual(Pred);
5326
Dan Gohman53c66ea2010-04-11 22:16:48 +00005327 // This code is split out from isKnownPredicate because it is called from
5328 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005329 switch (Pred) {
5330 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005331 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005332 break;
5333 case ICmpInst::ICMP_SGT:
5334 Pred = ICmpInst::ICMP_SLT;
5335 std::swap(LHS, RHS);
5336 case ICmpInst::ICMP_SLT: {
5337 ConstantRange LHSRange = getSignedRange(LHS);
5338 ConstantRange RHSRange = getSignedRange(RHS);
5339 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5340 return true;
5341 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5342 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005343 break;
5344 }
5345 case ICmpInst::ICMP_SGE:
5346 Pred = ICmpInst::ICMP_SLE;
5347 std::swap(LHS, RHS);
5348 case ICmpInst::ICMP_SLE: {
5349 ConstantRange LHSRange = getSignedRange(LHS);
5350 ConstantRange RHSRange = getSignedRange(RHS);
5351 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5352 return true;
5353 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5354 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005355 break;
5356 }
5357 case ICmpInst::ICMP_UGT:
5358 Pred = ICmpInst::ICMP_ULT;
5359 std::swap(LHS, RHS);
5360 case ICmpInst::ICMP_ULT: {
5361 ConstantRange LHSRange = getUnsignedRange(LHS);
5362 ConstantRange RHSRange = getUnsignedRange(RHS);
5363 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5364 return true;
5365 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5366 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005367 break;
5368 }
5369 case ICmpInst::ICMP_UGE:
5370 Pred = ICmpInst::ICMP_ULE;
5371 std::swap(LHS, RHS);
5372 case ICmpInst::ICMP_ULE: {
5373 ConstantRange LHSRange = getUnsignedRange(LHS);
5374 ConstantRange RHSRange = getUnsignedRange(RHS);
5375 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5376 return true;
5377 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5378 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005379 break;
5380 }
5381 case ICmpInst::ICMP_NE: {
5382 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5383 return true;
5384 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5385 return true;
5386
5387 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5388 if (isKnownNonZero(Diff))
5389 return true;
5390 break;
5391 }
5392 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005393 // The check at the top of the function catches the case where
5394 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005395 break;
5396 }
5397 return false;
5398}
5399
5400/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5401/// protected by a conditional between LHS and RHS. This is used to
5402/// to eliminate casts.
5403bool
5404ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5405 ICmpInst::Predicate Pred,
5406 const SCEV *LHS, const SCEV *RHS) {
5407 // Interpret a null as meaning no loop, where there is obviously no guard
5408 // (interprocedural conditions notwithstanding).
5409 if (!L) return true;
5410
5411 BasicBlock *Latch = L->getLoopLatch();
5412 if (!Latch)
5413 return false;
5414
5415 BranchInst *LoopContinuePredicate =
5416 dyn_cast<BranchInst>(Latch->getTerminator());
5417 if (!LoopContinuePredicate ||
5418 LoopContinuePredicate->isUnconditional())
5419 return false;
5420
Dan Gohmanaf08a362010-08-10 23:46:30 +00005421 return isImpliedCond(Pred, LHS, RHS,
5422 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005423 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005424}
5425
Dan Gohman3948d0b2010-04-11 19:27:13 +00005426/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005427/// by a conditional between LHS and RHS. This is used to help avoid max
5428/// expressions in loop trip counts, and to eliminate casts.
5429bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005430ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5431 ICmpInst::Predicate Pred,
5432 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005433 // Interpret a null as meaning no loop, where there is obviously no guard
5434 // (interprocedural conditions notwithstanding).
5435 if (!L) return false;
5436
Dan Gohman859b4822009-05-18 15:36:09 +00005437 // Starting at the loop predecessor, climb up the predecessor chain, as long
5438 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005439 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005440 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005441 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005442 Pair.first;
5443 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005444
5445 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005446 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005447 if (!LoopEntryPredicate ||
5448 LoopEntryPredicate->isUnconditional())
5449 continue;
5450
Dan Gohmanaf08a362010-08-10 23:46:30 +00005451 if (isImpliedCond(Pred, LHS, RHS,
5452 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005453 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005454 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005455 }
5456
Dan Gohman38372182008-08-12 20:17:31 +00005457 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005458}
5459
Dan Gohman0f4b2852009-07-21 23:03:19 +00005460/// isImpliedCond - Test whether the condition described by Pred, LHS,
5461/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005462bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005463 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005464 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005465 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005466 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005467 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005468 if (BO->getOpcode() == Instruction::And) {
5469 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005470 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5471 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005472 } else if (BO->getOpcode() == Instruction::Or) {
5473 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005474 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5475 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005476 }
5477 }
5478
Dan Gohmanaf08a362010-08-10 23:46:30 +00005479 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005480 if (!ICI) return false;
5481
Dan Gohman85b05a22009-07-13 21:35:55 +00005482 // Bail if the ICmp's operands' types are wider than the needed type
5483 // before attempting to call getSCEV on them. This avoids infinite
5484 // recursion, since the analysis of widening casts can require loop
5485 // exit condition information for overflow checking, which would
5486 // lead back here.
5487 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005488 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005489 return false;
5490
Dan Gohman0f4b2852009-07-21 23:03:19 +00005491 // Now that we found a conditional branch that dominates the loop, check to
5492 // see if it is the comparison we are looking for.
5493 ICmpInst::Predicate FoundPred;
5494 if (Inverse)
5495 FoundPred = ICI->getInversePredicate();
5496 else
5497 FoundPred = ICI->getPredicate();
5498
5499 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5500 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005501
5502 // Balance the types. The case where FoundLHS' type is wider than
5503 // LHS' type is checked for above.
5504 if (getTypeSizeInBits(LHS->getType()) >
5505 getTypeSizeInBits(FoundLHS->getType())) {
5506 if (CmpInst::isSigned(Pred)) {
5507 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5508 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5509 } else {
5510 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5511 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5512 }
5513 }
5514
Dan Gohman0f4b2852009-07-21 23:03:19 +00005515 // Canonicalize the query to match the way instcombine will have
5516 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005517 if (SimplifyICmpOperands(Pred, LHS, RHS))
5518 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005519 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005520 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5521 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005522 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005523
5524 // Check to see if we can make the LHS or RHS match.
5525 if (LHS == FoundRHS || RHS == FoundLHS) {
5526 if (isa<SCEVConstant>(RHS)) {
5527 std::swap(FoundLHS, FoundRHS);
5528 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5529 } else {
5530 std::swap(LHS, RHS);
5531 Pred = ICmpInst::getSwappedPredicate(Pred);
5532 }
5533 }
5534
5535 // Check whether the found predicate is the same as the desired predicate.
5536 if (FoundPred == Pred)
5537 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5538
5539 // Check whether swapping the found predicate makes it the same as the
5540 // desired predicate.
5541 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5542 if (isa<SCEVConstant>(RHS))
5543 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5544 else
5545 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5546 RHS, LHS, FoundLHS, FoundRHS);
5547 }
5548
5549 // Check whether the actual condition is beyond sufficient.
5550 if (FoundPred == ICmpInst::ICMP_EQ)
5551 if (ICmpInst::isTrueWhenEqual(Pred))
5552 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5553 return true;
5554 if (Pred == ICmpInst::ICMP_NE)
5555 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5556 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5557 return true;
5558
5559 // Otherwise assume the worst.
5560 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005561}
5562
Dan Gohman0f4b2852009-07-21 23:03:19 +00005563/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005564/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005565/// and FoundRHS is true.
5566bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5567 const SCEV *LHS, const SCEV *RHS,
5568 const SCEV *FoundLHS,
5569 const SCEV *FoundRHS) {
5570 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5571 FoundLHS, FoundRHS) ||
5572 // ~x < ~y --> x > y
5573 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5574 getNotSCEV(FoundRHS),
5575 getNotSCEV(FoundLHS));
5576}
5577
5578/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005579/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005580/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005581bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005582ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5583 const SCEV *LHS, const SCEV *RHS,
5584 const SCEV *FoundLHS,
5585 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005586 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005587 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5588 case ICmpInst::ICMP_EQ:
5589 case ICmpInst::ICMP_NE:
5590 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5591 return true;
5592 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005593 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005594 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005595 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5596 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005597 return true;
5598 break;
5599 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005600 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005601 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5602 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005603 return true;
5604 break;
5605 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005606 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005607 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5608 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005609 return true;
5610 break;
5611 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005612 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005613 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5614 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005615 return true;
5616 break;
5617 }
5618
5619 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005620}
5621
Dan Gohman51f53b72009-06-21 23:46:38 +00005622/// getBECount - Subtract the end and start values and divide by the step,
5623/// rounding up, to get the number of times the backedge is executed. Return
5624/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005625const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005626 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005627 const SCEV *Step,
5628 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005629 assert(!isKnownNegative(Step) &&
5630 "This code doesn't handle negative strides yet!");
5631
Dan Gohman51f53b72009-06-21 23:46:38 +00005632 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005633 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005634 const SCEV *Diff = getMinusSCEV(End, Start);
5635 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005636
5637 // Add an adjustment to the difference between End and Start so that
5638 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005639 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005640
Dan Gohman1f96e672009-09-17 18:05:20 +00005641 if (!NoWrap) {
5642 // Check Add for unsigned overflow.
5643 // TODO: More sophisticated things could be done here.
5644 const Type *WideTy = IntegerType::get(getContext(),
5645 getTypeSizeInBits(Ty) + 1);
5646 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5647 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5648 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5649 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5650 return getCouldNotCompute();
5651 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005652
5653 return getUDivExpr(Add, Step);
5654}
5655
Chris Lattnerdb25de42005-08-15 23:33:51 +00005656/// HowManyLessThans - Return the number of times a backedge containing the
5657/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005658/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005659ScalarEvolution::BackedgeTakenInfo
5660ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5661 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005662 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005663 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005664
Dan Gohman35738ac2009-05-04 22:30:44 +00005665 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005666 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005667 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005668
Dan Gohman1f96e672009-09-17 18:05:20 +00005669 // Check to see if we have a flag which makes analysis easy.
5670 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5671 AddRec->hasNoUnsignedWrap();
5672
Chris Lattnerdb25de42005-08-15 23:33:51 +00005673 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005674 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005675 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005676
Dan Gohman52fddd32010-01-26 04:40:18 +00005677 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005678 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005679 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005680 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005681 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005682 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005683 // value and past the maximum value for its type in a single step.
5684 // Note that it's not sufficient to check NoWrap here, because even
5685 // though the value after a wrap is undefined, it's not undefined
5686 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005687 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005688 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005689 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005690 if (isSigned) {
5691 APInt Max = APInt::getSignedMaxValue(BitWidth);
5692 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5693 .slt(getSignedRange(RHS).getSignedMax()))
5694 return getCouldNotCompute();
5695 } else {
5696 APInt Max = APInt::getMaxValue(BitWidth);
5697 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5698 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5699 return getCouldNotCompute();
5700 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005701 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005702 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005703 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005704
Dan Gohmana1af7572009-04-30 20:47:05 +00005705 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5706 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5707 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005708 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005709
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005710 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005711 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005712
Dan Gohmana1af7572009-04-30 20:47:05 +00005713 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005714 const SCEV *MinStart = getConstant(isSigned ?
5715 getSignedRange(Start).getSignedMin() :
5716 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005717
Dan Gohmana1af7572009-04-30 20:47:05 +00005718 // If we know that the condition is true in order to enter the loop,
5719 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005720 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5721 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005722 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005723 if (!isLoopEntryGuardedByCond(L,
5724 isSigned ? ICmpInst::ICMP_SLT :
5725 ICmpInst::ICMP_ULT,
5726 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005727 End = isSigned ? getSMaxExpr(RHS, Start)
5728 : getUMaxExpr(RHS, Start);
5729
5730 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005731 const SCEV *MaxEnd = getConstant(isSigned ?
5732 getSignedRange(End).getSignedMax() :
5733 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005734
Dan Gohman52fddd32010-01-26 04:40:18 +00005735 // If MaxEnd is within a step of the maximum integer value in its type,
5736 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005737 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005738 // compute the correct value.
5739 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005740 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005741 MaxEnd = isSigned ?
5742 getSMinExpr(MaxEnd,
5743 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5744 StepMinusOne)) :
5745 getUMinExpr(MaxEnd,
5746 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5747 StepMinusOne));
5748
Dan Gohmana1af7572009-04-30 20:47:05 +00005749 // Finally, we subtract these two values and divide, rounding up, to get
5750 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005751 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005752
5753 // The maximum backedge count is similar, except using the minimum start
5754 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005755 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005756
5757 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005758 }
5759
Dan Gohman1c343752009-06-27 21:21:31 +00005760 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005761}
5762
Chris Lattner53e677a2004-04-02 20:23:17 +00005763/// getNumIterationsInRange - Return the number of iterations of this loop that
5764/// produce values in the specified constant range. Another way of looking at
5765/// this is that it returns the first iteration number where the value is not in
5766/// the condition, thus computing the exit count. If the iteration count can't
5767/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005768const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005769 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005770 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005771 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005772
5773 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005774 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005775 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005776 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005777 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005778 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005779 if (const SCEVAddRecExpr *ShiftedAddRec =
5780 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005781 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005782 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005783 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005784 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005785 }
5786
5787 // The only time we can solve this is when we have all constant indices.
5788 // Otherwise, we cannot determine the overflow conditions.
5789 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5790 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005791 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005792
5793
5794 // Okay at this point we know that all elements of the chrec are constants and
5795 // that the start element is zero.
5796
5797 // First check to see if the range contains zero. If not, the first
5798 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005799 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005800 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005801 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005802
Chris Lattner53e677a2004-04-02 20:23:17 +00005803 if (isAffine()) {
5804 // If this is an affine expression then we have this situation:
5805 // Solve {0,+,A} in Range === Ax in Range
5806
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005807 // We know that zero is in the range. If A is positive then we know that
5808 // the upper value of the range must be the first possible exit value.
5809 // If A is negative then the lower of the range is the last possible loop
5810 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005811 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005812 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5813 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005814
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005815 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005816 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005817 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005818
5819 // Evaluate at the exit value. If we really did fall out of the valid
5820 // range, then we computed our trip count, otherwise wrap around or other
5821 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005822 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005823 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005824 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005825
5826 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005827 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005828 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005829 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005830 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005831 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005832 } else if (isQuadratic()) {
5833 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5834 // quadratic equation to solve it. To do this, we must frame our problem in
5835 // terms of figuring out when zero is crossed, instead of when
5836 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005837 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005838 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005839 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005840
5841 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005842 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005843 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005844 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5845 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005846 if (R1) {
5847 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005848 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005849 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005850 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005851 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005852 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005853
Chris Lattner53e677a2004-04-02 20:23:17 +00005854 // Make sure the root is not off by one. The returned iteration should
5855 // not be in the range, but the previous one should be. When solving
5856 // for "X*X < 5", for example, we should not return a root of 2.
5857 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005858 R1->getValue(),
5859 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005860 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005861 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005862 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005863 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005864
Dan Gohman246b2562007-10-22 18:31:58 +00005865 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005866 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005867 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005868 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005869 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005870
Chris Lattner53e677a2004-04-02 20:23:17 +00005871 // If R1 was not in the range, then it is a good return value. Make
5872 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005873 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005874 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005875 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005876 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005877 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005878 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005879 }
5880 }
5881 }
5882
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005883 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005884}
5885
5886
5887
5888//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005889// SCEVCallbackVH Class Implementation
5890//===----------------------------------------------------------------------===//
5891
Dan Gohman1959b752009-05-19 19:22:47 +00005892void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005893 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005894 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5895 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005896 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005897 // this now dangles!
5898}
5899
Dan Gohman81f91212010-07-28 01:09:07 +00005900void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005901 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005902
Dan Gohman35738ac2009-05-04 22:30:44 +00005903 // Forget all the expressions associated with users of the old value,
5904 // so that future queries will recompute the expressions using the new
5905 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005906 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005907 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005908 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005909 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5910 UI != UE; ++UI)
5911 Worklist.push_back(*UI);
5912 while (!Worklist.empty()) {
5913 User *U = Worklist.pop_back_val();
5914 // Deleting the Old value will cause this to dangle. Postpone
5915 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005916 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005917 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005918 if (!Visited.insert(U))
5919 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005920 if (PHINode *PN = dyn_cast<PHINode>(U))
5921 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005922 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005923 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5924 UI != UE; ++UI)
5925 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005926 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005927 // Delete the Old value.
5928 if (PHINode *PN = dyn_cast<PHINode>(Old))
5929 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005930 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005931 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005932}
5933
Dan Gohman1959b752009-05-19 19:22:47 +00005934ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005935 : CallbackVH(V), SE(se) {}
5936
5937//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005938// ScalarEvolution Class Implementation
5939//===----------------------------------------------------------------------===//
5940
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005941ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005942 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005943 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005944}
5945
Chris Lattner53e677a2004-04-02 20:23:17 +00005946bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005947 this->F = &F;
5948 LI = &getAnalysis<LoopInfo>();
5949 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005950 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005951 return false;
5952}
5953
5954void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005955 // Iterate through all the SCEVUnknown instances and call their
5956 // destructors, so that they release their references to their values.
5957 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5958 U->~SCEVUnknown();
5959 FirstUnknown = 0;
5960
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005961 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005962 BackedgeTakenCounts.clear();
5963 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005964 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005965 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005966 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005967 UnsignedRanges.clear();
5968 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005969 UniqueSCEVs.clear();
5970 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005971}
5972
5973void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5974 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005975 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005976 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005977}
5978
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005979bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005980 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005981}
5982
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005983static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005984 const Loop *L) {
5985 // Print all inner loops first
5986 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5987 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005988
Dan Gohman30733292010-01-09 18:17:45 +00005989 OS << "Loop ";
5990 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5991 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005992
Dan Gohman5d984912009-12-18 01:14:11 +00005993 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005994 L->getExitBlocks(ExitBlocks);
5995 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005996 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005997
Dan Gohman46bdfb02009-02-24 18:55:53 +00005998 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5999 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006000 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006001 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006002 }
6003
Dan Gohman30733292010-01-09 18:17:45 +00006004 OS << "\n"
6005 "Loop ";
6006 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6007 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006008
6009 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6010 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6011 } else {
6012 OS << "Unpredictable max backedge-taken count. ";
6013 }
6014
6015 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006016}
6017
Dan Gohman5d984912009-12-18 01:14:11 +00006018void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006019 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006020 // out SCEV values of all instructions that are interesting. Doing
6021 // this potentially causes it to create new SCEV objects though,
6022 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006023 // observable from outside the class though, so casting away the
6024 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006025 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006026
Dan Gohman30733292010-01-09 18:17:45 +00006027 OS << "Classifying expressions for: ";
6028 WriteAsOperand(OS, F, /*PrintType=*/false);
6029 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006030 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006031 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006032 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006033 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006034 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006035 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006036
Dan Gohman0c689c52009-06-19 17:49:54 +00006037 const Loop *L = LI->getLoopFor((*I).getParent());
6038
Dan Gohman0bba49c2009-07-07 17:06:11 +00006039 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006040 if (AtUse != SV) {
6041 OS << " --> ";
6042 AtUse->print(OS);
6043 }
6044
6045 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006046 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006047 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006048 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006049 OS << "<<Unknown>>";
6050 } else {
6051 OS << *ExitValue;
6052 }
6053 }
6054
Chris Lattner53e677a2004-04-02 20:23:17 +00006055 OS << "\n";
6056 }
6057
Dan Gohman30733292010-01-09 18:17:45 +00006058 OS << "Determining loop execution counts for: ";
6059 WriteAsOperand(OS, F, /*PrintType=*/false);
6060 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006061 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6062 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006063}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006064
Dan Gohman714b5292010-11-17 23:21:44 +00006065ScalarEvolution::LoopDisposition
6066ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6067 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6068 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6069 Values.insert(std::make_pair(L, LoopVariant));
6070 if (!Pair.second)
6071 return Pair.first->second;
6072
6073 LoopDisposition D = computeLoopDisposition(S, L);
6074 return LoopDispositions[S][L] = D;
6075}
6076
6077ScalarEvolution::LoopDisposition
6078ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006079 switch (S->getSCEVType()) {
6080 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006081 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006082 case scTruncate:
6083 case scZeroExtend:
6084 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006085 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006086 case scAddRecExpr: {
6087 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6088
Dan Gohman714b5292010-11-17 23:21:44 +00006089 // If L is the addrec's loop, it's computable.
6090 if (AR->getLoop() == L)
6091 return LoopComputable;
6092
Dan Gohman17ead4f2010-11-17 21:23:15 +00006093 // Add recurrences are never invariant in the function-body (null loop).
6094 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006095 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006096
6097 // This recurrence is variant w.r.t. L if L contains AR's loop.
6098 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006099 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006100
6101 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6102 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006103 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006104
6105 // This recurrence is variant w.r.t. L if any of its operands
6106 // are variant.
6107 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6108 I != E; ++I)
6109 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006110 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006111
6112 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006113 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006114 }
6115 case scAddExpr:
6116 case scMulExpr:
6117 case scUMaxExpr:
6118 case scSMaxExpr: {
6119 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006120 bool HasVarying = false;
6121 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6122 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006123 LoopDisposition D = getLoopDisposition(*I, L);
6124 if (D == LoopVariant)
6125 return LoopVariant;
6126 if (D == LoopComputable)
6127 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006128 }
Dan Gohman714b5292010-11-17 23:21:44 +00006129 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006130 }
6131 case scUDivExpr: {
6132 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006133 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6134 if (LD == LoopVariant)
6135 return LoopVariant;
6136 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6137 if (RD == LoopVariant)
6138 return LoopVariant;
6139 return (LD == LoopInvariant && RD == LoopInvariant) ?
6140 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006141 }
6142 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006143 // All non-instruction values are loop invariant. All instructions are loop
6144 // invariant if they are not contained in the specified loop.
6145 // Instructions are never considered invariant in the function body
6146 // (null loop) because they are defined within the "loop".
6147 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6148 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6149 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006150 case scCouldNotCompute:
6151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006152 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006153 default: break;
6154 }
6155 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006156 return LoopVariant;
6157}
6158
6159bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6160 return getLoopDisposition(S, L) == LoopInvariant;
6161}
6162
6163bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6164 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006165}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006166
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006167ScalarEvolution::BlockDisposition
6168ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6169 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6170 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6171 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6172 if (!Pair.second)
6173 return Pair.first->second;
6174
6175 BlockDisposition D = computeBlockDisposition(S, BB);
6176 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006177}
6178
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006179ScalarEvolution::BlockDisposition
6180ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006181 switch (S->getSCEVType()) {
6182 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006183 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006184 case scTruncate:
6185 case scZeroExtend:
6186 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006187 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006188 case scAddRecExpr: {
6189 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006190 // to test for proper dominance too, because the instruction which
6191 // produces the addrec's value is a PHI, and a PHI effectively properly
6192 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006193 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6194 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006195 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006196 }
6197 // FALL THROUGH into SCEVNAryExpr handling.
6198 case scAddExpr:
6199 case scMulExpr:
6200 case scUMaxExpr:
6201 case scSMaxExpr: {
6202 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006203 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006204 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006205 I != E; ++I) {
6206 BlockDisposition D = getBlockDisposition(*I, BB);
6207 if (D == DoesNotDominateBlock)
6208 return DoesNotDominateBlock;
6209 if (D == DominatesBlock)
6210 Proper = false;
6211 }
6212 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006213 }
6214 case scUDivExpr: {
6215 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006216 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6217 BlockDisposition LD = getBlockDisposition(LHS, BB);
6218 if (LD == DoesNotDominateBlock)
6219 return DoesNotDominateBlock;
6220 BlockDisposition RD = getBlockDisposition(RHS, BB);
6221 if (RD == DoesNotDominateBlock)
6222 return DoesNotDominateBlock;
6223 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6224 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006225 }
6226 case scUnknown:
6227 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006228 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6229 if (I->getParent() == BB)
6230 return DominatesBlock;
6231 if (DT->properlyDominates(I->getParent(), BB))
6232 return ProperlyDominatesBlock;
6233 return DoesNotDominateBlock;
6234 }
6235 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006236 case scCouldNotCompute:
6237 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006238 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006239 default: break;
6240 }
6241 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006242 return DoesNotDominateBlock;
6243}
6244
6245bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6246 return getBlockDisposition(S, BB) >= DominatesBlock;
6247}
6248
6249bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6250 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006251}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006252
6253bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6254 switch (S->getSCEVType()) {
6255 case scConstant:
6256 return false;
6257 case scTruncate:
6258 case scZeroExtend:
6259 case scSignExtend: {
6260 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6261 const SCEV *CastOp = Cast->getOperand();
6262 return Op == CastOp || hasOperand(CastOp, Op);
6263 }
6264 case scAddRecExpr:
6265 case scAddExpr:
6266 case scMulExpr:
6267 case scUMaxExpr:
6268 case scSMaxExpr: {
6269 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6270 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6271 I != E; ++I) {
6272 const SCEV *NAryOp = *I;
6273 if (NAryOp == Op || hasOperand(NAryOp, Op))
6274 return true;
6275 }
6276 return false;
6277 }
6278 case scUDivExpr: {
6279 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6280 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6281 return LHS == Op || hasOperand(LHS, Op) ||
6282 RHS == Op || hasOperand(RHS, Op);
6283 }
6284 case scUnknown:
6285 return false;
6286 case scCouldNotCompute:
6287 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6288 return false;
6289 default: break;
6290 }
6291 llvm_unreachable("Unknown SCEV kind!");
6292 return false;
6293}
Dan Gohman56a75682010-11-17 23:28:48 +00006294
6295void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6296 ValuesAtScopes.erase(S);
6297 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006298 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006299 UnsignedRanges.erase(S);
6300 SignedRanges.erase(S);
6301}