blob: 4bf889c5a5444df8029160baa3ed3f9eec27e17f [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000029#include "llvm/IR/DerivedTypes.h"
Hal Finkel60db0582014-09-07 18:57:58 +000030#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000031#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000039#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000040#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000041#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000042#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000043#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000044#include <algorithm>
45#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000046#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000047using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000048using namespace llvm::PatternMatch;
49
50const unsigned MaxDepth = 6;
51
Philip Reames1c292272015-03-10 22:43:20 +000052// Controls the number of uses of the value searched for possible
53// dominating comparisons.
54static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000055 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000056
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000057// This optimization is known to cause performance regressions is some cases,
58// keep it under a temporary flag for now.
59static cl::opt<bool>
60DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
61 cl::Hidden, cl::init(true));
62
Craig Topper6b3940a2017-05-03 22:25:19 +000063/// Returns the bitwidth of the given scalar or pointer type. For vector types,
64/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000065static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000066 if (unsigned BitWidth = Ty->getScalarSizeInBits())
67 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000068
Mehdi Aminia28d91d2015-03-10 02:37:25 +000069 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000070}
Chris Lattner965c7692008-06-02 01:18:21 +000071
Benjamin Kramercfd8d902014-09-12 08:56:53 +000072namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000073// Simplifying using an assume can only be done in a particular control-flow
74// context (the context instruction provides that context). If an assume and
75// the context instruction are not in the same block then the DT helps in
76// figuring out if we can use it.
77struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000078 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000079 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000080 const Instruction *CxtI;
81 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000082 // Unlike the other analyses, this may be a nullptr because not all clients
83 // provide it currently.
84 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000085
Matthias Braun37e5d792016-01-28 06:29:33 +000086 /// Set of assumptions that should be excluded from further queries.
87 /// This is because of the potential for mutual recursion to cause
88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
89 /// classic case of this is assume(x = y), which will attempt to determine
90 /// bits in x from bits in y, which will attempt to determine bits in y from
91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +000092 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
93 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +000094 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000095 unsigned NumExcluded;
96
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000098 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000100
101 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
103 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000104 Excluded = Q.Excluded;
105 Excluded[NumExcluded++] = NewExcl;
106 assert(NumExcluded <= Excluded.size());
107 }
108
109 bool isExcluded(const Value *Value) const {
110 if (NumExcluded == 0)
111 return false;
112 auto End = Excluded.begin() + NumExcluded;
113 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000114 }
115};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000116} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000117
Sanjay Patel547e9752014-11-04 16:09:50 +0000118// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000119// the preferred context instruction (if any).
120static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
121 // If we've been provided with a context instruction, then use that (provided
122 // it has been inserted).
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 // If the value is really an already-inserted instruction, then use that.
127 CxtI = dyn_cast<Instruction>(V);
128 if (CxtI && CxtI->getParent())
129 return CxtI;
130
131 return nullptr;
132}
133
Craig Topperb45eabc2017-04-26 16:39:58 +0000134static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000136
Craig Topperb45eabc2017-04-26 16:39:58 +0000137void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000138 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000139 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000140 const DominatorTree *DT,
141 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000144}
145
Craig Topper6e11a052017-05-08 16:22:48 +0000146static KnownBits computeKnownBits(const Value *V, unsigned Depth,
147 const Query &Q);
148
149KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
150 unsigned Depth, AssumptionCache *AC,
151 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000152 const DominatorTree *DT,
153 OptimizationRemarkEmitter *ORE) {
154 return ::computeKnownBits(V, Depth,
155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000156}
157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
159 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000161 const DominatorTree *DT) {
162 assert(LHS->getType() == RHS->getType() &&
163 "LHS and RHS should have the same type");
164 assert(LHS->getType()->isIntOrIntVectorTy() &&
165 "LHS and RHS should be integers");
166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 KnownBits LHSKnown(IT->getBitWidth());
168 KnownBits RHSKnown(IT->getBitWidth());
169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000172}
173
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000175bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
176 for (const User *U : CxtI->users()) {
177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
178 if (IC->isEquality())
179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
180 if (C->isNullValue())
181 continue;
182 return false;
183 }
184 return true;
185}
186
Pete Cooper35b00d52016-08-13 01:05:32 +0000187static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000188 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000189
Pete Cooper35b00d52016-08-13 01:05:32 +0000190bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
191 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000192 unsigned Depth, AssumptionCache *AC,
193 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000194 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000197}
198
Pete Cooper35b00d52016-08-13 01:05:32 +0000199static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 unsigned Depth,
209 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000210 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
212 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000216 AssumptionCache *AC, const Instruction *CxtI,
217 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000218 if (auto *CI = dyn_cast<ConstantInt>(V))
219 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000220
Philip Reames8f12eba2016-03-09 21:31:47 +0000221 // TODO: We'd doing two recursive queries here. We should factor this such
222 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000225}
226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
231 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000232}
233
Pete Cooper35b00d52016-08-13 01:05:32 +0000234static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000235
Pete Cooper35b00d52016-08-13 01:05:32 +0000236bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 const DataLayout &DL,
238 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000239 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
241 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000242 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000243}
244
Pete Cooper35b00d52016-08-13 01:05:32 +0000245static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000246 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000247
Pete Cooper35b00d52016-08-13 01:05:32 +0000248bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
249 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 unsigned Depth, AssumptionCache *AC,
251 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000252 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000253 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000254}
255
Pete Cooper35b00d52016-08-13 01:05:32 +0000256static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
257 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000258
Pete Cooper35b00d52016-08-13 01:05:32 +0000259unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000260 unsigned Depth, AssumptionCache *AC,
261 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000262 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000264}
265
Craig Topper8fbb74b2017-03-24 22:12:10 +0000266static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
267 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000268 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000269 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000270 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000271
272 // If an initial sequence of bits in the result is not needed, the
273 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000274 KnownBits LHSKnown(BitWidth);
275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
276 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // Carry in a 1 for a subtract, rather than a 0.
Craig Topper059b98e2017-03-24 05:38:09 +0000279 uint64_t CarryIn = 0;
David Majnemer97ddca32014-08-22 00:40:43 +0000280 if (!Add) {
281 // Sum = LHS + ~RHS + 1
Craig Topperb45eabc2017-04-26 16:39:58 +0000282 std::swap(Known2.Zero, Known2.One);
Craig Topper059b98e2017-03-24 05:38:09 +0000283 CarryIn = 1;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000284 }
285
Craig Topperb45eabc2017-04-26 16:39:58 +0000286 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn;
287 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn;
David Majnemer97ddca32014-08-22 00:40:43 +0000288
289 // Compute known bits of the carry.
Craig Topperb45eabc2017-04-26 16:39:58 +0000290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero);
291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One;
David Majnemer97ddca32014-08-22 00:40:43 +0000292
293 // Compute set of known bits (where all three relevant bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One;
295 APInt RHSKnownUnion = Known2.Zero | Known2.One;
296 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne;
297 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion;
David Majnemer97ddca32014-08-22 00:40:43 +0000298
299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300 "known bits of sum differ");
301
302 // Compute known bits of the result.
Craig Topperb45eabc2017-04-26 16:39:58 +0000303 KnownOut.Zero = ~PossibleSumOne & Known;
304 KnownOut.One = PossibleSumOne & Known;
David Majnemer97ddca32014-08-22 00:40:43 +0000305
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000306 // Are we still trying to solve for the sign bit?
Craig Topperd23004c2017-04-17 16:38:20 +0000307 if (!Known.isSignBitSet()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000308 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000309 // Adding two non-negative numbers, or subtracting a negative number from
310 // a non-negative one, can't wrap into negative.
Craig Topperca48af32017-04-29 16:43:11 +0000311 if (LHSKnown.isNonNegative() && Known2.isNonNegative())
312 KnownOut.makeNonNegative();
David Majnemer97ddca32014-08-22 00:40:43 +0000313 // Adding two negative numbers, or subtracting a non-negative number from
314 // a negative one, can't wrap into non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000315 else if (LHSKnown.isNegative() && Known2.isNegative())
316 KnownOut.makeNegative();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000317 }
318 }
319}
320
Pete Cooper35b00d52016-08-13 01:05:32 +0000321static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000322 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000323 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000324 unsigned BitWidth = Known.getBitWidth();
325 computeKnownBits(Op1, Known, Depth + 1, Q);
326 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327
328 bool isKnownNegative = false;
329 bool isKnownNonNegative = false;
330 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 if (Op0 == Op1) {
333 // The product of a number with itself is non-negative.
334 isKnownNonNegative = true;
335 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000336 bool isKnownNonNegativeOp1 = Known.isNonNegative();
337 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
338 bool isKnownNegativeOp1 = Known.isNegative();
339 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340 // The product of two numbers with the same sign is non-negative.
341 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
342 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
343 // The product of a negative number and a non-negative number is either
344 // negative or zero.
345 if (!isKnownNonNegative)
346 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000347 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000348 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000349 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000350 }
351 }
352
353 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000354 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 // More trickiness is possible, but this is sufficient for the
356 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000357 unsigned TrailZ = Known.countMinTrailingZeros() +
358 Known2.countMinTrailingZeros();
359 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
360 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000361 BitWidth) - BitWidth;
362
363 TrailZ = std::min(TrailZ, BitWidth);
364 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000365 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000366 Known.Zero.setLowBits(TrailZ);
367 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000368
369 // Only make use of no-wrap flags if we failed to compute the sign bit
370 // directly. This matters if the multiplication always overflows, in
371 // which case we prefer to follow the result of the direct computation,
372 // though as the program is invoking undefined behaviour we can choose
373 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000374 if (isKnownNonNegative && !Known.isNegative())
375 Known.makeNonNegative();
376 else if (isKnownNegative && !Known.isNonNegative())
377 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000378}
379
Jingyue Wu37fcb592014-06-19 16:50:16 +0000380void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000381 KnownBits &Known) {
382 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000383 unsigned NumRanges = Ranges.getNumOperands() / 2;
384 assert(NumRanges >= 1);
385
Craig Topperf42b23f2017-04-28 06:28:56 +0000386 Known.Zero.setAllBits();
387 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388
Rafael Espindola53190532012-03-30 15:52:11 +0000389 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000390 ConstantInt *Lower =
391 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
392 ConstantInt *Upper =
393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000394 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000395
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000396 // The first CommonPrefixBits of all values in Range are equal.
397 unsigned CommonPrefixBits =
398 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
399
400 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000401 Known.One &= Range.getUnsignedMax() & Mask;
402 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000403 }
Rafael Espindola53190532012-03-30 15:52:11 +0000404}
Jay Foad5a29c362014-05-15 12:12:55 +0000405
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000406static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000407 SmallVector<const Value *, 16> WorkSet(1, I);
408 SmallPtrSet<const Value *, 32> Visited;
409 SmallPtrSet<const Value *, 16> EphValues;
410
Hal Finkelf2199b22015-10-23 20:37:08 +0000411 // The instruction defining an assumption's condition itself is always
412 // considered ephemeral to that assumption (even if it has other
413 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000414 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000415 return true;
416
Hal Finkel60db0582014-09-07 18:57:58 +0000417 while (!WorkSet.empty()) {
418 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000419 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000420 continue;
421
422 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000423 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000424 if (V == E)
425 return true;
426
427 EphValues.insert(V);
428 if (const User *U = dyn_cast<User>(V))
429 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
430 J != JE; ++J) {
431 if (isSafeToSpeculativelyExecute(*J))
432 WorkSet.push_back(*J);
433 }
434 }
435 }
436
437 return false;
438}
439
440// Is this an intrinsic that cannot be speculated but also cannot trap?
441static bool isAssumeLikeIntrinsic(const Instruction *I) {
442 if (const CallInst *CI = dyn_cast<CallInst>(I))
443 if (Function *F = CI->getCalledFunction())
444 switch (F->getIntrinsicID()) {
445 default: break;
446 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
447 case Intrinsic::assume:
448 case Intrinsic::dbg_declare:
449 case Intrinsic::dbg_value:
450 case Intrinsic::invariant_start:
451 case Intrinsic::invariant_end:
452 case Intrinsic::lifetime_start:
453 case Intrinsic::lifetime_end:
454 case Intrinsic::objectsize:
455 case Intrinsic::ptr_annotation:
456 case Intrinsic::var_annotation:
457 return true;
458 }
459
460 return false;
461}
462
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000463bool llvm::isValidAssumeForContext(const Instruction *Inv,
464 const Instruction *CxtI,
465 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000466
467 // There are two restrictions on the use of an assume:
468 // 1. The assume must dominate the context (or the control flow must
469 // reach the assume whenever it reaches the context).
470 // 2. The context must not be in the assume's set of ephemeral values
471 // (otherwise we will use the assume to prove that the condition
472 // feeding the assume is trivially true, thus causing the removal of
473 // the assume).
474
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000475 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000476 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000477 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000478 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
479 // We don't have a DT, but this trivially dominates.
480 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000481 }
482
Pete Cooper54a02552016-08-12 01:00:15 +0000483 // With or without a DT, the only remaining case we will check is if the
484 // instructions are in the same BB. Give up if that is not the case.
485 if (Inv->getParent() != CxtI->getParent())
486 return false;
487
488 // If we have a dom tree, then we now know that the assume doens't dominate
489 // the other instruction. If we don't have a dom tree then we can check if
490 // the assume is first in the BB.
491 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000492 // Search forward from the assume until we reach the context (or the end
493 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000494 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000495 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000496 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000497 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000498 }
499
Pete Cooper54a02552016-08-12 01:00:15 +0000500 // The context comes first, but they're both in the same block. Make sure
501 // there is nothing in between that might interrupt the control flow.
502 for (BasicBlock::const_iterator I =
503 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
504 I != IE; ++I)
505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
506 return false;
507
508 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000509}
510
Craig Topperb45eabc2017-04-26 16:39:58 +0000511static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
512 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000513 // Use of assumptions is context-sensitive. If we don't have a context, we
514 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000515 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000516 return;
517
Craig Topperb45eabc2017-04-26 16:39:58 +0000518 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000519
Hal Finkel8a9a7832017-01-11 13:24:24 +0000520 // Note that the patterns below need to be kept in sync with the code
521 // in AssumptionCache::updateAffectedValues.
522
523 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000525 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000526 CallInst *I = cast<CallInst>(AssumeVH);
527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
528 "Got assumption for the wrong function!");
529 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000530 continue;
531
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000532 // Warning: This loop can end up being somewhat performance sensetive.
533 // We're running this loop for once for each value queried resulting in a
534 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000535
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
537 "must be an assume intrinsic");
538
539 Value *Arg = I->getArgOperand(0);
540
541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000542 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000543 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000544 return;
545 }
Sanjay Patel96669962017-01-17 18:15:49 +0000546 if (match(Arg, m_Not(m_Specific(V))) &&
547 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000549 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000550 return;
551 }
Hal Finkel60db0582014-09-07 18:57:58 +0000552
David Majnemer9b609752014-12-12 23:59:29 +0000553 // The remaining tests are all recursive, so bail out if we hit the limit.
554 if (Depth == MaxDepth)
555 continue;
556
Hal Finkel60db0582014-09-07 18:57:58 +0000557 Value *A, *B;
558 auto m_V = m_CombineOr(m_Specific(V),
559 m_CombineOr(m_PtrToInt(m_Specific(V)),
560 m_BitCast(m_Specific(V))));
561
562 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000563 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000564 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000565 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000566 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000567 KnownBits RHSKnown(BitWidth);
568 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
569 Known.Zero |= RHSKnown.Zero;
570 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000571 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000572 } else if (match(Arg,
573 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000575 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000576 KnownBits RHSKnown(BitWidth);
577 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
578 KnownBits MaskKnown(BitWidth);
579 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000580
581 // For those bits in the mask that are known to be one, we can propagate
582 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000583 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
584 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000585 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000586 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
587 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000589 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000590 KnownBits RHSKnown(BitWidth);
591 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
592 KnownBits MaskKnown(BitWidth);
593 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594
595 // For those bits in the mask that are known to be one, we can propagate
596 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000597 Known.Zero |= RHSKnown.One & MaskKnown.One;
598 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000599 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000600 } else if (match(Arg,
601 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000602 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000603 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000604 KnownBits RHSKnown(BitWidth);
605 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
606 KnownBits BKnown(BitWidth);
607 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608
609 // For those bits in B that are known to be zero, we can propagate known
610 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000611 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
612 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000614 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
615 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000616 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000617 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000618 KnownBits RHSKnown(BitWidth);
619 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
620 KnownBits BKnown(BitWidth);
621 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622
623 // For those bits in B that are known to be zero, we can propagate
624 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000625 Known.Zero |= RHSKnown.One & BKnown.Zero;
626 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000627 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000628 } else if (match(Arg,
629 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000630 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000631 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000632 KnownBits RHSKnown(BitWidth);
633 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
634 KnownBits BKnown(BitWidth);
635 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000636
637 // For those bits in B that are known to be zero, we can propagate known
638 // bits from the RHS to V. For those bits in B that are known to be one,
639 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000640 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
641 Known.One |= RHSKnown.One & BKnown.Zero;
642 Known.Zero |= RHSKnown.One & BKnown.One;
643 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000645 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
646 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000649 KnownBits RHSKnown(BitWidth);
650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
651 KnownBits BKnown(BitWidth);
652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653
654 // For those bits in B that are known to be zero, we can propagate
655 // inverted known bits from the RHS to V. For those bits in B that are
656 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000657 Known.Zero |= RHSKnown.One & BKnown.Zero;
658 Known.One |= RHSKnown.Zero & BKnown.Zero;
659 Known.Zero |= RHSKnown.Zero & BKnown.One;
660 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
663 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000666 KnownBits RHSKnown(BitWidth);
667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // For those bits in RHS that are known, we can propagate them to known
669 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000670 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
671 Known.Zero |= RHSKnown.Zero;
672 RHSKnown.One.lshrInPlace(C->getZExtValue());
673 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000675 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
676 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000677 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000678 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000679 KnownBits RHSKnown(BitWidth);
680 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 // For those bits in RHS that are known, we can propagate them inverted
682 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000683 RHSKnown.One.lshrInPlace(C->getZExtValue());
684 Known.Zero |= RHSKnown.One;
685 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
686 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000688 } else if (match(Arg,
689 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000690 m_AShr(m_V, m_ConstantInt(C))),
691 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000694 KnownBits RHSKnown(BitWidth);
695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000696 // For those bits in RHS that are known, we can propagate them to known
697 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000698 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
699 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000700 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000701 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000702 m_LShr(m_V, m_ConstantInt(C)),
703 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000704 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000707 KnownBits RHSKnown(BitWidth);
708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709 // For those bits in RHS that are known, we can propagate them inverted
710 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000711 Known.Zero |= RHSKnown.One << C->getZExtValue();
712 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000717 KnownBits RHSKnown(BitWidth);
718 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719
Craig Topperca48af32017-04-29 16:43:11 +0000720 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000721 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000722 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 }
724 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000728 KnownBits RHSKnown(BitWidth);
729 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730
Craig Topperf0aeee02017-05-05 17:36:09 +0000731 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000733 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 }
735 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000739 KnownBits RHSKnown(BitWidth);
740 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741
Craig Topperca48af32017-04-29 16:43:11 +0000742 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000744 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 }
746 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000750 KnownBits RHSKnown(BitWidth);
751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752
Craig Topperf0aeee02017-05-05 17:36:09 +0000753 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000754 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000755 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 }
757 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000758 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000761 KnownBits RHSKnown(BitWidth);
762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000763
764 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000765 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
766 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000767 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000768 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000770 KnownBits RHSKnown(BitWidth);
771 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000772
773 // Whatever high bits in c are zero are known to be zero (if c is a power
774 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000775 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000776 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 else
Craig Topper8df66c62017-05-12 17:20:30 +0000778 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000781
782 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000783 // have a logical fallacy. It's possible that the assumption is not reachable,
784 // so this isn't a real bug. On the other hand, the program may have undefined
785 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
786 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000787 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000788 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000789
790 if (Q.ORE) {
791 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
792 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
793 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
794 "have undefined behavior, or compiler may have "
795 "internal error.");
796 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000797 }
Hal Finkel60db0582014-09-07 18:57:58 +0000798}
799
Hal Finkelf2199b22015-10-23 20:37:08 +0000800// Compute known bits from a shift operator, including those with a
Craig Topperb45eabc2017-04-26 16:39:58 +0000801// non-constant shift amount. Known is the outputs of this function. Known2 is a
802// pre-allocated temporary with the/ same bit width as Known. KZF and KOF are
803// operator-specific functors that, given the known-zero or known-one bits
804// respectively, and a shift amount, compute the implied known-zero or known-one
805// bits of the shift operator's result respectively for that shift amount. The
806// results from calling KZF and KOF are conservatively combined for all
807// permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000808static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000809 const Operator *I, KnownBits &Known, KnownBits &Known2,
810 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000811 function_ref<APInt(const APInt &, unsigned)> KZF,
812 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000813 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000814
815 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
816 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
817
Craig Topperb45eabc2017-04-26 16:39:58 +0000818 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
819 Known.Zero = KZF(Known.Zero, ShiftAmt);
820 Known.One = KOF(Known.One, ShiftAmt);
821 // If there is conflict between Known.Zero and Known.One, this must be an
822 // overflowing left shift, so the shift result is undefined. Clear Known
823 // bits so that other code could propagate this undef.
Craig Topperf0aeee02017-05-05 17:36:09 +0000824 if ((Known.Zero & Known.One) != 0)
825 Known.resetAll();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000826
Hal Finkelf2199b22015-10-23 20:37:08 +0000827 return;
828 }
829
Craig Topperb45eabc2017-04-26 16:39:58 +0000830 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000831
Oliver Stannard06204112017-03-14 10:13:17 +0000832 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
833 // value could be undef, so we don't know anything about it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000834 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000835 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000836 return;
837 }
838
Craig Topperb45eabc2017-04-26 16:39:58 +0000839 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000840 // BitWidth > 64 and any upper bits are known, we'll end up returning the
841 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000842 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
843 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000844
845 // It would be more-clearly correct to use the two temporaries for this
846 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000847 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000848
James Molloy493e57d2015-10-26 14:10:46 +0000849 // If we know the shifter operand is nonzero, we can sometimes infer more
850 // known bits. However this is expensive to compute, so be lazy about it and
851 // only compute it when absolutely necessary.
852 Optional<bool> ShifterOperandIsNonZero;
853
Hal Finkelf2199b22015-10-23 20:37:08 +0000854 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000855 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
856 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000857 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000858 if (!*ShifterOperandIsNonZero)
859 return;
860 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000861
Craig Topperb45eabc2017-04-26 16:39:58 +0000862 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000863
Craig Topperb45eabc2017-04-26 16:39:58 +0000864 Known.Zero.setAllBits();
865 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000866 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
867 // Combine the shifted known input bits only for those shift amounts
868 // compatible with its known constraints.
869 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
870 continue;
871 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
872 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000873 // If we know the shifter is nonzero, we may be able to infer more known
874 // bits. This check is sunk down as far as possible to avoid the expensive
875 // call to isKnownNonZero if the cheaper checks above fail.
876 if (ShiftAmt == 0) {
877 if (!ShifterOperandIsNonZero.hasValue())
878 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000879 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000880 if (*ShifterOperandIsNonZero)
881 continue;
882 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000883
Craig Topperb45eabc2017-04-26 16:39:58 +0000884 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
885 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000886 }
887
888 // If there are no compatible shift amounts, then we've proven that the shift
889 // amount must be >= the BitWidth, and the result is undefined. We could
890 // return anything we'd like, but we need to make sure the sets of known bits
891 // stay disjoint (it should be better for some other code to actually
892 // propagate the undef than to pick a value here using known bits).
Craig Topperf0aeee02017-05-05 17:36:09 +0000893 if (Known.Zero.intersects(Known.One))
894 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000895}
896
Craig Topperb45eabc2017-04-26 16:39:58 +0000897static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
898 unsigned Depth, const Query &Q) {
899 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000900
Craig Topperb45eabc2017-04-26 16:39:58 +0000901 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000902 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000903 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000904 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000905 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000906 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000907 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000908 case Instruction::And: {
909 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000910 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
911 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000912
Chris Lattner965c7692008-06-02 01:18:21 +0000913 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000914 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000915 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000916 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000917
918 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
919 // here we handle the more general case of adding any odd number by
920 // matching the form add(x, add(x, y)) where y is odd.
921 // TODO: This could be generalized to clearing any bit set in y where the
922 // following bit is known to be unset in y.
923 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000924 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000925 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
926 m_Value(Y))) ||
927 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
928 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000929 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000930 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000931 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000932 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000933 }
Jay Foad5a29c362014-05-15 12:12:55 +0000934 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000935 }
936 case Instruction::Or: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000937 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
938 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000939
Chris Lattner965c7692008-06-02 01:18:21 +0000940 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000941 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000943 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000944 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000945 }
946 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000947 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
948 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000949
Chris Lattner965c7692008-06-02 01:18:21 +0000950 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000951 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000952 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000953 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
954 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000955 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000956 }
957 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000958 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000959 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
960 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000961 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000962 }
963 case Instruction::UDiv: {
964 // For the purposes of computing leading zeros we can conservatively
965 // treat a udiv as a logical right shift by the power of 2 known to
966 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000967 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000968 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000969
Craig Topperf0aeee02017-05-05 17:36:09 +0000970 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000971 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000972 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
973 if (RHSMaxLeadingZeros != BitWidth)
974 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000975
Craig Topperb45eabc2017-04-26 16:39:58 +0000976 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000977 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000978 }
David Majnemera19d0f22016-08-06 08:16:00 +0000979 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000980 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000981 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
982 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000983 computeKnownBits(RHS, Known, Depth + 1, Q);
984 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000985 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000986 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
987 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000988 }
989
990 unsigned MaxHighOnes = 0;
991 unsigned MaxHighZeros = 0;
992 if (SPF == SPF_SMAX) {
993 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000994 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000995 // We can derive a lower bound on the result by taking the max of the
996 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000997 MaxHighOnes =
998 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000999 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001000 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001001 MaxHighZeros = 1;
1002 } else if (SPF == SPF_SMIN) {
1003 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001004 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001005 // We can derive an upper bound on the result by taking the max of the
1006 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001007 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1008 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001009 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001010 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001011 MaxHighOnes = 1;
1012 } else if (SPF == SPF_UMAX) {
1013 // We can derive a lower bound on the result by taking the max of the
1014 // leading one bits.
1015 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001016 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001017 } else if (SPF == SPF_UMIN) {
1018 // We can derive an upper bound on the result by taking the max of the
1019 // leading zero bits.
1020 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001021 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001022 }
1023
Chris Lattner965c7692008-06-02 01:18:21 +00001024 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001025 Known.One &= Known2.One;
1026 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001027 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001028 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001029 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001030 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001031 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001032 }
Chris Lattner965c7692008-06-02 01:18:21 +00001033 case Instruction::FPTrunc:
1034 case Instruction::FPExt:
1035 case Instruction::FPToUI:
1036 case Instruction::FPToSI:
1037 case Instruction::SIToFP:
1038 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001039 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001040 case Instruction::PtrToInt:
1041 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001042 // Fall through and handle them the same as zext/trunc.
1043 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001044 case Instruction::ZExt:
1045 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001046 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001047
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001048 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001049 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1050 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001051 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001052
1053 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001054 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001055 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001056 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001057 // Any top bits are known to be zero.
1058 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001059 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001060 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001061 }
1062 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001063 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001064 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001065 // TODO: For now, not handling conversions like:
1066 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001067 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001068 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001069 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001070 }
1071 break;
1072 }
1073 case Instruction::SExt: {
1074 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001075 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001076
Craig Topperd938fd12017-05-03 22:07:25 +00001077 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001078 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001079 // If the sign bit of the input is known set or clear, then we know the
1080 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001081 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001082 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001083 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001084 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001085 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001086 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001087 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1088 APInt KZResult = KnownZero << ShiftAmt;
1089 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001090 // If this shift has "nsw" keyword, then the result is either a poison
1091 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001092 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001093 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001094 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001095 };
1096
Craig Topperd73c6b42017-03-23 07:06:39 +00001097 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001098 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001099 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001100 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001101 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001102 };
1103
Craig Topperb45eabc2017-04-26 16:39:58 +00001104 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001105 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001106 }
1107 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001108 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001109 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1110 APInt KZResult = KnownZero.lshr(ShiftAmt);
1111 // High bits known zero.
1112 KZResult.setHighBits(ShiftAmt);
1113 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001114 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001115
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001116 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001117 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001118 };
1119
Craig Topperb45eabc2017-04-26 16:39:58 +00001120 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001121 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001122 }
1123 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001124 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001125 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001126 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001127 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001128
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001129 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001130 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001131 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001132
Craig Topperb45eabc2017-04-26 16:39:58 +00001133 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001134 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001135 }
Chris Lattner965c7692008-06-02 01:18:21 +00001136 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001137 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001138 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001139 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001140 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001141 }
Chris Lattner965c7692008-06-02 01:18:21 +00001142 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001143 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001144 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001145 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001146 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001147 }
1148 case Instruction::SRem:
1149 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001150 APInt RA = Rem->getValue().abs();
1151 if (RA.isPowerOf2()) {
1152 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001153 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001154
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001155 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001156 Known.Zero = Known2.Zero & LowBits;
1157 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001158
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001159 // If the first operand is non-negative or has all low bits zero, then
1160 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001161 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001162 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001163
1164 // If the first operand is negative and not all low bits are zero, then
1165 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001166 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001167 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001168
Craig Topperb45eabc2017-04-26 16:39:58 +00001169 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001170 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001171 }
1172 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001173
1174 // The sign bit is the LHS's sign bit, except when the result of the
1175 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001176 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001177 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001178 if (Known2.isNonNegative())
1179 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001180
Chris Lattner965c7692008-06-02 01:18:21 +00001181 break;
1182 case Instruction::URem: {
1183 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001184 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001185 if (RA.isPowerOf2()) {
1186 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001187 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1188 Known.Zero |= ~LowBits;
1189 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001190 break;
1191 }
1192 }
1193
1194 // Since the result is less than or equal to either operand, any leading
1195 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001196 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1197 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001198
Craig Topper8df66c62017-05-12 17:20:30 +00001199 unsigned Leaders =
1200 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001201 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001202 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001203 break;
1204 }
1205
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001206 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001207 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001208 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001209 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001210 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001211
Chris Lattner965c7692008-06-02 01:18:21 +00001212 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001213 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001214 break;
1215 }
1216 case Instruction::GetElementPtr: {
1217 // Analyze all of the subscripts of this getelementptr instruction
1218 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001219 KnownBits LocalKnown(BitWidth);
1220 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001221 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001222
1223 gep_type_iterator GTI = gep_type_begin(I);
1224 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1225 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001226 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001227 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001228
1229 // Handle case when index is vector zeroinitializer
1230 Constant *CIndex = cast<Constant>(Index);
1231 if (CIndex->isZeroValue())
1232 continue;
1233
1234 if (CIndex->getType()->isVectorTy())
1235 Index = CIndex->getSplatValue();
1236
Chris Lattner965c7692008-06-02 01:18:21 +00001237 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001238 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001239 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001240 TrailZ = std::min<unsigned>(TrailZ,
1241 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001242 } else {
1243 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001244 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001245 if (!IndexedTy->isSized()) {
1246 TrailZ = 0;
1247 break;
1248 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001249 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001250 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001251 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1252 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001253 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001254 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001255 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001256 }
1257 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001258
Craig Topperb45eabc2017-04-26 16:39:58 +00001259 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001260 break;
1261 }
1262 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001263 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001264 // Handle the case of a simple two-predecessor recurrence PHI.
1265 // There's a lot more that could theoretically be done here, but
1266 // this is sufficient to catch some interesting cases.
1267 if (P->getNumIncomingValues() == 2) {
1268 for (unsigned i = 0; i != 2; ++i) {
1269 Value *L = P->getIncomingValue(i);
1270 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001271 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001272 if (!LU)
1273 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001274 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001275 // Check for operations that have the property that if
1276 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001277 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001278 if (Opcode == Instruction::Add ||
1279 Opcode == Instruction::Sub ||
1280 Opcode == Instruction::And ||
1281 Opcode == Instruction::Or ||
1282 Opcode == Instruction::Mul) {
1283 Value *LL = LU->getOperand(0);
1284 Value *LR = LU->getOperand(1);
1285 // Find a recurrence.
1286 if (LL == I)
1287 L = LR;
1288 else if (LR == I)
1289 L = LL;
1290 else
1291 break;
1292 // Ok, we have a PHI of the form L op= R. Check for low
1293 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001294 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001295
1296 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001297 KnownBits Known3(Known);
1298 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001299
Craig Topper8df66c62017-05-12 17:20:30 +00001300 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1301 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001302
1303 if (DontImproveNonNegativePhiBits)
1304 break;
1305
1306 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1307 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1308 // If initial value of recurrence is nonnegative, and we are adding
1309 // a nonnegative number with nsw, the result can only be nonnegative
1310 // or poison value regardless of the number of times we execute the
1311 // add in phi recurrence. If initial value is negative and we are
1312 // adding a negative number with nsw, the result can only be
1313 // negative or poison value. Similar arguments apply to sub and mul.
1314 //
1315 // (add non-negative, non-negative) --> non-negative
1316 // (add negative, negative) --> negative
1317 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001318 if (Known2.isNonNegative() && Known3.isNonNegative())
1319 Known.makeNonNegative();
1320 else if (Known2.isNegative() && Known3.isNegative())
1321 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001322 }
1323
1324 // (sub nsw non-negative, negative) --> non-negative
1325 // (sub nsw negative, non-negative) --> negative
1326 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001327 if (Known2.isNonNegative() && Known3.isNegative())
1328 Known.makeNonNegative();
1329 else if (Known2.isNegative() && Known3.isNonNegative())
1330 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001331 }
1332
1333 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001334 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1335 Known3.isNonNegative())
1336 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001337 }
1338
Chris Lattner965c7692008-06-02 01:18:21 +00001339 break;
1340 }
1341 }
1342 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001343
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001344 // Unreachable blocks may have zero-operand PHI nodes.
1345 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001346 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001347
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001348 // Otherwise take the unions of the known bit sets of the operands,
1349 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001350 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001351 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001352 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001353 break;
1354
Craig Topperb45eabc2017-04-26 16:39:58 +00001355 Known.Zero.setAllBits();
1356 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001357 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001358 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001359 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001360
Craig Topperb45eabc2017-04-26 16:39:58 +00001361 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001362 // Recurse, but cap the recursion to one level, because we don't
1363 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001364 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1365 Known.Zero &= Known2.Zero;
1366 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001367 // If all bits have been ruled out, there's no need to check
1368 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001369 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001370 break;
1371 }
1372 }
Chris Lattner965c7692008-06-02 01:18:21 +00001373 break;
1374 }
1375 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001376 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001377 // If range metadata is attached to this call, set known bits from that,
1378 // and then intersect with known bits based on other properties of the
1379 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001380 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001381 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001382 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001383 computeKnownBits(RV, Known2, Depth + 1, Q);
1384 Known.Zero |= Known2.Zero;
1385 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001386 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001387 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001388 switch (II->getIntrinsicID()) {
1389 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001390 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001391 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1392 Known.Zero |= Known2.Zero.reverseBits();
1393 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001394 break;
Philip Reames675418e2015-10-06 20:20:45 +00001395 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001396 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1397 Known.Zero |= Known2.Zero.byteSwap();
1398 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001399 break;
Craig Topper868813f2017-05-08 17:22:34 +00001400 case Intrinsic::ctlz: {
1401 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1402 // If we have a known 1, its position is our upper bound.
1403 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001404 // If this call is undefined for 0, the result will be less than 2^n.
1405 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001406 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1407 unsigned LowBits = Log2_32(PossibleLZ)+1;
1408 Known.Zero.setBitsFrom(LowBits);
1409 break;
1410 }
1411 case Intrinsic::cttz: {
1412 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1413 // If we have a known 1, its position is our upper bound.
1414 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1415 // If this call is undefined for 0, the result will be less than 2^n.
1416 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1417 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1418 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001419 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001420 break;
1421 }
1422 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001423 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001424 // We can bound the space the count needs. Also, bits known to be zero
1425 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001426 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001427 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001428 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001429 // TODO: we could bound KnownOne using the lower bound on the number
1430 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001431 break;
1432 }
Chad Rosierb3628842011-05-26 23:13:19 +00001433 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001434 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001435 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001436 }
1437 }
1438 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001439 case Instruction::ExtractElement:
1440 // Look through extract element. At the moment we keep this simple and skip
1441 // tracking the specific element. But at least we might find information
1442 // valid for all elements of the vector (for example if vector is sign
1443 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001444 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001445 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001446 case Instruction::ExtractValue:
1447 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001448 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001449 if (EVI->getNumIndices() != 1) break;
1450 if (EVI->getIndices()[0] == 0) {
1451 switch (II->getIntrinsicID()) {
1452 default: break;
1453 case Intrinsic::uadd_with_overflow:
1454 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001455 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001456 II->getArgOperand(1), false, Known, Known2,
1457 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001458 break;
1459 case Intrinsic::usub_with_overflow:
1460 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001461 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001462 II->getArgOperand(1), false, Known, Known2,
1463 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001464 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001465 case Intrinsic::umul_with_overflow:
1466 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001467 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001468 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001469 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001470 }
1471 }
1472 }
Chris Lattner965c7692008-06-02 01:18:21 +00001473 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001474}
1475
1476/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001477/// them.
1478KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1479 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1480 computeKnownBits(V, Known, Depth, Q);
1481 return Known;
1482}
1483
1484/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001485/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001486///
1487/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1488/// we cannot optimize based on the assumption that it is zero without changing
1489/// it to be an explicit zero. If we don't change it to zero, other code could
1490/// optimized based on the contradictory assumption that it is non-zero.
1491/// Because instcombine aggressively folds operations with undef args anyway,
1492/// this won't lose us code quality.
1493///
1494/// This function is defined on values with integer type, values with pointer
1495/// type, and vectors of integers. In the case
1496/// where V is a vector, known zero, and known one values are the
1497/// same width as the vector element, and the bit is set only if it is true
1498/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001499void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1500 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001501 assert(V && "No Value?");
1502 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001503 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001504
1505 assert((V->getType()->isIntOrIntVectorTy() ||
1506 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001507 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001508 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509 (!V->getType()->isIntOrIntVectorTy() ||
1510 V->getType()->getScalarSizeInBits() == BitWidth) &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001511 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001512 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001513
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001514 const APInt *C;
1515 if (match(V, m_APInt(C))) {
1516 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001517 Known.One = *C;
1518 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001519 return;
1520 }
1521 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001522 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001523 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001524 return;
1525 }
1526 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001527 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001528 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001529 // We know that CDS must be a vector of integers. Take the intersection of
1530 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001531 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001532 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001533 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1534 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001535 Known.Zero &= ~Elt;
1536 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001537 }
1538 return;
1539 }
1540
Pete Cooper35b00d52016-08-13 01:05:32 +00001541 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001542 // We know that CV must be a vector of integers. Take the intersection of
1543 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001544 Known.Zero.setAllBits(); Known.One.setAllBits();
1545 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001546 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1547 Constant *Element = CV->getAggregateElement(i);
1548 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1549 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001550 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001551 return;
1552 }
1553 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001554 Known.Zero &= ~Elt;
1555 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001556 }
1557 return;
1558 }
1559
Jingyue Wu12b0c282015-06-15 05:46:29 +00001560 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001561 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001562
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001563 // We can't imply anything about undefs.
1564 if (isa<UndefValue>(V))
1565 return;
1566
1567 // There's no point in looking through other users of ConstantData for
1568 // assumptions. Confirm that we've handled them all.
1569 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1570
Jingyue Wu12b0c282015-06-15 05:46:29 +00001571 // Limit search depth.
1572 // All recursive calls that increase depth must come after this.
1573 if (Depth == MaxDepth)
1574 return;
1575
1576 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1577 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001578 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001579 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001580 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001581 return;
1582 }
1583
Pete Cooper35b00d52016-08-13 01:05:32 +00001584 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001585 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001586
Craig Topperb45eabc2017-04-26 16:39:58 +00001587 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001588 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001589 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001590 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001591 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001592 }
1593
Craig Topperb45eabc2017-04-26 16:39:58 +00001594 // computeKnownBitsFromAssume strictly refines Known.
1595 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001596
1597 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001598 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001599
Craig Topperb45eabc2017-04-26 16:39:58 +00001600 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001601}
1602
Sanjay Patelaee84212014-11-04 16:27:42 +00001603/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001604/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001605/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001606/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001607bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001608 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001609 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001610 if (C->isNullValue())
1611 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001612
1613 const APInt *ConstIntOrConstSplatInt;
1614 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1615 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001616 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001617
1618 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1619 // it is shifted off the end then the result is undefined.
1620 if (match(V, m_Shl(m_One(), m_Value())))
1621 return true;
1622
Craig Topperbcfd2d12017-04-20 16:56:25 +00001623 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1624 // the bottom. If it is shifted off the bottom then the result is undefined.
1625 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001626 return true;
1627
1628 // The remaining tests are all recursive, so bail out if we hit the limit.
1629 if (Depth++ == MaxDepth)
1630 return false;
1631
Craig Topper9f008862014-04-15 04:59:12 +00001632 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001633 // A shift left or a logical shift right of a power of two is a power of two
1634 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001635 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001636 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001637 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001638
Pete Cooper35b00d52016-08-13 01:05:32 +00001639 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001640 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001641
Pete Cooper35b00d52016-08-13 01:05:32 +00001642 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001643 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1644 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001645
Duncan Sandsba286d72011-10-26 20:55:21 +00001646 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1647 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001648 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1649 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001650 return true;
1651 // X & (-X) is always a power of two or zero.
1652 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1653 return true;
1654 return false;
1655 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001656
David Majnemerb7d54092013-07-30 21:01:36 +00001657 // Adding a power-of-two or zero to the same power-of-two or zero yields
1658 // either the original power-of-two, a larger power-of-two or zero.
1659 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001660 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001661 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1662 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1663 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001664 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001665 return true;
1666 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1667 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001668 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001669 return true;
1670
1671 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001672 KnownBits LHSBits(BitWidth);
1673 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001674
Craig Topperb45eabc2017-04-26 16:39:58 +00001675 KnownBits RHSBits(BitWidth);
1676 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001677 // If i8 V is a power of two or zero:
1678 // ZeroBits: 1 1 1 0 1 1 1 1
1679 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001680 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001681 // If OrZero isn't set, we cannot give back a zero result.
1682 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001683 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001684 return true;
1685 }
1686 }
David Majnemerbeab5672013-05-18 19:30:37 +00001687
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001688 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001689 // is a power of two only if the first operand is a power of two and not
1690 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001691 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1692 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001693 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001694 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001695 }
1696
Duncan Sandsd3951082011-01-25 09:38:29 +00001697 return false;
1698}
1699
Chandler Carruth80d3e562012-12-07 02:08:58 +00001700/// \brief Test whether a GEP's result is known to be non-null.
1701///
1702/// Uses properties inherent in a GEP to try to determine whether it is known
1703/// to be non-null.
1704///
1705/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001706static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001707 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001708 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1709 return false;
1710
1711 // FIXME: Support vector-GEPs.
1712 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1713
1714 // If the base pointer is non-null, we cannot walk to a null address with an
1715 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001716 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001717 return true;
1718
Chandler Carruth80d3e562012-12-07 02:08:58 +00001719 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1720 // If so, then the GEP cannot produce a null pointer, as doing so would
1721 // inherently violate the inbounds contract within address space zero.
1722 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1723 GTI != GTE; ++GTI) {
1724 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001725 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001726 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1727 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001728 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001729 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1730 if (ElementOffset > 0)
1731 return true;
1732 continue;
1733 }
1734
1735 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001736 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001737 continue;
1738
1739 // Fast path the constant operand case both for efficiency and so we don't
1740 // increment Depth when just zipping down an all-constant GEP.
1741 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1742 if (!OpC->isZero())
1743 return true;
1744 continue;
1745 }
1746
1747 // We post-increment Depth here because while isKnownNonZero increments it
1748 // as well, when we pop back up that increment won't persist. We don't want
1749 // to recurse 10k times just because we have 10k GEP operands. We don't
1750 // bail completely out because we want to handle constant GEPs regardless
1751 // of depth.
1752 if (Depth++ >= MaxDepth)
1753 continue;
1754
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001755 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001756 return true;
1757 }
1758
1759 return false;
1760}
1761
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001762/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1763/// ensure that the value it's attached to is never Value? 'RangeType' is
1764/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001765static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001766 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1767 assert(NumRanges >= 1);
1768 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001769 ConstantInt *Lower =
1770 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1771 ConstantInt *Upper =
1772 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001773 ConstantRange Range(Lower->getValue(), Upper->getValue());
1774 if (Range.contains(Value))
1775 return false;
1776 }
1777 return true;
1778}
1779
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001780/// Return true if the given value is known to be non-zero when defined. For
1781/// vectors, return true if every element is known to be non-zero when
1782/// defined. For pointers, if the context instruction and dominator tree are
1783/// specified, perform context-sensitive analysis and return true if the
1784/// pointer couldn't possibly be null at the specified instruction.
1785/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001786bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001787 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001788 if (C->isNullValue())
1789 return false;
1790 if (isa<ConstantInt>(C))
1791 // Must be non-zero due to null test above.
1792 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001793
1794 // For constant vectors, check that all elements are undefined or known
1795 // non-zero to determine that the whole vector is known non-zero.
1796 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1797 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1798 Constant *Elt = C->getAggregateElement(i);
1799 if (!Elt || Elt->isNullValue())
1800 return false;
1801 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1802 return false;
1803 }
1804 return true;
1805 }
1806
Duncan Sandsd3951082011-01-25 09:38:29 +00001807 return false;
1808 }
1809
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001810 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001811 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001812 // If the possible ranges don't contain zero, then the value is
1813 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001814 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001815 const APInt ZeroValue(Ty->getBitWidth(), 0);
1816 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1817 return true;
1818 }
1819 }
1820 }
1821
Duncan Sandsd3951082011-01-25 09:38:29 +00001822 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001823 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001824 return false;
1825
Chandler Carruth80d3e562012-12-07 02:08:58 +00001826 // Check for pointer simplifications.
1827 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001828 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001829 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001830 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001831 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001832 return true;
1833 }
1834
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001835 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001836
1837 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001838 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001839 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001840 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001841
1842 // ext X != 0 if X != 0.
1843 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001844 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001845
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001846 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001847 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001848 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001849 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001850 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001851 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001852 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001853
Craig Topperb45eabc2017-04-26 16:39:58 +00001854 KnownBits Known(BitWidth);
1855 computeKnownBits(X, Known, Depth, Q);
1856 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001857 return true;
1858 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001859 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 // defined if the sign bit is shifted off the end.
1861 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001862 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001863 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001864 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001865 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001866
Craig Topper6e11a052017-05-08 16:22:48 +00001867 KnownBits Known = computeKnownBits(X, Depth, Q);
1868 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001869 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001870
1871 // If the shifter operand is a constant, and all of the bits shifted
1872 // out are known to be zero, and X is known non-zero then at least one
1873 // non-zero bit must remain.
1874 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001875 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1876 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001877 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001878 return true;
1879 // Are all the bits to be shifted out known zero?
Craig Topper8df66c62017-05-12 17:20:30 +00001880 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001881 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001882 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001883 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001884 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001885 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001886 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001887 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001888 // X + Y.
1889 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001890 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1891 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001892
1893 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001894 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001895 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001896 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001897 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001898
1899 // If X and Y are both negative (as signed values) then their sum is not
1900 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001901 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001902 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1903 // The sign bit of X is set. If some other bit is set then X is not equal
1904 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001905 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001906 return true;
1907 // The sign bit of Y is set. If some other bit is set then Y is not equal
1908 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001909 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001910 return true;
1911 }
1912
1913 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001914 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001915 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001916 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001917 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001918 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001919 return true;
1920 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001921 // X * Y.
1922 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001923 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001924 // If X and Y are non-zero then so is X * Y as long as the multiplication
1925 // does not overflow.
1926 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001927 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001928 return true;
1929 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001930 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001931 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001932 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1933 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 return true;
1935 }
James Molloy897048b2015-09-29 14:08:45 +00001936 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001937 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001938 // Try and detect a recurrence that monotonically increases from a
1939 // starting value, as these are common as induction variables.
1940 if (PN->getNumIncomingValues() == 2) {
1941 Value *Start = PN->getIncomingValue(0);
1942 Value *Induction = PN->getIncomingValue(1);
1943 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1944 std::swap(Start, Induction);
1945 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1946 if (!C->isZero() && !C->isNegative()) {
1947 ConstantInt *X;
1948 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1949 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1950 !X->isNegative())
1951 return true;
1952 }
1953 }
1954 }
Jun Bum Limca832662016-02-01 17:03:07 +00001955 // Check if all incoming values are non-zero constant.
1956 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1957 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1958 });
1959 if (AllNonZeroConstants)
1960 return true;
James Molloy897048b2015-09-29 14:08:45 +00001961 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001962
Craig Topperb45eabc2017-04-26 16:39:58 +00001963 KnownBits Known(BitWidth);
1964 computeKnownBits(V, Known, Depth, Q);
1965 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00001966}
1967
James Molloy1d88d6f2015-10-22 13:18:42 +00001968/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001969static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1970 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001971 if (!BO || BO->getOpcode() != Instruction::Add)
1972 return false;
1973 Value *Op = nullptr;
1974 if (V2 == BO->getOperand(0))
1975 Op = BO->getOperand(1);
1976 else if (V2 == BO->getOperand(1))
1977 Op = BO->getOperand(0);
1978 else
1979 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001980 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001981}
1982
1983/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001984static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001985 if (V1->getType()->isVectorTy() || V1 == V2)
1986 return false;
1987 if (V1->getType() != V2->getType())
1988 // We can't look through casts yet.
1989 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001990 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001991 return true;
1992
1993 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1994 // Are any known bits in V1 contradictory to known bits in V2? If V1
1995 // has a known zero where V2 has a known one, they must not be equal.
1996 auto BitWidth = Ty->getBitWidth();
Craig Topperb45eabc2017-04-26 16:39:58 +00001997 KnownBits Known1(BitWidth);
1998 computeKnownBits(V1, Known1, 0, Q);
1999 KnownBits Known2(BitWidth);
2000 computeKnownBits(V2, Known2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002001
Craig Topperb45eabc2017-04-26 16:39:58 +00002002 APInt OppositeBits = (Known1.Zero & Known2.One) |
2003 (Known2.Zero & Known1.One);
James Molloy1d88d6f2015-10-22 13:18:42 +00002004 if (OppositeBits.getBoolValue())
2005 return true;
2006 }
2007 return false;
2008}
2009
Sanjay Patelaee84212014-11-04 16:27:42 +00002010/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2011/// simplify operations downstream. Mask is known to be zero for bits that V
2012/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002013///
2014/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002015/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002016/// where V is a vector, the mask, known zero, and known one values are the
2017/// same width as the vector element, and the bit is set only if it is true
2018/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002019bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002020 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002021 KnownBits Known(Mask.getBitWidth());
2022 computeKnownBits(V, Known, Depth, Q);
2023 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002024}
2025
Sanjay Patela06d9892016-06-22 19:20:59 +00002026/// For vector constants, loop over the elements and find the constant with the
2027/// minimum number of sign bits. Return 0 if the value is not a vector constant
2028/// or if any element was not analyzed; otherwise, return the count for the
2029/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002030static unsigned computeNumSignBitsVectorConstant(const Value *V,
2031 unsigned TyBits) {
2032 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002033 if (!CV || !CV->getType()->isVectorTy())
2034 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002035
Sanjay Patela06d9892016-06-22 19:20:59 +00002036 unsigned MinSignBits = TyBits;
2037 unsigned NumElts = CV->getType()->getVectorNumElements();
2038 for (unsigned i = 0; i != NumElts; ++i) {
2039 // If we find a non-ConstantInt, bail out.
2040 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2041 if (!Elt)
2042 return 0;
2043
2044 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2045 APInt EltVal = Elt->getValue();
2046 if (EltVal.isNegative())
2047 EltVal = ~EltVal;
2048 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2049 }
2050
2051 return MinSignBits;
2052}
Chris Lattner965c7692008-06-02 01:18:21 +00002053
Sanjoy Das39a684d2017-02-25 20:30:45 +00002054static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2055 const Query &Q);
2056
2057static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2058 const Query &Q) {
2059 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2060 assert(Result > 0 && "At least one sign bit needs to be present!");
2061 return Result;
2062}
2063
Sanjay Patelaee84212014-11-04 16:27:42 +00002064/// Return the number of times the sign bit of the register is replicated into
2065/// the other bits. We know that at least 1 bit is always equal to the sign bit
2066/// (itself), but other cases can give us information. For example, immediately
2067/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002068/// other, so we return 3. For vectors, return the number of sign bits for the
2069/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002070static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2071 const Query &Q) {
2072
2073 // We return the minimum number of sign bits that are guaranteed to be present
2074 // in V, so for undef we have to conservatively return 1. We don't have the
2075 // same behavior for poison though -- that's a FIXME today.
2076
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002077 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002078 unsigned Tmp, Tmp2;
2079 unsigned FirstAnswer = 1;
2080
Jay Foada0653a32014-05-14 21:14:37 +00002081 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002082 // below.
2083
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002084 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002085 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Pete Cooper35b00d52016-08-13 01:05:32 +00002087 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002088 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002089 default: break;
2090 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002091 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002092 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002093
Nadav Rotemc99a3872015-03-06 00:23:58 +00002094 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002095 const APInt *Denominator;
2096 // sdiv X, C -> adds log(C) sign bits.
2097 if (match(U->getOperand(1), m_APInt(Denominator))) {
2098
2099 // Ignore non-positive denominator.
2100 if (!Denominator->isStrictlyPositive())
2101 break;
2102
2103 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002104 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002105
2106 // Add floor(log(C)) bits to the numerator bits.
2107 return std::min(TyBits, NumBits + Denominator->logBase2());
2108 }
2109 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002110 }
2111
2112 case Instruction::SRem: {
2113 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002114 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2115 // positive constant. This let us put a lower bound on the number of sign
2116 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002117 if (match(U->getOperand(1), m_APInt(Denominator))) {
2118
2119 // Ignore non-positive denominator.
2120 if (!Denominator->isStrictlyPositive())
2121 break;
2122
2123 // Calculate the incoming numerator bits. SRem by a positive constant
2124 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002125 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002126 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002127
2128 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002129 // denominator. Given that the denominator is positive, there are two
2130 // cases:
2131 //
2132 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2133 // (1 << ceilLogBase2(C)).
2134 //
2135 // 2. the numerator is negative. Then the result range is (-C,0] and
2136 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2137 //
2138 // Thus a lower bound on the number of sign bits is `TyBits -
2139 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002140
Sanjoy Dase561fee2015-03-25 22:33:53 +00002141 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002142 return std::max(NumrBits, ResBits);
2143 }
2144 break;
2145 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002146
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002147 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002148 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002149 // ashr X, C -> adds C sign bits. Vectors too.
2150 const APInt *ShAmt;
2151 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002152 unsigned ShAmtLimited = ShAmt->getZExtValue();
2153 if (ShAmtLimited >= TyBits)
2154 break; // Bad shift.
2155 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002156 if (Tmp > TyBits) Tmp = TyBits;
2157 }
2158 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002159 }
2160 case Instruction::Shl: {
2161 const APInt *ShAmt;
2162 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002163 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002164 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002165 Tmp2 = ShAmt->getZExtValue();
2166 if (Tmp2 >= TyBits || // Bad shift.
2167 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2168 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002169 }
2170 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002171 }
Chris Lattner965c7692008-06-02 01:18:21 +00002172 case Instruction::And:
2173 case Instruction::Or:
2174 case Instruction::Xor: // NOT is handled here.
2175 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002176 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002177 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002178 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002179 FirstAnswer = std::min(Tmp, Tmp2);
2180 // We computed what we know about the sign bits as our first
2181 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002182 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002183 }
2184 break;
2185
2186 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002187 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002188 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002189 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002190 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002191
Chris Lattner965c7692008-06-02 01:18:21 +00002192 case Instruction::Add:
2193 // Add can have at most one carry bit. Thus we know that the output
2194 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002195 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002196 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002197
Chris Lattner965c7692008-06-02 01:18:21 +00002198 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002199 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002200 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002201 KnownBits Known(TyBits);
2202 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002203
Chris Lattner965c7692008-06-02 01:18:21 +00002204 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2205 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002206 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002207 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002208
Chris Lattner965c7692008-06-02 01:18:21 +00002209 // If we are subtracting one from a positive number, there is no carry
2210 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002211 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002212 return Tmp;
2213 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002214
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002215 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002216 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002217 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002218
Chris Lattner965c7692008-06-02 01:18:21 +00002219 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002220 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002221 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002222
Chris Lattner965c7692008-06-02 01:18:21 +00002223 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002224 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002225 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002226 KnownBits Known(TyBits);
2227 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002228 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2229 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002230 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002231 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 // If the input is known to be positive (the sign bit is known clear),
2234 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002235 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002236 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002237
Chris Lattner965c7692008-06-02 01:18:21 +00002238 // Otherwise, we treat this like a SUB.
2239 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002240
Chris Lattner965c7692008-06-02 01:18:21 +00002241 // Sub can have at most one carry bit. Thus we know that the output
2242 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002243 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002244 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002245 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002246
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002247 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002248 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002249 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002250 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002251 if (NumIncomingValues > 4) break;
2252 // Unreachable blocks may have zero-operand PHI nodes.
2253 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002254
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002255 // Take the minimum of all incoming values. This can't infinitely loop
2256 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002257 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002258 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002259 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002260 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002261 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002262 }
2263 return Tmp;
2264 }
2265
Chris Lattner965c7692008-06-02 01:18:21 +00002266 case Instruction::Trunc:
2267 // FIXME: it's tricky to do anything useful for this, but it is an important
2268 // case for targets like X86.
2269 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002270
2271 case Instruction::ExtractElement:
2272 // Look through extract element. At the moment we keep this simple and skip
2273 // tracking the specific element. But at least we might find information
2274 // valid for all elements of the vector (for example if vector is sign
2275 // extended, shifted, etc).
2276 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002277 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002278
Chris Lattner965c7692008-06-02 01:18:21 +00002279 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2280 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002281
2282 // If we can examine all elements of a vector constant successfully, we're
2283 // done (we can't do any better than that). If not, keep trying.
2284 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2285 return VecSignBits;
2286
Craig Topperb45eabc2017-04-26 16:39:58 +00002287 KnownBits Known(TyBits);
2288 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002289
Sanjay Patele0536212016-06-23 17:41:59 +00002290 // If we know that the sign bit is either zero or one, determine the number of
2291 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002292 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002293}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002294
Sanjay Patelaee84212014-11-04 16:27:42 +00002295/// This function computes the integer multiple of Base that equals V.
2296/// If successful, it returns true and returns the multiple in
2297/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002298/// through SExt instructions only if LookThroughSExt is true.
2299bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002300 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002301 const unsigned MaxDepth = 6;
2302
Dan Gohman6a976bb2009-11-18 00:58:27 +00002303 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002304 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002305 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002306
Chris Lattner229907c2011-07-18 04:54:35 +00002307 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002308
Dan Gohman6a976bb2009-11-18 00:58:27 +00002309 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002310
2311 if (Base == 0)
2312 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002313
Victor Hernandez47444882009-11-10 08:28:35 +00002314 if (Base == 1) {
2315 Multiple = V;
2316 return true;
2317 }
2318
2319 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2320 Constant *BaseVal = ConstantInt::get(T, Base);
2321 if (CO && CO == BaseVal) {
2322 // Multiple is 1.
2323 Multiple = ConstantInt::get(T, 1);
2324 return true;
2325 }
2326
2327 if (CI && CI->getZExtValue() % Base == 0) {
2328 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002329 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002330 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002331
Victor Hernandez47444882009-11-10 08:28:35 +00002332 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002333
Victor Hernandez47444882009-11-10 08:28:35 +00002334 Operator *I = dyn_cast<Operator>(V);
2335 if (!I) return false;
2336
2337 switch (I->getOpcode()) {
2338 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002339 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002340 if (!LookThroughSExt) return false;
2341 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002342 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002343 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2344 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002345 case Instruction::Shl:
2346 case Instruction::Mul: {
2347 Value *Op0 = I->getOperand(0);
2348 Value *Op1 = I->getOperand(1);
2349
2350 if (I->getOpcode() == Instruction::Shl) {
2351 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2352 if (!Op1CI) return false;
2353 // Turn Op0 << Op1 into Op0 * 2^Op1
2354 APInt Op1Int = Op1CI->getValue();
2355 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002356 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002357 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002358 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002359 }
2360
Craig Topper9f008862014-04-15 04:59:12 +00002361 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002362 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2363 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2364 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002365 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002366 MulC->getType()->getPrimitiveSizeInBits())
2367 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002368 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002369 MulC->getType()->getPrimitiveSizeInBits())
2370 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002371
Chris Lattner72d283c2010-09-05 17:20:46 +00002372 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2373 Multiple = ConstantExpr::getMul(MulC, Op1C);
2374 return true;
2375 }
Victor Hernandez47444882009-11-10 08:28:35 +00002376
2377 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2378 if (Mul0CI->getValue() == 1) {
2379 // V == Base * Op1, so return Op1
2380 Multiple = Op1;
2381 return true;
2382 }
2383 }
2384
Craig Topper9f008862014-04-15 04:59:12 +00002385 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002386 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2387 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2388 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002389 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002390 MulC->getType()->getPrimitiveSizeInBits())
2391 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002392 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002393 MulC->getType()->getPrimitiveSizeInBits())
2394 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002395
Chris Lattner72d283c2010-09-05 17:20:46 +00002396 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2397 Multiple = ConstantExpr::getMul(MulC, Op0C);
2398 return true;
2399 }
Victor Hernandez47444882009-11-10 08:28:35 +00002400
2401 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2402 if (Mul1CI->getValue() == 1) {
2403 // V == Base * Op0, so return Op0
2404 Multiple = Op0;
2405 return true;
2406 }
2407 }
Victor Hernandez47444882009-11-10 08:28:35 +00002408 }
2409 }
2410
2411 // We could not determine if V is a multiple of Base.
2412 return false;
2413}
2414
David Majnemerb4b27232016-04-19 19:10:21 +00002415Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2416 const TargetLibraryInfo *TLI) {
2417 const Function *F = ICS.getCalledFunction();
2418 if (!F)
2419 return Intrinsic::not_intrinsic;
2420
2421 if (F->isIntrinsic())
2422 return F->getIntrinsicID();
2423
2424 if (!TLI)
2425 return Intrinsic::not_intrinsic;
2426
David L. Jonesd21529f2017-01-23 23:16:46 +00002427 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002428 // We're going to make assumptions on the semantics of the functions, check
2429 // that the target knows that it's available in this environment and it does
2430 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002431 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2432 return Intrinsic::not_intrinsic;
2433
2434 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002435 return Intrinsic::not_intrinsic;
2436
2437 // Otherwise check if we have a call to a function that can be turned into a
2438 // vector intrinsic.
2439 switch (Func) {
2440 default:
2441 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002442 case LibFunc_sin:
2443 case LibFunc_sinf:
2444 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002445 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002446 case LibFunc_cos:
2447 case LibFunc_cosf:
2448 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002449 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002450 case LibFunc_exp:
2451 case LibFunc_expf:
2452 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002453 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002454 case LibFunc_exp2:
2455 case LibFunc_exp2f:
2456 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002457 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002458 case LibFunc_log:
2459 case LibFunc_logf:
2460 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002461 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002462 case LibFunc_log10:
2463 case LibFunc_log10f:
2464 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002465 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002466 case LibFunc_log2:
2467 case LibFunc_log2f:
2468 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002469 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002470 case LibFunc_fabs:
2471 case LibFunc_fabsf:
2472 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002473 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002474 case LibFunc_fmin:
2475 case LibFunc_fminf:
2476 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002477 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002478 case LibFunc_fmax:
2479 case LibFunc_fmaxf:
2480 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002481 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002482 case LibFunc_copysign:
2483 case LibFunc_copysignf:
2484 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002485 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002486 case LibFunc_floor:
2487 case LibFunc_floorf:
2488 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002489 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002490 case LibFunc_ceil:
2491 case LibFunc_ceilf:
2492 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002493 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002494 case LibFunc_trunc:
2495 case LibFunc_truncf:
2496 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002497 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002498 case LibFunc_rint:
2499 case LibFunc_rintf:
2500 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002501 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002502 case LibFunc_nearbyint:
2503 case LibFunc_nearbyintf:
2504 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002505 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002506 case LibFunc_round:
2507 case LibFunc_roundf:
2508 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002509 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002510 case LibFunc_pow:
2511 case LibFunc_powf:
2512 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002513 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002514 case LibFunc_sqrt:
2515 case LibFunc_sqrtf:
2516 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002517 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002518 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002519 return Intrinsic::not_intrinsic;
2520 }
2521
2522 return Intrinsic::not_intrinsic;
2523}
2524
Sanjay Patelaee84212014-11-04 16:27:42 +00002525/// Return true if we can prove that the specified FP value is never equal to
2526/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002527///
2528/// NOTE: this function will need to be revisited when we support non-default
2529/// rounding modes!
2530///
David Majnemer3ee5f342016-04-13 06:55:52 +00002531bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2532 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002533 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2534 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002535
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002536 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002537 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002538
Dan Gohman80ca01c2009-07-17 20:47:02 +00002539 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002540 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002541
2542 // Check if the nsz fast-math flag is set
2543 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2544 if (FPO->hasNoSignedZeros())
2545 return true;
2546
Chris Lattnera12a6de2008-06-02 01:29:46 +00002547 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002548 if (I->getOpcode() == Instruction::FAdd)
2549 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2550 if (CFP->isNullValue())
2551 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002552
Chris Lattnera12a6de2008-06-02 01:29:46 +00002553 // sitofp and uitofp turn into +0.0 for zero.
2554 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2555 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002556
David Majnemer3ee5f342016-04-13 06:55:52 +00002557 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002558 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002559 switch (IID) {
2560 default:
2561 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002562 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002563 case Intrinsic::sqrt:
2564 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2565 // fabs(x) != -0.0
2566 case Intrinsic::fabs:
2567 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002568 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002569 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002570
Chris Lattnera12a6de2008-06-02 01:29:46 +00002571 return false;
2572}
2573
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002574/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2575/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2576/// bit despite comparing equal.
2577static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2578 const TargetLibraryInfo *TLI,
2579 bool SignBitOnly,
2580 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002581 // TODO: This function does not do the right thing when SignBitOnly is true
2582 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2583 // which flips the sign bits of NaNs. See
2584 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2585
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002586 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2587 return !CFP->getValueAPF().isNegative() ||
2588 (!SignBitOnly && CFP->getValueAPF().isZero());
2589 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002590
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002591 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002592 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002593
2594 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002595 if (!I)
2596 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002597
2598 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002599 default:
2600 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002601 // Unsigned integers are always nonnegative.
2602 case Instruction::UIToFP:
2603 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002604 case Instruction::FMul:
2605 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002606 if (I->getOperand(0) == I->getOperand(1) &&
2607 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002608 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002609
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002610 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002611 case Instruction::FAdd:
2612 case Instruction::FDiv:
2613 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002614 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2615 Depth + 1) &&
2616 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2617 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002618 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002619 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2620 Depth + 1) &&
2621 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2622 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002623 case Instruction::FPExt:
2624 case Instruction::FPTrunc:
2625 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002626 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2627 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002628 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002629 const auto *CI = cast<CallInst>(I);
2630 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002631 switch (IID) {
2632 default:
2633 break;
2634 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002635 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2636 Depth + 1) ||
2637 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2638 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002639 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002640 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2641 Depth + 1) &&
2642 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2643 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002644 case Intrinsic::exp:
2645 case Intrinsic::exp2:
2646 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002647 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002648
2649 case Intrinsic::sqrt:
2650 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2651 if (!SignBitOnly)
2652 return true;
2653 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2654 CannotBeNegativeZero(CI->getOperand(0), TLI));
2655
David Majnemer3ee5f342016-04-13 06:55:52 +00002656 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002657 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002658 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002659 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002660 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002661 }
Justin Lebar322c1272017-01-27 00:58:34 +00002662 // TODO: This is not correct. Given that exp is an integer, here are the
2663 // ways that pow can return a negative value:
2664 //
2665 // pow(x, exp) --> negative if exp is odd and x is negative.
2666 // pow(-0, exp) --> -inf if exp is negative odd.
2667 // pow(-0, exp) --> -0 if exp is positive odd.
2668 // pow(-inf, exp) --> -0 if exp is negative odd.
2669 // pow(-inf, exp) --> -inf if exp is positive odd.
2670 //
2671 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2672 // but we must return false if x == -0. Unfortunately we do not currently
2673 // have a way of expressing this constraint. See details in
2674 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002675 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2676 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002677
David Majnemer3ee5f342016-04-13 06:55:52 +00002678 case Intrinsic::fma:
2679 case Intrinsic::fmuladd:
2680 // x*x+y is non-negative if y is non-negative.
2681 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002682 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2683 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2684 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002685 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002686 break;
2687 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002688 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002689}
2690
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002691bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2692 const TargetLibraryInfo *TLI) {
2693 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2694}
2695
2696bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2697 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2698}
2699
Sanjay Patelaee84212014-11-04 16:27:42 +00002700/// If the specified value can be set by repeating the same byte in memory,
2701/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002702/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2703/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2704/// byte store (e.g. i16 0x1234), return null.
2705Value *llvm::isBytewiseValue(Value *V) {
2706 // All byte-wide stores are splatable, even of arbitrary variables.
2707 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002708
2709 // Handle 'null' ConstantArrayZero etc.
2710 if (Constant *C = dyn_cast<Constant>(V))
2711 if (C->isNullValue())
2712 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002713
Chris Lattner9cb10352010-12-26 20:15:01 +00002714 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002715 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002716 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2717 if (CFP->getType()->isFloatTy())
2718 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2719 if (CFP->getType()->isDoubleTy())
2720 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2721 // Don't handle long double formats, which have strange constraints.
2722 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002723
Benjamin Kramer17d90152015-02-07 19:29:02 +00002724 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002725 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002726 if (CI->getBitWidth() % 8 == 0) {
2727 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002728
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002729 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002730 return nullptr;
2731 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002732 }
2733 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002734
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002735 // A ConstantDataArray/Vector is splatable if all its members are equal and
2736 // also splatable.
2737 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2738 Value *Elt = CA->getElementAsConstant(0);
2739 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002740 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002741 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002742
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002743 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2744 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002745 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002746
Chris Lattner9cb10352010-12-26 20:15:01 +00002747 return Val;
2748 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002749
Chris Lattner9cb10352010-12-26 20:15:01 +00002750 // Conceptually, we could handle things like:
2751 // %a = zext i8 %X to i16
2752 // %b = shl i16 %a, 8
2753 // %c = or i16 %a, %b
2754 // but until there is an example that actually needs this, it doesn't seem
2755 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002756 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002757}
2758
2759
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002760// This is the recursive version of BuildSubAggregate. It takes a few different
2761// arguments. Idxs is the index within the nested struct From that we are
2762// looking at now (which is of type IndexedType). IdxSkip is the number of
2763// indices from Idxs that should be left out when inserting into the resulting
2764// struct. To is the result struct built so far, new insertvalue instructions
2765// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002766static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002767 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002768 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002769 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002770 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002771 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002772 // Save the original To argument so we can modify it
2773 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002774 // General case, the type indexed by Idxs is a struct
2775 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2776 // Process each struct element recursively
2777 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002778 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002779 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002780 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002781 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002782 if (!To) {
2783 // Couldn't find any inserted value for this index? Cleanup
2784 while (PrevTo != OrigTo) {
2785 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2786 PrevTo = Del->getAggregateOperand();
2787 Del->eraseFromParent();
2788 }
2789 // Stop processing elements
2790 break;
2791 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002792 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002793 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002794 if (To)
2795 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002796 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002797 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2798 // the struct's elements had a value that was inserted directly. In the latter
2799 // case, perhaps we can't determine each of the subelements individually, but
2800 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002801
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002802 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002803 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002804
2805 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002806 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002807
2808 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002809 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002810 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002811}
2812
2813// This helper takes a nested struct and extracts a part of it (which is again a
2814// struct) into a new value. For example, given the struct:
2815// { a, { b, { c, d }, e } }
2816// and the indices "1, 1" this returns
2817// { c, d }.
2818//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002819// It does this by inserting an insertvalue for each element in the resulting
2820// struct, as opposed to just inserting a single struct. This will only work if
2821// each of the elements of the substruct are known (ie, inserted into From by an
2822// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002823//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002824// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002825static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002826 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002827 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002828 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002829 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002830 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002831 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002832 unsigned IdxSkip = Idxs.size();
2833
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002834 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002835}
2836
Sanjay Patelaee84212014-11-04 16:27:42 +00002837/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002838/// the scalar value indexed is already around as a register, for example if it
2839/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002840///
2841/// If InsertBefore is not null, this function will duplicate (modified)
2842/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002843Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2844 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002845 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002846 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002847 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002848 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002849 // We have indices, so V should have an indexable type.
2850 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2851 "Not looking at a struct or array?");
2852 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2853 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002854
Chris Lattner67058832012-01-25 06:48:06 +00002855 if (Constant *C = dyn_cast<Constant>(V)) {
2856 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002857 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002858 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2859 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002860
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002861 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002862 // Loop the indices for the insertvalue instruction in parallel with the
2863 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002864 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002865 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2866 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002867 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002868 // We can't handle this without inserting insertvalues
2869 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002870 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002871
2872 // The requested index identifies a part of a nested aggregate. Handle
2873 // this specially. For example,
2874 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2875 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2876 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2877 // This can be changed into
2878 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2879 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2880 // which allows the unused 0,0 element from the nested struct to be
2881 // removed.
2882 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2883 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002884 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002885
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002886 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002887 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002888 // looking for, then.
2889 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002890 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002891 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002892 }
2893 // If we end up here, the indices of the insertvalue match with those
2894 // requested (though possibly only partially). Now we recursively look at
2895 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002896 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002897 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002898 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002899 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002900
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002901 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002902 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002903 // something else, we can extract from that something else directly instead.
2904 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002905
2906 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002907 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002908 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002909 SmallVector<unsigned, 5> Idxs;
2910 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002911 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002912 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002913
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002914 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002915 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002916
Craig Topper1bef2c82012-12-22 19:15:35 +00002917 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002918 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002919
Jay Foad57aa6362011-07-13 10:26:04 +00002920 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002921 }
2922 // Otherwise, we don't know (such as, extracting from a function return value
2923 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002924 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002925}
Evan Chengda3db112008-06-30 07:31:25 +00002926
Sanjay Patelaee84212014-11-04 16:27:42 +00002927/// Analyze the specified pointer to see if it can be expressed as a base
2928/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002929Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002930 const DataLayout &DL) {
2931 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002932 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002933
2934 // We walk up the defs but use a visited set to handle unreachable code. In
2935 // that case, we stop after accumulating the cycle once (not that it
2936 // matters).
2937 SmallPtrSet<Value *, 16> Visited;
2938 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002939 if (Ptr->getType()->isVectorTy())
2940 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002941
Nuno Lopes368c4d02012-12-31 20:48:35 +00002942 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002943 // If one of the values we have visited is an addrspacecast, then
2944 // the pointer type of this GEP may be different from the type
2945 // of the Ptr parameter which was passed to this function. This
2946 // means when we construct GEPOffset, we need to use the size
2947 // of GEP's pointer type rather than the size of the original
2948 // pointer type.
2949 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002950 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2951 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002952
Tom Stellard17eb3412016-10-07 14:23:29 +00002953 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002954
Nuno Lopes368c4d02012-12-31 20:48:35 +00002955 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002956 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2957 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002958 Ptr = cast<Operator>(Ptr)->getOperand(0);
2959 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002960 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002961 break;
2962 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002963 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002964 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002965 }
2966 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002967 Offset = ByteOffset.getSExtValue();
2968 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002969}
2970
Matthias Braun50ec0b52017-05-19 22:37:09 +00002971bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
2972 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002973 // Make sure the GEP has exactly three arguments.
2974 if (GEP->getNumOperands() != 3)
2975 return false;
2976
Matthias Braun50ec0b52017-05-19 22:37:09 +00002977 // Make sure the index-ee is a pointer to array of \p CharSize integers.
2978 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00002979 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00002980 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00002981 return false;
2982
2983 // Check to make sure that the first operand of the GEP is an integer and
2984 // has value 0 so that we are sure we're indexing into the initializer.
2985 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2986 if (!FirstIdx || !FirstIdx->isZero())
2987 return false;
2988
2989 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002990}
Chris Lattnere28618d2010-11-30 22:25:26 +00002991
Matthias Braun50ec0b52017-05-19 22:37:09 +00002992bool llvm::getConstantDataArrayInfo(const Value *V,
2993 ConstantDataArraySlice &Slice,
2994 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002995 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002996
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002997 // Look through bitcast instructions and geps.
2998 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002999
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003000 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003001 // offset.
3002 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003003 // The GEP operator should be based on a pointer to string constant, and is
3004 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003005 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003006 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003007
Evan Chengda3db112008-06-30 07:31:25 +00003008 // If the second index isn't a ConstantInt, then this is a variable index
3009 // into the array. If this occurs, we can't say anything meaningful about
3010 // the string.
3011 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003012 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003013 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003014 else
3015 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003016 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3017 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003018 }
Nick Lewycky46209882011-10-20 00:34:35 +00003019
Evan Chengda3db112008-06-30 07:31:25 +00003020 // The GEP instruction, constant or instruction, must reference a global
3021 // variable that is a constant and is initialized. The referenced constant
3022 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003023 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003024 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003025 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003026
Matthias Braun50ec0b52017-05-19 22:37:09 +00003027 const ConstantDataArray *Array;
3028 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003029 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003030 Type *GVTy = GV->getValueType();
3031 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3032 // A zeroinitializer for the array; There is no ConstantDataArray.
3033 Array = nullptr;
3034 } else {
3035 const DataLayout &DL = GV->getParent()->getDataLayout();
3036 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3037 uint64_t Length = SizeInBytes / (ElementSize / 8);
3038 if (Length <= Offset)
3039 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003040
Matthias Braun50ec0b52017-05-19 22:37:09 +00003041 Slice.Array = nullptr;
3042 Slice.Offset = 0;
3043 Slice.Length = Length - Offset;
3044 return true;
3045 }
3046 } else {
3047 // This must be a ConstantDataArray.
3048 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3049 if (!Array)
3050 return false;
3051 ArrayTy = Array->getType();
3052 }
3053 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003054 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003055
Matthias Braun50ec0b52017-05-19 22:37:09 +00003056 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003057 if (Offset > NumElts)
3058 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003059
Matthias Braun50ec0b52017-05-19 22:37:09 +00003060 Slice.Array = Array;
3061 Slice.Offset = Offset;
3062 Slice.Length = NumElts - Offset;
3063 return true;
3064}
3065
3066/// This function computes the length of a null-terminated C string pointed to
3067/// by V. If successful, it returns true and returns the string in Str.
3068/// If unsuccessful, it returns false.
3069bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3070 uint64_t Offset, bool TrimAtNul) {
3071 ConstantDataArraySlice Slice;
3072 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3073 return false;
3074
3075 if (Slice.Array == nullptr) {
3076 if (TrimAtNul) {
3077 Str = StringRef();
3078 return true;
3079 }
3080 if (Slice.Length == 1) {
3081 Str = StringRef("", 1);
3082 return true;
3083 }
3084 // We cannot instantiate a StringRef as we do not have an apropriate string
3085 // of 0s at hand.
3086 return false;
3087 }
3088
3089 // Start out with the entire array in the StringRef.
3090 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003091 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003092 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003093
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003094 if (TrimAtNul) {
3095 // Trim off the \0 and anything after it. If the array is not nul
3096 // terminated, we just return the whole end of string. The client may know
3097 // some other way that the string is length-bound.
3098 Str = Str.substr(0, Str.find('\0'));
3099 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003100 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003101}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003102
3103// These next two are very similar to the above, but also look through PHI
3104// nodes.
3105// TODO: See if we can integrate these two together.
3106
Sanjay Patelaee84212014-11-04 16:27:42 +00003107/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003108/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003109static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003110 SmallPtrSetImpl<const PHINode*> &PHIs,
3111 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003112 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003113 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003114
3115 // If this is a PHI node, there are two cases: either we have already seen it
3116 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003117 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003118 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003119 return ~0ULL; // already in the set.
3120
3121 // If it was new, see if all the input strings are the same length.
3122 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003123 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003124 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003125 if (Len == 0) return 0; // Unknown length -> unknown.
3126
3127 if (Len == ~0ULL) continue;
3128
3129 if (Len != LenSoFar && LenSoFar != ~0ULL)
3130 return 0; // Disagree -> unknown.
3131 LenSoFar = Len;
3132 }
3133
3134 // Success, all agree.
3135 return LenSoFar;
3136 }
3137
3138 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003139 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003140 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003141 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003142 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003143 if (Len2 == 0) return 0;
3144 if (Len1 == ~0ULL) return Len2;
3145 if (Len2 == ~0ULL) return Len1;
3146 if (Len1 != Len2) return 0;
3147 return Len1;
3148 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003149
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003150 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003151 ConstantDataArraySlice Slice;
3152 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003153 return 0;
3154
Matthias Braun50ec0b52017-05-19 22:37:09 +00003155 if (Slice.Array == nullptr)
3156 return 1;
3157
3158 // Search for nul characters
3159 unsigned NullIndex = 0;
3160 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3161 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3162 break;
3163 }
3164
3165 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003166}
3167
Sanjay Patelaee84212014-11-04 16:27:42 +00003168/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003169/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003170uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003171 if (!V->getType()->isPointerTy()) return 0;
3172
Pete Cooper35b00d52016-08-13 01:05:32 +00003173 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003174 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003175 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3176 // an empty string as a length.
3177 return Len == ~0ULL ? 1 : Len;
3178}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003179
Adam Nemete2b885c2015-04-23 20:09:20 +00003180/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3181/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003182static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3183 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003184 // Find the loop-defined value.
3185 Loop *L = LI->getLoopFor(PN->getParent());
3186 if (PN->getNumIncomingValues() != 2)
3187 return true;
3188
3189 // Find the value from previous iteration.
3190 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3191 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3192 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3193 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3194 return true;
3195
3196 // If a new pointer is loaded in the loop, the pointer references a different
3197 // object in every iteration. E.g.:
3198 // for (i)
3199 // int *p = a[i];
3200 // ...
3201 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3202 if (!L->isLoopInvariant(Load->getPointerOperand()))
3203 return false;
3204 return true;
3205}
3206
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003207Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3208 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003209 if (!V->getType()->isPointerTy())
3210 return V;
3211 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3212 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3213 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003214 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3215 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003216 V = cast<Operator>(V)->getOperand(0);
3217 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003218 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003219 return V;
3220 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003221 } else if (isa<AllocaInst>(V)) {
3222 // An alloca can't be further simplified.
3223 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003224 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003225 if (auto CS = CallSite(V))
3226 if (Value *RV = CS.getReturnedArgOperand()) {
3227 V = RV;
3228 continue;
3229 }
3230
Dan Gohman05b18f12010-12-15 20:49:55 +00003231 // See if InstructionSimplify knows any relevant tricks.
3232 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003233 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003234 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003235 V = Simplified;
3236 continue;
3237 }
3238
Dan Gohmana4fcd242010-12-15 20:02:24 +00003239 return V;
3240 }
3241 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3242 }
3243 return V;
3244}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003245
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003246void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003247 const DataLayout &DL, LoopInfo *LI,
3248 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003249 SmallPtrSet<Value *, 4> Visited;
3250 SmallVector<Value *, 4> Worklist;
3251 Worklist.push_back(V);
3252 do {
3253 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003254 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003255
David Blaikie70573dc2014-11-19 07:49:26 +00003256 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003257 continue;
3258
3259 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3260 Worklist.push_back(SI->getTrueValue());
3261 Worklist.push_back(SI->getFalseValue());
3262 continue;
3263 }
3264
3265 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003266 // If this PHI changes the underlying object in every iteration of the
3267 // loop, don't look through it. Consider:
3268 // int **A;
3269 // for (i) {
3270 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3271 // Curr = A[i];
3272 // *Prev, *Curr;
3273 //
3274 // Prev is tracking Curr one iteration behind so they refer to different
3275 // underlying objects.
3276 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3277 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003278 for (Value *IncValue : PN->incoming_values())
3279 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003280 continue;
3281 }
3282
3283 Objects.push_back(P);
3284 } while (!Worklist.empty());
3285}
3286
Sanjay Patelaee84212014-11-04 16:27:42 +00003287/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003288bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003289 for (const User *U : V->users()) {
3290 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003291 if (!II) return false;
3292
3293 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3294 II->getIntrinsicID() != Intrinsic::lifetime_end)
3295 return false;
3296 }
3297 return true;
3298}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003299
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003300bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3301 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003302 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003303 const Operator *Inst = dyn_cast<Operator>(V);
3304 if (!Inst)
3305 return false;
3306
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003307 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3308 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3309 if (C->canTrap())
3310 return false;
3311
3312 switch (Inst->getOpcode()) {
3313 default:
3314 return true;
3315 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003316 case Instruction::URem: {
3317 // x / y is undefined if y == 0.
3318 const APInt *V;
3319 if (match(Inst->getOperand(1), m_APInt(V)))
3320 return *V != 0;
3321 return false;
3322 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003323 case Instruction::SDiv:
3324 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003325 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003326 const APInt *Numerator, *Denominator;
3327 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3328 return false;
3329 // We cannot hoist this division if the denominator is 0.
3330 if (*Denominator == 0)
3331 return false;
3332 // It's safe to hoist if the denominator is not 0 or -1.
3333 if (*Denominator != -1)
3334 return true;
3335 // At this point we know that the denominator is -1. It is safe to hoist as
3336 // long we know that the numerator is not INT_MIN.
3337 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3338 return !Numerator->isMinSignedValue();
3339 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003340 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003341 }
3342 case Instruction::Load: {
3343 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003344 if (!LI->isUnordered() ||
3345 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003346 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003347 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003348 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003349 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003350 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003351 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3352 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003353 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003354 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003355 auto *CI = cast<const CallInst>(Inst);
3356 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003357
Matt Arsenault6a288c12017-05-03 02:26:10 +00003358 // The called function could have undefined behavior or side-effects, even
3359 // if marked readnone nounwind.
3360 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003361 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003362 case Instruction::VAArg:
3363 case Instruction::Alloca:
3364 case Instruction::Invoke:
3365 case Instruction::PHI:
3366 case Instruction::Store:
3367 case Instruction::Ret:
3368 case Instruction::Br:
3369 case Instruction::IndirectBr:
3370 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003371 case Instruction::Unreachable:
3372 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003373 case Instruction::AtomicRMW:
3374 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003375 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003376 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003377 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003378 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003379 case Instruction::CatchRet:
3380 case Instruction::CleanupPad:
3381 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003382 return false; // Misc instructions which have effects
3383 }
3384}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003385
Quentin Colombet6443cce2015-08-06 18:44:34 +00003386bool llvm::mayBeMemoryDependent(const Instruction &I) {
3387 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3388}
3389
Sanjay Patelaee84212014-11-04 16:27:42 +00003390/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003391bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003392 assert(V->getType()->isPointerTy() && "V must be pointer type");
3393
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003394 // Alloca never returns null, malloc might.
3395 if (isa<AllocaInst>(V)) return true;
3396
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003397 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003398 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003399 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003400
Peter Collingbourne235c2752016-12-08 19:01:00 +00003401 // A global variable in address space 0 is non null unless extern weak
3402 // or an absolute symbol reference. Other address spaces may have null as a
3403 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003404 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003405 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003406 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003407
Sanjoy Das5056e192016-05-07 02:08:22 +00003408 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003409 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003410 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003411
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003412 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003413 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003414 return true;
3415
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003416 return false;
3417}
David Majnemer491331a2015-01-02 07:29:43 +00003418
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003419static bool isKnownNonNullFromDominatingCondition(const Value *V,
3420 const Instruction *CtxI,
3421 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003422 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003423 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003424 assert(CtxI && "Context instruction required for analysis");
3425 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003426
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003427 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003428 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003429 // Avoid massive lists
3430 if (NumUsesExplored >= DomConditionsMaxUses)
3431 break;
3432 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003433
3434 // If the value is used as an argument to a call or invoke, then argument
3435 // attributes may provide an answer about null-ness.
3436 if (auto CS = ImmutableCallSite(U))
3437 if (auto *CalledFunc = CS.getCalledFunction())
3438 for (const Argument &Arg : CalledFunc->args())
3439 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3440 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3441 return true;
3442
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003443 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003444 CmpInst::Predicate Pred;
3445 if (!match(const_cast<User *>(U),
3446 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3447 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003448 continue;
3449
Sanjoy Das987aaa12016-05-07 02:08:24 +00003450 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003451 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3452 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003453
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003454 BasicBlock *NonNullSuccessor =
3455 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3456 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3457 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3458 return true;
3459 } else if (Pred == ICmpInst::ICMP_NE &&
3460 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3461 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003462 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003463 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003464 }
3465 }
3466
3467 return false;
3468}
3469
3470bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003471 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003472 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3473 return false;
3474
Sean Silva45835e72016-07-02 23:47:27 +00003475 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003476 return true;
3477
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003478 if (!CtxI || !DT)
3479 return false;
3480
3481 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003482}
3483
Pete Cooper35b00d52016-08-13 01:05:32 +00003484OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3485 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003486 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003487 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003488 const Instruction *CxtI,
3489 const DominatorTree *DT) {
3490 // Multiplying n * m significant bits yields a result of n + m significant
3491 // bits. If the total number of significant bits does not exceed the
3492 // result bit width (minus 1), there is no overflow.
3493 // This means if we have enough leading zero bits in the operands
3494 // we can guarantee that the result does not overflow.
3495 // Ref: "Hacker's Delight" by Henry Warren
3496 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003497 KnownBits LHSKnown(BitWidth);
3498 KnownBits RHSKnown(BitWidth);
3499 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3500 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003501 // Note that underestimating the number of zero bits gives a more
3502 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003503 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3504 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003505 // First handle the easy case: if we have enough zero bits there's
3506 // definitely no overflow.
3507 if (ZeroBits >= BitWidth)
3508 return OverflowResult::NeverOverflows;
3509
3510 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003511 APInt LHSMax = ~LHSKnown.Zero;
3512 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003513
3514 // We know the multiply operation doesn't overflow if the maximum values for
3515 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003516 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003517 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003518 if (!MaxOverflow)
3519 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003520
David Majnemerc8a576b2015-01-02 07:29:47 +00003521 // We know it always overflows if multiplying the smallest possible values for
3522 // the operands also results in overflow.
3523 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003524 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003525 if (MinOverflow)
3526 return OverflowResult::AlwaysOverflows;
3527
3528 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003529}
David Majnemer5310c1e2015-01-07 00:39:50 +00003530
Pete Cooper35b00d52016-08-13 01:05:32 +00003531OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3532 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003533 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003534 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003535 const Instruction *CxtI,
3536 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003537 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3538 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3539 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003540
Craig Topper6e11a052017-05-08 16:22:48 +00003541 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003542 // The sign bit is set in both cases: this MUST overflow.
3543 // Create a simple add instruction, and insert it into the struct.
3544 return OverflowResult::AlwaysOverflows;
3545 }
3546
Craig Topper6e11a052017-05-08 16:22:48 +00003547 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003548 // The sign bit is clear in both cases: this CANNOT overflow.
3549 // Create a simple add instruction, and insert it into the struct.
3550 return OverflowResult::NeverOverflows;
3551 }
3552 }
3553
3554 return OverflowResult::MayOverflow;
3555}
James Molloy71b91c22015-05-11 14:42:20 +00003556
Craig Topperbb973722017-05-15 02:44:08 +00003557/// \brief Return true if we can prove that adding the two values of the
3558/// knownbits will not overflow.
3559/// Otherwise return false.
3560static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3561 const KnownBits &RHSKnown) {
3562 // Addition of two 2's complement numbers having opposite signs will never
3563 // overflow.
3564 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3565 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3566 return true;
3567
3568 // If either of the values is known to be non-negative, adding them can only
3569 // overflow if the second is also non-negative, so we can assume that.
3570 // Two non-negative numbers will only overflow if there is a carry to the
3571 // sign bit, so we can check if even when the values are as big as possible
3572 // there is no overflow to the sign bit.
3573 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3574 APInt MaxLHS = ~LHSKnown.Zero;
3575 MaxLHS.clearSignBit();
3576 APInt MaxRHS = ~RHSKnown.Zero;
3577 MaxRHS.clearSignBit();
3578 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3579 return Result.isSignBitClear();
3580 }
3581
3582 // If either of the values is known to be negative, adding them can only
3583 // overflow if the second is also negative, so we can assume that.
3584 // Two negative number will only overflow if there is no carry to the sign
3585 // bit, so we can check if even when the values are as small as possible
3586 // there is overflow to the sign bit.
3587 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3588 APInt MinLHS = LHSKnown.One;
3589 MinLHS.clearSignBit();
3590 APInt MinRHS = RHSKnown.One;
3591 MinRHS.clearSignBit();
3592 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3593 return Result.isSignBitSet();
3594 }
3595
3596 // If we reached here it means that we know nothing about the sign bits.
3597 // In this case we can't know if there will be an overflow, since by
3598 // changing the sign bits any two values can be made to overflow.
3599 return false;
3600}
3601
Pete Cooper35b00d52016-08-13 01:05:32 +00003602static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3603 const Value *RHS,
3604 const AddOperator *Add,
3605 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003606 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003607 const Instruction *CxtI,
3608 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003609 if (Add && Add->hasNoSignedWrap()) {
3610 return OverflowResult::NeverOverflows;
3611 }
3612
Craig Topperbb973722017-05-15 02:44:08 +00003613 // If LHS and RHS each have at least two sign bits, the addition will look
3614 // like
3615 //
3616 // XX..... +
3617 // YY.....
3618 //
3619 // If the carry into the most significant position is 0, X and Y can't both
3620 // be 1 and therefore the carry out of the addition is also 0.
3621 //
3622 // If the carry into the most significant position is 1, X and Y can't both
3623 // be 0 and therefore the carry out of the addition is also 1.
3624 //
3625 // Since the carry into the most significant position is always equal to
3626 // the carry out of the addition, there is no signed overflow.
3627 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3628 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3629 return OverflowResult::NeverOverflows;
3630
Craig Topper6e11a052017-05-08 16:22:48 +00003631 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3632 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003633
Craig Topperbb973722017-05-15 02:44:08 +00003634 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003635 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003636
3637 // The remaining code needs Add to be available. Early returns if not so.
3638 if (!Add)
3639 return OverflowResult::MayOverflow;
3640
3641 // If the sign of Add is the same as at least one of the operands, this add
3642 // CANNOT overflow. This is particularly useful when the sum is
3643 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3644 // operands.
3645 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003646 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003647 bool LHSOrRHSKnownNegative =
3648 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003649 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003650 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3651 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3652 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003653 return OverflowResult::NeverOverflows;
3654 }
3655 }
3656
3657 return OverflowResult::MayOverflow;
3658}
3659
Pete Cooper35b00d52016-08-13 01:05:32 +00003660bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3661 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003662#ifndef NDEBUG
3663 auto IID = II->getIntrinsicID();
3664 assert((IID == Intrinsic::sadd_with_overflow ||
3665 IID == Intrinsic::uadd_with_overflow ||
3666 IID == Intrinsic::ssub_with_overflow ||
3667 IID == Intrinsic::usub_with_overflow ||
3668 IID == Intrinsic::smul_with_overflow ||
3669 IID == Intrinsic::umul_with_overflow) &&
3670 "Not an overflow intrinsic!");
3671#endif
3672
Pete Cooper35b00d52016-08-13 01:05:32 +00003673 SmallVector<const BranchInst *, 2> GuardingBranches;
3674 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003675
Pete Cooper35b00d52016-08-13 01:05:32 +00003676 for (const User *U : II->users()) {
3677 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003678 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3679
3680 if (EVI->getIndices()[0] == 0)
3681 Results.push_back(EVI);
3682 else {
3683 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3684
Pete Cooper35b00d52016-08-13 01:05:32 +00003685 for (const auto *U : EVI->users())
3686 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003687 assert(B->isConditional() && "How else is it using an i1?");
3688 GuardingBranches.push_back(B);
3689 }
3690 }
3691 } else {
3692 // We are using the aggregate directly in a way we don't want to analyze
3693 // here (storing it to a global, say).
3694 return false;
3695 }
3696 }
3697
Pete Cooper35b00d52016-08-13 01:05:32 +00003698 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003699 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3700 if (!NoWrapEdge.isSingleEdge())
3701 return false;
3702
3703 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003704 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003705 // If the extractvalue itself is not executed on overflow, the we don't
3706 // need to check each use separately, since domination is transitive.
3707 if (DT.dominates(NoWrapEdge, Result->getParent()))
3708 continue;
3709
3710 for (auto &RU : Result->uses())
3711 if (!DT.dominates(NoWrapEdge, RU))
3712 return false;
3713 }
3714
3715 return true;
3716 };
3717
3718 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3719}
3720
3721
Pete Cooper35b00d52016-08-13 01:05:32 +00003722OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003723 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003724 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003725 const Instruction *CxtI,
3726 const DominatorTree *DT) {
3727 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003728 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003729}
3730
Pete Cooper35b00d52016-08-13 01:05:32 +00003731OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3732 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003733 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003734 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003735 const Instruction *CxtI,
3736 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003737 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003738}
3739
Jingyue Wu42f1d672015-07-28 18:22:40 +00003740bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003741 // A memory operation returns normally if it isn't volatile. A volatile
3742 // operation is allowed to trap.
3743 //
3744 // An atomic operation isn't guaranteed to return in a reasonable amount of
3745 // time because it's possible for another thread to interfere with it for an
3746 // arbitrary length of time, but programs aren't allowed to rely on that.
3747 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3748 return !LI->isVolatile();
3749 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3750 return !SI->isVolatile();
3751 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3752 return !CXI->isVolatile();
3753 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3754 return !RMWI->isVolatile();
3755 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3756 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003757
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003758 // If there is no successor, then execution can't transfer to it.
3759 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3760 return !CRI->unwindsToCaller();
3761 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3762 return !CatchSwitch->unwindsToCaller();
3763 if (isa<ResumeInst>(I))
3764 return false;
3765 if (isa<ReturnInst>(I))
3766 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003767 if (isa<UnreachableInst>(I))
3768 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003769
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003770 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003771 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003772 // Call sites that throw have implicit non-local control flow.
3773 if (!CS.doesNotThrow())
3774 return false;
3775
3776 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3777 // etc. and thus not return. However, LLVM already assumes that
3778 //
3779 // - Thread exiting actions are modeled as writes to memory invisible to
3780 // the program.
3781 //
3782 // - Loops that don't have side effects (side effects are volatile/atomic
3783 // stores and IO) always terminate (see http://llvm.org/PR965).
3784 // Furthermore IO itself is also modeled as writes to memory invisible to
3785 // the program.
3786 //
3787 // We rely on those assumptions here, and use the memory effects of the call
3788 // target as a proxy for checking that it always returns.
3789
3790 // FIXME: This isn't aggressive enough; a call which only writes to a global
3791 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003792 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3793 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003794 }
3795
3796 // Other instructions return normally.
3797 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003798}
3799
3800bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3801 const Loop *L) {
3802 // The loop header is guaranteed to be executed for every iteration.
3803 //
3804 // FIXME: Relax this constraint to cover all basic blocks that are
3805 // guaranteed to be executed at every iteration.
3806 if (I->getParent() != L->getHeader()) return false;
3807
3808 for (const Instruction &LI : *L->getHeader()) {
3809 if (&LI == I) return true;
3810 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3811 }
3812 llvm_unreachable("Instruction not contained in its own parent basic block.");
3813}
3814
3815bool llvm::propagatesFullPoison(const Instruction *I) {
3816 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003817 case Instruction::Add:
3818 case Instruction::Sub:
3819 case Instruction::Xor:
3820 case Instruction::Trunc:
3821 case Instruction::BitCast:
3822 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003823 case Instruction::Mul:
3824 case Instruction::Shl:
3825 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003826 // These operations all propagate poison unconditionally. Note that poison
3827 // is not any particular value, so xor or subtraction of poison with
3828 // itself still yields poison, not zero.
3829 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003830
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003831 case Instruction::AShr:
3832 case Instruction::SExt:
3833 // For these operations, one bit of the input is replicated across
3834 // multiple output bits. A replicated poison bit is still poison.
3835 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003836
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003837 case Instruction::ICmp:
3838 // Comparing poison with any value yields poison. This is why, for
3839 // instance, x s< (x +nsw 1) can be folded to true.
3840 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003841
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003842 default:
3843 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003844 }
3845}
3846
3847const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3848 switch (I->getOpcode()) {
3849 case Instruction::Store:
3850 return cast<StoreInst>(I)->getPointerOperand();
3851
3852 case Instruction::Load:
3853 return cast<LoadInst>(I)->getPointerOperand();
3854
3855 case Instruction::AtomicCmpXchg:
3856 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3857
3858 case Instruction::AtomicRMW:
3859 return cast<AtomicRMWInst>(I)->getPointerOperand();
3860
3861 case Instruction::UDiv:
3862 case Instruction::SDiv:
3863 case Instruction::URem:
3864 case Instruction::SRem:
3865 return I->getOperand(1);
3866
3867 default:
3868 return nullptr;
3869 }
3870}
3871
Sanjoy Das08989c72017-04-30 19:41:19 +00003872bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003873 // We currently only look for uses of poison values within the same basic
3874 // block, as that makes it easier to guarantee that the uses will be
3875 // executed given that PoisonI is executed.
3876 //
3877 // FIXME: Expand this to consider uses beyond the same basic block. To do
3878 // this, look out for the distinction between post-dominance and strong
3879 // post-dominance.
3880 const BasicBlock *BB = PoisonI->getParent();
3881
3882 // Set of instructions that we have proved will yield poison if PoisonI
3883 // does.
3884 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003885 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003886 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003887 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003888
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003889 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003890
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003891 unsigned Iter = 0;
3892 while (Iter++ < MaxDepth) {
3893 for (auto &I : make_range(Begin, End)) {
3894 if (&I != PoisonI) {
3895 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3896 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3897 return true;
3898 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3899 return false;
3900 }
3901
3902 // Mark poison that propagates from I through uses of I.
3903 if (YieldsPoison.count(&I)) {
3904 for (const User *User : I.users()) {
3905 const Instruction *UserI = cast<Instruction>(User);
3906 if (propagatesFullPoison(UserI))
3907 YieldsPoison.insert(User);
3908 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003909 }
3910 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003911
3912 if (auto *NextBB = BB->getSingleSuccessor()) {
3913 if (Visited.insert(NextBB).second) {
3914 BB = NextBB;
3915 Begin = BB->getFirstNonPHI()->getIterator();
3916 End = BB->end();
3917 continue;
3918 }
3919 }
3920
3921 break;
3922 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003923 return false;
3924}
3925
Pete Cooper35b00d52016-08-13 01:05:32 +00003926static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003927 if (FMF.noNaNs())
3928 return true;
3929
3930 if (auto *C = dyn_cast<ConstantFP>(V))
3931 return !C->isNaN();
3932 return false;
3933}
3934
Pete Cooper35b00d52016-08-13 01:05:32 +00003935static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003936 if (auto *C = dyn_cast<ConstantFP>(V))
3937 return !C->isZero();
3938 return false;
3939}
3940
Sanjay Patel819f0962016-11-13 19:30:19 +00003941/// Match non-obvious integer minimum and maximum sequences.
3942static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3943 Value *CmpLHS, Value *CmpRHS,
3944 Value *TrueVal, Value *FalseVal,
3945 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003946 // Assume success. If there's no match, callers should not use these anyway.
3947 LHS = TrueVal;
3948 RHS = FalseVal;
3949
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003950 // Recognize variations of:
3951 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3952 const APInt *C1;
3953 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3954 const APInt *C2;
3955
3956 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3957 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003958 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003959 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003960
3961 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3962 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003963 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003964 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003965
3966 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3967 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003968 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003969 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003970
3971 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3972 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003973 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003974 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003975 }
3976
Sanjay Patel819f0962016-11-13 19:30:19 +00003977 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3978 return {SPF_UNKNOWN, SPNB_NA, false};
3979
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003980 // Z = X -nsw Y
3981 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3982 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3983 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003984 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003985 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003986
3987 // Z = X -nsw Y
3988 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3989 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3990 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003991 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003992 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003993
Sanjay Patel819f0962016-11-13 19:30:19 +00003994 if (!match(CmpRHS, m_APInt(C1)))
3995 return {SPF_UNKNOWN, SPNB_NA, false};
3996
3997 // An unsigned min/max can be written with a signed compare.
3998 const APInt *C2;
3999 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4000 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4001 // Is the sign bit set?
4002 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4003 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004004 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004005 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004006
4007 // Is the sign bit clear?
4008 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4009 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4010 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004011 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004012 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004013 }
4014
4015 // Look through 'not' ops to find disguised signed min/max.
4016 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4017 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4018 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004019 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004020 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004021
4022 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4023 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4024 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004025 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004026 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004027
4028 return {SPF_UNKNOWN, SPNB_NA, false};
4029}
4030
James Molloy134bec22015-08-11 09:12:57 +00004031static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4032 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004033 Value *CmpLHS, Value *CmpRHS,
4034 Value *TrueVal, Value *FalseVal,
4035 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004036 LHS = CmpLHS;
4037 RHS = CmpRHS;
4038
James Molloy134bec22015-08-11 09:12:57 +00004039 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4040 // return inconsistent results between implementations.
4041 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4042 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4043 // Therefore we behave conservatively and only proceed if at least one of the
4044 // operands is known to not be zero, or if we don't care about signed zeroes.
4045 switch (Pred) {
4046 default: break;
4047 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4048 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4049 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4050 !isKnownNonZero(CmpRHS))
4051 return {SPF_UNKNOWN, SPNB_NA, false};
4052 }
4053
4054 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4055 bool Ordered = false;
4056
4057 // When given one NaN and one non-NaN input:
4058 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4059 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4060 // ordered comparison fails), which could be NaN or non-NaN.
4061 // so here we discover exactly what NaN behavior is required/accepted.
4062 if (CmpInst::isFPPredicate(Pred)) {
4063 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4064 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4065
4066 if (LHSSafe && RHSSafe) {
4067 // Both operands are known non-NaN.
4068 NaNBehavior = SPNB_RETURNS_ANY;
4069 } else if (CmpInst::isOrdered(Pred)) {
4070 // An ordered comparison will return false when given a NaN, so it
4071 // returns the RHS.
4072 Ordered = true;
4073 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004074 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004075 NaNBehavior = SPNB_RETURNS_NAN;
4076 else if (RHSSafe)
4077 NaNBehavior = SPNB_RETURNS_OTHER;
4078 else
4079 // Completely unsafe.
4080 return {SPF_UNKNOWN, SPNB_NA, false};
4081 } else {
4082 Ordered = false;
4083 // An unordered comparison will return true when given a NaN, so it
4084 // returns the LHS.
4085 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004086 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004087 NaNBehavior = SPNB_RETURNS_OTHER;
4088 else if (RHSSafe)
4089 NaNBehavior = SPNB_RETURNS_NAN;
4090 else
4091 // Completely unsafe.
4092 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004093 }
4094 }
4095
James Molloy71b91c22015-05-11 14:42:20 +00004096 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004097 std::swap(CmpLHS, CmpRHS);
4098 Pred = CmpInst::getSwappedPredicate(Pred);
4099 if (NaNBehavior == SPNB_RETURNS_NAN)
4100 NaNBehavior = SPNB_RETURNS_OTHER;
4101 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4102 NaNBehavior = SPNB_RETURNS_NAN;
4103 Ordered = !Ordered;
4104 }
4105
4106 // ([if]cmp X, Y) ? X : Y
4107 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004108 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004109 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004110 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004111 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004112 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004113 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004114 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004115 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004116 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004117 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4118 case FCmpInst::FCMP_UGT:
4119 case FCmpInst::FCMP_UGE:
4120 case FCmpInst::FCMP_OGT:
4121 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4122 case FCmpInst::FCMP_ULT:
4123 case FCmpInst::FCMP_ULE:
4124 case FCmpInst::FCMP_OLT:
4125 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004126 }
4127 }
4128
Sanjay Patele372aec2016-10-27 15:26:10 +00004129 const APInt *C1;
4130 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004131 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4132 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4133
4134 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4135 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004136 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004137 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004138 }
4139
4140 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4141 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004142 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004143 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004144 }
4145 }
James Molloy71b91c22015-05-11 14:42:20 +00004146 }
4147
Sanjay Patel819f0962016-11-13 19:30:19 +00004148 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004149}
James Molloy270ef8c2015-05-15 16:04:50 +00004150
James Molloy569cea62015-09-02 17:25:25 +00004151static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4152 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004153 auto *Cast1 = dyn_cast<CastInst>(V1);
4154 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004155 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004156
Sanjay Patel14a4b812017-01-29 16:34:57 +00004157 *CastOp = Cast1->getOpcode();
4158 Type *SrcTy = Cast1->getSrcTy();
4159 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4160 // If V1 and V2 are both the same cast from the same type, look through V1.
4161 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4162 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004163 return nullptr;
4164 }
4165
Sanjay Patel14a4b812017-01-29 16:34:57 +00004166 auto *C = dyn_cast<Constant>(V2);
4167 if (!C)
4168 return nullptr;
4169
David Majnemerd2a074b2016-04-29 18:40:34 +00004170 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004171 switch (*CastOp) {
4172 case Instruction::ZExt:
4173 if (CmpI->isUnsigned())
4174 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4175 break;
4176 case Instruction::SExt:
4177 if (CmpI->isSigned())
4178 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4179 break;
4180 case Instruction::Trunc:
4181 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4182 break;
4183 case Instruction::FPTrunc:
4184 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4185 break;
4186 case Instruction::FPExt:
4187 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4188 break;
4189 case Instruction::FPToUI:
4190 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4191 break;
4192 case Instruction::FPToSI:
4193 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4194 break;
4195 case Instruction::UIToFP:
4196 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4197 break;
4198 case Instruction::SIToFP:
4199 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4200 break;
4201 default:
4202 break;
4203 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004204
4205 if (!CastedTo)
4206 return nullptr;
4207
David Majnemerd2a074b2016-04-29 18:40:34 +00004208 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004209 Constant *CastedBack =
4210 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004211 if (CastedBack != C)
4212 return nullptr;
4213
4214 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004215}
4216
Sanjay Patele8dc0902016-05-23 17:57:54 +00004217SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004218 Instruction::CastOps *CastOp) {
4219 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004220 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004221
James Molloy134bec22015-08-11 09:12:57 +00004222 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4223 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004224
James Molloy134bec22015-08-11 09:12:57 +00004225 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004226 Value *CmpLHS = CmpI->getOperand(0);
4227 Value *CmpRHS = CmpI->getOperand(1);
4228 Value *TrueVal = SI->getTrueValue();
4229 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004230 FastMathFlags FMF;
4231 if (isa<FPMathOperator>(CmpI))
4232 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004233
4234 // Bail out early.
4235 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004236 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004237
4238 // Deal with type mismatches.
4239 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004240 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004241 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004242 cast<CastInst>(TrueVal)->getOperand(0), C,
4243 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004244 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004245 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004246 C, cast<CastInst>(FalseVal)->getOperand(0),
4247 LHS, RHS);
4248 }
James Molloy134bec22015-08-11 09:12:57 +00004249 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004250 LHS, RHS);
4251}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004252
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004253/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004254static bool isTruePredicate(CmpInst::Predicate Pred,
4255 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004256 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004257 AssumptionCache *AC, const Instruction *CxtI,
4258 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004259 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004260 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4261 return true;
4262
4263 switch (Pred) {
4264 default:
4265 return false;
4266
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004267 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004268 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004269
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004270 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004271 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004272 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004273 return false;
4274 }
4275
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004276 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004277 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004278
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004279 // LHS u<= LHS +_{nuw} C for any C
4280 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004281 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004282
4283 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004284 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4285 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004286 const APInt *&CA, const APInt *&CB) {
4287 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4288 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4289 return true;
4290
4291 // If X & C == 0 then (X | C) == X +_{nuw} C
4292 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4293 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004294 KnownBits Known(CA->getBitWidth());
4295 computeKnownBits(X, Known, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004296
Craig Topperb45eabc2017-04-26 16:39:58 +00004297 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004298 return true;
4299 }
4300
4301 return false;
4302 };
4303
Pete Cooper35b00d52016-08-13 01:05:32 +00004304 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004305 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004306 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4307 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004308
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004309 return false;
4310 }
4311 }
4312}
4313
4314/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004315/// ALHS ARHS" is true. Otherwise, return None.
4316static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004317isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4318 const Value *ARHS, const Value *BLHS,
4319 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004320 unsigned Depth, AssumptionCache *AC,
4321 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004322 switch (Pred) {
4323 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004324 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004325
4326 case CmpInst::ICMP_SLT:
4327 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004328 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004329 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004330 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004331 return true;
4332 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004333
4334 case CmpInst::ICMP_ULT:
4335 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004336 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4337 DT) &&
4338 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004339 return true;
4340 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004341 }
4342}
4343
Chad Rosier226a7342016-05-05 17:41:19 +00004344/// Return true if the operands of the two compares match. IsSwappedOps is true
4345/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004346static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4347 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004348 bool &IsSwappedOps) {
4349
4350 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4351 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4352 return IsMatchingOps || IsSwappedOps;
4353}
4354
Chad Rosier41dd31f2016-04-20 19:15:26 +00004355/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4356/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4357/// BRHS" is false. Otherwise, return None if we can't infer anything.
4358static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004359 const Value *ALHS,
4360 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004361 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004362 const Value *BLHS,
4363 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004364 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004365 // Canonicalize the operands so they're matching.
4366 if (IsSwappedOps) {
4367 std::swap(BLHS, BRHS);
4368 BPred = ICmpInst::getSwappedPredicate(BPred);
4369 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004370 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004371 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004372 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004373 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004374
Chad Rosier41dd31f2016-04-20 19:15:26 +00004375 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004376}
4377
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004378/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4379/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4380/// C2" is false. Otherwise, return None if we can't infer anything.
4381static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004382isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4383 const ConstantInt *C1,
4384 CmpInst::Predicate BPred,
4385 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004386 assert(ALHS == BLHS && "LHS operands must match.");
4387 ConstantRange DomCR =
4388 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4389 ConstantRange CR =
4390 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4391 ConstantRange Intersection = DomCR.intersectWith(CR);
4392 ConstantRange Difference = DomCR.difference(CR);
4393 if (Intersection.isEmptySet())
4394 return false;
4395 if (Difference.isEmptySet())
4396 return true;
4397 return None;
4398}
4399
Pete Cooper35b00d52016-08-13 01:05:32 +00004400Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004401 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004402 unsigned Depth, AssumptionCache *AC,
4403 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004404 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004405 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4406 if (LHS->getType() != RHS->getType())
4407 return None;
4408
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004409 Type *OpTy = LHS->getType();
4410 assert(OpTy->getScalarType()->isIntegerTy(1));
4411
4412 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004413 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004414 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004415
4416 if (OpTy->isVectorTy())
4417 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004418 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004419 assert(OpTy->isIntegerTy(1) && "implied by above");
4420
4421 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004422 Value *ALHS, *ARHS;
4423 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004424
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004425 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4426 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004427 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004428
Chad Rosiere2cbd132016-04-25 17:23:36 +00004429 if (InvertAPred)
4430 APred = CmpInst::getInversePredicate(APred);
4431
Chad Rosier226a7342016-05-05 17:41:19 +00004432 // Can we infer anything when the two compares have matching operands?
4433 bool IsSwappedOps;
4434 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4435 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4436 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004437 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004438 // No amount of additional analysis will infer the second condition, so
4439 // early exit.
4440 return None;
4441 }
4442
4443 // Can we infer anything when the LHS operands match and the RHS operands are
4444 // constants (not necessarily matching)?
4445 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4446 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4447 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4448 cast<ConstantInt>(BRHS)))
4449 return Implication;
4450 // No amount of additional analysis will infer the second condition, so
4451 // early exit.
4452 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004453 }
4454
Chad Rosier41dd31f2016-04-20 19:15:26 +00004455 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004456 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4457 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004458
Chad Rosier41dd31f2016-04-20 19:15:26 +00004459 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004460}