blob: 9ab98ce6175539d7bd272e451e17a0820c232ddd [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000020#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000022#include "llvm/Analysis/MemoryBuiltins.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000029#include "llvm/IR/DerivedTypes.h"
Hal Finkel60db0582014-09-07 18:57:58 +000030#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000031#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000039#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000040#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000041#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000042#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000043#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000044#include <algorithm>
45#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000046#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000047using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000048using namespace llvm::PatternMatch;
49
50const unsigned MaxDepth = 6;
51
Philip Reames1c292272015-03-10 22:43:20 +000052// Controls the number of uses of the value searched for possible
53// dominating comparisons.
54static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000055 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000056
Nikolai Bozhenov6710ba02017-06-28 12:15:13 +000057// This optimization is known to cause performance regressions is some cases,
58// keep it under a temporary flag for now.
59static cl::opt<bool>
60DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
61 cl::Hidden, cl::init(true));
62
Craig Topper6b3940a2017-05-03 22:25:19 +000063/// Returns the bitwidth of the given scalar or pointer type. For vector types,
64/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000065static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000066 if (unsigned BitWidth = Ty->getScalarSizeInBits())
67 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000068
Mehdi Aminia28d91d2015-03-10 02:37:25 +000069 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000070}
Chris Lattner965c7692008-06-02 01:18:21 +000071
Benjamin Kramercfd8d902014-09-12 08:56:53 +000072namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000073// Simplifying using an assume can only be done in a particular control-flow
74// context (the context instruction provides that context). If an assume and
75// the context instruction are not in the same block then the DT helps in
76// figuring out if we can use it.
77struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000078 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000079 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000080 const Instruction *CxtI;
81 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000082 // Unlike the other analyses, this may be a nullptr because not all clients
83 // provide it currently.
84 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000085
Matthias Braun37e5d792016-01-28 06:29:33 +000086 /// Set of assumptions that should be excluded from further queries.
87 /// This is because of the potential for mutual recursion to cause
88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
89 /// classic case of this is assume(x = y), which will attempt to determine
90 /// bits in x from bits in y, which will attempt to determine bits in y from
91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +000092 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
93 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +000094 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000095 unsigned NumExcluded;
96
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000098 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000100
101 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
103 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000104 Excluded = Q.Excluded;
105 Excluded[NumExcluded++] = NewExcl;
106 assert(NumExcluded <= Excluded.size());
107 }
108
109 bool isExcluded(const Value *Value) const {
110 if (NumExcluded == 0)
111 return false;
112 auto End = Excluded.begin() + NumExcluded;
113 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000114 }
115};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000116} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000117
Sanjay Patel547e9752014-11-04 16:09:50 +0000118// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000119// the preferred context instruction (if any).
120static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
121 // If we've been provided with a context instruction, then use that (provided
122 // it has been inserted).
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 // If the value is really an already-inserted instruction, then use that.
127 CxtI = dyn_cast<Instruction>(V);
128 if (CxtI && CxtI->getParent())
129 return CxtI;
130
131 return nullptr;
132}
133
Craig Topperb45eabc2017-04-26 16:39:58 +0000134static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000136
Craig Topperb45eabc2017-04-26 16:39:58 +0000137void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000138 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000139 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000140 const DominatorTree *DT,
141 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000144}
145
Craig Topper6e11a052017-05-08 16:22:48 +0000146static KnownBits computeKnownBits(const Value *V, unsigned Depth,
147 const Query &Q);
148
149KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
150 unsigned Depth, AssumptionCache *AC,
151 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000152 const DominatorTree *DT,
153 OptimizationRemarkEmitter *ORE) {
154 return ::computeKnownBits(V, Depth,
155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000156}
157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
159 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000161 const DominatorTree *DT) {
162 assert(LHS->getType() == RHS->getType() &&
163 "LHS and RHS should have the same type");
164 assert(LHS->getType()->isIntOrIntVectorTy() &&
165 "LHS and RHS should be integers");
166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 KnownBits LHSKnown(IT->getBitWidth());
168 KnownBits RHSKnown(IT->getBitWidth());
169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000172}
173
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000175bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
176 for (const User *U : CxtI->users()) {
177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
178 if (IC->isEquality())
179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
180 if (C->isNullValue())
181 continue;
182 return false;
183 }
184 return true;
185}
186
Pete Cooper35b00d52016-08-13 01:05:32 +0000187static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000188 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000189
Pete Cooper35b00d52016-08-13 01:05:32 +0000190bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
191 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000192 unsigned Depth, AssumptionCache *AC,
193 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000194 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000197}
198
Pete Cooper35b00d52016-08-13 01:05:32 +0000199static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 unsigned Depth,
209 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000210 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
212 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000216 AssumptionCache *AC, const Instruction *CxtI,
217 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000218 if (auto *CI = dyn_cast<ConstantInt>(V))
219 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000220
Philip Reames8f12eba2016-03-09 21:31:47 +0000221 // TODO: We'd doing two recursive queries here. We should factor this such
222 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000225}
226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
231 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000232}
233
Pete Cooper35b00d52016-08-13 01:05:32 +0000234static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000235
Pete Cooper35b00d52016-08-13 01:05:32 +0000236bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 const DataLayout &DL,
238 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000239 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
241 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000242 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000243}
244
Pete Cooper35b00d52016-08-13 01:05:32 +0000245static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000246 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000247
Pete Cooper35b00d52016-08-13 01:05:32 +0000248bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
249 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 unsigned Depth, AssumptionCache *AC,
251 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000252 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000253 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000254}
255
Pete Cooper35b00d52016-08-13 01:05:32 +0000256static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
257 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000258
Pete Cooper35b00d52016-08-13 01:05:32 +0000259unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000260 unsigned Depth, AssumptionCache *AC,
261 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000262 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000264}
265
Craig Topper8fbb74b2017-03-24 22:12:10 +0000266static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
267 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000268 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000269 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000270 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000271
272 // If an initial sequence of bits in the result is not needed, the
273 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000274 KnownBits LHSKnown(BitWidth);
275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
276 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // Carry in a 1 for a subtract, rather than a 0.
Craig Topper059b98e2017-03-24 05:38:09 +0000279 uint64_t CarryIn = 0;
David Majnemer97ddca32014-08-22 00:40:43 +0000280 if (!Add) {
281 // Sum = LHS + ~RHS + 1
Craig Topperb45eabc2017-04-26 16:39:58 +0000282 std::swap(Known2.Zero, Known2.One);
Craig Topper059b98e2017-03-24 05:38:09 +0000283 CarryIn = 1;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000284 }
285
Craig Topperb45eabc2017-04-26 16:39:58 +0000286 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn;
287 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn;
David Majnemer97ddca32014-08-22 00:40:43 +0000288
289 // Compute known bits of the carry.
Craig Topperb45eabc2017-04-26 16:39:58 +0000290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero);
291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One;
David Majnemer97ddca32014-08-22 00:40:43 +0000292
293 // Compute set of known bits (where all three relevant bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One;
295 APInt RHSKnownUnion = Known2.Zero | Known2.One;
296 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne;
297 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion;
David Majnemer97ddca32014-08-22 00:40:43 +0000298
299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300 "known bits of sum differ");
301
302 // Compute known bits of the result.
Craig Topperb45eabc2017-04-26 16:39:58 +0000303 KnownOut.Zero = ~PossibleSumOne & Known;
304 KnownOut.One = PossibleSumOne & Known;
David Majnemer97ddca32014-08-22 00:40:43 +0000305
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000306 // Are we still trying to solve for the sign bit?
Craig Topperd23004c2017-04-17 16:38:20 +0000307 if (!Known.isSignBitSet()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000308 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000309 // Adding two non-negative numbers, or subtracting a negative number from
310 // a non-negative one, can't wrap into negative.
Craig Topperca48af32017-04-29 16:43:11 +0000311 if (LHSKnown.isNonNegative() && Known2.isNonNegative())
312 KnownOut.makeNonNegative();
David Majnemer97ddca32014-08-22 00:40:43 +0000313 // Adding two negative numbers, or subtracting a non-negative number from
314 // a negative one, can't wrap into non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000315 else if (LHSKnown.isNegative() && Known2.isNegative())
316 KnownOut.makeNegative();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000317 }
318 }
319}
320
Pete Cooper35b00d52016-08-13 01:05:32 +0000321static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000322 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000323 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000324 unsigned BitWidth = Known.getBitWidth();
325 computeKnownBits(Op1, Known, Depth + 1, Q);
326 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327
328 bool isKnownNegative = false;
329 bool isKnownNonNegative = false;
330 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 if (Op0 == Op1) {
333 // The product of a number with itself is non-negative.
334 isKnownNonNegative = true;
335 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000336 bool isKnownNonNegativeOp1 = Known.isNonNegative();
337 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
338 bool isKnownNegativeOp1 = Known.isNegative();
339 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340 // The product of two numbers with the same sign is non-negative.
341 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
342 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
343 // The product of a negative number and a non-negative number is either
344 // negative or zero.
345 if (!isKnownNonNegative)
346 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000347 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000348 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000349 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000350 }
351 }
352
353 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000354 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 // More trickiness is possible, but this is sufficient for the
356 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000357 unsigned TrailZ = Known.countMinTrailingZeros() +
358 Known2.countMinTrailingZeros();
359 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
360 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000361 BitWidth) - BitWidth;
362
363 TrailZ = std::min(TrailZ, BitWidth);
364 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000365 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000366 Known.Zero.setLowBits(TrailZ);
367 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000368
369 // Only make use of no-wrap flags if we failed to compute the sign bit
370 // directly. This matters if the multiplication always overflows, in
371 // which case we prefer to follow the result of the direct computation,
372 // though as the program is invoking undefined behaviour we can choose
373 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000374 if (isKnownNonNegative && !Known.isNegative())
375 Known.makeNonNegative();
376 else if (isKnownNegative && !Known.isNonNegative())
377 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000378}
379
Jingyue Wu37fcb592014-06-19 16:50:16 +0000380void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000381 KnownBits &Known) {
382 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000383 unsigned NumRanges = Ranges.getNumOperands() / 2;
384 assert(NumRanges >= 1);
385
Craig Topperf42b23f2017-04-28 06:28:56 +0000386 Known.Zero.setAllBits();
387 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388
Rafael Espindola53190532012-03-30 15:52:11 +0000389 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000390 ConstantInt *Lower =
391 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
392 ConstantInt *Upper =
393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000394 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000395
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000396 // The first CommonPrefixBits of all values in Range are equal.
397 unsigned CommonPrefixBits =
398 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
399
400 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000401 Known.One &= Range.getUnsignedMax() & Mask;
402 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000403 }
Rafael Espindola53190532012-03-30 15:52:11 +0000404}
Jay Foad5a29c362014-05-15 12:12:55 +0000405
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000406static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000407 SmallVector<const Value *, 16> WorkSet(1, I);
408 SmallPtrSet<const Value *, 32> Visited;
409 SmallPtrSet<const Value *, 16> EphValues;
410
Hal Finkelf2199b22015-10-23 20:37:08 +0000411 // The instruction defining an assumption's condition itself is always
412 // considered ephemeral to that assumption (even if it has other
413 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000414 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000415 return true;
416
Hal Finkel60db0582014-09-07 18:57:58 +0000417 while (!WorkSet.empty()) {
418 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000419 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000420 continue;
421
422 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000423 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000424 if (V == E)
425 return true;
426
427 EphValues.insert(V);
428 if (const User *U = dyn_cast<User>(V))
429 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
430 J != JE; ++J) {
431 if (isSafeToSpeculativelyExecute(*J))
432 WorkSet.push_back(*J);
433 }
434 }
435 }
436
437 return false;
438}
439
440// Is this an intrinsic that cannot be speculated but also cannot trap?
441static bool isAssumeLikeIntrinsic(const Instruction *I) {
442 if (const CallInst *CI = dyn_cast<CallInst>(I))
443 if (Function *F = CI->getCalledFunction())
444 switch (F->getIntrinsicID()) {
445 default: break;
446 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
447 case Intrinsic::assume:
448 case Intrinsic::dbg_declare:
449 case Intrinsic::dbg_value:
450 case Intrinsic::invariant_start:
451 case Intrinsic::invariant_end:
452 case Intrinsic::lifetime_start:
453 case Intrinsic::lifetime_end:
454 case Intrinsic::objectsize:
455 case Intrinsic::ptr_annotation:
456 case Intrinsic::var_annotation:
457 return true;
458 }
459
460 return false;
461}
462
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000463bool llvm::isValidAssumeForContext(const Instruction *Inv,
464 const Instruction *CxtI,
465 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000466
467 // There are two restrictions on the use of an assume:
468 // 1. The assume must dominate the context (or the control flow must
469 // reach the assume whenever it reaches the context).
470 // 2. The context must not be in the assume's set of ephemeral values
471 // (otherwise we will use the assume to prove that the condition
472 // feeding the assume is trivially true, thus causing the removal of
473 // the assume).
474
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000475 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000476 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000477 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000478 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
479 // We don't have a DT, but this trivially dominates.
480 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000481 }
482
Pete Cooper54a02552016-08-12 01:00:15 +0000483 // With or without a DT, the only remaining case we will check is if the
484 // instructions are in the same BB. Give up if that is not the case.
485 if (Inv->getParent() != CxtI->getParent())
486 return false;
487
488 // If we have a dom tree, then we now know that the assume doens't dominate
489 // the other instruction. If we don't have a dom tree then we can check if
490 // the assume is first in the BB.
491 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000492 // Search forward from the assume until we reach the context (or the end
493 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000494 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000495 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000496 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000497 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000498 }
499
Pete Cooper54a02552016-08-12 01:00:15 +0000500 // The context comes first, but they're both in the same block. Make sure
501 // there is nothing in between that might interrupt the control flow.
502 for (BasicBlock::const_iterator I =
503 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
504 I != IE; ++I)
505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
506 return false;
507
508 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000509}
510
Craig Topperb45eabc2017-04-26 16:39:58 +0000511static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
512 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000513 // Use of assumptions is context-sensitive. If we don't have a context, we
514 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000515 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000516 return;
517
Craig Topperb45eabc2017-04-26 16:39:58 +0000518 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000519
Hal Finkel8a9a7832017-01-11 13:24:24 +0000520 // Note that the patterns below need to be kept in sync with the code
521 // in AssumptionCache::updateAffectedValues.
522
523 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000525 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000526 CallInst *I = cast<CallInst>(AssumeVH);
527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
528 "Got assumption for the wrong function!");
529 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000530 continue;
531
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000532 // Warning: This loop can end up being somewhat performance sensetive.
533 // We're running this loop for once for each value queried resulting in a
534 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000535
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
537 "must be an assume intrinsic");
538
539 Value *Arg = I->getArgOperand(0);
540
541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000542 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000543 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000544 return;
545 }
Sanjay Patel96669962017-01-17 18:15:49 +0000546 if (match(Arg, m_Not(m_Specific(V))) &&
547 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000549 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000550 return;
551 }
Hal Finkel60db0582014-09-07 18:57:58 +0000552
David Majnemer9b609752014-12-12 23:59:29 +0000553 // The remaining tests are all recursive, so bail out if we hit the limit.
554 if (Depth == MaxDepth)
555 continue;
556
Hal Finkel60db0582014-09-07 18:57:58 +0000557 Value *A, *B;
558 auto m_V = m_CombineOr(m_Specific(V),
559 m_CombineOr(m_PtrToInt(m_Specific(V)),
560 m_BitCast(m_Specific(V))));
561
562 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000563 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000564 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000565 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000566 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000567 KnownBits RHSKnown(BitWidth);
568 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
569 Known.Zero |= RHSKnown.Zero;
570 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000571 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000572 } else if (match(Arg,
573 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000575 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000576 KnownBits RHSKnown(BitWidth);
577 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
578 KnownBits MaskKnown(BitWidth);
579 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000580
581 // For those bits in the mask that are known to be one, we can propagate
582 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000583 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
584 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000585 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000586 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
587 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000589 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000590 KnownBits RHSKnown(BitWidth);
591 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
592 KnownBits MaskKnown(BitWidth);
593 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594
595 // For those bits in the mask that are known to be one, we can propagate
596 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000597 Known.Zero |= RHSKnown.One & MaskKnown.One;
598 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000599 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000600 } else if (match(Arg,
601 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000602 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000603 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000604 KnownBits RHSKnown(BitWidth);
605 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
606 KnownBits BKnown(BitWidth);
607 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608
609 // For those bits in B that are known to be zero, we can propagate known
610 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000611 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
612 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000614 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
615 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000616 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000617 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000618 KnownBits RHSKnown(BitWidth);
619 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
620 KnownBits BKnown(BitWidth);
621 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622
623 // For those bits in B that are known to be zero, we can propagate
624 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000625 Known.Zero |= RHSKnown.One & BKnown.Zero;
626 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000627 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000628 } else if (match(Arg,
629 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000630 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000631 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000632 KnownBits RHSKnown(BitWidth);
633 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
634 KnownBits BKnown(BitWidth);
635 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000636
637 // For those bits in B that are known to be zero, we can propagate known
638 // bits from the RHS to V. For those bits in B that are known to be one,
639 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000640 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
641 Known.One |= RHSKnown.One & BKnown.Zero;
642 Known.Zero |= RHSKnown.One & BKnown.One;
643 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000645 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
646 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000649 KnownBits RHSKnown(BitWidth);
650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
651 KnownBits BKnown(BitWidth);
652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653
654 // For those bits in B that are known to be zero, we can propagate
655 // inverted known bits from the RHS to V. For those bits in B that are
656 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000657 Known.Zero |= RHSKnown.One & BKnown.Zero;
658 Known.One |= RHSKnown.Zero & BKnown.Zero;
659 Known.Zero |= RHSKnown.Zero & BKnown.One;
660 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
663 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000666 KnownBits RHSKnown(BitWidth);
667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // For those bits in RHS that are known, we can propagate them to known
669 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000670 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
671 Known.Zero |= RHSKnown.Zero;
672 RHSKnown.One.lshrInPlace(C->getZExtValue());
673 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000675 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
676 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000677 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000678 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000679 KnownBits RHSKnown(BitWidth);
680 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 // For those bits in RHS that are known, we can propagate them inverted
682 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000683 RHSKnown.One.lshrInPlace(C->getZExtValue());
684 Known.Zero |= RHSKnown.One;
685 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
686 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000688 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000689 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000690 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000691 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000692 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000693 KnownBits RHSKnown(BitWidth);
694 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000695 // For those bits in RHS that are known, we can propagate them to known
696 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000697 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
698 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000699 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000700 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000704 KnownBits RHSKnown(BitWidth);
705 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000708 Known.Zero |= RHSKnown.One << C->getZExtValue();
709 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000714 KnownBits RHSKnown(BitWidth);
715 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
Craig Topperca48af32017-04-29 16:43:11 +0000717 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000718 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000719 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000725 KnownBits RHSKnown(BitWidth);
726 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
Craig Topperf0aeee02017-05-05 17:36:09 +0000728 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000729 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000730 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000736 KnownBits RHSKnown(BitWidth);
737 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
Craig Topperca48af32017-04-29 16:43:11 +0000739 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000740 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000741 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000747 KnownBits RHSKnown(BitWidth);
748 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
Craig Topperf0aeee02017-05-05 17:36:09 +0000750 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000751 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000752 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000758 KnownBits RHSKnown(BitWidth);
759 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000762 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
763 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000764 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000765 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000767 KnownBits RHSKnown(BitWidth);
768 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000769
770 // Whatever high bits in c are zero are known to be zero (if c is a power
771 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000772 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000773 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 else
Craig Topper8df66c62017-05-12 17:20:30 +0000775 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000776 }
777 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000778
779 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000780 // have a logical fallacy. It's possible that the assumption is not reachable,
781 // so this isn't a real bug. On the other hand, the program may have undefined
782 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
783 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000784 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000785 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000786
787 if (Q.ORE) {
788 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
789 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
790 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
791 "have undefined behavior, or compiler may have "
792 "internal error.");
793 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000794 }
Hal Finkel60db0582014-09-07 18:57:58 +0000795}
796
Hal Finkelf2199b22015-10-23 20:37:08 +0000797// Compute known bits from a shift operator, including those with a
Craig Topperb45eabc2017-04-26 16:39:58 +0000798// non-constant shift amount. Known is the outputs of this function. Known2 is a
799// pre-allocated temporary with the/ same bit width as Known. KZF and KOF are
800// operator-specific functors that, given the known-zero or known-one bits
801// respectively, and a shift amount, compute the implied known-zero or known-one
802// bits of the shift operator's result respectively for that shift amount. The
803// results from calling KZF and KOF are conservatively combined for all
804// permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000805static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000806 const Operator *I, KnownBits &Known, KnownBits &Known2,
807 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000808 function_ref<APInt(const APInt &, unsigned)> KZF,
809 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000810 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000811
812 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
813 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
814
Craig Topperb45eabc2017-04-26 16:39:58 +0000815 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
816 Known.Zero = KZF(Known.Zero, ShiftAmt);
817 Known.One = KOF(Known.One, ShiftAmt);
818 // If there is conflict between Known.Zero and Known.One, this must be an
819 // overflowing left shift, so the shift result is undefined. Clear Known
820 // bits so that other code could propagate this undef.
Craig Topperf0aeee02017-05-05 17:36:09 +0000821 if ((Known.Zero & Known.One) != 0)
822 Known.resetAll();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000823
Hal Finkelf2199b22015-10-23 20:37:08 +0000824 return;
825 }
826
Craig Topperb45eabc2017-04-26 16:39:58 +0000827 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000828
Oliver Stannard06204112017-03-14 10:13:17 +0000829 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
830 // value could be undef, so we don't know anything about it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000831 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000832 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000833 return;
834 }
835
Craig Topperb45eabc2017-04-26 16:39:58 +0000836 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000837 // BitWidth > 64 and any upper bits are known, we'll end up returning the
838 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000839 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
840 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000841
842 // It would be more-clearly correct to use the two temporaries for this
843 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000844 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000845
James Molloy493e57d2015-10-26 14:10:46 +0000846 // If we know the shifter operand is nonzero, we can sometimes infer more
847 // known bits. However this is expensive to compute, so be lazy about it and
848 // only compute it when absolutely necessary.
849 Optional<bool> ShifterOperandIsNonZero;
850
Hal Finkelf2199b22015-10-23 20:37:08 +0000851 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000852 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
853 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
James Molloy493e57d2015-10-26 14:10:46 +0000854 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000855 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000856 if (!*ShifterOperandIsNonZero)
857 return;
858 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000859
Craig Topperb45eabc2017-04-26 16:39:58 +0000860 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000861
Craig Topperb45eabc2017-04-26 16:39:58 +0000862 Known.Zero.setAllBits();
863 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000864 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
865 // Combine the shifted known input bits only for those shift amounts
866 // compatible with its known constraints.
867 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
868 continue;
869 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
870 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000871 // If we know the shifter is nonzero, we may be able to infer more known
872 // bits. This check is sunk down as far as possible to avoid the expensive
873 // call to isKnownNonZero if the cheaper checks above fail.
874 if (ShiftAmt == 0) {
875 if (!ShifterOperandIsNonZero.hasValue())
876 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000877 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000878 if (*ShifterOperandIsNonZero)
879 continue;
880 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000881
Craig Topperb45eabc2017-04-26 16:39:58 +0000882 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
883 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000884 }
885
886 // If there are no compatible shift amounts, then we've proven that the shift
887 // amount must be >= the BitWidth, and the result is undefined. We could
888 // return anything we'd like, but we need to make sure the sets of known bits
889 // stay disjoint (it should be better for some other code to actually
890 // propagate the undef than to pick a value here using known bits).
Craig Topperf0aeee02017-05-05 17:36:09 +0000891 if (Known.Zero.intersects(Known.One))
892 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000893}
894
Craig Topperb45eabc2017-04-26 16:39:58 +0000895static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
896 unsigned Depth, const Query &Q) {
897 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000898
Craig Topperb45eabc2017-04-26 16:39:58 +0000899 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000900 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000901 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000902 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000903 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000904 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000905 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000906 case Instruction::And: {
907 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000908 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
909 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000910
Chris Lattner965c7692008-06-02 01:18:21 +0000911 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000912 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000913 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000914 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000915
916 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
917 // here we handle the more general case of adding any odd number by
918 // matching the form add(x, add(x, y)) where y is odd.
919 // TODO: This could be generalized to clearing any bit set in y where the
920 // following bit is known to be unset in y.
921 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000922 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000923 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
924 m_Value(Y))) ||
925 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
926 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000927 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000928 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000929 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000930 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000931 }
Jay Foad5a29c362014-05-15 12:12:55 +0000932 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000933 }
934 case Instruction::Or: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000935 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000937
Chris Lattner965c7692008-06-02 01:18:21 +0000938 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000939 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000940 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000941 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000942 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000943 }
944 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000945 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
946 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000947
Chris Lattner965c7692008-06-02 01:18:21 +0000948 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000949 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000950 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000951 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
952 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000953 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000954 }
955 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000956 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000957 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
958 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000959 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000960 }
961 case Instruction::UDiv: {
962 // For the purposes of computing leading zeros we can conservatively
963 // treat a udiv as a logical right shift by the power of 2 known to
964 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000965 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000966 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000967
Craig Topperf0aeee02017-05-05 17:36:09 +0000968 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000969 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000970 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
971 if (RHSMaxLeadingZeros != BitWidth)
972 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000973
Craig Topperb45eabc2017-04-26 16:39:58 +0000974 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000975 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000976 }
David Majnemera19d0f22016-08-06 08:16:00 +0000977 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000978 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000979 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
980 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000981 computeKnownBits(RHS, Known, Depth + 1, Q);
982 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000983 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000984 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
985 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000986 }
987
988 unsigned MaxHighOnes = 0;
989 unsigned MaxHighZeros = 0;
990 if (SPF == SPF_SMAX) {
991 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000992 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000993 // We can derive a lower bound on the result by taking the max of the
994 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000995 MaxHighOnes =
996 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000997 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000998 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000999 MaxHighZeros = 1;
1000 } else if (SPF == SPF_SMIN) {
1001 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001002 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001003 // We can derive an upper bound on the result by taking the max of the
1004 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001005 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1006 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001007 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001008 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001009 MaxHighOnes = 1;
1010 } else if (SPF == SPF_UMAX) {
1011 // We can derive a lower bound on the result by taking the max of the
1012 // leading one bits.
1013 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001014 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001015 } else if (SPF == SPF_UMIN) {
1016 // We can derive an upper bound on the result by taking the max of the
1017 // leading zero bits.
1018 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001019 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001020 }
1021
Chris Lattner965c7692008-06-02 01:18:21 +00001022 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001023 Known.One &= Known2.One;
1024 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001025 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001026 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001027 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001028 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001029 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001030 }
Chris Lattner965c7692008-06-02 01:18:21 +00001031 case Instruction::FPTrunc:
1032 case Instruction::FPExt:
1033 case Instruction::FPToUI:
1034 case Instruction::FPToSI:
1035 case Instruction::SIToFP:
1036 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001037 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001038 case Instruction::PtrToInt:
1039 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001040 // Fall through and handle them the same as zext/trunc.
1041 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001042 case Instruction::ZExt:
1043 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001044 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001045
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001046 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001047 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1048 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001049 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001050
1051 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001052 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001053 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001054 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001055 // Any top bits are known to be zero.
1056 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001057 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001058 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001059 }
1060 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001061 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001062 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001063 // TODO: For now, not handling conversions like:
1064 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001065 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001066 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001067 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001068 }
1069 break;
1070 }
1071 case Instruction::SExt: {
1072 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001073 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001074
Craig Topperd938fd12017-05-03 22:07:25 +00001075 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001076 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001077 // If the sign bit of the input is known set or clear, then we know the
1078 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001079 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001080 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001081 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001082 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001083 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001084 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001085 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1086 APInt KZResult = KnownZero << ShiftAmt;
1087 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001088 // If this shift has "nsw" keyword, then the result is either a poison
1089 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001090 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001091 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001092 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001093 };
1094
Craig Topperd73c6b42017-03-23 07:06:39 +00001095 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001096 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001097 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001098 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001099 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001100 };
1101
Craig Topperb45eabc2017-04-26 16:39:58 +00001102 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001103 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001104 }
1105 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001106 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001107 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1108 APInt KZResult = KnownZero.lshr(ShiftAmt);
1109 // High bits known zero.
1110 KZResult.setHighBits(ShiftAmt);
1111 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001112 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001113
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001114 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001115 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001116 };
1117
Craig Topperb45eabc2017-04-26 16:39:58 +00001118 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001119 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001120 }
1121 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001122 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001123 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001124 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001125 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001126
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001127 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001128 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001129 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001130
Craig Topperb45eabc2017-04-26 16:39:58 +00001131 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001132 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001133 }
Chris Lattner965c7692008-06-02 01:18:21 +00001134 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001135 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001136 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001137 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001139 }
Chris Lattner965c7692008-06-02 01:18:21 +00001140 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001141 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001142 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001143 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001144 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001145 }
1146 case Instruction::SRem:
1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001148 APInt RA = Rem->getValue().abs();
1149 if (RA.isPowerOf2()) {
1150 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001151 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001152
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001153 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001154 Known.Zero = Known2.Zero & LowBits;
1155 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001156
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001157 // If the first operand is non-negative or has all low bits zero, then
1158 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001159 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001160 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001161
1162 // If the first operand is negative and not all low bits are zero, then
1163 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001164 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001165 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001166
Craig Topperb45eabc2017-04-26 16:39:58 +00001167 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001168 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001169 }
1170 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001171
1172 // The sign bit is the LHS's sign bit, except when the result of the
1173 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001174 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001175 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001176 if (Known2.isNonNegative())
1177 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001178
Chris Lattner965c7692008-06-02 01:18:21 +00001179 break;
1180 case Instruction::URem: {
1181 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001182 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001183 if (RA.isPowerOf2()) {
1184 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001185 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1186 Known.Zero |= ~LowBits;
1187 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001188 break;
1189 }
1190 }
1191
1192 // Since the result is less than or equal to either operand, any leading
1193 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001194 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1195 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001196
Craig Topper8df66c62017-05-12 17:20:30 +00001197 unsigned Leaders =
1198 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001199 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001200 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001201 break;
1202 }
1203
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001204 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001205 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001206 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001207 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001208 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001209
Chris Lattner965c7692008-06-02 01:18:21 +00001210 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001211 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001212 break;
1213 }
1214 case Instruction::GetElementPtr: {
1215 // Analyze all of the subscripts of this getelementptr instruction
1216 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001217 KnownBits LocalKnown(BitWidth);
1218 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001219 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001220
1221 gep_type_iterator GTI = gep_type_begin(I);
1222 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1223 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001224 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001225 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001226
1227 // Handle case when index is vector zeroinitializer
1228 Constant *CIndex = cast<Constant>(Index);
1229 if (CIndex->isZeroValue())
1230 continue;
1231
1232 if (CIndex->getType()->isVectorTy())
1233 Index = CIndex->getSplatValue();
1234
Chris Lattner965c7692008-06-02 01:18:21 +00001235 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001236 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001237 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001238 TrailZ = std::min<unsigned>(TrailZ,
1239 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001240 } else {
1241 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001242 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001243 if (!IndexedTy->isSized()) {
1244 TrailZ = 0;
1245 break;
1246 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001247 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001248 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001249 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1250 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001251 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001252 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001253 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001254 }
1255 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001256
Craig Topperb45eabc2017-04-26 16:39:58 +00001257 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001258 break;
1259 }
1260 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001261 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001262 // Handle the case of a simple two-predecessor recurrence PHI.
1263 // There's a lot more that could theoretically be done here, but
1264 // this is sufficient to catch some interesting cases.
1265 if (P->getNumIncomingValues() == 2) {
1266 for (unsigned i = 0; i != 2; ++i) {
1267 Value *L = P->getIncomingValue(i);
1268 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001269 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001270 if (!LU)
1271 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001272 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001273 // Check for operations that have the property that if
1274 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001275 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001276 if (Opcode == Instruction::Add ||
1277 Opcode == Instruction::Sub ||
1278 Opcode == Instruction::And ||
1279 Opcode == Instruction::Or ||
1280 Opcode == Instruction::Mul) {
1281 Value *LL = LU->getOperand(0);
1282 Value *LR = LU->getOperand(1);
1283 // Find a recurrence.
1284 if (LL == I)
1285 L = LR;
1286 else if (LR == I)
1287 L = LL;
1288 else
1289 break;
1290 // Ok, we have a PHI of the form L op= R. Check for low
1291 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001292 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001293
1294 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001295 KnownBits Known3(Known);
1296 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001297
Craig Topper8df66c62017-05-12 17:20:30 +00001298 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1299 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001300
Nikolai Bozhenov6710ba02017-06-28 12:15:13 +00001301 if (DontImproveNonNegativePhiBits)
1302 break;
1303
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001304 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1305 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1306 // If initial value of recurrence is nonnegative, and we are adding
1307 // a nonnegative number with nsw, the result can only be nonnegative
1308 // or poison value regardless of the number of times we execute the
1309 // add in phi recurrence. If initial value is negative and we are
1310 // adding a negative number with nsw, the result can only be
1311 // negative or poison value. Similar arguments apply to sub and mul.
1312 //
1313 // (add non-negative, non-negative) --> non-negative
1314 // (add negative, negative) --> negative
1315 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001316 if (Known2.isNonNegative() && Known3.isNonNegative())
1317 Known.makeNonNegative();
1318 else if (Known2.isNegative() && Known3.isNegative())
1319 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001320 }
1321
1322 // (sub nsw non-negative, negative) --> non-negative
1323 // (sub nsw negative, non-negative) --> negative
1324 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001325 if (Known2.isNonNegative() && Known3.isNegative())
1326 Known.makeNonNegative();
1327 else if (Known2.isNegative() && Known3.isNonNegative())
1328 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001329 }
1330
1331 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001332 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1333 Known3.isNonNegative())
1334 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001335 }
1336
Chris Lattner965c7692008-06-02 01:18:21 +00001337 break;
1338 }
1339 }
1340 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001341
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001342 // Unreachable blocks may have zero-operand PHI nodes.
1343 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001344 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001345
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001346 // Otherwise take the unions of the known bit sets of the operands,
1347 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001348 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001349 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001350 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001351 break;
1352
Craig Topperb45eabc2017-04-26 16:39:58 +00001353 Known.Zero.setAllBits();
1354 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001355 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001356 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001357 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001358
Craig Topperb45eabc2017-04-26 16:39:58 +00001359 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001360 // Recurse, but cap the recursion to one level, because we don't
1361 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001362 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1363 Known.Zero &= Known2.Zero;
1364 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001365 // If all bits have been ruled out, there's no need to check
1366 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001367 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001368 break;
1369 }
1370 }
Chris Lattner965c7692008-06-02 01:18:21 +00001371 break;
1372 }
1373 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001374 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001375 // If range metadata is attached to this call, set known bits from that,
1376 // and then intersect with known bits based on other properties of the
1377 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001378 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001379 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001380 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001381 computeKnownBits(RV, Known2, Depth + 1, Q);
1382 Known.Zero |= Known2.Zero;
1383 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001384 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001385 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001386 switch (II->getIntrinsicID()) {
1387 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001388 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001389 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1390 Known.Zero |= Known2.Zero.reverseBits();
1391 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001392 break;
Philip Reames675418e2015-10-06 20:20:45 +00001393 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001394 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1395 Known.Zero |= Known2.Zero.byteSwap();
1396 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001397 break;
Craig Topper868813f2017-05-08 17:22:34 +00001398 case Intrinsic::ctlz: {
1399 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1400 // If we have a known 1, its position is our upper bound.
1401 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001402 // If this call is undefined for 0, the result will be less than 2^n.
1403 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001404 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1405 unsigned LowBits = Log2_32(PossibleLZ)+1;
1406 Known.Zero.setBitsFrom(LowBits);
1407 break;
1408 }
1409 case Intrinsic::cttz: {
1410 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1411 // If we have a known 1, its position is our upper bound.
1412 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1413 // If this call is undefined for 0, the result will be less than 2^n.
1414 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1415 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1416 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001417 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001418 break;
1419 }
1420 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001421 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001422 // We can bound the space the count needs. Also, bits known to be zero
1423 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001424 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001425 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001426 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001427 // TODO: we could bound KnownOne using the lower bound on the number
1428 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001429 break;
1430 }
Chad Rosierb3628842011-05-26 23:13:19 +00001431 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001432 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001433 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001434 }
1435 }
1436 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001437 case Instruction::ExtractElement:
1438 // Look through extract element. At the moment we keep this simple and skip
1439 // tracking the specific element. But at least we might find information
1440 // valid for all elements of the vector (for example if vector is sign
1441 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001442 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001443 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001444 case Instruction::ExtractValue:
1445 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001446 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001447 if (EVI->getNumIndices() != 1) break;
1448 if (EVI->getIndices()[0] == 0) {
1449 switch (II->getIntrinsicID()) {
1450 default: break;
1451 case Intrinsic::uadd_with_overflow:
1452 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001453 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001454 II->getArgOperand(1), false, Known, Known2,
1455 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001456 break;
1457 case Intrinsic::usub_with_overflow:
1458 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001459 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001460 II->getArgOperand(1), false, Known, Known2,
1461 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001462 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001463 case Intrinsic::umul_with_overflow:
1464 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001465 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001466 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001467 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001468 }
1469 }
1470 }
Chris Lattner965c7692008-06-02 01:18:21 +00001471 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001472}
1473
1474/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001475/// them.
1476KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1477 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1478 computeKnownBits(V, Known, Depth, Q);
1479 return Known;
1480}
1481
1482/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001483/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001484///
1485/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1486/// we cannot optimize based on the assumption that it is zero without changing
1487/// it to be an explicit zero. If we don't change it to zero, other code could
1488/// optimized based on the contradictory assumption that it is non-zero.
1489/// Because instcombine aggressively folds operations with undef args anyway,
1490/// this won't lose us code quality.
1491///
1492/// This function is defined on values with integer type, values with pointer
1493/// type, and vectors of integers. In the case
1494/// where V is a vector, known zero, and known one values are the
1495/// same width as the vector element, and the bit is set only if it is true
1496/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001497void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1498 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001499 assert(V && "No Value?");
1500 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001501 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001502
Craig Topperfde47232017-07-09 07:04:03 +00001503 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001504 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001505 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001506 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001507 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001508 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001510 const APInt *C;
1511 if (match(V, m_APInt(C))) {
1512 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001513 Known.One = *C;
1514 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001515 return;
1516 }
1517 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001518 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001519 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001520 return;
1521 }
1522 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001523 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001524 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001525 // We know that CDS must be a vector of integers. Take the intersection of
1526 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001527 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001528 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001529 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1530 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001531 Known.Zero &= ~Elt;
1532 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001533 }
1534 return;
1535 }
1536
Pete Cooper35b00d52016-08-13 01:05:32 +00001537 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001538 // We know that CV must be a vector of integers. Take the intersection of
1539 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001540 Known.Zero.setAllBits(); Known.One.setAllBits();
1541 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001542 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1543 Constant *Element = CV->getAggregateElement(i);
1544 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1545 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001546 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001547 return;
1548 }
1549 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001550 Known.Zero &= ~Elt;
1551 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001552 }
1553 return;
1554 }
1555
Jingyue Wu12b0c282015-06-15 05:46:29 +00001556 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001557 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001558
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001559 // We can't imply anything about undefs.
1560 if (isa<UndefValue>(V))
1561 return;
1562
1563 // There's no point in looking through other users of ConstantData for
1564 // assumptions. Confirm that we've handled them all.
1565 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1566
Jingyue Wu12b0c282015-06-15 05:46:29 +00001567 // Limit search depth.
1568 // All recursive calls that increase depth must come after this.
1569 if (Depth == MaxDepth)
1570 return;
1571
1572 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1573 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001574 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001575 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001576 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001577 return;
1578 }
1579
Pete Cooper35b00d52016-08-13 01:05:32 +00001580 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001581 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001582
Craig Topperb45eabc2017-04-26 16:39:58 +00001583 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001584 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001585 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001586 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001587 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001588 }
1589
Craig Topperb45eabc2017-04-26 16:39:58 +00001590 // computeKnownBitsFromAssume strictly refines Known.
1591 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001592
1593 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001594 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001595
Craig Topperb45eabc2017-04-26 16:39:58 +00001596 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001597}
1598
Sanjay Patelaee84212014-11-04 16:27:42 +00001599/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001600/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001601/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001602/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001603bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001604 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001605 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001606 if (C->isNullValue())
1607 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001608
1609 const APInt *ConstIntOrConstSplatInt;
1610 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1611 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001612 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001613
1614 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1615 // it is shifted off the end then the result is undefined.
1616 if (match(V, m_Shl(m_One(), m_Value())))
1617 return true;
1618
Craig Topperbcfd2d12017-04-20 16:56:25 +00001619 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1620 // the bottom. If it is shifted off the bottom then the result is undefined.
1621 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001622 return true;
1623
1624 // The remaining tests are all recursive, so bail out if we hit the limit.
1625 if (Depth++ == MaxDepth)
1626 return false;
1627
Craig Topper9f008862014-04-15 04:59:12 +00001628 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001629 // A shift left or a logical shift right of a power of two is a power of two
1630 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001631 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001632 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001633 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001634
Pete Cooper35b00d52016-08-13 01:05:32 +00001635 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001636 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001637
Pete Cooper35b00d52016-08-13 01:05:32 +00001638 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001639 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1640 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001641
Duncan Sandsba286d72011-10-26 20:55:21 +00001642 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1643 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001644 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1645 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001646 return true;
1647 // X & (-X) is always a power of two or zero.
1648 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1649 return true;
1650 return false;
1651 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001652
David Majnemerb7d54092013-07-30 21:01:36 +00001653 // Adding a power-of-two or zero to the same power-of-two or zero yields
1654 // either the original power-of-two, a larger power-of-two or zero.
1655 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001656 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001657 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1658 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1659 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001660 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001661 return true;
1662 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1663 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001664 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001665 return true;
1666
1667 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001668 KnownBits LHSBits(BitWidth);
1669 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001670
Craig Topperb45eabc2017-04-26 16:39:58 +00001671 KnownBits RHSBits(BitWidth);
1672 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001673 // If i8 V is a power of two or zero:
1674 // ZeroBits: 1 1 1 0 1 1 1 1
1675 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001676 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001677 // If OrZero isn't set, we cannot give back a zero result.
1678 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001679 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001680 return true;
1681 }
1682 }
David Majnemerbeab5672013-05-18 19:30:37 +00001683
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001684 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001685 // is a power of two only if the first operand is a power of two and not
1686 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001687 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1688 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001689 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001690 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001691 }
1692
Duncan Sandsd3951082011-01-25 09:38:29 +00001693 return false;
1694}
1695
Chandler Carruth80d3e562012-12-07 02:08:58 +00001696/// \brief Test whether a GEP's result is known to be non-null.
1697///
1698/// Uses properties inherent in a GEP to try to determine whether it is known
1699/// to be non-null.
1700///
1701/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001702static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001703 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001704 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1705 return false;
1706
1707 // FIXME: Support vector-GEPs.
1708 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1709
1710 // If the base pointer is non-null, we cannot walk to a null address with an
1711 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001712 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001713 return true;
1714
Chandler Carruth80d3e562012-12-07 02:08:58 +00001715 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1716 // If so, then the GEP cannot produce a null pointer, as doing so would
1717 // inherently violate the inbounds contract within address space zero.
1718 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1719 GTI != GTE; ++GTI) {
1720 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001721 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001722 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1723 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001724 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001725 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1726 if (ElementOffset > 0)
1727 return true;
1728 continue;
1729 }
1730
1731 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001733 continue;
1734
1735 // Fast path the constant operand case both for efficiency and so we don't
1736 // increment Depth when just zipping down an all-constant GEP.
1737 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1738 if (!OpC->isZero())
1739 return true;
1740 continue;
1741 }
1742
1743 // We post-increment Depth here because while isKnownNonZero increments it
1744 // as well, when we pop back up that increment won't persist. We don't want
1745 // to recurse 10k times just because we have 10k GEP operands. We don't
1746 // bail completely out because we want to handle constant GEPs regardless
1747 // of depth.
1748 if (Depth++ >= MaxDepth)
1749 continue;
1750
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001751 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001752 return true;
1753 }
1754
1755 return false;
1756}
1757
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001758/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1759/// ensure that the value it's attached to is never Value? 'RangeType' is
1760/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001761static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001762 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1763 assert(NumRanges >= 1);
1764 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001765 ConstantInt *Lower =
1766 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1767 ConstantInt *Upper =
1768 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001769 ConstantRange Range(Lower->getValue(), Upper->getValue());
1770 if (Range.contains(Value))
1771 return false;
1772 }
1773 return true;
1774}
1775
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001776/// Return true if the given value is known to be non-zero when defined. For
1777/// vectors, return true if every element is known to be non-zero when
1778/// defined. For pointers, if the context instruction and dominator tree are
1779/// specified, perform context-sensitive analysis and return true if the
1780/// pointer couldn't possibly be null at the specified instruction.
1781/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001782bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001783 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001784 if (C->isNullValue())
1785 return false;
1786 if (isa<ConstantInt>(C))
1787 // Must be non-zero due to null test above.
1788 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001789
1790 // For constant vectors, check that all elements are undefined or known
1791 // non-zero to determine that the whole vector is known non-zero.
1792 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1793 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1794 Constant *Elt = C->getAggregateElement(i);
1795 if (!Elt || Elt->isNullValue())
1796 return false;
1797 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1798 return false;
1799 }
1800 return true;
1801 }
1802
Duncan Sandsd3951082011-01-25 09:38:29 +00001803 return false;
1804 }
1805
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001806 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001807 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001808 // If the possible ranges don't contain zero, then the value is
1809 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001810 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001811 const APInt ZeroValue(Ty->getBitWidth(), 0);
1812 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1813 return true;
1814 }
1815 }
1816 }
1817
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001819 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001820 return false;
1821
Chandler Carruth80d3e562012-12-07 02:08:58 +00001822 // Check for pointer simplifications.
1823 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001824 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001825 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001826 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001827 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001828 return true;
1829 }
1830
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001831 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001832
1833 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001834 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001835 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001836 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001837
1838 // ext X != 0 if X != 0.
1839 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001840 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001841
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001842 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001843 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001844 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001845 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001846 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001847 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001848 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001849
Craig Topperb45eabc2017-04-26 16:39:58 +00001850 KnownBits Known(BitWidth);
1851 computeKnownBits(X, Known, Depth, Q);
1852 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001853 return true;
1854 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001855 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001856 // defined if the sign bit is shifted off the end.
1857 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001858 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001859 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001860 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001861 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001862
Craig Topper6e11a052017-05-08 16:22:48 +00001863 KnownBits Known = computeKnownBits(X, Depth, Q);
1864 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001865 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001866
1867 // If the shifter operand is a constant, and all of the bits shifted
1868 // out are known to be zero, and X is known non-zero then at least one
1869 // non-zero bit must remain.
1870 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001871 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1872 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001873 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001874 return true;
1875 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001876 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001877 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001878 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001879 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001880 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001881 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001882 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001883 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001884 // X + Y.
1885 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001886 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1887 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001888
1889 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001890 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001891 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001892 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001893 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001894
1895 // If X and Y are both negative (as signed values) then their sum is not
1896 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001897 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001898 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1899 // The sign bit of X is set. If some other bit is set then X is not equal
1900 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001901 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001902 return true;
1903 // The sign bit of Y is set. If some other bit is set then Y is not equal
1904 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001905 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001906 return true;
1907 }
1908
1909 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001910 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001911 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001912 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001913 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001914 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001915 return true;
1916 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001917 // X * Y.
1918 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001919 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001920 // If X and Y are non-zero then so is X * Y as long as the multiplication
1921 // does not overflow.
1922 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001923 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001924 return true;
1925 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001926 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001927 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001928 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1929 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001930 return true;
1931 }
James Molloy897048b2015-09-29 14:08:45 +00001932 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001933 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001934 // Try and detect a recurrence that monotonically increases from a
1935 // starting value, as these are common as induction variables.
1936 if (PN->getNumIncomingValues() == 2) {
1937 Value *Start = PN->getIncomingValue(0);
1938 Value *Induction = PN->getIncomingValue(1);
1939 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1940 std::swap(Start, Induction);
1941 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1942 if (!C->isZero() && !C->isNegative()) {
1943 ConstantInt *X;
1944 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1945 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1946 !X->isNegative())
1947 return true;
1948 }
1949 }
1950 }
Jun Bum Limca832662016-02-01 17:03:07 +00001951 // Check if all incoming values are non-zero constant.
1952 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00001953 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00001954 });
1955 if (AllNonZeroConstants)
1956 return true;
James Molloy897048b2015-09-29 14:08:45 +00001957 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001958
Craig Topperb45eabc2017-04-26 16:39:58 +00001959 KnownBits Known(BitWidth);
1960 computeKnownBits(V, Known, Depth, Q);
1961 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00001962}
1963
James Molloy1d88d6f2015-10-22 13:18:42 +00001964/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001965static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1966 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001967 if (!BO || BO->getOpcode() != Instruction::Add)
1968 return false;
1969 Value *Op = nullptr;
1970 if (V2 == BO->getOperand(0))
1971 Op = BO->getOperand(1);
1972 else if (V2 == BO->getOperand(1))
1973 Op = BO->getOperand(0);
1974 else
1975 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001976 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001977}
1978
1979/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001980static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00001981 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00001982 return false;
1983 if (V1->getType() != V2->getType())
1984 // We can't look through casts yet.
1985 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001986 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001987 return true;
1988
Craig Topper3002d5b2017-06-06 07:13:15 +00001989 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001990 // Are any known bits in V1 contradictory to known bits in V2? If V1
1991 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00001992 KnownBits Known1 = computeKnownBits(V1, 0, Q);
1993 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001994
Craig Topper8365df82017-06-06 07:13:09 +00001995 if (Known1.Zero.intersects(Known2.One) ||
1996 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00001997 return true;
1998 }
1999 return false;
2000}
2001
Sanjay Patelaee84212014-11-04 16:27:42 +00002002/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2003/// simplify operations downstream. Mask is known to be zero for bits that V
2004/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002005///
2006/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002007/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002008/// where V is a vector, the mask, known zero, and known one values are the
2009/// same width as the vector element, and the bit is set only if it is true
2010/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002011bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002012 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002013 KnownBits Known(Mask.getBitWidth());
2014 computeKnownBits(V, Known, Depth, Q);
2015 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002016}
2017
Sanjay Patela06d9892016-06-22 19:20:59 +00002018/// For vector constants, loop over the elements and find the constant with the
2019/// minimum number of sign bits. Return 0 if the value is not a vector constant
2020/// or if any element was not analyzed; otherwise, return the count for the
2021/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002022static unsigned computeNumSignBitsVectorConstant(const Value *V,
2023 unsigned TyBits) {
2024 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002025 if (!CV || !CV->getType()->isVectorTy())
2026 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002027
Sanjay Patela06d9892016-06-22 19:20:59 +00002028 unsigned MinSignBits = TyBits;
2029 unsigned NumElts = CV->getType()->getVectorNumElements();
2030 for (unsigned i = 0; i != NumElts; ++i) {
2031 // If we find a non-ConstantInt, bail out.
2032 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2033 if (!Elt)
2034 return 0;
2035
2036 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2037 APInt EltVal = Elt->getValue();
2038 if (EltVal.isNegative())
2039 EltVal = ~EltVal;
2040 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2041 }
2042
2043 return MinSignBits;
2044}
Chris Lattner965c7692008-06-02 01:18:21 +00002045
Sanjoy Das39a684d2017-02-25 20:30:45 +00002046static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2047 const Query &Q);
2048
2049static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2050 const Query &Q) {
2051 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2052 assert(Result > 0 && "At least one sign bit needs to be present!");
2053 return Result;
2054}
2055
Sanjay Patelaee84212014-11-04 16:27:42 +00002056/// Return the number of times the sign bit of the register is replicated into
2057/// the other bits. We know that at least 1 bit is always equal to the sign bit
2058/// (itself), but other cases can give us information. For example, immediately
2059/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002060/// other, so we return 3. For vectors, return the number of sign bits for the
2061/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002062static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2063 const Query &Q) {
2064
2065 // We return the minimum number of sign bits that are guaranteed to be present
2066 // in V, so for undef we have to conservatively return 1. We don't have the
2067 // same behavior for poison though -- that's a FIXME today.
2068
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002069 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002070 unsigned Tmp, Tmp2;
2071 unsigned FirstAnswer = 1;
2072
Jay Foada0653a32014-05-14 21:14:37 +00002073 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002074 // below.
2075
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002076 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002077 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002078
Pete Cooper35b00d52016-08-13 01:05:32 +00002079 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002080 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002081 default: break;
2082 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002083 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002084 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002085
Nadav Rotemc99a3872015-03-06 00:23:58 +00002086 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002087 const APInt *Denominator;
2088 // sdiv X, C -> adds log(C) sign bits.
2089 if (match(U->getOperand(1), m_APInt(Denominator))) {
2090
2091 // Ignore non-positive denominator.
2092 if (!Denominator->isStrictlyPositive())
2093 break;
2094
2095 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002096 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002097
2098 // Add floor(log(C)) bits to the numerator bits.
2099 return std::min(TyBits, NumBits + Denominator->logBase2());
2100 }
2101 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002102 }
2103
2104 case Instruction::SRem: {
2105 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002106 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2107 // positive constant. This let us put a lower bound on the number of sign
2108 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002109 if (match(U->getOperand(1), m_APInt(Denominator))) {
2110
2111 // Ignore non-positive denominator.
2112 if (!Denominator->isStrictlyPositive())
2113 break;
2114
2115 // Calculate the incoming numerator bits. SRem by a positive constant
2116 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002117 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002118 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002119
2120 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002121 // denominator. Given that the denominator is positive, there are two
2122 // cases:
2123 //
2124 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2125 // (1 << ceilLogBase2(C)).
2126 //
2127 // 2. the numerator is negative. Then the result range is (-C,0] and
2128 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2129 //
2130 // Thus a lower bound on the number of sign bits is `TyBits -
2131 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002132
Sanjoy Dase561fee2015-03-25 22:33:53 +00002133 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002134 return std::max(NumrBits, ResBits);
2135 }
2136 break;
2137 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002138
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002139 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002140 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002141 // ashr X, C -> adds C sign bits. Vectors too.
2142 const APInt *ShAmt;
2143 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002144 unsigned ShAmtLimited = ShAmt->getZExtValue();
2145 if (ShAmtLimited >= TyBits)
2146 break; // Bad shift.
2147 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002148 if (Tmp > TyBits) Tmp = TyBits;
2149 }
2150 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002151 }
2152 case Instruction::Shl: {
2153 const APInt *ShAmt;
2154 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002155 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002156 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002157 Tmp2 = ShAmt->getZExtValue();
2158 if (Tmp2 >= TyBits || // Bad shift.
2159 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2160 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002161 }
2162 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002163 }
Chris Lattner965c7692008-06-02 01:18:21 +00002164 case Instruction::And:
2165 case Instruction::Or:
2166 case Instruction::Xor: // NOT is handled here.
2167 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002168 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002169 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002170 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002171 FirstAnswer = std::min(Tmp, Tmp2);
2172 // We computed what we know about the sign bits as our first
2173 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002174 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002175 }
2176 break;
2177
2178 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002179 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002180 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002181 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002182 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002183
Chris Lattner965c7692008-06-02 01:18:21 +00002184 case Instruction::Add:
2185 // Add can have at most one carry bit. Thus we know that the output
2186 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002187 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002188 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002189
Chris Lattner965c7692008-06-02 01:18:21 +00002190 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002191 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002192 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002193 KnownBits Known(TyBits);
2194 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002195
Chris Lattner965c7692008-06-02 01:18:21 +00002196 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2197 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002198 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002199 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002200
Chris Lattner965c7692008-06-02 01:18:21 +00002201 // If we are subtracting one from a positive number, there is no carry
2202 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002203 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002204 return Tmp;
2205 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002206
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002207 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002208 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002209 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002210
Chris Lattner965c7692008-06-02 01:18:21 +00002211 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002212 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002213 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002214
Chris Lattner965c7692008-06-02 01:18:21 +00002215 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002216 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002217 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002218 KnownBits Known(TyBits);
2219 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002220 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2221 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002222 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002223 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002224
Chris Lattner965c7692008-06-02 01:18:21 +00002225 // If the input is known to be positive (the sign bit is known clear),
2226 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002227 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002228 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002229
Chris Lattner965c7692008-06-02 01:18:21 +00002230 // Otherwise, we treat this like a SUB.
2231 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 // Sub can have at most one carry bit. Thus we know that the output
2234 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002235 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002236 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002237 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002238
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002239 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002240 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002241 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002242 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002243 if (NumIncomingValues > 4) break;
2244 // Unreachable blocks may have zero-operand PHI nodes.
2245 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002246
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002247 // Take the minimum of all incoming values. This can't infinitely loop
2248 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002249 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002250 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002251 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002252 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002253 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002254 }
2255 return Tmp;
2256 }
2257
Chris Lattner965c7692008-06-02 01:18:21 +00002258 case Instruction::Trunc:
2259 // FIXME: it's tricky to do anything useful for this, but it is an important
2260 // case for targets like X86.
2261 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002262
2263 case Instruction::ExtractElement:
2264 // Look through extract element. At the moment we keep this simple and skip
2265 // tracking the specific element. But at least we might find information
2266 // valid for all elements of the vector (for example if vector is sign
2267 // extended, shifted, etc).
2268 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002269 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002270
Chris Lattner965c7692008-06-02 01:18:21 +00002271 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2272 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002273
2274 // If we can examine all elements of a vector constant successfully, we're
2275 // done (we can't do any better than that). If not, keep trying.
2276 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2277 return VecSignBits;
2278
Craig Topperb45eabc2017-04-26 16:39:58 +00002279 KnownBits Known(TyBits);
2280 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002281
Sanjay Patele0536212016-06-23 17:41:59 +00002282 // If we know that the sign bit is either zero or one, determine the number of
2283 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002284 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002285}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002286
Sanjay Patelaee84212014-11-04 16:27:42 +00002287/// This function computes the integer multiple of Base that equals V.
2288/// If successful, it returns true and returns the multiple in
2289/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002290/// through SExt instructions only if LookThroughSExt is true.
2291bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002292 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002293 const unsigned MaxDepth = 6;
2294
Dan Gohman6a976bb2009-11-18 00:58:27 +00002295 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002296 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002297 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002298
Chris Lattner229907c2011-07-18 04:54:35 +00002299 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002300
Dan Gohman6a976bb2009-11-18 00:58:27 +00002301 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002302
2303 if (Base == 0)
2304 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002305
Victor Hernandez47444882009-11-10 08:28:35 +00002306 if (Base == 1) {
2307 Multiple = V;
2308 return true;
2309 }
2310
2311 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2312 Constant *BaseVal = ConstantInt::get(T, Base);
2313 if (CO && CO == BaseVal) {
2314 // Multiple is 1.
2315 Multiple = ConstantInt::get(T, 1);
2316 return true;
2317 }
2318
2319 if (CI && CI->getZExtValue() % Base == 0) {
2320 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002321 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002322 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002323
Victor Hernandez47444882009-11-10 08:28:35 +00002324 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002325
Victor Hernandez47444882009-11-10 08:28:35 +00002326 Operator *I = dyn_cast<Operator>(V);
2327 if (!I) return false;
2328
2329 switch (I->getOpcode()) {
2330 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002331 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002332 if (!LookThroughSExt) return false;
2333 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002334 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002335 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002336 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2337 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002338 case Instruction::Shl:
2339 case Instruction::Mul: {
2340 Value *Op0 = I->getOperand(0);
2341 Value *Op1 = I->getOperand(1);
2342
2343 if (I->getOpcode() == Instruction::Shl) {
2344 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2345 if (!Op1CI) return false;
2346 // Turn Op0 << Op1 into Op0 * 2^Op1
2347 APInt Op1Int = Op1CI->getValue();
2348 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002349 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002350 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002351 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002352 }
2353
Craig Topper9f008862014-04-15 04:59:12 +00002354 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002355 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2356 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2357 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002358 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002359 MulC->getType()->getPrimitiveSizeInBits())
2360 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002361 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002362 MulC->getType()->getPrimitiveSizeInBits())
2363 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002364
Chris Lattner72d283c2010-09-05 17:20:46 +00002365 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2366 Multiple = ConstantExpr::getMul(MulC, Op1C);
2367 return true;
2368 }
Victor Hernandez47444882009-11-10 08:28:35 +00002369
2370 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2371 if (Mul0CI->getValue() == 1) {
2372 // V == Base * Op1, so return Op1
2373 Multiple = Op1;
2374 return true;
2375 }
2376 }
2377
Craig Topper9f008862014-04-15 04:59:12 +00002378 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002379 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2380 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2381 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002382 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002383 MulC->getType()->getPrimitiveSizeInBits())
2384 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002385 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002386 MulC->getType()->getPrimitiveSizeInBits())
2387 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002388
Chris Lattner72d283c2010-09-05 17:20:46 +00002389 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2390 Multiple = ConstantExpr::getMul(MulC, Op0C);
2391 return true;
2392 }
Victor Hernandez47444882009-11-10 08:28:35 +00002393
2394 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2395 if (Mul1CI->getValue() == 1) {
2396 // V == Base * Op0, so return Op0
2397 Multiple = Op0;
2398 return true;
2399 }
2400 }
Victor Hernandez47444882009-11-10 08:28:35 +00002401 }
2402 }
2403
2404 // We could not determine if V is a multiple of Base.
2405 return false;
2406}
2407
David Majnemerb4b27232016-04-19 19:10:21 +00002408Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2409 const TargetLibraryInfo *TLI) {
2410 const Function *F = ICS.getCalledFunction();
2411 if (!F)
2412 return Intrinsic::not_intrinsic;
2413
2414 if (F->isIntrinsic())
2415 return F->getIntrinsicID();
2416
2417 if (!TLI)
2418 return Intrinsic::not_intrinsic;
2419
David L. Jonesd21529f2017-01-23 23:16:46 +00002420 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002421 // We're going to make assumptions on the semantics of the functions, check
2422 // that the target knows that it's available in this environment and it does
2423 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002424 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2425 return Intrinsic::not_intrinsic;
2426
2427 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002428 return Intrinsic::not_intrinsic;
2429
2430 // Otherwise check if we have a call to a function that can be turned into a
2431 // vector intrinsic.
2432 switch (Func) {
2433 default:
2434 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002435 case LibFunc_sin:
2436 case LibFunc_sinf:
2437 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002438 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002439 case LibFunc_cos:
2440 case LibFunc_cosf:
2441 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002442 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002443 case LibFunc_exp:
2444 case LibFunc_expf:
2445 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002446 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002447 case LibFunc_exp2:
2448 case LibFunc_exp2f:
2449 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002450 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002451 case LibFunc_log:
2452 case LibFunc_logf:
2453 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002454 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002455 case LibFunc_log10:
2456 case LibFunc_log10f:
2457 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002458 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002459 case LibFunc_log2:
2460 case LibFunc_log2f:
2461 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002463 case LibFunc_fabs:
2464 case LibFunc_fabsf:
2465 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002467 case LibFunc_fmin:
2468 case LibFunc_fminf:
2469 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002470 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002471 case LibFunc_fmax:
2472 case LibFunc_fmaxf:
2473 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002474 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002475 case LibFunc_copysign:
2476 case LibFunc_copysignf:
2477 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002478 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002479 case LibFunc_floor:
2480 case LibFunc_floorf:
2481 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002482 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002483 case LibFunc_ceil:
2484 case LibFunc_ceilf:
2485 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002486 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002487 case LibFunc_trunc:
2488 case LibFunc_truncf:
2489 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002490 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002491 case LibFunc_rint:
2492 case LibFunc_rintf:
2493 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002494 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002495 case LibFunc_nearbyint:
2496 case LibFunc_nearbyintf:
2497 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002498 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002499 case LibFunc_round:
2500 case LibFunc_roundf:
2501 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002502 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002503 case LibFunc_pow:
2504 case LibFunc_powf:
2505 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002506 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002507 case LibFunc_sqrt:
2508 case LibFunc_sqrtf:
2509 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002510 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002511 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002512 return Intrinsic::not_intrinsic;
2513 }
2514
2515 return Intrinsic::not_intrinsic;
2516}
2517
Sanjay Patelaee84212014-11-04 16:27:42 +00002518/// Return true if we can prove that the specified FP value is never equal to
2519/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002520///
2521/// NOTE: this function will need to be revisited when we support non-default
2522/// rounding modes!
2523///
David Majnemer3ee5f342016-04-13 06:55:52 +00002524bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2525 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002526 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2527 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002528
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002529 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002530 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002531
Dan Gohman80ca01c2009-07-17 20:47:02 +00002532 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002533 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002534
2535 // Check if the nsz fast-math flag is set
2536 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2537 if (FPO->hasNoSignedZeros())
2538 return true;
2539
Chris Lattnera12a6de2008-06-02 01:29:46 +00002540 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002541 if (I->getOpcode() == Instruction::FAdd)
2542 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2543 if (CFP->isNullValue())
2544 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002545
Chris Lattnera12a6de2008-06-02 01:29:46 +00002546 // sitofp and uitofp turn into +0.0 for zero.
2547 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2548 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002549
David Majnemer3ee5f342016-04-13 06:55:52 +00002550 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002551 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002552 switch (IID) {
2553 default:
2554 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002555 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002556 case Intrinsic::sqrt:
2557 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2558 // fabs(x) != -0.0
2559 case Intrinsic::fabs:
2560 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002561 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002562 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002563
Chris Lattnera12a6de2008-06-02 01:29:46 +00002564 return false;
2565}
2566
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002567/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2568/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2569/// bit despite comparing equal.
2570static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2571 const TargetLibraryInfo *TLI,
2572 bool SignBitOnly,
2573 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002574 // TODO: This function does not do the right thing when SignBitOnly is true
2575 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2576 // which flips the sign bits of NaNs. See
2577 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2578
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002579 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2580 return !CFP->getValueAPF().isNegative() ||
2581 (!SignBitOnly && CFP->getValueAPF().isZero());
2582 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002583
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002584 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002585 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002586
2587 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002588 if (!I)
2589 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002590
2591 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002592 default:
2593 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002594 // Unsigned integers are always nonnegative.
2595 case Instruction::UIToFP:
2596 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002597 case Instruction::FMul:
2598 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002599 if (I->getOperand(0) == I->getOperand(1) &&
2600 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002601 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002602
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002603 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002604 case Instruction::FAdd:
2605 case Instruction::FDiv:
2606 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002607 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2608 Depth + 1) &&
2609 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2610 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002611 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002612 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2613 Depth + 1) &&
2614 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2615 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002616 case Instruction::FPExt:
2617 case Instruction::FPTrunc:
2618 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002619 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2620 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002621 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002622 const auto *CI = cast<CallInst>(I);
2623 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002624 switch (IID) {
2625 default:
2626 break;
2627 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002628 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2629 Depth + 1) ||
2630 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2631 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002632 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2634 Depth + 1) &&
2635 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2636 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002637 case Intrinsic::exp:
2638 case Intrinsic::exp2:
2639 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002640 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002641
2642 case Intrinsic::sqrt:
2643 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2644 if (!SignBitOnly)
2645 return true;
2646 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2647 CannotBeNegativeZero(CI->getOperand(0), TLI));
2648
David Majnemer3ee5f342016-04-13 06:55:52 +00002649 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002650 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002651 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002652 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002653 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002654 }
Justin Lebar322c1272017-01-27 00:58:34 +00002655 // TODO: This is not correct. Given that exp is an integer, here are the
2656 // ways that pow can return a negative value:
2657 //
2658 // pow(x, exp) --> negative if exp is odd and x is negative.
2659 // pow(-0, exp) --> -inf if exp is negative odd.
2660 // pow(-0, exp) --> -0 if exp is positive odd.
2661 // pow(-inf, exp) --> -0 if exp is negative odd.
2662 // pow(-inf, exp) --> -inf if exp is positive odd.
2663 //
2664 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2665 // but we must return false if x == -0. Unfortunately we do not currently
2666 // have a way of expressing this constraint. See details in
2667 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002668 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2669 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002670
David Majnemer3ee5f342016-04-13 06:55:52 +00002671 case Intrinsic::fma:
2672 case Intrinsic::fmuladd:
2673 // x*x+y is non-negative if y is non-negative.
2674 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002675 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2676 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2677 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002678 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002679 break;
2680 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002681 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002682}
2683
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002684bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2685 const TargetLibraryInfo *TLI) {
2686 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2687}
2688
2689bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2690 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2691}
2692
Sanjay Patelaee84212014-11-04 16:27:42 +00002693/// If the specified value can be set by repeating the same byte in memory,
2694/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002695/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2696/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2697/// byte store (e.g. i16 0x1234), return null.
2698Value *llvm::isBytewiseValue(Value *V) {
2699 // All byte-wide stores are splatable, even of arbitrary variables.
2700 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002701
2702 // Handle 'null' ConstantArrayZero etc.
2703 if (Constant *C = dyn_cast<Constant>(V))
2704 if (C->isNullValue())
2705 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002706
Chris Lattner9cb10352010-12-26 20:15:01 +00002707 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002708 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002709 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2710 if (CFP->getType()->isFloatTy())
2711 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2712 if (CFP->getType()->isDoubleTy())
2713 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2714 // Don't handle long double formats, which have strange constraints.
2715 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002716
Benjamin Kramer17d90152015-02-07 19:29:02 +00002717 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002718 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002719 if (CI->getBitWidth() % 8 == 0) {
2720 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002721
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002722 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002723 return nullptr;
2724 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002725 }
2726 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002727
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002728 // A ConstantDataArray/Vector is splatable if all its members are equal and
2729 // also splatable.
2730 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2731 Value *Elt = CA->getElementAsConstant(0);
2732 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002733 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002734 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002735
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002736 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2737 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002738 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002739
Chris Lattner9cb10352010-12-26 20:15:01 +00002740 return Val;
2741 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002742
Chris Lattner9cb10352010-12-26 20:15:01 +00002743 // Conceptually, we could handle things like:
2744 // %a = zext i8 %X to i16
2745 // %b = shl i16 %a, 8
2746 // %c = or i16 %a, %b
2747 // but until there is an example that actually needs this, it doesn't seem
2748 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002749 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002750}
2751
2752
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002753// This is the recursive version of BuildSubAggregate. It takes a few different
2754// arguments. Idxs is the index within the nested struct From that we are
2755// looking at now (which is of type IndexedType). IdxSkip is the number of
2756// indices from Idxs that should be left out when inserting into the resulting
2757// struct. To is the result struct built so far, new insertvalue instructions
2758// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002759static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002760 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002761 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002762 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002763 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002764 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002765 // Save the original To argument so we can modify it
2766 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002767 // General case, the type indexed by Idxs is a struct
2768 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2769 // Process each struct element recursively
2770 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002771 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002772 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002773 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002774 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002775 if (!To) {
2776 // Couldn't find any inserted value for this index? Cleanup
2777 while (PrevTo != OrigTo) {
2778 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2779 PrevTo = Del->getAggregateOperand();
2780 Del->eraseFromParent();
2781 }
2782 // Stop processing elements
2783 break;
2784 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002785 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002786 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002787 if (To)
2788 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002789 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002790 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2791 // the struct's elements had a value that was inserted directly. In the latter
2792 // case, perhaps we can't determine each of the subelements individually, but
2793 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002794
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002795 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002796 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002797
2798 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002799 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002800
2801 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002802 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002803 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002804}
2805
2806// This helper takes a nested struct and extracts a part of it (which is again a
2807// struct) into a new value. For example, given the struct:
2808// { a, { b, { c, d }, e } }
2809// and the indices "1, 1" this returns
2810// { c, d }.
2811//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002812// It does this by inserting an insertvalue for each element in the resulting
2813// struct, as opposed to just inserting a single struct. This will only work if
2814// each of the elements of the substruct are known (ie, inserted into From by an
2815// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002816//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002817// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002818static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002819 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002820 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002821 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002822 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002823 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002824 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002825 unsigned IdxSkip = Idxs.size();
2826
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002827 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002828}
2829
Sanjay Patelaee84212014-11-04 16:27:42 +00002830/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002831/// the scalar value indexed is already around as a register, for example if it
2832/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002833///
2834/// If InsertBefore is not null, this function will duplicate (modified)
2835/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002836Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2837 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002838 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002839 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002840 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002841 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002842 // We have indices, so V should have an indexable type.
2843 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2844 "Not looking at a struct or array?");
2845 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2846 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002847
Chris Lattner67058832012-01-25 06:48:06 +00002848 if (Constant *C = dyn_cast<Constant>(V)) {
2849 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002850 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002851 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2852 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002853
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002854 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002855 // Loop the indices for the insertvalue instruction in parallel with the
2856 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002857 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002858 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2859 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002860 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002861 // We can't handle this without inserting insertvalues
2862 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002863 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002864
2865 // The requested index identifies a part of a nested aggregate. Handle
2866 // this specially. For example,
2867 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2868 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2869 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2870 // This can be changed into
2871 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2872 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2873 // which allows the unused 0,0 element from the nested struct to be
2874 // removed.
2875 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2876 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002877 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002878
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002879 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002880 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002881 // looking for, then.
2882 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002883 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002884 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002885 }
2886 // If we end up here, the indices of the insertvalue match with those
2887 // requested (though possibly only partially). Now we recursively look at
2888 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002889 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002890 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002891 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002892 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002893
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002894 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002895 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002896 // something else, we can extract from that something else directly instead.
2897 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
2899 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002900 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002901 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002902 SmallVector<unsigned, 5> Idxs;
2903 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002904 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002905 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002906
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002907 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002908 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002909
Craig Topper1bef2c82012-12-22 19:15:35 +00002910 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002911 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002912
Jay Foad57aa6362011-07-13 10:26:04 +00002913 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002914 }
2915 // Otherwise, we don't know (such as, extracting from a function return value
2916 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002917 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002918}
Evan Chengda3db112008-06-30 07:31:25 +00002919
Sanjay Patelaee84212014-11-04 16:27:42 +00002920/// Analyze the specified pointer to see if it can be expressed as a base
2921/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002922Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002923 const DataLayout &DL) {
2924 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002925 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002926
2927 // We walk up the defs but use a visited set to handle unreachable code. In
2928 // that case, we stop after accumulating the cycle once (not that it
2929 // matters).
2930 SmallPtrSet<Value *, 16> Visited;
2931 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002932 if (Ptr->getType()->isVectorTy())
2933 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002934
Nuno Lopes368c4d02012-12-31 20:48:35 +00002935 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002936 // If one of the values we have visited is an addrspacecast, then
2937 // the pointer type of this GEP may be different from the type
2938 // of the Ptr parameter which was passed to this function. This
2939 // means when we construct GEPOffset, we need to use the size
2940 // of GEP's pointer type rather than the size of the original
2941 // pointer type.
2942 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002943 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2944 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002945
Tom Stellard17eb3412016-10-07 14:23:29 +00002946 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002947
Nuno Lopes368c4d02012-12-31 20:48:35 +00002948 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002949 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2950 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002951 Ptr = cast<Operator>(Ptr)->getOperand(0);
2952 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002953 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002954 break;
2955 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002956 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002957 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002958 }
2959 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002960 Offset = ByteOffset.getSExtValue();
2961 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002962}
2963
Matthias Braun50ec0b52017-05-19 22:37:09 +00002964bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
2965 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002966 // Make sure the GEP has exactly three arguments.
2967 if (GEP->getNumOperands() != 3)
2968 return false;
2969
Matthias Braun50ec0b52017-05-19 22:37:09 +00002970 // Make sure the index-ee is a pointer to array of \p CharSize integers.
2971 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00002972 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00002973 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00002974 return false;
2975
2976 // Check to make sure that the first operand of the GEP is an integer and
2977 // has value 0 so that we are sure we're indexing into the initializer.
2978 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2979 if (!FirstIdx || !FirstIdx->isZero())
2980 return false;
2981
2982 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002983}
Chris Lattnere28618d2010-11-30 22:25:26 +00002984
Matthias Braun50ec0b52017-05-19 22:37:09 +00002985bool llvm::getConstantDataArrayInfo(const Value *V,
2986 ConstantDataArraySlice &Slice,
2987 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002988 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002989
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002990 // Look through bitcast instructions and geps.
2991 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002992
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002993 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002994 // offset.
2995 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002996 // The GEP operator should be based on a pointer to string constant, and is
2997 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00002998 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002999 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003000
Evan Chengda3db112008-06-30 07:31:25 +00003001 // If the second index isn't a ConstantInt, then this is a variable index
3002 // into the array. If this occurs, we can't say anything meaningful about
3003 // the string.
3004 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003005 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003006 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003007 else
3008 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003009 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3010 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003011 }
Nick Lewycky46209882011-10-20 00:34:35 +00003012
Evan Chengda3db112008-06-30 07:31:25 +00003013 // The GEP instruction, constant or instruction, must reference a global
3014 // variable that is a constant and is initialized. The referenced constant
3015 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003016 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003017 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003018 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003019
Matthias Braun50ec0b52017-05-19 22:37:09 +00003020 const ConstantDataArray *Array;
3021 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003022 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003023 Type *GVTy = GV->getValueType();
3024 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003025 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003026 Array = nullptr;
3027 } else {
3028 const DataLayout &DL = GV->getParent()->getDataLayout();
3029 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3030 uint64_t Length = SizeInBytes / (ElementSize / 8);
3031 if (Length <= Offset)
3032 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003033
Matthias Braun50ec0b52017-05-19 22:37:09 +00003034 Slice.Array = nullptr;
3035 Slice.Offset = 0;
3036 Slice.Length = Length - Offset;
3037 return true;
3038 }
3039 } else {
3040 // This must be a ConstantDataArray.
3041 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3042 if (!Array)
3043 return false;
3044 ArrayTy = Array->getType();
3045 }
3046 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003047 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003048
Matthias Braun50ec0b52017-05-19 22:37:09 +00003049 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003050 if (Offset > NumElts)
3051 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003052
Matthias Braun50ec0b52017-05-19 22:37:09 +00003053 Slice.Array = Array;
3054 Slice.Offset = Offset;
3055 Slice.Length = NumElts - Offset;
3056 return true;
3057}
3058
3059/// This function computes the length of a null-terminated C string pointed to
3060/// by V. If successful, it returns true and returns the string in Str.
3061/// If unsuccessful, it returns false.
3062bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3063 uint64_t Offset, bool TrimAtNul) {
3064 ConstantDataArraySlice Slice;
3065 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3066 return false;
3067
3068 if (Slice.Array == nullptr) {
3069 if (TrimAtNul) {
3070 Str = StringRef();
3071 return true;
3072 }
3073 if (Slice.Length == 1) {
3074 Str = StringRef("", 1);
3075 return true;
3076 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003077 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003078 // of 0s at hand.
3079 return false;
3080 }
3081
3082 // Start out with the entire array in the StringRef.
3083 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003084 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003085 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003086
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003087 if (TrimAtNul) {
3088 // Trim off the \0 and anything after it. If the array is not nul
3089 // terminated, we just return the whole end of string. The client may know
3090 // some other way that the string is length-bound.
3091 Str = Str.substr(0, Str.find('\0'));
3092 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003093 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003094}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003095
3096// These next two are very similar to the above, but also look through PHI
3097// nodes.
3098// TODO: See if we can integrate these two together.
3099
Sanjay Patelaee84212014-11-04 16:27:42 +00003100/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003101/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003102static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003103 SmallPtrSetImpl<const PHINode*> &PHIs,
3104 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003105 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003106 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003107
3108 // If this is a PHI node, there are two cases: either we have already seen it
3109 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003110 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003111 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003112 return ~0ULL; // already in the set.
3113
3114 // If it was new, see if all the input strings are the same length.
3115 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003116 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003117 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003118 if (Len == 0) return 0; // Unknown length -> unknown.
3119
3120 if (Len == ~0ULL) continue;
3121
3122 if (Len != LenSoFar && LenSoFar != ~0ULL)
3123 return 0; // Disagree -> unknown.
3124 LenSoFar = Len;
3125 }
3126
3127 // Success, all agree.
3128 return LenSoFar;
3129 }
3130
3131 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003132 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003133 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003134 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003135 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003136 if (Len2 == 0) return 0;
3137 if (Len1 == ~0ULL) return Len2;
3138 if (Len2 == ~0ULL) return Len1;
3139 if (Len1 != Len2) return 0;
3140 return Len1;
3141 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003142
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003143 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003144 ConstantDataArraySlice Slice;
3145 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003146 return 0;
3147
Matthias Braun50ec0b52017-05-19 22:37:09 +00003148 if (Slice.Array == nullptr)
3149 return 1;
3150
3151 // Search for nul characters
3152 unsigned NullIndex = 0;
3153 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3154 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3155 break;
3156 }
3157
3158 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003159}
3160
Sanjay Patelaee84212014-11-04 16:27:42 +00003161/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003162/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003163uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003164 if (!V->getType()->isPointerTy()) return 0;
3165
Pete Cooper35b00d52016-08-13 01:05:32 +00003166 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003167 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003168 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3169 // an empty string as a length.
3170 return Len == ~0ULL ? 1 : Len;
3171}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003172
Adam Nemete2b885c2015-04-23 20:09:20 +00003173/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3174/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003175static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3176 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003177 // Find the loop-defined value.
3178 Loop *L = LI->getLoopFor(PN->getParent());
3179 if (PN->getNumIncomingValues() != 2)
3180 return true;
3181
3182 // Find the value from previous iteration.
3183 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3184 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3185 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3186 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3187 return true;
3188
3189 // If a new pointer is loaded in the loop, the pointer references a different
3190 // object in every iteration. E.g.:
3191 // for (i)
3192 // int *p = a[i];
3193 // ...
3194 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3195 if (!L->isLoopInvariant(Load->getPointerOperand()))
3196 return false;
3197 return true;
3198}
3199
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003200Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3201 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003202 if (!V->getType()->isPointerTy())
3203 return V;
3204 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3205 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3206 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003207 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3208 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003209 V = cast<Operator>(V)->getOperand(0);
3210 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003211 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003212 return V;
3213 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003214 } else if (isa<AllocaInst>(V)) {
3215 // An alloca can't be further simplified.
3216 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003217 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003218 if (auto CS = CallSite(V))
3219 if (Value *RV = CS.getReturnedArgOperand()) {
3220 V = RV;
3221 continue;
3222 }
3223
Dan Gohman05b18f12010-12-15 20:49:55 +00003224 // See if InstructionSimplify knows any relevant tricks.
3225 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003226 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003227 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003228 V = Simplified;
3229 continue;
3230 }
3231
Dan Gohmana4fcd242010-12-15 20:02:24 +00003232 return V;
3233 }
3234 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3235 }
3236 return V;
3237}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003238
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003239void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003240 const DataLayout &DL, LoopInfo *LI,
3241 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003242 SmallPtrSet<Value *, 4> Visited;
3243 SmallVector<Value *, 4> Worklist;
3244 Worklist.push_back(V);
3245 do {
3246 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003247 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003248
David Blaikie70573dc2014-11-19 07:49:26 +00003249 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003250 continue;
3251
3252 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3253 Worklist.push_back(SI->getTrueValue());
3254 Worklist.push_back(SI->getFalseValue());
3255 continue;
3256 }
3257
3258 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003259 // If this PHI changes the underlying object in every iteration of the
3260 // loop, don't look through it. Consider:
3261 // int **A;
3262 // for (i) {
3263 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3264 // Curr = A[i];
3265 // *Prev, *Curr;
3266 //
3267 // Prev is tracking Curr one iteration behind so they refer to different
3268 // underlying objects.
3269 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3270 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003271 for (Value *IncValue : PN->incoming_values())
3272 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003273 continue;
3274 }
3275
3276 Objects.push_back(P);
3277 } while (!Worklist.empty());
3278}
3279
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003280/// This is the function that does the work of looking through basic
3281/// ptrtoint+arithmetic+inttoptr sequences.
3282static const Value *getUnderlyingObjectFromInt(const Value *V) {
3283 do {
3284 if (const Operator *U = dyn_cast<Operator>(V)) {
3285 // If we find a ptrtoint, we can transfer control back to the
3286 // regular getUnderlyingObjectFromInt.
3287 if (U->getOpcode() == Instruction::PtrToInt)
3288 return U->getOperand(0);
3289 // If we find an add of a constant, a multiplied value, or a phi, it's
3290 // likely that the other operand will lead us to the base
3291 // object. We don't have to worry about the case where the
3292 // object address is somehow being computed by the multiply,
3293 // because our callers only care when the result is an
3294 // identifiable object.
3295 if (U->getOpcode() != Instruction::Add ||
3296 (!isa<ConstantInt>(U->getOperand(1)) &&
3297 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3298 !isa<PHINode>(U->getOperand(1))))
3299 return V;
3300 V = U->getOperand(0);
3301 } else {
3302 return V;
3303 }
3304 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3305 } while (true);
3306}
3307
3308/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3309/// ptrtoint+arithmetic+inttoptr sequences.
3310void llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3311 SmallVectorImpl<Value *> &Objects,
3312 const DataLayout &DL) {
3313 SmallPtrSet<const Value *, 16> Visited;
3314 SmallVector<const Value *, 4> Working(1, V);
3315 do {
3316 V = Working.pop_back_val();
3317
3318 SmallVector<Value *, 4> Objs;
3319 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3320
3321 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003322 if (!Visited.insert(V).second)
3323 continue;
3324 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3325 const Value *O =
3326 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3327 if (O->getType()->isPointerTy()) {
3328 Working.push_back(O);
3329 continue;
3330 }
3331 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003332 // If GetUnderlyingObjects fails to find an identifiable object,
3333 // getUnderlyingObjectsForCodeGen also fails for safety.
3334 if (!isIdentifiedObject(V)) {
3335 Objects.clear();
3336 return;
3337 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003338 Objects.push_back(const_cast<Value *>(V));
3339 }
3340 } while (!Working.empty());
3341}
3342
Sanjay Patelaee84212014-11-04 16:27:42 +00003343/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003344bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003345 for (const User *U : V->users()) {
3346 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003347 if (!II) return false;
3348
3349 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3350 II->getIntrinsicID() != Intrinsic::lifetime_end)
3351 return false;
3352 }
3353 return true;
3354}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003355
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003356bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3357 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003358 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003359 const Operator *Inst = dyn_cast<Operator>(V);
3360 if (!Inst)
3361 return false;
3362
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003363 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3364 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3365 if (C->canTrap())
3366 return false;
3367
3368 switch (Inst->getOpcode()) {
3369 default:
3370 return true;
3371 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003372 case Instruction::URem: {
3373 // x / y is undefined if y == 0.
3374 const APInt *V;
3375 if (match(Inst->getOperand(1), m_APInt(V)))
3376 return *V != 0;
3377 return false;
3378 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003379 case Instruction::SDiv:
3380 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003381 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003382 const APInt *Numerator, *Denominator;
3383 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3384 return false;
3385 // We cannot hoist this division if the denominator is 0.
3386 if (*Denominator == 0)
3387 return false;
3388 // It's safe to hoist if the denominator is not 0 or -1.
3389 if (*Denominator != -1)
3390 return true;
3391 // At this point we know that the denominator is -1. It is safe to hoist as
3392 // long we know that the numerator is not INT_MIN.
3393 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3394 return !Numerator->isMinSignedValue();
3395 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003396 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003397 }
3398 case Instruction::Load: {
3399 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003400 if (!LI->isUnordered() ||
3401 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003402 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003403 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003404 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003405 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003406 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003407 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3408 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003409 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003410 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003411 auto *CI = cast<const CallInst>(Inst);
3412 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003413
Matt Arsenault6a288c12017-05-03 02:26:10 +00003414 // The called function could have undefined behavior or side-effects, even
3415 // if marked readnone nounwind.
3416 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003417 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003418 case Instruction::VAArg:
3419 case Instruction::Alloca:
3420 case Instruction::Invoke:
3421 case Instruction::PHI:
3422 case Instruction::Store:
3423 case Instruction::Ret:
3424 case Instruction::Br:
3425 case Instruction::IndirectBr:
3426 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003427 case Instruction::Unreachable:
3428 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003429 case Instruction::AtomicRMW:
3430 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003431 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003432 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003433 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003434 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003435 case Instruction::CatchRet:
3436 case Instruction::CleanupPad:
3437 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003438 return false; // Misc instructions which have effects
3439 }
3440}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003441
Quentin Colombet6443cce2015-08-06 18:44:34 +00003442bool llvm::mayBeMemoryDependent(const Instruction &I) {
3443 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3444}
3445
Sanjay Patelaee84212014-11-04 16:27:42 +00003446/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003447bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003448 assert(V->getType()->isPointerTy() && "V must be pointer type");
3449
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003450 // Alloca never returns null, malloc might.
3451 if (isa<AllocaInst>(V)) return true;
3452
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003453 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003454 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003455 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003456
Peter Collingbourne235c2752016-12-08 19:01:00 +00003457 // A global variable in address space 0 is non null unless extern weak
3458 // or an absolute symbol reference. Other address spaces may have null as a
3459 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003460 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003461 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003462 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003463
Sanjoy Das5056e192016-05-07 02:08:22 +00003464 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003465 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003466 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003467
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003468 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003469 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003470 return true;
3471
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003472 return false;
3473}
David Majnemer491331a2015-01-02 07:29:43 +00003474
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003475static bool isKnownNonNullFromDominatingCondition(const Value *V,
3476 const Instruction *CtxI,
3477 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003478 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003479 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003480 assert(CtxI && "Context instruction required for analysis");
3481 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003482
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003483 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003484 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003485 // Avoid massive lists
3486 if (NumUsesExplored >= DomConditionsMaxUses)
3487 break;
3488 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003489
3490 // If the value is used as an argument to a call or invoke, then argument
3491 // attributes may provide an answer about null-ness.
3492 if (auto CS = ImmutableCallSite(U))
3493 if (auto *CalledFunc = CS.getCalledFunction())
3494 for (const Argument &Arg : CalledFunc->args())
3495 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3496 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3497 return true;
3498
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003499 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003500 CmpInst::Predicate Pred;
3501 if (!match(const_cast<User *>(U),
3502 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3503 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003504 continue;
3505
Sanjoy Das987aaa12016-05-07 02:08:24 +00003506 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003507 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3508 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003509
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003510 BasicBlock *NonNullSuccessor =
3511 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3512 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3513 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3514 return true;
3515 } else if (Pred == ICmpInst::ICMP_NE &&
3516 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3517 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003518 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003519 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003520 }
3521 }
3522
3523 return false;
3524}
3525
3526bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003527 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003528 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3529 return false;
3530
Sean Silva45835e72016-07-02 23:47:27 +00003531 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003532 return true;
3533
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003534 if (!CtxI || !DT)
3535 return false;
3536
3537 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003538}
3539
Pete Cooper35b00d52016-08-13 01:05:32 +00003540OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3541 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003542 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003543 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003544 const Instruction *CxtI,
3545 const DominatorTree *DT) {
3546 // Multiplying n * m significant bits yields a result of n + m significant
3547 // bits. If the total number of significant bits does not exceed the
3548 // result bit width (minus 1), there is no overflow.
3549 // This means if we have enough leading zero bits in the operands
3550 // we can guarantee that the result does not overflow.
3551 // Ref: "Hacker's Delight" by Henry Warren
3552 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003553 KnownBits LHSKnown(BitWidth);
3554 KnownBits RHSKnown(BitWidth);
3555 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3556 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003557 // Note that underestimating the number of zero bits gives a more
3558 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003559 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3560 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003561 // First handle the easy case: if we have enough zero bits there's
3562 // definitely no overflow.
3563 if (ZeroBits >= BitWidth)
3564 return OverflowResult::NeverOverflows;
3565
3566 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003567 APInt LHSMax = ~LHSKnown.Zero;
3568 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003569
3570 // We know the multiply operation doesn't overflow if the maximum values for
3571 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003572 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003573 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003574 if (!MaxOverflow)
3575 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003576
David Majnemerc8a576b2015-01-02 07:29:47 +00003577 // We know it always overflows if multiplying the smallest possible values for
3578 // the operands also results in overflow.
3579 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003580 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003581 if (MinOverflow)
3582 return OverflowResult::AlwaysOverflows;
3583
3584 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003585}
David Majnemer5310c1e2015-01-07 00:39:50 +00003586
Pete Cooper35b00d52016-08-13 01:05:32 +00003587OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3588 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003589 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003590 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003591 const Instruction *CxtI,
3592 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003593 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3594 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3595 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003596
Craig Topper6e11a052017-05-08 16:22:48 +00003597 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003598 // The sign bit is set in both cases: this MUST overflow.
3599 // Create a simple add instruction, and insert it into the struct.
3600 return OverflowResult::AlwaysOverflows;
3601 }
3602
Craig Topper6e11a052017-05-08 16:22:48 +00003603 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003604 // The sign bit is clear in both cases: this CANNOT overflow.
3605 // Create a simple add instruction, and insert it into the struct.
3606 return OverflowResult::NeverOverflows;
3607 }
3608 }
3609
3610 return OverflowResult::MayOverflow;
3611}
James Molloy71b91c22015-05-11 14:42:20 +00003612
Craig Topperbb973722017-05-15 02:44:08 +00003613/// \brief Return true if we can prove that adding the two values of the
3614/// knownbits will not overflow.
3615/// Otherwise return false.
3616static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3617 const KnownBits &RHSKnown) {
3618 // Addition of two 2's complement numbers having opposite signs will never
3619 // overflow.
3620 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3621 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3622 return true;
3623
3624 // If either of the values is known to be non-negative, adding them can only
3625 // overflow if the second is also non-negative, so we can assume that.
3626 // Two non-negative numbers will only overflow if there is a carry to the
3627 // sign bit, so we can check if even when the values are as big as possible
3628 // there is no overflow to the sign bit.
3629 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3630 APInt MaxLHS = ~LHSKnown.Zero;
3631 MaxLHS.clearSignBit();
3632 APInt MaxRHS = ~RHSKnown.Zero;
3633 MaxRHS.clearSignBit();
3634 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3635 return Result.isSignBitClear();
3636 }
3637
3638 // If either of the values is known to be negative, adding them can only
3639 // overflow if the second is also negative, so we can assume that.
3640 // Two negative number will only overflow if there is no carry to the sign
3641 // bit, so we can check if even when the values are as small as possible
3642 // there is overflow to the sign bit.
3643 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3644 APInt MinLHS = LHSKnown.One;
3645 MinLHS.clearSignBit();
3646 APInt MinRHS = RHSKnown.One;
3647 MinRHS.clearSignBit();
3648 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3649 return Result.isSignBitSet();
3650 }
3651
3652 // If we reached here it means that we know nothing about the sign bits.
3653 // In this case we can't know if there will be an overflow, since by
3654 // changing the sign bits any two values can be made to overflow.
3655 return false;
3656}
3657
Pete Cooper35b00d52016-08-13 01:05:32 +00003658static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3659 const Value *RHS,
3660 const AddOperator *Add,
3661 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003662 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003663 const Instruction *CxtI,
3664 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003665 if (Add && Add->hasNoSignedWrap()) {
3666 return OverflowResult::NeverOverflows;
3667 }
3668
Craig Topperbb973722017-05-15 02:44:08 +00003669 // If LHS and RHS each have at least two sign bits, the addition will look
3670 // like
3671 //
3672 // XX..... +
3673 // YY.....
3674 //
3675 // If the carry into the most significant position is 0, X and Y can't both
3676 // be 1 and therefore the carry out of the addition is also 0.
3677 //
3678 // If the carry into the most significant position is 1, X and Y can't both
3679 // be 0 and therefore the carry out of the addition is also 1.
3680 //
3681 // Since the carry into the most significant position is always equal to
3682 // the carry out of the addition, there is no signed overflow.
3683 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3684 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3685 return OverflowResult::NeverOverflows;
3686
Craig Topper6e11a052017-05-08 16:22:48 +00003687 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3688 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003689
Craig Topperbb973722017-05-15 02:44:08 +00003690 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003691 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003692
3693 // The remaining code needs Add to be available. Early returns if not so.
3694 if (!Add)
3695 return OverflowResult::MayOverflow;
3696
3697 // If the sign of Add is the same as at least one of the operands, this add
3698 // CANNOT overflow. This is particularly useful when the sum is
3699 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3700 // operands.
3701 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003702 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003703 bool LHSOrRHSKnownNegative =
3704 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003705 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003706 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3707 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3708 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003709 return OverflowResult::NeverOverflows;
3710 }
3711 }
3712
3713 return OverflowResult::MayOverflow;
3714}
3715
Pete Cooper35b00d52016-08-13 01:05:32 +00003716bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3717 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003718#ifndef NDEBUG
3719 auto IID = II->getIntrinsicID();
3720 assert((IID == Intrinsic::sadd_with_overflow ||
3721 IID == Intrinsic::uadd_with_overflow ||
3722 IID == Intrinsic::ssub_with_overflow ||
3723 IID == Intrinsic::usub_with_overflow ||
3724 IID == Intrinsic::smul_with_overflow ||
3725 IID == Intrinsic::umul_with_overflow) &&
3726 "Not an overflow intrinsic!");
3727#endif
3728
Pete Cooper35b00d52016-08-13 01:05:32 +00003729 SmallVector<const BranchInst *, 2> GuardingBranches;
3730 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003731
Pete Cooper35b00d52016-08-13 01:05:32 +00003732 for (const User *U : II->users()) {
3733 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003734 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3735
3736 if (EVI->getIndices()[0] == 0)
3737 Results.push_back(EVI);
3738 else {
3739 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3740
Pete Cooper35b00d52016-08-13 01:05:32 +00003741 for (const auto *U : EVI->users())
3742 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003743 assert(B->isConditional() && "How else is it using an i1?");
3744 GuardingBranches.push_back(B);
3745 }
3746 }
3747 } else {
3748 // We are using the aggregate directly in a way we don't want to analyze
3749 // here (storing it to a global, say).
3750 return false;
3751 }
3752 }
3753
Pete Cooper35b00d52016-08-13 01:05:32 +00003754 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003755 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3756 if (!NoWrapEdge.isSingleEdge())
3757 return false;
3758
3759 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003760 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003761 // If the extractvalue itself is not executed on overflow, the we don't
3762 // need to check each use separately, since domination is transitive.
3763 if (DT.dominates(NoWrapEdge, Result->getParent()))
3764 continue;
3765
3766 for (auto &RU : Result->uses())
3767 if (!DT.dominates(NoWrapEdge, RU))
3768 return false;
3769 }
3770
3771 return true;
3772 };
3773
3774 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3775}
3776
3777
Pete Cooper35b00d52016-08-13 01:05:32 +00003778OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003779 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003780 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003781 const Instruction *CxtI,
3782 const DominatorTree *DT) {
3783 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003784 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003785}
3786
Pete Cooper35b00d52016-08-13 01:05:32 +00003787OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3788 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003789 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003790 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003791 const Instruction *CxtI,
3792 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003793 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003794}
3795
Jingyue Wu42f1d672015-07-28 18:22:40 +00003796bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003797 // A memory operation returns normally if it isn't volatile. A volatile
3798 // operation is allowed to trap.
3799 //
3800 // An atomic operation isn't guaranteed to return in a reasonable amount of
3801 // time because it's possible for another thread to interfere with it for an
3802 // arbitrary length of time, but programs aren't allowed to rely on that.
3803 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3804 return !LI->isVolatile();
3805 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3806 return !SI->isVolatile();
3807 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3808 return !CXI->isVolatile();
3809 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3810 return !RMWI->isVolatile();
3811 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3812 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003813
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003814 // If there is no successor, then execution can't transfer to it.
3815 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3816 return !CRI->unwindsToCaller();
3817 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3818 return !CatchSwitch->unwindsToCaller();
3819 if (isa<ResumeInst>(I))
3820 return false;
3821 if (isa<ReturnInst>(I))
3822 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003823 if (isa<UnreachableInst>(I))
3824 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003825
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003826 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003827 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003828 // Call sites that throw have implicit non-local control flow.
3829 if (!CS.doesNotThrow())
3830 return false;
3831
3832 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3833 // etc. and thus not return. However, LLVM already assumes that
3834 //
3835 // - Thread exiting actions are modeled as writes to memory invisible to
3836 // the program.
3837 //
3838 // - Loops that don't have side effects (side effects are volatile/atomic
3839 // stores and IO) always terminate (see http://llvm.org/PR965).
3840 // Furthermore IO itself is also modeled as writes to memory invisible to
3841 // the program.
3842 //
3843 // We rely on those assumptions here, and use the memory effects of the call
3844 // target as a proxy for checking that it always returns.
3845
3846 // FIXME: This isn't aggressive enough; a call which only writes to a global
3847 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003848 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3849 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003850 }
3851
3852 // Other instructions return normally.
3853 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003854}
3855
3856bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3857 const Loop *L) {
3858 // The loop header is guaranteed to be executed for every iteration.
3859 //
3860 // FIXME: Relax this constraint to cover all basic blocks that are
3861 // guaranteed to be executed at every iteration.
3862 if (I->getParent() != L->getHeader()) return false;
3863
3864 for (const Instruction &LI : *L->getHeader()) {
3865 if (&LI == I) return true;
3866 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3867 }
3868 llvm_unreachable("Instruction not contained in its own parent basic block.");
3869}
3870
3871bool llvm::propagatesFullPoison(const Instruction *I) {
3872 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003873 case Instruction::Add:
3874 case Instruction::Sub:
3875 case Instruction::Xor:
3876 case Instruction::Trunc:
3877 case Instruction::BitCast:
3878 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003879 case Instruction::Mul:
3880 case Instruction::Shl:
3881 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003882 // These operations all propagate poison unconditionally. Note that poison
3883 // is not any particular value, so xor or subtraction of poison with
3884 // itself still yields poison, not zero.
3885 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003886
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003887 case Instruction::AShr:
3888 case Instruction::SExt:
3889 // For these operations, one bit of the input is replicated across
3890 // multiple output bits. A replicated poison bit is still poison.
3891 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003892
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003893 case Instruction::ICmp:
3894 // Comparing poison with any value yields poison. This is why, for
3895 // instance, x s< (x +nsw 1) can be folded to true.
3896 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003897
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003898 default:
3899 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003900 }
3901}
3902
3903const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3904 switch (I->getOpcode()) {
3905 case Instruction::Store:
3906 return cast<StoreInst>(I)->getPointerOperand();
3907
3908 case Instruction::Load:
3909 return cast<LoadInst>(I)->getPointerOperand();
3910
3911 case Instruction::AtomicCmpXchg:
3912 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3913
3914 case Instruction::AtomicRMW:
3915 return cast<AtomicRMWInst>(I)->getPointerOperand();
3916
3917 case Instruction::UDiv:
3918 case Instruction::SDiv:
3919 case Instruction::URem:
3920 case Instruction::SRem:
3921 return I->getOperand(1);
3922
3923 default:
3924 return nullptr;
3925 }
3926}
3927
Sanjoy Das08989c72017-04-30 19:41:19 +00003928bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003929 // We currently only look for uses of poison values within the same basic
3930 // block, as that makes it easier to guarantee that the uses will be
3931 // executed given that PoisonI is executed.
3932 //
3933 // FIXME: Expand this to consider uses beyond the same basic block. To do
3934 // this, look out for the distinction between post-dominance and strong
3935 // post-dominance.
3936 const BasicBlock *BB = PoisonI->getParent();
3937
3938 // Set of instructions that we have proved will yield poison if PoisonI
3939 // does.
3940 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003941 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003942 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003943 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003944
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003945 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003946
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003947 unsigned Iter = 0;
3948 while (Iter++ < MaxDepth) {
3949 for (auto &I : make_range(Begin, End)) {
3950 if (&I != PoisonI) {
3951 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3952 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3953 return true;
3954 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3955 return false;
3956 }
3957
3958 // Mark poison that propagates from I through uses of I.
3959 if (YieldsPoison.count(&I)) {
3960 for (const User *User : I.users()) {
3961 const Instruction *UserI = cast<Instruction>(User);
3962 if (propagatesFullPoison(UserI))
3963 YieldsPoison.insert(User);
3964 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003965 }
3966 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003967
3968 if (auto *NextBB = BB->getSingleSuccessor()) {
3969 if (Visited.insert(NextBB).second) {
3970 BB = NextBB;
3971 Begin = BB->getFirstNonPHI()->getIterator();
3972 End = BB->end();
3973 continue;
3974 }
3975 }
3976
3977 break;
3978 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003979 return false;
3980}
3981
Pete Cooper35b00d52016-08-13 01:05:32 +00003982static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003983 if (FMF.noNaNs())
3984 return true;
3985
3986 if (auto *C = dyn_cast<ConstantFP>(V))
3987 return !C->isNaN();
3988 return false;
3989}
3990
Pete Cooper35b00d52016-08-13 01:05:32 +00003991static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003992 if (auto *C = dyn_cast<ConstantFP>(V))
3993 return !C->isZero();
3994 return false;
3995}
3996
Sanjay Patel819f0962016-11-13 19:30:19 +00003997/// Match non-obvious integer minimum and maximum sequences.
3998static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3999 Value *CmpLHS, Value *CmpRHS,
4000 Value *TrueVal, Value *FalseVal,
4001 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00004002 // Assume success. If there's no match, callers should not use these anyway.
4003 LHS = TrueVal;
4004 RHS = FalseVal;
4005
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004006 // Recognize variations of:
4007 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4008 const APInt *C1;
4009 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4010 const APInt *C2;
4011
4012 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4013 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004014 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004015 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004016
4017 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4018 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004019 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004020 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004021
4022 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4023 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004024 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004025 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004026
4027 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4028 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004029 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004030 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004031 }
4032
Sanjay Patel819f0962016-11-13 19:30:19 +00004033 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4034 return {SPF_UNKNOWN, SPNB_NA, false};
4035
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004036 // Z = X -nsw Y
4037 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4038 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4039 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004040 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004041 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004042
4043 // Z = X -nsw Y
4044 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4045 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4046 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004047 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004048 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004049
Sanjay Patel819f0962016-11-13 19:30:19 +00004050 if (!match(CmpRHS, m_APInt(C1)))
4051 return {SPF_UNKNOWN, SPNB_NA, false};
4052
4053 // An unsigned min/max can be written with a signed compare.
4054 const APInt *C2;
4055 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4056 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4057 // Is the sign bit set?
4058 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4059 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004060 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004061 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004062
4063 // Is the sign bit clear?
4064 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4065 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4066 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004067 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004068 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004069 }
4070
4071 // Look through 'not' ops to find disguised signed min/max.
4072 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4073 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4074 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004075 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004076 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004077
4078 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4079 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4080 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004081 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004082 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004083
4084 return {SPF_UNKNOWN, SPNB_NA, false};
4085}
4086
James Molloy134bec22015-08-11 09:12:57 +00004087static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4088 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004089 Value *CmpLHS, Value *CmpRHS,
4090 Value *TrueVal, Value *FalseVal,
4091 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004092 LHS = CmpLHS;
4093 RHS = CmpRHS;
4094
James Molloy134bec22015-08-11 09:12:57 +00004095 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4096 // return inconsistent results between implementations.
4097 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4098 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4099 // Therefore we behave conservatively and only proceed if at least one of the
4100 // operands is known to not be zero, or if we don't care about signed zeroes.
4101 switch (Pred) {
4102 default: break;
4103 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4104 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4105 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4106 !isKnownNonZero(CmpRHS))
4107 return {SPF_UNKNOWN, SPNB_NA, false};
4108 }
4109
4110 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4111 bool Ordered = false;
4112
4113 // When given one NaN and one non-NaN input:
4114 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4115 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4116 // ordered comparison fails), which could be NaN or non-NaN.
4117 // so here we discover exactly what NaN behavior is required/accepted.
4118 if (CmpInst::isFPPredicate(Pred)) {
4119 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4120 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4121
4122 if (LHSSafe && RHSSafe) {
4123 // Both operands are known non-NaN.
4124 NaNBehavior = SPNB_RETURNS_ANY;
4125 } else if (CmpInst::isOrdered(Pred)) {
4126 // An ordered comparison will return false when given a NaN, so it
4127 // returns the RHS.
4128 Ordered = true;
4129 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004130 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004131 NaNBehavior = SPNB_RETURNS_NAN;
4132 else if (RHSSafe)
4133 NaNBehavior = SPNB_RETURNS_OTHER;
4134 else
4135 // Completely unsafe.
4136 return {SPF_UNKNOWN, SPNB_NA, false};
4137 } else {
4138 Ordered = false;
4139 // An unordered comparison will return true when given a NaN, so it
4140 // returns the LHS.
4141 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004142 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004143 NaNBehavior = SPNB_RETURNS_OTHER;
4144 else if (RHSSafe)
4145 NaNBehavior = SPNB_RETURNS_NAN;
4146 else
4147 // Completely unsafe.
4148 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004149 }
4150 }
4151
James Molloy71b91c22015-05-11 14:42:20 +00004152 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004153 std::swap(CmpLHS, CmpRHS);
4154 Pred = CmpInst::getSwappedPredicate(Pred);
4155 if (NaNBehavior == SPNB_RETURNS_NAN)
4156 NaNBehavior = SPNB_RETURNS_OTHER;
4157 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4158 NaNBehavior = SPNB_RETURNS_NAN;
4159 Ordered = !Ordered;
4160 }
4161
4162 // ([if]cmp X, Y) ? X : Y
4163 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004164 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004165 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004166 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004167 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004168 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004169 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004170 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004171 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004172 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004173 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4174 case FCmpInst::FCMP_UGT:
4175 case FCmpInst::FCMP_UGE:
4176 case FCmpInst::FCMP_OGT:
4177 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4178 case FCmpInst::FCMP_ULT:
4179 case FCmpInst::FCMP_ULE:
4180 case FCmpInst::FCMP_OLT:
4181 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004182 }
4183 }
4184
Sanjay Patele372aec2016-10-27 15:26:10 +00004185 const APInt *C1;
4186 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004187 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4188 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4189
4190 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4191 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004192 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004193 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004194 }
4195
4196 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4197 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004198 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004199 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004200 }
4201 }
James Molloy71b91c22015-05-11 14:42:20 +00004202 }
4203
Nikolai Bozhenovbde9b142017-06-30 10:39:09 +00004204 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004205}
James Molloy270ef8c2015-05-15 16:04:50 +00004206
James Molloy569cea62015-09-02 17:25:25 +00004207static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4208 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004209 auto *Cast1 = dyn_cast<CastInst>(V1);
4210 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004211 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004212
Sanjay Patel14a4b812017-01-29 16:34:57 +00004213 *CastOp = Cast1->getOpcode();
4214 Type *SrcTy = Cast1->getSrcTy();
4215 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4216 // If V1 and V2 are both the same cast from the same type, look through V1.
4217 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4218 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004219 return nullptr;
4220 }
4221
Sanjay Patel14a4b812017-01-29 16:34:57 +00004222 auto *C = dyn_cast<Constant>(V2);
4223 if (!C)
4224 return nullptr;
4225
David Majnemerd2a074b2016-04-29 18:40:34 +00004226 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004227 switch (*CastOp) {
4228 case Instruction::ZExt:
4229 if (CmpI->isUnsigned())
4230 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4231 break;
4232 case Instruction::SExt:
4233 if (CmpI->isSigned())
4234 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4235 break;
4236 case Instruction::Trunc:
4237 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4238 break;
4239 case Instruction::FPTrunc:
4240 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4241 break;
4242 case Instruction::FPExt:
4243 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4244 break;
4245 case Instruction::FPToUI:
4246 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4247 break;
4248 case Instruction::FPToSI:
4249 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4250 break;
4251 case Instruction::UIToFP:
4252 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4253 break;
4254 case Instruction::SIToFP:
4255 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4256 break;
4257 default:
4258 break;
4259 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004260
4261 if (!CastedTo)
4262 return nullptr;
4263
David Majnemerd2a074b2016-04-29 18:40:34 +00004264 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004265 Constant *CastedBack =
4266 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004267 if (CastedBack != C)
4268 return nullptr;
4269
4270 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004271}
4272
Sanjay Patele8dc0902016-05-23 17:57:54 +00004273SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004274 Instruction::CastOps *CastOp) {
4275 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004276 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004277
James Molloy134bec22015-08-11 09:12:57 +00004278 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4279 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004280
James Molloy134bec22015-08-11 09:12:57 +00004281 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004282 Value *CmpLHS = CmpI->getOperand(0);
4283 Value *CmpRHS = CmpI->getOperand(1);
4284 Value *TrueVal = SI->getTrueValue();
4285 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004286 FastMathFlags FMF;
4287 if (isa<FPMathOperator>(CmpI))
4288 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004289
4290 // Bail out early.
4291 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004292 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004293
4294 // Deal with type mismatches.
4295 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004296 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004297 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004298 cast<CastInst>(TrueVal)->getOperand(0), C,
4299 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004300 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004301 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004302 C, cast<CastInst>(FalseVal)->getOperand(0),
4303 LHS, RHS);
4304 }
James Molloy134bec22015-08-11 09:12:57 +00004305 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004306 LHS, RHS);
4307}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004308
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004309/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004310static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4311 const Value *RHS, const DataLayout &DL,
4312 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004313 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004314 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4315 return true;
4316
4317 switch (Pred) {
4318 default:
4319 return false;
4320
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004321 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004322 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004323
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004324 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004325 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004326 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004327 return false;
4328 }
4329
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004330 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004331 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004332
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004333 // LHS u<= LHS +_{nuw} C for any C
4334 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004335 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004336
4337 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004338 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4339 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004340 const APInt *&CA, const APInt *&CB) {
4341 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4342 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4343 return true;
4344
4345 // If X & C == 0 then (X | C) == X +_{nuw} C
4346 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4347 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004348 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004349 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4350 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004351 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004352 return true;
4353 }
4354
4355 return false;
4356 };
4357
Pete Cooper35b00d52016-08-13 01:05:32 +00004358 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004359 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004360 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4361 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004362
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004363 return false;
4364 }
4365 }
4366}
4367
4368/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004369/// ALHS ARHS" is true. Otherwise, return None.
4370static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004371isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004372 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4373 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004374 switch (Pred) {
4375 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004376 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004377
4378 case CmpInst::ICMP_SLT:
4379 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004380 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4381 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004382 return true;
4383 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004384
4385 case CmpInst::ICMP_ULT:
4386 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004387 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4388 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004389 return true;
4390 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004391 }
4392}
4393
Chad Rosier226a7342016-05-05 17:41:19 +00004394/// Return true if the operands of the two compares match. IsSwappedOps is true
4395/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004396static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4397 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004398 bool &IsSwappedOps) {
4399
4400 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4401 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4402 return IsMatchingOps || IsSwappedOps;
4403}
4404
Chad Rosier41dd31f2016-04-20 19:15:26 +00004405/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4406/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4407/// BRHS" is false. Otherwise, return None if we can't infer anything.
4408static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004409 const Value *ALHS,
4410 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004411 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004412 const Value *BLHS,
4413 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004414 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004415 // Canonicalize the operands so they're matching.
4416 if (IsSwappedOps) {
4417 std::swap(BLHS, BRHS);
4418 BPred = ICmpInst::getSwappedPredicate(BPred);
4419 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004420 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004421 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004422 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004423 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004424
Chad Rosier41dd31f2016-04-20 19:15:26 +00004425 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004426}
4427
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004428/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4429/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4430/// C2" is false. Otherwise, return None if we can't infer anything.
4431static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004432isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4433 const ConstantInt *C1,
4434 CmpInst::Predicate BPred,
4435 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004436 assert(ALHS == BLHS && "LHS operands must match.");
4437 ConstantRange DomCR =
4438 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4439 ConstantRange CR =
4440 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4441 ConstantRange Intersection = DomCR.intersectWith(CR);
4442 ConstantRange Difference = DomCR.difference(CR);
4443 if (Intersection.isEmptySet())
4444 return false;
4445 if (Difference.isEmptySet())
4446 return true;
4447 return None;
4448}
4449
Chad Rosier2f498032017-07-28 18:47:43 +00004450/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4451/// false. Otherwise, return None if we can't infer anything.
4452static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4453 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004454 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004455 unsigned Depth) {
4456 Value *ALHS = LHS->getOperand(0);
4457 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004458 // The rest of the logic assumes the LHS condition is true. If that's not the
4459 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004460 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004461 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004462
4463 Value *BLHS = RHS->getOperand(0);
4464 Value *BRHS = RHS->getOperand(1);
4465 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004466
Chad Rosier226a7342016-05-05 17:41:19 +00004467 // Can we infer anything when the two compares have matching operands?
4468 bool IsSwappedOps;
4469 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4470 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4471 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004472 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004473 // No amount of additional analysis will infer the second condition, so
4474 // early exit.
4475 return None;
4476 }
4477
4478 // Can we infer anything when the LHS operands match and the RHS operands are
4479 // constants (not necessarily matching)?
4480 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4481 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4482 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4483 cast<ConstantInt>(BRHS)))
4484 return Implication;
4485 // No amount of additional analysis will infer the second condition, so
4486 // early exit.
4487 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004488 }
4489
Chad Rosier41dd31f2016-04-20 19:15:26 +00004490 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004491 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004492 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004493}
Chad Rosier2f498032017-07-28 18:47:43 +00004494
Chad Rosierf73a10d2017-08-01 19:22:36 +00004495/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4496/// false. Otherwise, return None if we can't infer anything. We expect the
4497/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4498static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4499 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004500 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004501 unsigned Depth) {
4502 // The LHS must be an 'or' or an 'and' instruction.
4503 assert((LHS->getOpcode() == Instruction::And ||
4504 LHS->getOpcode() == Instruction::Or) &&
4505 "Expected LHS to be 'and' or 'or'.");
4506
4507 // The remaining tests are all recursive, so bail out if we hit the limit.
4508 if (Depth == MaxDepth)
4509 return None;
4510
4511 // If the result of an 'or' is false, then we know both legs of the 'or' are
4512 // false. Similarly, if the result of an 'and' is true, then we know both
4513 // legs of the 'and' are true.
4514 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004515 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4516 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004517 // FIXME: Make this non-recursion.
4518 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004519 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004520 return Implication;
4521 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004522 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004523 return Implication;
4524 return None;
4525 }
4526 return None;
4527}
4528
Chad Rosier2f498032017-07-28 18:47:43 +00004529Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004530 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004531 unsigned Depth) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004532 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4533 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004534 if (LHS->getType() != RHS->getType())
4535 return None;
4536
4537 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004538 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004539
4540 // LHS ==> RHS by definition
4541 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004542 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004543
Chad Rosierf73a10d2017-08-01 19:22:36 +00004544 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004545 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004546 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004547
Chad Rosier2f498032017-07-28 18:47:43 +00004548 assert(OpTy->isIntegerTy(1) && "implied by above");
4549
Chad Rosier2f498032017-07-28 18:47:43 +00004550 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004551 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4552 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4553 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004554 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004555
Chad Rosierf73a10d2017-08-01 19:22:36 +00004556 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4557 // an icmp. FIXME: Add support for and/or on the RHS.
4558 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4559 if (LHSBO && RHSCmp) {
4560 if ((LHSBO->getOpcode() == Instruction::And ||
4561 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004562 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004563 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004564 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004565}