blob: 9bfd3ed2c4970d65d616d06d24b1a0b1e0164033 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
522Global variables definitions must be initialized, may have an explicit section
523to be placed in, and may have an optional explicit alignment specified.
524
525Global variables in other translation units can also be declared, in which
526case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000527
Michael Gottesman006039c2013-01-31 05:48:48 +0000528A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000529the contents of the variable will **never** be modified (enabling better
530optimization, allowing the global data to be placed in the read-only
531section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000532initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000533variable.
534
535LLVM explicitly allows *declarations* of global variables to be marked
536constant, even if the final definition of the global is not. This
537capability can be used to enable slightly better optimization of the
538program, but requires the language definition to guarantee that
539optimizations based on the 'constantness' are valid for the translation
540units that do not include the definition.
541
542As SSA values, global variables define pointer values that are in scope
543(i.e. they dominate) all basic blocks in the program. Global variables
544always define a pointer to their "content" type because they describe a
545region of memory, and all memory objects in LLVM are accessed through
546pointers.
547
548Global variables can be marked with ``unnamed_addr`` which indicates
549that the address is not significant, only the content. Constants marked
550like this can be merged with other constants if they have the same
551initializer. Note that a constant with significant address *can* be
552merged with a ``unnamed_addr`` constant, the result being a constant
553whose address is significant.
554
555A global variable may be declared to reside in a target-specific
556numbered address space. For targets that support them, address spaces
557may affect how optimizations are performed and/or what target
558instructions are used to access the variable. The default address space
559is zero. The address space qualifier must precede any other attributes.
560
561LLVM allows an explicit section to be specified for globals. If the
562target supports it, it will emit globals to the section specified.
563
Michael Gottesmane743a302013-02-04 03:22:00 +0000564By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000565variables defined within the module are not modified from their
566initial values before the start of the global initializer. This is
567true even for variables potentially accessible from outside the
568module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000569``@llvm.used`` or dllexported variables. This assumption may be suppressed
570by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571
Sean Silvab084af42012-12-07 10:36:55 +0000572An explicit alignment may be specified for a global, which must be a
573power of 2. If not present, or if the alignment is set to zero, the
574alignment of the global is set by the target to whatever it feels
575convenient. If an explicit alignment is specified, the global is forced
576to have exactly that alignment. Targets and optimizers are not allowed
577to over-align the global if the global has an assigned section. In this
578case, the extra alignment could be observable: for example, code could
579assume that the globals are densely packed in their section and try to
580iterate over them as an array, alignment padding would break this
581iteration.
582
Nico Rieck7157bb72014-01-14 15:22:47 +0000583Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
584
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000585Variables and aliasaes can have a
586:ref:`Thread Local Storage Model <tls_model>`.
587
Nico Rieck7157bb72014-01-14 15:22:47 +0000588Syntax::
589
590 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
591 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
592 <global | constant> <Type>
593 [, section "name"] [, align <Alignment>]
594
Sean Silvab084af42012-12-07 10:36:55 +0000595For example, the following defines a global in a numbered address space
596with an initializer, section, and alignment:
597
598.. code-block:: llvm
599
600 @G = addrspace(5) constant float 1.0, section "foo", align 4
601
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000602The following example just declares a global variable
603
604.. code-block:: llvm
605
606 @G = external global i32
607
Sean Silvab084af42012-12-07 10:36:55 +0000608The following example defines a thread-local global with the
609``initialexec`` TLS model:
610
611.. code-block:: llvm
612
613 @G = thread_local(initialexec) global i32 0, align 4
614
615.. _functionstructure:
616
617Functions
618---------
619
620LLVM function definitions consist of the "``define``" keyword, an
621optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000622style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
623an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000624an optional ``unnamed_addr`` attribute, a return type, an optional
625:ref:`parameter attribute <paramattrs>` for the return type, a function
626name, a (possibly empty) argument list (each with optional :ref:`parameter
627attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
628an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000629collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
630curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000631
632LLVM function declarations consist of the "``declare``" keyword, an
633optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000634style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
635an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000636an optional ``unnamed_addr`` attribute, a return type, an optional
637:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000638name, a possibly empty list of arguments, an optional alignment, an optional
639:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000640
Bill Wendling6822ecb2013-10-27 05:09:12 +0000641A function definition contains a list of basic blocks, forming the CFG (Control
642Flow Graph) for the function. Each basic block may optionally start with a label
643(giving the basic block a symbol table entry), contains a list of instructions,
644and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
645function return). If an explicit label is not provided, a block is assigned an
646implicit numbered label, using the next value from the same counter as used for
647unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
648entry block does not have an explicit label, it will be assigned label "%0",
649then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000650
651The first basic block in a function is special in two ways: it is
652immediately executed on entrance to the function, and it is not allowed
653to have predecessor basic blocks (i.e. there can not be any branches to
654the entry block of a function). Because the block can have no
655predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
656
657LLVM allows an explicit section to be specified for functions. If the
658target supports it, it will emit functions to the section specified.
659
660An explicit alignment may be specified for a function. If not present,
661or if the alignment is set to zero, the alignment of the function is set
662by the target to whatever it feels convenient. If an explicit alignment
663is specified, the function is forced to have at least that much
664alignment. All alignments must be a power of 2.
665
666If the ``unnamed_addr`` attribute is given, the address is know to not
667be significant and two identical functions can be merged.
668
669Syntax::
670
Nico Rieck7157bb72014-01-14 15:22:47 +0000671 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000672 [cconv] [ret attrs]
673 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000674 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000675 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000676
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000677.. _langref_aliases:
678
Sean Silvab084af42012-12-07 10:36:55 +0000679Aliases
680-------
681
Rafael Espindola64c1e182014-06-03 02:41:57 +0000682Aliases, unlike function or variables, don't create any new data. They
683are just a new symbol and metadata for an existing position.
684
685Aliases have a name and an aliasee that is either a global value or a
686constant expression.
687
Nico Rieck7157bb72014-01-14 15:22:47 +0000688Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000689:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
690<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000691
692Syntax::
693
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000694 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000695
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000696The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000697``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000698might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000699
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000700Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000701the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
702to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000703
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704Since aliases are only a second name, some restrictions apply, of which
705some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706
Rafael Espindola64c1e182014-06-03 02:41:57 +0000707* The expression defining the aliasee must be computable at assembly
708 time. Since it is just a name, no relocations can be used.
709
710* No alias in the expression can be weak as the possibility of the
711 intermediate alias being overridden cannot be represented in an
712 object file.
713
714* No global value in the expression can be a declaration, since that
715 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000716
Sean Silvab084af42012-12-07 10:36:55 +0000717.. _namedmetadatastructure:
718
719Named Metadata
720--------------
721
722Named metadata is a collection of metadata. :ref:`Metadata
723nodes <metadata>` (but not metadata strings) are the only valid
724operands for a named metadata.
725
726Syntax::
727
728 ; Some unnamed metadata nodes, which are referenced by the named metadata.
729 !0 = metadata !{metadata !"zero"}
730 !1 = metadata !{metadata !"one"}
731 !2 = metadata !{metadata !"two"}
732 ; A named metadata.
733 !name = !{!0, !1, !2}
734
735.. _paramattrs:
736
737Parameter Attributes
738--------------------
739
740The return type and each parameter of a function type may have a set of
741*parameter attributes* associated with them. Parameter attributes are
742used to communicate additional information about the result or
743parameters of a function. Parameter attributes are considered to be part
744of the function, not of the function type, so functions with different
745parameter attributes can have the same function type.
746
747Parameter attributes are simple keywords that follow the type specified.
748If multiple parameter attributes are needed, they are space separated.
749For example:
750
751.. code-block:: llvm
752
753 declare i32 @printf(i8* noalias nocapture, ...)
754 declare i32 @atoi(i8 zeroext)
755 declare signext i8 @returns_signed_char()
756
757Note that any attributes for the function result (``nounwind``,
758``readonly``) come immediately after the argument list.
759
760Currently, only the following parameter attributes are defined:
761
762``zeroext``
763 This indicates to the code generator that the parameter or return
764 value should be zero-extended to the extent required by the target's
765 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
766 the caller (for a parameter) or the callee (for a return value).
767``signext``
768 This indicates to the code generator that the parameter or return
769 value should be sign-extended to the extent required by the target's
770 ABI (which is usually 32-bits) by the caller (for a parameter) or
771 the callee (for a return value).
772``inreg``
773 This indicates that this parameter or return value should be treated
774 in a special target-dependent fashion during while emitting code for
775 a function call or return (usually, by putting it in a register as
776 opposed to memory, though some targets use it to distinguish between
777 two different kinds of registers). Use of this attribute is
778 target-specific.
779``byval``
780 This indicates that the pointer parameter should really be passed by
781 value to the function. The attribute implies that a hidden copy of
782 the pointee is made between the caller and the callee, so the callee
783 is unable to modify the value in the caller. This attribute is only
784 valid on LLVM pointer arguments. It is generally used to pass
785 structs and arrays by value, but is also valid on pointers to
786 scalars. The copy is considered to belong to the caller not the
787 callee (for example, ``readonly`` functions should not write to
788 ``byval`` parameters). This is not a valid attribute for return
789 values.
790
791 The byval attribute also supports specifying an alignment with the
792 align attribute. It indicates the alignment of the stack slot to
793 form and the known alignment of the pointer specified to the call
794 site. If the alignment is not specified, then the code generator
795 makes a target-specific assumption.
796
Reid Klecknera534a382013-12-19 02:14:12 +0000797.. _attr_inalloca:
798
799``inalloca``
800
Reid Kleckner60d3a832014-01-16 22:59:24 +0000801 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000802 address of outgoing stack arguments. An ``inalloca`` argument must
803 be a pointer to stack memory produced by an ``alloca`` instruction.
804 The alloca, or argument allocation, must also be tagged with the
805 inalloca keyword. Only the past argument may have the ``inalloca``
806 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000807
Reid Kleckner436c42e2014-01-17 23:58:17 +0000808 An argument allocation may be used by a call at most once because
809 the call may deallocate it. The ``inalloca`` attribute cannot be
810 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000811 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
812 ``inalloca`` attribute also disables LLVM's implicit lowering of
813 large aggregate return values, which means that frontend authors
814 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000815
Reid Kleckner60d3a832014-01-16 22:59:24 +0000816 When the call site is reached, the argument allocation must have
817 been the most recent stack allocation that is still live, or the
818 results are undefined. It is possible to allocate additional stack
819 space after an argument allocation and before its call site, but it
820 must be cleared off with :ref:`llvm.stackrestore
821 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000822
823 See :doc:`InAlloca` for more information on how to use this
824 attribute.
825
Sean Silvab084af42012-12-07 10:36:55 +0000826``sret``
827 This indicates that the pointer parameter specifies the address of a
828 structure that is the return value of the function in the source
829 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000830 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000831 not to trap and to be properly aligned. This may only be applied to
832 the first parameter. This is not a valid attribute for return
833 values.
Sean Silva1703e702014-04-08 21:06:22 +0000834
835.. _noalias:
836
Sean Silvab084af42012-12-07 10:36:55 +0000837``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000838 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000839 the argument or return value do not alias pointer values which are
840 not *based* on it, ignoring certain "irrelevant" dependencies. For a
841 call to the parent function, dependencies between memory references
842 from before or after the call and from those during the call are
843 "irrelevant" to the ``noalias`` keyword for the arguments and return
844 value used in that call. The caller shares the responsibility with
845 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000846 details, please see the discussion of the NoAlias response in :ref:`alias
847 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000848
849 Note that this definition of ``noalias`` is intentionally similar
850 to the definition of ``restrict`` in C99 for function arguments,
851 though it is slightly weaker.
852
853 For function return values, C99's ``restrict`` is not meaningful,
854 while LLVM's ``noalias`` is.
855``nocapture``
856 This indicates that the callee does not make any copies of the
857 pointer that outlive the callee itself. This is not a valid
858 attribute for return values.
859
860.. _nest:
861
862``nest``
863 This indicates that the pointer parameter can be excised using the
864 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000865 attribute for return values and can only be applied to one parameter.
866
867``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000868 This indicates that the function always returns the argument as its return
869 value. This is an optimization hint to the code generator when generating
870 the caller, allowing tail call optimization and omission of register saves
871 and restores in some cases; it is not checked or enforced when generating
872 the callee. The parameter and the function return type must be valid
873 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
874 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000875
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000876``nonnull``
877 This indicates that the parameter or return pointer is not null. This
878 attribute may only be applied to pointer typed parameters. This is not
879 checked or enforced by LLVM, the caller must ensure that the pointer
880 passed in is non-null, or the callee must ensure that the returned pointer
881 is non-null.
882
Sean Silvab084af42012-12-07 10:36:55 +0000883.. _gc:
884
885Garbage Collector Names
886-----------------------
887
888Each function may specify a garbage collector name, which is simply a
889string:
890
891.. code-block:: llvm
892
893 define void @f() gc "name" { ... }
894
895The compiler declares the supported values of *name*. Specifying a
896collector which will cause the compiler to alter its output in order to
897support the named garbage collection algorithm.
898
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000899.. _prefixdata:
900
901Prefix Data
902-----------
903
904Prefix data is data associated with a function which the code generator
905will emit immediately before the function body. The purpose of this feature
906is to allow frontends to associate language-specific runtime metadata with
907specific functions and make it available through the function pointer while
908still allowing the function pointer to be called. To access the data for a
909given function, a program may bitcast the function pointer to a pointer to
910the constant's type. This implies that the IR symbol points to the start
911of the prefix data.
912
913To maintain the semantics of ordinary function calls, the prefix data must
914have a particular format. Specifically, it must begin with a sequence of
915bytes which decode to a sequence of machine instructions, valid for the
916module's target, which transfer control to the point immediately succeeding
917the prefix data, without performing any other visible action. This allows
918the inliner and other passes to reason about the semantics of the function
919definition without needing to reason about the prefix data. Obviously this
920makes the format of the prefix data highly target dependent.
921
Peter Collingbourne213358a2013-09-23 20:14:21 +0000922Prefix data is laid out as if it were an initializer for a global variable
923of the prefix data's type. No padding is automatically placed between the
924prefix data and the function body. If padding is required, it must be part
925of the prefix data.
926
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000927A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
928which encodes the ``nop`` instruction:
929
930.. code-block:: llvm
931
932 define void @f() prefix i8 144 { ... }
933
934Generally prefix data can be formed by encoding a relative branch instruction
935which skips the metadata, as in this example of valid prefix data for the
936x86_64 architecture, where the first two bytes encode ``jmp .+10``:
937
938.. code-block:: llvm
939
940 %0 = type <{ i8, i8, i8* }>
941
942 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
943
944A function may have prefix data but no body. This has similar semantics
945to the ``available_externally`` linkage in that the data may be used by the
946optimizers but will not be emitted in the object file.
947
Bill Wendling63b88192013-02-06 06:52:58 +0000948.. _attrgrp:
949
950Attribute Groups
951----------------
952
953Attribute groups are groups of attributes that are referenced by objects within
954the IR. They are important for keeping ``.ll`` files readable, because a lot of
955functions will use the same set of attributes. In the degenerative case of a
956``.ll`` file that corresponds to a single ``.c`` file, the single attribute
957group will capture the important command line flags used to build that file.
958
959An attribute group is a module-level object. To use an attribute group, an
960object references the attribute group's ID (e.g. ``#37``). An object may refer
961to more than one attribute group. In that situation, the attributes from the
962different groups are merged.
963
964Here is an example of attribute groups for a function that should always be
965inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
966
967.. code-block:: llvm
968
969 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000970 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000971
972 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000973 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000974
975 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
976 define void @f() #0 #1 { ... }
977
Sean Silvab084af42012-12-07 10:36:55 +0000978.. _fnattrs:
979
980Function Attributes
981-------------------
982
983Function attributes are set to communicate additional information about
984a function. Function attributes are considered to be part of the
985function, not of the function type, so functions with different function
986attributes can have the same function type.
987
988Function attributes are simple keywords that follow the type specified.
989If multiple attributes are needed, they are space separated. For
990example:
991
992.. code-block:: llvm
993
994 define void @f() noinline { ... }
995 define void @f() alwaysinline { ... }
996 define void @f() alwaysinline optsize { ... }
997 define void @f() optsize { ... }
998
Sean Silvab084af42012-12-07 10:36:55 +0000999``alignstack(<n>)``
1000 This attribute indicates that, when emitting the prologue and
1001 epilogue, the backend should forcibly align the stack pointer.
1002 Specify the desired alignment, which must be a power of two, in
1003 parentheses.
1004``alwaysinline``
1005 This attribute indicates that the inliner should attempt to inline
1006 this function into callers whenever possible, ignoring any active
1007 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001008``builtin``
1009 This indicates that the callee function at a call site should be
1010 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001011 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001012 direct calls to functions which are declared with the ``nobuiltin``
1013 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001014``cold``
1015 This attribute indicates that this function is rarely called. When
1016 computing edge weights, basic blocks post-dominated by a cold
1017 function call are also considered to be cold; and, thus, given low
1018 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001019``inlinehint``
1020 This attribute indicates that the source code contained a hint that
1021 inlining this function is desirable (such as the "inline" keyword in
1022 C/C++). It is just a hint; it imposes no requirements on the
1023 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001024``jumptable``
1025 This attribute indicates that the function should be added to a
1026 jump-instruction table at code-generation time, and that all address-taken
1027 references to this function should be replaced with a reference to the
1028 appropriate jump-instruction-table function pointer. Note that this creates
1029 a new pointer for the original function, which means that code that depends
1030 on function-pointer identity can break. So, any function annotated with
1031 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001032``minsize``
1033 This attribute suggests that optimization passes and code generator
1034 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001035 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001036 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001037``naked``
1038 This attribute disables prologue / epilogue emission for the
1039 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001040``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001041 This indicates that the callee function at a call site is not recognized as
1042 a built-in function. LLVM will retain the original call and not replace it
1043 with equivalent code based on the semantics of the built-in function, unless
1044 the call site uses the ``builtin`` attribute. This is valid at call sites
1045 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001046``noduplicate``
1047 This attribute indicates that calls to the function cannot be
1048 duplicated. A call to a ``noduplicate`` function may be moved
1049 within its parent function, but may not be duplicated within
1050 its parent function.
1051
1052 A function containing a ``noduplicate`` call may still
1053 be an inlining candidate, provided that the call is not
1054 duplicated by inlining. That implies that the function has
1055 internal linkage and only has one call site, so the original
1056 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001057``noimplicitfloat``
1058 This attributes disables implicit floating point instructions.
1059``noinline``
1060 This attribute indicates that the inliner should never inline this
1061 function in any situation. This attribute may not be used together
1062 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001063``nonlazybind``
1064 This attribute suppresses lazy symbol binding for the function. This
1065 may make calls to the function faster, at the cost of extra program
1066 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001067``noredzone``
1068 This attribute indicates that the code generator should not use a
1069 red zone, even if the target-specific ABI normally permits it.
1070``noreturn``
1071 This function attribute indicates that the function never returns
1072 normally. This produces undefined behavior at runtime if the
1073 function ever does dynamically return.
1074``nounwind``
1075 This function attribute indicates that the function never returns
1076 with an unwind or exceptional control flow. If the function does
1077 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001078``optnone``
1079 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001080 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001081 exception of interprocedural optimization passes.
1082 This attribute cannot be used together with the ``alwaysinline``
1083 attribute; this attribute is also incompatible
1084 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001085
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001086 This attribute requires the ``noinline`` attribute to be specified on
1087 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001088 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001089 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001090``optsize``
1091 This attribute suggests that optimization passes and code generator
1092 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001093 and otherwise do optimizations specifically to reduce code size as
1094 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001095``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001096 On a function, this attribute indicates that the function computes its
1097 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001098 without dereferencing any pointer arguments or otherwise accessing
1099 any mutable state (e.g. memory, control registers, etc) visible to
1100 caller functions. It does not write through any pointer arguments
1101 (including ``byval`` arguments) and never changes any state visible
1102 to callers. This means that it cannot unwind exceptions by calling
1103 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001104
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001105 On an argument, this attribute indicates that the function does not
1106 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001107 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001108``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001109 On a function, this attribute indicates that the function does not write
1110 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001111 modify any state (e.g. memory, control registers, etc) visible to
1112 caller functions. It may dereference pointer arguments and read
1113 state that may be set in the caller. A readonly function always
1114 returns the same value (or unwinds an exception identically) when
1115 called with the same set of arguments and global state. It cannot
1116 unwind an exception by calling the ``C++`` exception throwing
1117 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001118
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001119 On an argument, this attribute indicates that the function does not write
1120 through this pointer argument, even though it may write to the memory that
1121 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001122``returns_twice``
1123 This attribute indicates that this function can return twice. The C
1124 ``setjmp`` is an example of such a function. The compiler disables
1125 some optimizations (like tail calls) in the caller of these
1126 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001127``sanitize_address``
1128 This attribute indicates that AddressSanitizer checks
1129 (dynamic address safety analysis) are enabled for this function.
1130``sanitize_memory``
1131 This attribute indicates that MemorySanitizer checks (dynamic detection
1132 of accesses to uninitialized memory) are enabled for this function.
1133``sanitize_thread``
1134 This attribute indicates that ThreadSanitizer checks
1135 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001136``ssp``
1137 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001138 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001139 placed on the stack before the local variables that's checked upon
1140 return from the function to see if it has been overwritten. A
1141 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001142 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001143
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001144 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1145 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1146 - Calls to alloca() with variable sizes or constant sizes greater than
1147 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001148
Josh Magee24c7f062014-02-01 01:36:16 +00001149 Variables that are identified as requiring a protector will be arranged
1150 on the stack such that they are adjacent to the stack protector guard.
1151
Sean Silvab084af42012-12-07 10:36:55 +00001152 If a function that has an ``ssp`` attribute is inlined into a
1153 function that doesn't have an ``ssp`` attribute, then the resulting
1154 function will have an ``ssp`` attribute.
1155``sspreq``
1156 This attribute indicates that the function should *always* emit a
1157 stack smashing protector. This overrides the ``ssp`` function
1158 attribute.
1159
Josh Magee24c7f062014-02-01 01:36:16 +00001160 Variables that are identified as requiring a protector will be arranged
1161 on the stack such that they are adjacent to the stack protector guard.
1162 The specific layout rules are:
1163
1164 #. Large arrays and structures containing large arrays
1165 (``>= ssp-buffer-size``) are closest to the stack protector.
1166 #. Small arrays and structures containing small arrays
1167 (``< ssp-buffer-size``) are 2nd closest to the protector.
1168 #. Variables that have had their address taken are 3rd closest to the
1169 protector.
1170
Sean Silvab084af42012-12-07 10:36:55 +00001171 If a function that has an ``sspreq`` attribute is inlined into a
1172 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001173 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1174 an ``sspreq`` attribute.
1175``sspstrong``
1176 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001177 protector. This attribute causes a strong heuristic to be used when
1178 determining if a function needs stack protectors. The strong heuristic
1179 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001180
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001181 - Arrays of any size and type
1182 - Aggregates containing an array of any size and type.
1183 - Calls to alloca().
1184 - Local variables that have had their address taken.
1185
Josh Magee24c7f062014-02-01 01:36:16 +00001186 Variables that are identified as requiring a protector will be arranged
1187 on the stack such that they are adjacent to the stack protector guard.
1188 The specific layout rules are:
1189
1190 #. Large arrays and structures containing large arrays
1191 (``>= ssp-buffer-size``) are closest to the stack protector.
1192 #. Small arrays and structures containing small arrays
1193 (``< ssp-buffer-size``) are 2nd closest to the protector.
1194 #. Variables that have had their address taken are 3rd closest to the
1195 protector.
1196
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001197 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001198
1199 If a function that has an ``sspstrong`` attribute is inlined into a
1200 function that doesn't have an ``sspstrong`` attribute, then the
1201 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001202``uwtable``
1203 This attribute indicates that the ABI being targeted requires that
1204 an unwind table entry be produce for this function even if we can
1205 show that no exceptions passes by it. This is normally the case for
1206 the ELF x86-64 abi, but it can be disabled for some compilation
1207 units.
Sean Silvab084af42012-12-07 10:36:55 +00001208
1209.. _moduleasm:
1210
1211Module-Level Inline Assembly
1212----------------------------
1213
1214Modules may contain "module-level inline asm" blocks, which corresponds
1215to the GCC "file scope inline asm" blocks. These blocks are internally
1216concatenated by LLVM and treated as a single unit, but may be separated
1217in the ``.ll`` file if desired. The syntax is very simple:
1218
1219.. code-block:: llvm
1220
1221 module asm "inline asm code goes here"
1222 module asm "more can go here"
1223
1224The strings can contain any character by escaping non-printable
1225characters. The escape sequence used is simply "\\xx" where "xx" is the
1226two digit hex code for the number.
1227
1228The inline asm code is simply printed to the machine code .s file when
1229assembly code is generated.
1230
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001231.. _langref_datalayout:
1232
Sean Silvab084af42012-12-07 10:36:55 +00001233Data Layout
1234-----------
1235
1236A module may specify a target specific data layout string that specifies
1237how data is to be laid out in memory. The syntax for the data layout is
1238simply:
1239
1240.. code-block:: llvm
1241
1242 target datalayout = "layout specification"
1243
1244The *layout specification* consists of a list of specifications
1245separated by the minus sign character ('-'). Each specification starts
1246with a letter and may include other information after the letter to
1247define some aspect of the data layout. The specifications accepted are
1248as follows:
1249
1250``E``
1251 Specifies that the target lays out data in big-endian form. That is,
1252 the bits with the most significance have the lowest address
1253 location.
1254``e``
1255 Specifies that the target lays out data in little-endian form. That
1256 is, the bits with the least significance have the lowest address
1257 location.
1258``S<size>``
1259 Specifies the natural alignment of the stack in bits. Alignment
1260 promotion of stack variables is limited to the natural stack
1261 alignment to avoid dynamic stack realignment. The stack alignment
1262 must be a multiple of 8-bits. If omitted, the natural stack
1263 alignment defaults to "unspecified", which does not prevent any
1264 alignment promotions.
1265``p[n]:<size>:<abi>:<pref>``
1266 This specifies the *size* of a pointer and its ``<abi>`` and
1267 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001268 bits. The address space, ``n`` is optional, and if not specified,
1269 denotes the default address space 0. The value of ``n`` must be
1270 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001271``i<size>:<abi>:<pref>``
1272 This specifies the alignment for an integer type of a given bit
1273 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1274``v<size>:<abi>:<pref>``
1275 This specifies the alignment for a vector type of a given bit
1276 ``<size>``.
1277``f<size>:<abi>:<pref>``
1278 This specifies the alignment for a floating point type of a given bit
1279 ``<size>``. Only values of ``<size>`` that are supported by the target
1280 will work. 32 (float) and 64 (double) are supported on all targets; 80
1281 or 128 (different flavors of long double) are also supported on some
1282 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001283``a:<abi>:<pref>``
1284 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001285``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001286 If present, specifies that llvm names are mangled in the output. The
1287 options are
1288
1289 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1290 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1291 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1292 symbols get a ``_`` prefix.
1293 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1294 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001295``n<size1>:<size2>:<size3>...``
1296 This specifies a set of native integer widths for the target CPU in
1297 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1298 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1299 this set are considered to support most general arithmetic operations
1300 efficiently.
1301
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001302On every specification that takes a ``<abi>:<pref>``, specifying the
1303``<pref>`` alignment is optional. If omitted, the preceding ``:``
1304should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1305
Sean Silvab084af42012-12-07 10:36:55 +00001306When constructing the data layout for a given target, LLVM starts with a
1307default set of specifications which are then (possibly) overridden by
1308the specifications in the ``datalayout`` keyword. The default
1309specifications are given in this list:
1310
1311- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001312- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1313- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1314 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001315- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001316- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1317- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1318- ``i16:16:16`` - i16 is 16-bit aligned
1319- ``i32:32:32`` - i32 is 32-bit aligned
1320- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1321 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001322- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001323- ``f32:32:32`` - float is 32-bit aligned
1324- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001325- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001326- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1327- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001328- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001329
1330When LLVM is determining the alignment for a given type, it uses the
1331following rules:
1332
1333#. If the type sought is an exact match for one of the specifications,
1334 that specification is used.
1335#. If no match is found, and the type sought is an integer type, then
1336 the smallest integer type that is larger than the bitwidth of the
1337 sought type is used. If none of the specifications are larger than
1338 the bitwidth then the largest integer type is used. For example,
1339 given the default specifications above, the i7 type will use the
1340 alignment of i8 (next largest) while both i65 and i256 will use the
1341 alignment of i64 (largest specified).
1342#. If no match is found, and the type sought is a vector type, then the
1343 largest vector type that is smaller than the sought vector type will
1344 be used as a fall back. This happens because <128 x double> can be
1345 implemented in terms of 64 <2 x double>, for example.
1346
1347The function of the data layout string may not be what you expect.
1348Notably, this is not a specification from the frontend of what alignment
1349the code generator should use.
1350
1351Instead, if specified, the target data layout is required to match what
1352the ultimate *code generator* expects. This string is used by the
1353mid-level optimizers to improve code, and this only works if it matches
1354what the ultimate code generator uses. If you would like to generate IR
1355that does not embed this target-specific detail into the IR, then you
1356don't have to specify the string. This will disable some optimizations
1357that require precise layout information, but this also prevents those
1358optimizations from introducing target specificity into the IR.
1359
Bill Wendling5cc90842013-10-18 23:41:25 +00001360.. _langref_triple:
1361
1362Target Triple
1363-------------
1364
1365A module may specify a target triple string that describes the target
1366host. The syntax for the target triple is simply:
1367
1368.. code-block:: llvm
1369
1370 target triple = "x86_64-apple-macosx10.7.0"
1371
1372The *target triple* string consists of a series of identifiers delimited
1373by the minus sign character ('-'). The canonical forms are:
1374
1375::
1376
1377 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1378 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1379
1380This information is passed along to the backend so that it generates
1381code for the proper architecture. It's possible to override this on the
1382command line with the ``-mtriple`` command line option.
1383
Sean Silvab084af42012-12-07 10:36:55 +00001384.. _pointeraliasing:
1385
1386Pointer Aliasing Rules
1387----------------------
1388
1389Any memory access must be done through a pointer value associated with
1390an address range of the memory access, otherwise the behavior is
1391undefined. Pointer values are associated with address ranges according
1392to the following rules:
1393
1394- A pointer value is associated with the addresses associated with any
1395 value it is *based* on.
1396- An address of a global variable is associated with the address range
1397 of the variable's storage.
1398- The result value of an allocation instruction is associated with the
1399 address range of the allocated storage.
1400- A null pointer in the default address-space is associated with no
1401 address.
1402- An integer constant other than zero or a pointer value returned from
1403 a function not defined within LLVM may be associated with address
1404 ranges allocated through mechanisms other than those provided by
1405 LLVM. Such ranges shall not overlap with any ranges of addresses
1406 allocated by mechanisms provided by LLVM.
1407
1408A pointer value is *based* on another pointer value according to the
1409following rules:
1410
1411- A pointer value formed from a ``getelementptr`` operation is *based*
1412 on the first operand of the ``getelementptr``.
1413- The result value of a ``bitcast`` is *based* on the operand of the
1414 ``bitcast``.
1415- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1416 values that contribute (directly or indirectly) to the computation of
1417 the pointer's value.
1418- The "*based* on" relationship is transitive.
1419
1420Note that this definition of *"based"* is intentionally similar to the
1421definition of *"based"* in C99, though it is slightly weaker.
1422
1423LLVM IR does not associate types with memory. The result type of a
1424``load`` merely indicates the size and alignment of the memory from
1425which to load, as well as the interpretation of the value. The first
1426operand type of a ``store`` similarly only indicates the size and
1427alignment of the store.
1428
1429Consequently, type-based alias analysis, aka TBAA, aka
1430``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1431:ref:`Metadata <metadata>` may be used to encode additional information
1432which specialized optimization passes may use to implement type-based
1433alias analysis.
1434
1435.. _volatile:
1436
1437Volatile Memory Accesses
1438------------------------
1439
1440Certain memory accesses, such as :ref:`load <i_load>`'s,
1441:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1442marked ``volatile``. The optimizers must not change the number of
1443volatile operations or change their order of execution relative to other
1444volatile operations. The optimizers *may* change the order of volatile
1445operations relative to non-volatile operations. This is not Java's
1446"volatile" and has no cross-thread synchronization behavior.
1447
Andrew Trick89fc5a62013-01-30 21:19:35 +00001448IR-level volatile loads and stores cannot safely be optimized into
1449llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1450flagged volatile. Likewise, the backend should never split or merge
1451target-legal volatile load/store instructions.
1452
Andrew Trick7e6f9282013-01-31 00:49:39 +00001453.. admonition:: Rationale
1454
1455 Platforms may rely on volatile loads and stores of natively supported
1456 data width to be executed as single instruction. For example, in C
1457 this holds for an l-value of volatile primitive type with native
1458 hardware support, but not necessarily for aggregate types. The
1459 frontend upholds these expectations, which are intentionally
1460 unspecified in the IR. The rules above ensure that IR transformation
1461 do not violate the frontend's contract with the language.
1462
Sean Silvab084af42012-12-07 10:36:55 +00001463.. _memmodel:
1464
1465Memory Model for Concurrent Operations
1466--------------------------------------
1467
1468The LLVM IR does not define any way to start parallel threads of
1469execution or to register signal handlers. Nonetheless, there are
1470platform-specific ways to create them, and we define LLVM IR's behavior
1471in their presence. This model is inspired by the C++0x memory model.
1472
1473For a more informal introduction to this model, see the :doc:`Atomics`.
1474
1475We define a *happens-before* partial order as the least partial order
1476that
1477
1478- Is a superset of single-thread program order, and
1479- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1480 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1481 techniques, like pthread locks, thread creation, thread joining,
1482 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1483 Constraints <ordering>`).
1484
1485Note that program order does not introduce *happens-before* edges
1486between a thread and signals executing inside that thread.
1487
1488Every (defined) read operation (load instructions, memcpy, atomic
1489loads/read-modify-writes, etc.) R reads a series of bytes written by
1490(defined) write operations (store instructions, atomic
1491stores/read-modify-writes, memcpy, etc.). For the purposes of this
1492section, initialized globals are considered to have a write of the
1493initializer which is atomic and happens before any other read or write
1494of the memory in question. For each byte of a read R, R\ :sub:`byte`
1495may see any write to the same byte, except:
1496
1497- If write\ :sub:`1` happens before write\ :sub:`2`, and
1498 write\ :sub:`2` happens before R\ :sub:`byte`, then
1499 R\ :sub:`byte` does not see write\ :sub:`1`.
1500- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1501 R\ :sub:`byte` does not see write\ :sub:`3`.
1502
1503Given that definition, R\ :sub:`byte` is defined as follows:
1504
1505- If R is volatile, the result is target-dependent. (Volatile is
1506 supposed to give guarantees which can support ``sig_atomic_t`` in
1507 C/C++, and may be used for accesses to addresses which do not behave
1508 like normal memory. It does not generally provide cross-thread
1509 synchronization.)
1510- Otherwise, if there is no write to the same byte that happens before
1511 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1512- Otherwise, if R\ :sub:`byte` may see exactly one write,
1513 R\ :sub:`byte` returns the value written by that write.
1514- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1515 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1516 Memory Ordering Constraints <ordering>` section for additional
1517 constraints on how the choice is made.
1518- Otherwise R\ :sub:`byte` returns ``undef``.
1519
1520R returns the value composed of the series of bytes it read. This
1521implies that some bytes within the value may be ``undef`` **without**
1522the entire value being ``undef``. Note that this only defines the
1523semantics of the operation; it doesn't mean that targets will emit more
1524than one instruction to read the series of bytes.
1525
1526Note that in cases where none of the atomic intrinsics are used, this
1527model places only one restriction on IR transformations on top of what
1528is required for single-threaded execution: introducing a store to a byte
1529which might not otherwise be stored is not allowed in general.
1530(Specifically, in the case where another thread might write to and read
1531from an address, introducing a store can change a load that may see
1532exactly one write into a load that may see multiple writes.)
1533
1534.. _ordering:
1535
1536Atomic Memory Ordering Constraints
1537----------------------------------
1538
1539Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1540:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1541:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001542ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001543the same address they *synchronize with*. These semantics are borrowed
1544from Java and C++0x, but are somewhat more colloquial. If these
1545descriptions aren't precise enough, check those specs (see spec
1546references in the :doc:`atomics guide <Atomics>`).
1547:ref:`fence <i_fence>` instructions treat these orderings somewhat
1548differently since they don't take an address. See that instruction's
1549documentation for details.
1550
1551For a simpler introduction to the ordering constraints, see the
1552:doc:`Atomics`.
1553
1554``unordered``
1555 The set of values that can be read is governed by the happens-before
1556 partial order. A value cannot be read unless some operation wrote
1557 it. This is intended to provide a guarantee strong enough to model
1558 Java's non-volatile shared variables. This ordering cannot be
1559 specified for read-modify-write operations; it is not strong enough
1560 to make them atomic in any interesting way.
1561``monotonic``
1562 In addition to the guarantees of ``unordered``, there is a single
1563 total order for modifications by ``monotonic`` operations on each
1564 address. All modification orders must be compatible with the
1565 happens-before order. There is no guarantee that the modification
1566 orders can be combined to a global total order for the whole program
1567 (and this often will not be possible). The read in an atomic
1568 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1569 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1570 order immediately before the value it writes. If one atomic read
1571 happens before another atomic read of the same address, the later
1572 read must see the same value or a later value in the address's
1573 modification order. This disallows reordering of ``monotonic`` (or
1574 stronger) operations on the same address. If an address is written
1575 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1576 read that address repeatedly, the other threads must eventually see
1577 the write. This corresponds to the C++0x/C1x
1578 ``memory_order_relaxed``.
1579``acquire``
1580 In addition to the guarantees of ``monotonic``, a
1581 *synchronizes-with* edge may be formed with a ``release`` operation.
1582 This is intended to model C++'s ``memory_order_acquire``.
1583``release``
1584 In addition to the guarantees of ``monotonic``, if this operation
1585 writes a value which is subsequently read by an ``acquire``
1586 operation, it *synchronizes-with* that operation. (This isn't a
1587 complete description; see the C++0x definition of a release
1588 sequence.) This corresponds to the C++0x/C1x
1589 ``memory_order_release``.
1590``acq_rel`` (acquire+release)
1591 Acts as both an ``acquire`` and ``release`` operation on its
1592 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1593``seq_cst`` (sequentially consistent)
1594 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1595 operation which only reads, ``release`` for an operation which only
1596 writes), there is a global total order on all
1597 sequentially-consistent operations on all addresses, which is
1598 consistent with the *happens-before* partial order and with the
1599 modification orders of all the affected addresses. Each
1600 sequentially-consistent read sees the last preceding write to the
1601 same address in this global order. This corresponds to the C++0x/C1x
1602 ``memory_order_seq_cst`` and Java volatile.
1603
1604.. _singlethread:
1605
1606If an atomic operation is marked ``singlethread``, it only *synchronizes
1607with* or participates in modification and seq\_cst total orderings with
1608other operations running in the same thread (for example, in signal
1609handlers).
1610
1611.. _fastmath:
1612
1613Fast-Math Flags
1614---------------
1615
1616LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1617:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1618:ref:`frem <i_frem>`) have the following flags that can set to enable
1619otherwise unsafe floating point operations
1620
1621``nnan``
1622 No NaNs - Allow optimizations to assume the arguments and result are not
1623 NaN. Such optimizations are required to retain defined behavior over
1624 NaNs, but the value of the result is undefined.
1625
1626``ninf``
1627 No Infs - Allow optimizations to assume the arguments and result are not
1628 +/-Inf. Such optimizations are required to retain defined behavior over
1629 +/-Inf, but the value of the result is undefined.
1630
1631``nsz``
1632 No Signed Zeros - Allow optimizations to treat the sign of a zero
1633 argument or result as insignificant.
1634
1635``arcp``
1636 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1637 argument rather than perform division.
1638
1639``fast``
1640 Fast - Allow algebraically equivalent transformations that may
1641 dramatically change results in floating point (e.g. reassociate). This
1642 flag implies all the others.
1643
1644.. _typesystem:
1645
1646Type System
1647===========
1648
1649The LLVM type system is one of the most important features of the
1650intermediate representation. Being typed enables a number of
1651optimizations to be performed on the intermediate representation
1652directly, without having to do extra analyses on the side before the
1653transformation. A strong type system makes it easier to read the
1654generated code and enables novel analyses and transformations that are
1655not feasible to perform on normal three address code representations.
1656
Rafael Espindola08013342013-12-07 19:34:20 +00001657.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001658
Rafael Espindola08013342013-12-07 19:34:20 +00001659Void Type
1660---------
Sean Silvab084af42012-12-07 10:36:55 +00001661
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001662:Overview:
1663
Rafael Espindola08013342013-12-07 19:34:20 +00001664
1665The void type does not represent any value and has no size.
1666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001667:Syntax:
1668
Rafael Espindola08013342013-12-07 19:34:20 +00001669
1670::
1671
1672 void
Sean Silvab084af42012-12-07 10:36:55 +00001673
1674
Rafael Espindola08013342013-12-07 19:34:20 +00001675.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001676
Rafael Espindola08013342013-12-07 19:34:20 +00001677Function Type
1678-------------
Sean Silvab084af42012-12-07 10:36:55 +00001679
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001680:Overview:
1681
Sean Silvab084af42012-12-07 10:36:55 +00001682
Rafael Espindola08013342013-12-07 19:34:20 +00001683The function type can be thought of as a function signature. It consists of a
1684return type and a list of formal parameter types. The return type of a function
1685type is a void type or first class type --- except for :ref:`label <t_label>`
1686and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001687
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001688:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola08013342013-12-07 19:34:20 +00001690::
Sean Silvab084af42012-12-07 10:36:55 +00001691
Rafael Espindola08013342013-12-07 19:34:20 +00001692 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001693
Rafael Espindola08013342013-12-07 19:34:20 +00001694...where '``<parameter list>``' is a comma-separated list of type
1695specifiers. Optionally, the parameter list may include a type ``...``, which
1696indicates that the function takes a variable number of arguments. Variable
1697argument functions can access their arguments with the :ref:`variable argument
1698handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1699except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001700
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001701:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001702
Rafael Espindola08013342013-12-07 19:34:20 +00001703+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1704| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1705+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1706| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1707+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1708| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1709+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1711+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1712
1713.. _t_firstclass:
1714
1715First Class Types
1716-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001717
1718The :ref:`first class <t_firstclass>` types are perhaps the most important.
1719Values of these types are the only ones which can be produced by
1720instructions.
1721
Rafael Espindola08013342013-12-07 19:34:20 +00001722.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001723
Rafael Espindola08013342013-12-07 19:34:20 +00001724Single Value Types
1725^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001726
Rafael Espindola08013342013-12-07 19:34:20 +00001727These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001728
1729.. _t_integer:
1730
1731Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001732""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001733
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001734:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001735
1736The integer type is a very simple type that simply specifies an
1737arbitrary bit width for the integer type desired. Any bit width from 1
1738bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1739
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001740:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001741
1742::
1743
1744 iN
1745
1746The number of bits the integer will occupy is specified by the ``N``
1747value.
1748
1749Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001750*********
Sean Silvab084af42012-12-07 10:36:55 +00001751
1752+----------------+------------------------------------------------+
1753| ``i1`` | a single-bit integer. |
1754+----------------+------------------------------------------------+
1755| ``i32`` | a 32-bit integer. |
1756+----------------+------------------------------------------------+
1757| ``i1942652`` | a really big integer of over 1 million bits. |
1758+----------------+------------------------------------------------+
1759
1760.. _t_floating:
1761
1762Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001763""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001764
1765.. list-table::
1766 :header-rows: 1
1767
1768 * - Type
1769 - Description
1770
1771 * - ``half``
1772 - 16-bit floating point value
1773
1774 * - ``float``
1775 - 32-bit floating point value
1776
1777 * - ``double``
1778 - 64-bit floating point value
1779
1780 * - ``fp128``
1781 - 128-bit floating point value (112-bit mantissa)
1782
1783 * - ``x86_fp80``
1784 - 80-bit floating point value (X87)
1785
1786 * - ``ppc_fp128``
1787 - 128-bit floating point value (two 64-bits)
1788
Reid Kleckner9a16d082014-03-05 02:41:37 +00001789X86_mmx Type
1790""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001791
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001792:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001793
Reid Kleckner9a16d082014-03-05 02:41:37 +00001794The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001795machine. The operations allowed on it are quite limited: parameters and
1796return values, load and store, and bitcast. User-specified MMX
1797instructions are represented as intrinsic or asm calls with arguments
1798and/or results of this type. There are no arrays, vectors or constants
1799of this type.
1800
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001801:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001802
1803::
1804
Reid Kleckner9a16d082014-03-05 02:41:37 +00001805 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001806
Sean Silvab084af42012-12-07 10:36:55 +00001807
Rafael Espindola08013342013-12-07 19:34:20 +00001808.. _t_pointer:
1809
1810Pointer Type
1811""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001814
Rafael Espindola08013342013-12-07 19:34:20 +00001815The pointer type is used to specify memory locations. Pointers are
1816commonly used to reference objects in memory.
1817
1818Pointer types may have an optional address space attribute defining the
1819numbered address space where the pointed-to object resides. The default
1820address space is number zero. The semantics of non-zero address spaces
1821are target-specific.
1822
1823Note that LLVM does not permit pointers to void (``void*``) nor does it
1824permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001825
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001826:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001827
1828::
1829
Rafael Espindola08013342013-12-07 19:34:20 +00001830 <type> *
1831
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001832:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001833
1834+-------------------------+--------------------------------------------------------------------------------------------------------------+
1835| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1836+-------------------------+--------------------------------------------------------------------------------------------------------------+
1837| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1838+-------------------------+--------------------------------------------------------------------------------------------------------------+
1839| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1840+-------------------------+--------------------------------------------------------------------------------------------------------------+
1841
1842.. _t_vector:
1843
1844Vector Type
1845"""""""""""
1846
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001847:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001848
1849A vector type is a simple derived type that represents a vector of
1850elements. Vector types are used when multiple primitive data are
1851operated in parallel using a single instruction (SIMD). A vector type
1852requires a size (number of elements) and an underlying primitive data
1853type. Vector types are considered :ref:`first class <t_firstclass>`.
1854
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001855:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001856
1857::
1858
1859 < <# elements> x <elementtype> >
1860
1861The number of elements is a constant integer value larger than 0;
1862elementtype may be any integer or floating point type, or a pointer to
1863these types. Vectors of size zero are not allowed.
1864
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001865:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001866
1867+-------------------+--------------------------------------------------+
1868| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1869+-------------------+--------------------------------------------------+
1870| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1871+-------------------+--------------------------------------------------+
1872| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1873+-------------------+--------------------------------------------------+
1874| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1875+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001876
1877.. _t_label:
1878
1879Label Type
1880^^^^^^^^^^
1881
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001882:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884The label type represents code labels.
1885
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001886:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001887
1888::
1889
1890 label
1891
1892.. _t_metadata:
1893
1894Metadata Type
1895^^^^^^^^^^^^^
1896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899The metadata type represents embedded metadata. No derived types may be
1900created from metadata except for :ref:`function <t_function>` arguments.
1901
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001902:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001903
1904::
1905
1906 metadata
1907
Sean Silvab084af42012-12-07 10:36:55 +00001908.. _t_aggregate:
1909
1910Aggregate Types
1911^^^^^^^^^^^^^^^
1912
1913Aggregate Types are a subset of derived types that can contain multiple
1914member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1915aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1916aggregate types.
1917
1918.. _t_array:
1919
1920Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001921""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001922
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001923:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001924
1925The array type is a very simple derived type that arranges elements
1926sequentially in memory. The array type requires a size (number of
1927elements) and an underlying data type.
1928
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001929:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001930
1931::
1932
1933 [<# elements> x <elementtype>]
1934
1935The number of elements is a constant integer value; ``elementtype`` may
1936be any type with a size.
1937
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001938:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001939
1940+------------------+--------------------------------------+
1941| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1942+------------------+--------------------------------------+
1943| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1944+------------------+--------------------------------------+
1945| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1946+------------------+--------------------------------------+
1947
1948Here are some examples of multidimensional arrays:
1949
1950+-----------------------------+----------------------------------------------------------+
1951| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1952+-----------------------------+----------------------------------------------------------+
1953| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1954+-----------------------------+----------------------------------------------------------+
1955| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1956+-----------------------------+----------------------------------------------------------+
1957
1958There is no restriction on indexing beyond the end of the array implied
1959by a static type (though there are restrictions on indexing beyond the
1960bounds of an allocated object in some cases). This means that
1961single-dimension 'variable sized array' addressing can be implemented in
1962LLVM with a zero length array type. An implementation of 'pascal style
1963arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1964example.
1965
Sean Silvab084af42012-12-07 10:36:55 +00001966.. _t_struct:
1967
1968Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001969""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001971:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001972
1973The structure type is used to represent a collection of data members
1974together in memory. The elements of a structure may be any type that has
1975a size.
1976
1977Structures in memory are accessed using '``load``' and '``store``' by
1978getting a pointer to a field with the '``getelementptr``' instruction.
1979Structures in registers are accessed using the '``extractvalue``' and
1980'``insertvalue``' instructions.
1981
1982Structures may optionally be "packed" structures, which indicate that
1983the alignment of the struct is one byte, and that there is no padding
1984between the elements. In non-packed structs, padding between field types
1985is inserted as defined by the DataLayout string in the module, which is
1986required to match what the underlying code generator expects.
1987
1988Structures can either be "literal" or "identified". A literal structure
1989is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1990identified types are always defined at the top level with a name.
1991Literal types are uniqued by their contents and can never be recursive
1992or opaque since there is no way to write one. Identified types can be
1993recursive, can be opaqued, and are never uniqued.
1994
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001995:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997::
1998
1999 %T1 = type { <type list> } ; Identified normal struct type
2000 %T2 = type <{ <type list> }> ; Identified packed struct type
2001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2005| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2006+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002007| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002008+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2009| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2010+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2011
2012.. _t_opaque:
2013
2014Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002015""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002016
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002017:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002018
2019Opaque structure types are used to represent named structure types that
2020do not have a body specified. This corresponds (for example) to the C
2021notion of a forward declared structure.
2022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002024
2025::
2026
2027 %X = type opaque
2028 %52 = type opaque
2029
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002030:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002031
2032+--------------+-------------------+
2033| ``opaque`` | An opaque type. |
2034+--------------+-------------------+
2035
Sean Silva1703e702014-04-08 21:06:22 +00002036.. _constants:
2037
Sean Silvab084af42012-12-07 10:36:55 +00002038Constants
2039=========
2040
2041LLVM has several different basic types of constants. This section
2042describes them all and their syntax.
2043
2044Simple Constants
2045----------------
2046
2047**Boolean constants**
2048 The two strings '``true``' and '``false``' are both valid constants
2049 of the ``i1`` type.
2050**Integer constants**
2051 Standard integers (such as '4') are constants of the
2052 :ref:`integer <t_integer>` type. Negative numbers may be used with
2053 integer types.
2054**Floating point constants**
2055 Floating point constants use standard decimal notation (e.g.
2056 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2057 hexadecimal notation (see below). The assembler requires the exact
2058 decimal value of a floating-point constant. For example, the
2059 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2060 decimal in binary. Floating point constants must have a :ref:`floating
2061 point <t_floating>` type.
2062**Null pointer constants**
2063 The identifier '``null``' is recognized as a null pointer constant
2064 and must be of :ref:`pointer type <t_pointer>`.
2065
2066The one non-intuitive notation for constants is the hexadecimal form of
2067floating point constants. For example, the form
2068'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2069than) '``double 4.5e+15``'. The only time hexadecimal floating point
2070constants are required (and the only time that they are generated by the
2071disassembler) is when a floating point constant must be emitted but it
2072cannot be represented as a decimal floating point number in a reasonable
2073number of digits. For example, NaN's, infinities, and other special
2074values are represented in their IEEE hexadecimal format so that assembly
2075and disassembly do not cause any bits to change in the constants.
2076
2077When using the hexadecimal form, constants of types half, float, and
2078double are represented using the 16-digit form shown above (which
2079matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002080must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002081precision, respectively. Hexadecimal format is always used for long
2082double, and there are three forms of long double. The 80-bit format used
2083by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2084128-bit format used by PowerPC (two adjacent doubles) is represented by
2085``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002086represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2087will only work if they match the long double format on your target.
2088The IEEE 16-bit format (half precision) is represented by ``0xH``
2089followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2090(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002091
Reid Kleckner9a16d082014-03-05 02:41:37 +00002092There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002093
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002094.. _complexconstants:
2095
Sean Silvab084af42012-12-07 10:36:55 +00002096Complex Constants
2097-----------------
2098
2099Complex constants are a (potentially recursive) combination of simple
2100constants and smaller complex constants.
2101
2102**Structure constants**
2103 Structure constants are represented with notation similar to
2104 structure type definitions (a comma separated list of elements,
2105 surrounded by braces (``{}``)). For example:
2106 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2107 "``@G = external global i32``". Structure constants must have
2108 :ref:`structure type <t_struct>`, and the number and types of elements
2109 must match those specified by the type.
2110**Array constants**
2111 Array constants are represented with notation similar to array type
2112 definitions (a comma separated list of elements, surrounded by
2113 square brackets (``[]``)). For example:
2114 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2115 :ref:`array type <t_array>`, and the number and types of elements must
2116 match those specified by the type.
2117**Vector constants**
2118 Vector constants are represented with notation similar to vector
2119 type definitions (a comma separated list of elements, surrounded by
2120 less-than/greater-than's (``<>``)). For example:
2121 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2122 must have :ref:`vector type <t_vector>`, and the number and types of
2123 elements must match those specified by the type.
2124**Zero initialization**
2125 The string '``zeroinitializer``' can be used to zero initialize a
2126 value to zero of *any* type, including scalar and
2127 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2128 having to print large zero initializers (e.g. for large arrays) and
2129 is always exactly equivalent to using explicit zero initializers.
2130**Metadata node**
2131 A metadata node is a structure-like constant with :ref:`metadata
2132 type <t_metadata>`. For example:
2133 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2134 constants that are meant to be interpreted as part of the
2135 instruction stream, metadata is a place to attach additional
2136 information such as debug info.
2137
2138Global Variable and Function Addresses
2139--------------------------------------
2140
2141The addresses of :ref:`global variables <globalvars>` and
2142:ref:`functions <functionstructure>` are always implicitly valid
2143(link-time) constants. These constants are explicitly referenced when
2144the :ref:`identifier for the global <identifiers>` is used and always have
2145:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2146file:
2147
2148.. code-block:: llvm
2149
2150 @X = global i32 17
2151 @Y = global i32 42
2152 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2153
2154.. _undefvalues:
2155
2156Undefined Values
2157----------------
2158
2159The string '``undef``' can be used anywhere a constant is expected, and
2160indicates that the user of the value may receive an unspecified
2161bit-pattern. Undefined values may be of any type (other than '``label``'
2162or '``void``') and be used anywhere a constant is permitted.
2163
2164Undefined values are useful because they indicate to the compiler that
2165the program is well defined no matter what value is used. This gives the
2166compiler more freedom to optimize. Here are some examples of
2167(potentially surprising) transformations that are valid (in pseudo IR):
2168
2169.. code-block:: llvm
2170
2171 %A = add %X, undef
2172 %B = sub %X, undef
2173 %C = xor %X, undef
2174 Safe:
2175 %A = undef
2176 %B = undef
2177 %C = undef
2178
2179This is safe because all of the output bits are affected by the undef
2180bits. Any output bit can have a zero or one depending on the input bits.
2181
2182.. code-block:: llvm
2183
2184 %A = or %X, undef
2185 %B = and %X, undef
2186 Safe:
2187 %A = -1
2188 %B = 0
2189 Unsafe:
2190 %A = undef
2191 %B = undef
2192
2193These logical operations have bits that are not always affected by the
2194input. For example, if ``%X`` has a zero bit, then the output of the
2195'``and``' operation will always be a zero for that bit, no matter what
2196the corresponding bit from the '``undef``' is. As such, it is unsafe to
2197optimize or assume that the result of the '``and``' is '``undef``'.
2198However, it is safe to assume that all bits of the '``undef``' could be
21990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2200all the bits of the '``undef``' operand to the '``or``' could be set,
2201allowing the '``or``' to be folded to -1.
2202
2203.. code-block:: llvm
2204
2205 %A = select undef, %X, %Y
2206 %B = select undef, 42, %Y
2207 %C = select %X, %Y, undef
2208 Safe:
2209 %A = %X (or %Y)
2210 %B = 42 (or %Y)
2211 %C = %Y
2212 Unsafe:
2213 %A = undef
2214 %B = undef
2215 %C = undef
2216
2217This set of examples shows that undefined '``select``' (and conditional
2218branch) conditions can go *either way*, but they have to come from one
2219of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2220both known to have a clear low bit, then ``%A`` would have to have a
2221cleared low bit. However, in the ``%C`` example, the optimizer is
2222allowed to assume that the '``undef``' operand could be the same as
2223``%Y``, allowing the whole '``select``' to be eliminated.
2224
2225.. code-block:: llvm
2226
2227 %A = xor undef, undef
2228
2229 %B = undef
2230 %C = xor %B, %B
2231
2232 %D = undef
2233 %E = icmp lt %D, 4
2234 %F = icmp gte %D, 4
2235
2236 Safe:
2237 %A = undef
2238 %B = undef
2239 %C = undef
2240 %D = undef
2241 %E = undef
2242 %F = undef
2243
2244This example points out that two '``undef``' operands are not
2245necessarily the same. This can be surprising to people (and also matches
2246C semantics) where they assume that "``X^X``" is always zero, even if
2247``X`` is undefined. This isn't true for a number of reasons, but the
2248short answer is that an '``undef``' "variable" can arbitrarily change
2249its value over its "live range". This is true because the variable
2250doesn't actually *have a live range*. Instead, the value is logically
2251read from arbitrary registers that happen to be around when needed, so
2252the value is not necessarily consistent over time. In fact, ``%A`` and
2253``%C`` need to have the same semantics or the core LLVM "replace all
2254uses with" concept would not hold.
2255
2256.. code-block:: llvm
2257
2258 %A = fdiv undef, %X
2259 %B = fdiv %X, undef
2260 Safe:
2261 %A = undef
2262 b: unreachable
2263
2264These examples show the crucial difference between an *undefined value*
2265and *undefined behavior*. An undefined value (like '``undef``') is
2266allowed to have an arbitrary bit-pattern. This means that the ``%A``
2267operation can be constant folded to '``undef``', because the '``undef``'
2268could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2269However, in the second example, we can make a more aggressive
2270assumption: because the ``undef`` is allowed to be an arbitrary value,
2271we are allowed to assume that it could be zero. Since a divide by zero
2272has *undefined behavior*, we are allowed to assume that the operation
2273does not execute at all. This allows us to delete the divide and all
2274code after it. Because the undefined operation "can't happen", the
2275optimizer can assume that it occurs in dead code.
2276
2277.. code-block:: llvm
2278
2279 a: store undef -> %X
2280 b: store %X -> undef
2281 Safe:
2282 a: <deleted>
2283 b: unreachable
2284
2285These examples reiterate the ``fdiv`` example: a store *of* an undefined
2286value can be assumed to not have any effect; we can assume that the
2287value is overwritten with bits that happen to match what was already
2288there. However, a store *to* an undefined location could clobber
2289arbitrary memory, therefore, it has undefined behavior.
2290
2291.. _poisonvalues:
2292
2293Poison Values
2294-------------
2295
2296Poison values are similar to :ref:`undef values <undefvalues>`, however
2297they also represent the fact that an instruction or constant expression
2298which cannot evoke side effects has nevertheless detected a condition
2299which results in undefined behavior.
2300
2301There is currently no way of representing a poison value in the IR; they
2302only exist when produced by operations such as :ref:`add <i_add>` with
2303the ``nsw`` flag.
2304
2305Poison value behavior is defined in terms of value *dependence*:
2306
2307- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2308- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2309 their dynamic predecessor basic block.
2310- Function arguments depend on the corresponding actual argument values
2311 in the dynamic callers of their functions.
2312- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2313 instructions that dynamically transfer control back to them.
2314- :ref:`Invoke <i_invoke>` instructions depend on the
2315 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2316 call instructions that dynamically transfer control back to them.
2317- Non-volatile loads and stores depend on the most recent stores to all
2318 of the referenced memory addresses, following the order in the IR
2319 (including loads and stores implied by intrinsics such as
2320 :ref:`@llvm.memcpy <int_memcpy>`.)
2321- An instruction with externally visible side effects depends on the
2322 most recent preceding instruction with externally visible side
2323 effects, following the order in the IR. (This includes :ref:`volatile
2324 operations <volatile>`.)
2325- An instruction *control-depends* on a :ref:`terminator
2326 instruction <terminators>` if the terminator instruction has
2327 multiple successors and the instruction is always executed when
2328 control transfers to one of the successors, and may not be executed
2329 when control is transferred to another.
2330- Additionally, an instruction also *control-depends* on a terminator
2331 instruction if the set of instructions it otherwise depends on would
2332 be different if the terminator had transferred control to a different
2333 successor.
2334- Dependence is transitive.
2335
2336Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2337with the additional affect that any instruction which has a *dependence*
2338on a poison value has undefined behavior.
2339
2340Here are some examples:
2341
2342.. code-block:: llvm
2343
2344 entry:
2345 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2346 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2347 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2348 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2349
2350 store i32 %poison, i32* @g ; Poison value stored to memory.
2351 %poison2 = load i32* @g ; Poison value loaded back from memory.
2352
2353 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2354
2355 %narrowaddr = bitcast i32* @g to i16*
2356 %wideaddr = bitcast i32* @g to i64*
2357 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2358 %poison4 = load i64* %wideaddr ; Returns a poison value.
2359
2360 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2361 br i1 %cmp, label %true, label %end ; Branch to either destination.
2362
2363 true:
2364 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2365 ; it has undefined behavior.
2366 br label %end
2367
2368 end:
2369 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2370 ; Both edges into this PHI are
2371 ; control-dependent on %cmp, so this
2372 ; always results in a poison value.
2373
2374 store volatile i32 0, i32* @g ; This would depend on the store in %true
2375 ; if %cmp is true, or the store in %entry
2376 ; otherwise, so this is undefined behavior.
2377
2378 br i1 %cmp, label %second_true, label %second_end
2379 ; The same branch again, but this time the
2380 ; true block doesn't have side effects.
2381
2382 second_true:
2383 ; No side effects!
2384 ret void
2385
2386 second_end:
2387 store volatile i32 0, i32* @g ; This time, the instruction always depends
2388 ; on the store in %end. Also, it is
2389 ; control-equivalent to %end, so this is
2390 ; well-defined (ignoring earlier undefined
2391 ; behavior in this example).
2392
2393.. _blockaddress:
2394
2395Addresses of Basic Blocks
2396-------------------------
2397
2398``blockaddress(@function, %block)``
2399
2400The '``blockaddress``' constant computes the address of the specified
2401basic block in the specified function, and always has an ``i8*`` type.
2402Taking the address of the entry block is illegal.
2403
2404This value only has defined behavior when used as an operand to the
2405':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2406against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002407undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002408no label is equal to the null pointer. This may be passed around as an
2409opaque pointer sized value as long as the bits are not inspected. This
2410allows ``ptrtoint`` and arithmetic to be performed on these values so
2411long as the original value is reconstituted before the ``indirectbr``
2412instruction.
2413
2414Finally, some targets may provide defined semantics when using the value
2415as the operand to an inline assembly, but that is target specific.
2416
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002417.. _constantexprs:
2418
Sean Silvab084af42012-12-07 10:36:55 +00002419Constant Expressions
2420--------------------
2421
2422Constant expressions are used to allow expressions involving other
2423constants to be used as constants. Constant expressions may be of any
2424:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2425that does not have side effects (e.g. load and call are not supported).
2426The following is the syntax for constant expressions:
2427
2428``trunc (CST to TYPE)``
2429 Truncate a constant to another type. The bit size of CST must be
2430 larger than the bit size of TYPE. Both types must be integers.
2431``zext (CST to TYPE)``
2432 Zero extend a constant to another type. The bit size of CST must be
2433 smaller than the bit size of TYPE. Both types must be integers.
2434``sext (CST to TYPE)``
2435 Sign extend a constant to another type. The bit size of CST must be
2436 smaller than the bit size of TYPE. Both types must be integers.
2437``fptrunc (CST to TYPE)``
2438 Truncate a floating point constant to another floating point type.
2439 The size of CST must be larger than the size of TYPE. Both types
2440 must be floating point.
2441``fpext (CST to TYPE)``
2442 Floating point extend a constant to another type. The size of CST
2443 must be smaller or equal to the size of TYPE. Both types must be
2444 floating point.
2445``fptoui (CST to TYPE)``
2446 Convert a floating point constant to the corresponding unsigned
2447 integer constant. TYPE must be a scalar or vector integer type. CST
2448 must be of scalar or vector floating point type. Both CST and TYPE
2449 must be scalars, or vectors of the same number of elements. If the
2450 value won't fit in the integer type, the results are undefined.
2451``fptosi (CST to TYPE)``
2452 Convert a floating point constant to the corresponding signed
2453 integer constant. TYPE must be a scalar or vector integer type. CST
2454 must be of scalar or vector floating point type. Both CST and TYPE
2455 must be scalars, or vectors of the same number of elements. If the
2456 value won't fit in the integer type, the results are undefined.
2457``uitofp (CST to TYPE)``
2458 Convert an unsigned integer constant to the corresponding floating
2459 point constant. TYPE must be a scalar or vector floating point type.
2460 CST must be of scalar or vector integer type. Both CST and TYPE must
2461 be scalars, or vectors of the same number of elements. If the value
2462 won't fit in the floating point type, the results are undefined.
2463``sitofp (CST to TYPE)``
2464 Convert a signed integer constant to the corresponding floating
2465 point constant. TYPE must be a scalar or vector floating point type.
2466 CST must be of scalar or vector integer type. Both CST and TYPE must
2467 be scalars, or vectors of the same number of elements. If the value
2468 won't fit in the floating point type, the results are undefined.
2469``ptrtoint (CST to TYPE)``
2470 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002471 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002472 pointer type. The ``CST`` value is zero extended, truncated, or
2473 unchanged to make it fit in ``TYPE``.
2474``inttoptr (CST to TYPE)``
2475 Convert an integer constant to a pointer constant. TYPE must be a
2476 pointer type. CST must be of integer type. The CST value is zero
2477 extended, truncated, or unchanged to make it fit in a pointer size.
2478 This one is *really* dangerous!
2479``bitcast (CST to TYPE)``
2480 Convert a constant, CST, to another TYPE. The constraints of the
2481 operands are the same as those for the :ref:`bitcast
2482 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002483``addrspacecast (CST to TYPE)``
2484 Convert a constant pointer or constant vector of pointer, CST, to another
2485 TYPE in a different address space. The constraints of the operands are the
2486 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002487``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2488 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2489 constants. As with the :ref:`getelementptr <i_getelementptr>`
2490 instruction, the index list may have zero or more indexes, which are
2491 required to make sense for the type of "CSTPTR".
2492``select (COND, VAL1, VAL2)``
2493 Perform the :ref:`select operation <i_select>` on constants.
2494``icmp COND (VAL1, VAL2)``
2495 Performs the :ref:`icmp operation <i_icmp>` on constants.
2496``fcmp COND (VAL1, VAL2)``
2497 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2498``extractelement (VAL, IDX)``
2499 Perform the :ref:`extractelement operation <i_extractelement>` on
2500 constants.
2501``insertelement (VAL, ELT, IDX)``
2502 Perform the :ref:`insertelement operation <i_insertelement>` on
2503 constants.
2504``shufflevector (VEC1, VEC2, IDXMASK)``
2505 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2506 constants.
2507``extractvalue (VAL, IDX0, IDX1, ...)``
2508 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2509 constants. The index list is interpreted in a similar manner as
2510 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2511 least one index value must be specified.
2512``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2513 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2514 The index list is interpreted in a similar manner as indices in a
2515 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2516 value must be specified.
2517``OPCODE (LHS, RHS)``
2518 Perform the specified operation of the LHS and RHS constants. OPCODE
2519 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2520 binary <bitwiseops>` operations. The constraints on operands are
2521 the same as those for the corresponding instruction (e.g. no bitwise
2522 operations on floating point values are allowed).
2523
2524Other Values
2525============
2526
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002527.. _inlineasmexprs:
2528
Sean Silvab084af42012-12-07 10:36:55 +00002529Inline Assembler Expressions
2530----------------------------
2531
2532LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2533Inline Assembly <moduleasm>`) through the use of a special value. This
2534value represents the inline assembler as a string (containing the
2535instructions to emit), a list of operand constraints (stored as a
2536string), a flag that indicates whether or not the inline asm expression
2537has side effects, and a flag indicating whether the function containing
2538the asm needs to align its stack conservatively. An example inline
2539assembler expression is:
2540
2541.. code-block:: llvm
2542
2543 i32 (i32) asm "bswap $0", "=r,r"
2544
2545Inline assembler expressions may **only** be used as the callee operand
2546of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2547Thus, typically we have:
2548
2549.. code-block:: llvm
2550
2551 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2552
2553Inline asms with side effects not visible in the constraint list must be
2554marked as having side effects. This is done through the use of the
2555'``sideeffect``' keyword, like so:
2556
2557.. code-block:: llvm
2558
2559 call void asm sideeffect "eieio", ""()
2560
2561In some cases inline asms will contain code that will not work unless
2562the stack is aligned in some way, such as calls or SSE instructions on
2563x86, yet will not contain code that does that alignment within the asm.
2564The compiler should make conservative assumptions about what the asm
2565might contain and should generate its usual stack alignment code in the
2566prologue if the '``alignstack``' keyword is present:
2567
2568.. code-block:: llvm
2569
2570 call void asm alignstack "eieio", ""()
2571
2572Inline asms also support using non-standard assembly dialects. The
2573assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2574the inline asm is using the Intel dialect. Currently, ATT and Intel are
2575the only supported dialects. An example is:
2576
2577.. code-block:: llvm
2578
2579 call void asm inteldialect "eieio", ""()
2580
2581If multiple keywords appear the '``sideeffect``' keyword must come
2582first, the '``alignstack``' keyword second and the '``inteldialect``'
2583keyword last.
2584
2585Inline Asm Metadata
2586^^^^^^^^^^^^^^^^^^^
2587
2588The call instructions that wrap inline asm nodes may have a
2589"``!srcloc``" MDNode attached to it that contains a list of constant
2590integers. If present, the code generator will use the integer as the
2591location cookie value when report errors through the ``LLVMContext``
2592error reporting mechanisms. This allows a front-end to correlate backend
2593errors that occur with inline asm back to the source code that produced
2594it. For example:
2595
2596.. code-block:: llvm
2597
2598 call void asm sideeffect "something bad", ""(), !srcloc !42
2599 ...
2600 !42 = !{ i32 1234567 }
2601
2602It is up to the front-end to make sense of the magic numbers it places
2603in the IR. If the MDNode contains multiple constants, the code generator
2604will use the one that corresponds to the line of the asm that the error
2605occurs on.
2606
2607.. _metadata:
2608
2609Metadata Nodes and Metadata Strings
2610-----------------------------------
2611
2612LLVM IR allows metadata to be attached to instructions in the program
2613that can convey extra information about the code to the optimizers and
2614code generator. One example application of metadata is source-level
2615debug information. There are two metadata primitives: strings and nodes.
2616All metadata has the ``metadata`` type and is identified in syntax by a
2617preceding exclamation point ('``!``').
2618
2619A metadata string is a string surrounded by double quotes. It can
2620contain any character by escaping non-printable characters with
2621"``\xx``" where "``xx``" is the two digit hex code. For example:
2622"``!"test\00"``".
2623
2624Metadata nodes are represented with notation similar to structure
2625constants (a comma separated list of elements, surrounded by braces and
2626preceded by an exclamation point). Metadata nodes can have any values as
2627their operand. For example:
2628
2629.. code-block:: llvm
2630
2631 !{ metadata !"test\00", i32 10}
2632
2633A :ref:`named metadata <namedmetadatastructure>` is a collection of
2634metadata nodes, which can be looked up in the module symbol table. For
2635example:
2636
2637.. code-block:: llvm
2638
2639 !foo = metadata !{!4, !3}
2640
2641Metadata can be used as function arguments. Here ``llvm.dbg.value``
2642function is using two metadata arguments:
2643
2644.. code-block:: llvm
2645
2646 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2647
2648Metadata can be attached with an instruction. Here metadata ``!21`` is
2649attached to the ``add`` instruction using the ``!dbg`` identifier:
2650
2651.. code-block:: llvm
2652
2653 %indvar.next = add i64 %indvar, 1, !dbg !21
2654
2655More information about specific metadata nodes recognized by the
2656optimizers and code generator is found below.
2657
2658'``tbaa``' Metadata
2659^^^^^^^^^^^^^^^^^^^
2660
2661In LLVM IR, memory does not have types, so LLVM's own type system is not
2662suitable for doing TBAA. Instead, metadata is added to the IR to
2663describe a type system of a higher level language. This can be used to
2664implement typical C/C++ TBAA, but it can also be used to implement
2665custom alias analysis behavior for other languages.
2666
2667The current metadata format is very simple. TBAA metadata nodes have up
2668to three fields, e.g.:
2669
2670.. code-block:: llvm
2671
2672 !0 = metadata !{ metadata !"an example type tree" }
2673 !1 = metadata !{ metadata !"int", metadata !0 }
2674 !2 = metadata !{ metadata !"float", metadata !0 }
2675 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2676
2677The first field is an identity field. It can be any value, usually a
2678metadata string, which uniquely identifies the type. The most important
2679name in the tree is the name of the root node. Two trees with different
2680root node names are entirely disjoint, even if they have leaves with
2681common names.
2682
2683The second field identifies the type's parent node in the tree, or is
2684null or omitted for a root node. A type is considered to alias all of
2685its descendants and all of its ancestors in the tree. Also, a type is
2686considered to alias all types in other trees, so that bitcode produced
2687from multiple front-ends is handled conservatively.
2688
2689If the third field is present, it's an integer which if equal to 1
2690indicates that the type is "constant" (meaning
2691``pointsToConstantMemory`` should return true; see `other useful
2692AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2693
2694'``tbaa.struct``' Metadata
2695^^^^^^^^^^^^^^^^^^^^^^^^^^
2696
2697The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2698aggregate assignment operations in C and similar languages, however it
2699is defined to copy a contiguous region of memory, which is more than
2700strictly necessary for aggregate types which contain holes due to
2701padding. Also, it doesn't contain any TBAA information about the fields
2702of the aggregate.
2703
2704``!tbaa.struct`` metadata can describe which memory subregions in a
2705memcpy are padding and what the TBAA tags of the struct are.
2706
2707The current metadata format is very simple. ``!tbaa.struct`` metadata
2708nodes are a list of operands which are in conceptual groups of three.
2709For each group of three, the first operand gives the byte offset of a
2710field in bytes, the second gives its size in bytes, and the third gives
2711its tbaa tag. e.g.:
2712
2713.. code-block:: llvm
2714
2715 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2716
2717This describes a struct with two fields. The first is at offset 0 bytes
2718with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2719and has size 4 bytes and has tbaa tag !2.
2720
2721Note that the fields need not be contiguous. In this example, there is a
27224 byte gap between the two fields. This gap represents padding which
2723does not carry useful data and need not be preserved.
2724
2725'``fpmath``' Metadata
2726^^^^^^^^^^^^^^^^^^^^^
2727
2728``fpmath`` metadata may be attached to any instruction of floating point
2729type. It can be used to express the maximum acceptable error in the
2730result of that instruction, in ULPs, thus potentially allowing the
2731compiler to use a more efficient but less accurate method of computing
2732it. ULP is defined as follows:
2733
2734 If ``x`` is a real number that lies between two finite consecutive
2735 floating-point numbers ``a`` and ``b``, without being equal to one
2736 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2737 distance between the two non-equal finite floating-point numbers
2738 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2739
2740The metadata node shall consist of a single positive floating point
2741number representing the maximum relative error, for example:
2742
2743.. code-block:: llvm
2744
2745 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2746
2747'``range``' Metadata
2748^^^^^^^^^^^^^^^^^^^^
2749
2750``range`` metadata may be attached only to loads of integer types. It
2751expresses the possible ranges the loaded value is in. The ranges are
2752represented with a flattened list of integers. The loaded value is known
2753to be in the union of the ranges defined by each consecutive pair. Each
2754pair has the following properties:
2755
2756- The type must match the type loaded by the instruction.
2757- The pair ``a,b`` represents the range ``[a,b)``.
2758- Both ``a`` and ``b`` are constants.
2759- The range is allowed to wrap.
2760- The range should not represent the full or empty set. That is,
2761 ``a!=b``.
2762
2763In addition, the pairs must be in signed order of the lower bound and
2764they must be non-contiguous.
2765
2766Examples:
2767
2768.. code-block:: llvm
2769
2770 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2771 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2772 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2773 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2774 ...
2775 !0 = metadata !{ i8 0, i8 2 }
2776 !1 = metadata !{ i8 255, i8 2 }
2777 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2778 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2779
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002780'``llvm.loop``'
2781^^^^^^^^^^^^^^^
2782
2783It is sometimes useful to attach information to loop constructs. Currently,
2784loop metadata is implemented as metadata attached to the branch instruction
2785in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002786guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002787specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002788
2789The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002790itself to avoid merging it with any other identifier metadata, e.g.,
2791during module linkage or function inlining. That is, each loop should refer
2792to their own identification metadata even if they reside in separate functions.
2793The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002794constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002795
2796.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002797
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002798 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002799 !1 = metadata !{ metadata !1 }
2800
Paul Redmond5fdf8362013-05-28 20:00:34 +00002801The loop identifier metadata can be used to specify additional per-loop
2802metadata. Any operands after the first operand can be treated as user-defined
2803metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2804by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002805
Paul Redmond5fdf8362013-05-28 20:00:34 +00002806.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002807
Paul Redmond5fdf8362013-05-28 20:00:34 +00002808 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2809 ...
2810 !0 = metadata !{ metadata !0, metadata !1 }
2811 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002812
2813'``llvm.mem``'
2814^^^^^^^^^^^^^^^
2815
2816Metadata types used to annotate memory accesses with information helpful
2817for optimizations are prefixed with ``llvm.mem``.
2818
2819'``llvm.mem.parallel_loop_access``' Metadata
2820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2821
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002822The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2823or metadata containing a list of loop identifiers for nested loops.
2824The metadata is attached to memory accessing instructions and denotes that
2825no loop carried memory dependence exist between it and other instructions denoted
2826with the same loop identifier.
2827
2828Precisely, given two instructions ``m1`` and ``m2`` that both have the
2829``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2830set of loops associated with that metadata, respectively, then there is no loop
2831carried dependence between ``m1`` and ``m2`` for loops ``L1`` or
2832``L2``.
2833
2834As a special case, if all memory accessing instructions in a loop have
2835``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2836loop has no loop carried memory dependences and is considered to be a parallel
2837loop.
2838
2839Note that if not all memory access instructions have such metadata referring to
2840the loop, then the loop is considered not being trivially parallel. Additional
2841memory dependence analysis is required to make that determination. As a fail
2842safe mechanism, this causes loops that were originally parallel to be considered
2843sequential (if optimization passes that are unaware of the parallel semantics
2844insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002845
2846Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002847both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002848metadata types that refer to the same loop identifier metadata.
2849
2850.. code-block:: llvm
2851
2852 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002853 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002854 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002855 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002856 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002857 ...
2858 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002859
2860 for.end:
2861 ...
2862 !0 = metadata !{ metadata !0 }
2863
2864It is also possible to have nested parallel loops. In that case the
2865memory accesses refer to a list of loop identifier metadata nodes instead of
2866the loop identifier metadata node directly:
2867
2868.. code-block:: llvm
2869
2870 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002871 ...
2872 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2873 ...
2874 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002875
2876 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002877 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002878 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002879 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002880 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002881 ...
2882 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002883
2884 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002885 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002886 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002887 ...
2888 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002889
2890 outer.for.end: ; preds = %for.body
2891 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002892 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2893 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2894 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002895
Paul Redmond5fdf8362013-05-28 20:00:34 +00002896'``llvm.vectorizer``'
2897^^^^^^^^^^^^^^^^^^^^^
2898
2899Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2900vectorization parameters such as vectorization factor and unroll factor.
2901
2902``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2903loop identification metadata.
2904
2905'``llvm.vectorizer.unroll``' Metadata
2906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2907
2908This metadata instructs the loop vectorizer to unroll the specified
2909loop exactly ``N`` times.
2910
2911The first operand is the string ``llvm.vectorizer.unroll`` and the second
2912operand is an integer specifying the unroll factor. For example:
2913
2914.. code-block:: llvm
2915
2916 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2917
2918Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2919loop.
2920
2921If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2922determined automatically.
2923
2924'``llvm.vectorizer.width``' Metadata
2925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2926
Paul Redmondeccbb322013-05-30 17:22:46 +00002927This metadata sets the target width of the vectorizer to ``N``. Without
2928this metadata, the vectorizer will choose a width automatically.
2929Regardless of this metadata, the vectorizer will only vectorize loops if
2930it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002931
2932The first operand is the string ``llvm.vectorizer.width`` and the second
2933operand is an integer specifying the width. For example:
2934
2935.. code-block:: llvm
2936
2937 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2938
2939Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2940loop.
2941
2942If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2943automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002944
Sean Silvab084af42012-12-07 10:36:55 +00002945Module Flags Metadata
2946=====================
2947
2948Information about the module as a whole is difficult to convey to LLVM's
2949subsystems. The LLVM IR isn't sufficient to transmit this information.
2950The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002951this. These flags are in the form of key / value pairs --- much like a
2952dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002953look it up.
2954
2955The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2956Each triplet has the following form:
2957
2958- The first element is a *behavior* flag, which specifies the behavior
2959 when two (or more) modules are merged together, and it encounters two
2960 (or more) metadata with the same ID. The supported behaviors are
2961 described below.
2962- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002963 metadata. Each module may only have one flag entry for each unique ID (not
2964 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002965- The third element is the value of the flag.
2966
2967When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002968``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2969each unique metadata ID string, there will be exactly one entry in the merged
2970modules ``llvm.module.flags`` metadata table, and the value for that entry will
2971be determined by the merge behavior flag, as described below. The only exception
2972is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002973
2974The following behaviors are supported:
2975
2976.. list-table::
2977 :header-rows: 1
2978 :widths: 10 90
2979
2980 * - Value
2981 - Behavior
2982
2983 * - 1
2984 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002985 Emits an error if two values disagree, otherwise the resulting value
2986 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002987
2988 * - 2
2989 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002990 Emits a warning if two values disagree. The result value will be the
2991 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002992
2993 * - 3
2994 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002995 Adds a requirement that another module flag be present and have a
2996 specified value after linking is performed. The value must be a
2997 metadata pair, where the first element of the pair is the ID of the
2998 module flag to be restricted, and the second element of the pair is
2999 the value the module flag should be restricted to. This behavior can
3000 be used to restrict the allowable results (via triggering of an
3001 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003002
3003 * - 4
3004 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003005 Uses the specified value, regardless of the behavior or value of the
3006 other module. If both modules specify **Override**, but the values
3007 differ, an error will be emitted.
3008
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003009 * - 5
3010 - **Append**
3011 Appends the two values, which are required to be metadata nodes.
3012
3013 * - 6
3014 - **AppendUnique**
3015 Appends the two values, which are required to be metadata
3016 nodes. However, duplicate entries in the second list are dropped
3017 during the append operation.
3018
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003019It is an error for a particular unique flag ID to have multiple behaviors,
3020except in the case of **Require** (which adds restrictions on another metadata
3021value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003022
3023An example of module flags:
3024
3025.. code-block:: llvm
3026
3027 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3028 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3029 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3030 !3 = metadata !{ i32 3, metadata !"qux",
3031 metadata !{
3032 metadata !"foo", i32 1
3033 }
3034 }
3035 !llvm.module.flags = !{ !0, !1, !2, !3 }
3036
3037- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3038 if two or more ``!"foo"`` flags are seen is to emit an error if their
3039 values are not equal.
3040
3041- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3042 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003043 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003044
3045- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3046 behavior if two or more ``!"qux"`` flags are seen is to emit a
3047 warning if their values are not equal.
3048
3049- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3050
3051 ::
3052
3053 metadata !{ metadata !"foo", i32 1 }
3054
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003055 The behavior is to emit an error if the ``llvm.module.flags`` does not
3056 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3057 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003058
3059Objective-C Garbage Collection Module Flags Metadata
3060----------------------------------------------------
3061
3062On the Mach-O platform, Objective-C stores metadata about garbage
3063collection in a special section called "image info". The metadata
3064consists of a version number and a bitmask specifying what types of
3065garbage collection are supported (if any) by the file. If two or more
3066modules are linked together their garbage collection metadata needs to
3067be merged rather than appended together.
3068
3069The Objective-C garbage collection module flags metadata consists of the
3070following key-value pairs:
3071
3072.. list-table::
3073 :header-rows: 1
3074 :widths: 30 70
3075
3076 * - Key
3077 - Value
3078
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003079 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003080 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003081
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003082 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003083 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003084 always 0.
3085
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003086 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003087 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003088 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3089 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3090 Objective-C ABI version 2.
3091
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003092 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003093 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003094 not. Valid values are 0, for no garbage collection, and 2, for garbage
3095 collection supported.
3096
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003097 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003098 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003099 If present, its value must be 6. This flag requires that the
3100 ``Objective-C Garbage Collection`` flag have the value 2.
3101
3102Some important flag interactions:
3103
3104- If a module with ``Objective-C Garbage Collection`` set to 0 is
3105 merged with a module with ``Objective-C Garbage Collection`` set to
3106 2, then the resulting module has the
3107 ``Objective-C Garbage Collection`` flag set to 0.
3108- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3109 merged with a module with ``Objective-C GC Only`` set to 6.
3110
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003111Automatic Linker Flags Module Flags Metadata
3112--------------------------------------------
3113
3114Some targets support embedding flags to the linker inside individual object
3115files. Typically this is used in conjunction with language extensions which
3116allow source files to explicitly declare the libraries they depend on, and have
3117these automatically be transmitted to the linker via object files.
3118
3119These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003120using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003121to be ``AppendUnique``, and the value for the key is expected to be a metadata
3122node which should be a list of other metadata nodes, each of which should be a
3123list of metadata strings defining linker options.
3124
3125For example, the following metadata section specifies two separate sets of
3126linker options, presumably to link against ``libz`` and the ``Cocoa``
3127framework::
3128
Michael Liaoa7699082013-03-06 18:24:34 +00003129 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003130 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003131 metadata !{ metadata !"-lz" },
3132 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003133 !llvm.module.flags = !{ !0 }
3134
3135The metadata encoding as lists of lists of options, as opposed to a collapsed
3136list of options, is chosen so that the IR encoding can use multiple option
3137strings to specify e.g., a single library, while still having that specifier be
3138preserved as an atomic element that can be recognized by a target specific
3139assembly writer or object file emitter.
3140
3141Each individual option is required to be either a valid option for the target's
3142linker, or an option that is reserved by the target specific assembly writer or
3143object file emitter. No other aspect of these options is defined by the IR.
3144
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003145.. _intrinsicglobalvariables:
3146
Sean Silvab084af42012-12-07 10:36:55 +00003147Intrinsic Global Variables
3148==========================
3149
3150LLVM has a number of "magic" global variables that contain data that
3151affect code generation or other IR semantics. These are documented here.
3152All globals of this sort should have a section specified as
3153"``llvm.metadata``". This section and all globals that start with
3154"``llvm.``" are reserved for use by LLVM.
3155
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003156.. _gv_llvmused:
3157
Sean Silvab084af42012-12-07 10:36:55 +00003158The '``llvm.used``' Global Variable
3159-----------------------------------
3160
Rafael Espindola74f2e462013-04-22 14:58:02 +00003161The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003162:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003163pointers to named global variables, functions and aliases which may optionally
3164have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003165use of it is:
3166
3167.. code-block:: llvm
3168
3169 @X = global i8 4
3170 @Y = global i32 123
3171
3172 @llvm.used = appending global [2 x i8*] [
3173 i8* @X,
3174 i8* bitcast (i32* @Y to i8*)
3175 ], section "llvm.metadata"
3176
Rafael Espindola74f2e462013-04-22 14:58:02 +00003177If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3178and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003179symbol that it cannot see (which is why they have to be named). For example, if
3180a variable has internal linkage and no references other than that from the
3181``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3182references from inline asms and other things the compiler cannot "see", and
3183corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003184
3185On some targets, the code generator must emit a directive to the
3186assembler or object file to prevent the assembler and linker from
3187molesting the symbol.
3188
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003189.. _gv_llvmcompilerused:
3190
Sean Silvab084af42012-12-07 10:36:55 +00003191The '``llvm.compiler.used``' Global Variable
3192--------------------------------------------
3193
3194The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3195directive, except that it only prevents the compiler from touching the
3196symbol. On targets that support it, this allows an intelligent linker to
3197optimize references to the symbol without being impeded as it would be
3198by ``@llvm.used``.
3199
3200This is a rare construct that should only be used in rare circumstances,
3201and should not be exposed to source languages.
3202
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003203.. _gv_llvmglobalctors:
3204
Sean Silvab084af42012-12-07 10:36:55 +00003205The '``llvm.global_ctors``' Global Variable
3206-------------------------------------------
3207
3208.. code-block:: llvm
3209
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003210 %0 = type { i32, void ()*, i8* }
3211 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003212
3213The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003214functions, priorities, and an optional associated global or function.
3215The functions referenced by this array will be called in ascending order
3216of priority (i.e. lowest first) when the module is loaded. The order of
3217functions with the same priority is not defined.
3218
3219If the third field is present, non-null, and points to a global variable
3220or function, the initializer function will only run if the associated
3221data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003222
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003223.. _llvmglobaldtors:
3224
Sean Silvab084af42012-12-07 10:36:55 +00003225The '``llvm.global_dtors``' Global Variable
3226-------------------------------------------
3227
3228.. code-block:: llvm
3229
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003230 %0 = type { i32, void ()*, i8* }
3231 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003232
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003233The ``@llvm.global_dtors`` array contains a list of destructor
3234functions, priorities, and an optional associated global or function.
3235The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003236order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003237order of functions with the same priority is not defined.
3238
3239If the third field is present, non-null, and points to a global variable
3240or function, the destructor function will only run if the associated
3241data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003242
3243Instruction Reference
3244=====================
3245
3246The LLVM instruction set consists of several different classifications
3247of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3248instructions <binaryops>`, :ref:`bitwise binary
3249instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3250:ref:`other instructions <otherops>`.
3251
3252.. _terminators:
3253
3254Terminator Instructions
3255-----------------------
3256
3257As mentioned :ref:`previously <functionstructure>`, every basic block in a
3258program ends with a "Terminator" instruction, which indicates which
3259block should be executed after the current block is finished. These
3260terminator instructions typically yield a '``void``' value: they produce
3261control flow, not values (the one exception being the
3262':ref:`invoke <i_invoke>`' instruction).
3263
3264The terminator instructions are: ':ref:`ret <i_ret>`',
3265':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3266':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3267':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3268
3269.. _i_ret:
3270
3271'``ret``' Instruction
3272^^^^^^^^^^^^^^^^^^^^^
3273
3274Syntax:
3275"""""""
3276
3277::
3278
3279 ret <type> <value> ; Return a value from a non-void function
3280 ret void ; Return from void function
3281
3282Overview:
3283"""""""""
3284
3285The '``ret``' instruction is used to return control flow (and optionally
3286a value) from a function back to the caller.
3287
3288There are two forms of the '``ret``' instruction: one that returns a
3289value and then causes control flow, and one that just causes control
3290flow to occur.
3291
3292Arguments:
3293""""""""""
3294
3295The '``ret``' instruction optionally accepts a single argument, the
3296return value. The type of the return value must be a ':ref:`first
3297class <t_firstclass>`' type.
3298
3299A function is not :ref:`well formed <wellformed>` if it it has a non-void
3300return type and contains a '``ret``' instruction with no return value or
3301a return value with a type that does not match its type, or if it has a
3302void return type and contains a '``ret``' instruction with a return
3303value.
3304
3305Semantics:
3306""""""""""
3307
3308When the '``ret``' instruction is executed, control flow returns back to
3309the calling function's context. If the caller is a
3310":ref:`call <i_call>`" instruction, execution continues at the
3311instruction after the call. If the caller was an
3312":ref:`invoke <i_invoke>`" instruction, execution continues at the
3313beginning of the "normal" destination block. If the instruction returns
3314a value, that value shall set the call or invoke instruction's return
3315value.
3316
3317Example:
3318""""""""
3319
3320.. code-block:: llvm
3321
3322 ret i32 5 ; Return an integer value of 5
3323 ret void ; Return from a void function
3324 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3325
3326.. _i_br:
3327
3328'``br``' Instruction
3329^^^^^^^^^^^^^^^^^^^^
3330
3331Syntax:
3332"""""""
3333
3334::
3335
3336 br i1 <cond>, label <iftrue>, label <iffalse>
3337 br label <dest> ; Unconditional branch
3338
3339Overview:
3340"""""""""
3341
3342The '``br``' instruction is used to cause control flow to transfer to a
3343different basic block in the current function. There are two forms of
3344this instruction, corresponding to a conditional branch and an
3345unconditional branch.
3346
3347Arguments:
3348""""""""""
3349
3350The conditional branch form of the '``br``' instruction takes a single
3351'``i1``' value and two '``label``' values. The unconditional form of the
3352'``br``' instruction takes a single '``label``' value as a target.
3353
3354Semantics:
3355""""""""""
3356
3357Upon execution of a conditional '``br``' instruction, the '``i1``'
3358argument is evaluated. If the value is ``true``, control flows to the
3359'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3360to the '``iffalse``' ``label`` argument.
3361
3362Example:
3363""""""""
3364
3365.. code-block:: llvm
3366
3367 Test:
3368 %cond = icmp eq i32 %a, %b
3369 br i1 %cond, label %IfEqual, label %IfUnequal
3370 IfEqual:
3371 ret i32 1
3372 IfUnequal:
3373 ret i32 0
3374
3375.. _i_switch:
3376
3377'``switch``' Instruction
3378^^^^^^^^^^^^^^^^^^^^^^^^
3379
3380Syntax:
3381"""""""
3382
3383::
3384
3385 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3386
3387Overview:
3388"""""""""
3389
3390The '``switch``' instruction is used to transfer control flow to one of
3391several different places. It is a generalization of the '``br``'
3392instruction, allowing a branch to occur to one of many possible
3393destinations.
3394
3395Arguments:
3396""""""""""
3397
3398The '``switch``' instruction uses three parameters: an integer
3399comparison value '``value``', a default '``label``' destination, and an
3400array of pairs of comparison value constants and '``label``'s. The table
3401is not allowed to contain duplicate constant entries.
3402
3403Semantics:
3404""""""""""
3405
3406The ``switch`` instruction specifies a table of values and destinations.
3407When the '``switch``' instruction is executed, this table is searched
3408for the given value. If the value is found, control flow is transferred
3409to the corresponding destination; otherwise, control flow is transferred
3410to the default destination.
3411
3412Implementation:
3413"""""""""""""""
3414
3415Depending on properties of the target machine and the particular
3416``switch`` instruction, this instruction may be code generated in
3417different ways. For example, it could be generated as a series of
3418chained conditional branches or with a lookup table.
3419
3420Example:
3421""""""""
3422
3423.. code-block:: llvm
3424
3425 ; Emulate a conditional br instruction
3426 %Val = zext i1 %value to i32
3427 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3428
3429 ; Emulate an unconditional br instruction
3430 switch i32 0, label %dest [ ]
3431
3432 ; Implement a jump table:
3433 switch i32 %val, label %otherwise [ i32 0, label %onzero
3434 i32 1, label %onone
3435 i32 2, label %ontwo ]
3436
3437.. _i_indirectbr:
3438
3439'``indirectbr``' Instruction
3440^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3441
3442Syntax:
3443"""""""
3444
3445::
3446
3447 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3448
3449Overview:
3450"""""""""
3451
3452The '``indirectbr``' instruction implements an indirect branch to a
3453label within the current function, whose address is specified by
3454"``address``". Address must be derived from a
3455:ref:`blockaddress <blockaddress>` constant.
3456
3457Arguments:
3458""""""""""
3459
3460The '``address``' argument is the address of the label to jump to. The
3461rest of the arguments indicate the full set of possible destinations
3462that the address may point to. Blocks are allowed to occur multiple
3463times in the destination list, though this isn't particularly useful.
3464
3465This destination list is required so that dataflow analysis has an
3466accurate understanding of the CFG.
3467
3468Semantics:
3469""""""""""
3470
3471Control transfers to the block specified in the address argument. All
3472possible destination blocks must be listed in the label list, otherwise
3473this instruction has undefined behavior. This implies that jumps to
3474labels defined in other functions have undefined behavior as well.
3475
3476Implementation:
3477"""""""""""""""
3478
3479This is typically implemented with a jump through a register.
3480
3481Example:
3482""""""""
3483
3484.. code-block:: llvm
3485
3486 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3487
3488.. _i_invoke:
3489
3490'``invoke``' Instruction
3491^^^^^^^^^^^^^^^^^^^^^^^^
3492
3493Syntax:
3494"""""""
3495
3496::
3497
3498 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3499 to label <normal label> unwind label <exception label>
3500
3501Overview:
3502"""""""""
3503
3504The '``invoke``' instruction causes control to transfer to a specified
3505function, with the possibility of control flow transfer to either the
3506'``normal``' label or the '``exception``' label. If the callee function
3507returns with the "``ret``" instruction, control flow will return to the
3508"normal" label. If the callee (or any indirect callees) returns via the
3509":ref:`resume <i_resume>`" instruction or other exception handling
3510mechanism, control is interrupted and continued at the dynamically
3511nearest "exception" label.
3512
3513The '``exception``' label is a `landing
3514pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3515'``exception``' label is required to have the
3516":ref:`landingpad <i_landingpad>`" instruction, which contains the
3517information about the behavior of the program after unwinding happens,
3518as its first non-PHI instruction. The restrictions on the
3519"``landingpad``" instruction's tightly couples it to the "``invoke``"
3520instruction, so that the important information contained within the
3521"``landingpad``" instruction can't be lost through normal code motion.
3522
3523Arguments:
3524""""""""""
3525
3526This instruction requires several arguments:
3527
3528#. The optional "cconv" marker indicates which :ref:`calling
3529 convention <callingconv>` the call should use. If none is
3530 specified, the call defaults to using C calling conventions.
3531#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3532 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3533 are valid here.
3534#. '``ptr to function ty``': shall be the signature of the pointer to
3535 function value being invoked. In most cases, this is a direct
3536 function invocation, but indirect ``invoke``'s are just as possible,
3537 branching off an arbitrary pointer to function value.
3538#. '``function ptr val``': An LLVM value containing a pointer to a
3539 function to be invoked.
3540#. '``function args``': argument list whose types match the function
3541 signature argument types and parameter attributes. All arguments must
3542 be of :ref:`first class <t_firstclass>` type. If the function signature
3543 indicates the function accepts a variable number of arguments, the
3544 extra arguments can be specified.
3545#. '``normal label``': the label reached when the called function
3546 executes a '``ret``' instruction.
3547#. '``exception label``': the label reached when a callee returns via
3548 the :ref:`resume <i_resume>` instruction or other exception handling
3549 mechanism.
3550#. The optional :ref:`function attributes <fnattrs>` list. Only
3551 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3552 attributes are valid here.
3553
3554Semantics:
3555""""""""""
3556
3557This instruction is designed to operate as a standard '``call``'
3558instruction in most regards. The primary difference is that it
3559establishes an association with a label, which is used by the runtime
3560library to unwind the stack.
3561
3562This instruction is used in languages with destructors to ensure that
3563proper cleanup is performed in the case of either a ``longjmp`` or a
3564thrown exception. Additionally, this is important for implementation of
3565'``catch``' clauses in high-level languages that support them.
3566
3567For the purposes of the SSA form, the definition of the value returned
3568by the '``invoke``' instruction is deemed to occur on the edge from the
3569current block to the "normal" label. If the callee unwinds then no
3570return value is available.
3571
3572Example:
3573""""""""
3574
3575.. code-block:: llvm
3576
3577 %retval = invoke i32 @Test(i32 15) to label %Continue
3578 unwind label %TestCleanup ; {i32}:retval set
3579 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3580 unwind label %TestCleanup ; {i32}:retval set
3581
3582.. _i_resume:
3583
3584'``resume``' Instruction
3585^^^^^^^^^^^^^^^^^^^^^^^^
3586
3587Syntax:
3588"""""""
3589
3590::
3591
3592 resume <type> <value>
3593
3594Overview:
3595"""""""""
3596
3597The '``resume``' instruction is a terminator instruction that has no
3598successors.
3599
3600Arguments:
3601""""""""""
3602
3603The '``resume``' instruction requires one argument, which must have the
3604same type as the result of any '``landingpad``' instruction in the same
3605function.
3606
3607Semantics:
3608""""""""""
3609
3610The '``resume``' instruction resumes propagation of an existing
3611(in-flight) exception whose unwinding was interrupted with a
3612:ref:`landingpad <i_landingpad>` instruction.
3613
3614Example:
3615""""""""
3616
3617.. code-block:: llvm
3618
3619 resume { i8*, i32 } %exn
3620
3621.. _i_unreachable:
3622
3623'``unreachable``' Instruction
3624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3625
3626Syntax:
3627"""""""
3628
3629::
3630
3631 unreachable
3632
3633Overview:
3634"""""""""
3635
3636The '``unreachable``' instruction has no defined semantics. This
3637instruction is used to inform the optimizer that a particular portion of
3638the code is not reachable. This can be used to indicate that the code
3639after a no-return function cannot be reached, and other facts.
3640
3641Semantics:
3642""""""""""
3643
3644The '``unreachable``' instruction has no defined semantics.
3645
3646.. _binaryops:
3647
3648Binary Operations
3649-----------------
3650
3651Binary operators are used to do most of the computation in a program.
3652They require two operands of the same type, execute an operation on
3653them, and produce a single value. The operands might represent multiple
3654data, as is the case with the :ref:`vector <t_vector>` data type. The
3655result value has the same type as its operands.
3656
3657There are several different binary operators:
3658
3659.. _i_add:
3660
3661'``add``' Instruction
3662^^^^^^^^^^^^^^^^^^^^^
3663
3664Syntax:
3665"""""""
3666
3667::
3668
3669 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3670 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3671 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3672 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3673
3674Overview:
3675"""""""""
3676
3677The '``add``' instruction returns the sum of its two operands.
3678
3679Arguments:
3680""""""""""
3681
3682The two arguments to the '``add``' instruction must be
3683:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3684arguments must have identical types.
3685
3686Semantics:
3687""""""""""
3688
3689The value produced is the integer sum of the two operands.
3690
3691If the sum has unsigned overflow, the result returned is the
3692mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3693the result.
3694
3695Because LLVM integers use a two's complement representation, this
3696instruction is appropriate for both signed and unsigned integers.
3697
3698``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3699respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3700result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3701unsigned and/or signed overflow, respectively, occurs.
3702
3703Example:
3704""""""""
3705
3706.. code-block:: llvm
3707
3708 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3709
3710.. _i_fadd:
3711
3712'``fadd``' Instruction
3713^^^^^^^^^^^^^^^^^^^^^^
3714
3715Syntax:
3716"""""""
3717
3718::
3719
3720 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3721
3722Overview:
3723"""""""""
3724
3725The '``fadd``' instruction returns the sum of its two operands.
3726
3727Arguments:
3728""""""""""
3729
3730The two arguments to the '``fadd``' instruction must be :ref:`floating
3731point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3732Both arguments must have identical types.
3733
3734Semantics:
3735""""""""""
3736
3737The value produced is the floating point sum of the two operands. This
3738instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3739which are optimization hints to enable otherwise unsafe floating point
3740optimizations:
3741
3742Example:
3743""""""""
3744
3745.. code-block:: llvm
3746
3747 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3748
3749'``sub``' Instruction
3750^^^^^^^^^^^^^^^^^^^^^
3751
3752Syntax:
3753"""""""
3754
3755::
3756
3757 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3758 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3759 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3760 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3761
3762Overview:
3763"""""""""
3764
3765The '``sub``' instruction returns the difference of its two operands.
3766
3767Note that the '``sub``' instruction is used to represent the '``neg``'
3768instruction present in most other intermediate representations.
3769
3770Arguments:
3771""""""""""
3772
3773The two arguments to the '``sub``' instruction must be
3774:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3775arguments must have identical types.
3776
3777Semantics:
3778""""""""""
3779
3780The value produced is the integer difference of the two operands.
3781
3782If the difference has unsigned overflow, the result returned is the
3783mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3784the result.
3785
3786Because LLVM integers use a two's complement representation, this
3787instruction is appropriate for both signed and unsigned integers.
3788
3789``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3790respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3791result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3792unsigned and/or signed overflow, respectively, occurs.
3793
3794Example:
3795""""""""
3796
3797.. code-block:: llvm
3798
3799 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3800 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3801
3802.. _i_fsub:
3803
3804'``fsub``' Instruction
3805^^^^^^^^^^^^^^^^^^^^^^
3806
3807Syntax:
3808"""""""
3809
3810::
3811
3812 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3813
3814Overview:
3815"""""""""
3816
3817The '``fsub``' instruction returns the difference of its two operands.
3818
3819Note that the '``fsub``' instruction is used to represent the '``fneg``'
3820instruction present in most other intermediate representations.
3821
3822Arguments:
3823""""""""""
3824
3825The two arguments to the '``fsub``' instruction must be :ref:`floating
3826point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3827Both arguments must have identical types.
3828
3829Semantics:
3830""""""""""
3831
3832The value produced is the floating point difference of the two operands.
3833This instruction can also take any number of :ref:`fast-math
3834flags <fastmath>`, which are optimization hints to enable otherwise
3835unsafe floating point optimizations:
3836
3837Example:
3838""""""""
3839
3840.. code-block:: llvm
3841
3842 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3843 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3844
3845'``mul``' Instruction
3846^^^^^^^^^^^^^^^^^^^^^
3847
3848Syntax:
3849"""""""
3850
3851::
3852
3853 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3854 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3855 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3856 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3857
3858Overview:
3859"""""""""
3860
3861The '``mul``' instruction returns the product of its two operands.
3862
3863Arguments:
3864""""""""""
3865
3866The two arguments to the '``mul``' instruction must be
3867:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3868arguments must have identical types.
3869
3870Semantics:
3871""""""""""
3872
3873The value produced is the integer product of the two operands.
3874
3875If the result of the multiplication has unsigned overflow, the result
3876returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3877bit width of the result.
3878
3879Because LLVM integers use a two's complement representation, and the
3880result is the same width as the operands, this instruction returns the
3881correct result for both signed and unsigned integers. If a full product
3882(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3883sign-extended or zero-extended as appropriate to the width of the full
3884product.
3885
3886``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3887respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3888result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3889unsigned and/or signed overflow, respectively, occurs.
3890
3891Example:
3892""""""""
3893
3894.. code-block:: llvm
3895
3896 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3897
3898.. _i_fmul:
3899
3900'``fmul``' Instruction
3901^^^^^^^^^^^^^^^^^^^^^^
3902
3903Syntax:
3904"""""""
3905
3906::
3907
3908 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3909
3910Overview:
3911"""""""""
3912
3913The '``fmul``' instruction returns the product of its two operands.
3914
3915Arguments:
3916""""""""""
3917
3918The two arguments to the '``fmul``' instruction must be :ref:`floating
3919point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3920Both arguments must have identical types.
3921
3922Semantics:
3923""""""""""
3924
3925The value produced is the floating point product of the two operands.
3926This instruction can also take any number of :ref:`fast-math
3927flags <fastmath>`, which are optimization hints to enable otherwise
3928unsafe floating point optimizations:
3929
3930Example:
3931""""""""
3932
3933.. code-block:: llvm
3934
3935 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3936
3937'``udiv``' Instruction
3938^^^^^^^^^^^^^^^^^^^^^^
3939
3940Syntax:
3941"""""""
3942
3943::
3944
3945 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3946 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3947
3948Overview:
3949"""""""""
3950
3951The '``udiv``' instruction returns the quotient of its two operands.
3952
3953Arguments:
3954""""""""""
3955
3956The two arguments to the '``udiv``' instruction must be
3957:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3958arguments must have identical types.
3959
3960Semantics:
3961""""""""""
3962
3963The value produced is the unsigned integer quotient of the two operands.
3964
3965Note that unsigned integer division and signed integer division are
3966distinct operations; for signed integer division, use '``sdiv``'.
3967
3968Division by zero leads to undefined behavior.
3969
3970If the ``exact`` keyword is present, the result value of the ``udiv`` is
3971a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3972such, "((a udiv exact b) mul b) == a").
3973
3974Example:
3975""""""""
3976
3977.. code-block:: llvm
3978
3979 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3980
3981'``sdiv``' Instruction
3982^^^^^^^^^^^^^^^^^^^^^^
3983
3984Syntax:
3985"""""""
3986
3987::
3988
3989 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3990 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3991
3992Overview:
3993"""""""""
3994
3995The '``sdiv``' instruction returns the quotient of its two operands.
3996
3997Arguments:
3998""""""""""
3999
4000The two arguments to the '``sdiv``' instruction must be
4001:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4002arguments must have identical types.
4003
4004Semantics:
4005""""""""""
4006
4007The value produced is the signed integer quotient of the two operands
4008rounded towards zero.
4009
4010Note that signed integer division and unsigned integer division are
4011distinct operations; for unsigned integer division, use '``udiv``'.
4012
4013Division by zero leads to undefined behavior. Overflow also leads to
4014undefined behavior; this is a rare case, but can occur, for example, by
4015doing a 32-bit division of -2147483648 by -1.
4016
4017If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4018a :ref:`poison value <poisonvalues>` if the result would be rounded.
4019
4020Example:
4021""""""""
4022
4023.. code-block:: llvm
4024
4025 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
4026
4027.. _i_fdiv:
4028
4029'``fdiv``' Instruction
4030^^^^^^^^^^^^^^^^^^^^^^
4031
4032Syntax:
4033"""""""
4034
4035::
4036
4037 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4038
4039Overview:
4040"""""""""
4041
4042The '``fdiv``' instruction returns the quotient of its two operands.
4043
4044Arguments:
4045""""""""""
4046
4047The two arguments to the '``fdiv``' instruction must be :ref:`floating
4048point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4049Both arguments must have identical types.
4050
4051Semantics:
4052""""""""""
4053
4054The value produced is the floating point quotient of the two operands.
4055This instruction can also take any number of :ref:`fast-math
4056flags <fastmath>`, which are optimization hints to enable otherwise
4057unsafe floating point optimizations:
4058
4059Example:
4060""""""""
4061
4062.. code-block:: llvm
4063
4064 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4065
4066'``urem``' Instruction
4067^^^^^^^^^^^^^^^^^^^^^^
4068
4069Syntax:
4070"""""""
4071
4072::
4073
4074 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4075
4076Overview:
4077"""""""""
4078
4079The '``urem``' instruction returns the remainder from the unsigned
4080division of its two arguments.
4081
4082Arguments:
4083""""""""""
4084
4085The two arguments to the '``urem``' instruction must be
4086:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4087arguments must have identical types.
4088
4089Semantics:
4090""""""""""
4091
4092This instruction returns the unsigned integer *remainder* of a division.
4093This instruction always performs an unsigned division to get the
4094remainder.
4095
4096Note that unsigned integer remainder and signed integer remainder are
4097distinct operations; for signed integer remainder, use '``srem``'.
4098
4099Taking the remainder of a division by zero leads to undefined behavior.
4100
4101Example:
4102""""""""
4103
4104.. code-block:: llvm
4105
4106 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4107
4108'``srem``' Instruction
4109^^^^^^^^^^^^^^^^^^^^^^
4110
4111Syntax:
4112"""""""
4113
4114::
4115
4116 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4117
4118Overview:
4119"""""""""
4120
4121The '``srem``' instruction returns the remainder from the signed
4122division of its two operands. This instruction can also take
4123:ref:`vector <t_vector>` versions of the values in which case the elements
4124must be integers.
4125
4126Arguments:
4127""""""""""
4128
4129The two arguments to the '``srem``' instruction must be
4130:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4131arguments must have identical types.
4132
4133Semantics:
4134""""""""""
4135
4136This instruction returns the *remainder* of a division (where the result
4137is either zero or has the same sign as the dividend, ``op1``), not the
4138*modulo* operator (where the result is either zero or has the same sign
4139as the divisor, ``op2``) of a value. For more information about the
4140difference, see `The Math
4141Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4142table of how this is implemented in various languages, please see
4143`Wikipedia: modulo
4144operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4145
4146Note that signed integer remainder and unsigned integer remainder are
4147distinct operations; for unsigned integer remainder, use '``urem``'.
4148
4149Taking the remainder of a division by zero leads to undefined behavior.
4150Overflow also leads to undefined behavior; this is a rare case, but can
4151occur, for example, by taking the remainder of a 32-bit division of
4152-2147483648 by -1. (The remainder doesn't actually overflow, but this
4153rule lets srem be implemented using instructions that return both the
4154result of the division and the remainder.)
4155
4156Example:
4157""""""""
4158
4159.. code-block:: llvm
4160
4161 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4162
4163.. _i_frem:
4164
4165'``frem``' Instruction
4166^^^^^^^^^^^^^^^^^^^^^^
4167
4168Syntax:
4169"""""""
4170
4171::
4172
4173 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4174
4175Overview:
4176"""""""""
4177
4178The '``frem``' instruction returns the remainder from the division of
4179its two operands.
4180
4181Arguments:
4182""""""""""
4183
4184The two arguments to the '``frem``' instruction must be :ref:`floating
4185point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4186Both arguments must have identical types.
4187
4188Semantics:
4189""""""""""
4190
4191This instruction returns the *remainder* of a division. The remainder
4192has the same sign as the dividend. This instruction can also take any
4193number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4194to enable otherwise unsafe floating point optimizations:
4195
4196Example:
4197""""""""
4198
4199.. code-block:: llvm
4200
4201 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4202
4203.. _bitwiseops:
4204
4205Bitwise Binary Operations
4206-------------------------
4207
4208Bitwise binary operators are used to do various forms of bit-twiddling
4209in a program. They are generally very efficient instructions and can
4210commonly be strength reduced from other instructions. They require two
4211operands of the same type, execute an operation on them, and produce a
4212single value. The resulting value is the same type as its operands.
4213
4214'``shl``' Instruction
4215^^^^^^^^^^^^^^^^^^^^^
4216
4217Syntax:
4218"""""""
4219
4220::
4221
4222 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4223 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4224 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4225 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4226
4227Overview:
4228"""""""""
4229
4230The '``shl``' instruction returns the first operand shifted to the left
4231a specified number of bits.
4232
4233Arguments:
4234""""""""""
4235
4236Both arguments to the '``shl``' instruction must be the same
4237:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4238'``op2``' is treated as an unsigned value.
4239
4240Semantics:
4241""""""""""
4242
4243The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4244where ``n`` is the width of the result. If ``op2`` is (statically or
4245dynamically) negative or equal to or larger than the number of bits in
4246``op1``, the result is undefined. If the arguments are vectors, each
4247vector element of ``op1`` is shifted by the corresponding shift amount
4248in ``op2``.
4249
4250If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4251value <poisonvalues>` if it shifts out any non-zero bits. If the
4252``nsw`` keyword is present, then the shift produces a :ref:`poison
4253value <poisonvalues>` if it shifts out any bits that disagree with the
4254resultant sign bit. As such, NUW/NSW have the same semantics as they
4255would if the shift were expressed as a mul instruction with the same
4256nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4257
4258Example:
4259""""""""
4260
4261.. code-block:: llvm
4262
4263 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4264 <result> = shl i32 4, 2 ; yields {i32}: 16
4265 <result> = shl i32 1, 10 ; yields {i32}: 1024
4266 <result> = shl i32 1, 32 ; undefined
4267 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4268
4269'``lshr``' Instruction
4270^^^^^^^^^^^^^^^^^^^^^^
4271
4272Syntax:
4273"""""""
4274
4275::
4276
4277 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4278 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4279
4280Overview:
4281"""""""""
4282
4283The '``lshr``' instruction (logical shift right) returns the first
4284operand shifted to the right a specified number of bits with zero fill.
4285
4286Arguments:
4287""""""""""
4288
4289Both arguments to the '``lshr``' instruction must be the same
4290:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4291'``op2``' is treated as an unsigned value.
4292
4293Semantics:
4294""""""""""
4295
4296This instruction always performs a logical shift right operation. The
4297most significant bits of the result will be filled with zero bits after
4298the shift. If ``op2`` is (statically or dynamically) equal to or larger
4299than the number of bits in ``op1``, the result is undefined. If the
4300arguments are vectors, each vector element of ``op1`` is shifted by the
4301corresponding shift amount in ``op2``.
4302
4303If the ``exact`` keyword is present, the result value of the ``lshr`` is
4304a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4305non-zero.
4306
4307Example:
4308""""""""
4309
4310.. code-block:: llvm
4311
4312 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4313 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4314 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004315 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004316 <result> = lshr i32 1, 32 ; undefined
4317 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4318
4319'``ashr``' Instruction
4320^^^^^^^^^^^^^^^^^^^^^^
4321
4322Syntax:
4323"""""""
4324
4325::
4326
4327 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4328 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4329
4330Overview:
4331"""""""""
4332
4333The '``ashr``' instruction (arithmetic shift right) returns the first
4334operand shifted to the right a specified number of bits with sign
4335extension.
4336
4337Arguments:
4338""""""""""
4339
4340Both arguments to the '``ashr``' instruction must be the same
4341:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4342'``op2``' is treated as an unsigned value.
4343
4344Semantics:
4345""""""""""
4346
4347This instruction always performs an arithmetic shift right operation,
4348The most significant bits of the result will be filled with the sign bit
4349of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4350than the number of bits in ``op1``, the result is undefined. If the
4351arguments are vectors, each vector element of ``op1`` is shifted by the
4352corresponding shift amount in ``op2``.
4353
4354If the ``exact`` keyword is present, the result value of the ``ashr`` is
4355a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4356non-zero.
4357
4358Example:
4359""""""""
4360
4361.. code-block:: llvm
4362
4363 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4364 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4365 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4366 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4367 <result> = ashr i32 1, 32 ; undefined
4368 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4369
4370'``and``' Instruction
4371^^^^^^^^^^^^^^^^^^^^^
4372
4373Syntax:
4374"""""""
4375
4376::
4377
4378 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4379
4380Overview:
4381"""""""""
4382
4383The '``and``' instruction returns the bitwise logical and of its two
4384operands.
4385
4386Arguments:
4387""""""""""
4388
4389The two arguments to the '``and``' instruction must be
4390:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4391arguments must have identical types.
4392
4393Semantics:
4394""""""""""
4395
4396The truth table used for the '``and``' instruction is:
4397
4398+-----+-----+-----+
4399| In0 | In1 | Out |
4400+-----+-----+-----+
4401| 0 | 0 | 0 |
4402+-----+-----+-----+
4403| 0 | 1 | 0 |
4404+-----+-----+-----+
4405| 1 | 0 | 0 |
4406+-----+-----+-----+
4407| 1 | 1 | 1 |
4408+-----+-----+-----+
4409
4410Example:
4411""""""""
4412
4413.. code-block:: llvm
4414
4415 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4416 <result> = and i32 15, 40 ; yields {i32}:result = 8
4417 <result> = and i32 4, 8 ; yields {i32}:result = 0
4418
4419'``or``' Instruction
4420^^^^^^^^^^^^^^^^^^^^
4421
4422Syntax:
4423"""""""
4424
4425::
4426
4427 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4428
4429Overview:
4430"""""""""
4431
4432The '``or``' instruction returns the bitwise logical inclusive or of its
4433two operands.
4434
4435Arguments:
4436""""""""""
4437
4438The two arguments to the '``or``' instruction must be
4439:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4440arguments must have identical types.
4441
4442Semantics:
4443""""""""""
4444
4445The truth table used for the '``or``' instruction is:
4446
4447+-----+-----+-----+
4448| In0 | In1 | Out |
4449+-----+-----+-----+
4450| 0 | 0 | 0 |
4451+-----+-----+-----+
4452| 0 | 1 | 1 |
4453+-----+-----+-----+
4454| 1 | 0 | 1 |
4455+-----+-----+-----+
4456| 1 | 1 | 1 |
4457+-----+-----+-----+
4458
4459Example:
4460""""""""
4461
4462::
4463
4464 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4465 <result> = or i32 15, 40 ; yields {i32}:result = 47
4466 <result> = or i32 4, 8 ; yields {i32}:result = 12
4467
4468'``xor``' Instruction
4469^^^^^^^^^^^^^^^^^^^^^
4470
4471Syntax:
4472"""""""
4473
4474::
4475
4476 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4477
4478Overview:
4479"""""""""
4480
4481The '``xor``' instruction returns the bitwise logical exclusive or of
4482its two operands. The ``xor`` is used to implement the "one's
4483complement" operation, which is the "~" operator in C.
4484
4485Arguments:
4486""""""""""
4487
4488The two arguments to the '``xor``' instruction must be
4489:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4490arguments must have identical types.
4491
4492Semantics:
4493""""""""""
4494
4495The truth table used for the '``xor``' instruction is:
4496
4497+-----+-----+-----+
4498| In0 | In1 | Out |
4499+-----+-----+-----+
4500| 0 | 0 | 0 |
4501+-----+-----+-----+
4502| 0 | 1 | 1 |
4503+-----+-----+-----+
4504| 1 | 0 | 1 |
4505+-----+-----+-----+
4506| 1 | 1 | 0 |
4507+-----+-----+-----+
4508
4509Example:
4510""""""""
4511
4512.. code-block:: llvm
4513
4514 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4515 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4516 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4517 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4518
4519Vector Operations
4520-----------------
4521
4522LLVM supports several instructions to represent vector operations in a
4523target-independent manner. These instructions cover the element-access
4524and vector-specific operations needed to process vectors effectively.
4525While LLVM does directly support these vector operations, many
4526sophisticated algorithms will want to use target-specific intrinsics to
4527take full advantage of a specific target.
4528
4529.. _i_extractelement:
4530
4531'``extractelement``' Instruction
4532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4533
4534Syntax:
4535"""""""
4536
4537::
4538
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004539 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004540
4541Overview:
4542"""""""""
4543
4544The '``extractelement``' instruction extracts a single scalar element
4545from a vector at a specified index.
4546
4547Arguments:
4548""""""""""
4549
4550The first operand of an '``extractelement``' instruction is a value of
4551:ref:`vector <t_vector>` type. The second operand is an index indicating
4552the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004553variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004554
4555Semantics:
4556""""""""""
4557
4558The result is a scalar of the same type as the element type of ``val``.
4559Its value is the value at position ``idx`` of ``val``. If ``idx``
4560exceeds the length of ``val``, the results are undefined.
4561
4562Example:
4563""""""""
4564
4565.. code-block:: llvm
4566
4567 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4568
4569.. _i_insertelement:
4570
4571'``insertelement``' Instruction
4572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4573
4574Syntax:
4575"""""""
4576
4577::
4578
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004579 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004580
4581Overview:
4582"""""""""
4583
4584The '``insertelement``' instruction inserts a scalar element into a
4585vector at a specified index.
4586
4587Arguments:
4588""""""""""
4589
4590The first operand of an '``insertelement``' instruction is a value of
4591:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4592type must equal the element type of the first operand. The third operand
4593is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004594index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004595
4596Semantics:
4597""""""""""
4598
4599The result is a vector of the same type as ``val``. Its element values
4600are those of ``val`` except at position ``idx``, where it gets the value
4601``elt``. If ``idx`` exceeds the length of ``val``, the results are
4602undefined.
4603
4604Example:
4605""""""""
4606
4607.. code-block:: llvm
4608
4609 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4610
4611.. _i_shufflevector:
4612
4613'``shufflevector``' Instruction
4614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4615
4616Syntax:
4617"""""""
4618
4619::
4620
4621 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4622
4623Overview:
4624"""""""""
4625
4626The '``shufflevector``' instruction constructs a permutation of elements
4627from two input vectors, returning a vector with the same element type as
4628the input and length that is the same as the shuffle mask.
4629
4630Arguments:
4631""""""""""
4632
4633The first two operands of a '``shufflevector``' instruction are vectors
4634with the same type. The third argument is a shuffle mask whose element
4635type is always 'i32'. The result of the instruction is a vector whose
4636length is the same as the shuffle mask and whose element type is the
4637same as the element type of the first two operands.
4638
4639The shuffle mask operand is required to be a constant vector with either
4640constant integer or undef values.
4641
4642Semantics:
4643""""""""""
4644
4645The elements of the two input vectors are numbered from left to right
4646across both of the vectors. The shuffle mask operand specifies, for each
4647element of the result vector, which element of the two input vectors the
4648result element gets. The element selector may be undef (meaning "don't
4649care") and the second operand may be undef if performing a shuffle from
4650only one vector.
4651
4652Example:
4653""""""""
4654
4655.. code-block:: llvm
4656
4657 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4658 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4659 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4660 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4661 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4662 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4663 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4664 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4665
4666Aggregate Operations
4667--------------------
4668
4669LLVM supports several instructions for working with
4670:ref:`aggregate <t_aggregate>` values.
4671
4672.. _i_extractvalue:
4673
4674'``extractvalue``' Instruction
4675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4676
4677Syntax:
4678"""""""
4679
4680::
4681
4682 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4683
4684Overview:
4685"""""""""
4686
4687The '``extractvalue``' instruction extracts the value of a member field
4688from an :ref:`aggregate <t_aggregate>` value.
4689
4690Arguments:
4691""""""""""
4692
4693The first operand of an '``extractvalue``' instruction is a value of
4694:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4695constant indices to specify which value to extract in a similar manner
4696as indices in a '``getelementptr``' instruction.
4697
4698The major differences to ``getelementptr`` indexing are:
4699
4700- Since the value being indexed is not a pointer, the first index is
4701 omitted and assumed to be zero.
4702- At least one index must be specified.
4703- Not only struct indices but also array indices must be in bounds.
4704
4705Semantics:
4706""""""""""
4707
4708The result is the value at the position in the aggregate specified by
4709the index operands.
4710
4711Example:
4712""""""""
4713
4714.. code-block:: llvm
4715
4716 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4717
4718.. _i_insertvalue:
4719
4720'``insertvalue``' Instruction
4721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4722
4723Syntax:
4724"""""""
4725
4726::
4727
4728 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4729
4730Overview:
4731"""""""""
4732
4733The '``insertvalue``' instruction inserts a value into a member field in
4734an :ref:`aggregate <t_aggregate>` value.
4735
4736Arguments:
4737""""""""""
4738
4739The first operand of an '``insertvalue``' instruction is a value of
4740:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4741a first-class value to insert. The following operands are constant
4742indices indicating the position at which to insert the value in a
4743similar manner as indices in a '``extractvalue``' instruction. The value
4744to insert must have the same type as the value identified by the
4745indices.
4746
4747Semantics:
4748""""""""""
4749
4750The result is an aggregate of the same type as ``val``. Its value is
4751that of ``val`` except that the value at the position specified by the
4752indices is that of ``elt``.
4753
4754Example:
4755""""""""
4756
4757.. code-block:: llvm
4758
4759 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4760 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4761 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4762
4763.. _memoryops:
4764
4765Memory Access and Addressing Operations
4766---------------------------------------
4767
4768A key design point of an SSA-based representation is how it represents
4769memory. In LLVM, no memory locations are in SSA form, which makes things
4770very simple. This section describes how to read, write, and allocate
4771memory in LLVM.
4772
4773.. _i_alloca:
4774
4775'``alloca``' Instruction
4776^^^^^^^^^^^^^^^^^^^^^^^^
4777
4778Syntax:
4779"""""""
4780
4781::
4782
David Majnemerc4ab61c2014-03-09 06:41:58 +00004783 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004784
4785Overview:
4786"""""""""
4787
4788The '``alloca``' instruction allocates memory on the stack frame of the
4789currently executing function, to be automatically released when this
4790function returns to its caller. The object is always allocated in the
4791generic address space (address space zero).
4792
4793Arguments:
4794""""""""""
4795
4796The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4797bytes of memory on the runtime stack, returning a pointer of the
4798appropriate type to the program. If "NumElements" is specified, it is
4799the number of elements allocated, otherwise "NumElements" is defaulted
4800to be one. If a constant alignment is specified, the value result of the
4801allocation is guaranteed to be aligned to at least that boundary. If not
4802specified, or if zero, the target can choose to align the allocation on
4803any convenient boundary compatible with the type.
4804
4805'``type``' may be any sized type.
4806
4807Semantics:
4808""""""""""
4809
4810Memory is allocated; a pointer is returned. The operation is undefined
4811if there is insufficient stack space for the allocation. '``alloca``'d
4812memory is automatically released when the function returns. The
4813'``alloca``' instruction is commonly used to represent automatic
4814variables that must have an address available. When the function returns
4815(either with the ``ret`` or ``resume`` instructions), the memory is
4816reclaimed. Allocating zero bytes is legal, but the result is undefined.
4817The order in which memory is allocated (ie., which way the stack grows)
4818is not specified.
4819
4820Example:
4821""""""""
4822
4823.. code-block:: llvm
4824
4825 %ptr = alloca i32 ; yields {i32*}:ptr
4826 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4827 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4828 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4829
4830.. _i_load:
4831
4832'``load``' Instruction
4833^^^^^^^^^^^^^^^^^^^^^^
4834
4835Syntax:
4836"""""""
4837
4838::
4839
4840 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4841 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4842 !<index> = !{ i32 1 }
4843
4844Overview:
4845"""""""""
4846
4847The '``load``' instruction is used to read from memory.
4848
4849Arguments:
4850""""""""""
4851
Eli Bendersky239a78b2013-04-17 20:17:08 +00004852The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004853from which to load. The pointer must point to a :ref:`first
4854class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4855then the optimizer is not allowed to modify the number or order of
4856execution of this ``load`` with other :ref:`volatile
4857operations <volatile>`.
4858
4859If the ``load`` is marked as ``atomic``, it takes an extra
4860:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4861``release`` and ``acq_rel`` orderings are not valid on ``load``
4862instructions. Atomic loads produce :ref:`defined <memmodel>` results
4863when they may see multiple atomic stores. The type of the pointee must
4864be an integer type whose bit width is a power of two greater than or
4865equal to eight and less than or equal to a target-specific size limit.
4866``align`` must be explicitly specified on atomic loads, and the load has
4867undefined behavior if the alignment is not set to a value which is at
4868least the size in bytes of the pointee. ``!nontemporal`` does not have
4869any defined semantics for atomic loads.
4870
4871The optional constant ``align`` argument specifies the alignment of the
4872operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004873or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004874alignment for the target. It is the responsibility of the code emitter
4875to ensure that the alignment information is correct. Overestimating the
4876alignment results in undefined behavior. Underestimating the alignment
4877may produce less efficient code. An alignment of 1 is always safe.
4878
4879The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004880metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004881``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004882metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004883that this load is not expected to be reused in the cache. The code
4884generator may select special instructions to save cache bandwidth, such
4885as the ``MOVNT`` instruction on x86.
4886
4887The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004888metadata name ``<index>`` corresponding to a metadata node with no
4889entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004890instruction tells the optimizer and code generator that this load
4891address points to memory which does not change value during program
4892execution. The optimizer may then move this load around, for example, by
4893hoisting it out of loops using loop invariant code motion.
4894
4895Semantics:
4896""""""""""
4897
4898The location of memory pointed to is loaded. If the value being loaded
4899is of scalar type then the number of bytes read does not exceed the
4900minimum number of bytes needed to hold all bits of the type. For
4901example, loading an ``i24`` reads at most three bytes. When loading a
4902value of a type like ``i20`` with a size that is not an integral number
4903of bytes, the result is undefined if the value was not originally
4904written using a store of the same type.
4905
4906Examples:
4907"""""""""
4908
4909.. code-block:: llvm
4910
4911 %ptr = alloca i32 ; yields {i32*}:ptr
4912 store i32 3, i32* %ptr ; yields {void}
4913 %val = load i32* %ptr ; yields {i32}:val = i32 3
4914
4915.. _i_store:
4916
4917'``store``' Instruction
4918^^^^^^^^^^^^^^^^^^^^^^^
4919
4920Syntax:
4921"""""""
4922
4923::
4924
4925 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4926 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4927
4928Overview:
4929"""""""""
4930
4931The '``store``' instruction is used to write to memory.
4932
4933Arguments:
4934""""""""""
4935
Eli Benderskyca380842013-04-17 17:17:20 +00004936There are two arguments to the ``store`` instruction: a value to store
4937and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004938operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004939the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004940then the optimizer is not allowed to modify the number or order of
4941execution of this ``store`` with other :ref:`volatile
4942operations <volatile>`.
4943
4944If the ``store`` is marked as ``atomic``, it takes an extra
4945:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4946``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4947instructions. Atomic loads produce :ref:`defined <memmodel>` results
4948when they may see multiple atomic stores. The type of the pointee must
4949be an integer type whose bit width is a power of two greater than or
4950equal to eight and less than or equal to a target-specific size limit.
4951``align`` must be explicitly specified on atomic stores, and the store
4952has undefined behavior if the alignment is not set to a value which is
4953at least the size in bytes of the pointee. ``!nontemporal`` does not
4954have any defined semantics for atomic stores.
4955
Eli Benderskyca380842013-04-17 17:17:20 +00004956The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004957operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004958or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004959alignment for the target. It is the responsibility of the code emitter
4960to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004961alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004962alignment may produce less efficient code. An alignment of 1 is always
4963safe.
4964
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004965The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004966name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004967value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004968tells the optimizer and code generator that this load is not expected to
4969be reused in the cache. The code generator may select special
4970instructions to save cache bandwidth, such as the MOVNT instruction on
4971x86.
4972
4973Semantics:
4974""""""""""
4975
Eli Benderskyca380842013-04-17 17:17:20 +00004976The contents of memory are updated to contain ``<value>`` at the
4977location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004978of scalar type then the number of bytes written does not exceed the
4979minimum number of bytes needed to hold all bits of the type. For
4980example, storing an ``i24`` writes at most three bytes. When writing a
4981value of a type like ``i20`` with a size that is not an integral number
4982of bytes, it is unspecified what happens to the extra bits that do not
4983belong to the type, but they will typically be overwritten.
4984
4985Example:
4986""""""""
4987
4988.. code-block:: llvm
4989
4990 %ptr = alloca i32 ; yields {i32*}:ptr
4991 store i32 3, i32* %ptr ; yields {void}
4992 %val = load i32* %ptr ; yields {i32}:val = i32 3
4993
4994.. _i_fence:
4995
4996'``fence``' Instruction
4997^^^^^^^^^^^^^^^^^^^^^^^
4998
4999Syntax:
5000"""""""
5001
5002::
5003
5004 fence [singlethread] <ordering> ; yields {void}
5005
5006Overview:
5007"""""""""
5008
5009The '``fence``' instruction is used to introduce happens-before edges
5010between operations.
5011
5012Arguments:
5013""""""""""
5014
5015'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5016defines what *synchronizes-with* edges they add. They can only be given
5017``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5018
5019Semantics:
5020""""""""""
5021
5022A fence A which has (at least) ``release`` ordering semantics
5023*synchronizes with* a fence B with (at least) ``acquire`` ordering
5024semantics if and only if there exist atomic operations X and Y, both
5025operating on some atomic object M, such that A is sequenced before X, X
5026modifies M (either directly or through some side effect of a sequence
5027headed by X), Y is sequenced before B, and Y observes M. This provides a
5028*happens-before* dependency between A and B. Rather than an explicit
5029``fence``, one (but not both) of the atomic operations X or Y might
5030provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5031still *synchronize-with* the explicit ``fence`` and establish the
5032*happens-before* edge.
5033
5034A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5035``acquire`` and ``release`` semantics specified above, participates in
5036the global program order of other ``seq_cst`` operations and/or fences.
5037
5038The optional ":ref:`singlethread <singlethread>`" argument specifies
5039that the fence only synchronizes with other fences in the same thread.
5040(This is useful for interacting with signal handlers.)
5041
5042Example:
5043""""""""
5044
5045.. code-block:: llvm
5046
5047 fence acquire ; yields {void}
5048 fence singlethread seq_cst ; yields {void}
5049
5050.. _i_cmpxchg:
5051
5052'``cmpxchg``' Instruction
5053^^^^^^^^^^^^^^^^^^^^^^^^^
5054
5055Syntax:
5056"""""""
5057
5058::
5059
Tim Northovere94a5182014-03-11 10:48:52 +00005060 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005061
5062Overview:
5063"""""""""
5064
5065The '``cmpxchg``' instruction is used to atomically modify memory. It
5066loads a value in memory and compares it to a given value. If they are
5067equal, it stores a new value into the memory.
5068
5069Arguments:
5070""""""""""
5071
5072There are three arguments to the '``cmpxchg``' instruction: an address
5073to operate on, a value to compare to the value currently be at that
5074address, and a new value to place at that address if the compared values
5075are equal. The type of '<cmp>' must be an integer type whose bit width
5076is a power of two greater than or equal to eight and less than or equal
5077to a target-specific size limit. '<cmp>' and '<new>' must have the same
5078type, and the type of '<pointer>' must be a pointer to that type. If the
5079``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5080to modify the number or order of execution of this ``cmpxchg`` with
5081other :ref:`volatile operations <volatile>`.
5082
Tim Northovere94a5182014-03-11 10:48:52 +00005083The success and failure :ref:`ordering <ordering>` arguments specify how this
5084``cmpxchg`` synchronizes with other atomic operations. The both ordering
5085parameters must be at least ``monotonic``, the ordering constraint on failure
5086must be no stronger than that on success, and the failure ordering cannot be
5087either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005088
5089The optional "``singlethread``" argument declares that the ``cmpxchg``
5090is only atomic with respect to code (usually signal handlers) running in
5091the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5092respect to all other code in the system.
5093
5094The pointer passed into cmpxchg must have alignment greater than or
5095equal to the size in memory of the operand.
5096
5097Semantics:
5098""""""""""
5099
5100The contents of memory at the location specified by the '``<pointer>``'
5101operand is read and compared to '``<cmp>``'; if the read value is the
5102equal, '``<new>``' is written. The original value at the location is
5103returned.
5104
Tim Northovere94a5182014-03-11 10:48:52 +00005105A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5106identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5107load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005108
5109Example:
5110""""""""
5111
5112.. code-block:: llvm
5113
5114 entry:
5115 %orig = atomic load i32* %ptr unordered ; yields {i32}
5116 br label %loop
5117
5118 loop:
5119 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5120 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005121 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005122 %success = icmp eq i32 %cmp, %old
5123 br i1 %success, label %done, label %loop
5124
5125 done:
5126 ...
5127
5128.. _i_atomicrmw:
5129
5130'``atomicrmw``' Instruction
5131^^^^^^^^^^^^^^^^^^^^^^^^^^^
5132
5133Syntax:
5134"""""""
5135
5136::
5137
5138 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5139
5140Overview:
5141"""""""""
5142
5143The '``atomicrmw``' instruction is used to atomically modify memory.
5144
5145Arguments:
5146""""""""""
5147
5148There are three arguments to the '``atomicrmw``' instruction: an
5149operation to apply, an address whose value to modify, an argument to the
5150operation. The operation must be one of the following keywords:
5151
5152- xchg
5153- add
5154- sub
5155- and
5156- nand
5157- or
5158- xor
5159- max
5160- min
5161- umax
5162- umin
5163
5164The type of '<value>' must be an integer type whose bit width is a power
5165of two greater than or equal to eight and less than or equal to a
5166target-specific size limit. The type of the '``<pointer>``' operand must
5167be a pointer to that type. If the ``atomicrmw`` is marked as
5168``volatile``, then the optimizer is not allowed to modify the number or
5169order of execution of this ``atomicrmw`` with other :ref:`volatile
5170operations <volatile>`.
5171
5172Semantics:
5173""""""""""
5174
5175The contents of memory at the location specified by the '``<pointer>``'
5176operand are atomically read, modified, and written back. The original
5177value at the location is returned. The modification is specified by the
5178operation argument:
5179
5180- xchg: ``*ptr = val``
5181- add: ``*ptr = *ptr + val``
5182- sub: ``*ptr = *ptr - val``
5183- and: ``*ptr = *ptr & val``
5184- nand: ``*ptr = ~(*ptr & val)``
5185- or: ``*ptr = *ptr | val``
5186- xor: ``*ptr = *ptr ^ val``
5187- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5188- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5189- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5190 comparison)
5191- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5192 comparison)
5193
5194Example:
5195""""""""
5196
5197.. code-block:: llvm
5198
5199 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5200
5201.. _i_getelementptr:
5202
5203'``getelementptr``' Instruction
5204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5205
5206Syntax:
5207"""""""
5208
5209::
5210
5211 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5212 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5213 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5214
5215Overview:
5216"""""""""
5217
5218The '``getelementptr``' instruction is used to get the address of a
5219subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5220address calculation only and does not access memory.
5221
5222Arguments:
5223""""""""""
5224
5225The first argument is always a pointer or a vector of pointers, and
5226forms the basis of the calculation. The remaining arguments are indices
5227that indicate which of the elements of the aggregate object are indexed.
5228The interpretation of each index is dependent on the type being indexed
5229into. The first index always indexes the pointer value given as the
5230first argument, the second index indexes a value of the type pointed to
5231(not necessarily the value directly pointed to, since the first index
5232can be non-zero), etc. The first type indexed into must be a pointer
5233value, subsequent types can be arrays, vectors, and structs. Note that
5234subsequent types being indexed into can never be pointers, since that
5235would require loading the pointer before continuing calculation.
5236
5237The type of each index argument depends on the type it is indexing into.
5238When indexing into a (optionally packed) structure, only ``i32`` integer
5239**constants** are allowed (when using a vector of indices they must all
5240be the **same** ``i32`` integer constant). When indexing into an array,
5241pointer or vector, integers of any width are allowed, and they are not
5242required to be constant. These integers are treated as signed values
5243where relevant.
5244
5245For example, let's consider a C code fragment and how it gets compiled
5246to LLVM:
5247
5248.. code-block:: c
5249
5250 struct RT {
5251 char A;
5252 int B[10][20];
5253 char C;
5254 };
5255 struct ST {
5256 int X;
5257 double Y;
5258 struct RT Z;
5259 };
5260
5261 int *foo(struct ST *s) {
5262 return &s[1].Z.B[5][13];
5263 }
5264
5265The LLVM code generated by Clang is:
5266
5267.. code-block:: llvm
5268
5269 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5270 %struct.ST = type { i32, double, %struct.RT }
5271
5272 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5273 entry:
5274 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5275 ret i32* %arrayidx
5276 }
5277
5278Semantics:
5279""""""""""
5280
5281In the example above, the first index is indexing into the
5282'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5283= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5284indexes into the third element of the structure, yielding a
5285'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5286structure. The third index indexes into the second element of the
5287structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5288dimensions of the array are subscripted into, yielding an '``i32``'
5289type. The '``getelementptr``' instruction returns a pointer to this
5290element, thus computing a value of '``i32*``' type.
5291
5292Note that it is perfectly legal to index partially through a structure,
5293returning a pointer to an inner element. Because of this, the LLVM code
5294for the given testcase is equivalent to:
5295
5296.. code-block:: llvm
5297
5298 define i32* @foo(%struct.ST* %s) {
5299 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5300 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5301 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5302 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5303 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5304 ret i32* %t5
5305 }
5306
5307If the ``inbounds`` keyword is present, the result value of the
5308``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5309pointer is not an *in bounds* address of an allocated object, or if any
5310of the addresses that would be formed by successive addition of the
5311offsets implied by the indices to the base address with infinitely
5312precise signed arithmetic are not an *in bounds* address of that
5313allocated object. The *in bounds* addresses for an allocated object are
5314all the addresses that point into the object, plus the address one byte
5315past the end. In cases where the base is a vector of pointers the
5316``inbounds`` keyword applies to each of the computations element-wise.
5317
5318If the ``inbounds`` keyword is not present, the offsets are added to the
5319base address with silently-wrapping two's complement arithmetic. If the
5320offsets have a different width from the pointer, they are sign-extended
5321or truncated to the width of the pointer. The result value of the
5322``getelementptr`` may be outside the object pointed to by the base
5323pointer. The result value may not necessarily be used to access memory
5324though, even if it happens to point into allocated storage. See the
5325:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5326information.
5327
5328The getelementptr instruction is often confusing. For some more insight
5329into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5330
5331Example:
5332""""""""
5333
5334.. code-block:: llvm
5335
5336 ; yields [12 x i8]*:aptr
5337 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5338 ; yields i8*:vptr
5339 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5340 ; yields i8*:eptr
5341 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5342 ; yields i32*:iptr
5343 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5344
5345In cases where the pointer argument is a vector of pointers, each index
5346must be a vector with the same number of elements. For example:
5347
5348.. code-block:: llvm
5349
5350 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5351
5352Conversion Operations
5353---------------------
5354
5355The instructions in this category are the conversion instructions
5356(casting) which all take a single operand and a type. They perform
5357various bit conversions on the operand.
5358
5359'``trunc .. to``' Instruction
5360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5361
5362Syntax:
5363"""""""
5364
5365::
5366
5367 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5368
5369Overview:
5370"""""""""
5371
5372The '``trunc``' instruction truncates its operand to the type ``ty2``.
5373
5374Arguments:
5375""""""""""
5376
5377The '``trunc``' instruction takes a value to trunc, and a type to trunc
5378it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5379of the same number of integers. The bit size of the ``value`` must be
5380larger than the bit size of the destination type, ``ty2``. Equal sized
5381types are not allowed.
5382
5383Semantics:
5384""""""""""
5385
5386The '``trunc``' instruction truncates the high order bits in ``value``
5387and converts the remaining bits to ``ty2``. Since the source size must
5388be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5389It will always truncate bits.
5390
5391Example:
5392""""""""
5393
5394.. code-block:: llvm
5395
5396 %X = trunc i32 257 to i8 ; yields i8:1
5397 %Y = trunc i32 123 to i1 ; yields i1:true
5398 %Z = trunc i32 122 to i1 ; yields i1:false
5399 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5400
5401'``zext .. to``' Instruction
5402^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5403
5404Syntax:
5405"""""""
5406
5407::
5408
5409 <result> = zext <ty> <value> to <ty2> ; yields ty2
5410
5411Overview:
5412"""""""""
5413
5414The '``zext``' instruction zero extends its operand to type ``ty2``.
5415
5416Arguments:
5417""""""""""
5418
5419The '``zext``' instruction takes a value to cast, and a type to cast it
5420to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5421the same number of integers. The bit size of the ``value`` must be
5422smaller than the bit size of the destination type, ``ty2``.
5423
5424Semantics:
5425""""""""""
5426
5427The ``zext`` fills the high order bits of the ``value`` with zero bits
5428until it reaches the size of the destination type, ``ty2``.
5429
5430When zero extending from i1, the result will always be either 0 or 1.
5431
5432Example:
5433""""""""
5434
5435.. code-block:: llvm
5436
5437 %X = zext i32 257 to i64 ; yields i64:257
5438 %Y = zext i1 true to i32 ; yields i32:1
5439 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5440
5441'``sext .. to``' Instruction
5442^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444Syntax:
5445"""""""
5446
5447::
5448
5449 <result> = sext <ty> <value> to <ty2> ; yields ty2
5450
5451Overview:
5452"""""""""
5453
5454The '``sext``' sign extends ``value`` to the type ``ty2``.
5455
5456Arguments:
5457""""""""""
5458
5459The '``sext``' instruction takes a value to cast, and a type to cast it
5460to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5461the same number of integers. The bit size of the ``value`` must be
5462smaller than the bit size of the destination type, ``ty2``.
5463
5464Semantics:
5465""""""""""
5466
5467The '``sext``' instruction performs a sign extension by copying the sign
5468bit (highest order bit) of the ``value`` until it reaches the bit size
5469of the type ``ty2``.
5470
5471When sign extending from i1, the extension always results in -1 or 0.
5472
5473Example:
5474""""""""
5475
5476.. code-block:: llvm
5477
5478 %X = sext i8 -1 to i16 ; yields i16 :65535
5479 %Y = sext i1 true to i32 ; yields i32:-1
5480 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5481
5482'``fptrunc .. to``' Instruction
5483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5484
5485Syntax:
5486"""""""
5487
5488::
5489
5490 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5491
5492Overview:
5493"""""""""
5494
5495The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5496
5497Arguments:
5498""""""""""
5499
5500The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5501value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5502The size of ``value`` must be larger than the size of ``ty2``. This
5503implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5504
5505Semantics:
5506""""""""""
5507
5508The '``fptrunc``' instruction truncates a ``value`` from a larger
5509:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5510point <t_floating>` type. If the value cannot fit within the
5511destination type, ``ty2``, then the results are undefined.
5512
5513Example:
5514""""""""
5515
5516.. code-block:: llvm
5517
5518 %X = fptrunc double 123.0 to float ; yields float:123.0
5519 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5520
5521'``fpext .. to``' Instruction
5522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5523
5524Syntax:
5525"""""""
5526
5527::
5528
5529 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5530
5531Overview:
5532"""""""""
5533
5534The '``fpext``' extends a floating point ``value`` to a larger floating
5535point value.
5536
5537Arguments:
5538""""""""""
5539
5540The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5541``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5542to. The source type must be smaller than the destination type.
5543
5544Semantics:
5545""""""""""
5546
5547The '``fpext``' instruction extends the ``value`` from a smaller
5548:ref:`floating point <t_floating>` type to a larger :ref:`floating
5549point <t_floating>` type. The ``fpext`` cannot be used to make a
5550*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5551*no-op cast* for a floating point cast.
5552
5553Example:
5554""""""""
5555
5556.. code-block:: llvm
5557
5558 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5559 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5560
5561'``fptoui .. to``' Instruction
5562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5563
5564Syntax:
5565"""""""
5566
5567::
5568
5569 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5570
5571Overview:
5572"""""""""
5573
5574The '``fptoui``' converts a floating point ``value`` to its unsigned
5575integer equivalent of type ``ty2``.
5576
5577Arguments:
5578""""""""""
5579
5580The '``fptoui``' instruction takes a value to cast, which must be a
5581scalar or vector :ref:`floating point <t_floating>` value, and a type to
5582cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5583``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5584type with the same number of elements as ``ty``
5585
5586Semantics:
5587""""""""""
5588
5589The '``fptoui``' instruction converts its :ref:`floating
5590point <t_floating>` operand into the nearest (rounding towards zero)
5591unsigned integer value. If the value cannot fit in ``ty2``, the results
5592are undefined.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 %X = fptoui double 123.0 to i32 ; yields i32:123
5600 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5601 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5602
5603'``fptosi .. to``' Instruction
5604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5605
5606Syntax:
5607"""""""
5608
5609::
5610
5611 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5612
5613Overview:
5614"""""""""
5615
5616The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5617``value`` to type ``ty2``.
5618
5619Arguments:
5620""""""""""
5621
5622The '``fptosi``' instruction takes a value to cast, which must be a
5623scalar or vector :ref:`floating point <t_floating>` value, and a type to
5624cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5625``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5626type with the same number of elements as ``ty``
5627
5628Semantics:
5629""""""""""
5630
5631The '``fptosi``' instruction converts its :ref:`floating
5632point <t_floating>` operand into the nearest (rounding towards zero)
5633signed integer value. If the value cannot fit in ``ty2``, the results
5634are undefined.
5635
5636Example:
5637""""""""
5638
5639.. code-block:: llvm
5640
5641 %X = fptosi double -123.0 to i32 ; yields i32:-123
5642 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5643 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5644
5645'``uitofp .. to``' Instruction
5646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5647
5648Syntax:
5649"""""""
5650
5651::
5652
5653 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5654
5655Overview:
5656"""""""""
5657
5658The '``uitofp``' instruction regards ``value`` as an unsigned integer
5659and converts that value to the ``ty2`` type.
5660
5661Arguments:
5662""""""""""
5663
5664The '``uitofp``' instruction takes a value to cast, which must be a
5665scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5666``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5667``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5668type with the same number of elements as ``ty``
5669
5670Semantics:
5671""""""""""
5672
5673The '``uitofp``' instruction interprets its operand as an unsigned
5674integer quantity and converts it to the corresponding floating point
5675value. If the value cannot fit in the floating point value, the results
5676are undefined.
5677
5678Example:
5679""""""""
5680
5681.. code-block:: llvm
5682
5683 %X = uitofp i32 257 to float ; yields float:257.0
5684 %Y = uitofp i8 -1 to double ; yields double:255.0
5685
5686'``sitofp .. to``' Instruction
5687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5688
5689Syntax:
5690"""""""
5691
5692::
5693
5694 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5695
5696Overview:
5697"""""""""
5698
5699The '``sitofp``' instruction regards ``value`` as a signed integer and
5700converts that value to the ``ty2`` type.
5701
5702Arguments:
5703""""""""""
5704
5705The '``sitofp``' instruction takes a value to cast, which must be a
5706scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5707``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5708``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5709type with the same number of elements as ``ty``
5710
5711Semantics:
5712""""""""""
5713
5714The '``sitofp``' instruction interprets its operand as a signed integer
5715quantity and converts it to the corresponding floating point value. If
5716the value cannot fit in the floating point value, the results are
5717undefined.
5718
5719Example:
5720""""""""
5721
5722.. code-block:: llvm
5723
5724 %X = sitofp i32 257 to float ; yields float:257.0
5725 %Y = sitofp i8 -1 to double ; yields double:-1.0
5726
5727.. _i_ptrtoint:
5728
5729'``ptrtoint .. to``' Instruction
5730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5731
5732Syntax:
5733"""""""
5734
5735::
5736
5737 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5738
5739Overview:
5740"""""""""
5741
5742The '``ptrtoint``' instruction converts the pointer or a vector of
5743pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5744
5745Arguments:
5746""""""""""
5747
5748The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5749a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5750type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5751a vector of integers type.
5752
5753Semantics:
5754""""""""""
5755
5756The '``ptrtoint``' instruction converts ``value`` to integer type
5757``ty2`` by interpreting the pointer value as an integer and either
5758truncating or zero extending that value to the size of the integer type.
5759If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5760``value`` is larger than ``ty2`` then a truncation is done. If they are
5761the same size, then nothing is done (*no-op cast*) other than a type
5762change.
5763
5764Example:
5765""""""""
5766
5767.. code-block:: llvm
5768
5769 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5770 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5771 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5772
5773.. _i_inttoptr:
5774
5775'``inttoptr .. to``' Instruction
5776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5777
5778Syntax:
5779"""""""
5780
5781::
5782
5783 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5784
5785Overview:
5786"""""""""
5787
5788The '``inttoptr``' instruction converts an integer ``value`` to a
5789pointer type, ``ty2``.
5790
5791Arguments:
5792""""""""""
5793
5794The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5795cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5796type.
5797
5798Semantics:
5799""""""""""
5800
5801The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5802applying either a zero extension or a truncation depending on the size
5803of the integer ``value``. If ``value`` is larger than the size of a
5804pointer then a truncation is done. If ``value`` is smaller than the size
5805of a pointer then a zero extension is done. If they are the same size,
5806nothing is done (*no-op cast*).
5807
5808Example:
5809""""""""
5810
5811.. code-block:: llvm
5812
5813 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5814 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5815 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5816 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5817
5818.. _i_bitcast:
5819
5820'``bitcast .. to``' Instruction
5821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5822
5823Syntax:
5824"""""""
5825
5826::
5827
5828 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5829
5830Overview:
5831"""""""""
5832
5833The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5834changing any bits.
5835
5836Arguments:
5837""""""""""
5838
5839The '``bitcast``' instruction takes a value to cast, which must be a
5840non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005841also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5842bit sizes of ``value`` and the destination type, ``ty2``, must be
5843identical. If the source type is a pointer, the destination type must
5844also be a pointer of the same size. This instruction supports bitwise
5845conversion of vectors to integers and to vectors of other types (as
5846long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005847
5848Semantics:
5849""""""""""
5850
Matt Arsenault24b49c42013-07-31 17:49:08 +00005851The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5852is always a *no-op cast* because no bits change with this
5853conversion. The conversion is done as if the ``value`` had been stored
5854to memory and read back as type ``ty2``. Pointer (or vector of
5855pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005856pointers) types with the same address space through this instruction.
5857To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5858or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005859
5860Example:
5861""""""""
5862
5863.. code-block:: llvm
5864
5865 %X = bitcast i8 255 to i8 ; yields i8 :-1
5866 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5867 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5868 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5869
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005870.. _i_addrspacecast:
5871
5872'``addrspacecast .. to``' Instruction
5873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5874
5875Syntax:
5876"""""""
5877
5878::
5879
5880 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5881
5882Overview:
5883"""""""""
5884
5885The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5886address space ``n`` to type ``pty2`` in address space ``m``.
5887
5888Arguments:
5889""""""""""
5890
5891The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5892to cast and a pointer type to cast it to, which must have a different
5893address space.
5894
5895Semantics:
5896""""""""""
5897
5898The '``addrspacecast``' instruction converts the pointer value
5899``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005900value modification, depending on the target and the address space
5901pair. Pointer conversions within the same address space must be
5902performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005903conversion is legal then both result and operand refer to the same memory
5904location.
5905
5906Example:
5907""""""""
5908
5909.. code-block:: llvm
5910
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005911 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5912 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5913 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005914
Sean Silvab084af42012-12-07 10:36:55 +00005915.. _otherops:
5916
5917Other Operations
5918----------------
5919
5920The instructions in this category are the "miscellaneous" instructions,
5921which defy better classification.
5922
5923.. _i_icmp:
5924
5925'``icmp``' Instruction
5926^^^^^^^^^^^^^^^^^^^^^^
5927
5928Syntax:
5929"""""""
5930
5931::
5932
5933 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5934
5935Overview:
5936"""""""""
5937
5938The '``icmp``' instruction returns a boolean value or a vector of
5939boolean values based on comparison of its two integer, integer vector,
5940pointer, or pointer vector operands.
5941
5942Arguments:
5943""""""""""
5944
5945The '``icmp``' instruction takes three operands. The first operand is
5946the condition code indicating the kind of comparison to perform. It is
5947not a value, just a keyword. The possible condition code are:
5948
5949#. ``eq``: equal
5950#. ``ne``: not equal
5951#. ``ugt``: unsigned greater than
5952#. ``uge``: unsigned greater or equal
5953#. ``ult``: unsigned less than
5954#. ``ule``: unsigned less or equal
5955#. ``sgt``: signed greater than
5956#. ``sge``: signed greater or equal
5957#. ``slt``: signed less than
5958#. ``sle``: signed less or equal
5959
5960The remaining two arguments must be :ref:`integer <t_integer>` or
5961:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5962must also be identical types.
5963
5964Semantics:
5965""""""""""
5966
5967The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5968code given as ``cond``. The comparison performed always yields either an
5969:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5970
5971#. ``eq``: yields ``true`` if the operands are equal, ``false``
5972 otherwise. No sign interpretation is necessary or performed.
5973#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5974 otherwise. No sign interpretation is necessary or performed.
5975#. ``ugt``: interprets the operands as unsigned values and yields
5976 ``true`` if ``op1`` is greater than ``op2``.
5977#. ``uge``: interprets the operands as unsigned values and yields
5978 ``true`` if ``op1`` is greater than or equal to ``op2``.
5979#. ``ult``: interprets the operands as unsigned values and yields
5980 ``true`` if ``op1`` is less than ``op2``.
5981#. ``ule``: interprets the operands as unsigned values and yields
5982 ``true`` if ``op1`` is less than or equal to ``op2``.
5983#. ``sgt``: interprets the operands as signed values and yields ``true``
5984 if ``op1`` is greater than ``op2``.
5985#. ``sge``: interprets the operands as signed values and yields ``true``
5986 if ``op1`` is greater than or equal to ``op2``.
5987#. ``slt``: interprets the operands as signed values and yields ``true``
5988 if ``op1`` is less than ``op2``.
5989#. ``sle``: interprets the operands as signed values and yields ``true``
5990 if ``op1`` is less than or equal to ``op2``.
5991
5992If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5993are compared as if they were integers.
5994
5995If the operands are integer vectors, then they are compared element by
5996element. The result is an ``i1`` vector with the same number of elements
5997as the values being compared. Otherwise, the result is an ``i1``.
5998
5999Example:
6000""""""""
6001
6002.. code-block:: llvm
6003
6004 <result> = icmp eq i32 4, 5 ; yields: result=false
6005 <result> = icmp ne float* %X, %X ; yields: result=false
6006 <result> = icmp ult i16 4, 5 ; yields: result=true
6007 <result> = icmp sgt i16 4, 5 ; yields: result=false
6008 <result> = icmp ule i16 -4, 5 ; yields: result=false
6009 <result> = icmp sge i16 4, 5 ; yields: result=false
6010
6011Note that the code generator does not yet support vector types with the
6012``icmp`` instruction.
6013
6014.. _i_fcmp:
6015
6016'``fcmp``' Instruction
6017^^^^^^^^^^^^^^^^^^^^^^
6018
6019Syntax:
6020"""""""
6021
6022::
6023
6024 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
6025
6026Overview:
6027"""""""""
6028
6029The '``fcmp``' instruction returns a boolean value or vector of boolean
6030values based on comparison of its operands.
6031
6032If the operands are floating point scalars, then the result type is a
6033boolean (:ref:`i1 <t_integer>`).
6034
6035If the operands are floating point vectors, then the result type is a
6036vector of boolean with the same number of elements as the operands being
6037compared.
6038
6039Arguments:
6040""""""""""
6041
6042The '``fcmp``' instruction takes three operands. The first operand is
6043the condition code indicating the kind of comparison to perform. It is
6044not a value, just a keyword. The possible condition code are:
6045
6046#. ``false``: no comparison, always returns false
6047#. ``oeq``: ordered and equal
6048#. ``ogt``: ordered and greater than
6049#. ``oge``: ordered and greater than or equal
6050#. ``olt``: ordered and less than
6051#. ``ole``: ordered and less than or equal
6052#. ``one``: ordered and not equal
6053#. ``ord``: ordered (no nans)
6054#. ``ueq``: unordered or equal
6055#. ``ugt``: unordered or greater than
6056#. ``uge``: unordered or greater than or equal
6057#. ``ult``: unordered or less than
6058#. ``ule``: unordered or less than or equal
6059#. ``une``: unordered or not equal
6060#. ``uno``: unordered (either nans)
6061#. ``true``: no comparison, always returns true
6062
6063*Ordered* means that neither operand is a QNAN while *unordered* means
6064that either operand may be a QNAN.
6065
6066Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6067point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6068type. They must have identical types.
6069
6070Semantics:
6071""""""""""
6072
6073The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6074condition code given as ``cond``. If the operands are vectors, then the
6075vectors are compared element by element. Each comparison performed
6076always yields an :ref:`i1 <t_integer>` result, as follows:
6077
6078#. ``false``: always yields ``false``, regardless of operands.
6079#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6080 is equal to ``op2``.
6081#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6082 is greater than ``op2``.
6083#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6084 is greater than or equal to ``op2``.
6085#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6086 is less than ``op2``.
6087#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6088 is less than or equal to ``op2``.
6089#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6090 is not equal to ``op2``.
6091#. ``ord``: yields ``true`` if both operands are not a QNAN.
6092#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6093 equal to ``op2``.
6094#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6095 greater than ``op2``.
6096#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6097 greater than or equal to ``op2``.
6098#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6099 less than ``op2``.
6100#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6101 less than or equal to ``op2``.
6102#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6103 not equal to ``op2``.
6104#. ``uno``: yields ``true`` if either operand is a QNAN.
6105#. ``true``: always yields ``true``, regardless of operands.
6106
6107Example:
6108""""""""
6109
6110.. code-block:: llvm
6111
6112 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6113 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6114 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6115 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6116
6117Note that the code generator does not yet support vector types with the
6118``fcmp`` instruction.
6119
6120.. _i_phi:
6121
6122'``phi``' Instruction
6123^^^^^^^^^^^^^^^^^^^^^
6124
6125Syntax:
6126"""""""
6127
6128::
6129
6130 <result> = phi <ty> [ <val0>, <label0>], ...
6131
6132Overview:
6133"""""""""
6134
6135The '``phi``' instruction is used to implement the φ node in the SSA
6136graph representing the function.
6137
6138Arguments:
6139""""""""""
6140
6141The type of the incoming values is specified with the first type field.
6142After this, the '``phi``' instruction takes a list of pairs as
6143arguments, with one pair for each predecessor basic block of the current
6144block. Only values of :ref:`first class <t_firstclass>` type may be used as
6145the value arguments to the PHI node. Only labels may be used as the
6146label arguments.
6147
6148There must be no non-phi instructions between the start of a basic block
6149and the PHI instructions: i.e. PHI instructions must be first in a basic
6150block.
6151
6152For the purposes of the SSA form, the use of each incoming value is
6153deemed to occur on the edge from the corresponding predecessor block to
6154the current block (but after any definition of an '``invoke``'
6155instruction's return value on the same edge).
6156
6157Semantics:
6158""""""""""
6159
6160At runtime, the '``phi``' instruction logically takes on the value
6161specified by the pair corresponding to the predecessor basic block that
6162executed just prior to the current block.
6163
6164Example:
6165""""""""
6166
6167.. code-block:: llvm
6168
6169 Loop: ; Infinite loop that counts from 0 on up...
6170 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6171 %nextindvar = add i32 %indvar, 1
6172 br label %Loop
6173
6174.. _i_select:
6175
6176'``select``' Instruction
6177^^^^^^^^^^^^^^^^^^^^^^^^
6178
6179Syntax:
6180"""""""
6181
6182::
6183
6184 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6185
6186 selty is either i1 or {<N x i1>}
6187
6188Overview:
6189"""""""""
6190
6191The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006192condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006193
6194Arguments:
6195""""""""""
6196
6197The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6198values indicating the condition, and two values of the same :ref:`first
6199class <t_firstclass>` type. If the val1/val2 are vectors and the
6200condition is a scalar, then entire vectors are selected, not individual
6201elements.
6202
6203Semantics:
6204""""""""""
6205
6206If the condition is an i1 and it evaluates to 1, the instruction returns
6207the first value argument; otherwise, it returns the second value
6208argument.
6209
6210If the condition is a vector of i1, then the value arguments must be
6211vectors of the same size, and the selection is done element by element.
6212
6213Example:
6214""""""""
6215
6216.. code-block:: llvm
6217
6218 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6219
6220.. _i_call:
6221
6222'``call``' Instruction
6223^^^^^^^^^^^^^^^^^^^^^^
6224
6225Syntax:
6226"""""""
6227
6228::
6229
Reid Kleckner5772b772014-04-24 20:14:34 +00006230 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006231
6232Overview:
6233"""""""""
6234
6235The '``call``' instruction represents a simple function call.
6236
6237Arguments:
6238""""""""""
6239
6240This instruction requires several arguments:
6241
Reid Kleckner5772b772014-04-24 20:14:34 +00006242#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6243 should perform tail call optimization. The ``tail`` marker is a hint that
6244 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6245 means that the call must be tail call optimized in order for the program to
6246 be correct. The ``musttail`` marker provides these guarantees:
6247
6248 #. The call will not cause unbounded stack growth if it is part of a
6249 recursive cycle in the call graph.
6250 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6251 forwarded in place.
6252
6253 Both markers imply that the callee does not access allocas or varargs from
6254 the caller. Calls marked ``musttail`` must obey the following additional
6255 rules:
6256
6257 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6258 or a pointer bitcast followed by a ret instruction.
6259 - The ret instruction must return the (possibly bitcasted) value
6260 produced by the call or void.
6261 - The caller and callee prototypes must match. Pointer types of
6262 parameters or return types may differ in pointee type, but not
6263 in address space.
6264 - The calling conventions of the caller and callee must match.
6265 - All ABI-impacting function attributes, such as sret, byval, inreg,
6266 returned, and inalloca, must match.
6267
6268 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6269 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006270
6271 - Caller and callee both have the calling convention ``fastcc``.
6272 - The call is in tail position (ret immediately follows call and ret
6273 uses value of call or is void).
6274 - Option ``-tailcallopt`` is enabled, or
6275 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6276 - `Platform specific constraints are
6277 met. <CodeGenerator.html#tailcallopt>`_
6278
6279#. The optional "cconv" marker indicates which :ref:`calling
6280 convention <callingconv>` the call should use. If none is
6281 specified, the call defaults to using C calling conventions. The
6282 calling convention of the call must match the calling convention of
6283 the target function, or else the behavior is undefined.
6284#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6285 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6286 are valid here.
6287#. '``ty``': the type of the call instruction itself which is also the
6288 type of the return value. Functions that return no value are marked
6289 ``void``.
6290#. '``fnty``': shall be the signature of the pointer to function value
6291 being invoked. The argument types must match the types implied by
6292 this signature. This type can be omitted if the function is not
6293 varargs and if the function type does not return a pointer to a
6294 function.
6295#. '``fnptrval``': An LLVM value containing a pointer to a function to
6296 be invoked. In most cases, this is a direct function invocation, but
6297 indirect ``call``'s are just as possible, calling an arbitrary pointer
6298 to function value.
6299#. '``function args``': argument list whose types match the function
6300 signature argument types and parameter attributes. All arguments must
6301 be of :ref:`first class <t_firstclass>` type. If the function signature
6302 indicates the function accepts a variable number of arguments, the
6303 extra arguments can be specified.
6304#. The optional :ref:`function attributes <fnattrs>` list. Only
6305 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6306 attributes are valid here.
6307
6308Semantics:
6309""""""""""
6310
6311The '``call``' instruction is used to cause control flow to transfer to
6312a specified function, with its incoming arguments bound to the specified
6313values. Upon a '``ret``' instruction in the called function, control
6314flow continues with the instruction after the function call, and the
6315return value of the function is bound to the result argument.
6316
6317Example:
6318""""""""
6319
6320.. code-block:: llvm
6321
6322 %retval = call i32 @test(i32 %argc)
6323 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6324 %X = tail call i32 @foo() ; yields i32
6325 %Y = tail call fastcc i32 @foo() ; yields i32
6326 call void %foo(i8 97 signext)
6327
6328 %struct.A = type { i32, i8 }
6329 %r = call %struct.A @foo() ; yields { 32, i8 }
6330 %gr = extractvalue %struct.A %r, 0 ; yields i32
6331 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6332 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6333 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6334
6335llvm treats calls to some functions with names and arguments that match
6336the standard C99 library as being the C99 library functions, and may
6337perform optimizations or generate code for them under that assumption.
6338This is something we'd like to change in the future to provide better
6339support for freestanding environments and non-C-based languages.
6340
6341.. _i_va_arg:
6342
6343'``va_arg``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
6351 <resultval> = va_arg <va_list*> <arglist>, <argty>
6352
6353Overview:
6354"""""""""
6355
6356The '``va_arg``' instruction is used to access arguments passed through
6357the "variable argument" area of a function call. It is used to implement
6358the ``va_arg`` macro in C.
6359
6360Arguments:
6361""""""""""
6362
6363This instruction takes a ``va_list*`` value and the type of the
6364argument. It returns a value of the specified argument type and
6365increments the ``va_list`` to point to the next argument. The actual
6366type of ``va_list`` is target specific.
6367
6368Semantics:
6369""""""""""
6370
6371The '``va_arg``' instruction loads an argument of the specified type
6372from the specified ``va_list`` and causes the ``va_list`` to point to
6373the next argument. For more information, see the variable argument
6374handling :ref:`Intrinsic Functions <int_varargs>`.
6375
6376It is legal for this instruction to be called in a function which does
6377not take a variable number of arguments, for example, the ``vfprintf``
6378function.
6379
6380``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6381function <intrinsics>` because it takes a type as an argument.
6382
6383Example:
6384""""""""
6385
6386See the :ref:`variable argument processing <int_varargs>` section.
6387
6388Note that the code generator does not yet fully support va\_arg on many
6389targets. Also, it does not currently support va\_arg with aggregate
6390types on any target.
6391
6392.. _i_landingpad:
6393
6394'``landingpad``' Instruction
6395^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6396
6397Syntax:
6398"""""""
6399
6400::
6401
6402 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6403 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6404
6405 <clause> := catch <type> <value>
6406 <clause> := filter <array constant type> <array constant>
6407
6408Overview:
6409"""""""""
6410
6411The '``landingpad``' instruction is used by `LLVM's exception handling
6412system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006413is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006414code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6415defines values supplied by the personality function (``pers_fn``) upon
6416re-entry to the function. The ``resultval`` has the type ``resultty``.
6417
6418Arguments:
6419""""""""""
6420
6421This instruction takes a ``pers_fn`` value. This is the personality
6422function associated with the unwinding mechanism. The optional
6423``cleanup`` flag indicates that the landing pad block is a cleanup.
6424
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006425A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006426contains the global variable representing the "type" that may be caught
6427or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6428clause takes an array constant as its argument. Use
6429"``[0 x i8**] undef``" for a filter which cannot throw. The
6430'``landingpad``' instruction must contain *at least* one ``clause`` or
6431the ``cleanup`` flag.
6432
6433Semantics:
6434""""""""""
6435
6436The '``landingpad``' instruction defines the values which are set by the
6437personality function (``pers_fn``) upon re-entry to the function, and
6438therefore the "result type" of the ``landingpad`` instruction. As with
6439calling conventions, how the personality function results are
6440represented in LLVM IR is target specific.
6441
6442The clauses are applied in order from top to bottom. If two
6443``landingpad`` instructions are merged together through inlining, the
6444clauses from the calling function are appended to the list of clauses.
6445When the call stack is being unwound due to an exception being thrown,
6446the exception is compared against each ``clause`` in turn. If it doesn't
6447match any of the clauses, and the ``cleanup`` flag is not set, then
6448unwinding continues further up the call stack.
6449
6450The ``landingpad`` instruction has several restrictions:
6451
6452- A landing pad block is a basic block which is the unwind destination
6453 of an '``invoke``' instruction.
6454- A landing pad block must have a '``landingpad``' instruction as its
6455 first non-PHI instruction.
6456- There can be only one '``landingpad``' instruction within the landing
6457 pad block.
6458- A basic block that is not a landing pad block may not include a
6459 '``landingpad``' instruction.
6460- All '``landingpad``' instructions in a function must have the same
6461 personality function.
6462
6463Example:
6464""""""""
6465
6466.. code-block:: llvm
6467
6468 ;; A landing pad which can catch an integer.
6469 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6470 catch i8** @_ZTIi
6471 ;; A landing pad that is a cleanup.
6472 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6473 cleanup
6474 ;; A landing pad which can catch an integer and can only throw a double.
6475 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6476 catch i8** @_ZTIi
6477 filter [1 x i8**] [@_ZTId]
6478
6479.. _intrinsics:
6480
6481Intrinsic Functions
6482===================
6483
6484LLVM supports the notion of an "intrinsic function". These functions
6485have well known names and semantics and are required to follow certain
6486restrictions. Overall, these intrinsics represent an extension mechanism
6487for the LLVM language that does not require changing all of the
6488transformations in LLVM when adding to the language (or the bitcode
6489reader/writer, the parser, etc...).
6490
6491Intrinsic function names must all start with an "``llvm.``" prefix. This
6492prefix is reserved in LLVM for intrinsic names; thus, function names may
6493not begin with this prefix. Intrinsic functions must always be external
6494functions: you cannot define the body of intrinsic functions. Intrinsic
6495functions may only be used in call or invoke instructions: it is illegal
6496to take the address of an intrinsic function. Additionally, because
6497intrinsic functions are part of the LLVM language, it is required if any
6498are added that they be documented here.
6499
6500Some intrinsic functions can be overloaded, i.e., the intrinsic
6501represents a family of functions that perform the same operation but on
6502different data types. Because LLVM can represent over 8 million
6503different integer types, overloading is used commonly to allow an
6504intrinsic function to operate on any integer type. One or more of the
6505argument types or the result type can be overloaded to accept any
6506integer type. Argument types may also be defined as exactly matching a
6507previous argument's type or the result type. This allows an intrinsic
6508function which accepts multiple arguments, but needs all of them to be
6509of the same type, to only be overloaded with respect to a single
6510argument or the result.
6511
6512Overloaded intrinsics will have the names of its overloaded argument
6513types encoded into its function name, each preceded by a period. Only
6514those types which are overloaded result in a name suffix. Arguments
6515whose type is matched against another type do not. For example, the
6516``llvm.ctpop`` function can take an integer of any width and returns an
6517integer of exactly the same integer width. This leads to a family of
6518functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6519``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6520overloaded, and only one type suffix is required. Because the argument's
6521type is matched against the return type, it does not require its own
6522name suffix.
6523
6524To learn how to add an intrinsic function, please see the `Extending
6525LLVM Guide <ExtendingLLVM.html>`_.
6526
6527.. _int_varargs:
6528
6529Variable Argument Handling Intrinsics
6530-------------------------------------
6531
6532Variable argument support is defined in LLVM with the
6533:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6534functions. These functions are related to the similarly named macros
6535defined in the ``<stdarg.h>`` header file.
6536
6537All of these functions operate on arguments that use a target-specific
6538value type "``va_list``". The LLVM assembly language reference manual
6539does not define what this type is, so all transformations should be
6540prepared to handle these functions regardless of the type used.
6541
6542This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6543variable argument handling intrinsic functions are used.
6544
6545.. code-block:: llvm
6546
6547 define i32 @test(i32 %X, ...) {
6548 ; Initialize variable argument processing
6549 %ap = alloca i8*
6550 %ap2 = bitcast i8** %ap to i8*
6551 call void @llvm.va_start(i8* %ap2)
6552
6553 ; Read a single integer argument
6554 %tmp = va_arg i8** %ap, i32
6555
6556 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6557 %aq = alloca i8*
6558 %aq2 = bitcast i8** %aq to i8*
6559 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6560 call void @llvm.va_end(i8* %aq2)
6561
6562 ; Stop processing of arguments.
6563 call void @llvm.va_end(i8* %ap2)
6564 ret i32 %tmp
6565 }
6566
6567 declare void @llvm.va_start(i8*)
6568 declare void @llvm.va_copy(i8*, i8*)
6569 declare void @llvm.va_end(i8*)
6570
6571.. _int_va_start:
6572
6573'``llvm.va_start``' Intrinsic
6574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6575
6576Syntax:
6577"""""""
6578
6579::
6580
Nick Lewycky04f6de02013-09-11 22:04:52 +00006581 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006582
6583Overview:
6584"""""""""
6585
6586The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6587subsequent use by ``va_arg``.
6588
6589Arguments:
6590""""""""""
6591
6592The argument is a pointer to a ``va_list`` element to initialize.
6593
6594Semantics:
6595""""""""""
6596
6597The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6598available in C. In a target-dependent way, it initializes the
6599``va_list`` element to which the argument points, so that the next call
6600to ``va_arg`` will produce the first variable argument passed to the
6601function. Unlike the C ``va_start`` macro, this intrinsic does not need
6602to know the last argument of the function as the compiler can figure
6603that out.
6604
6605'``llvm.va_end``' Intrinsic
6606^^^^^^^^^^^^^^^^^^^^^^^^^^^
6607
6608Syntax:
6609"""""""
6610
6611::
6612
6613 declare void @llvm.va_end(i8* <arglist>)
6614
6615Overview:
6616"""""""""
6617
6618The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6619initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6620
6621Arguments:
6622""""""""""
6623
6624The argument is a pointer to a ``va_list`` to destroy.
6625
6626Semantics:
6627""""""""""
6628
6629The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6630available in C. In a target-dependent way, it destroys the ``va_list``
6631element to which the argument points. Calls to
6632:ref:`llvm.va_start <int_va_start>` and
6633:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6634``llvm.va_end``.
6635
6636.. _int_va_copy:
6637
6638'``llvm.va_copy``' Intrinsic
6639^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6640
6641Syntax:
6642"""""""
6643
6644::
6645
6646 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6647
6648Overview:
6649"""""""""
6650
6651The '``llvm.va_copy``' intrinsic copies the current argument position
6652from the source argument list to the destination argument list.
6653
6654Arguments:
6655""""""""""
6656
6657The first argument is a pointer to a ``va_list`` element to initialize.
6658The second argument is a pointer to a ``va_list`` element to copy from.
6659
6660Semantics:
6661""""""""""
6662
6663The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6664available in C. In a target-dependent way, it copies the source
6665``va_list`` element into the destination ``va_list`` element. This
6666intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6667arbitrarily complex and require, for example, memory allocation.
6668
6669Accurate Garbage Collection Intrinsics
6670--------------------------------------
6671
6672LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6673(GC) requires the implementation and generation of these intrinsics.
6674These intrinsics allow identification of :ref:`GC roots on the
6675stack <int_gcroot>`, as well as garbage collector implementations that
6676require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6677Front-ends for type-safe garbage collected languages should generate
6678these intrinsics to make use of the LLVM garbage collectors. For more
6679details, see `Accurate Garbage Collection with
6680LLVM <GarbageCollection.html>`_.
6681
6682The garbage collection intrinsics only operate on objects in the generic
6683address space (address space zero).
6684
6685.. _int_gcroot:
6686
6687'``llvm.gcroot``' Intrinsic
6688^^^^^^^^^^^^^^^^^^^^^^^^^^^
6689
6690Syntax:
6691"""""""
6692
6693::
6694
6695 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6696
6697Overview:
6698"""""""""
6699
6700The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6701the code generator, and allows some metadata to be associated with it.
6702
6703Arguments:
6704""""""""""
6705
6706The first argument specifies the address of a stack object that contains
6707the root pointer. The second pointer (which must be either a constant or
6708a global value address) contains the meta-data to be associated with the
6709root.
6710
6711Semantics:
6712""""""""""
6713
6714At runtime, a call to this intrinsic stores a null pointer into the
6715"ptrloc" location. At compile-time, the code generator generates
6716information to allow the runtime to find the pointer at GC safe points.
6717The '``llvm.gcroot``' intrinsic may only be used in a function which
6718:ref:`specifies a GC algorithm <gc>`.
6719
6720.. _int_gcread:
6721
6722'``llvm.gcread``' Intrinsic
6723^^^^^^^^^^^^^^^^^^^^^^^^^^^
6724
6725Syntax:
6726"""""""
6727
6728::
6729
6730 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6731
6732Overview:
6733"""""""""
6734
6735The '``llvm.gcread``' intrinsic identifies reads of references from heap
6736locations, allowing garbage collector implementations that require read
6737barriers.
6738
6739Arguments:
6740""""""""""
6741
6742The second argument is the address to read from, which should be an
6743address allocated from the garbage collector. The first object is a
6744pointer to the start of the referenced object, if needed by the language
6745runtime (otherwise null).
6746
6747Semantics:
6748""""""""""
6749
6750The '``llvm.gcread``' intrinsic has the same semantics as a load
6751instruction, but may be replaced with substantially more complex code by
6752the garbage collector runtime, as needed. The '``llvm.gcread``'
6753intrinsic may only be used in a function which :ref:`specifies a GC
6754algorithm <gc>`.
6755
6756.. _int_gcwrite:
6757
6758'``llvm.gcwrite``' Intrinsic
6759^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6760
6761Syntax:
6762"""""""
6763
6764::
6765
6766 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6767
6768Overview:
6769"""""""""
6770
6771The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6772locations, allowing garbage collector implementations that require write
6773barriers (such as generational or reference counting collectors).
6774
6775Arguments:
6776""""""""""
6777
6778The first argument is the reference to store, the second is the start of
6779the object to store it to, and the third is the address of the field of
6780Obj to store to. If the runtime does not require a pointer to the
6781object, Obj may be null.
6782
6783Semantics:
6784""""""""""
6785
6786The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6787instruction, but may be replaced with substantially more complex code by
6788the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6789intrinsic may only be used in a function which :ref:`specifies a GC
6790algorithm <gc>`.
6791
6792Code Generator Intrinsics
6793-------------------------
6794
6795These intrinsics are provided by LLVM to expose special features that
6796may only be implemented with code generator support.
6797
6798'``llvm.returnaddress``' Intrinsic
6799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6800
6801Syntax:
6802"""""""
6803
6804::
6805
6806 declare i8 *@llvm.returnaddress(i32 <level>)
6807
6808Overview:
6809"""""""""
6810
6811The '``llvm.returnaddress``' intrinsic attempts to compute a
6812target-specific value indicating the return address of the current
6813function or one of its callers.
6814
6815Arguments:
6816""""""""""
6817
6818The argument to this intrinsic indicates which function to return the
6819address for. Zero indicates the calling function, one indicates its
6820caller, etc. The argument is **required** to be a constant integer
6821value.
6822
6823Semantics:
6824""""""""""
6825
6826The '``llvm.returnaddress``' intrinsic either returns a pointer
6827indicating the return address of the specified call frame, or zero if it
6828cannot be identified. The value returned by this intrinsic is likely to
6829be incorrect or 0 for arguments other than zero, so it should only be
6830used for debugging purposes.
6831
6832Note that calling this intrinsic does not prevent function inlining or
6833other aggressive transformations, so the value returned may not be that
6834of the obvious source-language caller.
6835
6836'``llvm.frameaddress``' Intrinsic
6837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6838
6839Syntax:
6840"""""""
6841
6842::
6843
6844 declare i8* @llvm.frameaddress(i32 <level>)
6845
6846Overview:
6847"""""""""
6848
6849The '``llvm.frameaddress``' intrinsic attempts to return the
6850target-specific frame pointer value for the specified stack frame.
6851
6852Arguments:
6853""""""""""
6854
6855The argument to this intrinsic indicates which function to return the
6856frame pointer for. Zero indicates the calling function, one indicates
6857its caller, etc. The argument is **required** to be a constant integer
6858value.
6859
6860Semantics:
6861""""""""""
6862
6863The '``llvm.frameaddress``' intrinsic either returns a pointer
6864indicating the frame address of the specified call frame, or zero if it
6865cannot be identified. The value returned by this intrinsic is likely to
6866be incorrect or 0 for arguments other than zero, so it should only be
6867used for debugging purposes.
6868
6869Note that calling this intrinsic does not prevent function inlining or
6870other aggressive transformations, so the value returned may not be that
6871of the obvious source-language caller.
6872
Renato Golinc7aea402014-05-06 16:51:25 +00006873.. _int_read_register:
6874.. _int_write_register:
6875
6876'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6878
6879Syntax:
6880"""""""
6881
6882::
6883
6884 declare i32 @llvm.read_register.i32(metadata)
6885 declare i64 @llvm.read_register.i64(metadata)
6886 declare void @llvm.write_register.i32(metadata, i32 @value)
6887 declare void @llvm.write_register.i64(metadata, i64 @value)
6888 !0 = metadata !{metadata !"sp\00"}
6889
6890Overview:
6891"""""""""
6892
6893The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6894provides access to the named register. The register must be valid on
6895the architecture being compiled to. The type needs to be compatible
6896with the register being read.
6897
6898Semantics:
6899""""""""""
6900
6901The '``llvm.read_register``' intrinsic returns the current value of the
6902register, where possible. The '``llvm.write_register``' intrinsic sets
6903the current value of the register, where possible.
6904
6905This is useful to implement named register global variables that need
6906to always be mapped to a specific register, as is common practice on
6907bare-metal programs including OS kernels.
6908
6909The compiler doesn't check for register availability or use of the used
6910register in surrounding code, including inline assembly. Because of that,
6911allocatable registers are not supported.
6912
6913Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006914architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006915work is needed to support other registers and even more so, allocatable
6916registers.
6917
Sean Silvab084af42012-12-07 10:36:55 +00006918.. _int_stacksave:
6919
6920'``llvm.stacksave``' Intrinsic
6921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6922
6923Syntax:
6924"""""""
6925
6926::
6927
6928 declare i8* @llvm.stacksave()
6929
6930Overview:
6931"""""""""
6932
6933The '``llvm.stacksave``' intrinsic is used to remember the current state
6934of the function stack, for use with
6935:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6936implementing language features like scoped automatic variable sized
6937arrays in C99.
6938
6939Semantics:
6940""""""""""
6941
6942This intrinsic returns a opaque pointer value that can be passed to
6943:ref:`llvm.stackrestore <int_stackrestore>`. When an
6944``llvm.stackrestore`` intrinsic is executed with a value saved from
6945``llvm.stacksave``, it effectively restores the state of the stack to
6946the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6947practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6948were allocated after the ``llvm.stacksave`` was executed.
6949
6950.. _int_stackrestore:
6951
6952'``llvm.stackrestore``' Intrinsic
6953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6954
6955Syntax:
6956"""""""
6957
6958::
6959
6960 declare void @llvm.stackrestore(i8* %ptr)
6961
6962Overview:
6963"""""""""
6964
6965The '``llvm.stackrestore``' intrinsic is used to restore the state of
6966the function stack to the state it was in when the corresponding
6967:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6968useful for implementing language features like scoped automatic variable
6969sized arrays in C99.
6970
6971Semantics:
6972""""""""""
6973
6974See the description for :ref:`llvm.stacksave <int_stacksave>`.
6975
6976'``llvm.prefetch``' Intrinsic
6977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6978
6979Syntax:
6980"""""""
6981
6982::
6983
6984 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6985
6986Overview:
6987"""""""""
6988
6989The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6990insert a prefetch instruction if supported; otherwise, it is a noop.
6991Prefetches have no effect on the behavior of the program but can change
6992its performance characteristics.
6993
6994Arguments:
6995""""""""""
6996
6997``address`` is the address to be prefetched, ``rw`` is the specifier
6998determining if the fetch should be for a read (0) or write (1), and
6999``locality`` is a temporal locality specifier ranging from (0) - no
7000locality, to (3) - extremely local keep in cache. The ``cache type``
7001specifies whether the prefetch is performed on the data (1) or
7002instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7003arguments must be constant integers.
7004
7005Semantics:
7006""""""""""
7007
7008This intrinsic does not modify the behavior of the program. In
7009particular, prefetches cannot trap and do not produce a value. On
7010targets that support this intrinsic, the prefetch can provide hints to
7011the processor cache for better performance.
7012
7013'``llvm.pcmarker``' Intrinsic
7014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7015
7016Syntax:
7017"""""""
7018
7019::
7020
7021 declare void @llvm.pcmarker(i32 <id>)
7022
7023Overview:
7024"""""""""
7025
7026The '``llvm.pcmarker``' intrinsic is a method to export a Program
7027Counter (PC) in a region of code to simulators and other tools. The
7028method is target specific, but it is expected that the marker will use
7029exported symbols to transmit the PC of the marker. The marker makes no
7030guarantees that it will remain with any specific instruction after
7031optimizations. It is possible that the presence of a marker will inhibit
7032optimizations. The intended use is to be inserted after optimizations to
7033allow correlations of simulation runs.
7034
7035Arguments:
7036""""""""""
7037
7038``id`` is a numerical id identifying the marker.
7039
7040Semantics:
7041""""""""""
7042
7043This intrinsic does not modify the behavior of the program. Backends
7044that do not support this intrinsic may ignore it.
7045
7046'``llvm.readcyclecounter``' Intrinsic
7047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7048
7049Syntax:
7050"""""""
7051
7052::
7053
7054 declare i64 @llvm.readcyclecounter()
7055
7056Overview:
7057"""""""""
7058
7059The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7060counter register (or similar low latency, high accuracy clocks) on those
7061targets that support it. On X86, it should map to RDTSC. On Alpha, it
7062should map to RPCC. As the backing counters overflow quickly (on the
7063order of 9 seconds on alpha), this should only be used for small
7064timings.
7065
7066Semantics:
7067""""""""""
7068
7069When directly supported, reading the cycle counter should not modify any
7070memory. Implementations are allowed to either return a application
7071specific value or a system wide value. On backends without support, this
7072is lowered to a constant 0.
7073
Tim Northoverbc933082013-05-23 19:11:20 +00007074Note that runtime support may be conditional on the privilege-level code is
7075running at and the host platform.
7076
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007077'``llvm.clear_cache``' Intrinsic
7078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7079
7080Syntax:
7081"""""""
7082
7083::
7084
7085 declare void @llvm.clear_cache(i8*, i8*)
7086
7087Overview:
7088"""""""""
7089
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007090The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7091in the specified range to the execution unit of the processor. On
7092targets with non-unified instruction and data cache, the implementation
7093flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007094
7095Semantics:
7096""""""""""
7097
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007098On platforms with coherent instruction and data caches (e.g. x86), this
7099intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007100cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007101instructions or a system call, if cache flushing requires special
7102privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007103
Sean Silvad02bf3e2014-04-07 22:29:53 +00007104The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007105time library.
Renato Golin93010e62014-03-26 14:01:32 +00007106
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007107This instrinsic does *not* empty the instruction pipeline. Modifications
7108of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007109
Sean Silvab084af42012-12-07 10:36:55 +00007110Standard C Library Intrinsics
7111-----------------------------
7112
7113LLVM provides intrinsics for a few important standard C library
7114functions. These intrinsics allow source-language front-ends to pass
7115information about the alignment of the pointer arguments to the code
7116generator, providing opportunity for more efficient code generation.
7117
7118.. _int_memcpy:
7119
7120'``llvm.memcpy``' Intrinsic
7121^^^^^^^^^^^^^^^^^^^^^^^^^^^
7122
7123Syntax:
7124"""""""
7125
7126This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7127integer bit width and for different address spaces. Not all targets
7128support all bit widths however.
7129
7130::
7131
7132 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7133 i32 <len>, i32 <align>, i1 <isvolatile>)
7134 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7135 i64 <len>, i32 <align>, i1 <isvolatile>)
7136
7137Overview:
7138"""""""""
7139
7140The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7141source location to the destination location.
7142
7143Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7144intrinsics do not return a value, takes extra alignment/isvolatile
7145arguments and the pointers can be in specified address spaces.
7146
7147Arguments:
7148""""""""""
7149
7150The first argument is a pointer to the destination, the second is a
7151pointer to the source. The third argument is an integer argument
7152specifying the number of bytes to copy, the fourth argument is the
7153alignment of the source and destination locations, and the fifth is a
7154boolean indicating a volatile access.
7155
7156If the call to this intrinsic has an alignment value that is not 0 or 1,
7157then the caller guarantees that both the source and destination pointers
7158are aligned to that boundary.
7159
7160If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7161a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7162very cleanly specified and it is unwise to depend on it.
7163
7164Semantics:
7165""""""""""
7166
7167The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7168source location to the destination location, which are not allowed to
7169overlap. It copies "len" bytes of memory over. If the argument is known
7170to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007171argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007172
7173'``llvm.memmove``' Intrinsic
7174^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7175
7176Syntax:
7177"""""""
7178
7179This is an overloaded intrinsic. You can use llvm.memmove on any integer
7180bit width and for different address space. Not all targets support all
7181bit widths however.
7182
7183::
7184
7185 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7186 i32 <len>, i32 <align>, i1 <isvolatile>)
7187 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7188 i64 <len>, i32 <align>, i1 <isvolatile>)
7189
7190Overview:
7191"""""""""
7192
7193The '``llvm.memmove.*``' intrinsics move a block of memory from the
7194source location to the destination location. It is similar to the
7195'``llvm.memcpy``' intrinsic but allows the two memory locations to
7196overlap.
7197
7198Note that, unlike the standard libc function, the ``llvm.memmove.*``
7199intrinsics do not return a value, takes extra alignment/isvolatile
7200arguments and the pointers can be in specified address spaces.
7201
7202Arguments:
7203""""""""""
7204
7205The first argument is a pointer to the destination, the second is a
7206pointer to the source. The third argument is an integer argument
7207specifying the number of bytes to copy, the fourth argument is the
7208alignment of the source and destination locations, and the fifth is a
7209boolean indicating a volatile access.
7210
7211If the call to this intrinsic has an alignment value that is not 0 or 1,
7212then the caller guarantees that the source and destination pointers are
7213aligned to that boundary.
7214
7215If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7216is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7217not very cleanly specified and it is unwise to depend on it.
7218
7219Semantics:
7220""""""""""
7221
7222The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7223source location to the destination location, which may overlap. It
7224copies "len" bytes of memory over. If the argument is known to be
7225aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007226otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007227
7228'``llvm.memset.*``' Intrinsics
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234This is an overloaded intrinsic. You can use llvm.memset on any integer
7235bit width and for different address spaces. However, not all targets
7236support all bit widths.
7237
7238::
7239
7240 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7241 i32 <len>, i32 <align>, i1 <isvolatile>)
7242 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7243 i64 <len>, i32 <align>, i1 <isvolatile>)
7244
7245Overview:
7246"""""""""
7247
7248The '``llvm.memset.*``' intrinsics fill a block of memory with a
7249particular byte value.
7250
7251Note that, unlike the standard libc function, the ``llvm.memset``
7252intrinsic does not return a value and takes extra alignment/volatile
7253arguments. Also, the destination can be in an arbitrary address space.
7254
7255Arguments:
7256""""""""""
7257
7258The first argument is a pointer to the destination to fill, the second
7259is the byte value with which to fill it, the third argument is an
7260integer argument specifying the number of bytes to fill, and the fourth
7261argument is the known alignment of the destination location.
7262
7263If the call to this intrinsic has an alignment value that is not 0 or 1,
7264then the caller guarantees that the destination pointer is aligned to
7265that boundary.
7266
7267If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7268a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7269very cleanly specified and it is unwise to depend on it.
7270
7271Semantics:
7272""""""""""
7273
7274The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7275at the destination location. If the argument is known to be aligned to
7276some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007277it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007278
7279'``llvm.sqrt.*``' Intrinsic
7280^^^^^^^^^^^^^^^^^^^^^^^^^^^
7281
7282Syntax:
7283"""""""
7284
7285This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7286floating point or vector of floating point type. Not all targets support
7287all types however.
7288
7289::
7290
7291 declare float @llvm.sqrt.f32(float %Val)
7292 declare double @llvm.sqrt.f64(double %Val)
7293 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7294 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7295 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7296
7297Overview:
7298"""""""""
7299
7300The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7301returning the same value as the libm '``sqrt``' functions would. Unlike
7302``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7303negative numbers other than -0.0 (which allows for better optimization,
7304because there is no need to worry about errno being set).
7305``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7306
7307Arguments:
7308""""""""""
7309
7310The argument and return value are floating point numbers of the same
7311type.
7312
7313Semantics:
7314""""""""""
7315
7316This function returns the sqrt of the specified operand if it is a
7317nonnegative floating point number.
7318
7319'``llvm.powi.*``' Intrinsic
7320^^^^^^^^^^^^^^^^^^^^^^^^^^^
7321
7322Syntax:
7323"""""""
7324
7325This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7326floating point or vector of floating point type. Not all targets support
7327all types however.
7328
7329::
7330
7331 declare float @llvm.powi.f32(float %Val, i32 %power)
7332 declare double @llvm.powi.f64(double %Val, i32 %power)
7333 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7334 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7335 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7336
7337Overview:
7338"""""""""
7339
7340The '``llvm.powi.*``' intrinsics return the first operand raised to the
7341specified (positive or negative) power. The order of evaluation of
7342multiplications is not defined. When a vector of floating point type is
7343used, the second argument remains a scalar integer value.
7344
7345Arguments:
7346""""""""""
7347
7348The second argument is an integer power, and the first is a value to
7349raise to that power.
7350
7351Semantics:
7352""""""""""
7353
7354This function returns the first value raised to the second power with an
7355unspecified sequence of rounding operations.
7356
7357'``llvm.sin.*``' Intrinsic
7358^^^^^^^^^^^^^^^^^^^^^^^^^^
7359
7360Syntax:
7361"""""""
7362
7363This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7364floating point or vector of floating point type. Not all targets support
7365all types however.
7366
7367::
7368
7369 declare float @llvm.sin.f32(float %Val)
7370 declare double @llvm.sin.f64(double %Val)
7371 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7372 declare fp128 @llvm.sin.f128(fp128 %Val)
7373 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7374
7375Overview:
7376"""""""""
7377
7378The '``llvm.sin.*``' intrinsics return the sine of the operand.
7379
7380Arguments:
7381""""""""""
7382
7383The argument and return value are floating point numbers of the same
7384type.
7385
7386Semantics:
7387""""""""""
7388
7389This function returns the sine of the specified operand, returning the
7390same values as the libm ``sin`` functions would, and handles error
7391conditions in the same way.
7392
7393'``llvm.cos.*``' Intrinsic
7394^^^^^^^^^^^^^^^^^^^^^^^^^^
7395
7396Syntax:
7397"""""""
7398
7399This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7400floating point or vector of floating point type. Not all targets support
7401all types however.
7402
7403::
7404
7405 declare float @llvm.cos.f32(float %Val)
7406 declare double @llvm.cos.f64(double %Val)
7407 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7408 declare fp128 @llvm.cos.f128(fp128 %Val)
7409 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7410
7411Overview:
7412"""""""""
7413
7414The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7415
7416Arguments:
7417""""""""""
7418
7419The argument and return value are floating point numbers of the same
7420type.
7421
7422Semantics:
7423""""""""""
7424
7425This function returns the cosine of the specified operand, returning the
7426same values as the libm ``cos`` functions would, and handles error
7427conditions in the same way.
7428
7429'``llvm.pow.*``' Intrinsic
7430^^^^^^^^^^^^^^^^^^^^^^^^^^
7431
7432Syntax:
7433"""""""
7434
7435This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7436floating point or vector of floating point type. Not all targets support
7437all types however.
7438
7439::
7440
7441 declare float @llvm.pow.f32(float %Val, float %Power)
7442 declare double @llvm.pow.f64(double %Val, double %Power)
7443 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7444 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7445 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7446
7447Overview:
7448"""""""""
7449
7450The '``llvm.pow.*``' intrinsics return the first operand raised to the
7451specified (positive or negative) power.
7452
7453Arguments:
7454""""""""""
7455
7456The second argument is a floating point power, and the first is a value
7457to raise to that power.
7458
7459Semantics:
7460""""""""""
7461
7462This function returns the first value raised to the second power,
7463returning the same values as the libm ``pow`` functions would, and
7464handles error conditions in the same way.
7465
7466'``llvm.exp.*``' Intrinsic
7467^^^^^^^^^^^^^^^^^^^^^^^^^^
7468
7469Syntax:
7470"""""""
7471
7472This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7473floating point or vector of floating point type. Not all targets support
7474all types however.
7475
7476::
7477
7478 declare float @llvm.exp.f32(float %Val)
7479 declare double @llvm.exp.f64(double %Val)
7480 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7481 declare fp128 @llvm.exp.f128(fp128 %Val)
7482 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7483
7484Overview:
7485"""""""""
7486
7487The '``llvm.exp.*``' intrinsics perform the exp function.
7488
7489Arguments:
7490""""""""""
7491
7492The argument and return value are floating point numbers of the same
7493type.
7494
7495Semantics:
7496""""""""""
7497
7498This function returns the same values as the libm ``exp`` functions
7499would, and handles error conditions in the same way.
7500
7501'``llvm.exp2.*``' Intrinsic
7502^^^^^^^^^^^^^^^^^^^^^^^^^^^
7503
7504Syntax:
7505"""""""
7506
7507This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7508floating point or vector of floating point type. Not all targets support
7509all types however.
7510
7511::
7512
7513 declare float @llvm.exp2.f32(float %Val)
7514 declare double @llvm.exp2.f64(double %Val)
7515 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7516 declare fp128 @llvm.exp2.f128(fp128 %Val)
7517 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7518
7519Overview:
7520"""""""""
7521
7522The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7523
7524Arguments:
7525""""""""""
7526
7527The argument and return value are floating point numbers of the same
7528type.
7529
7530Semantics:
7531""""""""""
7532
7533This function returns the same values as the libm ``exp2`` functions
7534would, and handles error conditions in the same way.
7535
7536'``llvm.log.*``' Intrinsic
7537^^^^^^^^^^^^^^^^^^^^^^^^^^
7538
7539Syntax:
7540"""""""
7541
7542This is an overloaded intrinsic. You can use ``llvm.log`` on any
7543floating point or vector of floating point type. Not all targets support
7544all types however.
7545
7546::
7547
7548 declare float @llvm.log.f32(float %Val)
7549 declare double @llvm.log.f64(double %Val)
7550 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7551 declare fp128 @llvm.log.f128(fp128 %Val)
7552 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7553
7554Overview:
7555"""""""""
7556
7557The '``llvm.log.*``' intrinsics perform the log function.
7558
7559Arguments:
7560""""""""""
7561
7562The argument and return value are floating point numbers of the same
7563type.
7564
7565Semantics:
7566""""""""""
7567
7568This function returns the same values as the libm ``log`` functions
7569would, and handles error conditions in the same way.
7570
7571'``llvm.log10.*``' Intrinsic
7572^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7573
7574Syntax:
7575"""""""
7576
7577This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7578floating point or vector of floating point type. Not all targets support
7579all types however.
7580
7581::
7582
7583 declare float @llvm.log10.f32(float %Val)
7584 declare double @llvm.log10.f64(double %Val)
7585 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7586 declare fp128 @llvm.log10.f128(fp128 %Val)
7587 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7588
7589Overview:
7590"""""""""
7591
7592The '``llvm.log10.*``' intrinsics perform the log10 function.
7593
7594Arguments:
7595""""""""""
7596
7597The argument and return value are floating point numbers of the same
7598type.
7599
7600Semantics:
7601""""""""""
7602
7603This function returns the same values as the libm ``log10`` functions
7604would, and handles error conditions in the same way.
7605
7606'``llvm.log2.*``' Intrinsic
7607^^^^^^^^^^^^^^^^^^^^^^^^^^^
7608
7609Syntax:
7610"""""""
7611
7612This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7613floating point or vector of floating point type. Not all targets support
7614all types however.
7615
7616::
7617
7618 declare float @llvm.log2.f32(float %Val)
7619 declare double @llvm.log2.f64(double %Val)
7620 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7621 declare fp128 @llvm.log2.f128(fp128 %Val)
7622 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7623
7624Overview:
7625"""""""""
7626
7627The '``llvm.log2.*``' intrinsics perform the log2 function.
7628
7629Arguments:
7630""""""""""
7631
7632The argument and return value are floating point numbers of the same
7633type.
7634
7635Semantics:
7636""""""""""
7637
7638This function returns the same values as the libm ``log2`` functions
7639would, and handles error conditions in the same way.
7640
7641'``llvm.fma.*``' Intrinsic
7642^^^^^^^^^^^^^^^^^^^^^^^^^^
7643
7644Syntax:
7645"""""""
7646
7647This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7648floating point or vector of floating point type. Not all targets support
7649all types however.
7650
7651::
7652
7653 declare float @llvm.fma.f32(float %a, float %b, float %c)
7654 declare double @llvm.fma.f64(double %a, double %b, double %c)
7655 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7656 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7657 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7658
7659Overview:
7660"""""""""
7661
7662The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7663operation.
7664
7665Arguments:
7666""""""""""
7667
7668The argument and return value are floating point numbers of the same
7669type.
7670
7671Semantics:
7672""""""""""
7673
7674This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007675would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007676
7677'``llvm.fabs.*``' Intrinsic
7678^^^^^^^^^^^^^^^^^^^^^^^^^^^
7679
7680Syntax:
7681"""""""
7682
7683This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7684floating point or vector of floating point type. Not all targets support
7685all types however.
7686
7687::
7688
7689 declare float @llvm.fabs.f32(float %Val)
7690 declare double @llvm.fabs.f64(double %Val)
7691 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7692 declare fp128 @llvm.fabs.f128(fp128 %Val)
7693 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7694
7695Overview:
7696"""""""""
7697
7698The '``llvm.fabs.*``' intrinsics return the absolute value of the
7699operand.
7700
7701Arguments:
7702""""""""""
7703
7704The argument and return value are floating point numbers of the same
7705type.
7706
7707Semantics:
7708""""""""""
7709
7710This function returns the same values as the libm ``fabs`` functions
7711would, and handles error conditions in the same way.
7712
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007713'``llvm.copysign.*``' Intrinsic
7714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7715
7716Syntax:
7717"""""""
7718
7719This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7720floating point or vector of floating point type. Not all targets support
7721all types however.
7722
7723::
7724
7725 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7726 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7727 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7728 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7729 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7730
7731Overview:
7732"""""""""
7733
7734The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7735first operand and the sign of the second operand.
7736
7737Arguments:
7738""""""""""
7739
7740The arguments and return value are floating point numbers of the same
7741type.
7742
7743Semantics:
7744""""""""""
7745
7746This function returns the same values as the libm ``copysign``
7747functions would, and handles error conditions in the same way.
7748
Sean Silvab084af42012-12-07 10:36:55 +00007749'``llvm.floor.*``' Intrinsic
7750^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7751
7752Syntax:
7753"""""""
7754
7755This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7756floating point or vector of floating point type. Not all targets support
7757all types however.
7758
7759::
7760
7761 declare float @llvm.floor.f32(float %Val)
7762 declare double @llvm.floor.f64(double %Val)
7763 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7764 declare fp128 @llvm.floor.f128(fp128 %Val)
7765 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7766
7767Overview:
7768"""""""""
7769
7770The '``llvm.floor.*``' intrinsics return the floor of the operand.
7771
7772Arguments:
7773""""""""""
7774
7775The argument and return value are floating point numbers of the same
7776type.
7777
7778Semantics:
7779""""""""""
7780
7781This function returns the same values as the libm ``floor`` functions
7782would, and handles error conditions in the same way.
7783
7784'``llvm.ceil.*``' Intrinsic
7785^^^^^^^^^^^^^^^^^^^^^^^^^^^
7786
7787Syntax:
7788"""""""
7789
7790This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7791floating point or vector of floating point type. Not all targets support
7792all types however.
7793
7794::
7795
7796 declare float @llvm.ceil.f32(float %Val)
7797 declare double @llvm.ceil.f64(double %Val)
7798 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7799 declare fp128 @llvm.ceil.f128(fp128 %Val)
7800 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7801
7802Overview:
7803"""""""""
7804
7805The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7806
7807Arguments:
7808""""""""""
7809
7810The argument and return value are floating point numbers of the same
7811type.
7812
7813Semantics:
7814""""""""""
7815
7816This function returns the same values as the libm ``ceil`` functions
7817would, and handles error conditions in the same way.
7818
7819'``llvm.trunc.*``' Intrinsic
7820^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7821
7822Syntax:
7823"""""""
7824
7825This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7826floating point or vector of floating point type. Not all targets support
7827all types however.
7828
7829::
7830
7831 declare float @llvm.trunc.f32(float %Val)
7832 declare double @llvm.trunc.f64(double %Val)
7833 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7834 declare fp128 @llvm.trunc.f128(fp128 %Val)
7835 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7836
7837Overview:
7838"""""""""
7839
7840The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7841nearest integer not larger in magnitude than the operand.
7842
7843Arguments:
7844""""""""""
7845
7846The argument and return value are floating point numbers of the same
7847type.
7848
7849Semantics:
7850""""""""""
7851
7852This function returns the same values as the libm ``trunc`` functions
7853would, and handles error conditions in the same way.
7854
7855'``llvm.rint.*``' Intrinsic
7856^^^^^^^^^^^^^^^^^^^^^^^^^^^
7857
7858Syntax:
7859"""""""
7860
7861This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7862floating point or vector of floating point type. Not all targets support
7863all types however.
7864
7865::
7866
7867 declare float @llvm.rint.f32(float %Val)
7868 declare double @llvm.rint.f64(double %Val)
7869 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7870 declare fp128 @llvm.rint.f128(fp128 %Val)
7871 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7872
7873Overview:
7874"""""""""
7875
7876The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7877nearest integer. It may raise an inexact floating-point exception if the
7878operand isn't an integer.
7879
7880Arguments:
7881""""""""""
7882
7883The argument and return value are floating point numbers of the same
7884type.
7885
7886Semantics:
7887""""""""""
7888
7889This function returns the same values as the libm ``rint`` functions
7890would, and handles error conditions in the same way.
7891
7892'``llvm.nearbyint.*``' Intrinsic
7893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7894
7895Syntax:
7896"""""""
7897
7898This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7899floating point or vector of floating point type. Not all targets support
7900all types however.
7901
7902::
7903
7904 declare float @llvm.nearbyint.f32(float %Val)
7905 declare double @llvm.nearbyint.f64(double %Val)
7906 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7907 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7908 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7909
7910Overview:
7911"""""""""
7912
7913The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7914nearest integer.
7915
7916Arguments:
7917""""""""""
7918
7919The argument and return value are floating point numbers of the same
7920type.
7921
7922Semantics:
7923""""""""""
7924
7925This function returns the same values as the libm ``nearbyint``
7926functions would, and handles error conditions in the same way.
7927
Hal Finkel171817e2013-08-07 22:49:12 +00007928'``llvm.round.*``' Intrinsic
7929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7930
7931Syntax:
7932"""""""
7933
7934This is an overloaded intrinsic. You can use ``llvm.round`` on any
7935floating point or vector of floating point type. Not all targets support
7936all types however.
7937
7938::
7939
7940 declare float @llvm.round.f32(float %Val)
7941 declare double @llvm.round.f64(double %Val)
7942 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7943 declare fp128 @llvm.round.f128(fp128 %Val)
7944 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7945
7946Overview:
7947"""""""""
7948
7949The '``llvm.round.*``' intrinsics returns the operand rounded to the
7950nearest integer.
7951
7952Arguments:
7953""""""""""
7954
7955The argument and return value are floating point numbers of the same
7956type.
7957
7958Semantics:
7959""""""""""
7960
7961This function returns the same values as the libm ``round``
7962functions would, and handles error conditions in the same way.
7963
Sean Silvab084af42012-12-07 10:36:55 +00007964Bit Manipulation Intrinsics
7965---------------------------
7966
7967LLVM provides intrinsics for a few important bit manipulation
7968operations. These allow efficient code generation for some algorithms.
7969
7970'``llvm.bswap.*``' Intrinsics
7971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7972
7973Syntax:
7974"""""""
7975
7976This is an overloaded intrinsic function. You can use bswap on any
7977integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7978
7979::
7980
7981 declare i16 @llvm.bswap.i16(i16 <id>)
7982 declare i32 @llvm.bswap.i32(i32 <id>)
7983 declare i64 @llvm.bswap.i64(i64 <id>)
7984
7985Overview:
7986"""""""""
7987
7988The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7989values with an even number of bytes (positive multiple of 16 bits).
7990These are useful for performing operations on data that is not in the
7991target's native byte order.
7992
7993Semantics:
7994""""""""""
7995
7996The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7997and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7998intrinsic returns an i32 value that has the four bytes of the input i32
7999swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8000returned i32 will have its bytes in 3, 2, 1, 0 order. The
8001``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8002concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8003respectively).
8004
8005'``llvm.ctpop.*``' Intrinsic
8006^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8007
8008Syntax:
8009"""""""
8010
8011This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8012bit width, or on any vector with integer elements. Not all targets
8013support all bit widths or vector types, however.
8014
8015::
8016
8017 declare i8 @llvm.ctpop.i8(i8 <src>)
8018 declare i16 @llvm.ctpop.i16(i16 <src>)
8019 declare i32 @llvm.ctpop.i32(i32 <src>)
8020 declare i64 @llvm.ctpop.i64(i64 <src>)
8021 declare i256 @llvm.ctpop.i256(i256 <src>)
8022 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8023
8024Overview:
8025"""""""""
8026
8027The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8028in a value.
8029
8030Arguments:
8031""""""""""
8032
8033The only argument is the value to be counted. The argument may be of any
8034integer type, or a vector with integer elements. The return type must
8035match the argument type.
8036
8037Semantics:
8038""""""""""
8039
8040The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8041each element of a vector.
8042
8043'``llvm.ctlz.*``' Intrinsic
8044^^^^^^^^^^^^^^^^^^^^^^^^^^^
8045
8046Syntax:
8047"""""""
8048
8049This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8050integer bit width, or any vector whose elements are integers. Not all
8051targets support all bit widths or vector types, however.
8052
8053::
8054
8055 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8056 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8057 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8058 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8059 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8060 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8061
8062Overview:
8063"""""""""
8064
8065The '``llvm.ctlz``' family of intrinsic functions counts the number of
8066leading zeros in a variable.
8067
8068Arguments:
8069""""""""""
8070
8071The first argument is the value to be counted. This argument may be of
8072any integer type, or a vectory with integer element type. The return
8073type must match the first argument type.
8074
8075The second argument must be a constant and is a flag to indicate whether
8076the intrinsic should ensure that a zero as the first argument produces a
8077defined result. Historically some architectures did not provide a
8078defined result for zero values as efficiently, and many algorithms are
8079now predicated on avoiding zero-value inputs.
8080
8081Semantics:
8082""""""""""
8083
8084The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8085zeros in a variable, or within each element of the vector. If
8086``src == 0`` then the result is the size in bits of the type of ``src``
8087if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8088``llvm.ctlz(i32 2) = 30``.
8089
8090'``llvm.cttz.*``' Intrinsic
8091^^^^^^^^^^^^^^^^^^^^^^^^^^^
8092
8093Syntax:
8094"""""""
8095
8096This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8097integer bit width, or any vector of integer elements. Not all targets
8098support all bit widths or vector types, however.
8099
8100::
8101
8102 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8103 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8104 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8105 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8106 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8107 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8108
8109Overview:
8110"""""""""
8111
8112The '``llvm.cttz``' family of intrinsic functions counts the number of
8113trailing zeros.
8114
8115Arguments:
8116""""""""""
8117
8118The first argument is the value to be counted. This argument may be of
8119any integer type, or a vectory with integer element type. The return
8120type must match the first argument type.
8121
8122The second argument must be a constant and is a flag to indicate whether
8123the intrinsic should ensure that a zero as the first argument produces a
8124defined result. Historically some architectures did not provide a
8125defined result for zero values as efficiently, and many algorithms are
8126now predicated on avoiding zero-value inputs.
8127
8128Semantics:
8129""""""""""
8130
8131The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8132zeros in a variable, or within each element of a vector. If ``src == 0``
8133then the result is the size in bits of the type of ``src`` if
8134``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8135``llvm.cttz(2) = 1``.
8136
8137Arithmetic with Overflow Intrinsics
8138-----------------------------------
8139
8140LLVM provides intrinsics for some arithmetic with overflow operations.
8141
8142'``llvm.sadd.with.overflow.*``' Intrinsics
8143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8144
8145Syntax:
8146"""""""
8147
8148This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8149on any integer bit width.
8150
8151::
8152
8153 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8154 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8155 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8156
8157Overview:
8158"""""""""
8159
8160The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8161a signed addition of the two arguments, and indicate whether an overflow
8162occurred during the signed summation.
8163
8164Arguments:
8165""""""""""
8166
8167The arguments (%a and %b) and the first element of the result structure
8168may be of integer types of any bit width, but they must have the same
8169bit width. The second element of the result structure must be of type
8170``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8171addition.
8172
8173Semantics:
8174""""""""""
8175
8176The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008177a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008178first element of which is the signed summation, and the second element
8179of which is a bit specifying if the signed summation resulted in an
8180overflow.
8181
8182Examples:
8183"""""""""
8184
8185.. code-block:: llvm
8186
8187 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8188 %sum = extractvalue {i32, i1} %res, 0
8189 %obit = extractvalue {i32, i1} %res, 1
8190 br i1 %obit, label %overflow, label %normal
8191
8192'``llvm.uadd.with.overflow.*``' Intrinsics
8193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8194
8195Syntax:
8196"""""""
8197
8198This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8199on any integer bit width.
8200
8201::
8202
8203 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8204 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8205 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8206
8207Overview:
8208"""""""""
8209
8210The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8211an unsigned addition of the two arguments, and indicate whether a carry
8212occurred during the unsigned summation.
8213
8214Arguments:
8215""""""""""
8216
8217The arguments (%a and %b) and the first element of the result structure
8218may be of integer types of any bit width, but they must have the same
8219bit width. The second element of the result structure must be of type
8220``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8221addition.
8222
8223Semantics:
8224""""""""""
8225
8226The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008227an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008228first element of which is the sum, and the second element of which is a
8229bit specifying if the unsigned summation resulted in a carry.
8230
8231Examples:
8232"""""""""
8233
8234.. code-block:: llvm
8235
8236 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8237 %sum = extractvalue {i32, i1} %res, 0
8238 %obit = extractvalue {i32, i1} %res, 1
8239 br i1 %obit, label %carry, label %normal
8240
8241'``llvm.ssub.with.overflow.*``' Intrinsics
8242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8248on any integer bit width.
8249
8250::
8251
8252 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8253 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8254 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8255
8256Overview:
8257"""""""""
8258
8259The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8260a signed subtraction of the two arguments, and indicate whether an
8261overflow occurred during the signed subtraction.
8262
8263Arguments:
8264""""""""""
8265
8266The arguments (%a and %b) and the first element of the result structure
8267may be of integer types of any bit width, but they must have the same
8268bit width. The second element of the result structure must be of type
8269``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8270subtraction.
8271
8272Semantics:
8273""""""""""
8274
8275The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008276a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008277first element of which is the subtraction, and the second element of
8278which is a bit specifying if the signed subtraction resulted in an
8279overflow.
8280
8281Examples:
8282"""""""""
8283
8284.. code-block:: llvm
8285
8286 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8287 %sum = extractvalue {i32, i1} %res, 0
8288 %obit = extractvalue {i32, i1} %res, 1
8289 br i1 %obit, label %overflow, label %normal
8290
8291'``llvm.usub.with.overflow.*``' Intrinsics
8292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8293
8294Syntax:
8295"""""""
8296
8297This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8298on any integer bit width.
8299
8300::
8301
8302 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8303 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8304 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8305
8306Overview:
8307"""""""""
8308
8309The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8310an unsigned subtraction of the two arguments, and indicate whether an
8311overflow occurred during the unsigned subtraction.
8312
8313Arguments:
8314""""""""""
8315
8316The arguments (%a and %b) and the first element of the result structure
8317may be of integer types of any bit width, but they must have the same
8318bit width. The second element of the result structure must be of type
8319``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8320subtraction.
8321
8322Semantics:
8323""""""""""
8324
8325The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008326an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008327the first element of which is the subtraction, and the second element of
8328which is a bit specifying if the unsigned subtraction resulted in an
8329overflow.
8330
8331Examples:
8332"""""""""
8333
8334.. code-block:: llvm
8335
8336 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8337 %sum = extractvalue {i32, i1} %res, 0
8338 %obit = extractvalue {i32, i1} %res, 1
8339 br i1 %obit, label %overflow, label %normal
8340
8341'``llvm.smul.with.overflow.*``' Intrinsics
8342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8343
8344Syntax:
8345"""""""
8346
8347This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8348on any integer bit width.
8349
8350::
8351
8352 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8353 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8354 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8355
8356Overview:
8357"""""""""
8358
8359The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8360a signed multiplication of the two arguments, and indicate whether an
8361overflow occurred during the signed multiplication.
8362
8363Arguments:
8364""""""""""
8365
8366The arguments (%a and %b) and the first element of the result structure
8367may be of integer types of any bit width, but they must have the same
8368bit width. The second element of the result structure must be of type
8369``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8370multiplication.
8371
8372Semantics:
8373""""""""""
8374
8375The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008376a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008377the first element of which is the multiplication, and the second element
8378of which is a bit specifying if the signed multiplication resulted in an
8379overflow.
8380
8381Examples:
8382"""""""""
8383
8384.. code-block:: llvm
8385
8386 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8387 %sum = extractvalue {i32, i1} %res, 0
8388 %obit = extractvalue {i32, i1} %res, 1
8389 br i1 %obit, label %overflow, label %normal
8390
8391'``llvm.umul.with.overflow.*``' Intrinsics
8392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8398on any integer bit width.
8399
8400::
8401
8402 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8403 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8404 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8405
8406Overview:
8407"""""""""
8408
8409The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8410a unsigned multiplication of the two arguments, and indicate whether an
8411overflow occurred during the unsigned multiplication.
8412
8413Arguments:
8414""""""""""
8415
8416The arguments (%a and %b) and the first element of the result structure
8417may be of integer types of any bit width, but they must have the same
8418bit width. The second element of the result structure must be of type
8419``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8420multiplication.
8421
8422Semantics:
8423""""""""""
8424
8425The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008426an unsigned multiplication of the two arguments. They return a structure ---
8427the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008428element of which is a bit specifying if the unsigned multiplication
8429resulted in an overflow.
8430
8431Examples:
8432"""""""""
8433
8434.. code-block:: llvm
8435
8436 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8437 %sum = extractvalue {i32, i1} %res, 0
8438 %obit = extractvalue {i32, i1} %res, 1
8439 br i1 %obit, label %overflow, label %normal
8440
8441Specialised Arithmetic Intrinsics
8442---------------------------------
8443
8444'``llvm.fmuladd.*``' Intrinsic
8445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8446
8447Syntax:
8448"""""""
8449
8450::
8451
8452 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8453 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8454
8455Overview:
8456"""""""""
8457
8458The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008459expressions that can be fused if the code generator determines that (a) the
8460target instruction set has support for a fused operation, and (b) that the
8461fused operation is more efficient than the equivalent, separate pair of mul
8462and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008463
8464Arguments:
8465""""""""""
8466
8467The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8468multiplicands, a and b, and an addend c.
8469
8470Semantics:
8471""""""""""
8472
8473The expression:
8474
8475::
8476
8477 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8478
8479is equivalent to the expression a \* b + c, except that rounding will
8480not be performed between the multiplication and addition steps if the
8481code generator fuses the operations. Fusion is not guaranteed, even if
8482the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008483corresponding llvm.fma.\* intrinsic function should be used
8484instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008485
8486Examples:
8487"""""""""
8488
8489.. code-block:: llvm
8490
8491 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8492
8493Half Precision Floating Point Intrinsics
8494----------------------------------------
8495
8496For most target platforms, half precision floating point is a
8497storage-only format. This means that it is a dense encoding (in memory)
8498but does not support computation in the format.
8499
8500This means that code must first load the half-precision floating point
8501value as an i16, then convert it to float with
8502:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8503then be performed on the float value (including extending to double
8504etc). To store the value back to memory, it is first converted to float
8505if needed, then converted to i16 with
8506:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8507i16 value.
8508
8509.. _int_convert_to_fp16:
8510
8511'``llvm.convert.to.fp16``' Intrinsic
8512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8513
8514Syntax:
8515"""""""
8516
8517::
8518
8519 declare i16 @llvm.convert.to.fp16(f32 %a)
8520
8521Overview:
8522"""""""""
8523
8524The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8525from single precision floating point format to half precision floating
8526point format.
8527
8528Arguments:
8529""""""""""
8530
8531The intrinsic function contains single argument - the value to be
8532converted.
8533
8534Semantics:
8535""""""""""
8536
8537The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8538from single precision floating point format to half precision floating
8539point format. The return value is an ``i16`` which contains the
8540converted number.
8541
8542Examples:
8543"""""""""
8544
8545.. code-block:: llvm
8546
8547 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8548 store i16 %res, i16* @x, align 2
8549
8550.. _int_convert_from_fp16:
8551
8552'``llvm.convert.from.fp16``' Intrinsic
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558::
8559
8560 declare f32 @llvm.convert.from.fp16(i16 %a)
8561
8562Overview:
8563"""""""""
8564
8565The '``llvm.convert.from.fp16``' intrinsic function performs a
8566conversion from half precision floating point format to single precision
8567floating point format.
8568
8569Arguments:
8570""""""""""
8571
8572The intrinsic function contains single argument - the value to be
8573converted.
8574
8575Semantics:
8576""""""""""
8577
8578The '``llvm.convert.from.fp16``' intrinsic function performs a
8579conversion from half single precision floating point format to single
8580precision floating point format. The input half-float value is
8581represented by an ``i16`` value.
8582
8583Examples:
8584"""""""""
8585
8586.. code-block:: llvm
8587
8588 %a = load i16* @x, align 2
8589 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8590
8591Debugger Intrinsics
8592-------------------
8593
8594The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8595prefix), are described in the `LLVM Source Level
8596Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8597document.
8598
8599Exception Handling Intrinsics
8600-----------------------------
8601
8602The LLVM exception handling intrinsics (which all start with
8603``llvm.eh.`` prefix), are described in the `LLVM Exception
8604Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8605
8606.. _int_trampoline:
8607
8608Trampoline Intrinsics
8609---------------------
8610
8611These intrinsics make it possible to excise one parameter, marked with
8612the :ref:`nest <nest>` attribute, from a function. The result is a
8613callable function pointer lacking the nest parameter - the caller does
8614not need to provide a value for it. Instead, the value to use is stored
8615in advance in a "trampoline", a block of memory usually allocated on the
8616stack, which also contains code to splice the nest value into the
8617argument list. This is used to implement the GCC nested function address
8618extension.
8619
8620For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8621then the resulting function pointer has signature ``i32 (i32, i32)*``.
8622It can be created as follows:
8623
8624.. code-block:: llvm
8625
8626 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8627 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8628 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8629 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8630 %fp = bitcast i8* %p to i32 (i32, i32)*
8631
8632The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8633``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8634
8635.. _int_it:
8636
8637'``llvm.init.trampoline``' Intrinsic
8638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8639
8640Syntax:
8641"""""""
8642
8643::
8644
8645 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8646
8647Overview:
8648"""""""""
8649
8650This fills the memory pointed to by ``tramp`` with executable code,
8651turning it into a trampoline.
8652
8653Arguments:
8654""""""""""
8655
8656The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8657pointers. The ``tramp`` argument must point to a sufficiently large and
8658sufficiently aligned block of memory; this memory is written to by the
8659intrinsic. Note that the size and the alignment are target-specific -
8660LLVM currently provides no portable way of determining them, so a
8661front-end that generates this intrinsic needs to have some
8662target-specific knowledge. The ``func`` argument must hold a function
8663bitcast to an ``i8*``.
8664
8665Semantics:
8666""""""""""
8667
8668The block of memory pointed to by ``tramp`` is filled with target
8669dependent code, turning it into a function. Then ``tramp`` needs to be
8670passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8671be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8672function's signature is the same as that of ``func`` with any arguments
8673marked with the ``nest`` attribute removed. At most one such ``nest``
8674argument is allowed, and it must be of pointer type. Calling the new
8675function is equivalent to calling ``func`` with the same argument list,
8676but with ``nval`` used for the missing ``nest`` argument. If, after
8677calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8678modified, then the effect of any later call to the returned function
8679pointer is undefined.
8680
8681.. _int_at:
8682
8683'``llvm.adjust.trampoline``' Intrinsic
8684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8685
8686Syntax:
8687"""""""
8688
8689::
8690
8691 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8692
8693Overview:
8694"""""""""
8695
8696This performs any required machine-specific adjustment to the address of
8697a trampoline (passed as ``tramp``).
8698
8699Arguments:
8700""""""""""
8701
8702``tramp`` must point to a block of memory which already has trampoline
8703code filled in by a previous call to
8704:ref:`llvm.init.trampoline <int_it>`.
8705
8706Semantics:
8707""""""""""
8708
8709On some architectures the address of the code to be executed needs to be
8710different to the address where the trampoline is actually stored. This
8711intrinsic returns the executable address corresponding to ``tramp``
8712after performing the required machine specific adjustments. The pointer
8713returned can then be :ref:`bitcast and executed <int_trampoline>`.
8714
8715Memory Use Markers
8716------------------
8717
8718This class of intrinsics exists to information about the lifetime of
8719memory objects and ranges where variables are immutable.
8720
Reid Klecknera534a382013-12-19 02:14:12 +00008721.. _int_lifestart:
8722
Sean Silvab084af42012-12-07 10:36:55 +00008723'``llvm.lifetime.start``' Intrinsic
8724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8725
8726Syntax:
8727"""""""
8728
8729::
8730
8731 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8732
8733Overview:
8734"""""""""
8735
8736The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8737object's lifetime.
8738
8739Arguments:
8740""""""""""
8741
8742The first argument is a constant integer representing the size of the
8743object, or -1 if it is variable sized. The second argument is a pointer
8744to the object.
8745
8746Semantics:
8747""""""""""
8748
8749This intrinsic indicates that before this point in the code, the value
8750of the memory pointed to by ``ptr`` is dead. This means that it is known
8751to never be used and has an undefined value. A load from the pointer
8752that precedes this intrinsic can be replaced with ``'undef'``.
8753
Reid Klecknera534a382013-12-19 02:14:12 +00008754.. _int_lifeend:
8755
Sean Silvab084af42012-12-07 10:36:55 +00008756'``llvm.lifetime.end``' Intrinsic
8757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8758
8759Syntax:
8760"""""""
8761
8762::
8763
8764 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8765
8766Overview:
8767"""""""""
8768
8769The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8770object's lifetime.
8771
8772Arguments:
8773""""""""""
8774
8775The first argument is a constant integer representing the size of the
8776object, or -1 if it is variable sized. The second argument is a pointer
8777to the object.
8778
8779Semantics:
8780""""""""""
8781
8782This intrinsic indicates that after this point in the code, the value of
8783the memory pointed to by ``ptr`` is dead. This means that it is known to
8784never be used and has an undefined value. Any stores into the memory
8785object following this intrinsic may be removed as dead.
8786
8787'``llvm.invariant.start``' Intrinsic
8788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8789
8790Syntax:
8791"""""""
8792
8793::
8794
8795 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8796
8797Overview:
8798"""""""""
8799
8800The '``llvm.invariant.start``' intrinsic specifies that the contents of
8801a memory object will not change.
8802
8803Arguments:
8804""""""""""
8805
8806The first argument is a constant integer representing the size of the
8807object, or -1 if it is variable sized. The second argument is a pointer
8808to the object.
8809
8810Semantics:
8811""""""""""
8812
8813This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8814the return value, the referenced memory location is constant and
8815unchanging.
8816
8817'``llvm.invariant.end``' Intrinsic
8818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8819
8820Syntax:
8821"""""""
8822
8823::
8824
8825 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8826
8827Overview:
8828"""""""""
8829
8830The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8831memory object are mutable.
8832
8833Arguments:
8834""""""""""
8835
8836The first argument is the matching ``llvm.invariant.start`` intrinsic.
8837The second argument is a constant integer representing the size of the
8838object, or -1 if it is variable sized and the third argument is a
8839pointer to the object.
8840
8841Semantics:
8842""""""""""
8843
8844This intrinsic indicates that the memory is mutable again.
8845
8846General Intrinsics
8847------------------
8848
8849This class of intrinsics is designed to be generic and has no specific
8850purpose.
8851
8852'``llvm.var.annotation``' Intrinsic
8853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8854
8855Syntax:
8856"""""""
8857
8858::
8859
8860 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8861
8862Overview:
8863"""""""""
8864
8865The '``llvm.var.annotation``' intrinsic.
8866
8867Arguments:
8868""""""""""
8869
8870The first argument is a pointer to a value, the second is a pointer to a
8871global string, the third is a pointer to a global string which is the
8872source file name, and the last argument is the line number.
8873
8874Semantics:
8875""""""""""
8876
8877This intrinsic allows annotation of local variables with arbitrary
8878strings. This can be useful for special purpose optimizations that want
8879to look for these annotations. These have no other defined use; they are
8880ignored by code generation and optimization.
8881
Michael Gottesman88d18832013-03-26 00:34:27 +00008882'``llvm.ptr.annotation.*``' Intrinsic
8883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8884
8885Syntax:
8886"""""""
8887
8888This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8889pointer to an integer of any width. *NOTE* you must specify an address space for
8890the pointer. The identifier for the default address space is the integer
8891'``0``'.
8892
8893::
8894
8895 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8896 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8897 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8898 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8899 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8900
8901Overview:
8902"""""""""
8903
8904The '``llvm.ptr.annotation``' intrinsic.
8905
8906Arguments:
8907""""""""""
8908
8909The first argument is a pointer to an integer value of arbitrary bitwidth
8910(result of some expression), the second is a pointer to a global string, the
8911third is a pointer to a global string which is the source file name, and the
8912last argument is the line number. It returns the value of the first argument.
8913
8914Semantics:
8915""""""""""
8916
8917This intrinsic allows annotation of a pointer to an integer with arbitrary
8918strings. This can be useful for special purpose optimizations that want to look
8919for these annotations. These have no other defined use; they are ignored by code
8920generation and optimization.
8921
Sean Silvab084af42012-12-07 10:36:55 +00008922'``llvm.annotation.*``' Intrinsic
8923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8924
8925Syntax:
8926"""""""
8927
8928This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8929any integer bit width.
8930
8931::
8932
8933 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8934 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8935 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8936 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8937 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8938
8939Overview:
8940"""""""""
8941
8942The '``llvm.annotation``' intrinsic.
8943
8944Arguments:
8945""""""""""
8946
8947The first argument is an integer value (result of some expression), the
8948second is a pointer to a global string, the third is a pointer to a
8949global string which is the source file name, and the last argument is
8950the line number. It returns the value of the first argument.
8951
8952Semantics:
8953""""""""""
8954
8955This intrinsic allows annotations to be put on arbitrary expressions
8956with arbitrary strings. This can be useful for special purpose
8957optimizations that want to look for these annotations. These have no
8958other defined use; they are ignored by code generation and optimization.
8959
8960'``llvm.trap``' Intrinsic
8961^^^^^^^^^^^^^^^^^^^^^^^^^
8962
8963Syntax:
8964"""""""
8965
8966::
8967
8968 declare void @llvm.trap() noreturn nounwind
8969
8970Overview:
8971"""""""""
8972
8973The '``llvm.trap``' intrinsic.
8974
8975Arguments:
8976""""""""""
8977
8978None.
8979
8980Semantics:
8981""""""""""
8982
8983This intrinsic is lowered to the target dependent trap instruction. If
8984the target does not have a trap instruction, this intrinsic will be
8985lowered to a call of the ``abort()`` function.
8986
8987'``llvm.debugtrap``' Intrinsic
8988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8989
8990Syntax:
8991"""""""
8992
8993::
8994
8995 declare void @llvm.debugtrap() nounwind
8996
8997Overview:
8998"""""""""
8999
9000The '``llvm.debugtrap``' intrinsic.
9001
9002Arguments:
9003""""""""""
9004
9005None.
9006
9007Semantics:
9008""""""""""
9009
9010This intrinsic is lowered to code which is intended to cause an
9011execution trap with the intention of requesting the attention of a
9012debugger.
9013
9014'``llvm.stackprotector``' Intrinsic
9015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9016
9017Syntax:
9018"""""""
9019
9020::
9021
9022 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9023
9024Overview:
9025"""""""""
9026
9027The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9028onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9029is placed on the stack before local variables.
9030
9031Arguments:
9032""""""""""
9033
9034The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9035The first argument is the value loaded from the stack guard
9036``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9037enough space to hold the value of the guard.
9038
9039Semantics:
9040""""""""""
9041
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009042This intrinsic causes the prologue/epilogue inserter to force the position of
9043the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9044to ensure that if a local variable on the stack is overwritten, it will destroy
9045the value of the guard. When the function exits, the guard on the stack is
9046checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9047different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9048calling the ``__stack_chk_fail()`` function.
9049
9050'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009052
9053Syntax:
9054"""""""
9055
9056::
9057
9058 declare void @llvm.stackprotectorcheck(i8** <guard>)
9059
9060Overview:
9061"""""""""
9062
9063The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009064created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009065``__stack_chk_fail()`` function.
9066
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009067Arguments:
9068""""""""""
9069
9070The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9071the variable ``@__stack_chk_guard``.
9072
9073Semantics:
9074""""""""""
9075
9076This intrinsic is provided to perform the stack protector check by comparing
9077``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9078values do not match call the ``__stack_chk_fail()`` function.
9079
9080The reason to provide this as an IR level intrinsic instead of implementing it
9081via other IR operations is that in order to perform this operation at the IR
9082level without an intrinsic, one would need to create additional basic blocks to
9083handle the success/failure cases. This makes it difficult to stop the stack
9084protector check from disrupting sibling tail calls in Codegen. With this
9085intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009086codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009087
Sean Silvab084af42012-12-07 10:36:55 +00009088'``llvm.objectsize``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
9096 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9097 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9098
9099Overview:
9100"""""""""
9101
9102The ``llvm.objectsize`` intrinsic is designed to provide information to
9103the optimizers to determine at compile time whether a) an operation
9104(like memcpy) will overflow a buffer that corresponds to an object, or
9105b) that a runtime check for overflow isn't necessary. An object in this
9106context means an allocation of a specific class, structure, array, or
9107other object.
9108
9109Arguments:
9110""""""""""
9111
9112The ``llvm.objectsize`` intrinsic takes two arguments. The first
9113argument is a pointer to or into the ``object``. The second argument is
9114a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9115or -1 (if false) when the object size is unknown. The second argument
9116only accepts constants.
9117
9118Semantics:
9119""""""""""
9120
9121The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9122the size of the object concerned. If the size cannot be determined at
9123compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9124on the ``min`` argument).
9125
9126'``llvm.expect``' Intrinsic
9127^^^^^^^^^^^^^^^^^^^^^^^^^^^
9128
9129Syntax:
9130"""""""
9131
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009132This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9133integer bit width.
9134
Sean Silvab084af42012-12-07 10:36:55 +00009135::
9136
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009137 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009138 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9139 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9140
9141Overview:
9142"""""""""
9143
9144The ``llvm.expect`` intrinsic provides information about expected (the
9145most probable) value of ``val``, which can be used by optimizers.
9146
9147Arguments:
9148""""""""""
9149
9150The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9151a value. The second argument is an expected value, this needs to be a
9152constant value, variables are not allowed.
9153
9154Semantics:
9155""""""""""
9156
9157This intrinsic is lowered to the ``val``.
9158
9159'``llvm.donothing``' Intrinsic
9160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9161
9162Syntax:
9163"""""""
9164
9165::
9166
9167 declare void @llvm.donothing() nounwind readnone
9168
9169Overview:
9170"""""""""
9171
9172The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9173only intrinsic that can be called with an invoke instruction.
9174
9175Arguments:
9176""""""""""
9177
9178None.
9179
9180Semantics:
9181""""""""""
9182
9183This intrinsic does nothing, and it's removed by optimizers and ignored
9184by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009185
9186Stack Map Intrinsics
9187--------------------
9188
9189LLVM provides experimental intrinsics to support runtime patching
9190mechanisms commonly desired in dynamic language JITs. These intrinsics
9191are described in :doc:`StackMaps`.