blob: 8958505e9d58b8e4767bbd74f94373a29588708b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
565
Michael Gottesmane743a302013-02-04 03:22:00 +0000566By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000567variables defined within the module are not modified from their
568initial values before the start of the global initializer. This is
569true even for variables potentially accessible from outside the
570module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000571``@llvm.used`` or dllexported variables. This assumption may be suppressed
572by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000573
Sean Silvab084af42012-12-07 10:36:55 +0000574An explicit alignment may be specified for a global, which must be a
575power of 2. If not present, or if the alignment is set to zero, the
576alignment of the global is set by the target to whatever it feels
577convenient. If an explicit alignment is specified, the global is forced
578to have exactly that alignment. Targets and optimizers are not allowed
579to over-align the global if the global has an assigned section. In this
580case, the extra alignment could be observable: for example, code could
581assume that the globals are densely packed in their section and try to
582iterate over them as an array, alignment padding would break this
583iteration.
584
Nico Rieck7157bb72014-01-14 15:22:47 +0000585Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
586
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000587Variables and aliasaes can have a
588:ref:`Thread Local Storage Model <tls_model>`.
589
Nico Rieck7157bb72014-01-14 15:22:47 +0000590Syntax::
591
592 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000593 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000594 <global | constant> <Type> [<InitializerConstant>]
595 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000596
Sean Silvab084af42012-12-07 10:36:55 +0000597For example, the following defines a global in a numbered address space
598with an initializer, section, and alignment:
599
600.. code-block:: llvm
601
602 @G = addrspace(5) constant float 1.0, section "foo", align 4
603
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000604The following example just declares a global variable
605
606.. code-block:: llvm
607
608 @G = external global i32
609
Sean Silvab084af42012-12-07 10:36:55 +0000610The following example defines a thread-local global with the
611``initialexec`` TLS model:
612
613.. code-block:: llvm
614
615 @G = thread_local(initialexec) global i32 0, align 4
616
617.. _functionstructure:
618
619Functions
620---------
621
622LLVM function definitions consist of the "``define``" keyword, an
623optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000624style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
625an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000626an optional ``unnamed_addr`` attribute, a return type, an optional
627:ref:`parameter attribute <paramattrs>` for the return type, a function
628name, a (possibly empty) argument list (each with optional :ref:`parameter
629attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
630an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000631collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
632curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000633
634LLVM function declarations consist of the "``declare``" keyword, an
635optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000636style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
637an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000638an optional ``unnamed_addr`` attribute, a return type, an optional
639:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000640name, a possibly empty list of arguments, an optional alignment, an optional
641:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000642
Bill Wendling6822ecb2013-10-27 05:09:12 +0000643A function definition contains a list of basic blocks, forming the CFG (Control
644Flow Graph) for the function. Each basic block may optionally start with a label
645(giving the basic block a symbol table entry), contains a list of instructions,
646and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
647function return). If an explicit label is not provided, a block is assigned an
648implicit numbered label, using the next value from the same counter as used for
649unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
650entry block does not have an explicit label, it will be assigned label "%0",
651then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000652
653The first basic block in a function is special in two ways: it is
654immediately executed on entrance to the function, and it is not allowed
655to have predecessor basic blocks (i.e. there can not be any branches to
656the entry block of a function). Because the block can have no
657predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
658
659LLVM allows an explicit section to be specified for functions. If the
660target supports it, it will emit functions to the section specified.
661
662An explicit alignment may be specified for a function. If not present,
663or if the alignment is set to zero, the alignment of the function is set
664by the target to whatever it feels convenient. If an explicit alignment
665is specified, the function is forced to have at least that much
666alignment. All alignments must be a power of 2.
667
668If the ``unnamed_addr`` attribute is given, the address is know to not
669be significant and two identical functions can be merged.
670
671Syntax::
672
Nico Rieck7157bb72014-01-14 15:22:47 +0000673 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000674 [cconv] [ret attrs]
675 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000676 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000678
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000679.. _langref_aliases:
680
Sean Silvab084af42012-12-07 10:36:55 +0000681Aliases
682-------
683
Rafael Espindola64c1e182014-06-03 02:41:57 +0000684Aliases, unlike function or variables, don't create any new data. They
685are just a new symbol and metadata for an existing position.
686
687Aliases have a name and an aliasee that is either a global value or a
688constant expression.
689
Nico Rieck7157bb72014-01-14 15:22:47 +0000690Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000691:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
692<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000693
694Syntax::
695
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000696 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000697
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000698The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000699``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000700might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000701
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000702Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000703the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
704to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Since aliases are only a second name, some restrictions apply, of which
707some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000708
Rafael Espindola64c1e182014-06-03 02:41:57 +0000709* The expression defining the aliasee must be computable at assembly
710 time. Since it is just a name, no relocations can be used.
711
712* No alias in the expression can be weak as the possibility of the
713 intermediate alias being overridden cannot be represented in an
714 object file.
715
716* No global value in the expression can be a declaration, since that
717 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000718
Sean Silvab084af42012-12-07 10:36:55 +0000719.. _namedmetadatastructure:
720
721Named Metadata
722--------------
723
724Named metadata is a collection of metadata. :ref:`Metadata
725nodes <metadata>` (but not metadata strings) are the only valid
726operands for a named metadata.
727
728Syntax::
729
730 ; Some unnamed metadata nodes, which are referenced by the named metadata.
731 !0 = metadata !{metadata !"zero"}
732 !1 = metadata !{metadata !"one"}
733 !2 = metadata !{metadata !"two"}
734 ; A named metadata.
735 !name = !{!0, !1, !2}
736
737.. _paramattrs:
738
739Parameter Attributes
740--------------------
741
742The return type and each parameter of a function type may have a set of
743*parameter attributes* associated with them. Parameter attributes are
744used to communicate additional information about the result or
745parameters of a function. Parameter attributes are considered to be part
746of the function, not of the function type, so functions with different
747parameter attributes can have the same function type.
748
749Parameter attributes are simple keywords that follow the type specified.
750If multiple parameter attributes are needed, they are space separated.
751For example:
752
753.. code-block:: llvm
754
755 declare i32 @printf(i8* noalias nocapture, ...)
756 declare i32 @atoi(i8 zeroext)
757 declare signext i8 @returns_signed_char()
758
759Note that any attributes for the function result (``nounwind``,
760``readonly``) come immediately after the argument list.
761
762Currently, only the following parameter attributes are defined:
763
764``zeroext``
765 This indicates to the code generator that the parameter or return
766 value should be zero-extended to the extent required by the target's
767 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
768 the caller (for a parameter) or the callee (for a return value).
769``signext``
770 This indicates to the code generator that the parameter or return
771 value should be sign-extended to the extent required by the target's
772 ABI (which is usually 32-bits) by the caller (for a parameter) or
773 the callee (for a return value).
774``inreg``
775 This indicates that this parameter or return value should be treated
776 in a special target-dependent fashion during while emitting code for
777 a function call or return (usually, by putting it in a register as
778 opposed to memory, though some targets use it to distinguish between
779 two different kinds of registers). Use of this attribute is
780 target-specific.
781``byval``
782 This indicates that the pointer parameter should really be passed by
783 value to the function. The attribute implies that a hidden copy of
784 the pointee is made between the caller and the callee, so the callee
785 is unable to modify the value in the caller. This attribute is only
786 valid on LLVM pointer arguments. It is generally used to pass
787 structs and arrays by value, but is also valid on pointers to
788 scalars. The copy is considered to belong to the caller not the
789 callee (for example, ``readonly`` functions should not write to
790 ``byval`` parameters). This is not a valid attribute for return
791 values.
792
793 The byval attribute also supports specifying an alignment with the
794 align attribute. It indicates the alignment of the stack slot to
795 form and the known alignment of the pointer specified to the call
796 site. If the alignment is not specified, then the code generator
797 makes a target-specific assumption.
798
Reid Klecknera534a382013-12-19 02:14:12 +0000799.. _attr_inalloca:
800
801``inalloca``
802
Reid Kleckner60d3a832014-01-16 22:59:24 +0000803 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000804 address of outgoing stack arguments. An ``inalloca`` argument must
805 be a pointer to stack memory produced by an ``alloca`` instruction.
806 The alloca, or argument allocation, must also be tagged with the
807 inalloca keyword. Only the past argument may have the ``inalloca``
808 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000809
Reid Kleckner436c42e2014-01-17 23:58:17 +0000810 An argument allocation may be used by a call at most once because
811 the call may deallocate it. The ``inalloca`` attribute cannot be
812 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000813 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
814 ``inalloca`` attribute also disables LLVM's implicit lowering of
815 large aggregate return values, which means that frontend authors
816 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000817
Reid Kleckner60d3a832014-01-16 22:59:24 +0000818 When the call site is reached, the argument allocation must have
819 been the most recent stack allocation that is still live, or the
820 results are undefined. It is possible to allocate additional stack
821 space after an argument allocation and before its call site, but it
822 must be cleared off with :ref:`llvm.stackrestore
823 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000824
825 See :doc:`InAlloca` for more information on how to use this
826 attribute.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828``sret``
829 This indicates that the pointer parameter specifies the address of a
830 structure that is the return value of the function in the source
831 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000832 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000833 not to trap and to be properly aligned. This may only be applied to
834 the first parameter. This is not a valid attribute for return
835 values.
Sean Silva1703e702014-04-08 21:06:22 +0000836
837.. _noalias:
838
Sean Silvab084af42012-12-07 10:36:55 +0000839``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000840 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000841 the argument or return value do not alias pointer values which are
842 not *based* on it, ignoring certain "irrelevant" dependencies. For a
843 call to the parent function, dependencies between memory references
844 from before or after the call and from those during the call are
845 "irrelevant" to the ``noalias`` keyword for the arguments and return
846 value used in that call. The caller shares the responsibility with
847 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000848 details, please see the discussion of the NoAlias response in :ref:`alias
849 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000850
851 Note that this definition of ``noalias`` is intentionally similar
852 to the definition of ``restrict`` in C99 for function arguments,
853 though it is slightly weaker.
854
855 For function return values, C99's ``restrict`` is not meaningful,
856 while LLVM's ``noalias`` is.
857``nocapture``
858 This indicates that the callee does not make any copies of the
859 pointer that outlive the callee itself. This is not a valid
860 attribute for return values.
861
862.. _nest:
863
864``nest``
865 This indicates that the pointer parameter can be excised using the
866 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000867 attribute for return values and can only be applied to one parameter.
868
869``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000870 This indicates that the function always returns the argument as its return
871 value. This is an optimization hint to the code generator when generating
872 the caller, allowing tail call optimization and omission of register saves
873 and restores in some cases; it is not checked or enforced when generating
874 the callee. The parameter and the function return type must be valid
875 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
876 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000877
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000878``nonnull``
879 This indicates that the parameter or return pointer is not null. This
880 attribute may only be applied to pointer typed parameters. This is not
881 checked or enforced by LLVM, the caller must ensure that the pointer
882 passed in is non-null, or the callee must ensure that the returned pointer
883 is non-null.
884
Sean Silvab084af42012-12-07 10:36:55 +0000885.. _gc:
886
887Garbage Collector Names
888-----------------------
889
890Each function may specify a garbage collector name, which is simply a
891string:
892
893.. code-block:: llvm
894
895 define void @f() gc "name" { ... }
896
897The compiler declares the supported values of *name*. Specifying a
898collector which will cause the compiler to alter its output in order to
899support the named garbage collection algorithm.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901.. _prefixdata:
902
903Prefix Data
904-----------
905
906Prefix data is data associated with a function which the code generator
907will emit immediately before the function body. The purpose of this feature
908is to allow frontends to associate language-specific runtime metadata with
909specific functions and make it available through the function pointer while
910still allowing the function pointer to be called. To access the data for a
911given function, a program may bitcast the function pointer to a pointer to
912the constant's type. This implies that the IR symbol points to the start
913of the prefix data.
914
915To maintain the semantics of ordinary function calls, the prefix data must
916have a particular format. Specifically, it must begin with a sequence of
917bytes which decode to a sequence of machine instructions, valid for the
918module's target, which transfer control to the point immediately succeeding
919the prefix data, without performing any other visible action. This allows
920the inliner and other passes to reason about the semantics of the function
921definition without needing to reason about the prefix data. Obviously this
922makes the format of the prefix data highly target dependent.
923
Peter Collingbourne213358a2013-09-23 20:14:21 +0000924Prefix data is laid out as if it were an initializer for a global variable
925of the prefix data's type. No padding is automatically placed between the
926prefix data and the function body. If padding is required, it must be part
927of the prefix data.
928
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000929A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
930which encodes the ``nop`` instruction:
931
932.. code-block:: llvm
933
934 define void @f() prefix i8 144 { ... }
935
936Generally prefix data can be formed by encoding a relative branch instruction
937which skips the metadata, as in this example of valid prefix data for the
938x86_64 architecture, where the first two bytes encode ``jmp .+10``:
939
940.. code-block:: llvm
941
942 %0 = type <{ i8, i8, i8* }>
943
944 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
945
946A function may have prefix data but no body. This has similar semantics
947to the ``available_externally`` linkage in that the data may be used by the
948optimizers but will not be emitted in the object file.
949
Bill Wendling63b88192013-02-06 06:52:58 +0000950.. _attrgrp:
951
952Attribute Groups
953----------------
954
955Attribute groups are groups of attributes that are referenced by objects within
956the IR. They are important for keeping ``.ll`` files readable, because a lot of
957functions will use the same set of attributes. In the degenerative case of a
958``.ll`` file that corresponds to a single ``.c`` file, the single attribute
959group will capture the important command line flags used to build that file.
960
961An attribute group is a module-level object. To use an attribute group, an
962object references the attribute group's ID (e.g. ``#37``). An object may refer
963to more than one attribute group. In that situation, the attributes from the
964different groups are merged.
965
966Here is an example of attribute groups for a function that should always be
967inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
968
969.. code-block:: llvm
970
971 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000972 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000973
974 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000975 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000976
977 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
978 define void @f() #0 #1 { ... }
979
Sean Silvab084af42012-12-07 10:36:55 +0000980.. _fnattrs:
981
982Function Attributes
983-------------------
984
985Function attributes are set to communicate additional information about
986a function. Function attributes are considered to be part of the
987function, not of the function type, so functions with different function
988attributes can have the same function type.
989
990Function attributes are simple keywords that follow the type specified.
991If multiple attributes are needed, they are space separated. For
992example:
993
994.. code-block:: llvm
995
996 define void @f() noinline { ... }
997 define void @f() alwaysinline { ... }
998 define void @f() alwaysinline optsize { ... }
999 define void @f() optsize { ... }
1000
Sean Silvab084af42012-12-07 10:36:55 +00001001``alignstack(<n>)``
1002 This attribute indicates that, when emitting the prologue and
1003 epilogue, the backend should forcibly align the stack pointer.
1004 Specify the desired alignment, which must be a power of two, in
1005 parentheses.
1006``alwaysinline``
1007 This attribute indicates that the inliner should attempt to inline
1008 this function into callers whenever possible, ignoring any active
1009 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001010``builtin``
1011 This indicates that the callee function at a call site should be
1012 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001013 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001014 direct calls to functions which are declared with the ``nobuiltin``
1015 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001016``cold``
1017 This attribute indicates that this function is rarely called. When
1018 computing edge weights, basic blocks post-dominated by a cold
1019 function call are also considered to be cold; and, thus, given low
1020 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001021``inlinehint``
1022 This attribute indicates that the source code contained a hint that
1023 inlining this function is desirable (such as the "inline" keyword in
1024 C/C++). It is just a hint; it imposes no requirements on the
1025 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001026``jumptable``
1027 This attribute indicates that the function should be added to a
1028 jump-instruction table at code-generation time, and that all address-taken
1029 references to this function should be replaced with a reference to the
1030 appropriate jump-instruction-table function pointer. Note that this creates
1031 a new pointer for the original function, which means that code that depends
1032 on function-pointer identity can break. So, any function annotated with
1033 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001034``minsize``
1035 This attribute suggests that optimization passes and code generator
1036 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001037 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001038 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001039``naked``
1040 This attribute disables prologue / epilogue emission for the
1041 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001042``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001043 This indicates that the callee function at a call site is not recognized as
1044 a built-in function. LLVM will retain the original call and not replace it
1045 with equivalent code based on the semantics of the built-in function, unless
1046 the call site uses the ``builtin`` attribute. This is valid at call sites
1047 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001048``noduplicate``
1049 This attribute indicates that calls to the function cannot be
1050 duplicated. A call to a ``noduplicate`` function may be moved
1051 within its parent function, but may not be duplicated within
1052 its parent function.
1053
1054 A function containing a ``noduplicate`` call may still
1055 be an inlining candidate, provided that the call is not
1056 duplicated by inlining. That implies that the function has
1057 internal linkage and only has one call site, so the original
1058 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001059``noimplicitfloat``
1060 This attributes disables implicit floating point instructions.
1061``noinline``
1062 This attribute indicates that the inliner should never inline this
1063 function in any situation. This attribute may not be used together
1064 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001065``nonlazybind``
1066 This attribute suppresses lazy symbol binding for the function. This
1067 may make calls to the function faster, at the cost of extra program
1068 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001069``noredzone``
1070 This attribute indicates that the code generator should not use a
1071 red zone, even if the target-specific ABI normally permits it.
1072``noreturn``
1073 This function attribute indicates that the function never returns
1074 normally. This produces undefined behavior at runtime if the
1075 function ever does dynamically return.
1076``nounwind``
1077 This function attribute indicates that the function never returns
1078 with an unwind or exceptional control flow. If the function does
1079 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001080``optnone``
1081 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001082 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001083 exception of interprocedural optimization passes.
1084 This attribute cannot be used together with the ``alwaysinline``
1085 attribute; this attribute is also incompatible
1086 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001087
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001088 This attribute requires the ``noinline`` attribute to be specified on
1089 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001090 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001091 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001092``optsize``
1093 This attribute suggests that optimization passes and code generator
1094 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001095 and otherwise do optimizations specifically to reduce code size as
1096 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001097``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001098 On a function, this attribute indicates that the function computes its
1099 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001100 without dereferencing any pointer arguments or otherwise accessing
1101 any mutable state (e.g. memory, control registers, etc) visible to
1102 caller functions. It does not write through any pointer arguments
1103 (including ``byval`` arguments) and never changes any state visible
1104 to callers. This means that it cannot unwind exceptions by calling
1105 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001106
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001107 On an argument, this attribute indicates that the function does not
1108 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001109 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001110``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001111 On a function, this attribute indicates that the function does not write
1112 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001113 modify any state (e.g. memory, control registers, etc) visible to
1114 caller functions. It may dereference pointer arguments and read
1115 state that may be set in the caller. A readonly function always
1116 returns the same value (or unwinds an exception identically) when
1117 called with the same set of arguments and global state. It cannot
1118 unwind an exception by calling the ``C++`` exception throwing
1119 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001120
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001121 On an argument, this attribute indicates that the function does not write
1122 through this pointer argument, even though it may write to the memory that
1123 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001124``returns_twice``
1125 This attribute indicates that this function can return twice. The C
1126 ``setjmp`` is an example of such a function. The compiler disables
1127 some optimizations (like tail calls) in the caller of these
1128 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001129``sanitize_address``
1130 This attribute indicates that AddressSanitizer checks
1131 (dynamic address safety analysis) are enabled for this function.
1132``sanitize_memory``
1133 This attribute indicates that MemorySanitizer checks (dynamic detection
1134 of accesses to uninitialized memory) are enabled for this function.
1135``sanitize_thread``
1136 This attribute indicates that ThreadSanitizer checks
1137 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001138``ssp``
1139 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001140 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001141 placed on the stack before the local variables that's checked upon
1142 return from the function to see if it has been overwritten. A
1143 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001144 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001145
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001146 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1147 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1148 - Calls to alloca() with variable sizes or constant sizes greater than
1149 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001150
Josh Magee24c7f062014-02-01 01:36:16 +00001151 Variables that are identified as requiring a protector will be arranged
1152 on the stack such that they are adjacent to the stack protector guard.
1153
Sean Silvab084af42012-12-07 10:36:55 +00001154 If a function that has an ``ssp`` attribute is inlined into a
1155 function that doesn't have an ``ssp`` attribute, then the resulting
1156 function will have an ``ssp`` attribute.
1157``sspreq``
1158 This attribute indicates that the function should *always* emit a
1159 stack smashing protector. This overrides the ``ssp`` function
1160 attribute.
1161
Josh Magee24c7f062014-02-01 01:36:16 +00001162 Variables that are identified as requiring a protector will be arranged
1163 on the stack such that they are adjacent to the stack protector guard.
1164 The specific layout rules are:
1165
1166 #. Large arrays and structures containing large arrays
1167 (``>= ssp-buffer-size``) are closest to the stack protector.
1168 #. Small arrays and structures containing small arrays
1169 (``< ssp-buffer-size``) are 2nd closest to the protector.
1170 #. Variables that have had their address taken are 3rd closest to the
1171 protector.
1172
Sean Silvab084af42012-12-07 10:36:55 +00001173 If a function that has an ``sspreq`` attribute is inlined into a
1174 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001175 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1176 an ``sspreq`` attribute.
1177``sspstrong``
1178 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001179 protector. This attribute causes a strong heuristic to be used when
1180 determining if a function needs stack protectors. The strong heuristic
1181 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001182
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001183 - Arrays of any size and type
1184 - Aggregates containing an array of any size and type.
1185 - Calls to alloca().
1186 - Local variables that have had their address taken.
1187
Josh Magee24c7f062014-02-01 01:36:16 +00001188 Variables that are identified as requiring a protector will be arranged
1189 on the stack such that they are adjacent to the stack protector guard.
1190 The specific layout rules are:
1191
1192 #. Large arrays and structures containing large arrays
1193 (``>= ssp-buffer-size``) are closest to the stack protector.
1194 #. Small arrays and structures containing small arrays
1195 (``< ssp-buffer-size``) are 2nd closest to the protector.
1196 #. Variables that have had their address taken are 3rd closest to the
1197 protector.
1198
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001199 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001200
1201 If a function that has an ``sspstrong`` attribute is inlined into a
1202 function that doesn't have an ``sspstrong`` attribute, then the
1203 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001204``uwtable``
1205 This attribute indicates that the ABI being targeted requires that
1206 an unwind table entry be produce for this function even if we can
1207 show that no exceptions passes by it. This is normally the case for
1208 the ELF x86-64 abi, but it can be disabled for some compilation
1209 units.
Sean Silvab084af42012-12-07 10:36:55 +00001210
1211.. _moduleasm:
1212
1213Module-Level Inline Assembly
1214----------------------------
1215
1216Modules may contain "module-level inline asm" blocks, which corresponds
1217to the GCC "file scope inline asm" blocks. These blocks are internally
1218concatenated by LLVM and treated as a single unit, but may be separated
1219in the ``.ll`` file if desired. The syntax is very simple:
1220
1221.. code-block:: llvm
1222
1223 module asm "inline asm code goes here"
1224 module asm "more can go here"
1225
1226The strings can contain any character by escaping non-printable
1227characters. The escape sequence used is simply "\\xx" where "xx" is the
1228two digit hex code for the number.
1229
1230The inline asm code is simply printed to the machine code .s file when
1231assembly code is generated.
1232
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001233.. _langref_datalayout:
1234
Sean Silvab084af42012-12-07 10:36:55 +00001235Data Layout
1236-----------
1237
1238A module may specify a target specific data layout string that specifies
1239how data is to be laid out in memory. The syntax for the data layout is
1240simply:
1241
1242.. code-block:: llvm
1243
1244 target datalayout = "layout specification"
1245
1246The *layout specification* consists of a list of specifications
1247separated by the minus sign character ('-'). Each specification starts
1248with a letter and may include other information after the letter to
1249define some aspect of the data layout. The specifications accepted are
1250as follows:
1251
1252``E``
1253 Specifies that the target lays out data in big-endian form. That is,
1254 the bits with the most significance have the lowest address
1255 location.
1256``e``
1257 Specifies that the target lays out data in little-endian form. That
1258 is, the bits with the least significance have the lowest address
1259 location.
1260``S<size>``
1261 Specifies the natural alignment of the stack in bits. Alignment
1262 promotion of stack variables is limited to the natural stack
1263 alignment to avoid dynamic stack realignment. The stack alignment
1264 must be a multiple of 8-bits. If omitted, the natural stack
1265 alignment defaults to "unspecified", which does not prevent any
1266 alignment promotions.
1267``p[n]:<size>:<abi>:<pref>``
1268 This specifies the *size* of a pointer and its ``<abi>`` and
1269 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001270 bits. The address space, ``n`` is optional, and if not specified,
1271 denotes the default address space 0. The value of ``n`` must be
1272 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001273``i<size>:<abi>:<pref>``
1274 This specifies the alignment for an integer type of a given bit
1275 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1276``v<size>:<abi>:<pref>``
1277 This specifies the alignment for a vector type of a given bit
1278 ``<size>``.
1279``f<size>:<abi>:<pref>``
1280 This specifies the alignment for a floating point type of a given bit
1281 ``<size>``. Only values of ``<size>`` that are supported by the target
1282 will work. 32 (float) and 64 (double) are supported on all targets; 80
1283 or 128 (different flavors of long double) are also supported on some
1284 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001285``a:<abi>:<pref>``
1286 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001287``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001288 If present, specifies that llvm names are mangled in the output. The
1289 options are
1290
1291 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1292 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1293 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1294 symbols get a ``_`` prefix.
1295 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1296 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001297``n<size1>:<size2>:<size3>...``
1298 This specifies a set of native integer widths for the target CPU in
1299 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1300 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1301 this set are considered to support most general arithmetic operations
1302 efficiently.
1303
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001304On every specification that takes a ``<abi>:<pref>``, specifying the
1305``<pref>`` alignment is optional. If omitted, the preceding ``:``
1306should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1307
Sean Silvab084af42012-12-07 10:36:55 +00001308When constructing the data layout for a given target, LLVM starts with a
1309default set of specifications which are then (possibly) overridden by
1310the specifications in the ``datalayout`` keyword. The default
1311specifications are given in this list:
1312
1313- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001314- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1315- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1316 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001317- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001318- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1319- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1320- ``i16:16:16`` - i16 is 16-bit aligned
1321- ``i32:32:32`` - i32 is 32-bit aligned
1322- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1323 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001324- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001325- ``f32:32:32`` - float is 32-bit aligned
1326- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001327- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001328- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1329- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001330- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001331
1332When LLVM is determining the alignment for a given type, it uses the
1333following rules:
1334
1335#. If the type sought is an exact match for one of the specifications,
1336 that specification is used.
1337#. If no match is found, and the type sought is an integer type, then
1338 the smallest integer type that is larger than the bitwidth of the
1339 sought type is used. If none of the specifications are larger than
1340 the bitwidth then the largest integer type is used. For example,
1341 given the default specifications above, the i7 type will use the
1342 alignment of i8 (next largest) while both i65 and i256 will use the
1343 alignment of i64 (largest specified).
1344#. If no match is found, and the type sought is a vector type, then the
1345 largest vector type that is smaller than the sought vector type will
1346 be used as a fall back. This happens because <128 x double> can be
1347 implemented in terms of 64 <2 x double>, for example.
1348
1349The function of the data layout string may not be what you expect.
1350Notably, this is not a specification from the frontend of what alignment
1351the code generator should use.
1352
1353Instead, if specified, the target data layout is required to match what
1354the ultimate *code generator* expects. This string is used by the
1355mid-level optimizers to improve code, and this only works if it matches
1356what the ultimate code generator uses. If you would like to generate IR
1357that does not embed this target-specific detail into the IR, then you
1358don't have to specify the string. This will disable some optimizations
1359that require precise layout information, but this also prevents those
1360optimizations from introducing target specificity into the IR.
1361
Bill Wendling5cc90842013-10-18 23:41:25 +00001362.. _langref_triple:
1363
1364Target Triple
1365-------------
1366
1367A module may specify a target triple string that describes the target
1368host. The syntax for the target triple is simply:
1369
1370.. code-block:: llvm
1371
1372 target triple = "x86_64-apple-macosx10.7.0"
1373
1374The *target triple* string consists of a series of identifiers delimited
1375by the minus sign character ('-'). The canonical forms are:
1376
1377::
1378
1379 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1380 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1381
1382This information is passed along to the backend so that it generates
1383code for the proper architecture. It's possible to override this on the
1384command line with the ``-mtriple`` command line option.
1385
Sean Silvab084af42012-12-07 10:36:55 +00001386.. _pointeraliasing:
1387
1388Pointer Aliasing Rules
1389----------------------
1390
1391Any memory access must be done through a pointer value associated with
1392an address range of the memory access, otherwise the behavior is
1393undefined. Pointer values are associated with address ranges according
1394to the following rules:
1395
1396- A pointer value is associated with the addresses associated with any
1397 value it is *based* on.
1398- An address of a global variable is associated with the address range
1399 of the variable's storage.
1400- The result value of an allocation instruction is associated with the
1401 address range of the allocated storage.
1402- A null pointer in the default address-space is associated with no
1403 address.
1404- An integer constant other than zero or a pointer value returned from
1405 a function not defined within LLVM may be associated with address
1406 ranges allocated through mechanisms other than those provided by
1407 LLVM. Such ranges shall not overlap with any ranges of addresses
1408 allocated by mechanisms provided by LLVM.
1409
1410A pointer value is *based* on another pointer value according to the
1411following rules:
1412
1413- A pointer value formed from a ``getelementptr`` operation is *based*
1414 on the first operand of the ``getelementptr``.
1415- The result value of a ``bitcast`` is *based* on the operand of the
1416 ``bitcast``.
1417- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1418 values that contribute (directly or indirectly) to the computation of
1419 the pointer's value.
1420- The "*based* on" relationship is transitive.
1421
1422Note that this definition of *"based"* is intentionally similar to the
1423definition of *"based"* in C99, though it is slightly weaker.
1424
1425LLVM IR does not associate types with memory. The result type of a
1426``load`` merely indicates the size and alignment of the memory from
1427which to load, as well as the interpretation of the value. The first
1428operand type of a ``store`` similarly only indicates the size and
1429alignment of the store.
1430
1431Consequently, type-based alias analysis, aka TBAA, aka
1432``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1433:ref:`Metadata <metadata>` may be used to encode additional information
1434which specialized optimization passes may use to implement type-based
1435alias analysis.
1436
1437.. _volatile:
1438
1439Volatile Memory Accesses
1440------------------------
1441
1442Certain memory accesses, such as :ref:`load <i_load>`'s,
1443:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1444marked ``volatile``. The optimizers must not change the number of
1445volatile operations or change their order of execution relative to other
1446volatile operations. The optimizers *may* change the order of volatile
1447operations relative to non-volatile operations. This is not Java's
1448"volatile" and has no cross-thread synchronization behavior.
1449
Andrew Trick89fc5a62013-01-30 21:19:35 +00001450IR-level volatile loads and stores cannot safely be optimized into
1451llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1452flagged volatile. Likewise, the backend should never split or merge
1453target-legal volatile load/store instructions.
1454
Andrew Trick7e6f9282013-01-31 00:49:39 +00001455.. admonition:: Rationale
1456
1457 Platforms may rely on volatile loads and stores of natively supported
1458 data width to be executed as single instruction. For example, in C
1459 this holds for an l-value of volatile primitive type with native
1460 hardware support, but not necessarily for aggregate types. The
1461 frontend upholds these expectations, which are intentionally
1462 unspecified in the IR. The rules above ensure that IR transformation
1463 do not violate the frontend's contract with the language.
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465.. _memmodel:
1466
1467Memory Model for Concurrent Operations
1468--------------------------------------
1469
1470The LLVM IR does not define any way to start parallel threads of
1471execution or to register signal handlers. Nonetheless, there are
1472platform-specific ways to create them, and we define LLVM IR's behavior
1473in their presence. This model is inspired by the C++0x memory model.
1474
1475For a more informal introduction to this model, see the :doc:`Atomics`.
1476
1477We define a *happens-before* partial order as the least partial order
1478that
1479
1480- Is a superset of single-thread program order, and
1481- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1482 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1483 techniques, like pthread locks, thread creation, thread joining,
1484 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1485 Constraints <ordering>`).
1486
1487Note that program order does not introduce *happens-before* edges
1488between a thread and signals executing inside that thread.
1489
1490Every (defined) read operation (load instructions, memcpy, atomic
1491loads/read-modify-writes, etc.) R reads a series of bytes written by
1492(defined) write operations (store instructions, atomic
1493stores/read-modify-writes, memcpy, etc.). For the purposes of this
1494section, initialized globals are considered to have a write of the
1495initializer which is atomic and happens before any other read or write
1496of the memory in question. For each byte of a read R, R\ :sub:`byte`
1497may see any write to the same byte, except:
1498
1499- If write\ :sub:`1` happens before write\ :sub:`2`, and
1500 write\ :sub:`2` happens before R\ :sub:`byte`, then
1501 R\ :sub:`byte` does not see write\ :sub:`1`.
1502- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1503 R\ :sub:`byte` does not see write\ :sub:`3`.
1504
1505Given that definition, R\ :sub:`byte` is defined as follows:
1506
1507- If R is volatile, the result is target-dependent. (Volatile is
1508 supposed to give guarantees which can support ``sig_atomic_t`` in
1509 C/C++, and may be used for accesses to addresses which do not behave
1510 like normal memory. It does not generally provide cross-thread
1511 synchronization.)
1512- Otherwise, if there is no write to the same byte that happens before
1513 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1514- Otherwise, if R\ :sub:`byte` may see exactly one write,
1515 R\ :sub:`byte` returns the value written by that write.
1516- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1517 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1518 Memory Ordering Constraints <ordering>` section for additional
1519 constraints on how the choice is made.
1520- Otherwise R\ :sub:`byte` returns ``undef``.
1521
1522R returns the value composed of the series of bytes it read. This
1523implies that some bytes within the value may be ``undef`` **without**
1524the entire value being ``undef``. Note that this only defines the
1525semantics of the operation; it doesn't mean that targets will emit more
1526than one instruction to read the series of bytes.
1527
1528Note that in cases where none of the atomic intrinsics are used, this
1529model places only one restriction on IR transformations on top of what
1530is required for single-threaded execution: introducing a store to a byte
1531which might not otherwise be stored is not allowed in general.
1532(Specifically, in the case where another thread might write to and read
1533from an address, introducing a store can change a load that may see
1534exactly one write into a load that may see multiple writes.)
1535
1536.. _ordering:
1537
1538Atomic Memory Ordering Constraints
1539----------------------------------
1540
1541Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1542:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1543:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001544ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001545the same address they *synchronize with*. These semantics are borrowed
1546from Java and C++0x, but are somewhat more colloquial. If these
1547descriptions aren't precise enough, check those specs (see spec
1548references in the :doc:`atomics guide <Atomics>`).
1549:ref:`fence <i_fence>` instructions treat these orderings somewhat
1550differently since they don't take an address. See that instruction's
1551documentation for details.
1552
1553For a simpler introduction to the ordering constraints, see the
1554:doc:`Atomics`.
1555
1556``unordered``
1557 The set of values that can be read is governed by the happens-before
1558 partial order. A value cannot be read unless some operation wrote
1559 it. This is intended to provide a guarantee strong enough to model
1560 Java's non-volatile shared variables. This ordering cannot be
1561 specified for read-modify-write operations; it is not strong enough
1562 to make them atomic in any interesting way.
1563``monotonic``
1564 In addition to the guarantees of ``unordered``, there is a single
1565 total order for modifications by ``monotonic`` operations on each
1566 address. All modification orders must be compatible with the
1567 happens-before order. There is no guarantee that the modification
1568 orders can be combined to a global total order for the whole program
1569 (and this often will not be possible). The read in an atomic
1570 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1571 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1572 order immediately before the value it writes. If one atomic read
1573 happens before another atomic read of the same address, the later
1574 read must see the same value or a later value in the address's
1575 modification order. This disallows reordering of ``monotonic`` (or
1576 stronger) operations on the same address. If an address is written
1577 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1578 read that address repeatedly, the other threads must eventually see
1579 the write. This corresponds to the C++0x/C1x
1580 ``memory_order_relaxed``.
1581``acquire``
1582 In addition to the guarantees of ``monotonic``, a
1583 *synchronizes-with* edge may be formed with a ``release`` operation.
1584 This is intended to model C++'s ``memory_order_acquire``.
1585``release``
1586 In addition to the guarantees of ``monotonic``, if this operation
1587 writes a value which is subsequently read by an ``acquire``
1588 operation, it *synchronizes-with* that operation. (This isn't a
1589 complete description; see the C++0x definition of a release
1590 sequence.) This corresponds to the C++0x/C1x
1591 ``memory_order_release``.
1592``acq_rel`` (acquire+release)
1593 Acts as both an ``acquire`` and ``release`` operation on its
1594 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1595``seq_cst`` (sequentially consistent)
1596 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1597 operation which only reads, ``release`` for an operation which only
1598 writes), there is a global total order on all
1599 sequentially-consistent operations on all addresses, which is
1600 consistent with the *happens-before* partial order and with the
1601 modification orders of all the affected addresses. Each
1602 sequentially-consistent read sees the last preceding write to the
1603 same address in this global order. This corresponds to the C++0x/C1x
1604 ``memory_order_seq_cst`` and Java volatile.
1605
1606.. _singlethread:
1607
1608If an atomic operation is marked ``singlethread``, it only *synchronizes
1609with* or participates in modification and seq\_cst total orderings with
1610other operations running in the same thread (for example, in signal
1611handlers).
1612
1613.. _fastmath:
1614
1615Fast-Math Flags
1616---------------
1617
1618LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1619:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1620:ref:`frem <i_frem>`) have the following flags that can set to enable
1621otherwise unsafe floating point operations
1622
1623``nnan``
1624 No NaNs - Allow optimizations to assume the arguments and result are not
1625 NaN. Such optimizations are required to retain defined behavior over
1626 NaNs, but the value of the result is undefined.
1627
1628``ninf``
1629 No Infs - Allow optimizations to assume the arguments and result are not
1630 +/-Inf. Such optimizations are required to retain defined behavior over
1631 +/-Inf, but the value of the result is undefined.
1632
1633``nsz``
1634 No Signed Zeros - Allow optimizations to treat the sign of a zero
1635 argument or result as insignificant.
1636
1637``arcp``
1638 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1639 argument rather than perform division.
1640
1641``fast``
1642 Fast - Allow algebraically equivalent transformations that may
1643 dramatically change results in floating point (e.g. reassociate). This
1644 flag implies all the others.
1645
1646.. _typesystem:
1647
1648Type System
1649===========
1650
1651The LLVM type system is one of the most important features of the
1652intermediate representation. Being typed enables a number of
1653optimizations to be performed on the intermediate representation
1654directly, without having to do extra analyses on the side before the
1655transformation. A strong type system makes it easier to read the
1656generated code and enables novel analyses and transformations that are
1657not feasible to perform on normal three address code representations.
1658
Rafael Espindola08013342013-12-07 19:34:20 +00001659.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001660
Rafael Espindola08013342013-12-07 19:34:20 +00001661Void Type
1662---------
Sean Silvab084af42012-12-07 10:36:55 +00001663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001664:Overview:
1665
Rafael Espindola08013342013-12-07 19:34:20 +00001666
1667The void type does not represent any value and has no size.
1668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Syntax:
1670
Rafael Espindola08013342013-12-07 19:34:20 +00001671
1672::
1673
1674 void
Sean Silvab084af42012-12-07 10:36:55 +00001675
1676
Rafael Espindola08013342013-12-07 19:34:20 +00001677.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001678
Rafael Espindola08013342013-12-07 19:34:20 +00001679Function Type
1680-------------
Sean Silvab084af42012-12-07 10:36:55 +00001681
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001682:Overview:
1683
Sean Silvab084af42012-12-07 10:36:55 +00001684
Rafael Espindola08013342013-12-07 19:34:20 +00001685The function type can be thought of as a function signature. It consists of a
1686return type and a list of formal parameter types. The return type of a function
1687type is a void type or first class type --- except for :ref:`label <t_label>`
1688and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001690:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001691
Rafael Espindola08013342013-12-07 19:34:20 +00001692::
Sean Silvab084af42012-12-07 10:36:55 +00001693
Rafael Espindola08013342013-12-07 19:34:20 +00001694 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001695
Rafael Espindola08013342013-12-07 19:34:20 +00001696...where '``<parameter list>``' is a comma-separated list of type
1697specifiers. Optionally, the parameter list may include a type ``...``, which
1698indicates that the function takes a variable number of arguments. Variable
1699argument functions can access their arguments with the :ref:`variable argument
1700handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1701except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001703:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001704
Rafael Espindola08013342013-12-07 19:34:20 +00001705+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1706| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1707+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1708| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1709+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1711+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1712| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1713+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1714
1715.. _t_firstclass:
1716
1717First Class Types
1718-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001719
1720The :ref:`first class <t_firstclass>` types are perhaps the most important.
1721Values of these types are the only ones which can be produced by
1722instructions.
1723
Rafael Espindola08013342013-12-07 19:34:20 +00001724.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001725
Rafael Espindola08013342013-12-07 19:34:20 +00001726Single Value Types
1727^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001728
Rafael Espindola08013342013-12-07 19:34:20 +00001729These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001730
1731.. _t_integer:
1732
1733Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001734""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001735
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001736:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001737
1738The integer type is a very simple type that simply specifies an
1739arbitrary bit width for the integer type desired. Any bit width from 1
1740bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1741
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001742:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001743
1744::
1745
1746 iN
1747
1748The number of bits the integer will occupy is specified by the ``N``
1749value.
1750
1751Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001752*********
Sean Silvab084af42012-12-07 10:36:55 +00001753
1754+----------------+------------------------------------------------+
1755| ``i1`` | a single-bit integer. |
1756+----------------+------------------------------------------------+
1757| ``i32`` | a 32-bit integer. |
1758+----------------+------------------------------------------------+
1759| ``i1942652`` | a really big integer of over 1 million bits. |
1760+----------------+------------------------------------------------+
1761
1762.. _t_floating:
1763
1764Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001765""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001766
1767.. list-table::
1768 :header-rows: 1
1769
1770 * - Type
1771 - Description
1772
1773 * - ``half``
1774 - 16-bit floating point value
1775
1776 * - ``float``
1777 - 32-bit floating point value
1778
1779 * - ``double``
1780 - 64-bit floating point value
1781
1782 * - ``fp128``
1783 - 128-bit floating point value (112-bit mantissa)
1784
1785 * - ``x86_fp80``
1786 - 80-bit floating point value (X87)
1787
1788 * - ``ppc_fp128``
1789 - 128-bit floating point value (two 64-bits)
1790
Reid Kleckner9a16d082014-03-05 02:41:37 +00001791X86_mmx Type
1792""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001795
Reid Kleckner9a16d082014-03-05 02:41:37 +00001796The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001797machine. The operations allowed on it are quite limited: parameters and
1798return values, load and store, and bitcast. User-specified MMX
1799instructions are represented as intrinsic or asm calls with arguments
1800and/or results of this type. There are no arrays, vectors or constants
1801of this type.
1802
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001803:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001804
1805::
1806
Reid Kleckner9a16d082014-03-05 02:41:37 +00001807 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001808
Sean Silvab084af42012-12-07 10:36:55 +00001809
Rafael Espindola08013342013-12-07 19:34:20 +00001810.. _t_pointer:
1811
1812Pointer Type
1813""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001814
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001815:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001816
Rafael Espindola08013342013-12-07 19:34:20 +00001817The pointer type is used to specify memory locations. Pointers are
1818commonly used to reference objects in memory.
1819
1820Pointer types may have an optional address space attribute defining the
1821numbered address space where the pointed-to object resides. The default
1822address space is number zero. The semantics of non-zero address spaces
1823are target-specific.
1824
1825Note that LLVM does not permit pointers to void (``void*``) nor does it
1826permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001829
1830::
1831
Rafael Espindola08013342013-12-07 19:34:20 +00001832 <type> *
1833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001835
1836+-------------------------+--------------------------------------------------------------------------------------------------------------+
1837| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1838+-------------------------+--------------------------------------------------------------------------------------------------------------+
1839| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1840+-------------------------+--------------------------------------------------------------------------------------------------------------+
1841| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1842+-------------------------+--------------------------------------------------------------------------------------------------------------+
1843
1844.. _t_vector:
1845
1846Vector Type
1847"""""""""""
1848
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001849:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001850
1851A vector type is a simple derived type that represents a vector of
1852elements. Vector types are used when multiple primitive data are
1853operated in parallel using a single instruction (SIMD). A vector type
1854requires a size (number of elements) and an underlying primitive data
1855type. Vector types are considered :ref:`first class <t_firstclass>`.
1856
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001857:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001858
1859::
1860
1861 < <# elements> x <elementtype> >
1862
1863The number of elements is a constant integer value larger than 0;
1864elementtype may be any integer or floating point type, or a pointer to
1865these types. Vectors of size zero are not allowed.
1866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001868
1869+-------------------+--------------------------------------------------+
1870| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1871+-------------------+--------------------------------------------------+
1872| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1873+-------------------+--------------------------------------------------+
1874| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1875+-------------------+--------------------------------------------------+
1876| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1877+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001878
1879.. _t_label:
1880
1881Label Type
1882^^^^^^^^^^
1883
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001884:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886The label type represents code labels.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890::
1891
1892 label
1893
1894.. _t_metadata:
1895
1896Metadata Type
1897^^^^^^^^^^^^^
1898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001899:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001900
1901The metadata type represents embedded metadata. No derived types may be
1902created from metadata except for :ref:`function <t_function>` arguments.
1903
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001904:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906::
1907
1908 metadata
1909
Sean Silvab084af42012-12-07 10:36:55 +00001910.. _t_aggregate:
1911
1912Aggregate Types
1913^^^^^^^^^^^^^^^
1914
1915Aggregate Types are a subset of derived types that can contain multiple
1916member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1917aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1918aggregate types.
1919
1920.. _t_array:
1921
1922Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001923""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001924
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001925:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001926
1927The array type is a very simple derived type that arranges elements
1928sequentially in memory. The array type requires a size (number of
1929elements) and an underlying data type.
1930
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001931:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001932
1933::
1934
1935 [<# elements> x <elementtype>]
1936
1937The number of elements is a constant integer value; ``elementtype`` may
1938be any type with a size.
1939
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001940:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942+------------------+--------------------------------------+
1943| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1944+------------------+--------------------------------------+
1945| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1946+------------------+--------------------------------------+
1947| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1948+------------------+--------------------------------------+
1949
1950Here are some examples of multidimensional arrays:
1951
1952+-----------------------------+----------------------------------------------------------+
1953| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1954+-----------------------------+----------------------------------------------------------+
1955| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1956+-----------------------------+----------------------------------------------------------+
1957| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1958+-----------------------------+----------------------------------------------------------+
1959
1960There is no restriction on indexing beyond the end of the array implied
1961by a static type (though there are restrictions on indexing beyond the
1962bounds of an allocated object in some cases). This means that
1963single-dimension 'variable sized array' addressing can be implemented in
1964LLVM with a zero length array type. An implementation of 'pascal style
1965arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1966example.
1967
Sean Silvab084af42012-12-07 10:36:55 +00001968.. _t_struct:
1969
1970Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001971""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975The structure type is used to represent a collection of data members
1976together in memory. The elements of a structure may be any type that has
1977a size.
1978
1979Structures in memory are accessed using '``load``' and '``store``' by
1980getting a pointer to a field with the '``getelementptr``' instruction.
1981Structures in registers are accessed using the '``extractvalue``' and
1982'``insertvalue``' instructions.
1983
1984Structures may optionally be "packed" structures, which indicate that
1985the alignment of the struct is one byte, and that there is no padding
1986between the elements. In non-packed structs, padding between field types
1987is inserted as defined by the DataLayout string in the module, which is
1988required to match what the underlying code generator expects.
1989
1990Structures can either be "literal" or "identified". A literal structure
1991is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1992identified types are always defined at the top level with a name.
1993Literal types are uniqued by their contents and can never be recursive
1994or opaque since there is no way to write one. Identified types can be
1995recursive, can be opaqued, and are never uniqued.
1996
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001997:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001998
1999::
2000
2001 %T1 = type { <type list> } ; Identified normal struct type
2002 %T2 = type <{ <type list> }> ; Identified packed struct type
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2007| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2008+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002009| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002010+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2011| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2012+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2013
2014.. _t_opaque:
2015
2016Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002017""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021Opaque structure types are used to represent named structure types that
2022do not have a body specified. This corresponds (for example) to the C
2023notion of a forward declared structure.
2024
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002025:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002026
2027::
2028
2029 %X = type opaque
2030 %52 = type opaque
2031
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002032:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002033
2034+--------------+-------------------+
2035| ``opaque`` | An opaque type. |
2036+--------------+-------------------+
2037
Sean Silva1703e702014-04-08 21:06:22 +00002038.. _constants:
2039
Sean Silvab084af42012-12-07 10:36:55 +00002040Constants
2041=========
2042
2043LLVM has several different basic types of constants. This section
2044describes them all and their syntax.
2045
2046Simple Constants
2047----------------
2048
2049**Boolean constants**
2050 The two strings '``true``' and '``false``' are both valid constants
2051 of the ``i1`` type.
2052**Integer constants**
2053 Standard integers (such as '4') are constants of the
2054 :ref:`integer <t_integer>` type. Negative numbers may be used with
2055 integer types.
2056**Floating point constants**
2057 Floating point constants use standard decimal notation (e.g.
2058 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2059 hexadecimal notation (see below). The assembler requires the exact
2060 decimal value of a floating-point constant. For example, the
2061 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2062 decimal in binary. Floating point constants must have a :ref:`floating
2063 point <t_floating>` type.
2064**Null pointer constants**
2065 The identifier '``null``' is recognized as a null pointer constant
2066 and must be of :ref:`pointer type <t_pointer>`.
2067
2068The one non-intuitive notation for constants is the hexadecimal form of
2069floating point constants. For example, the form
2070'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2071than) '``double 4.5e+15``'. The only time hexadecimal floating point
2072constants are required (and the only time that they are generated by the
2073disassembler) is when a floating point constant must be emitted but it
2074cannot be represented as a decimal floating point number in a reasonable
2075number of digits. For example, NaN's, infinities, and other special
2076values are represented in their IEEE hexadecimal format so that assembly
2077and disassembly do not cause any bits to change in the constants.
2078
2079When using the hexadecimal form, constants of types half, float, and
2080double are represented using the 16-digit form shown above (which
2081matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002082must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002083precision, respectively. Hexadecimal format is always used for long
2084double, and there are three forms of long double. The 80-bit format used
2085by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2086128-bit format used by PowerPC (two adjacent doubles) is represented by
2087``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002088represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2089will only work if they match the long double format on your target.
2090The IEEE 16-bit format (half precision) is represented by ``0xH``
2091followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2092(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002093
Reid Kleckner9a16d082014-03-05 02:41:37 +00002094There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002096.. _complexconstants:
2097
Sean Silvab084af42012-12-07 10:36:55 +00002098Complex Constants
2099-----------------
2100
2101Complex constants are a (potentially recursive) combination of simple
2102constants and smaller complex constants.
2103
2104**Structure constants**
2105 Structure constants are represented with notation similar to
2106 structure type definitions (a comma separated list of elements,
2107 surrounded by braces (``{}``)). For example:
2108 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2109 "``@G = external global i32``". Structure constants must have
2110 :ref:`structure type <t_struct>`, and the number and types of elements
2111 must match those specified by the type.
2112**Array constants**
2113 Array constants are represented with notation similar to array type
2114 definitions (a comma separated list of elements, surrounded by
2115 square brackets (``[]``)). For example:
2116 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2117 :ref:`array type <t_array>`, and the number and types of elements must
2118 match those specified by the type.
2119**Vector constants**
2120 Vector constants are represented with notation similar to vector
2121 type definitions (a comma separated list of elements, surrounded by
2122 less-than/greater-than's (``<>``)). For example:
2123 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2124 must have :ref:`vector type <t_vector>`, and the number and types of
2125 elements must match those specified by the type.
2126**Zero initialization**
2127 The string '``zeroinitializer``' can be used to zero initialize a
2128 value to zero of *any* type, including scalar and
2129 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2130 having to print large zero initializers (e.g. for large arrays) and
2131 is always exactly equivalent to using explicit zero initializers.
2132**Metadata node**
2133 A metadata node is a structure-like constant with :ref:`metadata
2134 type <t_metadata>`. For example:
2135 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2136 constants that are meant to be interpreted as part of the
2137 instruction stream, metadata is a place to attach additional
2138 information such as debug info.
2139
2140Global Variable and Function Addresses
2141--------------------------------------
2142
2143The addresses of :ref:`global variables <globalvars>` and
2144:ref:`functions <functionstructure>` are always implicitly valid
2145(link-time) constants. These constants are explicitly referenced when
2146the :ref:`identifier for the global <identifiers>` is used and always have
2147:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2148file:
2149
2150.. code-block:: llvm
2151
2152 @X = global i32 17
2153 @Y = global i32 42
2154 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2155
2156.. _undefvalues:
2157
2158Undefined Values
2159----------------
2160
2161The string '``undef``' can be used anywhere a constant is expected, and
2162indicates that the user of the value may receive an unspecified
2163bit-pattern. Undefined values may be of any type (other than '``label``'
2164or '``void``') and be used anywhere a constant is permitted.
2165
2166Undefined values are useful because they indicate to the compiler that
2167the program is well defined no matter what value is used. This gives the
2168compiler more freedom to optimize. Here are some examples of
2169(potentially surprising) transformations that are valid (in pseudo IR):
2170
2171.. code-block:: llvm
2172
2173 %A = add %X, undef
2174 %B = sub %X, undef
2175 %C = xor %X, undef
2176 Safe:
2177 %A = undef
2178 %B = undef
2179 %C = undef
2180
2181This is safe because all of the output bits are affected by the undef
2182bits. Any output bit can have a zero or one depending on the input bits.
2183
2184.. code-block:: llvm
2185
2186 %A = or %X, undef
2187 %B = and %X, undef
2188 Safe:
2189 %A = -1
2190 %B = 0
2191 Unsafe:
2192 %A = undef
2193 %B = undef
2194
2195These logical operations have bits that are not always affected by the
2196input. For example, if ``%X`` has a zero bit, then the output of the
2197'``and``' operation will always be a zero for that bit, no matter what
2198the corresponding bit from the '``undef``' is. As such, it is unsafe to
2199optimize or assume that the result of the '``and``' is '``undef``'.
2200However, it is safe to assume that all bits of the '``undef``' could be
22010, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2202all the bits of the '``undef``' operand to the '``or``' could be set,
2203allowing the '``or``' to be folded to -1.
2204
2205.. code-block:: llvm
2206
2207 %A = select undef, %X, %Y
2208 %B = select undef, 42, %Y
2209 %C = select %X, %Y, undef
2210 Safe:
2211 %A = %X (or %Y)
2212 %B = 42 (or %Y)
2213 %C = %Y
2214 Unsafe:
2215 %A = undef
2216 %B = undef
2217 %C = undef
2218
2219This set of examples shows that undefined '``select``' (and conditional
2220branch) conditions can go *either way*, but they have to come from one
2221of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2222both known to have a clear low bit, then ``%A`` would have to have a
2223cleared low bit. However, in the ``%C`` example, the optimizer is
2224allowed to assume that the '``undef``' operand could be the same as
2225``%Y``, allowing the whole '``select``' to be eliminated.
2226
2227.. code-block:: llvm
2228
2229 %A = xor undef, undef
2230
2231 %B = undef
2232 %C = xor %B, %B
2233
2234 %D = undef
2235 %E = icmp lt %D, 4
2236 %F = icmp gte %D, 4
2237
2238 Safe:
2239 %A = undef
2240 %B = undef
2241 %C = undef
2242 %D = undef
2243 %E = undef
2244 %F = undef
2245
2246This example points out that two '``undef``' operands are not
2247necessarily the same. This can be surprising to people (and also matches
2248C semantics) where they assume that "``X^X``" is always zero, even if
2249``X`` is undefined. This isn't true for a number of reasons, but the
2250short answer is that an '``undef``' "variable" can arbitrarily change
2251its value over its "live range". This is true because the variable
2252doesn't actually *have a live range*. Instead, the value is logically
2253read from arbitrary registers that happen to be around when needed, so
2254the value is not necessarily consistent over time. In fact, ``%A`` and
2255``%C`` need to have the same semantics or the core LLVM "replace all
2256uses with" concept would not hold.
2257
2258.. code-block:: llvm
2259
2260 %A = fdiv undef, %X
2261 %B = fdiv %X, undef
2262 Safe:
2263 %A = undef
2264 b: unreachable
2265
2266These examples show the crucial difference between an *undefined value*
2267and *undefined behavior*. An undefined value (like '``undef``') is
2268allowed to have an arbitrary bit-pattern. This means that the ``%A``
2269operation can be constant folded to '``undef``', because the '``undef``'
2270could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2271However, in the second example, we can make a more aggressive
2272assumption: because the ``undef`` is allowed to be an arbitrary value,
2273we are allowed to assume that it could be zero. Since a divide by zero
2274has *undefined behavior*, we are allowed to assume that the operation
2275does not execute at all. This allows us to delete the divide and all
2276code after it. Because the undefined operation "can't happen", the
2277optimizer can assume that it occurs in dead code.
2278
2279.. code-block:: llvm
2280
2281 a: store undef -> %X
2282 b: store %X -> undef
2283 Safe:
2284 a: <deleted>
2285 b: unreachable
2286
2287These examples reiterate the ``fdiv`` example: a store *of* an undefined
2288value can be assumed to not have any effect; we can assume that the
2289value is overwritten with bits that happen to match what was already
2290there. However, a store *to* an undefined location could clobber
2291arbitrary memory, therefore, it has undefined behavior.
2292
2293.. _poisonvalues:
2294
2295Poison Values
2296-------------
2297
2298Poison values are similar to :ref:`undef values <undefvalues>`, however
2299they also represent the fact that an instruction or constant expression
2300which cannot evoke side effects has nevertheless detected a condition
2301which results in undefined behavior.
2302
2303There is currently no way of representing a poison value in the IR; they
2304only exist when produced by operations such as :ref:`add <i_add>` with
2305the ``nsw`` flag.
2306
2307Poison value behavior is defined in terms of value *dependence*:
2308
2309- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2310- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2311 their dynamic predecessor basic block.
2312- Function arguments depend on the corresponding actual argument values
2313 in the dynamic callers of their functions.
2314- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2315 instructions that dynamically transfer control back to them.
2316- :ref:`Invoke <i_invoke>` instructions depend on the
2317 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2318 call instructions that dynamically transfer control back to them.
2319- Non-volatile loads and stores depend on the most recent stores to all
2320 of the referenced memory addresses, following the order in the IR
2321 (including loads and stores implied by intrinsics such as
2322 :ref:`@llvm.memcpy <int_memcpy>`.)
2323- An instruction with externally visible side effects depends on the
2324 most recent preceding instruction with externally visible side
2325 effects, following the order in the IR. (This includes :ref:`volatile
2326 operations <volatile>`.)
2327- An instruction *control-depends* on a :ref:`terminator
2328 instruction <terminators>` if the terminator instruction has
2329 multiple successors and the instruction is always executed when
2330 control transfers to one of the successors, and may not be executed
2331 when control is transferred to another.
2332- Additionally, an instruction also *control-depends* on a terminator
2333 instruction if the set of instructions it otherwise depends on would
2334 be different if the terminator had transferred control to a different
2335 successor.
2336- Dependence is transitive.
2337
2338Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2339with the additional affect that any instruction which has a *dependence*
2340on a poison value has undefined behavior.
2341
2342Here are some examples:
2343
2344.. code-block:: llvm
2345
2346 entry:
2347 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2348 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2349 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2350 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2351
2352 store i32 %poison, i32* @g ; Poison value stored to memory.
2353 %poison2 = load i32* @g ; Poison value loaded back from memory.
2354
2355 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2356
2357 %narrowaddr = bitcast i32* @g to i16*
2358 %wideaddr = bitcast i32* @g to i64*
2359 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2360 %poison4 = load i64* %wideaddr ; Returns a poison value.
2361
2362 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2363 br i1 %cmp, label %true, label %end ; Branch to either destination.
2364
2365 true:
2366 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2367 ; it has undefined behavior.
2368 br label %end
2369
2370 end:
2371 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2372 ; Both edges into this PHI are
2373 ; control-dependent on %cmp, so this
2374 ; always results in a poison value.
2375
2376 store volatile i32 0, i32* @g ; This would depend on the store in %true
2377 ; if %cmp is true, or the store in %entry
2378 ; otherwise, so this is undefined behavior.
2379
2380 br i1 %cmp, label %second_true, label %second_end
2381 ; The same branch again, but this time the
2382 ; true block doesn't have side effects.
2383
2384 second_true:
2385 ; No side effects!
2386 ret void
2387
2388 second_end:
2389 store volatile i32 0, i32* @g ; This time, the instruction always depends
2390 ; on the store in %end. Also, it is
2391 ; control-equivalent to %end, so this is
2392 ; well-defined (ignoring earlier undefined
2393 ; behavior in this example).
2394
2395.. _blockaddress:
2396
2397Addresses of Basic Blocks
2398-------------------------
2399
2400``blockaddress(@function, %block)``
2401
2402The '``blockaddress``' constant computes the address of the specified
2403basic block in the specified function, and always has an ``i8*`` type.
2404Taking the address of the entry block is illegal.
2405
2406This value only has defined behavior when used as an operand to the
2407':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2408against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002409undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002410no label is equal to the null pointer. This may be passed around as an
2411opaque pointer sized value as long as the bits are not inspected. This
2412allows ``ptrtoint`` and arithmetic to be performed on these values so
2413long as the original value is reconstituted before the ``indirectbr``
2414instruction.
2415
2416Finally, some targets may provide defined semantics when using the value
2417as the operand to an inline assembly, but that is target specific.
2418
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002419.. _constantexprs:
2420
Sean Silvab084af42012-12-07 10:36:55 +00002421Constant Expressions
2422--------------------
2423
2424Constant expressions are used to allow expressions involving other
2425constants to be used as constants. Constant expressions may be of any
2426:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2427that does not have side effects (e.g. load and call are not supported).
2428The following is the syntax for constant expressions:
2429
2430``trunc (CST to TYPE)``
2431 Truncate a constant to another type. The bit size of CST must be
2432 larger than the bit size of TYPE. Both types must be integers.
2433``zext (CST to TYPE)``
2434 Zero extend a constant to another type. The bit size of CST must be
2435 smaller than the bit size of TYPE. Both types must be integers.
2436``sext (CST to TYPE)``
2437 Sign extend a constant to another type. The bit size of CST must be
2438 smaller than the bit size of TYPE. Both types must be integers.
2439``fptrunc (CST to TYPE)``
2440 Truncate a floating point constant to another floating point type.
2441 The size of CST must be larger than the size of TYPE. Both types
2442 must be floating point.
2443``fpext (CST to TYPE)``
2444 Floating point extend a constant to another type. The size of CST
2445 must be smaller or equal to the size of TYPE. Both types must be
2446 floating point.
2447``fptoui (CST to TYPE)``
2448 Convert a floating point constant to the corresponding unsigned
2449 integer constant. TYPE must be a scalar or vector integer type. CST
2450 must be of scalar or vector floating point type. Both CST and TYPE
2451 must be scalars, or vectors of the same number of elements. If the
2452 value won't fit in the integer type, the results are undefined.
2453``fptosi (CST to TYPE)``
2454 Convert a floating point constant to the corresponding signed
2455 integer constant. TYPE must be a scalar or vector integer type. CST
2456 must be of scalar or vector floating point type. Both CST and TYPE
2457 must be scalars, or vectors of the same number of elements. If the
2458 value won't fit in the integer type, the results are undefined.
2459``uitofp (CST to TYPE)``
2460 Convert an unsigned integer constant to the corresponding floating
2461 point constant. TYPE must be a scalar or vector floating point type.
2462 CST must be of scalar or vector integer type. Both CST and TYPE must
2463 be scalars, or vectors of the same number of elements. If the value
2464 won't fit in the floating point type, the results are undefined.
2465``sitofp (CST to TYPE)``
2466 Convert a signed integer constant to the corresponding floating
2467 point constant. TYPE must be a scalar or vector floating point type.
2468 CST must be of scalar or vector integer type. Both CST and TYPE must
2469 be scalars, or vectors of the same number of elements. If the value
2470 won't fit in the floating point type, the results are undefined.
2471``ptrtoint (CST to TYPE)``
2472 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002473 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002474 pointer type. The ``CST`` value is zero extended, truncated, or
2475 unchanged to make it fit in ``TYPE``.
2476``inttoptr (CST to TYPE)``
2477 Convert an integer constant to a pointer constant. TYPE must be a
2478 pointer type. CST must be of integer type. The CST value is zero
2479 extended, truncated, or unchanged to make it fit in a pointer size.
2480 This one is *really* dangerous!
2481``bitcast (CST to TYPE)``
2482 Convert a constant, CST, to another TYPE. The constraints of the
2483 operands are the same as those for the :ref:`bitcast
2484 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002485``addrspacecast (CST to TYPE)``
2486 Convert a constant pointer or constant vector of pointer, CST, to another
2487 TYPE in a different address space. The constraints of the operands are the
2488 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002489``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2490 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2491 constants. As with the :ref:`getelementptr <i_getelementptr>`
2492 instruction, the index list may have zero or more indexes, which are
2493 required to make sense for the type of "CSTPTR".
2494``select (COND, VAL1, VAL2)``
2495 Perform the :ref:`select operation <i_select>` on constants.
2496``icmp COND (VAL1, VAL2)``
2497 Performs the :ref:`icmp operation <i_icmp>` on constants.
2498``fcmp COND (VAL1, VAL2)``
2499 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2500``extractelement (VAL, IDX)``
2501 Perform the :ref:`extractelement operation <i_extractelement>` on
2502 constants.
2503``insertelement (VAL, ELT, IDX)``
2504 Perform the :ref:`insertelement operation <i_insertelement>` on
2505 constants.
2506``shufflevector (VEC1, VEC2, IDXMASK)``
2507 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2508 constants.
2509``extractvalue (VAL, IDX0, IDX1, ...)``
2510 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2511 constants. The index list is interpreted in a similar manner as
2512 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2513 least one index value must be specified.
2514``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2515 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2516 The index list is interpreted in a similar manner as indices in a
2517 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2518 value must be specified.
2519``OPCODE (LHS, RHS)``
2520 Perform the specified operation of the LHS and RHS constants. OPCODE
2521 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2522 binary <bitwiseops>` operations. The constraints on operands are
2523 the same as those for the corresponding instruction (e.g. no bitwise
2524 operations on floating point values are allowed).
2525
2526Other Values
2527============
2528
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002529.. _inlineasmexprs:
2530
Sean Silvab084af42012-12-07 10:36:55 +00002531Inline Assembler Expressions
2532----------------------------
2533
2534LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2535Inline Assembly <moduleasm>`) through the use of a special value. This
2536value represents the inline assembler as a string (containing the
2537instructions to emit), a list of operand constraints (stored as a
2538string), a flag that indicates whether or not the inline asm expression
2539has side effects, and a flag indicating whether the function containing
2540the asm needs to align its stack conservatively. An example inline
2541assembler expression is:
2542
2543.. code-block:: llvm
2544
2545 i32 (i32) asm "bswap $0", "=r,r"
2546
2547Inline assembler expressions may **only** be used as the callee operand
2548of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2549Thus, typically we have:
2550
2551.. code-block:: llvm
2552
2553 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2554
2555Inline asms with side effects not visible in the constraint list must be
2556marked as having side effects. This is done through the use of the
2557'``sideeffect``' keyword, like so:
2558
2559.. code-block:: llvm
2560
2561 call void asm sideeffect "eieio", ""()
2562
2563In some cases inline asms will contain code that will not work unless
2564the stack is aligned in some way, such as calls or SSE instructions on
2565x86, yet will not contain code that does that alignment within the asm.
2566The compiler should make conservative assumptions about what the asm
2567might contain and should generate its usual stack alignment code in the
2568prologue if the '``alignstack``' keyword is present:
2569
2570.. code-block:: llvm
2571
2572 call void asm alignstack "eieio", ""()
2573
2574Inline asms also support using non-standard assembly dialects. The
2575assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2576the inline asm is using the Intel dialect. Currently, ATT and Intel are
2577the only supported dialects. An example is:
2578
2579.. code-block:: llvm
2580
2581 call void asm inteldialect "eieio", ""()
2582
2583If multiple keywords appear the '``sideeffect``' keyword must come
2584first, the '``alignstack``' keyword second and the '``inteldialect``'
2585keyword last.
2586
2587Inline Asm Metadata
2588^^^^^^^^^^^^^^^^^^^
2589
2590The call instructions that wrap inline asm nodes may have a
2591"``!srcloc``" MDNode attached to it that contains a list of constant
2592integers. If present, the code generator will use the integer as the
2593location cookie value when report errors through the ``LLVMContext``
2594error reporting mechanisms. This allows a front-end to correlate backend
2595errors that occur with inline asm back to the source code that produced
2596it. For example:
2597
2598.. code-block:: llvm
2599
2600 call void asm sideeffect "something bad", ""(), !srcloc !42
2601 ...
2602 !42 = !{ i32 1234567 }
2603
2604It is up to the front-end to make sense of the magic numbers it places
2605in the IR. If the MDNode contains multiple constants, the code generator
2606will use the one that corresponds to the line of the asm that the error
2607occurs on.
2608
2609.. _metadata:
2610
2611Metadata Nodes and Metadata Strings
2612-----------------------------------
2613
2614LLVM IR allows metadata to be attached to instructions in the program
2615that can convey extra information about the code to the optimizers and
2616code generator. One example application of metadata is source-level
2617debug information. There are two metadata primitives: strings and nodes.
2618All metadata has the ``metadata`` type and is identified in syntax by a
2619preceding exclamation point ('``!``').
2620
2621A metadata string is a string surrounded by double quotes. It can
2622contain any character by escaping non-printable characters with
2623"``\xx``" where "``xx``" is the two digit hex code. For example:
2624"``!"test\00"``".
2625
2626Metadata nodes are represented with notation similar to structure
2627constants (a comma separated list of elements, surrounded by braces and
2628preceded by an exclamation point). Metadata nodes can have any values as
2629their operand. For example:
2630
2631.. code-block:: llvm
2632
2633 !{ metadata !"test\00", i32 10}
2634
2635A :ref:`named metadata <namedmetadatastructure>` is a collection of
2636metadata nodes, which can be looked up in the module symbol table. For
2637example:
2638
2639.. code-block:: llvm
2640
2641 !foo = metadata !{!4, !3}
2642
2643Metadata can be used as function arguments. Here ``llvm.dbg.value``
2644function is using two metadata arguments:
2645
2646.. code-block:: llvm
2647
2648 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2649
2650Metadata can be attached with an instruction. Here metadata ``!21`` is
2651attached to the ``add`` instruction using the ``!dbg`` identifier:
2652
2653.. code-block:: llvm
2654
2655 %indvar.next = add i64 %indvar, 1, !dbg !21
2656
2657More information about specific metadata nodes recognized by the
2658optimizers and code generator is found below.
2659
2660'``tbaa``' Metadata
2661^^^^^^^^^^^^^^^^^^^
2662
2663In LLVM IR, memory does not have types, so LLVM's own type system is not
2664suitable for doing TBAA. Instead, metadata is added to the IR to
2665describe a type system of a higher level language. This can be used to
2666implement typical C/C++ TBAA, but it can also be used to implement
2667custom alias analysis behavior for other languages.
2668
2669The current metadata format is very simple. TBAA metadata nodes have up
2670to three fields, e.g.:
2671
2672.. code-block:: llvm
2673
2674 !0 = metadata !{ metadata !"an example type tree" }
2675 !1 = metadata !{ metadata !"int", metadata !0 }
2676 !2 = metadata !{ metadata !"float", metadata !0 }
2677 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2678
2679The first field is an identity field. It can be any value, usually a
2680metadata string, which uniquely identifies the type. The most important
2681name in the tree is the name of the root node. Two trees with different
2682root node names are entirely disjoint, even if they have leaves with
2683common names.
2684
2685The second field identifies the type's parent node in the tree, or is
2686null or omitted for a root node. A type is considered to alias all of
2687its descendants and all of its ancestors in the tree. Also, a type is
2688considered to alias all types in other trees, so that bitcode produced
2689from multiple front-ends is handled conservatively.
2690
2691If the third field is present, it's an integer which if equal to 1
2692indicates that the type is "constant" (meaning
2693``pointsToConstantMemory`` should return true; see `other useful
2694AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2695
2696'``tbaa.struct``' Metadata
2697^^^^^^^^^^^^^^^^^^^^^^^^^^
2698
2699The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2700aggregate assignment operations in C and similar languages, however it
2701is defined to copy a contiguous region of memory, which is more than
2702strictly necessary for aggregate types which contain holes due to
2703padding. Also, it doesn't contain any TBAA information about the fields
2704of the aggregate.
2705
2706``!tbaa.struct`` metadata can describe which memory subregions in a
2707memcpy are padding and what the TBAA tags of the struct are.
2708
2709The current metadata format is very simple. ``!tbaa.struct`` metadata
2710nodes are a list of operands which are in conceptual groups of three.
2711For each group of three, the first operand gives the byte offset of a
2712field in bytes, the second gives its size in bytes, and the third gives
2713its tbaa tag. e.g.:
2714
2715.. code-block:: llvm
2716
2717 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2718
2719This describes a struct with two fields. The first is at offset 0 bytes
2720with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2721and has size 4 bytes and has tbaa tag !2.
2722
2723Note that the fields need not be contiguous. In this example, there is a
27244 byte gap between the two fields. This gap represents padding which
2725does not carry useful data and need not be preserved.
2726
2727'``fpmath``' Metadata
2728^^^^^^^^^^^^^^^^^^^^^
2729
2730``fpmath`` metadata may be attached to any instruction of floating point
2731type. It can be used to express the maximum acceptable error in the
2732result of that instruction, in ULPs, thus potentially allowing the
2733compiler to use a more efficient but less accurate method of computing
2734it. ULP is defined as follows:
2735
2736 If ``x`` is a real number that lies between two finite consecutive
2737 floating-point numbers ``a`` and ``b``, without being equal to one
2738 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2739 distance between the two non-equal finite floating-point numbers
2740 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2741
2742The metadata node shall consist of a single positive floating point
2743number representing the maximum relative error, for example:
2744
2745.. code-block:: llvm
2746
2747 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2748
2749'``range``' Metadata
2750^^^^^^^^^^^^^^^^^^^^
2751
2752``range`` metadata may be attached only to loads of integer types. It
2753expresses the possible ranges the loaded value is in. The ranges are
2754represented with a flattened list of integers. The loaded value is known
2755to be in the union of the ranges defined by each consecutive pair. Each
2756pair has the following properties:
2757
2758- The type must match the type loaded by the instruction.
2759- The pair ``a,b`` represents the range ``[a,b)``.
2760- Both ``a`` and ``b`` are constants.
2761- The range is allowed to wrap.
2762- The range should not represent the full or empty set. That is,
2763 ``a!=b``.
2764
2765In addition, the pairs must be in signed order of the lower bound and
2766they must be non-contiguous.
2767
2768Examples:
2769
2770.. code-block:: llvm
2771
2772 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2773 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2774 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2775 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2776 ...
2777 !0 = metadata !{ i8 0, i8 2 }
2778 !1 = metadata !{ i8 255, i8 2 }
2779 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2780 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2781
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002782'``llvm.loop``'
2783^^^^^^^^^^^^^^^
2784
2785It is sometimes useful to attach information to loop constructs. Currently,
2786loop metadata is implemented as metadata attached to the branch instruction
2787in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002788guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002790
2791The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002792itself to avoid merging it with any other identifier metadata, e.g.,
2793during module linkage or function inlining. That is, each loop should refer
2794to their own identification metadata even if they reside in separate functions.
2795The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002796constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002797
2798.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002799
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002800 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002801 !1 = metadata !{ metadata !1 }
2802
Paul Redmond5fdf8362013-05-28 20:00:34 +00002803The loop identifier metadata can be used to specify additional per-loop
2804metadata. Any operands after the first operand can be treated as user-defined
2805metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2806by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002807
Paul Redmond5fdf8362013-05-28 20:00:34 +00002808.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002809
Paul Redmond5fdf8362013-05-28 20:00:34 +00002810 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2811 ...
2812 !0 = metadata !{ metadata !0, metadata !1 }
2813 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002814
2815'``llvm.mem``'
2816^^^^^^^^^^^^^^^
2817
2818Metadata types used to annotate memory accesses with information helpful
2819for optimizations are prefixed with ``llvm.mem``.
2820
2821'``llvm.mem.parallel_loop_access``' Metadata
2822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2823
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002824The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2825or metadata containing a list of loop identifiers for nested loops.
2826The metadata is attached to memory accessing instructions and denotes that
2827no loop carried memory dependence exist between it and other instructions denoted
2828with the same loop identifier.
2829
2830Precisely, given two instructions ``m1`` and ``m2`` that both have the
2831``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2832set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00002833carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002834``L2``.
2835
2836As a special case, if all memory accessing instructions in a loop have
2837``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2838loop has no loop carried memory dependences and is considered to be a parallel
2839loop.
2840
2841Note that if not all memory access instructions have such metadata referring to
2842the loop, then the loop is considered not being trivially parallel. Additional
2843memory dependence analysis is required to make that determination. As a fail
2844safe mechanism, this causes loops that were originally parallel to be considered
2845sequential (if optimization passes that are unaware of the parallel semantics
2846insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002847
2848Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002849both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002850metadata types that refer to the same loop identifier metadata.
2851
2852.. code-block:: llvm
2853
2854 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002855 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002856 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002857 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002858 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002859 ...
2860 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002861
2862 for.end:
2863 ...
2864 !0 = metadata !{ metadata !0 }
2865
2866It is also possible to have nested parallel loops. In that case the
2867memory accesses refer to a list of loop identifier metadata nodes instead of
2868the loop identifier metadata node directly:
2869
2870.. code-block:: llvm
2871
2872 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002873 ...
2874 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2875 ...
2876 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002877
2878 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002879 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002880 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002881 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002882 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002883 ...
2884 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002885
2886 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002887 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002888 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002889 ...
2890 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002891
2892 outer.for.end: ; preds = %for.body
2893 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002894 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2895 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2896 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002897
Paul Redmond5fdf8362013-05-28 20:00:34 +00002898'``llvm.vectorizer``'
2899^^^^^^^^^^^^^^^^^^^^^
2900
2901Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2902vectorization parameters such as vectorization factor and unroll factor.
2903
2904``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2905loop identification metadata.
2906
2907'``llvm.vectorizer.unroll``' Metadata
2908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2909
2910This metadata instructs the loop vectorizer to unroll the specified
2911loop exactly ``N`` times.
2912
2913The first operand is the string ``llvm.vectorizer.unroll`` and the second
2914operand is an integer specifying the unroll factor. For example:
2915
2916.. code-block:: llvm
2917
2918 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2919
2920Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2921loop.
2922
2923If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2924determined automatically.
2925
2926'``llvm.vectorizer.width``' Metadata
2927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2928
Paul Redmondeccbb322013-05-30 17:22:46 +00002929This metadata sets the target width of the vectorizer to ``N``. Without
2930this metadata, the vectorizer will choose a width automatically.
2931Regardless of this metadata, the vectorizer will only vectorize loops if
2932it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002933
2934The first operand is the string ``llvm.vectorizer.width`` and the second
2935operand is an integer specifying the width. For example:
2936
2937.. code-block:: llvm
2938
2939 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2940
2941Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2942loop.
2943
2944If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2945automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002946
Sean Silvab084af42012-12-07 10:36:55 +00002947Module Flags Metadata
2948=====================
2949
2950Information about the module as a whole is difficult to convey to LLVM's
2951subsystems. The LLVM IR isn't sufficient to transmit this information.
2952The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002953this. These flags are in the form of key / value pairs --- much like a
2954dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002955look it up.
2956
2957The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2958Each triplet has the following form:
2959
2960- The first element is a *behavior* flag, which specifies the behavior
2961 when two (or more) modules are merged together, and it encounters two
2962 (or more) metadata with the same ID. The supported behaviors are
2963 described below.
2964- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002965 metadata. Each module may only have one flag entry for each unique ID (not
2966 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002967- The third element is the value of the flag.
2968
2969When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002970``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2971each unique metadata ID string, there will be exactly one entry in the merged
2972modules ``llvm.module.flags`` metadata table, and the value for that entry will
2973be determined by the merge behavior flag, as described below. The only exception
2974is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002975
2976The following behaviors are supported:
2977
2978.. list-table::
2979 :header-rows: 1
2980 :widths: 10 90
2981
2982 * - Value
2983 - Behavior
2984
2985 * - 1
2986 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002987 Emits an error if two values disagree, otherwise the resulting value
2988 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002989
2990 * - 2
2991 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002992 Emits a warning if two values disagree. The result value will be the
2993 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002994
2995 * - 3
2996 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002997 Adds a requirement that another module flag be present and have a
2998 specified value after linking is performed. The value must be a
2999 metadata pair, where the first element of the pair is the ID of the
3000 module flag to be restricted, and the second element of the pair is
3001 the value the module flag should be restricted to. This behavior can
3002 be used to restrict the allowable results (via triggering of an
3003 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003004
3005 * - 4
3006 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003007 Uses the specified value, regardless of the behavior or value of the
3008 other module. If both modules specify **Override**, but the values
3009 differ, an error will be emitted.
3010
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003011 * - 5
3012 - **Append**
3013 Appends the two values, which are required to be metadata nodes.
3014
3015 * - 6
3016 - **AppendUnique**
3017 Appends the two values, which are required to be metadata
3018 nodes. However, duplicate entries in the second list are dropped
3019 during the append operation.
3020
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003021It is an error for a particular unique flag ID to have multiple behaviors,
3022except in the case of **Require** (which adds restrictions on another metadata
3023value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003024
3025An example of module flags:
3026
3027.. code-block:: llvm
3028
3029 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3030 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3031 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3032 !3 = metadata !{ i32 3, metadata !"qux",
3033 metadata !{
3034 metadata !"foo", i32 1
3035 }
3036 }
3037 !llvm.module.flags = !{ !0, !1, !2, !3 }
3038
3039- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3040 if two or more ``!"foo"`` flags are seen is to emit an error if their
3041 values are not equal.
3042
3043- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3044 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003045 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003046
3047- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3048 behavior if two or more ``!"qux"`` flags are seen is to emit a
3049 warning if their values are not equal.
3050
3051- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3052
3053 ::
3054
3055 metadata !{ metadata !"foo", i32 1 }
3056
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003057 The behavior is to emit an error if the ``llvm.module.flags`` does not
3058 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3059 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003060
3061Objective-C Garbage Collection Module Flags Metadata
3062----------------------------------------------------
3063
3064On the Mach-O platform, Objective-C stores metadata about garbage
3065collection in a special section called "image info". The metadata
3066consists of a version number and a bitmask specifying what types of
3067garbage collection are supported (if any) by the file. If two or more
3068modules are linked together their garbage collection metadata needs to
3069be merged rather than appended together.
3070
3071The Objective-C garbage collection module flags metadata consists of the
3072following key-value pairs:
3073
3074.. list-table::
3075 :header-rows: 1
3076 :widths: 30 70
3077
3078 * - Key
3079 - Value
3080
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003081 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003082 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003083
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003084 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003085 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003086 always 0.
3087
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003088 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003089 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003090 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3091 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3092 Objective-C ABI version 2.
3093
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003094 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003095 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003096 not. Valid values are 0, for no garbage collection, and 2, for garbage
3097 collection supported.
3098
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003099 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003100 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003101 If present, its value must be 6. This flag requires that the
3102 ``Objective-C Garbage Collection`` flag have the value 2.
3103
3104Some important flag interactions:
3105
3106- If a module with ``Objective-C Garbage Collection`` set to 0 is
3107 merged with a module with ``Objective-C Garbage Collection`` set to
3108 2, then the resulting module has the
3109 ``Objective-C Garbage Collection`` flag set to 0.
3110- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3111 merged with a module with ``Objective-C GC Only`` set to 6.
3112
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003113Automatic Linker Flags Module Flags Metadata
3114--------------------------------------------
3115
3116Some targets support embedding flags to the linker inside individual object
3117files. Typically this is used in conjunction with language extensions which
3118allow source files to explicitly declare the libraries they depend on, and have
3119these automatically be transmitted to the linker via object files.
3120
3121These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003122using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003123to be ``AppendUnique``, and the value for the key is expected to be a metadata
3124node which should be a list of other metadata nodes, each of which should be a
3125list of metadata strings defining linker options.
3126
3127For example, the following metadata section specifies two separate sets of
3128linker options, presumably to link against ``libz`` and the ``Cocoa``
3129framework::
3130
Michael Liaoa7699082013-03-06 18:24:34 +00003131 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003132 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003133 metadata !{ metadata !"-lz" },
3134 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003135 !llvm.module.flags = !{ !0 }
3136
3137The metadata encoding as lists of lists of options, as opposed to a collapsed
3138list of options, is chosen so that the IR encoding can use multiple option
3139strings to specify e.g., a single library, while still having that specifier be
3140preserved as an atomic element that can be recognized by a target specific
3141assembly writer or object file emitter.
3142
3143Each individual option is required to be either a valid option for the target's
3144linker, or an option that is reserved by the target specific assembly writer or
3145object file emitter. No other aspect of these options is defined by the IR.
3146
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003147.. _intrinsicglobalvariables:
3148
Sean Silvab084af42012-12-07 10:36:55 +00003149Intrinsic Global Variables
3150==========================
3151
3152LLVM has a number of "magic" global variables that contain data that
3153affect code generation or other IR semantics. These are documented here.
3154All globals of this sort should have a section specified as
3155"``llvm.metadata``". This section and all globals that start with
3156"``llvm.``" are reserved for use by LLVM.
3157
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003158.. _gv_llvmused:
3159
Sean Silvab084af42012-12-07 10:36:55 +00003160The '``llvm.used``' Global Variable
3161-----------------------------------
3162
Rafael Espindola74f2e462013-04-22 14:58:02 +00003163The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003164:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003165pointers to named global variables, functions and aliases which may optionally
3166have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003167use of it is:
3168
3169.. code-block:: llvm
3170
3171 @X = global i8 4
3172 @Y = global i32 123
3173
3174 @llvm.used = appending global [2 x i8*] [
3175 i8* @X,
3176 i8* bitcast (i32* @Y to i8*)
3177 ], section "llvm.metadata"
3178
Rafael Espindola74f2e462013-04-22 14:58:02 +00003179If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3180and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003181symbol that it cannot see (which is why they have to be named). For example, if
3182a variable has internal linkage and no references other than that from the
3183``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3184references from inline asms and other things the compiler cannot "see", and
3185corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003186
3187On some targets, the code generator must emit a directive to the
3188assembler or object file to prevent the assembler and linker from
3189molesting the symbol.
3190
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003191.. _gv_llvmcompilerused:
3192
Sean Silvab084af42012-12-07 10:36:55 +00003193The '``llvm.compiler.used``' Global Variable
3194--------------------------------------------
3195
3196The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3197directive, except that it only prevents the compiler from touching the
3198symbol. On targets that support it, this allows an intelligent linker to
3199optimize references to the symbol without being impeded as it would be
3200by ``@llvm.used``.
3201
3202This is a rare construct that should only be used in rare circumstances,
3203and should not be exposed to source languages.
3204
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003205.. _gv_llvmglobalctors:
3206
Sean Silvab084af42012-12-07 10:36:55 +00003207The '``llvm.global_ctors``' Global Variable
3208-------------------------------------------
3209
3210.. code-block:: llvm
3211
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003212 %0 = type { i32, void ()*, i8* }
3213 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003214
3215The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003216functions, priorities, and an optional associated global or function.
3217The functions referenced by this array will be called in ascending order
3218of priority (i.e. lowest first) when the module is loaded. The order of
3219functions with the same priority is not defined.
3220
3221If the third field is present, non-null, and points to a global variable
3222or function, the initializer function will only run if the associated
3223data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003224
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003225.. _llvmglobaldtors:
3226
Sean Silvab084af42012-12-07 10:36:55 +00003227The '``llvm.global_dtors``' Global Variable
3228-------------------------------------------
3229
3230.. code-block:: llvm
3231
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003232 %0 = type { i32, void ()*, i8* }
3233 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003234
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003235The ``@llvm.global_dtors`` array contains a list of destructor
3236functions, priorities, and an optional associated global or function.
3237The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003238order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003239order of functions with the same priority is not defined.
3240
3241If the third field is present, non-null, and points to a global variable
3242or function, the destructor function will only run if the associated
3243data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003244
3245Instruction Reference
3246=====================
3247
3248The LLVM instruction set consists of several different classifications
3249of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3250instructions <binaryops>`, :ref:`bitwise binary
3251instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3252:ref:`other instructions <otherops>`.
3253
3254.. _terminators:
3255
3256Terminator Instructions
3257-----------------------
3258
3259As mentioned :ref:`previously <functionstructure>`, every basic block in a
3260program ends with a "Terminator" instruction, which indicates which
3261block should be executed after the current block is finished. These
3262terminator instructions typically yield a '``void``' value: they produce
3263control flow, not values (the one exception being the
3264':ref:`invoke <i_invoke>`' instruction).
3265
3266The terminator instructions are: ':ref:`ret <i_ret>`',
3267':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3268':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3269':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3270
3271.. _i_ret:
3272
3273'``ret``' Instruction
3274^^^^^^^^^^^^^^^^^^^^^
3275
3276Syntax:
3277"""""""
3278
3279::
3280
3281 ret <type> <value> ; Return a value from a non-void function
3282 ret void ; Return from void function
3283
3284Overview:
3285"""""""""
3286
3287The '``ret``' instruction is used to return control flow (and optionally
3288a value) from a function back to the caller.
3289
3290There are two forms of the '``ret``' instruction: one that returns a
3291value and then causes control flow, and one that just causes control
3292flow to occur.
3293
3294Arguments:
3295""""""""""
3296
3297The '``ret``' instruction optionally accepts a single argument, the
3298return value. The type of the return value must be a ':ref:`first
3299class <t_firstclass>`' type.
3300
3301A function is not :ref:`well formed <wellformed>` if it it has a non-void
3302return type and contains a '``ret``' instruction with no return value or
3303a return value with a type that does not match its type, or if it has a
3304void return type and contains a '``ret``' instruction with a return
3305value.
3306
3307Semantics:
3308""""""""""
3309
3310When the '``ret``' instruction is executed, control flow returns back to
3311the calling function's context. If the caller is a
3312":ref:`call <i_call>`" instruction, execution continues at the
3313instruction after the call. If the caller was an
3314":ref:`invoke <i_invoke>`" instruction, execution continues at the
3315beginning of the "normal" destination block. If the instruction returns
3316a value, that value shall set the call or invoke instruction's return
3317value.
3318
3319Example:
3320""""""""
3321
3322.. code-block:: llvm
3323
3324 ret i32 5 ; Return an integer value of 5
3325 ret void ; Return from a void function
3326 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3327
3328.. _i_br:
3329
3330'``br``' Instruction
3331^^^^^^^^^^^^^^^^^^^^
3332
3333Syntax:
3334"""""""
3335
3336::
3337
3338 br i1 <cond>, label <iftrue>, label <iffalse>
3339 br label <dest> ; Unconditional branch
3340
3341Overview:
3342"""""""""
3343
3344The '``br``' instruction is used to cause control flow to transfer to a
3345different basic block in the current function. There are two forms of
3346this instruction, corresponding to a conditional branch and an
3347unconditional branch.
3348
3349Arguments:
3350""""""""""
3351
3352The conditional branch form of the '``br``' instruction takes a single
3353'``i1``' value and two '``label``' values. The unconditional form of the
3354'``br``' instruction takes a single '``label``' value as a target.
3355
3356Semantics:
3357""""""""""
3358
3359Upon execution of a conditional '``br``' instruction, the '``i1``'
3360argument is evaluated. If the value is ``true``, control flows to the
3361'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3362to the '``iffalse``' ``label`` argument.
3363
3364Example:
3365""""""""
3366
3367.. code-block:: llvm
3368
3369 Test:
3370 %cond = icmp eq i32 %a, %b
3371 br i1 %cond, label %IfEqual, label %IfUnequal
3372 IfEqual:
3373 ret i32 1
3374 IfUnequal:
3375 ret i32 0
3376
3377.. _i_switch:
3378
3379'``switch``' Instruction
3380^^^^^^^^^^^^^^^^^^^^^^^^
3381
3382Syntax:
3383"""""""
3384
3385::
3386
3387 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3388
3389Overview:
3390"""""""""
3391
3392The '``switch``' instruction is used to transfer control flow to one of
3393several different places. It is a generalization of the '``br``'
3394instruction, allowing a branch to occur to one of many possible
3395destinations.
3396
3397Arguments:
3398""""""""""
3399
3400The '``switch``' instruction uses three parameters: an integer
3401comparison value '``value``', a default '``label``' destination, and an
3402array of pairs of comparison value constants and '``label``'s. The table
3403is not allowed to contain duplicate constant entries.
3404
3405Semantics:
3406""""""""""
3407
3408The ``switch`` instruction specifies a table of values and destinations.
3409When the '``switch``' instruction is executed, this table is searched
3410for the given value. If the value is found, control flow is transferred
3411to the corresponding destination; otherwise, control flow is transferred
3412to the default destination.
3413
3414Implementation:
3415"""""""""""""""
3416
3417Depending on properties of the target machine and the particular
3418``switch`` instruction, this instruction may be code generated in
3419different ways. For example, it could be generated as a series of
3420chained conditional branches or with a lookup table.
3421
3422Example:
3423""""""""
3424
3425.. code-block:: llvm
3426
3427 ; Emulate a conditional br instruction
3428 %Val = zext i1 %value to i32
3429 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3430
3431 ; Emulate an unconditional br instruction
3432 switch i32 0, label %dest [ ]
3433
3434 ; Implement a jump table:
3435 switch i32 %val, label %otherwise [ i32 0, label %onzero
3436 i32 1, label %onone
3437 i32 2, label %ontwo ]
3438
3439.. _i_indirectbr:
3440
3441'``indirectbr``' Instruction
3442^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3443
3444Syntax:
3445"""""""
3446
3447::
3448
3449 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3450
3451Overview:
3452"""""""""
3453
3454The '``indirectbr``' instruction implements an indirect branch to a
3455label within the current function, whose address is specified by
3456"``address``". Address must be derived from a
3457:ref:`blockaddress <blockaddress>` constant.
3458
3459Arguments:
3460""""""""""
3461
3462The '``address``' argument is the address of the label to jump to. The
3463rest of the arguments indicate the full set of possible destinations
3464that the address may point to. Blocks are allowed to occur multiple
3465times in the destination list, though this isn't particularly useful.
3466
3467This destination list is required so that dataflow analysis has an
3468accurate understanding of the CFG.
3469
3470Semantics:
3471""""""""""
3472
3473Control transfers to the block specified in the address argument. All
3474possible destination blocks must be listed in the label list, otherwise
3475this instruction has undefined behavior. This implies that jumps to
3476labels defined in other functions have undefined behavior as well.
3477
3478Implementation:
3479"""""""""""""""
3480
3481This is typically implemented with a jump through a register.
3482
3483Example:
3484""""""""
3485
3486.. code-block:: llvm
3487
3488 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3489
3490.. _i_invoke:
3491
3492'``invoke``' Instruction
3493^^^^^^^^^^^^^^^^^^^^^^^^
3494
3495Syntax:
3496"""""""
3497
3498::
3499
3500 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3501 to label <normal label> unwind label <exception label>
3502
3503Overview:
3504"""""""""
3505
3506The '``invoke``' instruction causes control to transfer to a specified
3507function, with the possibility of control flow transfer to either the
3508'``normal``' label or the '``exception``' label. If the callee function
3509returns with the "``ret``" instruction, control flow will return to the
3510"normal" label. If the callee (or any indirect callees) returns via the
3511":ref:`resume <i_resume>`" instruction or other exception handling
3512mechanism, control is interrupted and continued at the dynamically
3513nearest "exception" label.
3514
3515The '``exception``' label is a `landing
3516pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3517'``exception``' label is required to have the
3518":ref:`landingpad <i_landingpad>`" instruction, which contains the
3519information about the behavior of the program after unwinding happens,
3520as its first non-PHI instruction. The restrictions on the
3521"``landingpad``" instruction's tightly couples it to the "``invoke``"
3522instruction, so that the important information contained within the
3523"``landingpad``" instruction can't be lost through normal code motion.
3524
3525Arguments:
3526""""""""""
3527
3528This instruction requires several arguments:
3529
3530#. The optional "cconv" marker indicates which :ref:`calling
3531 convention <callingconv>` the call should use. If none is
3532 specified, the call defaults to using C calling conventions.
3533#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3534 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3535 are valid here.
3536#. '``ptr to function ty``': shall be the signature of the pointer to
3537 function value being invoked. In most cases, this is a direct
3538 function invocation, but indirect ``invoke``'s are just as possible,
3539 branching off an arbitrary pointer to function value.
3540#. '``function ptr val``': An LLVM value containing a pointer to a
3541 function to be invoked.
3542#. '``function args``': argument list whose types match the function
3543 signature argument types and parameter attributes. All arguments must
3544 be of :ref:`first class <t_firstclass>` type. If the function signature
3545 indicates the function accepts a variable number of arguments, the
3546 extra arguments can be specified.
3547#. '``normal label``': the label reached when the called function
3548 executes a '``ret``' instruction.
3549#. '``exception label``': the label reached when a callee returns via
3550 the :ref:`resume <i_resume>` instruction or other exception handling
3551 mechanism.
3552#. The optional :ref:`function attributes <fnattrs>` list. Only
3553 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3554 attributes are valid here.
3555
3556Semantics:
3557""""""""""
3558
3559This instruction is designed to operate as a standard '``call``'
3560instruction in most regards. The primary difference is that it
3561establishes an association with a label, which is used by the runtime
3562library to unwind the stack.
3563
3564This instruction is used in languages with destructors to ensure that
3565proper cleanup is performed in the case of either a ``longjmp`` or a
3566thrown exception. Additionally, this is important for implementation of
3567'``catch``' clauses in high-level languages that support them.
3568
3569For the purposes of the SSA form, the definition of the value returned
3570by the '``invoke``' instruction is deemed to occur on the edge from the
3571current block to the "normal" label. If the callee unwinds then no
3572return value is available.
3573
3574Example:
3575""""""""
3576
3577.. code-block:: llvm
3578
3579 %retval = invoke i32 @Test(i32 15) to label %Continue
3580 unwind label %TestCleanup ; {i32}:retval set
3581 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3582 unwind label %TestCleanup ; {i32}:retval set
3583
3584.. _i_resume:
3585
3586'``resume``' Instruction
3587^^^^^^^^^^^^^^^^^^^^^^^^
3588
3589Syntax:
3590"""""""
3591
3592::
3593
3594 resume <type> <value>
3595
3596Overview:
3597"""""""""
3598
3599The '``resume``' instruction is a terminator instruction that has no
3600successors.
3601
3602Arguments:
3603""""""""""
3604
3605The '``resume``' instruction requires one argument, which must have the
3606same type as the result of any '``landingpad``' instruction in the same
3607function.
3608
3609Semantics:
3610""""""""""
3611
3612The '``resume``' instruction resumes propagation of an existing
3613(in-flight) exception whose unwinding was interrupted with a
3614:ref:`landingpad <i_landingpad>` instruction.
3615
3616Example:
3617""""""""
3618
3619.. code-block:: llvm
3620
3621 resume { i8*, i32 } %exn
3622
3623.. _i_unreachable:
3624
3625'``unreachable``' Instruction
3626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3627
3628Syntax:
3629"""""""
3630
3631::
3632
3633 unreachable
3634
3635Overview:
3636"""""""""
3637
3638The '``unreachable``' instruction has no defined semantics. This
3639instruction is used to inform the optimizer that a particular portion of
3640the code is not reachable. This can be used to indicate that the code
3641after a no-return function cannot be reached, and other facts.
3642
3643Semantics:
3644""""""""""
3645
3646The '``unreachable``' instruction has no defined semantics.
3647
3648.. _binaryops:
3649
3650Binary Operations
3651-----------------
3652
3653Binary operators are used to do most of the computation in a program.
3654They require two operands of the same type, execute an operation on
3655them, and produce a single value. The operands might represent multiple
3656data, as is the case with the :ref:`vector <t_vector>` data type. The
3657result value has the same type as its operands.
3658
3659There are several different binary operators:
3660
3661.. _i_add:
3662
3663'``add``' Instruction
3664^^^^^^^^^^^^^^^^^^^^^
3665
3666Syntax:
3667"""""""
3668
3669::
3670
3671 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3672 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3673 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3674 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3675
3676Overview:
3677"""""""""
3678
3679The '``add``' instruction returns the sum of its two operands.
3680
3681Arguments:
3682""""""""""
3683
3684The two arguments to the '``add``' instruction must be
3685:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3686arguments must have identical types.
3687
3688Semantics:
3689""""""""""
3690
3691The value produced is the integer sum of the two operands.
3692
3693If the sum has unsigned overflow, the result returned is the
3694mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3695the result.
3696
3697Because LLVM integers use a two's complement representation, this
3698instruction is appropriate for both signed and unsigned integers.
3699
3700``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3701respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3702result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3703unsigned and/or signed overflow, respectively, occurs.
3704
3705Example:
3706""""""""
3707
3708.. code-block:: llvm
3709
3710 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3711
3712.. _i_fadd:
3713
3714'``fadd``' Instruction
3715^^^^^^^^^^^^^^^^^^^^^^
3716
3717Syntax:
3718"""""""
3719
3720::
3721
3722 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3723
3724Overview:
3725"""""""""
3726
3727The '``fadd``' instruction returns the sum of its two operands.
3728
3729Arguments:
3730""""""""""
3731
3732The two arguments to the '``fadd``' instruction must be :ref:`floating
3733point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3734Both arguments must have identical types.
3735
3736Semantics:
3737""""""""""
3738
3739The value produced is the floating point sum of the two operands. This
3740instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3741which are optimization hints to enable otherwise unsafe floating point
3742optimizations:
3743
3744Example:
3745""""""""
3746
3747.. code-block:: llvm
3748
3749 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3750
3751'``sub``' Instruction
3752^^^^^^^^^^^^^^^^^^^^^
3753
3754Syntax:
3755"""""""
3756
3757::
3758
3759 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3760 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3761 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3762 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3763
3764Overview:
3765"""""""""
3766
3767The '``sub``' instruction returns the difference of its two operands.
3768
3769Note that the '``sub``' instruction is used to represent the '``neg``'
3770instruction present in most other intermediate representations.
3771
3772Arguments:
3773""""""""""
3774
3775The two arguments to the '``sub``' instruction must be
3776:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3777arguments must have identical types.
3778
3779Semantics:
3780""""""""""
3781
3782The value produced is the integer difference of the two operands.
3783
3784If the difference has unsigned overflow, the result returned is the
3785mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3786the result.
3787
3788Because LLVM integers use a two's complement representation, this
3789instruction is appropriate for both signed and unsigned integers.
3790
3791``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3792respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3793result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3794unsigned and/or signed overflow, respectively, occurs.
3795
3796Example:
3797""""""""
3798
3799.. code-block:: llvm
3800
3801 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3802 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3803
3804.. _i_fsub:
3805
3806'``fsub``' Instruction
3807^^^^^^^^^^^^^^^^^^^^^^
3808
3809Syntax:
3810"""""""
3811
3812::
3813
3814 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3815
3816Overview:
3817"""""""""
3818
3819The '``fsub``' instruction returns the difference of its two operands.
3820
3821Note that the '``fsub``' instruction is used to represent the '``fneg``'
3822instruction present in most other intermediate representations.
3823
3824Arguments:
3825""""""""""
3826
3827The two arguments to the '``fsub``' instruction must be :ref:`floating
3828point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3829Both arguments must have identical types.
3830
3831Semantics:
3832""""""""""
3833
3834The value produced is the floating point difference of the two operands.
3835This instruction can also take any number of :ref:`fast-math
3836flags <fastmath>`, which are optimization hints to enable otherwise
3837unsafe floating point optimizations:
3838
3839Example:
3840""""""""
3841
3842.. code-block:: llvm
3843
3844 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3845 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3846
3847'``mul``' Instruction
3848^^^^^^^^^^^^^^^^^^^^^
3849
3850Syntax:
3851"""""""
3852
3853::
3854
3855 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3856 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3857 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3858 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3859
3860Overview:
3861"""""""""
3862
3863The '``mul``' instruction returns the product of its two operands.
3864
3865Arguments:
3866""""""""""
3867
3868The two arguments to the '``mul``' instruction must be
3869:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3870arguments must have identical types.
3871
3872Semantics:
3873""""""""""
3874
3875The value produced is the integer product of the two operands.
3876
3877If the result of the multiplication has unsigned overflow, the result
3878returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3879bit width of the result.
3880
3881Because LLVM integers use a two's complement representation, and the
3882result is the same width as the operands, this instruction returns the
3883correct result for both signed and unsigned integers. If a full product
3884(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3885sign-extended or zero-extended as appropriate to the width of the full
3886product.
3887
3888``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3889respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3890result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3891unsigned and/or signed overflow, respectively, occurs.
3892
3893Example:
3894""""""""
3895
3896.. code-block:: llvm
3897
3898 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3899
3900.. _i_fmul:
3901
3902'``fmul``' Instruction
3903^^^^^^^^^^^^^^^^^^^^^^
3904
3905Syntax:
3906"""""""
3907
3908::
3909
3910 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3911
3912Overview:
3913"""""""""
3914
3915The '``fmul``' instruction returns the product of its two operands.
3916
3917Arguments:
3918""""""""""
3919
3920The two arguments to the '``fmul``' instruction must be :ref:`floating
3921point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3922Both arguments must have identical types.
3923
3924Semantics:
3925""""""""""
3926
3927The value produced is the floating point product of the two operands.
3928This instruction can also take any number of :ref:`fast-math
3929flags <fastmath>`, which are optimization hints to enable otherwise
3930unsafe floating point optimizations:
3931
3932Example:
3933""""""""
3934
3935.. code-block:: llvm
3936
3937 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3938
3939'``udiv``' Instruction
3940^^^^^^^^^^^^^^^^^^^^^^
3941
3942Syntax:
3943"""""""
3944
3945::
3946
3947 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3948 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3949
3950Overview:
3951"""""""""
3952
3953The '``udiv``' instruction returns the quotient of its two operands.
3954
3955Arguments:
3956""""""""""
3957
3958The two arguments to the '``udiv``' instruction must be
3959:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3960arguments must have identical types.
3961
3962Semantics:
3963""""""""""
3964
3965The value produced is the unsigned integer quotient of the two operands.
3966
3967Note that unsigned integer division and signed integer division are
3968distinct operations; for signed integer division, use '``sdiv``'.
3969
3970Division by zero leads to undefined behavior.
3971
3972If the ``exact`` keyword is present, the result value of the ``udiv`` is
3973a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3974such, "((a udiv exact b) mul b) == a").
3975
3976Example:
3977""""""""
3978
3979.. code-block:: llvm
3980
3981 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3982
3983'``sdiv``' Instruction
3984^^^^^^^^^^^^^^^^^^^^^^
3985
3986Syntax:
3987"""""""
3988
3989::
3990
3991 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3992 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3993
3994Overview:
3995"""""""""
3996
3997The '``sdiv``' instruction returns the quotient of its two operands.
3998
3999Arguments:
4000""""""""""
4001
4002The two arguments to the '``sdiv``' instruction must be
4003:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4004arguments must have identical types.
4005
4006Semantics:
4007""""""""""
4008
4009The value produced is the signed integer quotient of the two operands
4010rounded towards zero.
4011
4012Note that signed integer division and unsigned integer division are
4013distinct operations; for unsigned integer division, use '``udiv``'.
4014
4015Division by zero leads to undefined behavior. Overflow also leads to
4016undefined behavior; this is a rare case, but can occur, for example, by
4017doing a 32-bit division of -2147483648 by -1.
4018
4019If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4020a :ref:`poison value <poisonvalues>` if the result would be rounded.
4021
4022Example:
4023""""""""
4024
4025.. code-block:: llvm
4026
4027 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
4028
4029.. _i_fdiv:
4030
4031'``fdiv``' Instruction
4032^^^^^^^^^^^^^^^^^^^^^^
4033
4034Syntax:
4035"""""""
4036
4037::
4038
4039 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4040
4041Overview:
4042"""""""""
4043
4044The '``fdiv``' instruction returns the quotient of its two operands.
4045
4046Arguments:
4047""""""""""
4048
4049The two arguments to the '``fdiv``' instruction must be :ref:`floating
4050point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4051Both arguments must have identical types.
4052
4053Semantics:
4054""""""""""
4055
4056The value produced is the floating point quotient of the two operands.
4057This instruction can also take any number of :ref:`fast-math
4058flags <fastmath>`, which are optimization hints to enable otherwise
4059unsafe floating point optimizations:
4060
4061Example:
4062""""""""
4063
4064.. code-block:: llvm
4065
4066 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4067
4068'``urem``' Instruction
4069^^^^^^^^^^^^^^^^^^^^^^
4070
4071Syntax:
4072"""""""
4073
4074::
4075
4076 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4077
4078Overview:
4079"""""""""
4080
4081The '``urem``' instruction returns the remainder from the unsigned
4082division of its two arguments.
4083
4084Arguments:
4085""""""""""
4086
4087The two arguments to the '``urem``' instruction must be
4088:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4089arguments must have identical types.
4090
4091Semantics:
4092""""""""""
4093
4094This instruction returns the unsigned integer *remainder* of a division.
4095This instruction always performs an unsigned division to get the
4096remainder.
4097
4098Note that unsigned integer remainder and signed integer remainder are
4099distinct operations; for signed integer remainder, use '``srem``'.
4100
4101Taking the remainder of a division by zero leads to undefined behavior.
4102
4103Example:
4104""""""""
4105
4106.. code-block:: llvm
4107
4108 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4109
4110'``srem``' Instruction
4111^^^^^^^^^^^^^^^^^^^^^^
4112
4113Syntax:
4114"""""""
4115
4116::
4117
4118 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4119
4120Overview:
4121"""""""""
4122
4123The '``srem``' instruction returns the remainder from the signed
4124division of its two operands. This instruction can also take
4125:ref:`vector <t_vector>` versions of the values in which case the elements
4126must be integers.
4127
4128Arguments:
4129""""""""""
4130
4131The two arguments to the '``srem``' instruction must be
4132:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4133arguments must have identical types.
4134
4135Semantics:
4136""""""""""
4137
4138This instruction returns the *remainder* of a division (where the result
4139is either zero or has the same sign as the dividend, ``op1``), not the
4140*modulo* operator (where the result is either zero or has the same sign
4141as the divisor, ``op2``) of a value. For more information about the
4142difference, see `The Math
4143Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4144table of how this is implemented in various languages, please see
4145`Wikipedia: modulo
4146operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4147
4148Note that signed integer remainder and unsigned integer remainder are
4149distinct operations; for unsigned integer remainder, use '``urem``'.
4150
4151Taking the remainder of a division by zero leads to undefined behavior.
4152Overflow also leads to undefined behavior; this is a rare case, but can
4153occur, for example, by taking the remainder of a 32-bit division of
4154-2147483648 by -1. (The remainder doesn't actually overflow, but this
4155rule lets srem be implemented using instructions that return both the
4156result of the division and the remainder.)
4157
4158Example:
4159""""""""
4160
4161.. code-block:: llvm
4162
4163 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4164
4165.. _i_frem:
4166
4167'``frem``' Instruction
4168^^^^^^^^^^^^^^^^^^^^^^
4169
4170Syntax:
4171"""""""
4172
4173::
4174
4175 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4176
4177Overview:
4178"""""""""
4179
4180The '``frem``' instruction returns the remainder from the division of
4181its two operands.
4182
4183Arguments:
4184""""""""""
4185
4186The two arguments to the '``frem``' instruction must be :ref:`floating
4187point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4188Both arguments must have identical types.
4189
4190Semantics:
4191""""""""""
4192
4193This instruction returns the *remainder* of a division. The remainder
4194has the same sign as the dividend. This instruction can also take any
4195number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4196to enable otherwise unsafe floating point optimizations:
4197
4198Example:
4199""""""""
4200
4201.. code-block:: llvm
4202
4203 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4204
4205.. _bitwiseops:
4206
4207Bitwise Binary Operations
4208-------------------------
4209
4210Bitwise binary operators are used to do various forms of bit-twiddling
4211in a program. They are generally very efficient instructions and can
4212commonly be strength reduced from other instructions. They require two
4213operands of the same type, execute an operation on them, and produce a
4214single value. The resulting value is the same type as its operands.
4215
4216'``shl``' Instruction
4217^^^^^^^^^^^^^^^^^^^^^
4218
4219Syntax:
4220"""""""
4221
4222::
4223
4224 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4225 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4226 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4227 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4228
4229Overview:
4230"""""""""
4231
4232The '``shl``' instruction returns the first operand shifted to the left
4233a specified number of bits.
4234
4235Arguments:
4236""""""""""
4237
4238Both arguments to the '``shl``' instruction must be the same
4239:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4240'``op2``' is treated as an unsigned value.
4241
4242Semantics:
4243""""""""""
4244
4245The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4246where ``n`` is the width of the result. If ``op2`` is (statically or
4247dynamically) negative or equal to or larger than the number of bits in
4248``op1``, the result is undefined. If the arguments are vectors, each
4249vector element of ``op1`` is shifted by the corresponding shift amount
4250in ``op2``.
4251
4252If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4253value <poisonvalues>` if it shifts out any non-zero bits. If the
4254``nsw`` keyword is present, then the shift produces a :ref:`poison
4255value <poisonvalues>` if it shifts out any bits that disagree with the
4256resultant sign bit. As such, NUW/NSW have the same semantics as they
4257would if the shift were expressed as a mul instruction with the same
4258nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4259
4260Example:
4261""""""""
4262
4263.. code-block:: llvm
4264
4265 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4266 <result> = shl i32 4, 2 ; yields {i32}: 16
4267 <result> = shl i32 1, 10 ; yields {i32}: 1024
4268 <result> = shl i32 1, 32 ; undefined
4269 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4270
4271'``lshr``' Instruction
4272^^^^^^^^^^^^^^^^^^^^^^
4273
4274Syntax:
4275"""""""
4276
4277::
4278
4279 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4280 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4281
4282Overview:
4283"""""""""
4284
4285The '``lshr``' instruction (logical shift right) returns the first
4286operand shifted to the right a specified number of bits with zero fill.
4287
4288Arguments:
4289""""""""""
4290
4291Both arguments to the '``lshr``' instruction must be the same
4292:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4293'``op2``' is treated as an unsigned value.
4294
4295Semantics:
4296""""""""""
4297
4298This instruction always performs a logical shift right operation. The
4299most significant bits of the result will be filled with zero bits after
4300the shift. If ``op2`` is (statically or dynamically) equal to or larger
4301than the number of bits in ``op1``, the result is undefined. If the
4302arguments are vectors, each vector element of ``op1`` is shifted by the
4303corresponding shift amount in ``op2``.
4304
4305If the ``exact`` keyword is present, the result value of the ``lshr`` is
4306a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4307non-zero.
4308
4309Example:
4310""""""""
4311
4312.. code-block:: llvm
4313
4314 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4315 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4316 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004317 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004318 <result> = lshr i32 1, 32 ; undefined
4319 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4320
4321'``ashr``' Instruction
4322^^^^^^^^^^^^^^^^^^^^^^
4323
4324Syntax:
4325"""""""
4326
4327::
4328
4329 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4330 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4331
4332Overview:
4333"""""""""
4334
4335The '``ashr``' instruction (arithmetic shift right) returns the first
4336operand shifted to the right a specified number of bits with sign
4337extension.
4338
4339Arguments:
4340""""""""""
4341
4342Both arguments to the '``ashr``' instruction must be the same
4343:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4344'``op2``' is treated as an unsigned value.
4345
4346Semantics:
4347""""""""""
4348
4349This instruction always performs an arithmetic shift right operation,
4350The most significant bits of the result will be filled with the sign bit
4351of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4352than the number of bits in ``op1``, the result is undefined. If the
4353arguments are vectors, each vector element of ``op1`` is shifted by the
4354corresponding shift amount in ``op2``.
4355
4356If the ``exact`` keyword is present, the result value of the ``ashr`` is
4357a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4358non-zero.
4359
4360Example:
4361""""""""
4362
4363.. code-block:: llvm
4364
4365 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4366 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4367 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4368 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4369 <result> = ashr i32 1, 32 ; undefined
4370 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4371
4372'``and``' Instruction
4373^^^^^^^^^^^^^^^^^^^^^
4374
4375Syntax:
4376"""""""
4377
4378::
4379
4380 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4381
4382Overview:
4383"""""""""
4384
4385The '``and``' instruction returns the bitwise logical and of its two
4386operands.
4387
4388Arguments:
4389""""""""""
4390
4391The two arguments to the '``and``' instruction must be
4392:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4393arguments must have identical types.
4394
4395Semantics:
4396""""""""""
4397
4398The truth table used for the '``and``' instruction is:
4399
4400+-----+-----+-----+
4401| In0 | In1 | Out |
4402+-----+-----+-----+
4403| 0 | 0 | 0 |
4404+-----+-----+-----+
4405| 0 | 1 | 0 |
4406+-----+-----+-----+
4407| 1 | 0 | 0 |
4408+-----+-----+-----+
4409| 1 | 1 | 1 |
4410+-----+-----+-----+
4411
4412Example:
4413""""""""
4414
4415.. code-block:: llvm
4416
4417 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4418 <result> = and i32 15, 40 ; yields {i32}:result = 8
4419 <result> = and i32 4, 8 ; yields {i32}:result = 0
4420
4421'``or``' Instruction
4422^^^^^^^^^^^^^^^^^^^^
4423
4424Syntax:
4425"""""""
4426
4427::
4428
4429 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4430
4431Overview:
4432"""""""""
4433
4434The '``or``' instruction returns the bitwise logical inclusive or of its
4435two operands.
4436
4437Arguments:
4438""""""""""
4439
4440The two arguments to the '``or``' instruction must be
4441:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4442arguments must have identical types.
4443
4444Semantics:
4445""""""""""
4446
4447The truth table used for the '``or``' instruction is:
4448
4449+-----+-----+-----+
4450| In0 | In1 | Out |
4451+-----+-----+-----+
4452| 0 | 0 | 0 |
4453+-----+-----+-----+
4454| 0 | 1 | 1 |
4455+-----+-----+-----+
4456| 1 | 0 | 1 |
4457+-----+-----+-----+
4458| 1 | 1 | 1 |
4459+-----+-----+-----+
4460
4461Example:
4462""""""""
4463
4464::
4465
4466 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4467 <result> = or i32 15, 40 ; yields {i32}:result = 47
4468 <result> = or i32 4, 8 ; yields {i32}:result = 12
4469
4470'``xor``' Instruction
4471^^^^^^^^^^^^^^^^^^^^^
4472
4473Syntax:
4474"""""""
4475
4476::
4477
4478 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4479
4480Overview:
4481"""""""""
4482
4483The '``xor``' instruction returns the bitwise logical exclusive or of
4484its two operands. The ``xor`` is used to implement the "one's
4485complement" operation, which is the "~" operator in C.
4486
4487Arguments:
4488""""""""""
4489
4490The two arguments to the '``xor``' instruction must be
4491:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4492arguments must have identical types.
4493
4494Semantics:
4495""""""""""
4496
4497The truth table used for the '``xor``' instruction is:
4498
4499+-----+-----+-----+
4500| In0 | In1 | Out |
4501+-----+-----+-----+
4502| 0 | 0 | 0 |
4503+-----+-----+-----+
4504| 0 | 1 | 1 |
4505+-----+-----+-----+
4506| 1 | 0 | 1 |
4507+-----+-----+-----+
4508| 1 | 1 | 0 |
4509+-----+-----+-----+
4510
4511Example:
4512""""""""
4513
4514.. code-block:: llvm
4515
4516 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4517 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4518 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4519 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4520
4521Vector Operations
4522-----------------
4523
4524LLVM supports several instructions to represent vector operations in a
4525target-independent manner. These instructions cover the element-access
4526and vector-specific operations needed to process vectors effectively.
4527While LLVM does directly support these vector operations, many
4528sophisticated algorithms will want to use target-specific intrinsics to
4529take full advantage of a specific target.
4530
4531.. _i_extractelement:
4532
4533'``extractelement``' Instruction
4534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4535
4536Syntax:
4537"""""""
4538
4539::
4540
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004541 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004542
4543Overview:
4544"""""""""
4545
4546The '``extractelement``' instruction extracts a single scalar element
4547from a vector at a specified index.
4548
4549Arguments:
4550""""""""""
4551
4552The first operand of an '``extractelement``' instruction is a value of
4553:ref:`vector <t_vector>` type. The second operand is an index indicating
4554the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004555variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004556
4557Semantics:
4558""""""""""
4559
4560The result is a scalar of the same type as the element type of ``val``.
4561Its value is the value at position ``idx`` of ``val``. If ``idx``
4562exceeds the length of ``val``, the results are undefined.
4563
4564Example:
4565""""""""
4566
4567.. code-block:: llvm
4568
4569 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4570
4571.. _i_insertelement:
4572
4573'``insertelement``' Instruction
4574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4575
4576Syntax:
4577"""""""
4578
4579::
4580
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004581 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004582
4583Overview:
4584"""""""""
4585
4586The '``insertelement``' instruction inserts a scalar element into a
4587vector at a specified index.
4588
4589Arguments:
4590""""""""""
4591
4592The first operand of an '``insertelement``' instruction is a value of
4593:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4594type must equal the element type of the first operand. The third operand
4595is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004596index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004597
4598Semantics:
4599""""""""""
4600
4601The result is a vector of the same type as ``val``. Its element values
4602are those of ``val`` except at position ``idx``, where it gets the value
4603``elt``. If ``idx`` exceeds the length of ``val``, the results are
4604undefined.
4605
4606Example:
4607""""""""
4608
4609.. code-block:: llvm
4610
4611 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4612
4613.. _i_shufflevector:
4614
4615'``shufflevector``' Instruction
4616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4617
4618Syntax:
4619"""""""
4620
4621::
4622
4623 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4624
4625Overview:
4626"""""""""
4627
4628The '``shufflevector``' instruction constructs a permutation of elements
4629from two input vectors, returning a vector with the same element type as
4630the input and length that is the same as the shuffle mask.
4631
4632Arguments:
4633""""""""""
4634
4635The first two operands of a '``shufflevector``' instruction are vectors
4636with the same type. The third argument is a shuffle mask whose element
4637type is always 'i32'. The result of the instruction is a vector whose
4638length is the same as the shuffle mask and whose element type is the
4639same as the element type of the first two operands.
4640
4641The shuffle mask operand is required to be a constant vector with either
4642constant integer or undef values.
4643
4644Semantics:
4645""""""""""
4646
4647The elements of the two input vectors are numbered from left to right
4648across both of the vectors. The shuffle mask operand specifies, for each
4649element of the result vector, which element of the two input vectors the
4650result element gets. The element selector may be undef (meaning "don't
4651care") and the second operand may be undef if performing a shuffle from
4652only one vector.
4653
4654Example:
4655""""""""
4656
4657.. code-block:: llvm
4658
4659 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4660 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4661 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4662 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4663 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4664 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4665 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4666 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4667
4668Aggregate Operations
4669--------------------
4670
4671LLVM supports several instructions for working with
4672:ref:`aggregate <t_aggregate>` values.
4673
4674.. _i_extractvalue:
4675
4676'``extractvalue``' Instruction
4677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4678
4679Syntax:
4680"""""""
4681
4682::
4683
4684 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4685
4686Overview:
4687"""""""""
4688
4689The '``extractvalue``' instruction extracts the value of a member field
4690from an :ref:`aggregate <t_aggregate>` value.
4691
4692Arguments:
4693""""""""""
4694
4695The first operand of an '``extractvalue``' instruction is a value of
4696:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4697constant indices to specify which value to extract in a similar manner
4698as indices in a '``getelementptr``' instruction.
4699
4700The major differences to ``getelementptr`` indexing are:
4701
4702- Since the value being indexed is not a pointer, the first index is
4703 omitted and assumed to be zero.
4704- At least one index must be specified.
4705- Not only struct indices but also array indices must be in bounds.
4706
4707Semantics:
4708""""""""""
4709
4710The result is the value at the position in the aggregate specified by
4711the index operands.
4712
4713Example:
4714""""""""
4715
4716.. code-block:: llvm
4717
4718 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4719
4720.. _i_insertvalue:
4721
4722'``insertvalue``' Instruction
4723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4724
4725Syntax:
4726"""""""
4727
4728::
4729
4730 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4731
4732Overview:
4733"""""""""
4734
4735The '``insertvalue``' instruction inserts a value into a member field in
4736an :ref:`aggregate <t_aggregate>` value.
4737
4738Arguments:
4739""""""""""
4740
4741The first operand of an '``insertvalue``' instruction is a value of
4742:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4743a first-class value to insert. The following operands are constant
4744indices indicating the position at which to insert the value in a
4745similar manner as indices in a '``extractvalue``' instruction. The value
4746to insert must have the same type as the value identified by the
4747indices.
4748
4749Semantics:
4750""""""""""
4751
4752The result is an aggregate of the same type as ``val``. Its value is
4753that of ``val`` except that the value at the position specified by the
4754indices is that of ``elt``.
4755
4756Example:
4757""""""""
4758
4759.. code-block:: llvm
4760
4761 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4762 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4763 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4764
4765.. _memoryops:
4766
4767Memory Access and Addressing Operations
4768---------------------------------------
4769
4770A key design point of an SSA-based representation is how it represents
4771memory. In LLVM, no memory locations are in SSA form, which makes things
4772very simple. This section describes how to read, write, and allocate
4773memory in LLVM.
4774
4775.. _i_alloca:
4776
4777'``alloca``' Instruction
4778^^^^^^^^^^^^^^^^^^^^^^^^
4779
4780Syntax:
4781"""""""
4782
4783::
4784
David Majnemerc4ab61c2014-03-09 06:41:58 +00004785 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004786
4787Overview:
4788"""""""""
4789
4790The '``alloca``' instruction allocates memory on the stack frame of the
4791currently executing function, to be automatically released when this
4792function returns to its caller. The object is always allocated in the
4793generic address space (address space zero).
4794
4795Arguments:
4796""""""""""
4797
4798The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4799bytes of memory on the runtime stack, returning a pointer of the
4800appropriate type to the program. If "NumElements" is specified, it is
4801the number of elements allocated, otherwise "NumElements" is defaulted
4802to be one. If a constant alignment is specified, the value result of the
4803allocation is guaranteed to be aligned to at least that boundary. If not
4804specified, or if zero, the target can choose to align the allocation on
4805any convenient boundary compatible with the type.
4806
4807'``type``' may be any sized type.
4808
4809Semantics:
4810""""""""""
4811
4812Memory is allocated; a pointer is returned. The operation is undefined
4813if there is insufficient stack space for the allocation. '``alloca``'d
4814memory is automatically released when the function returns. The
4815'``alloca``' instruction is commonly used to represent automatic
4816variables that must have an address available. When the function returns
4817(either with the ``ret`` or ``resume`` instructions), the memory is
4818reclaimed. Allocating zero bytes is legal, but the result is undefined.
4819The order in which memory is allocated (ie., which way the stack grows)
4820is not specified.
4821
4822Example:
4823""""""""
4824
4825.. code-block:: llvm
4826
4827 %ptr = alloca i32 ; yields {i32*}:ptr
4828 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4829 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4830 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4831
4832.. _i_load:
4833
4834'``load``' Instruction
4835^^^^^^^^^^^^^^^^^^^^^^
4836
4837Syntax:
4838"""""""
4839
4840::
4841
4842 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4843 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4844 !<index> = !{ i32 1 }
4845
4846Overview:
4847"""""""""
4848
4849The '``load``' instruction is used to read from memory.
4850
4851Arguments:
4852""""""""""
4853
Eli Bendersky239a78b2013-04-17 20:17:08 +00004854The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004855from which to load. The pointer must point to a :ref:`first
4856class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4857then the optimizer is not allowed to modify the number or order of
4858execution of this ``load`` with other :ref:`volatile
4859operations <volatile>`.
4860
4861If the ``load`` is marked as ``atomic``, it takes an extra
4862:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4863``release`` and ``acq_rel`` orderings are not valid on ``load``
4864instructions. Atomic loads produce :ref:`defined <memmodel>` results
4865when they may see multiple atomic stores. The type of the pointee must
4866be an integer type whose bit width is a power of two greater than or
4867equal to eight and less than or equal to a target-specific size limit.
4868``align`` must be explicitly specified on atomic loads, and the load has
4869undefined behavior if the alignment is not set to a value which is at
4870least the size in bytes of the pointee. ``!nontemporal`` does not have
4871any defined semantics for atomic loads.
4872
4873The optional constant ``align`` argument specifies the alignment of the
4874operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004875or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004876alignment for the target. It is the responsibility of the code emitter
4877to ensure that the alignment information is correct. Overestimating the
4878alignment results in undefined behavior. Underestimating the alignment
4879may produce less efficient code. An alignment of 1 is always safe.
4880
4881The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004882metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004883``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004884metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004885that this load is not expected to be reused in the cache. The code
4886generator may select special instructions to save cache bandwidth, such
4887as the ``MOVNT`` instruction on x86.
4888
4889The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004890metadata name ``<index>`` corresponding to a metadata node with no
4891entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004892instruction tells the optimizer and code generator that this load
4893address points to memory which does not change value during program
4894execution. The optimizer may then move this load around, for example, by
4895hoisting it out of loops using loop invariant code motion.
4896
4897Semantics:
4898""""""""""
4899
4900The location of memory pointed to is loaded. If the value being loaded
4901is of scalar type then the number of bytes read does not exceed the
4902minimum number of bytes needed to hold all bits of the type. For
4903example, loading an ``i24`` reads at most three bytes. When loading a
4904value of a type like ``i20`` with a size that is not an integral number
4905of bytes, the result is undefined if the value was not originally
4906written using a store of the same type.
4907
4908Examples:
4909"""""""""
4910
4911.. code-block:: llvm
4912
4913 %ptr = alloca i32 ; yields {i32*}:ptr
4914 store i32 3, i32* %ptr ; yields {void}
4915 %val = load i32* %ptr ; yields {i32}:val = i32 3
4916
4917.. _i_store:
4918
4919'``store``' Instruction
4920^^^^^^^^^^^^^^^^^^^^^^^
4921
4922Syntax:
4923"""""""
4924
4925::
4926
4927 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4928 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4929
4930Overview:
4931"""""""""
4932
4933The '``store``' instruction is used to write to memory.
4934
4935Arguments:
4936""""""""""
4937
Eli Benderskyca380842013-04-17 17:17:20 +00004938There are two arguments to the ``store`` instruction: a value to store
4939and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004940operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004941the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004942then the optimizer is not allowed to modify the number or order of
4943execution of this ``store`` with other :ref:`volatile
4944operations <volatile>`.
4945
4946If the ``store`` is marked as ``atomic``, it takes an extra
4947:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4948``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4949instructions. Atomic loads produce :ref:`defined <memmodel>` results
4950when they may see multiple atomic stores. The type of the pointee must
4951be an integer type whose bit width is a power of two greater than or
4952equal to eight and less than or equal to a target-specific size limit.
4953``align`` must be explicitly specified on atomic stores, and the store
4954has undefined behavior if the alignment is not set to a value which is
4955at least the size in bytes of the pointee. ``!nontemporal`` does not
4956have any defined semantics for atomic stores.
4957
Eli Benderskyca380842013-04-17 17:17:20 +00004958The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004959operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004960or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004961alignment for the target. It is the responsibility of the code emitter
4962to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004963alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004964alignment may produce less efficient code. An alignment of 1 is always
4965safe.
4966
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004967The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004968name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004969value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004970tells the optimizer and code generator that this load is not expected to
4971be reused in the cache. The code generator may select special
4972instructions to save cache bandwidth, such as the MOVNT instruction on
4973x86.
4974
4975Semantics:
4976""""""""""
4977
Eli Benderskyca380842013-04-17 17:17:20 +00004978The contents of memory are updated to contain ``<value>`` at the
4979location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004980of scalar type then the number of bytes written does not exceed the
4981minimum number of bytes needed to hold all bits of the type. For
4982example, storing an ``i24`` writes at most three bytes. When writing a
4983value of a type like ``i20`` with a size that is not an integral number
4984of bytes, it is unspecified what happens to the extra bits that do not
4985belong to the type, but they will typically be overwritten.
4986
4987Example:
4988""""""""
4989
4990.. code-block:: llvm
4991
4992 %ptr = alloca i32 ; yields {i32*}:ptr
4993 store i32 3, i32* %ptr ; yields {void}
4994 %val = load i32* %ptr ; yields {i32}:val = i32 3
4995
4996.. _i_fence:
4997
4998'``fence``' Instruction
4999^^^^^^^^^^^^^^^^^^^^^^^
5000
5001Syntax:
5002"""""""
5003
5004::
5005
5006 fence [singlethread] <ordering> ; yields {void}
5007
5008Overview:
5009"""""""""
5010
5011The '``fence``' instruction is used to introduce happens-before edges
5012between operations.
5013
5014Arguments:
5015""""""""""
5016
5017'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5018defines what *synchronizes-with* edges they add. They can only be given
5019``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5020
5021Semantics:
5022""""""""""
5023
5024A fence A which has (at least) ``release`` ordering semantics
5025*synchronizes with* a fence B with (at least) ``acquire`` ordering
5026semantics if and only if there exist atomic operations X and Y, both
5027operating on some atomic object M, such that A is sequenced before X, X
5028modifies M (either directly or through some side effect of a sequence
5029headed by X), Y is sequenced before B, and Y observes M. This provides a
5030*happens-before* dependency between A and B. Rather than an explicit
5031``fence``, one (but not both) of the atomic operations X or Y might
5032provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5033still *synchronize-with* the explicit ``fence`` and establish the
5034*happens-before* edge.
5035
5036A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5037``acquire`` and ``release`` semantics specified above, participates in
5038the global program order of other ``seq_cst`` operations and/or fences.
5039
5040The optional ":ref:`singlethread <singlethread>`" argument specifies
5041that the fence only synchronizes with other fences in the same thread.
5042(This is useful for interacting with signal handlers.)
5043
5044Example:
5045""""""""
5046
5047.. code-block:: llvm
5048
5049 fence acquire ; yields {void}
5050 fence singlethread seq_cst ; yields {void}
5051
5052.. _i_cmpxchg:
5053
5054'``cmpxchg``' Instruction
5055^^^^^^^^^^^^^^^^^^^^^^^^^
5056
5057Syntax:
5058"""""""
5059
5060::
5061
Tim Northover420a2162014-06-13 14:24:07 +00005062 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { <ty>, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005063
5064Overview:
5065"""""""""
5066
5067The '``cmpxchg``' instruction is used to atomically modify memory. It
5068loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005069equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005070
5071Arguments:
5072""""""""""
5073
5074There are three arguments to the '``cmpxchg``' instruction: an address
5075to operate on, a value to compare to the value currently be at that
5076address, and a new value to place at that address if the compared values
5077are equal. The type of '<cmp>' must be an integer type whose bit width
5078is a power of two greater than or equal to eight and less than or equal
5079to a target-specific size limit. '<cmp>' and '<new>' must have the same
5080type, and the type of '<pointer>' must be a pointer to that type. If the
5081``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5082to modify the number or order of execution of this ``cmpxchg`` with
5083other :ref:`volatile operations <volatile>`.
5084
Tim Northovere94a5182014-03-11 10:48:52 +00005085The success and failure :ref:`ordering <ordering>` arguments specify how this
5086``cmpxchg`` synchronizes with other atomic operations. The both ordering
5087parameters must be at least ``monotonic``, the ordering constraint on failure
5088must be no stronger than that on success, and the failure ordering cannot be
5089either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005090
5091The optional "``singlethread``" argument declares that the ``cmpxchg``
5092is only atomic with respect to code (usually signal handlers) running in
5093the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5094respect to all other code in the system.
5095
5096The pointer passed into cmpxchg must have alignment greater than or
5097equal to the size in memory of the operand.
5098
5099Semantics:
5100""""""""""
5101
Tim Northover420a2162014-06-13 14:24:07 +00005102The contents of memory at the location specified by the '``<pointer>``' operand
5103is read and compared to '``<cmp>``'; if the read value is the equal, the
5104'``<new>``' is written. The original value at the location is returned, together
5105with a flag indicating success (true) or failure (false).
5106
5107If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5108permitted: the operation may not write ``<new>`` even if the comparison
5109matched.
5110
5111If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5112if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005113
Tim Northovere94a5182014-03-11 10:48:52 +00005114A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5115identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5116load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005117
5118Example:
5119""""""""
5120
5121.. code-block:: llvm
5122
5123 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005124 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005125 br label %loop
5126
5127 loop:
5128 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5129 %squared = mul i32 %cmp, %cmp
Tim Northover420a2162014-06-13 14:24:07 +00005130 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
5131 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5132 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005133 br i1 %success, label %done, label %loop
5134
5135 done:
5136 ...
5137
5138.. _i_atomicrmw:
5139
5140'``atomicrmw``' Instruction
5141^^^^^^^^^^^^^^^^^^^^^^^^^^^
5142
5143Syntax:
5144"""""""
5145
5146::
5147
5148 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5149
5150Overview:
5151"""""""""
5152
5153The '``atomicrmw``' instruction is used to atomically modify memory.
5154
5155Arguments:
5156""""""""""
5157
5158There are three arguments to the '``atomicrmw``' instruction: an
5159operation to apply, an address whose value to modify, an argument to the
5160operation. The operation must be one of the following keywords:
5161
5162- xchg
5163- add
5164- sub
5165- and
5166- nand
5167- or
5168- xor
5169- max
5170- min
5171- umax
5172- umin
5173
5174The type of '<value>' must be an integer type whose bit width is a power
5175of two greater than or equal to eight and less than or equal to a
5176target-specific size limit. The type of the '``<pointer>``' operand must
5177be a pointer to that type. If the ``atomicrmw`` is marked as
5178``volatile``, then the optimizer is not allowed to modify the number or
5179order of execution of this ``atomicrmw`` with other :ref:`volatile
5180operations <volatile>`.
5181
5182Semantics:
5183""""""""""
5184
5185The contents of memory at the location specified by the '``<pointer>``'
5186operand are atomically read, modified, and written back. The original
5187value at the location is returned. The modification is specified by the
5188operation argument:
5189
5190- xchg: ``*ptr = val``
5191- add: ``*ptr = *ptr + val``
5192- sub: ``*ptr = *ptr - val``
5193- and: ``*ptr = *ptr & val``
5194- nand: ``*ptr = ~(*ptr & val)``
5195- or: ``*ptr = *ptr | val``
5196- xor: ``*ptr = *ptr ^ val``
5197- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5198- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5199- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5200 comparison)
5201- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5202 comparison)
5203
5204Example:
5205""""""""
5206
5207.. code-block:: llvm
5208
5209 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5210
5211.. _i_getelementptr:
5212
5213'``getelementptr``' Instruction
5214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5215
5216Syntax:
5217"""""""
5218
5219::
5220
5221 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5222 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5223 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5224
5225Overview:
5226"""""""""
5227
5228The '``getelementptr``' instruction is used to get the address of a
5229subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5230address calculation only and does not access memory.
5231
5232Arguments:
5233""""""""""
5234
5235The first argument is always a pointer or a vector of pointers, and
5236forms the basis of the calculation. The remaining arguments are indices
5237that indicate which of the elements of the aggregate object are indexed.
5238The interpretation of each index is dependent on the type being indexed
5239into. The first index always indexes the pointer value given as the
5240first argument, the second index indexes a value of the type pointed to
5241(not necessarily the value directly pointed to, since the first index
5242can be non-zero), etc. The first type indexed into must be a pointer
5243value, subsequent types can be arrays, vectors, and structs. Note that
5244subsequent types being indexed into can never be pointers, since that
5245would require loading the pointer before continuing calculation.
5246
5247The type of each index argument depends on the type it is indexing into.
5248When indexing into a (optionally packed) structure, only ``i32`` integer
5249**constants** are allowed (when using a vector of indices they must all
5250be the **same** ``i32`` integer constant). When indexing into an array,
5251pointer or vector, integers of any width are allowed, and they are not
5252required to be constant. These integers are treated as signed values
5253where relevant.
5254
5255For example, let's consider a C code fragment and how it gets compiled
5256to LLVM:
5257
5258.. code-block:: c
5259
5260 struct RT {
5261 char A;
5262 int B[10][20];
5263 char C;
5264 };
5265 struct ST {
5266 int X;
5267 double Y;
5268 struct RT Z;
5269 };
5270
5271 int *foo(struct ST *s) {
5272 return &s[1].Z.B[5][13];
5273 }
5274
5275The LLVM code generated by Clang is:
5276
5277.. code-block:: llvm
5278
5279 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5280 %struct.ST = type { i32, double, %struct.RT }
5281
5282 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5283 entry:
5284 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5285 ret i32* %arrayidx
5286 }
5287
5288Semantics:
5289""""""""""
5290
5291In the example above, the first index is indexing into the
5292'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5293= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5294indexes into the third element of the structure, yielding a
5295'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5296structure. The third index indexes into the second element of the
5297structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5298dimensions of the array are subscripted into, yielding an '``i32``'
5299type. The '``getelementptr``' instruction returns a pointer to this
5300element, thus computing a value of '``i32*``' type.
5301
5302Note that it is perfectly legal to index partially through a structure,
5303returning a pointer to an inner element. Because of this, the LLVM code
5304for the given testcase is equivalent to:
5305
5306.. code-block:: llvm
5307
5308 define i32* @foo(%struct.ST* %s) {
5309 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5310 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5311 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5312 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5313 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5314 ret i32* %t5
5315 }
5316
5317If the ``inbounds`` keyword is present, the result value of the
5318``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5319pointer is not an *in bounds* address of an allocated object, or if any
5320of the addresses that would be formed by successive addition of the
5321offsets implied by the indices to the base address with infinitely
5322precise signed arithmetic are not an *in bounds* address of that
5323allocated object. The *in bounds* addresses for an allocated object are
5324all the addresses that point into the object, plus the address one byte
5325past the end. In cases where the base is a vector of pointers the
5326``inbounds`` keyword applies to each of the computations element-wise.
5327
5328If the ``inbounds`` keyword is not present, the offsets are added to the
5329base address with silently-wrapping two's complement arithmetic. If the
5330offsets have a different width from the pointer, they are sign-extended
5331or truncated to the width of the pointer. The result value of the
5332``getelementptr`` may be outside the object pointed to by the base
5333pointer. The result value may not necessarily be used to access memory
5334though, even if it happens to point into allocated storage. See the
5335:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5336information.
5337
5338The getelementptr instruction is often confusing. For some more insight
5339into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5340
5341Example:
5342""""""""
5343
5344.. code-block:: llvm
5345
5346 ; yields [12 x i8]*:aptr
5347 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5348 ; yields i8*:vptr
5349 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5350 ; yields i8*:eptr
5351 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5352 ; yields i32*:iptr
5353 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5354
5355In cases where the pointer argument is a vector of pointers, each index
5356must be a vector with the same number of elements. For example:
5357
5358.. code-block:: llvm
5359
5360 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5361
5362Conversion Operations
5363---------------------
5364
5365The instructions in this category are the conversion instructions
5366(casting) which all take a single operand and a type. They perform
5367various bit conversions on the operand.
5368
5369'``trunc .. to``' Instruction
5370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5371
5372Syntax:
5373"""""""
5374
5375::
5376
5377 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5378
5379Overview:
5380"""""""""
5381
5382The '``trunc``' instruction truncates its operand to the type ``ty2``.
5383
5384Arguments:
5385""""""""""
5386
5387The '``trunc``' instruction takes a value to trunc, and a type to trunc
5388it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5389of the same number of integers. The bit size of the ``value`` must be
5390larger than the bit size of the destination type, ``ty2``. Equal sized
5391types are not allowed.
5392
5393Semantics:
5394""""""""""
5395
5396The '``trunc``' instruction truncates the high order bits in ``value``
5397and converts the remaining bits to ``ty2``. Since the source size must
5398be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5399It will always truncate bits.
5400
5401Example:
5402""""""""
5403
5404.. code-block:: llvm
5405
5406 %X = trunc i32 257 to i8 ; yields i8:1
5407 %Y = trunc i32 123 to i1 ; yields i1:true
5408 %Z = trunc i32 122 to i1 ; yields i1:false
5409 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5410
5411'``zext .. to``' Instruction
5412^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5413
5414Syntax:
5415"""""""
5416
5417::
5418
5419 <result> = zext <ty> <value> to <ty2> ; yields ty2
5420
5421Overview:
5422"""""""""
5423
5424The '``zext``' instruction zero extends its operand to type ``ty2``.
5425
5426Arguments:
5427""""""""""
5428
5429The '``zext``' instruction takes a value to cast, and a type to cast it
5430to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5431the same number of integers. The bit size of the ``value`` must be
5432smaller than the bit size of the destination type, ``ty2``.
5433
5434Semantics:
5435""""""""""
5436
5437The ``zext`` fills the high order bits of the ``value`` with zero bits
5438until it reaches the size of the destination type, ``ty2``.
5439
5440When zero extending from i1, the result will always be either 0 or 1.
5441
5442Example:
5443""""""""
5444
5445.. code-block:: llvm
5446
5447 %X = zext i32 257 to i64 ; yields i64:257
5448 %Y = zext i1 true to i32 ; yields i32:1
5449 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5450
5451'``sext .. to``' Instruction
5452^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5453
5454Syntax:
5455"""""""
5456
5457::
5458
5459 <result> = sext <ty> <value> to <ty2> ; yields ty2
5460
5461Overview:
5462"""""""""
5463
5464The '``sext``' sign extends ``value`` to the type ``ty2``.
5465
5466Arguments:
5467""""""""""
5468
5469The '``sext``' instruction takes a value to cast, and a type to cast it
5470to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5471the same number of integers. The bit size of the ``value`` must be
5472smaller than the bit size of the destination type, ``ty2``.
5473
5474Semantics:
5475""""""""""
5476
5477The '``sext``' instruction performs a sign extension by copying the sign
5478bit (highest order bit) of the ``value`` until it reaches the bit size
5479of the type ``ty2``.
5480
5481When sign extending from i1, the extension always results in -1 or 0.
5482
5483Example:
5484""""""""
5485
5486.. code-block:: llvm
5487
5488 %X = sext i8 -1 to i16 ; yields i16 :65535
5489 %Y = sext i1 true to i32 ; yields i32:-1
5490 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5491
5492'``fptrunc .. to``' Instruction
5493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5494
5495Syntax:
5496"""""""
5497
5498::
5499
5500 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5501
5502Overview:
5503"""""""""
5504
5505The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5506
5507Arguments:
5508""""""""""
5509
5510The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5511value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5512The size of ``value`` must be larger than the size of ``ty2``. This
5513implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5514
5515Semantics:
5516""""""""""
5517
5518The '``fptrunc``' instruction truncates a ``value`` from a larger
5519:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5520point <t_floating>` type. If the value cannot fit within the
5521destination type, ``ty2``, then the results are undefined.
5522
5523Example:
5524""""""""
5525
5526.. code-block:: llvm
5527
5528 %X = fptrunc double 123.0 to float ; yields float:123.0
5529 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5530
5531'``fpext .. to``' Instruction
5532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5533
5534Syntax:
5535"""""""
5536
5537::
5538
5539 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5540
5541Overview:
5542"""""""""
5543
5544The '``fpext``' extends a floating point ``value`` to a larger floating
5545point value.
5546
5547Arguments:
5548""""""""""
5549
5550The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5551``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5552to. The source type must be smaller than the destination type.
5553
5554Semantics:
5555""""""""""
5556
5557The '``fpext``' instruction extends the ``value`` from a smaller
5558:ref:`floating point <t_floating>` type to a larger :ref:`floating
5559point <t_floating>` type. The ``fpext`` cannot be used to make a
5560*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5561*no-op cast* for a floating point cast.
5562
5563Example:
5564""""""""
5565
5566.. code-block:: llvm
5567
5568 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5569 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5570
5571'``fptoui .. to``' Instruction
5572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5573
5574Syntax:
5575"""""""
5576
5577::
5578
5579 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5580
5581Overview:
5582"""""""""
5583
5584The '``fptoui``' converts a floating point ``value`` to its unsigned
5585integer equivalent of type ``ty2``.
5586
5587Arguments:
5588""""""""""
5589
5590The '``fptoui``' instruction takes a value to cast, which must be a
5591scalar or vector :ref:`floating point <t_floating>` value, and a type to
5592cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5593``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5594type with the same number of elements as ``ty``
5595
5596Semantics:
5597""""""""""
5598
5599The '``fptoui``' instruction converts its :ref:`floating
5600point <t_floating>` operand into the nearest (rounding towards zero)
5601unsigned integer value. If the value cannot fit in ``ty2``, the results
5602are undefined.
5603
5604Example:
5605""""""""
5606
5607.. code-block:: llvm
5608
5609 %X = fptoui double 123.0 to i32 ; yields i32:123
5610 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5611 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5612
5613'``fptosi .. to``' Instruction
5614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5615
5616Syntax:
5617"""""""
5618
5619::
5620
5621 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5622
5623Overview:
5624"""""""""
5625
5626The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5627``value`` to type ``ty2``.
5628
5629Arguments:
5630""""""""""
5631
5632The '``fptosi``' instruction takes a value to cast, which must be a
5633scalar or vector :ref:`floating point <t_floating>` value, and a type to
5634cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5635``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5636type with the same number of elements as ``ty``
5637
5638Semantics:
5639""""""""""
5640
5641The '``fptosi``' instruction converts its :ref:`floating
5642point <t_floating>` operand into the nearest (rounding towards zero)
5643signed integer value. If the value cannot fit in ``ty2``, the results
5644are undefined.
5645
5646Example:
5647""""""""
5648
5649.. code-block:: llvm
5650
5651 %X = fptosi double -123.0 to i32 ; yields i32:-123
5652 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5653 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5654
5655'``uitofp .. to``' Instruction
5656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5657
5658Syntax:
5659"""""""
5660
5661::
5662
5663 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5664
5665Overview:
5666"""""""""
5667
5668The '``uitofp``' instruction regards ``value`` as an unsigned integer
5669and converts that value to the ``ty2`` type.
5670
5671Arguments:
5672""""""""""
5673
5674The '``uitofp``' instruction takes a value to cast, which must be a
5675scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5676``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5677``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5678type with the same number of elements as ``ty``
5679
5680Semantics:
5681""""""""""
5682
5683The '``uitofp``' instruction interprets its operand as an unsigned
5684integer quantity and converts it to the corresponding floating point
5685value. If the value cannot fit in the floating point value, the results
5686are undefined.
5687
5688Example:
5689""""""""
5690
5691.. code-block:: llvm
5692
5693 %X = uitofp i32 257 to float ; yields float:257.0
5694 %Y = uitofp i8 -1 to double ; yields double:255.0
5695
5696'``sitofp .. to``' Instruction
5697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5698
5699Syntax:
5700"""""""
5701
5702::
5703
5704 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5705
5706Overview:
5707"""""""""
5708
5709The '``sitofp``' instruction regards ``value`` as a signed integer and
5710converts that value to the ``ty2`` type.
5711
5712Arguments:
5713""""""""""
5714
5715The '``sitofp``' instruction takes a value to cast, which must be a
5716scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5717``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5718``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5719type with the same number of elements as ``ty``
5720
5721Semantics:
5722""""""""""
5723
5724The '``sitofp``' instruction interprets its operand as a signed integer
5725quantity and converts it to the corresponding floating point value. If
5726the value cannot fit in the floating point value, the results are
5727undefined.
5728
5729Example:
5730""""""""
5731
5732.. code-block:: llvm
5733
5734 %X = sitofp i32 257 to float ; yields float:257.0
5735 %Y = sitofp i8 -1 to double ; yields double:-1.0
5736
5737.. _i_ptrtoint:
5738
5739'``ptrtoint .. to``' Instruction
5740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5741
5742Syntax:
5743"""""""
5744
5745::
5746
5747 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5748
5749Overview:
5750"""""""""
5751
5752The '``ptrtoint``' instruction converts the pointer or a vector of
5753pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5754
5755Arguments:
5756""""""""""
5757
5758The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5759a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5760type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5761a vector of integers type.
5762
5763Semantics:
5764""""""""""
5765
5766The '``ptrtoint``' instruction converts ``value`` to integer type
5767``ty2`` by interpreting the pointer value as an integer and either
5768truncating or zero extending that value to the size of the integer type.
5769If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5770``value`` is larger than ``ty2`` then a truncation is done. If they are
5771the same size, then nothing is done (*no-op cast*) other than a type
5772change.
5773
5774Example:
5775""""""""
5776
5777.. code-block:: llvm
5778
5779 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5780 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5781 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5782
5783.. _i_inttoptr:
5784
5785'``inttoptr .. to``' Instruction
5786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5787
5788Syntax:
5789"""""""
5790
5791::
5792
5793 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5794
5795Overview:
5796"""""""""
5797
5798The '``inttoptr``' instruction converts an integer ``value`` to a
5799pointer type, ``ty2``.
5800
5801Arguments:
5802""""""""""
5803
5804The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5805cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5806type.
5807
5808Semantics:
5809""""""""""
5810
5811The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5812applying either a zero extension or a truncation depending on the size
5813of the integer ``value``. If ``value`` is larger than the size of a
5814pointer then a truncation is done. If ``value`` is smaller than the size
5815of a pointer then a zero extension is done. If they are the same size,
5816nothing is done (*no-op cast*).
5817
5818Example:
5819""""""""
5820
5821.. code-block:: llvm
5822
5823 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5824 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5825 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5826 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5827
5828.. _i_bitcast:
5829
5830'``bitcast .. to``' Instruction
5831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5832
5833Syntax:
5834"""""""
5835
5836::
5837
5838 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5839
5840Overview:
5841"""""""""
5842
5843The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5844changing any bits.
5845
5846Arguments:
5847""""""""""
5848
5849The '``bitcast``' instruction takes a value to cast, which must be a
5850non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005851also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5852bit sizes of ``value`` and the destination type, ``ty2``, must be
5853identical. If the source type is a pointer, the destination type must
5854also be a pointer of the same size. This instruction supports bitwise
5855conversion of vectors to integers and to vectors of other types (as
5856long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005857
5858Semantics:
5859""""""""""
5860
Matt Arsenault24b49c42013-07-31 17:49:08 +00005861The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5862is always a *no-op cast* because no bits change with this
5863conversion. The conversion is done as if the ``value`` had been stored
5864to memory and read back as type ``ty2``. Pointer (or vector of
5865pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005866pointers) types with the same address space through this instruction.
5867To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5868or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005869
5870Example:
5871""""""""
5872
5873.. code-block:: llvm
5874
5875 %X = bitcast i8 255 to i8 ; yields i8 :-1
5876 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5877 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5878 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5879
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005880.. _i_addrspacecast:
5881
5882'``addrspacecast .. to``' Instruction
5883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5884
5885Syntax:
5886"""""""
5887
5888::
5889
5890 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5891
5892Overview:
5893"""""""""
5894
5895The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5896address space ``n`` to type ``pty2`` in address space ``m``.
5897
5898Arguments:
5899""""""""""
5900
5901The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5902to cast and a pointer type to cast it to, which must have a different
5903address space.
5904
5905Semantics:
5906""""""""""
5907
5908The '``addrspacecast``' instruction converts the pointer value
5909``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005910value modification, depending on the target and the address space
5911pair. Pointer conversions within the same address space must be
5912performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005913conversion is legal then both result and operand refer to the same memory
5914location.
5915
5916Example:
5917""""""""
5918
5919.. code-block:: llvm
5920
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005921 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5922 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5923 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005924
Sean Silvab084af42012-12-07 10:36:55 +00005925.. _otherops:
5926
5927Other Operations
5928----------------
5929
5930The instructions in this category are the "miscellaneous" instructions,
5931which defy better classification.
5932
5933.. _i_icmp:
5934
5935'``icmp``' Instruction
5936^^^^^^^^^^^^^^^^^^^^^^
5937
5938Syntax:
5939"""""""
5940
5941::
5942
5943 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5944
5945Overview:
5946"""""""""
5947
5948The '``icmp``' instruction returns a boolean value or a vector of
5949boolean values based on comparison of its two integer, integer vector,
5950pointer, or pointer vector operands.
5951
5952Arguments:
5953""""""""""
5954
5955The '``icmp``' instruction takes three operands. The first operand is
5956the condition code indicating the kind of comparison to perform. It is
5957not a value, just a keyword. The possible condition code are:
5958
5959#. ``eq``: equal
5960#. ``ne``: not equal
5961#. ``ugt``: unsigned greater than
5962#. ``uge``: unsigned greater or equal
5963#. ``ult``: unsigned less than
5964#. ``ule``: unsigned less or equal
5965#. ``sgt``: signed greater than
5966#. ``sge``: signed greater or equal
5967#. ``slt``: signed less than
5968#. ``sle``: signed less or equal
5969
5970The remaining two arguments must be :ref:`integer <t_integer>` or
5971:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5972must also be identical types.
5973
5974Semantics:
5975""""""""""
5976
5977The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5978code given as ``cond``. The comparison performed always yields either an
5979:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5980
5981#. ``eq``: yields ``true`` if the operands are equal, ``false``
5982 otherwise. No sign interpretation is necessary or performed.
5983#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5984 otherwise. No sign interpretation is necessary or performed.
5985#. ``ugt``: interprets the operands as unsigned values and yields
5986 ``true`` if ``op1`` is greater than ``op2``.
5987#. ``uge``: interprets the operands as unsigned values and yields
5988 ``true`` if ``op1`` is greater than or equal to ``op2``.
5989#. ``ult``: interprets the operands as unsigned values and yields
5990 ``true`` if ``op1`` is less than ``op2``.
5991#. ``ule``: interprets the operands as unsigned values and yields
5992 ``true`` if ``op1`` is less than or equal to ``op2``.
5993#. ``sgt``: interprets the operands as signed values and yields ``true``
5994 if ``op1`` is greater than ``op2``.
5995#. ``sge``: interprets the operands as signed values and yields ``true``
5996 if ``op1`` is greater than or equal to ``op2``.
5997#. ``slt``: interprets the operands as signed values and yields ``true``
5998 if ``op1`` is less than ``op2``.
5999#. ``sle``: interprets the operands as signed values and yields ``true``
6000 if ``op1`` is less than or equal to ``op2``.
6001
6002If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6003are compared as if they were integers.
6004
6005If the operands are integer vectors, then they are compared element by
6006element. The result is an ``i1`` vector with the same number of elements
6007as the values being compared. Otherwise, the result is an ``i1``.
6008
6009Example:
6010""""""""
6011
6012.. code-block:: llvm
6013
6014 <result> = icmp eq i32 4, 5 ; yields: result=false
6015 <result> = icmp ne float* %X, %X ; yields: result=false
6016 <result> = icmp ult i16 4, 5 ; yields: result=true
6017 <result> = icmp sgt i16 4, 5 ; yields: result=false
6018 <result> = icmp ule i16 -4, 5 ; yields: result=false
6019 <result> = icmp sge i16 4, 5 ; yields: result=false
6020
6021Note that the code generator does not yet support vector types with the
6022``icmp`` instruction.
6023
6024.. _i_fcmp:
6025
6026'``fcmp``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
6035
6036Overview:
6037"""""""""
6038
6039The '``fcmp``' instruction returns a boolean value or vector of boolean
6040values based on comparison of its operands.
6041
6042If the operands are floating point scalars, then the result type is a
6043boolean (:ref:`i1 <t_integer>`).
6044
6045If the operands are floating point vectors, then the result type is a
6046vector of boolean with the same number of elements as the operands being
6047compared.
6048
6049Arguments:
6050""""""""""
6051
6052The '``fcmp``' instruction takes three operands. The first operand is
6053the condition code indicating the kind of comparison to perform. It is
6054not a value, just a keyword. The possible condition code are:
6055
6056#. ``false``: no comparison, always returns false
6057#. ``oeq``: ordered and equal
6058#. ``ogt``: ordered and greater than
6059#. ``oge``: ordered and greater than or equal
6060#. ``olt``: ordered and less than
6061#. ``ole``: ordered and less than or equal
6062#. ``one``: ordered and not equal
6063#. ``ord``: ordered (no nans)
6064#. ``ueq``: unordered or equal
6065#. ``ugt``: unordered or greater than
6066#. ``uge``: unordered or greater than or equal
6067#. ``ult``: unordered or less than
6068#. ``ule``: unordered or less than or equal
6069#. ``une``: unordered or not equal
6070#. ``uno``: unordered (either nans)
6071#. ``true``: no comparison, always returns true
6072
6073*Ordered* means that neither operand is a QNAN while *unordered* means
6074that either operand may be a QNAN.
6075
6076Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6077point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6078type. They must have identical types.
6079
6080Semantics:
6081""""""""""
6082
6083The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6084condition code given as ``cond``. If the operands are vectors, then the
6085vectors are compared element by element. Each comparison performed
6086always yields an :ref:`i1 <t_integer>` result, as follows:
6087
6088#. ``false``: always yields ``false``, regardless of operands.
6089#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6090 is equal to ``op2``.
6091#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6092 is greater than ``op2``.
6093#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6094 is greater than or equal to ``op2``.
6095#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6096 is less than ``op2``.
6097#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6098 is less than or equal to ``op2``.
6099#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6100 is not equal to ``op2``.
6101#. ``ord``: yields ``true`` if both operands are not a QNAN.
6102#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6103 equal to ``op2``.
6104#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6105 greater than ``op2``.
6106#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6107 greater than or equal to ``op2``.
6108#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6109 less than ``op2``.
6110#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6111 less than or equal to ``op2``.
6112#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6113 not equal to ``op2``.
6114#. ``uno``: yields ``true`` if either operand is a QNAN.
6115#. ``true``: always yields ``true``, regardless of operands.
6116
6117Example:
6118""""""""
6119
6120.. code-block:: llvm
6121
6122 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6123 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6124 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6125 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6126
6127Note that the code generator does not yet support vector types with the
6128``fcmp`` instruction.
6129
6130.. _i_phi:
6131
6132'``phi``' Instruction
6133^^^^^^^^^^^^^^^^^^^^^
6134
6135Syntax:
6136"""""""
6137
6138::
6139
6140 <result> = phi <ty> [ <val0>, <label0>], ...
6141
6142Overview:
6143"""""""""
6144
6145The '``phi``' instruction is used to implement the φ node in the SSA
6146graph representing the function.
6147
6148Arguments:
6149""""""""""
6150
6151The type of the incoming values is specified with the first type field.
6152After this, the '``phi``' instruction takes a list of pairs as
6153arguments, with one pair for each predecessor basic block of the current
6154block. Only values of :ref:`first class <t_firstclass>` type may be used as
6155the value arguments to the PHI node. Only labels may be used as the
6156label arguments.
6157
6158There must be no non-phi instructions between the start of a basic block
6159and the PHI instructions: i.e. PHI instructions must be first in a basic
6160block.
6161
6162For the purposes of the SSA form, the use of each incoming value is
6163deemed to occur on the edge from the corresponding predecessor block to
6164the current block (but after any definition of an '``invoke``'
6165instruction's return value on the same edge).
6166
6167Semantics:
6168""""""""""
6169
6170At runtime, the '``phi``' instruction logically takes on the value
6171specified by the pair corresponding to the predecessor basic block that
6172executed just prior to the current block.
6173
6174Example:
6175""""""""
6176
6177.. code-block:: llvm
6178
6179 Loop: ; Infinite loop that counts from 0 on up...
6180 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6181 %nextindvar = add i32 %indvar, 1
6182 br label %Loop
6183
6184.. _i_select:
6185
6186'``select``' Instruction
6187^^^^^^^^^^^^^^^^^^^^^^^^
6188
6189Syntax:
6190"""""""
6191
6192::
6193
6194 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6195
6196 selty is either i1 or {<N x i1>}
6197
6198Overview:
6199"""""""""
6200
6201The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006202condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006203
6204Arguments:
6205""""""""""
6206
6207The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6208values indicating the condition, and two values of the same :ref:`first
6209class <t_firstclass>` type. If the val1/val2 are vectors and the
6210condition is a scalar, then entire vectors are selected, not individual
6211elements.
6212
6213Semantics:
6214""""""""""
6215
6216If the condition is an i1 and it evaluates to 1, the instruction returns
6217the first value argument; otherwise, it returns the second value
6218argument.
6219
6220If the condition is a vector of i1, then the value arguments must be
6221vectors of the same size, and the selection is done element by element.
6222
6223Example:
6224""""""""
6225
6226.. code-block:: llvm
6227
6228 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6229
6230.. _i_call:
6231
6232'``call``' Instruction
6233^^^^^^^^^^^^^^^^^^^^^^
6234
6235Syntax:
6236"""""""
6237
6238::
6239
Reid Kleckner5772b772014-04-24 20:14:34 +00006240 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006241
6242Overview:
6243"""""""""
6244
6245The '``call``' instruction represents a simple function call.
6246
6247Arguments:
6248""""""""""
6249
6250This instruction requires several arguments:
6251
Reid Kleckner5772b772014-04-24 20:14:34 +00006252#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6253 should perform tail call optimization. The ``tail`` marker is a hint that
6254 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6255 means that the call must be tail call optimized in order for the program to
6256 be correct. The ``musttail`` marker provides these guarantees:
6257
6258 #. The call will not cause unbounded stack growth if it is part of a
6259 recursive cycle in the call graph.
6260 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6261 forwarded in place.
6262
6263 Both markers imply that the callee does not access allocas or varargs from
6264 the caller. Calls marked ``musttail`` must obey the following additional
6265 rules:
6266
6267 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6268 or a pointer bitcast followed by a ret instruction.
6269 - The ret instruction must return the (possibly bitcasted) value
6270 produced by the call or void.
6271 - The caller and callee prototypes must match. Pointer types of
6272 parameters or return types may differ in pointee type, but not
6273 in address space.
6274 - The calling conventions of the caller and callee must match.
6275 - All ABI-impacting function attributes, such as sret, byval, inreg,
6276 returned, and inalloca, must match.
6277
6278 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6279 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006280
6281 - Caller and callee both have the calling convention ``fastcc``.
6282 - The call is in tail position (ret immediately follows call and ret
6283 uses value of call or is void).
6284 - Option ``-tailcallopt`` is enabled, or
6285 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6286 - `Platform specific constraints are
6287 met. <CodeGenerator.html#tailcallopt>`_
6288
6289#. The optional "cconv" marker indicates which :ref:`calling
6290 convention <callingconv>` the call should use. If none is
6291 specified, the call defaults to using C calling conventions. The
6292 calling convention of the call must match the calling convention of
6293 the target function, or else the behavior is undefined.
6294#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6295 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6296 are valid here.
6297#. '``ty``': the type of the call instruction itself which is also the
6298 type of the return value. Functions that return no value are marked
6299 ``void``.
6300#. '``fnty``': shall be the signature of the pointer to function value
6301 being invoked. The argument types must match the types implied by
6302 this signature. This type can be omitted if the function is not
6303 varargs and if the function type does not return a pointer to a
6304 function.
6305#. '``fnptrval``': An LLVM value containing a pointer to a function to
6306 be invoked. In most cases, this is a direct function invocation, but
6307 indirect ``call``'s are just as possible, calling an arbitrary pointer
6308 to function value.
6309#. '``function args``': argument list whose types match the function
6310 signature argument types and parameter attributes. All arguments must
6311 be of :ref:`first class <t_firstclass>` type. If the function signature
6312 indicates the function accepts a variable number of arguments, the
6313 extra arguments can be specified.
6314#. The optional :ref:`function attributes <fnattrs>` list. Only
6315 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6316 attributes are valid here.
6317
6318Semantics:
6319""""""""""
6320
6321The '``call``' instruction is used to cause control flow to transfer to
6322a specified function, with its incoming arguments bound to the specified
6323values. Upon a '``ret``' instruction in the called function, control
6324flow continues with the instruction after the function call, and the
6325return value of the function is bound to the result argument.
6326
6327Example:
6328""""""""
6329
6330.. code-block:: llvm
6331
6332 %retval = call i32 @test(i32 %argc)
6333 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6334 %X = tail call i32 @foo() ; yields i32
6335 %Y = tail call fastcc i32 @foo() ; yields i32
6336 call void %foo(i8 97 signext)
6337
6338 %struct.A = type { i32, i8 }
6339 %r = call %struct.A @foo() ; yields { 32, i8 }
6340 %gr = extractvalue %struct.A %r, 0 ; yields i32
6341 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6342 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6343 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6344
6345llvm treats calls to some functions with names and arguments that match
6346the standard C99 library as being the C99 library functions, and may
6347perform optimizations or generate code for them under that assumption.
6348This is something we'd like to change in the future to provide better
6349support for freestanding environments and non-C-based languages.
6350
6351.. _i_va_arg:
6352
6353'``va_arg``' Instruction
6354^^^^^^^^^^^^^^^^^^^^^^^^
6355
6356Syntax:
6357"""""""
6358
6359::
6360
6361 <resultval> = va_arg <va_list*> <arglist>, <argty>
6362
6363Overview:
6364"""""""""
6365
6366The '``va_arg``' instruction is used to access arguments passed through
6367the "variable argument" area of a function call. It is used to implement
6368the ``va_arg`` macro in C.
6369
6370Arguments:
6371""""""""""
6372
6373This instruction takes a ``va_list*`` value and the type of the
6374argument. It returns a value of the specified argument type and
6375increments the ``va_list`` to point to the next argument. The actual
6376type of ``va_list`` is target specific.
6377
6378Semantics:
6379""""""""""
6380
6381The '``va_arg``' instruction loads an argument of the specified type
6382from the specified ``va_list`` and causes the ``va_list`` to point to
6383the next argument. For more information, see the variable argument
6384handling :ref:`Intrinsic Functions <int_varargs>`.
6385
6386It is legal for this instruction to be called in a function which does
6387not take a variable number of arguments, for example, the ``vfprintf``
6388function.
6389
6390``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6391function <intrinsics>` because it takes a type as an argument.
6392
6393Example:
6394""""""""
6395
6396See the :ref:`variable argument processing <int_varargs>` section.
6397
6398Note that the code generator does not yet fully support va\_arg on many
6399targets. Also, it does not currently support va\_arg with aggregate
6400types on any target.
6401
6402.. _i_landingpad:
6403
6404'``landingpad``' Instruction
6405^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6406
6407Syntax:
6408"""""""
6409
6410::
6411
6412 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6413 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6414
6415 <clause> := catch <type> <value>
6416 <clause> := filter <array constant type> <array constant>
6417
6418Overview:
6419"""""""""
6420
6421The '``landingpad``' instruction is used by `LLVM's exception handling
6422system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006423is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006424code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6425defines values supplied by the personality function (``pers_fn``) upon
6426re-entry to the function. The ``resultval`` has the type ``resultty``.
6427
6428Arguments:
6429""""""""""
6430
6431This instruction takes a ``pers_fn`` value. This is the personality
6432function associated with the unwinding mechanism. The optional
6433``cleanup`` flag indicates that the landing pad block is a cleanup.
6434
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006435A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006436contains the global variable representing the "type" that may be caught
6437or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6438clause takes an array constant as its argument. Use
6439"``[0 x i8**] undef``" for a filter which cannot throw. The
6440'``landingpad``' instruction must contain *at least* one ``clause`` or
6441the ``cleanup`` flag.
6442
6443Semantics:
6444""""""""""
6445
6446The '``landingpad``' instruction defines the values which are set by the
6447personality function (``pers_fn``) upon re-entry to the function, and
6448therefore the "result type" of the ``landingpad`` instruction. As with
6449calling conventions, how the personality function results are
6450represented in LLVM IR is target specific.
6451
6452The clauses are applied in order from top to bottom. If two
6453``landingpad`` instructions are merged together through inlining, the
6454clauses from the calling function are appended to the list of clauses.
6455When the call stack is being unwound due to an exception being thrown,
6456the exception is compared against each ``clause`` in turn. If it doesn't
6457match any of the clauses, and the ``cleanup`` flag is not set, then
6458unwinding continues further up the call stack.
6459
6460The ``landingpad`` instruction has several restrictions:
6461
6462- A landing pad block is a basic block which is the unwind destination
6463 of an '``invoke``' instruction.
6464- A landing pad block must have a '``landingpad``' instruction as its
6465 first non-PHI instruction.
6466- There can be only one '``landingpad``' instruction within the landing
6467 pad block.
6468- A basic block that is not a landing pad block may not include a
6469 '``landingpad``' instruction.
6470- All '``landingpad``' instructions in a function must have the same
6471 personality function.
6472
6473Example:
6474""""""""
6475
6476.. code-block:: llvm
6477
6478 ;; A landing pad which can catch an integer.
6479 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6480 catch i8** @_ZTIi
6481 ;; A landing pad that is a cleanup.
6482 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6483 cleanup
6484 ;; A landing pad which can catch an integer and can only throw a double.
6485 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6486 catch i8** @_ZTIi
6487 filter [1 x i8**] [@_ZTId]
6488
6489.. _intrinsics:
6490
6491Intrinsic Functions
6492===================
6493
6494LLVM supports the notion of an "intrinsic function". These functions
6495have well known names and semantics and are required to follow certain
6496restrictions. Overall, these intrinsics represent an extension mechanism
6497for the LLVM language that does not require changing all of the
6498transformations in LLVM when adding to the language (or the bitcode
6499reader/writer, the parser, etc...).
6500
6501Intrinsic function names must all start with an "``llvm.``" prefix. This
6502prefix is reserved in LLVM for intrinsic names; thus, function names may
6503not begin with this prefix. Intrinsic functions must always be external
6504functions: you cannot define the body of intrinsic functions. Intrinsic
6505functions may only be used in call or invoke instructions: it is illegal
6506to take the address of an intrinsic function. Additionally, because
6507intrinsic functions are part of the LLVM language, it is required if any
6508are added that they be documented here.
6509
6510Some intrinsic functions can be overloaded, i.e., the intrinsic
6511represents a family of functions that perform the same operation but on
6512different data types. Because LLVM can represent over 8 million
6513different integer types, overloading is used commonly to allow an
6514intrinsic function to operate on any integer type. One or more of the
6515argument types or the result type can be overloaded to accept any
6516integer type. Argument types may also be defined as exactly matching a
6517previous argument's type or the result type. This allows an intrinsic
6518function which accepts multiple arguments, but needs all of them to be
6519of the same type, to only be overloaded with respect to a single
6520argument or the result.
6521
6522Overloaded intrinsics will have the names of its overloaded argument
6523types encoded into its function name, each preceded by a period. Only
6524those types which are overloaded result in a name suffix. Arguments
6525whose type is matched against another type do not. For example, the
6526``llvm.ctpop`` function can take an integer of any width and returns an
6527integer of exactly the same integer width. This leads to a family of
6528functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6529``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6530overloaded, and only one type suffix is required. Because the argument's
6531type is matched against the return type, it does not require its own
6532name suffix.
6533
6534To learn how to add an intrinsic function, please see the `Extending
6535LLVM Guide <ExtendingLLVM.html>`_.
6536
6537.. _int_varargs:
6538
6539Variable Argument Handling Intrinsics
6540-------------------------------------
6541
6542Variable argument support is defined in LLVM with the
6543:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6544functions. These functions are related to the similarly named macros
6545defined in the ``<stdarg.h>`` header file.
6546
6547All of these functions operate on arguments that use a target-specific
6548value type "``va_list``". The LLVM assembly language reference manual
6549does not define what this type is, so all transformations should be
6550prepared to handle these functions regardless of the type used.
6551
6552This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6553variable argument handling intrinsic functions are used.
6554
6555.. code-block:: llvm
6556
6557 define i32 @test(i32 %X, ...) {
6558 ; Initialize variable argument processing
6559 %ap = alloca i8*
6560 %ap2 = bitcast i8** %ap to i8*
6561 call void @llvm.va_start(i8* %ap2)
6562
6563 ; Read a single integer argument
6564 %tmp = va_arg i8** %ap, i32
6565
6566 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6567 %aq = alloca i8*
6568 %aq2 = bitcast i8** %aq to i8*
6569 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6570 call void @llvm.va_end(i8* %aq2)
6571
6572 ; Stop processing of arguments.
6573 call void @llvm.va_end(i8* %ap2)
6574 ret i32 %tmp
6575 }
6576
6577 declare void @llvm.va_start(i8*)
6578 declare void @llvm.va_copy(i8*, i8*)
6579 declare void @llvm.va_end(i8*)
6580
6581.. _int_va_start:
6582
6583'``llvm.va_start``' Intrinsic
6584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6585
6586Syntax:
6587"""""""
6588
6589::
6590
Nick Lewycky04f6de02013-09-11 22:04:52 +00006591 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006592
6593Overview:
6594"""""""""
6595
6596The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6597subsequent use by ``va_arg``.
6598
6599Arguments:
6600""""""""""
6601
6602The argument is a pointer to a ``va_list`` element to initialize.
6603
6604Semantics:
6605""""""""""
6606
6607The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6608available in C. In a target-dependent way, it initializes the
6609``va_list`` element to which the argument points, so that the next call
6610to ``va_arg`` will produce the first variable argument passed to the
6611function. Unlike the C ``va_start`` macro, this intrinsic does not need
6612to know the last argument of the function as the compiler can figure
6613that out.
6614
6615'``llvm.va_end``' Intrinsic
6616^^^^^^^^^^^^^^^^^^^^^^^^^^^
6617
6618Syntax:
6619"""""""
6620
6621::
6622
6623 declare void @llvm.va_end(i8* <arglist>)
6624
6625Overview:
6626"""""""""
6627
6628The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6629initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6630
6631Arguments:
6632""""""""""
6633
6634The argument is a pointer to a ``va_list`` to destroy.
6635
6636Semantics:
6637""""""""""
6638
6639The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6640available in C. In a target-dependent way, it destroys the ``va_list``
6641element to which the argument points. Calls to
6642:ref:`llvm.va_start <int_va_start>` and
6643:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6644``llvm.va_end``.
6645
6646.. _int_va_copy:
6647
6648'``llvm.va_copy``' Intrinsic
6649^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6650
6651Syntax:
6652"""""""
6653
6654::
6655
6656 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6657
6658Overview:
6659"""""""""
6660
6661The '``llvm.va_copy``' intrinsic copies the current argument position
6662from the source argument list to the destination argument list.
6663
6664Arguments:
6665""""""""""
6666
6667The first argument is a pointer to a ``va_list`` element to initialize.
6668The second argument is a pointer to a ``va_list`` element to copy from.
6669
6670Semantics:
6671""""""""""
6672
6673The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6674available in C. In a target-dependent way, it copies the source
6675``va_list`` element into the destination ``va_list`` element. This
6676intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6677arbitrarily complex and require, for example, memory allocation.
6678
6679Accurate Garbage Collection Intrinsics
6680--------------------------------------
6681
6682LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6683(GC) requires the implementation and generation of these intrinsics.
6684These intrinsics allow identification of :ref:`GC roots on the
6685stack <int_gcroot>`, as well as garbage collector implementations that
6686require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6687Front-ends for type-safe garbage collected languages should generate
6688these intrinsics to make use of the LLVM garbage collectors. For more
6689details, see `Accurate Garbage Collection with
6690LLVM <GarbageCollection.html>`_.
6691
6692The garbage collection intrinsics only operate on objects in the generic
6693address space (address space zero).
6694
6695.. _int_gcroot:
6696
6697'``llvm.gcroot``' Intrinsic
6698^^^^^^^^^^^^^^^^^^^^^^^^^^^
6699
6700Syntax:
6701"""""""
6702
6703::
6704
6705 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6706
6707Overview:
6708"""""""""
6709
6710The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6711the code generator, and allows some metadata to be associated with it.
6712
6713Arguments:
6714""""""""""
6715
6716The first argument specifies the address of a stack object that contains
6717the root pointer. The second pointer (which must be either a constant or
6718a global value address) contains the meta-data to be associated with the
6719root.
6720
6721Semantics:
6722""""""""""
6723
6724At runtime, a call to this intrinsic stores a null pointer into the
6725"ptrloc" location. At compile-time, the code generator generates
6726information to allow the runtime to find the pointer at GC safe points.
6727The '``llvm.gcroot``' intrinsic may only be used in a function which
6728:ref:`specifies a GC algorithm <gc>`.
6729
6730.. _int_gcread:
6731
6732'``llvm.gcread``' Intrinsic
6733^^^^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738::
6739
6740 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6741
6742Overview:
6743"""""""""
6744
6745The '``llvm.gcread``' intrinsic identifies reads of references from heap
6746locations, allowing garbage collector implementations that require read
6747barriers.
6748
6749Arguments:
6750""""""""""
6751
6752The second argument is the address to read from, which should be an
6753address allocated from the garbage collector. The first object is a
6754pointer to the start of the referenced object, if needed by the language
6755runtime (otherwise null).
6756
6757Semantics:
6758""""""""""
6759
6760The '``llvm.gcread``' intrinsic has the same semantics as a load
6761instruction, but may be replaced with substantially more complex code by
6762the garbage collector runtime, as needed. The '``llvm.gcread``'
6763intrinsic may only be used in a function which :ref:`specifies a GC
6764algorithm <gc>`.
6765
6766.. _int_gcwrite:
6767
6768'``llvm.gcwrite``' Intrinsic
6769^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6770
6771Syntax:
6772"""""""
6773
6774::
6775
6776 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6777
6778Overview:
6779"""""""""
6780
6781The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6782locations, allowing garbage collector implementations that require write
6783barriers (such as generational or reference counting collectors).
6784
6785Arguments:
6786""""""""""
6787
6788The first argument is the reference to store, the second is the start of
6789the object to store it to, and the third is the address of the field of
6790Obj to store to. If the runtime does not require a pointer to the
6791object, Obj may be null.
6792
6793Semantics:
6794""""""""""
6795
6796The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6797instruction, but may be replaced with substantially more complex code by
6798the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6799intrinsic may only be used in a function which :ref:`specifies a GC
6800algorithm <gc>`.
6801
6802Code Generator Intrinsics
6803-------------------------
6804
6805These intrinsics are provided by LLVM to expose special features that
6806may only be implemented with code generator support.
6807
6808'``llvm.returnaddress``' Intrinsic
6809^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6810
6811Syntax:
6812"""""""
6813
6814::
6815
6816 declare i8 *@llvm.returnaddress(i32 <level>)
6817
6818Overview:
6819"""""""""
6820
6821The '``llvm.returnaddress``' intrinsic attempts to compute a
6822target-specific value indicating the return address of the current
6823function or one of its callers.
6824
6825Arguments:
6826""""""""""
6827
6828The argument to this intrinsic indicates which function to return the
6829address for. Zero indicates the calling function, one indicates its
6830caller, etc. The argument is **required** to be a constant integer
6831value.
6832
6833Semantics:
6834""""""""""
6835
6836The '``llvm.returnaddress``' intrinsic either returns a pointer
6837indicating the return address of the specified call frame, or zero if it
6838cannot be identified. The value returned by this intrinsic is likely to
6839be incorrect or 0 for arguments other than zero, so it should only be
6840used for debugging purposes.
6841
6842Note that calling this intrinsic does not prevent function inlining or
6843other aggressive transformations, so the value returned may not be that
6844of the obvious source-language caller.
6845
6846'``llvm.frameaddress``' Intrinsic
6847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852::
6853
6854 declare i8* @llvm.frameaddress(i32 <level>)
6855
6856Overview:
6857"""""""""
6858
6859The '``llvm.frameaddress``' intrinsic attempts to return the
6860target-specific frame pointer value for the specified stack frame.
6861
6862Arguments:
6863""""""""""
6864
6865The argument to this intrinsic indicates which function to return the
6866frame pointer for. Zero indicates the calling function, one indicates
6867its caller, etc. The argument is **required** to be a constant integer
6868value.
6869
6870Semantics:
6871""""""""""
6872
6873The '``llvm.frameaddress``' intrinsic either returns a pointer
6874indicating the frame address of the specified call frame, or zero if it
6875cannot be identified. The value returned by this intrinsic is likely to
6876be incorrect or 0 for arguments other than zero, so it should only be
6877used for debugging purposes.
6878
6879Note that calling this intrinsic does not prevent function inlining or
6880other aggressive transformations, so the value returned may not be that
6881of the obvious source-language caller.
6882
Renato Golinc7aea402014-05-06 16:51:25 +00006883.. _int_read_register:
6884.. _int_write_register:
6885
6886'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6888
6889Syntax:
6890"""""""
6891
6892::
6893
6894 declare i32 @llvm.read_register.i32(metadata)
6895 declare i64 @llvm.read_register.i64(metadata)
6896 declare void @llvm.write_register.i32(metadata, i32 @value)
6897 declare void @llvm.write_register.i64(metadata, i64 @value)
6898 !0 = metadata !{metadata !"sp\00"}
6899
6900Overview:
6901"""""""""
6902
6903The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6904provides access to the named register. The register must be valid on
6905the architecture being compiled to. The type needs to be compatible
6906with the register being read.
6907
6908Semantics:
6909""""""""""
6910
6911The '``llvm.read_register``' intrinsic returns the current value of the
6912register, where possible. The '``llvm.write_register``' intrinsic sets
6913the current value of the register, where possible.
6914
6915This is useful to implement named register global variables that need
6916to always be mapped to a specific register, as is common practice on
6917bare-metal programs including OS kernels.
6918
6919The compiler doesn't check for register availability or use of the used
6920register in surrounding code, including inline assembly. Because of that,
6921allocatable registers are not supported.
6922
6923Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006924architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006925work is needed to support other registers and even more so, allocatable
6926registers.
6927
Sean Silvab084af42012-12-07 10:36:55 +00006928.. _int_stacksave:
6929
6930'``llvm.stacksave``' Intrinsic
6931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6932
6933Syntax:
6934"""""""
6935
6936::
6937
6938 declare i8* @llvm.stacksave()
6939
6940Overview:
6941"""""""""
6942
6943The '``llvm.stacksave``' intrinsic is used to remember the current state
6944of the function stack, for use with
6945:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6946implementing language features like scoped automatic variable sized
6947arrays in C99.
6948
6949Semantics:
6950""""""""""
6951
6952This intrinsic returns a opaque pointer value that can be passed to
6953:ref:`llvm.stackrestore <int_stackrestore>`. When an
6954``llvm.stackrestore`` intrinsic is executed with a value saved from
6955``llvm.stacksave``, it effectively restores the state of the stack to
6956the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6957practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6958were allocated after the ``llvm.stacksave`` was executed.
6959
6960.. _int_stackrestore:
6961
6962'``llvm.stackrestore``' Intrinsic
6963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6964
6965Syntax:
6966"""""""
6967
6968::
6969
6970 declare void @llvm.stackrestore(i8* %ptr)
6971
6972Overview:
6973"""""""""
6974
6975The '``llvm.stackrestore``' intrinsic is used to restore the state of
6976the function stack to the state it was in when the corresponding
6977:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6978useful for implementing language features like scoped automatic variable
6979sized arrays in C99.
6980
6981Semantics:
6982""""""""""
6983
6984See the description for :ref:`llvm.stacksave <int_stacksave>`.
6985
6986'``llvm.prefetch``' Intrinsic
6987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6988
6989Syntax:
6990"""""""
6991
6992::
6993
6994 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6995
6996Overview:
6997"""""""""
6998
6999The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7000insert a prefetch instruction if supported; otherwise, it is a noop.
7001Prefetches have no effect on the behavior of the program but can change
7002its performance characteristics.
7003
7004Arguments:
7005""""""""""
7006
7007``address`` is the address to be prefetched, ``rw`` is the specifier
7008determining if the fetch should be for a read (0) or write (1), and
7009``locality`` is a temporal locality specifier ranging from (0) - no
7010locality, to (3) - extremely local keep in cache. The ``cache type``
7011specifies whether the prefetch is performed on the data (1) or
7012instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7013arguments must be constant integers.
7014
7015Semantics:
7016""""""""""
7017
7018This intrinsic does not modify the behavior of the program. In
7019particular, prefetches cannot trap and do not produce a value. On
7020targets that support this intrinsic, the prefetch can provide hints to
7021the processor cache for better performance.
7022
7023'``llvm.pcmarker``' Intrinsic
7024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7025
7026Syntax:
7027"""""""
7028
7029::
7030
7031 declare void @llvm.pcmarker(i32 <id>)
7032
7033Overview:
7034"""""""""
7035
7036The '``llvm.pcmarker``' intrinsic is a method to export a Program
7037Counter (PC) in a region of code to simulators and other tools. The
7038method is target specific, but it is expected that the marker will use
7039exported symbols to transmit the PC of the marker. The marker makes no
7040guarantees that it will remain with any specific instruction after
7041optimizations. It is possible that the presence of a marker will inhibit
7042optimizations. The intended use is to be inserted after optimizations to
7043allow correlations of simulation runs.
7044
7045Arguments:
7046""""""""""
7047
7048``id`` is a numerical id identifying the marker.
7049
7050Semantics:
7051""""""""""
7052
7053This intrinsic does not modify the behavior of the program. Backends
7054that do not support this intrinsic may ignore it.
7055
7056'``llvm.readcyclecounter``' Intrinsic
7057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7058
7059Syntax:
7060"""""""
7061
7062::
7063
7064 declare i64 @llvm.readcyclecounter()
7065
7066Overview:
7067"""""""""
7068
7069The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7070counter register (or similar low latency, high accuracy clocks) on those
7071targets that support it. On X86, it should map to RDTSC. On Alpha, it
7072should map to RPCC. As the backing counters overflow quickly (on the
7073order of 9 seconds on alpha), this should only be used for small
7074timings.
7075
7076Semantics:
7077""""""""""
7078
7079When directly supported, reading the cycle counter should not modify any
7080memory. Implementations are allowed to either return a application
7081specific value or a system wide value. On backends without support, this
7082is lowered to a constant 0.
7083
Tim Northoverbc933082013-05-23 19:11:20 +00007084Note that runtime support may be conditional on the privilege-level code is
7085running at and the host platform.
7086
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007087'``llvm.clear_cache``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093::
7094
7095 declare void @llvm.clear_cache(i8*, i8*)
7096
7097Overview:
7098"""""""""
7099
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007100The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7101in the specified range to the execution unit of the processor. On
7102targets with non-unified instruction and data cache, the implementation
7103flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007104
7105Semantics:
7106""""""""""
7107
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007108On platforms with coherent instruction and data caches (e.g. x86), this
7109intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007110cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007111instructions or a system call, if cache flushing requires special
7112privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007113
Sean Silvad02bf3e2014-04-07 22:29:53 +00007114The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007115time library.
Renato Golin93010e62014-03-26 14:01:32 +00007116
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007117This instrinsic does *not* empty the instruction pipeline. Modifications
7118of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007119
Sean Silvab084af42012-12-07 10:36:55 +00007120Standard C Library Intrinsics
7121-----------------------------
7122
7123LLVM provides intrinsics for a few important standard C library
7124functions. These intrinsics allow source-language front-ends to pass
7125information about the alignment of the pointer arguments to the code
7126generator, providing opportunity for more efficient code generation.
7127
7128.. _int_memcpy:
7129
7130'``llvm.memcpy``' Intrinsic
7131^^^^^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7137integer bit width and for different address spaces. Not all targets
7138support all bit widths however.
7139
7140::
7141
7142 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7143 i32 <len>, i32 <align>, i1 <isvolatile>)
7144 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7145 i64 <len>, i32 <align>, i1 <isvolatile>)
7146
7147Overview:
7148"""""""""
7149
7150The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7151source location to the destination location.
7152
7153Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7154intrinsics do not return a value, takes extra alignment/isvolatile
7155arguments and the pointers can be in specified address spaces.
7156
7157Arguments:
7158""""""""""
7159
7160The first argument is a pointer to the destination, the second is a
7161pointer to the source. The third argument is an integer argument
7162specifying the number of bytes to copy, the fourth argument is the
7163alignment of the source and destination locations, and the fifth is a
7164boolean indicating a volatile access.
7165
7166If the call to this intrinsic has an alignment value that is not 0 or 1,
7167then the caller guarantees that both the source and destination pointers
7168are aligned to that boundary.
7169
7170If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7171a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7172very cleanly specified and it is unwise to depend on it.
7173
7174Semantics:
7175""""""""""
7176
7177The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7178source location to the destination location, which are not allowed to
7179overlap. It copies "len" bytes of memory over. If the argument is known
7180to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007181argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007182
7183'``llvm.memmove``' Intrinsic
7184^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7185
7186Syntax:
7187"""""""
7188
7189This is an overloaded intrinsic. You can use llvm.memmove on any integer
7190bit width and for different address space. Not all targets support all
7191bit widths however.
7192
7193::
7194
7195 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7196 i32 <len>, i32 <align>, i1 <isvolatile>)
7197 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7198 i64 <len>, i32 <align>, i1 <isvolatile>)
7199
7200Overview:
7201"""""""""
7202
7203The '``llvm.memmove.*``' intrinsics move a block of memory from the
7204source location to the destination location. It is similar to the
7205'``llvm.memcpy``' intrinsic but allows the two memory locations to
7206overlap.
7207
7208Note that, unlike the standard libc function, the ``llvm.memmove.*``
7209intrinsics do not return a value, takes extra alignment/isvolatile
7210arguments and the pointers can be in specified address spaces.
7211
7212Arguments:
7213""""""""""
7214
7215The first argument is a pointer to the destination, the second is a
7216pointer to the source. The third argument is an integer argument
7217specifying the number of bytes to copy, the fourth argument is the
7218alignment of the source and destination locations, and the fifth is a
7219boolean indicating a volatile access.
7220
7221If the call to this intrinsic has an alignment value that is not 0 or 1,
7222then the caller guarantees that the source and destination pointers are
7223aligned to that boundary.
7224
7225If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7226is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7227not very cleanly specified and it is unwise to depend on it.
7228
7229Semantics:
7230""""""""""
7231
7232The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7233source location to the destination location, which may overlap. It
7234copies "len" bytes of memory over. If the argument is known to be
7235aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007236otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007237
7238'``llvm.memset.*``' Intrinsics
7239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7240
7241Syntax:
7242"""""""
7243
7244This is an overloaded intrinsic. You can use llvm.memset on any integer
7245bit width and for different address spaces. However, not all targets
7246support all bit widths.
7247
7248::
7249
7250 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7251 i32 <len>, i32 <align>, i1 <isvolatile>)
7252 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7253 i64 <len>, i32 <align>, i1 <isvolatile>)
7254
7255Overview:
7256"""""""""
7257
7258The '``llvm.memset.*``' intrinsics fill a block of memory with a
7259particular byte value.
7260
7261Note that, unlike the standard libc function, the ``llvm.memset``
7262intrinsic does not return a value and takes extra alignment/volatile
7263arguments. Also, the destination can be in an arbitrary address space.
7264
7265Arguments:
7266""""""""""
7267
7268The first argument is a pointer to the destination to fill, the second
7269is the byte value with which to fill it, the third argument is an
7270integer argument specifying the number of bytes to fill, and the fourth
7271argument is the known alignment of the destination location.
7272
7273If the call to this intrinsic has an alignment value that is not 0 or 1,
7274then the caller guarantees that the destination pointer is aligned to
7275that boundary.
7276
7277If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7278a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7279very cleanly specified and it is unwise to depend on it.
7280
7281Semantics:
7282""""""""""
7283
7284The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7285at the destination location. If the argument is known to be aligned to
7286some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007287it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007288
7289'``llvm.sqrt.*``' Intrinsic
7290^^^^^^^^^^^^^^^^^^^^^^^^^^^
7291
7292Syntax:
7293"""""""
7294
7295This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7296floating point or vector of floating point type. Not all targets support
7297all types however.
7298
7299::
7300
7301 declare float @llvm.sqrt.f32(float %Val)
7302 declare double @llvm.sqrt.f64(double %Val)
7303 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7304 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7305 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7306
7307Overview:
7308"""""""""
7309
7310The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7311returning the same value as the libm '``sqrt``' functions would. Unlike
7312``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7313negative numbers other than -0.0 (which allows for better optimization,
7314because there is no need to worry about errno being set).
7315``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7316
7317Arguments:
7318""""""""""
7319
7320The argument and return value are floating point numbers of the same
7321type.
7322
7323Semantics:
7324""""""""""
7325
7326This function returns the sqrt of the specified operand if it is a
7327nonnegative floating point number.
7328
7329'``llvm.powi.*``' Intrinsic
7330^^^^^^^^^^^^^^^^^^^^^^^^^^^
7331
7332Syntax:
7333"""""""
7334
7335This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7336floating point or vector of floating point type. Not all targets support
7337all types however.
7338
7339::
7340
7341 declare float @llvm.powi.f32(float %Val, i32 %power)
7342 declare double @llvm.powi.f64(double %Val, i32 %power)
7343 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7344 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7345 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7346
7347Overview:
7348"""""""""
7349
7350The '``llvm.powi.*``' intrinsics return the first operand raised to the
7351specified (positive or negative) power. The order of evaluation of
7352multiplications is not defined. When a vector of floating point type is
7353used, the second argument remains a scalar integer value.
7354
7355Arguments:
7356""""""""""
7357
7358The second argument is an integer power, and the first is a value to
7359raise to that power.
7360
7361Semantics:
7362""""""""""
7363
7364This function returns the first value raised to the second power with an
7365unspecified sequence of rounding operations.
7366
7367'``llvm.sin.*``' Intrinsic
7368^^^^^^^^^^^^^^^^^^^^^^^^^^
7369
7370Syntax:
7371"""""""
7372
7373This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7374floating point or vector of floating point type. Not all targets support
7375all types however.
7376
7377::
7378
7379 declare float @llvm.sin.f32(float %Val)
7380 declare double @llvm.sin.f64(double %Val)
7381 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7382 declare fp128 @llvm.sin.f128(fp128 %Val)
7383 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7384
7385Overview:
7386"""""""""
7387
7388The '``llvm.sin.*``' intrinsics return the sine of the operand.
7389
7390Arguments:
7391""""""""""
7392
7393The argument and return value are floating point numbers of the same
7394type.
7395
7396Semantics:
7397""""""""""
7398
7399This function returns the sine of the specified operand, returning the
7400same values as the libm ``sin`` functions would, and handles error
7401conditions in the same way.
7402
7403'``llvm.cos.*``' Intrinsic
7404^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7410floating point or vector of floating point type. Not all targets support
7411all types however.
7412
7413::
7414
7415 declare float @llvm.cos.f32(float %Val)
7416 declare double @llvm.cos.f64(double %Val)
7417 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7418 declare fp128 @llvm.cos.f128(fp128 %Val)
7419 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7420
7421Overview:
7422"""""""""
7423
7424The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7425
7426Arguments:
7427""""""""""
7428
7429The argument and return value are floating point numbers of the same
7430type.
7431
7432Semantics:
7433""""""""""
7434
7435This function returns the cosine of the specified operand, returning the
7436same values as the libm ``cos`` functions would, and handles error
7437conditions in the same way.
7438
7439'``llvm.pow.*``' Intrinsic
7440^^^^^^^^^^^^^^^^^^^^^^^^^^
7441
7442Syntax:
7443"""""""
7444
7445This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7446floating point or vector of floating point type. Not all targets support
7447all types however.
7448
7449::
7450
7451 declare float @llvm.pow.f32(float %Val, float %Power)
7452 declare double @llvm.pow.f64(double %Val, double %Power)
7453 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7454 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7455 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7456
7457Overview:
7458"""""""""
7459
7460The '``llvm.pow.*``' intrinsics return the first operand raised to the
7461specified (positive or negative) power.
7462
7463Arguments:
7464""""""""""
7465
7466The second argument is a floating point power, and the first is a value
7467to raise to that power.
7468
7469Semantics:
7470""""""""""
7471
7472This function returns the first value raised to the second power,
7473returning the same values as the libm ``pow`` functions would, and
7474handles error conditions in the same way.
7475
7476'``llvm.exp.*``' Intrinsic
7477^^^^^^^^^^^^^^^^^^^^^^^^^^
7478
7479Syntax:
7480"""""""
7481
7482This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7483floating point or vector of floating point type. Not all targets support
7484all types however.
7485
7486::
7487
7488 declare float @llvm.exp.f32(float %Val)
7489 declare double @llvm.exp.f64(double %Val)
7490 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7491 declare fp128 @llvm.exp.f128(fp128 %Val)
7492 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7493
7494Overview:
7495"""""""""
7496
7497The '``llvm.exp.*``' intrinsics perform the exp function.
7498
7499Arguments:
7500""""""""""
7501
7502The argument and return value are floating point numbers of the same
7503type.
7504
7505Semantics:
7506""""""""""
7507
7508This function returns the same values as the libm ``exp`` functions
7509would, and handles error conditions in the same way.
7510
7511'``llvm.exp2.*``' Intrinsic
7512^^^^^^^^^^^^^^^^^^^^^^^^^^^
7513
7514Syntax:
7515"""""""
7516
7517This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7518floating point or vector of floating point type. Not all targets support
7519all types however.
7520
7521::
7522
7523 declare float @llvm.exp2.f32(float %Val)
7524 declare double @llvm.exp2.f64(double %Val)
7525 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7526 declare fp128 @llvm.exp2.f128(fp128 %Val)
7527 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7528
7529Overview:
7530"""""""""
7531
7532The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7533
7534Arguments:
7535""""""""""
7536
7537The argument and return value are floating point numbers of the same
7538type.
7539
7540Semantics:
7541""""""""""
7542
7543This function returns the same values as the libm ``exp2`` functions
7544would, and handles error conditions in the same way.
7545
7546'``llvm.log.*``' Intrinsic
7547^^^^^^^^^^^^^^^^^^^^^^^^^^
7548
7549Syntax:
7550"""""""
7551
7552This is an overloaded intrinsic. You can use ``llvm.log`` on any
7553floating point or vector of floating point type. Not all targets support
7554all types however.
7555
7556::
7557
7558 declare float @llvm.log.f32(float %Val)
7559 declare double @llvm.log.f64(double %Val)
7560 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7561 declare fp128 @llvm.log.f128(fp128 %Val)
7562 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7563
7564Overview:
7565"""""""""
7566
7567The '``llvm.log.*``' intrinsics perform the log function.
7568
7569Arguments:
7570""""""""""
7571
7572The argument and return value are floating point numbers of the same
7573type.
7574
7575Semantics:
7576""""""""""
7577
7578This function returns the same values as the libm ``log`` functions
7579would, and handles error conditions in the same way.
7580
7581'``llvm.log10.*``' Intrinsic
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7588floating point or vector of floating point type. Not all targets support
7589all types however.
7590
7591::
7592
7593 declare float @llvm.log10.f32(float %Val)
7594 declare double @llvm.log10.f64(double %Val)
7595 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7596 declare fp128 @llvm.log10.f128(fp128 %Val)
7597 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7598
7599Overview:
7600"""""""""
7601
7602The '``llvm.log10.*``' intrinsics perform the log10 function.
7603
7604Arguments:
7605""""""""""
7606
7607The argument and return value are floating point numbers of the same
7608type.
7609
7610Semantics:
7611""""""""""
7612
7613This function returns the same values as the libm ``log10`` functions
7614would, and handles error conditions in the same way.
7615
7616'``llvm.log2.*``' Intrinsic
7617^^^^^^^^^^^^^^^^^^^^^^^^^^^
7618
7619Syntax:
7620"""""""
7621
7622This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7623floating point or vector of floating point type. Not all targets support
7624all types however.
7625
7626::
7627
7628 declare float @llvm.log2.f32(float %Val)
7629 declare double @llvm.log2.f64(double %Val)
7630 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7631 declare fp128 @llvm.log2.f128(fp128 %Val)
7632 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7633
7634Overview:
7635"""""""""
7636
7637The '``llvm.log2.*``' intrinsics perform the log2 function.
7638
7639Arguments:
7640""""""""""
7641
7642The argument and return value are floating point numbers of the same
7643type.
7644
7645Semantics:
7646""""""""""
7647
7648This function returns the same values as the libm ``log2`` functions
7649would, and handles error conditions in the same way.
7650
7651'``llvm.fma.*``' Intrinsic
7652^^^^^^^^^^^^^^^^^^^^^^^^^^
7653
7654Syntax:
7655"""""""
7656
7657This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7658floating point or vector of floating point type. Not all targets support
7659all types however.
7660
7661::
7662
7663 declare float @llvm.fma.f32(float %a, float %b, float %c)
7664 declare double @llvm.fma.f64(double %a, double %b, double %c)
7665 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7666 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7667 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7673operation.
7674
7675Arguments:
7676""""""""""
7677
7678The argument and return value are floating point numbers of the same
7679type.
7680
7681Semantics:
7682""""""""""
7683
7684This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007685would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007686
7687'``llvm.fabs.*``' Intrinsic
7688^^^^^^^^^^^^^^^^^^^^^^^^^^^
7689
7690Syntax:
7691"""""""
7692
7693This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7694floating point or vector of floating point type. Not all targets support
7695all types however.
7696
7697::
7698
7699 declare float @llvm.fabs.f32(float %Val)
7700 declare double @llvm.fabs.f64(double %Val)
7701 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7702 declare fp128 @llvm.fabs.f128(fp128 %Val)
7703 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7704
7705Overview:
7706"""""""""
7707
7708The '``llvm.fabs.*``' intrinsics return the absolute value of the
7709operand.
7710
7711Arguments:
7712""""""""""
7713
7714The argument and return value are floating point numbers of the same
7715type.
7716
7717Semantics:
7718""""""""""
7719
7720This function returns the same values as the libm ``fabs`` functions
7721would, and handles error conditions in the same way.
7722
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007723'``llvm.copysign.*``' Intrinsic
7724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7725
7726Syntax:
7727"""""""
7728
7729This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7730floating point or vector of floating point type. Not all targets support
7731all types however.
7732
7733::
7734
7735 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7736 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7737 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7738 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7739 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7740
7741Overview:
7742"""""""""
7743
7744The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7745first operand and the sign of the second operand.
7746
7747Arguments:
7748""""""""""
7749
7750The arguments and return value are floating point numbers of the same
7751type.
7752
7753Semantics:
7754""""""""""
7755
7756This function returns the same values as the libm ``copysign``
7757functions would, and handles error conditions in the same way.
7758
Sean Silvab084af42012-12-07 10:36:55 +00007759'``llvm.floor.*``' Intrinsic
7760^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7761
7762Syntax:
7763"""""""
7764
7765This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7766floating point or vector of floating point type. Not all targets support
7767all types however.
7768
7769::
7770
7771 declare float @llvm.floor.f32(float %Val)
7772 declare double @llvm.floor.f64(double %Val)
7773 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7774 declare fp128 @llvm.floor.f128(fp128 %Val)
7775 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7776
7777Overview:
7778"""""""""
7779
7780The '``llvm.floor.*``' intrinsics return the floor of the operand.
7781
7782Arguments:
7783""""""""""
7784
7785The argument and return value are floating point numbers of the same
7786type.
7787
7788Semantics:
7789""""""""""
7790
7791This function returns the same values as the libm ``floor`` functions
7792would, and handles error conditions in the same way.
7793
7794'``llvm.ceil.*``' Intrinsic
7795^^^^^^^^^^^^^^^^^^^^^^^^^^^
7796
7797Syntax:
7798"""""""
7799
7800This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7801floating point or vector of floating point type. Not all targets support
7802all types however.
7803
7804::
7805
7806 declare float @llvm.ceil.f32(float %Val)
7807 declare double @llvm.ceil.f64(double %Val)
7808 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7809 declare fp128 @llvm.ceil.f128(fp128 %Val)
7810 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7811
7812Overview:
7813"""""""""
7814
7815The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7816
7817Arguments:
7818""""""""""
7819
7820The argument and return value are floating point numbers of the same
7821type.
7822
7823Semantics:
7824""""""""""
7825
7826This function returns the same values as the libm ``ceil`` functions
7827would, and handles error conditions in the same way.
7828
7829'``llvm.trunc.*``' Intrinsic
7830^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7831
7832Syntax:
7833"""""""
7834
7835This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7836floating point or vector of floating point type. Not all targets support
7837all types however.
7838
7839::
7840
7841 declare float @llvm.trunc.f32(float %Val)
7842 declare double @llvm.trunc.f64(double %Val)
7843 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7844 declare fp128 @llvm.trunc.f128(fp128 %Val)
7845 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7846
7847Overview:
7848"""""""""
7849
7850The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7851nearest integer not larger in magnitude than the operand.
7852
7853Arguments:
7854""""""""""
7855
7856The argument and return value are floating point numbers of the same
7857type.
7858
7859Semantics:
7860""""""""""
7861
7862This function returns the same values as the libm ``trunc`` functions
7863would, and handles error conditions in the same way.
7864
7865'``llvm.rint.*``' Intrinsic
7866^^^^^^^^^^^^^^^^^^^^^^^^^^^
7867
7868Syntax:
7869"""""""
7870
7871This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7872floating point or vector of floating point type. Not all targets support
7873all types however.
7874
7875::
7876
7877 declare float @llvm.rint.f32(float %Val)
7878 declare double @llvm.rint.f64(double %Val)
7879 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7880 declare fp128 @llvm.rint.f128(fp128 %Val)
7881 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7882
7883Overview:
7884"""""""""
7885
7886The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7887nearest integer. It may raise an inexact floating-point exception if the
7888operand isn't an integer.
7889
7890Arguments:
7891""""""""""
7892
7893The argument and return value are floating point numbers of the same
7894type.
7895
7896Semantics:
7897""""""""""
7898
7899This function returns the same values as the libm ``rint`` functions
7900would, and handles error conditions in the same way.
7901
7902'``llvm.nearbyint.*``' Intrinsic
7903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7904
7905Syntax:
7906"""""""
7907
7908This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7909floating point or vector of floating point type. Not all targets support
7910all types however.
7911
7912::
7913
7914 declare float @llvm.nearbyint.f32(float %Val)
7915 declare double @llvm.nearbyint.f64(double %Val)
7916 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7917 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7918 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7919
7920Overview:
7921"""""""""
7922
7923The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7924nearest integer.
7925
7926Arguments:
7927""""""""""
7928
7929The argument and return value are floating point numbers of the same
7930type.
7931
7932Semantics:
7933""""""""""
7934
7935This function returns the same values as the libm ``nearbyint``
7936functions would, and handles error conditions in the same way.
7937
Hal Finkel171817e2013-08-07 22:49:12 +00007938'``llvm.round.*``' Intrinsic
7939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7940
7941Syntax:
7942"""""""
7943
7944This is an overloaded intrinsic. You can use ``llvm.round`` on any
7945floating point or vector of floating point type. Not all targets support
7946all types however.
7947
7948::
7949
7950 declare float @llvm.round.f32(float %Val)
7951 declare double @llvm.round.f64(double %Val)
7952 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7953 declare fp128 @llvm.round.f128(fp128 %Val)
7954 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7955
7956Overview:
7957"""""""""
7958
7959The '``llvm.round.*``' intrinsics returns the operand rounded to the
7960nearest integer.
7961
7962Arguments:
7963""""""""""
7964
7965The argument and return value are floating point numbers of the same
7966type.
7967
7968Semantics:
7969""""""""""
7970
7971This function returns the same values as the libm ``round``
7972functions would, and handles error conditions in the same way.
7973
Sean Silvab084af42012-12-07 10:36:55 +00007974Bit Manipulation Intrinsics
7975---------------------------
7976
7977LLVM provides intrinsics for a few important bit manipulation
7978operations. These allow efficient code generation for some algorithms.
7979
7980'``llvm.bswap.*``' Intrinsics
7981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7982
7983Syntax:
7984"""""""
7985
7986This is an overloaded intrinsic function. You can use bswap on any
7987integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7988
7989::
7990
7991 declare i16 @llvm.bswap.i16(i16 <id>)
7992 declare i32 @llvm.bswap.i32(i32 <id>)
7993 declare i64 @llvm.bswap.i64(i64 <id>)
7994
7995Overview:
7996"""""""""
7997
7998The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7999values with an even number of bytes (positive multiple of 16 bits).
8000These are useful for performing operations on data that is not in the
8001target's native byte order.
8002
8003Semantics:
8004""""""""""
8005
8006The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8007and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8008intrinsic returns an i32 value that has the four bytes of the input i32
8009swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8010returned i32 will have its bytes in 3, 2, 1, 0 order. The
8011``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8012concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8013respectively).
8014
8015'``llvm.ctpop.*``' Intrinsic
8016^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8017
8018Syntax:
8019"""""""
8020
8021This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8022bit width, or on any vector with integer elements. Not all targets
8023support all bit widths or vector types, however.
8024
8025::
8026
8027 declare i8 @llvm.ctpop.i8(i8 <src>)
8028 declare i16 @llvm.ctpop.i16(i16 <src>)
8029 declare i32 @llvm.ctpop.i32(i32 <src>)
8030 declare i64 @llvm.ctpop.i64(i64 <src>)
8031 declare i256 @llvm.ctpop.i256(i256 <src>)
8032 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8033
8034Overview:
8035"""""""""
8036
8037The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8038in a value.
8039
8040Arguments:
8041""""""""""
8042
8043The only argument is the value to be counted. The argument may be of any
8044integer type, or a vector with integer elements. The return type must
8045match the argument type.
8046
8047Semantics:
8048""""""""""
8049
8050The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8051each element of a vector.
8052
8053'``llvm.ctlz.*``' Intrinsic
8054^^^^^^^^^^^^^^^^^^^^^^^^^^^
8055
8056Syntax:
8057"""""""
8058
8059This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8060integer bit width, or any vector whose elements are integers. Not all
8061targets support all bit widths or vector types, however.
8062
8063::
8064
8065 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8066 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8067 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8068 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8069 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8070 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8071
8072Overview:
8073"""""""""
8074
8075The '``llvm.ctlz``' family of intrinsic functions counts the number of
8076leading zeros in a variable.
8077
8078Arguments:
8079""""""""""
8080
8081The first argument is the value to be counted. This argument may be of
8082any integer type, or a vectory with integer element type. The return
8083type must match the first argument type.
8084
8085The second argument must be a constant and is a flag to indicate whether
8086the intrinsic should ensure that a zero as the first argument produces a
8087defined result. Historically some architectures did not provide a
8088defined result for zero values as efficiently, and many algorithms are
8089now predicated on avoiding zero-value inputs.
8090
8091Semantics:
8092""""""""""
8093
8094The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8095zeros in a variable, or within each element of the vector. If
8096``src == 0`` then the result is the size in bits of the type of ``src``
8097if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8098``llvm.ctlz(i32 2) = 30``.
8099
8100'``llvm.cttz.*``' Intrinsic
8101^^^^^^^^^^^^^^^^^^^^^^^^^^^
8102
8103Syntax:
8104"""""""
8105
8106This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8107integer bit width, or any vector of integer elements. Not all targets
8108support all bit widths or vector types, however.
8109
8110::
8111
8112 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8113 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8114 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8115 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8116 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8117 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8118
8119Overview:
8120"""""""""
8121
8122The '``llvm.cttz``' family of intrinsic functions counts the number of
8123trailing zeros.
8124
8125Arguments:
8126""""""""""
8127
8128The first argument is the value to be counted. This argument may be of
8129any integer type, or a vectory with integer element type. The return
8130type must match the first argument type.
8131
8132The second argument must be a constant and is a flag to indicate whether
8133the intrinsic should ensure that a zero as the first argument produces a
8134defined result. Historically some architectures did not provide a
8135defined result for zero values as efficiently, and many algorithms are
8136now predicated on avoiding zero-value inputs.
8137
8138Semantics:
8139""""""""""
8140
8141The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8142zeros in a variable, or within each element of a vector. If ``src == 0``
8143then the result is the size in bits of the type of ``src`` if
8144``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8145``llvm.cttz(2) = 1``.
8146
8147Arithmetic with Overflow Intrinsics
8148-----------------------------------
8149
8150LLVM provides intrinsics for some arithmetic with overflow operations.
8151
8152'``llvm.sadd.with.overflow.*``' Intrinsics
8153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8154
8155Syntax:
8156"""""""
8157
8158This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8159on any integer bit width.
8160
8161::
8162
8163 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8164 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8165 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8166
8167Overview:
8168"""""""""
8169
8170The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8171a signed addition of the two arguments, and indicate whether an overflow
8172occurred during the signed summation.
8173
8174Arguments:
8175""""""""""
8176
8177The arguments (%a and %b) and the first element of the result structure
8178may be of integer types of any bit width, but they must have the same
8179bit width. The second element of the result structure must be of type
8180``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8181addition.
8182
8183Semantics:
8184""""""""""
8185
8186The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008187a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008188first element of which is the signed summation, and the second element
8189of which is a bit specifying if the signed summation resulted in an
8190overflow.
8191
8192Examples:
8193"""""""""
8194
8195.. code-block:: llvm
8196
8197 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8198 %sum = extractvalue {i32, i1} %res, 0
8199 %obit = extractvalue {i32, i1} %res, 1
8200 br i1 %obit, label %overflow, label %normal
8201
8202'``llvm.uadd.with.overflow.*``' Intrinsics
8203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8204
8205Syntax:
8206"""""""
8207
8208This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8209on any integer bit width.
8210
8211::
8212
8213 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8214 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8215 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8216
8217Overview:
8218"""""""""
8219
8220The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8221an unsigned addition of the two arguments, and indicate whether a carry
8222occurred during the unsigned summation.
8223
8224Arguments:
8225""""""""""
8226
8227The arguments (%a and %b) and the first element of the result structure
8228may be of integer types of any bit width, but they must have the same
8229bit width. The second element of the result structure must be of type
8230``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8231addition.
8232
8233Semantics:
8234""""""""""
8235
8236The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008237an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008238first element of which is the sum, and the second element of which is a
8239bit specifying if the unsigned summation resulted in a carry.
8240
8241Examples:
8242"""""""""
8243
8244.. code-block:: llvm
8245
8246 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8247 %sum = extractvalue {i32, i1} %res, 0
8248 %obit = extractvalue {i32, i1} %res, 1
8249 br i1 %obit, label %carry, label %normal
8250
8251'``llvm.ssub.with.overflow.*``' Intrinsics
8252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8253
8254Syntax:
8255"""""""
8256
8257This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8258on any integer bit width.
8259
8260::
8261
8262 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8263 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8264 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8265
8266Overview:
8267"""""""""
8268
8269The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8270a signed subtraction of the two arguments, and indicate whether an
8271overflow occurred during the signed subtraction.
8272
8273Arguments:
8274""""""""""
8275
8276The arguments (%a and %b) and the first element of the result structure
8277may be of integer types of any bit width, but they must have the same
8278bit width. The second element of the result structure must be of type
8279``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8280subtraction.
8281
8282Semantics:
8283""""""""""
8284
8285The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008286a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008287first element of which is the subtraction, and the second element of
8288which is a bit specifying if the signed subtraction resulted in an
8289overflow.
8290
8291Examples:
8292"""""""""
8293
8294.. code-block:: llvm
8295
8296 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8297 %sum = extractvalue {i32, i1} %res, 0
8298 %obit = extractvalue {i32, i1} %res, 1
8299 br i1 %obit, label %overflow, label %normal
8300
8301'``llvm.usub.with.overflow.*``' Intrinsics
8302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8303
8304Syntax:
8305"""""""
8306
8307This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8308on any integer bit width.
8309
8310::
8311
8312 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8313 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8314 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8315
8316Overview:
8317"""""""""
8318
8319The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8320an unsigned subtraction of the two arguments, and indicate whether an
8321overflow occurred during the unsigned subtraction.
8322
8323Arguments:
8324""""""""""
8325
8326The arguments (%a and %b) and the first element of the result structure
8327may be of integer types of any bit width, but they must have the same
8328bit width. The second element of the result structure must be of type
8329``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8330subtraction.
8331
8332Semantics:
8333""""""""""
8334
8335The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008336an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008337the first element of which is the subtraction, and the second element of
8338which is a bit specifying if the unsigned subtraction resulted in an
8339overflow.
8340
8341Examples:
8342"""""""""
8343
8344.. code-block:: llvm
8345
8346 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8347 %sum = extractvalue {i32, i1} %res, 0
8348 %obit = extractvalue {i32, i1} %res, 1
8349 br i1 %obit, label %overflow, label %normal
8350
8351'``llvm.smul.with.overflow.*``' Intrinsics
8352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8353
8354Syntax:
8355"""""""
8356
8357This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8358on any integer bit width.
8359
8360::
8361
8362 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8363 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8364 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8365
8366Overview:
8367"""""""""
8368
8369The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8370a signed multiplication of the two arguments, and indicate whether an
8371overflow occurred during the signed multiplication.
8372
8373Arguments:
8374""""""""""
8375
8376The arguments (%a and %b) and the first element of the result structure
8377may be of integer types of any bit width, but they must have the same
8378bit width. The second element of the result structure must be of type
8379``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8380multiplication.
8381
8382Semantics:
8383""""""""""
8384
8385The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008386a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008387the first element of which is the multiplication, and the second element
8388of which is a bit specifying if the signed multiplication resulted in an
8389overflow.
8390
8391Examples:
8392"""""""""
8393
8394.. code-block:: llvm
8395
8396 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8397 %sum = extractvalue {i32, i1} %res, 0
8398 %obit = extractvalue {i32, i1} %res, 1
8399 br i1 %obit, label %overflow, label %normal
8400
8401'``llvm.umul.with.overflow.*``' Intrinsics
8402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8403
8404Syntax:
8405"""""""
8406
8407This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8408on any integer bit width.
8409
8410::
8411
8412 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8413 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8414 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8415
8416Overview:
8417"""""""""
8418
8419The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8420a unsigned multiplication of the two arguments, and indicate whether an
8421overflow occurred during the unsigned multiplication.
8422
8423Arguments:
8424""""""""""
8425
8426The arguments (%a and %b) and the first element of the result structure
8427may be of integer types of any bit width, but they must have the same
8428bit width. The second element of the result structure must be of type
8429``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8430multiplication.
8431
8432Semantics:
8433""""""""""
8434
8435The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008436an unsigned multiplication of the two arguments. They return a structure ---
8437the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008438element of which is a bit specifying if the unsigned multiplication
8439resulted in an overflow.
8440
8441Examples:
8442"""""""""
8443
8444.. code-block:: llvm
8445
8446 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8447 %sum = extractvalue {i32, i1} %res, 0
8448 %obit = extractvalue {i32, i1} %res, 1
8449 br i1 %obit, label %overflow, label %normal
8450
8451Specialised Arithmetic Intrinsics
8452---------------------------------
8453
8454'``llvm.fmuladd.*``' Intrinsic
8455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8456
8457Syntax:
8458"""""""
8459
8460::
8461
8462 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8463 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8464
8465Overview:
8466"""""""""
8467
8468The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008469expressions that can be fused if the code generator determines that (a) the
8470target instruction set has support for a fused operation, and (b) that the
8471fused operation is more efficient than the equivalent, separate pair of mul
8472and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008473
8474Arguments:
8475""""""""""
8476
8477The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8478multiplicands, a and b, and an addend c.
8479
8480Semantics:
8481""""""""""
8482
8483The expression:
8484
8485::
8486
8487 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8488
8489is equivalent to the expression a \* b + c, except that rounding will
8490not be performed between the multiplication and addition steps if the
8491code generator fuses the operations. Fusion is not guaranteed, even if
8492the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008493corresponding llvm.fma.\* intrinsic function should be used
8494instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008495
8496Examples:
8497"""""""""
8498
8499.. code-block:: llvm
8500
8501 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8502
8503Half Precision Floating Point Intrinsics
8504----------------------------------------
8505
8506For most target platforms, half precision floating point is a
8507storage-only format. This means that it is a dense encoding (in memory)
8508but does not support computation in the format.
8509
8510This means that code must first load the half-precision floating point
8511value as an i16, then convert it to float with
8512:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8513then be performed on the float value (including extending to double
8514etc). To store the value back to memory, it is first converted to float
8515if needed, then converted to i16 with
8516:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8517i16 value.
8518
8519.. _int_convert_to_fp16:
8520
8521'``llvm.convert.to.fp16``' Intrinsic
8522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8523
8524Syntax:
8525"""""""
8526
8527::
8528
8529 declare i16 @llvm.convert.to.fp16(f32 %a)
8530
8531Overview:
8532"""""""""
8533
8534The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8535from single precision floating point format to half precision floating
8536point format.
8537
8538Arguments:
8539""""""""""
8540
8541The intrinsic function contains single argument - the value to be
8542converted.
8543
8544Semantics:
8545""""""""""
8546
8547The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8548from single precision floating point format to half precision floating
8549point format. The return value is an ``i16`` which contains the
8550converted number.
8551
8552Examples:
8553"""""""""
8554
8555.. code-block:: llvm
8556
8557 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8558 store i16 %res, i16* @x, align 2
8559
8560.. _int_convert_from_fp16:
8561
8562'``llvm.convert.from.fp16``' Intrinsic
8563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8564
8565Syntax:
8566"""""""
8567
8568::
8569
8570 declare f32 @llvm.convert.from.fp16(i16 %a)
8571
8572Overview:
8573"""""""""
8574
8575The '``llvm.convert.from.fp16``' intrinsic function performs a
8576conversion from half precision floating point format to single precision
8577floating point format.
8578
8579Arguments:
8580""""""""""
8581
8582The intrinsic function contains single argument - the value to be
8583converted.
8584
8585Semantics:
8586""""""""""
8587
8588The '``llvm.convert.from.fp16``' intrinsic function performs a
8589conversion from half single precision floating point format to single
8590precision floating point format. The input half-float value is
8591represented by an ``i16`` value.
8592
8593Examples:
8594"""""""""
8595
8596.. code-block:: llvm
8597
8598 %a = load i16* @x, align 2
8599 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8600
8601Debugger Intrinsics
8602-------------------
8603
8604The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8605prefix), are described in the `LLVM Source Level
8606Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8607document.
8608
8609Exception Handling Intrinsics
8610-----------------------------
8611
8612The LLVM exception handling intrinsics (which all start with
8613``llvm.eh.`` prefix), are described in the `LLVM Exception
8614Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8615
8616.. _int_trampoline:
8617
8618Trampoline Intrinsics
8619---------------------
8620
8621These intrinsics make it possible to excise one parameter, marked with
8622the :ref:`nest <nest>` attribute, from a function. The result is a
8623callable function pointer lacking the nest parameter - the caller does
8624not need to provide a value for it. Instead, the value to use is stored
8625in advance in a "trampoline", a block of memory usually allocated on the
8626stack, which also contains code to splice the nest value into the
8627argument list. This is used to implement the GCC nested function address
8628extension.
8629
8630For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8631then the resulting function pointer has signature ``i32 (i32, i32)*``.
8632It can be created as follows:
8633
8634.. code-block:: llvm
8635
8636 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8637 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8638 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8639 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8640 %fp = bitcast i8* %p to i32 (i32, i32)*
8641
8642The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8643``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8644
8645.. _int_it:
8646
8647'``llvm.init.trampoline``' Intrinsic
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653::
8654
8655 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8656
8657Overview:
8658"""""""""
8659
8660This fills the memory pointed to by ``tramp`` with executable code,
8661turning it into a trampoline.
8662
8663Arguments:
8664""""""""""
8665
8666The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8667pointers. The ``tramp`` argument must point to a sufficiently large and
8668sufficiently aligned block of memory; this memory is written to by the
8669intrinsic. Note that the size and the alignment are target-specific -
8670LLVM currently provides no portable way of determining them, so a
8671front-end that generates this intrinsic needs to have some
8672target-specific knowledge. The ``func`` argument must hold a function
8673bitcast to an ``i8*``.
8674
8675Semantics:
8676""""""""""
8677
8678The block of memory pointed to by ``tramp`` is filled with target
8679dependent code, turning it into a function. Then ``tramp`` needs to be
8680passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8681be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8682function's signature is the same as that of ``func`` with any arguments
8683marked with the ``nest`` attribute removed. At most one such ``nest``
8684argument is allowed, and it must be of pointer type. Calling the new
8685function is equivalent to calling ``func`` with the same argument list,
8686but with ``nval`` used for the missing ``nest`` argument. If, after
8687calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8688modified, then the effect of any later call to the returned function
8689pointer is undefined.
8690
8691.. _int_at:
8692
8693'``llvm.adjust.trampoline``' Intrinsic
8694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8695
8696Syntax:
8697"""""""
8698
8699::
8700
8701 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8702
8703Overview:
8704"""""""""
8705
8706This performs any required machine-specific adjustment to the address of
8707a trampoline (passed as ``tramp``).
8708
8709Arguments:
8710""""""""""
8711
8712``tramp`` must point to a block of memory which already has trampoline
8713code filled in by a previous call to
8714:ref:`llvm.init.trampoline <int_it>`.
8715
8716Semantics:
8717""""""""""
8718
8719On some architectures the address of the code to be executed needs to be
8720different to the address where the trampoline is actually stored. This
8721intrinsic returns the executable address corresponding to ``tramp``
8722after performing the required machine specific adjustments. The pointer
8723returned can then be :ref:`bitcast and executed <int_trampoline>`.
8724
8725Memory Use Markers
8726------------------
8727
8728This class of intrinsics exists to information about the lifetime of
8729memory objects and ranges where variables are immutable.
8730
Reid Klecknera534a382013-12-19 02:14:12 +00008731.. _int_lifestart:
8732
Sean Silvab084af42012-12-07 10:36:55 +00008733'``llvm.lifetime.start``' Intrinsic
8734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8735
8736Syntax:
8737"""""""
8738
8739::
8740
8741 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8742
8743Overview:
8744"""""""""
8745
8746The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8747object's lifetime.
8748
8749Arguments:
8750""""""""""
8751
8752The first argument is a constant integer representing the size of the
8753object, or -1 if it is variable sized. The second argument is a pointer
8754to the object.
8755
8756Semantics:
8757""""""""""
8758
8759This intrinsic indicates that before this point in the code, the value
8760of the memory pointed to by ``ptr`` is dead. This means that it is known
8761to never be used and has an undefined value. A load from the pointer
8762that precedes this intrinsic can be replaced with ``'undef'``.
8763
Reid Klecknera534a382013-12-19 02:14:12 +00008764.. _int_lifeend:
8765
Sean Silvab084af42012-12-07 10:36:55 +00008766'``llvm.lifetime.end``' Intrinsic
8767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8768
8769Syntax:
8770"""""""
8771
8772::
8773
8774 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8775
8776Overview:
8777"""""""""
8778
8779The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8780object's lifetime.
8781
8782Arguments:
8783""""""""""
8784
8785The first argument is a constant integer representing the size of the
8786object, or -1 if it is variable sized. The second argument is a pointer
8787to the object.
8788
8789Semantics:
8790""""""""""
8791
8792This intrinsic indicates that after this point in the code, the value of
8793the memory pointed to by ``ptr`` is dead. This means that it is known to
8794never be used and has an undefined value. Any stores into the memory
8795object following this intrinsic may be removed as dead.
8796
8797'``llvm.invariant.start``' Intrinsic
8798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8799
8800Syntax:
8801"""""""
8802
8803::
8804
8805 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8806
8807Overview:
8808"""""""""
8809
8810The '``llvm.invariant.start``' intrinsic specifies that the contents of
8811a memory object will not change.
8812
8813Arguments:
8814""""""""""
8815
8816The first argument is a constant integer representing the size of the
8817object, or -1 if it is variable sized. The second argument is a pointer
8818to the object.
8819
8820Semantics:
8821""""""""""
8822
8823This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8824the return value, the referenced memory location is constant and
8825unchanging.
8826
8827'``llvm.invariant.end``' Intrinsic
8828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8829
8830Syntax:
8831"""""""
8832
8833::
8834
8835 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8836
8837Overview:
8838"""""""""
8839
8840The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8841memory object are mutable.
8842
8843Arguments:
8844""""""""""
8845
8846The first argument is the matching ``llvm.invariant.start`` intrinsic.
8847The second argument is a constant integer representing the size of the
8848object, or -1 if it is variable sized and the third argument is a
8849pointer to the object.
8850
8851Semantics:
8852""""""""""
8853
8854This intrinsic indicates that the memory is mutable again.
8855
8856General Intrinsics
8857------------------
8858
8859This class of intrinsics is designed to be generic and has no specific
8860purpose.
8861
8862'``llvm.var.annotation``' Intrinsic
8863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8864
8865Syntax:
8866"""""""
8867
8868::
8869
8870 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8871
8872Overview:
8873"""""""""
8874
8875The '``llvm.var.annotation``' intrinsic.
8876
8877Arguments:
8878""""""""""
8879
8880The first argument is a pointer to a value, the second is a pointer to a
8881global string, the third is a pointer to a global string which is the
8882source file name, and the last argument is the line number.
8883
8884Semantics:
8885""""""""""
8886
8887This intrinsic allows annotation of local variables with arbitrary
8888strings. This can be useful for special purpose optimizations that want
8889to look for these annotations. These have no other defined use; they are
8890ignored by code generation and optimization.
8891
Michael Gottesman88d18832013-03-26 00:34:27 +00008892'``llvm.ptr.annotation.*``' Intrinsic
8893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8894
8895Syntax:
8896"""""""
8897
8898This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8899pointer to an integer of any width. *NOTE* you must specify an address space for
8900the pointer. The identifier for the default address space is the integer
8901'``0``'.
8902
8903::
8904
8905 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8906 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8907 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8908 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8909 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8910
8911Overview:
8912"""""""""
8913
8914The '``llvm.ptr.annotation``' intrinsic.
8915
8916Arguments:
8917""""""""""
8918
8919The first argument is a pointer to an integer value of arbitrary bitwidth
8920(result of some expression), the second is a pointer to a global string, the
8921third is a pointer to a global string which is the source file name, and the
8922last argument is the line number. It returns the value of the first argument.
8923
8924Semantics:
8925""""""""""
8926
8927This intrinsic allows annotation of a pointer to an integer with arbitrary
8928strings. This can be useful for special purpose optimizations that want to look
8929for these annotations. These have no other defined use; they are ignored by code
8930generation and optimization.
8931
Sean Silvab084af42012-12-07 10:36:55 +00008932'``llvm.annotation.*``' Intrinsic
8933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8934
8935Syntax:
8936"""""""
8937
8938This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8939any integer bit width.
8940
8941::
8942
8943 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8944 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8945 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8946 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8947 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8948
8949Overview:
8950"""""""""
8951
8952The '``llvm.annotation``' intrinsic.
8953
8954Arguments:
8955""""""""""
8956
8957The first argument is an integer value (result of some expression), the
8958second is a pointer to a global string, the third is a pointer to a
8959global string which is the source file name, and the last argument is
8960the line number. It returns the value of the first argument.
8961
8962Semantics:
8963""""""""""
8964
8965This intrinsic allows annotations to be put on arbitrary expressions
8966with arbitrary strings. This can be useful for special purpose
8967optimizations that want to look for these annotations. These have no
8968other defined use; they are ignored by code generation and optimization.
8969
8970'``llvm.trap``' Intrinsic
8971^^^^^^^^^^^^^^^^^^^^^^^^^
8972
8973Syntax:
8974"""""""
8975
8976::
8977
8978 declare void @llvm.trap() noreturn nounwind
8979
8980Overview:
8981"""""""""
8982
8983The '``llvm.trap``' intrinsic.
8984
8985Arguments:
8986""""""""""
8987
8988None.
8989
8990Semantics:
8991""""""""""
8992
8993This intrinsic is lowered to the target dependent trap instruction. If
8994the target does not have a trap instruction, this intrinsic will be
8995lowered to a call of the ``abort()`` function.
8996
8997'``llvm.debugtrap``' Intrinsic
8998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8999
9000Syntax:
9001"""""""
9002
9003::
9004
9005 declare void @llvm.debugtrap() nounwind
9006
9007Overview:
9008"""""""""
9009
9010The '``llvm.debugtrap``' intrinsic.
9011
9012Arguments:
9013""""""""""
9014
9015None.
9016
9017Semantics:
9018""""""""""
9019
9020This intrinsic is lowered to code which is intended to cause an
9021execution trap with the intention of requesting the attention of a
9022debugger.
9023
9024'``llvm.stackprotector``' Intrinsic
9025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9026
9027Syntax:
9028"""""""
9029
9030::
9031
9032 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9033
9034Overview:
9035"""""""""
9036
9037The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9038onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9039is placed on the stack before local variables.
9040
9041Arguments:
9042""""""""""
9043
9044The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9045The first argument is the value loaded from the stack guard
9046``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9047enough space to hold the value of the guard.
9048
9049Semantics:
9050""""""""""
9051
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009052This intrinsic causes the prologue/epilogue inserter to force the position of
9053the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9054to ensure that if a local variable on the stack is overwritten, it will destroy
9055the value of the guard. When the function exits, the guard on the stack is
9056checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9057different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9058calling the ``__stack_chk_fail()`` function.
9059
9060'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009062
9063Syntax:
9064"""""""
9065
9066::
9067
9068 declare void @llvm.stackprotectorcheck(i8** <guard>)
9069
9070Overview:
9071"""""""""
9072
9073The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009074created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009075``__stack_chk_fail()`` function.
9076
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009077Arguments:
9078""""""""""
9079
9080The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9081the variable ``@__stack_chk_guard``.
9082
9083Semantics:
9084""""""""""
9085
9086This intrinsic is provided to perform the stack protector check by comparing
9087``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9088values do not match call the ``__stack_chk_fail()`` function.
9089
9090The reason to provide this as an IR level intrinsic instead of implementing it
9091via other IR operations is that in order to perform this operation at the IR
9092level without an intrinsic, one would need to create additional basic blocks to
9093handle the success/failure cases. This makes it difficult to stop the stack
9094protector check from disrupting sibling tail calls in Codegen. With this
9095intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009096codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009097
Sean Silvab084af42012-12-07 10:36:55 +00009098'``llvm.objectsize``' Intrinsic
9099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9100
9101Syntax:
9102"""""""
9103
9104::
9105
9106 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9107 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9108
9109Overview:
9110"""""""""
9111
9112The ``llvm.objectsize`` intrinsic is designed to provide information to
9113the optimizers to determine at compile time whether a) an operation
9114(like memcpy) will overflow a buffer that corresponds to an object, or
9115b) that a runtime check for overflow isn't necessary. An object in this
9116context means an allocation of a specific class, structure, array, or
9117other object.
9118
9119Arguments:
9120""""""""""
9121
9122The ``llvm.objectsize`` intrinsic takes two arguments. The first
9123argument is a pointer to or into the ``object``. The second argument is
9124a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9125or -1 (if false) when the object size is unknown. The second argument
9126only accepts constants.
9127
9128Semantics:
9129""""""""""
9130
9131The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9132the size of the object concerned. If the size cannot be determined at
9133compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9134on the ``min`` argument).
9135
9136'``llvm.expect``' Intrinsic
9137^^^^^^^^^^^^^^^^^^^^^^^^^^^
9138
9139Syntax:
9140"""""""
9141
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009142This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9143integer bit width.
9144
Sean Silvab084af42012-12-07 10:36:55 +00009145::
9146
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009147 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009148 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9149 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9150
9151Overview:
9152"""""""""
9153
9154The ``llvm.expect`` intrinsic provides information about expected (the
9155most probable) value of ``val``, which can be used by optimizers.
9156
9157Arguments:
9158""""""""""
9159
9160The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9161a value. The second argument is an expected value, this needs to be a
9162constant value, variables are not allowed.
9163
9164Semantics:
9165""""""""""
9166
9167This intrinsic is lowered to the ``val``.
9168
9169'``llvm.donothing``' Intrinsic
9170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9171
9172Syntax:
9173"""""""
9174
9175::
9176
9177 declare void @llvm.donothing() nounwind readnone
9178
9179Overview:
9180"""""""""
9181
9182The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9183only intrinsic that can be called with an invoke instruction.
9184
9185Arguments:
9186""""""""""
9187
9188None.
9189
9190Semantics:
9191""""""""""
9192
9193This intrinsic does nothing, and it's removed by optimizers and ignored
9194by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009195
9196Stack Map Intrinsics
9197--------------------
9198
9199LLVM provides experimental intrinsics to support runtime patching
9200mechanisms commonly desired in dynamic language JITs. These intrinsics
9201are described in :doc:`StackMaps`.