blob: b75058fa9a5f50136180fe8f066ee69118a0abf8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
565
Michael Gottesmane743a302013-02-04 03:22:00 +0000566By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000567variables defined within the module are not modified from their
568initial values before the start of the global initializer. This is
569true even for variables potentially accessible from outside the
570module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000571``@llvm.used`` or dllexported variables. This assumption may be suppressed
572by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000573
Sean Silvab084af42012-12-07 10:36:55 +0000574An explicit alignment may be specified for a global, which must be a
575power of 2. If not present, or if the alignment is set to zero, the
576alignment of the global is set by the target to whatever it feels
577convenient. If an explicit alignment is specified, the global is forced
578to have exactly that alignment. Targets and optimizers are not allowed
579to over-align the global if the global has an assigned section. In this
580case, the extra alignment could be observable: for example, code could
581assume that the globals are densely packed in their section and try to
582iterate over them as an array, alignment padding would break this
583iteration.
584
Nico Rieck7157bb72014-01-14 15:22:47 +0000585Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
586
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000587Variables and aliasaes can have a
588:ref:`Thread Local Storage Model <tls_model>`.
589
Nico Rieck7157bb72014-01-14 15:22:47 +0000590Syntax::
591
592 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000593 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000594 <global | constant> <Type> [<InitializerConstant>]
595 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000596
Sean Silvab084af42012-12-07 10:36:55 +0000597For example, the following defines a global in a numbered address space
598with an initializer, section, and alignment:
599
600.. code-block:: llvm
601
602 @G = addrspace(5) constant float 1.0, section "foo", align 4
603
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000604The following example just declares a global variable
605
606.. code-block:: llvm
607
608 @G = external global i32
609
Sean Silvab084af42012-12-07 10:36:55 +0000610The following example defines a thread-local global with the
611``initialexec`` TLS model:
612
613.. code-block:: llvm
614
615 @G = thread_local(initialexec) global i32 0, align 4
616
617.. _functionstructure:
618
619Functions
620---------
621
622LLVM function definitions consist of the "``define``" keyword, an
623optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000624style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
625an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000626an optional ``unnamed_addr`` attribute, a return type, an optional
627:ref:`parameter attribute <paramattrs>` for the return type, a function
628name, a (possibly empty) argument list (each with optional :ref:`parameter
629attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
630an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000631collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
632curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000633
634LLVM function declarations consist of the "``declare``" keyword, an
635optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000636style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
637an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000638an optional ``unnamed_addr`` attribute, a return type, an optional
639:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000640name, a possibly empty list of arguments, an optional alignment, an optional
641:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000642
Bill Wendling6822ecb2013-10-27 05:09:12 +0000643A function definition contains a list of basic blocks, forming the CFG (Control
644Flow Graph) for the function. Each basic block may optionally start with a label
645(giving the basic block a symbol table entry), contains a list of instructions,
646and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
647function return). If an explicit label is not provided, a block is assigned an
648implicit numbered label, using the next value from the same counter as used for
649unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
650entry block does not have an explicit label, it will be assigned label "%0",
651then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000652
653The first basic block in a function is special in two ways: it is
654immediately executed on entrance to the function, and it is not allowed
655to have predecessor basic blocks (i.e. there can not be any branches to
656the entry block of a function). Because the block can have no
657predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
658
659LLVM allows an explicit section to be specified for functions. If the
660target supports it, it will emit functions to the section specified.
661
662An explicit alignment may be specified for a function. If not present,
663or if the alignment is set to zero, the alignment of the function is set
664by the target to whatever it feels convenient. If an explicit alignment
665is specified, the function is forced to have at least that much
666alignment. All alignments must be a power of 2.
667
668If the ``unnamed_addr`` attribute is given, the address is know to not
669be significant and two identical functions can be merged.
670
671Syntax::
672
Nico Rieck7157bb72014-01-14 15:22:47 +0000673 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000674 [cconv] [ret attrs]
675 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000676 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000678
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000679.. _langref_aliases:
680
Sean Silvab084af42012-12-07 10:36:55 +0000681Aliases
682-------
683
Rafael Espindola64c1e182014-06-03 02:41:57 +0000684Aliases, unlike function or variables, don't create any new data. They
685are just a new symbol and metadata for an existing position.
686
687Aliases have a name and an aliasee that is either a global value or a
688constant expression.
689
Nico Rieck7157bb72014-01-14 15:22:47 +0000690Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000691:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
692<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000693
694Syntax::
695
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000696 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000697
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000698The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000699``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000700might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000701
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000702Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000703the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
704to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Since aliases are only a second name, some restrictions apply, of which
707some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000708
Rafael Espindola64c1e182014-06-03 02:41:57 +0000709* The expression defining the aliasee must be computable at assembly
710 time. Since it is just a name, no relocations can be used.
711
712* No alias in the expression can be weak as the possibility of the
713 intermediate alias being overridden cannot be represented in an
714 object file.
715
716* No global value in the expression can be a declaration, since that
717 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000718
Sean Silvab084af42012-12-07 10:36:55 +0000719.. _namedmetadatastructure:
720
721Named Metadata
722--------------
723
724Named metadata is a collection of metadata. :ref:`Metadata
725nodes <metadata>` (but not metadata strings) are the only valid
726operands for a named metadata.
727
728Syntax::
729
730 ; Some unnamed metadata nodes, which are referenced by the named metadata.
731 !0 = metadata !{metadata !"zero"}
732 !1 = metadata !{metadata !"one"}
733 !2 = metadata !{metadata !"two"}
734 ; A named metadata.
735 !name = !{!0, !1, !2}
736
737.. _paramattrs:
738
739Parameter Attributes
740--------------------
741
742The return type and each parameter of a function type may have a set of
743*parameter attributes* associated with them. Parameter attributes are
744used to communicate additional information about the result or
745parameters of a function. Parameter attributes are considered to be part
746of the function, not of the function type, so functions with different
747parameter attributes can have the same function type.
748
749Parameter attributes are simple keywords that follow the type specified.
750If multiple parameter attributes are needed, they are space separated.
751For example:
752
753.. code-block:: llvm
754
755 declare i32 @printf(i8* noalias nocapture, ...)
756 declare i32 @atoi(i8 zeroext)
757 declare signext i8 @returns_signed_char()
758
759Note that any attributes for the function result (``nounwind``,
760``readonly``) come immediately after the argument list.
761
762Currently, only the following parameter attributes are defined:
763
764``zeroext``
765 This indicates to the code generator that the parameter or return
766 value should be zero-extended to the extent required by the target's
767 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
768 the caller (for a parameter) or the callee (for a return value).
769``signext``
770 This indicates to the code generator that the parameter or return
771 value should be sign-extended to the extent required by the target's
772 ABI (which is usually 32-bits) by the caller (for a parameter) or
773 the callee (for a return value).
774``inreg``
775 This indicates that this parameter or return value should be treated
776 in a special target-dependent fashion during while emitting code for
777 a function call or return (usually, by putting it in a register as
778 opposed to memory, though some targets use it to distinguish between
779 two different kinds of registers). Use of this attribute is
780 target-specific.
781``byval``
782 This indicates that the pointer parameter should really be passed by
783 value to the function. The attribute implies that a hidden copy of
784 the pointee is made between the caller and the callee, so the callee
785 is unable to modify the value in the caller. This attribute is only
786 valid on LLVM pointer arguments. It is generally used to pass
787 structs and arrays by value, but is also valid on pointers to
788 scalars. The copy is considered to belong to the caller not the
789 callee (for example, ``readonly`` functions should not write to
790 ``byval`` parameters). This is not a valid attribute for return
791 values.
792
793 The byval attribute also supports specifying an alignment with the
794 align attribute. It indicates the alignment of the stack slot to
795 form and the known alignment of the pointer specified to the call
796 site. If the alignment is not specified, then the code generator
797 makes a target-specific assumption.
798
Reid Klecknera534a382013-12-19 02:14:12 +0000799.. _attr_inalloca:
800
801``inalloca``
802
Reid Kleckner60d3a832014-01-16 22:59:24 +0000803 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000804 address of outgoing stack arguments. An ``inalloca`` argument must
805 be a pointer to stack memory produced by an ``alloca`` instruction.
806 The alloca, or argument allocation, must also be tagged with the
807 inalloca keyword. Only the past argument may have the ``inalloca``
808 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000809
Reid Kleckner436c42e2014-01-17 23:58:17 +0000810 An argument allocation may be used by a call at most once because
811 the call may deallocate it. The ``inalloca`` attribute cannot be
812 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000813 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
814 ``inalloca`` attribute also disables LLVM's implicit lowering of
815 large aggregate return values, which means that frontend authors
816 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000817
Reid Kleckner60d3a832014-01-16 22:59:24 +0000818 When the call site is reached, the argument allocation must have
819 been the most recent stack allocation that is still live, or the
820 results are undefined. It is possible to allocate additional stack
821 space after an argument allocation and before its call site, but it
822 must be cleared off with :ref:`llvm.stackrestore
823 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000824
825 See :doc:`InAlloca` for more information on how to use this
826 attribute.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828``sret``
829 This indicates that the pointer parameter specifies the address of a
830 structure that is the return value of the function in the source
831 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000832 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000833 not to trap and to be properly aligned. This may only be applied to
834 the first parameter. This is not a valid attribute for return
835 values.
Sean Silva1703e702014-04-08 21:06:22 +0000836
837.. _noalias:
838
Sean Silvab084af42012-12-07 10:36:55 +0000839``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000840 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000841 the argument or return value do not alias pointer values which are
842 not *based* on it, ignoring certain "irrelevant" dependencies. For a
843 call to the parent function, dependencies between memory references
844 from before or after the call and from those during the call are
845 "irrelevant" to the ``noalias`` keyword for the arguments and return
846 value used in that call. The caller shares the responsibility with
847 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000848 details, please see the discussion of the NoAlias response in :ref:`alias
849 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000850
851 Note that this definition of ``noalias`` is intentionally similar
852 to the definition of ``restrict`` in C99 for function arguments,
853 though it is slightly weaker.
854
855 For function return values, C99's ``restrict`` is not meaningful,
856 while LLVM's ``noalias`` is.
857``nocapture``
858 This indicates that the callee does not make any copies of the
859 pointer that outlive the callee itself. This is not a valid
860 attribute for return values.
861
862.. _nest:
863
864``nest``
865 This indicates that the pointer parameter can be excised using the
866 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000867 attribute for return values and can only be applied to one parameter.
868
869``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000870 This indicates that the function always returns the argument as its return
871 value. This is an optimization hint to the code generator when generating
872 the caller, allowing tail call optimization and omission of register saves
873 and restores in some cases; it is not checked or enforced when generating
874 the callee. The parameter and the function return type must be valid
875 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
876 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000877
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000878``nonnull``
879 This indicates that the parameter or return pointer is not null. This
880 attribute may only be applied to pointer typed parameters. This is not
881 checked or enforced by LLVM, the caller must ensure that the pointer
882 passed in is non-null, or the callee must ensure that the returned pointer
883 is non-null.
884
Sean Silvab084af42012-12-07 10:36:55 +0000885.. _gc:
886
887Garbage Collector Names
888-----------------------
889
890Each function may specify a garbage collector name, which is simply a
891string:
892
893.. code-block:: llvm
894
895 define void @f() gc "name" { ... }
896
897The compiler declares the supported values of *name*. Specifying a
898collector which will cause the compiler to alter its output in order to
899support the named garbage collection algorithm.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901.. _prefixdata:
902
903Prefix Data
904-----------
905
906Prefix data is data associated with a function which the code generator
907will emit immediately before the function body. The purpose of this feature
908is to allow frontends to associate language-specific runtime metadata with
909specific functions and make it available through the function pointer while
910still allowing the function pointer to be called. To access the data for a
911given function, a program may bitcast the function pointer to a pointer to
912the constant's type. This implies that the IR symbol points to the start
913of the prefix data.
914
915To maintain the semantics of ordinary function calls, the prefix data must
916have a particular format. Specifically, it must begin with a sequence of
917bytes which decode to a sequence of machine instructions, valid for the
918module's target, which transfer control to the point immediately succeeding
919the prefix data, without performing any other visible action. This allows
920the inliner and other passes to reason about the semantics of the function
921definition without needing to reason about the prefix data. Obviously this
922makes the format of the prefix data highly target dependent.
923
Peter Collingbourne213358a2013-09-23 20:14:21 +0000924Prefix data is laid out as if it were an initializer for a global variable
925of the prefix data's type. No padding is automatically placed between the
926prefix data and the function body. If padding is required, it must be part
927of the prefix data.
928
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000929A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
930which encodes the ``nop`` instruction:
931
932.. code-block:: llvm
933
934 define void @f() prefix i8 144 { ... }
935
936Generally prefix data can be formed by encoding a relative branch instruction
937which skips the metadata, as in this example of valid prefix data for the
938x86_64 architecture, where the first two bytes encode ``jmp .+10``:
939
940.. code-block:: llvm
941
942 %0 = type <{ i8, i8, i8* }>
943
944 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
945
946A function may have prefix data but no body. This has similar semantics
947to the ``available_externally`` linkage in that the data may be used by the
948optimizers but will not be emitted in the object file.
949
Bill Wendling63b88192013-02-06 06:52:58 +0000950.. _attrgrp:
951
952Attribute Groups
953----------------
954
955Attribute groups are groups of attributes that are referenced by objects within
956the IR. They are important for keeping ``.ll`` files readable, because a lot of
957functions will use the same set of attributes. In the degenerative case of a
958``.ll`` file that corresponds to a single ``.c`` file, the single attribute
959group will capture the important command line flags used to build that file.
960
961An attribute group is a module-level object. To use an attribute group, an
962object references the attribute group's ID (e.g. ``#37``). An object may refer
963to more than one attribute group. In that situation, the attributes from the
964different groups are merged.
965
966Here is an example of attribute groups for a function that should always be
967inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
968
969.. code-block:: llvm
970
971 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000972 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000973
974 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000975 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000976
977 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
978 define void @f() #0 #1 { ... }
979
Sean Silvab084af42012-12-07 10:36:55 +0000980.. _fnattrs:
981
982Function Attributes
983-------------------
984
985Function attributes are set to communicate additional information about
986a function. Function attributes are considered to be part of the
987function, not of the function type, so functions with different function
988attributes can have the same function type.
989
990Function attributes are simple keywords that follow the type specified.
991If multiple attributes are needed, they are space separated. For
992example:
993
994.. code-block:: llvm
995
996 define void @f() noinline { ... }
997 define void @f() alwaysinline { ... }
998 define void @f() alwaysinline optsize { ... }
999 define void @f() optsize { ... }
1000
Sean Silvab084af42012-12-07 10:36:55 +00001001``alignstack(<n>)``
1002 This attribute indicates that, when emitting the prologue and
1003 epilogue, the backend should forcibly align the stack pointer.
1004 Specify the desired alignment, which must be a power of two, in
1005 parentheses.
1006``alwaysinline``
1007 This attribute indicates that the inliner should attempt to inline
1008 this function into callers whenever possible, ignoring any active
1009 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001010``builtin``
1011 This indicates that the callee function at a call site should be
1012 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001013 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001014 direct calls to functions which are declared with the ``nobuiltin``
1015 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001016``cold``
1017 This attribute indicates that this function is rarely called. When
1018 computing edge weights, basic blocks post-dominated by a cold
1019 function call are also considered to be cold; and, thus, given low
1020 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001021``inlinehint``
1022 This attribute indicates that the source code contained a hint that
1023 inlining this function is desirable (such as the "inline" keyword in
1024 C/C++). It is just a hint; it imposes no requirements on the
1025 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001026``jumptable``
1027 This attribute indicates that the function should be added to a
1028 jump-instruction table at code-generation time, and that all address-taken
1029 references to this function should be replaced with a reference to the
1030 appropriate jump-instruction-table function pointer. Note that this creates
1031 a new pointer for the original function, which means that code that depends
1032 on function-pointer identity can break. So, any function annotated with
1033 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001034``minsize``
1035 This attribute suggests that optimization passes and code generator
1036 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001037 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001038 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001039``naked``
1040 This attribute disables prologue / epilogue emission for the
1041 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001042``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001043 This indicates that the callee function at a call site is not recognized as
1044 a built-in function. LLVM will retain the original call and not replace it
1045 with equivalent code based on the semantics of the built-in function, unless
1046 the call site uses the ``builtin`` attribute. This is valid at call sites
1047 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001048``noduplicate``
1049 This attribute indicates that calls to the function cannot be
1050 duplicated. A call to a ``noduplicate`` function may be moved
1051 within its parent function, but may not be duplicated within
1052 its parent function.
1053
1054 A function containing a ``noduplicate`` call may still
1055 be an inlining candidate, provided that the call is not
1056 duplicated by inlining. That implies that the function has
1057 internal linkage and only has one call site, so the original
1058 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001059``noimplicitfloat``
1060 This attributes disables implicit floating point instructions.
1061``noinline``
1062 This attribute indicates that the inliner should never inline this
1063 function in any situation. This attribute may not be used together
1064 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001065``nonlazybind``
1066 This attribute suppresses lazy symbol binding for the function. This
1067 may make calls to the function faster, at the cost of extra program
1068 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001069``noredzone``
1070 This attribute indicates that the code generator should not use a
1071 red zone, even if the target-specific ABI normally permits it.
1072``noreturn``
1073 This function attribute indicates that the function never returns
1074 normally. This produces undefined behavior at runtime if the
1075 function ever does dynamically return.
1076``nounwind``
1077 This function attribute indicates that the function never returns
1078 with an unwind or exceptional control flow. If the function does
1079 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001080``optnone``
1081 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001082 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001083 exception of interprocedural optimization passes.
1084 This attribute cannot be used together with the ``alwaysinline``
1085 attribute; this attribute is also incompatible
1086 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001087
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001088 This attribute requires the ``noinline`` attribute to be specified on
1089 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001090 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001091 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001092``optsize``
1093 This attribute suggests that optimization passes and code generator
1094 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001095 and otherwise do optimizations specifically to reduce code size as
1096 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001097``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001098 On a function, this attribute indicates that the function computes its
1099 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001100 without dereferencing any pointer arguments or otherwise accessing
1101 any mutable state (e.g. memory, control registers, etc) visible to
1102 caller functions. It does not write through any pointer arguments
1103 (including ``byval`` arguments) and never changes any state visible
1104 to callers. This means that it cannot unwind exceptions by calling
1105 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001106
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001107 On an argument, this attribute indicates that the function does not
1108 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001109 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001110``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001111 On a function, this attribute indicates that the function does not write
1112 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001113 modify any state (e.g. memory, control registers, etc) visible to
1114 caller functions. It may dereference pointer arguments and read
1115 state that may be set in the caller. A readonly function always
1116 returns the same value (or unwinds an exception identically) when
1117 called with the same set of arguments and global state. It cannot
1118 unwind an exception by calling the ``C++`` exception throwing
1119 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001120
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001121 On an argument, this attribute indicates that the function does not write
1122 through this pointer argument, even though it may write to the memory that
1123 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001124``returns_twice``
1125 This attribute indicates that this function can return twice. The C
1126 ``setjmp`` is an example of such a function. The compiler disables
1127 some optimizations (like tail calls) in the caller of these
1128 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001129``sanitize_address``
1130 This attribute indicates that AddressSanitizer checks
1131 (dynamic address safety analysis) are enabled for this function.
1132``sanitize_memory``
1133 This attribute indicates that MemorySanitizer checks (dynamic detection
1134 of accesses to uninitialized memory) are enabled for this function.
1135``sanitize_thread``
1136 This attribute indicates that ThreadSanitizer checks
1137 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001138``ssp``
1139 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001140 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001141 placed on the stack before the local variables that's checked upon
1142 return from the function to see if it has been overwritten. A
1143 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001144 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001145
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001146 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1147 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1148 - Calls to alloca() with variable sizes or constant sizes greater than
1149 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001150
Josh Magee24c7f062014-02-01 01:36:16 +00001151 Variables that are identified as requiring a protector will be arranged
1152 on the stack such that they are adjacent to the stack protector guard.
1153
Sean Silvab084af42012-12-07 10:36:55 +00001154 If a function that has an ``ssp`` attribute is inlined into a
1155 function that doesn't have an ``ssp`` attribute, then the resulting
1156 function will have an ``ssp`` attribute.
1157``sspreq``
1158 This attribute indicates that the function should *always* emit a
1159 stack smashing protector. This overrides the ``ssp`` function
1160 attribute.
1161
Josh Magee24c7f062014-02-01 01:36:16 +00001162 Variables that are identified as requiring a protector will be arranged
1163 on the stack such that they are adjacent to the stack protector guard.
1164 The specific layout rules are:
1165
1166 #. Large arrays and structures containing large arrays
1167 (``>= ssp-buffer-size``) are closest to the stack protector.
1168 #. Small arrays and structures containing small arrays
1169 (``< ssp-buffer-size``) are 2nd closest to the protector.
1170 #. Variables that have had their address taken are 3rd closest to the
1171 protector.
1172
Sean Silvab084af42012-12-07 10:36:55 +00001173 If a function that has an ``sspreq`` attribute is inlined into a
1174 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001175 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1176 an ``sspreq`` attribute.
1177``sspstrong``
1178 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001179 protector. This attribute causes a strong heuristic to be used when
1180 determining if a function needs stack protectors. The strong heuristic
1181 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001182
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001183 - Arrays of any size and type
1184 - Aggregates containing an array of any size and type.
1185 - Calls to alloca().
1186 - Local variables that have had their address taken.
1187
Josh Magee24c7f062014-02-01 01:36:16 +00001188 Variables that are identified as requiring a protector will be arranged
1189 on the stack such that they are adjacent to the stack protector guard.
1190 The specific layout rules are:
1191
1192 #. Large arrays and structures containing large arrays
1193 (``>= ssp-buffer-size``) are closest to the stack protector.
1194 #. Small arrays and structures containing small arrays
1195 (``< ssp-buffer-size``) are 2nd closest to the protector.
1196 #. Variables that have had their address taken are 3rd closest to the
1197 protector.
1198
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001199 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001200
1201 If a function that has an ``sspstrong`` attribute is inlined into a
1202 function that doesn't have an ``sspstrong`` attribute, then the
1203 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001204``uwtable``
1205 This attribute indicates that the ABI being targeted requires that
1206 an unwind table entry be produce for this function even if we can
1207 show that no exceptions passes by it. This is normally the case for
1208 the ELF x86-64 abi, but it can be disabled for some compilation
1209 units.
Sean Silvab084af42012-12-07 10:36:55 +00001210
1211.. _moduleasm:
1212
1213Module-Level Inline Assembly
1214----------------------------
1215
1216Modules may contain "module-level inline asm" blocks, which corresponds
1217to the GCC "file scope inline asm" blocks. These blocks are internally
1218concatenated by LLVM and treated as a single unit, but may be separated
1219in the ``.ll`` file if desired. The syntax is very simple:
1220
1221.. code-block:: llvm
1222
1223 module asm "inline asm code goes here"
1224 module asm "more can go here"
1225
1226The strings can contain any character by escaping non-printable
1227characters. The escape sequence used is simply "\\xx" where "xx" is the
1228two digit hex code for the number.
1229
1230The inline asm code is simply printed to the machine code .s file when
1231assembly code is generated.
1232
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001233.. _langref_datalayout:
1234
Sean Silvab084af42012-12-07 10:36:55 +00001235Data Layout
1236-----------
1237
1238A module may specify a target specific data layout string that specifies
1239how data is to be laid out in memory. The syntax for the data layout is
1240simply:
1241
1242.. code-block:: llvm
1243
1244 target datalayout = "layout specification"
1245
1246The *layout specification* consists of a list of specifications
1247separated by the minus sign character ('-'). Each specification starts
1248with a letter and may include other information after the letter to
1249define some aspect of the data layout. The specifications accepted are
1250as follows:
1251
1252``E``
1253 Specifies that the target lays out data in big-endian form. That is,
1254 the bits with the most significance have the lowest address
1255 location.
1256``e``
1257 Specifies that the target lays out data in little-endian form. That
1258 is, the bits with the least significance have the lowest address
1259 location.
1260``S<size>``
1261 Specifies the natural alignment of the stack in bits. Alignment
1262 promotion of stack variables is limited to the natural stack
1263 alignment to avoid dynamic stack realignment. The stack alignment
1264 must be a multiple of 8-bits. If omitted, the natural stack
1265 alignment defaults to "unspecified", which does not prevent any
1266 alignment promotions.
1267``p[n]:<size>:<abi>:<pref>``
1268 This specifies the *size* of a pointer and its ``<abi>`` and
1269 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001270 bits. The address space, ``n`` is optional, and if not specified,
1271 denotes the default address space 0. The value of ``n`` must be
1272 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001273``i<size>:<abi>:<pref>``
1274 This specifies the alignment for an integer type of a given bit
1275 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1276``v<size>:<abi>:<pref>``
1277 This specifies the alignment for a vector type of a given bit
1278 ``<size>``.
1279``f<size>:<abi>:<pref>``
1280 This specifies the alignment for a floating point type of a given bit
1281 ``<size>``. Only values of ``<size>`` that are supported by the target
1282 will work. 32 (float) and 64 (double) are supported on all targets; 80
1283 or 128 (different flavors of long double) are also supported on some
1284 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001285``a:<abi>:<pref>``
1286 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001287``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001288 If present, specifies that llvm names are mangled in the output. The
1289 options are
1290
1291 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1292 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1293 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1294 symbols get a ``_`` prefix.
1295 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1296 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001297``n<size1>:<size2>:<size3>...``
1298 This specifies a set of native integer widths for the target CPU in
1299 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1300 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1301 this set are considered to support most general arithmetic operations
1302 efficiently.
1303
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001304On every specification that takes a ``<abi>:<pref>``, specifying the
1305``<pref>`` alignment is optional. If omitted, the preceding ``:``
1306should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1307
Sean Silvab084af42012-12-07 10:36:55 +00001308When constructing the data layout for a given target, LLVM starts with a
1309default set of specifications which are then (possibly) overridden by
1310the specifications in the ``datalayout`` keyword. The default
1311specifications are given in this list:
1312
1313- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001314- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1315- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1316 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001317- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001318- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1319- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1320- ``i16:16:16`` - i16 is 16-bit aligned
1321- ``i32:32:32`` - i32 is 32-bit aligned
1322- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1323 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001324- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001325- ``f32:32:32`` - float is 32-bit aligned
1326- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001327- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001328- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1329- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001330- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001331
1332When LLVM is determining the alignment for a given type, it uses the
1333following rules:
1334
1335#. If the type sought is an exact match for one of the specifications,
1336 that specification is used.
1337#. If no match is found, and the type sought is an integer type, then
1338 the smallest integer type that is larger than the bitwidth of the
1339 sought type is used. If none of the specifications are larger than
1340 the bitwidth then the largest integer type is used. For example,
1341 given the default specifications above, the i7 type will use the
1342 alignment of i8 (next largest) while both i65 and i256 will use the
1343 alignment of i64 (largest specified).
1344#. If no match is found, and the type sought is a vector type, then the
1345 largest vector type that is smaller than the sought vector type will
1346 be used as a fall back. This happens because <128 x double> can be
1347 implemented in terms of 64 <2 x double>, for example.
1348
1349The function of the data layout string may not be what you expect.
1350Notably, this is not a specification from the frontend of what alignment
1351the code generator should use.
1352
1353Instead, if specified, the target data layout is required to match what
1354the ultimate *code generator* expects. This string is used by the
1355mid-level optimizers to improve code, and this only works if it matches
1356what the ultimate code generator uses. If you would like to generate IR
1357that does not embed this target-specific detail into the IR, then you
1358don't have to specify the string. This will disable some optimizations
1359that require precise layout information, but this also prevents those
1360optimizations from introducing target specificity into the IR.
1361
Bill Wendling5cc90842013-10-18 23:41:25 +00001362.. _langref_triple:
1363
1364Target Triple
1365-------------
1366
1367A module may specify a target triple string that describes the target
1368host. The syntax for the target triple is simply:
1369
1370.. code-block:: llvm
1371
1372 target triple = "x86_64-apple-macosx10.7.0"
1373
1374The *target triple* string consists of a series of identifiers delimited
1375by the minus sign character ('-'). The canonical forms are:
1376
1377::
1378
1379 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1380 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1381
1382This information is passed along to the backend so that it generates
1383code for the proper architecture. It's possible to override this on the
1384command line with the ``-mtriple`` command line option.
1385
Sean Silvab084af42012-12-07 10:36:55 +00001386.. _pointeraliasing:
1387
1388Pointer Aliasing Rules
1389----------------------
1390
1391Any memory access must be done through a pointer value associated with
1392an address range of the memory access, otherwise the behavior is
1393undefined. Pointer values are associated with address ranges according
1394to the following rules:
1395
1396- A pointer value is associated with the addresses associated with any
1397 value it is *based* on.
1398- An address of a global variable is associated with the address range
1399 of the variable's storage.
1400- The result value of an allocation instruction is associated with the
1401 address range of the allocated storage.
1402- A null pointer in the default address-space is associated with no
1403 address.
1404- An integer constant other than zero or a pointer value returned from
1405 a function not defined within LLVM may be associated with address
1406 ranges allocated through mechanisms other than those provided by
1407 LLVM. Such ranges shall not overlap with any ranges of addresses
1408 allocated by mechanisms provided by LLVM.
1409
1410A pointer value is *based* on another pointer value according to the
1411following rules:
1412
1413- A pointer value formed from a ``getelementptr`` operation is *based*
1414 on the first operand of the ``getelementptr``.
1415- The result value of a ``bitcast`` is *based* on the operand of the
1416 ``bitcast``.
1417- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1418 values that contribute (directly or indirectly) to the computation of
1419 the pointer's value.
1420- The "*based* on" relationship is transitive.
1421
1422Note that this definition of *"based"* is intentionally similar to the
1423definition of *"based"* in C99, though it is slightly weaker.
1424
1425LLVM IR does not associate types with memory. The result type of a
1426``load`` merely indicates the size and alignment of the memory from
1427which to load, as well as the interpretation of the value. The first
1428operand type of a ``store`` similarly only indicates the size and
1429alignment of the store.
1430
1431Consequently, type-based alias analysis, aka TBAA, aka
1432``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1433:ref:`Metadata <metadata>` may be used to encode additional information
1434which specialized optimization passes may use to implement type-based
1435alias analysis.
1436
1437.. _volatile:
1438
1439Volatile Memory Accesses
1440------------------------
1441
1442Certain memory accesses, such as :ref:`load <i_load>`'s,
1443:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1444marked ``volatile``. The optimizers must not change the number of
1445volatile operations or change their order of execution relative to other
1446volatile operations. The optimizers *may* change the order of volatile
1447operations relative to non-volatile operations. This is not Java's
1448"volatile" and has no cross-thread synchronization behavior.
1449
Andrew Trick89fc5a62013-01-30 21:19:35 +00001450IR-level volatile loads and stores cannot safely be optimized into
1451llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1452flagged volatile. Likewise, the backend should never split or merge
1453target-legal volatile load/store instructions.
1454
Andrew Trick7e6f9282013-01-31 00:49:39 +00001455.. admonition:: Rationale
1456
1457 Platforms may rely on volatile loads and stores of natively supported
1458 data width to be executed as single instruction. For example, in C
1459 this holds for an l-value of volatile primitive type with native
1460 hardware support, but not necessarily for aggregate types. The
1461 frontend upholds these expectations, which are intentionally
1462 unspecified in the IR. The rules above ensure that IR transformation
1463 do not violate the frontend's contract with the language.
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465.. _memmodel:
1466
1467Memory Model for Concurrent Operations
1468--------------------------------------
1469
1470The LLVM IR does not define any way to start parallel threads of
1471execution or to register signal handlers. Nonetheless, there are
1472platform-specific ways to create them, and we define LLVM IR's behavior
1473in their presence. This model is inspired by the C++0x memory model.
1474
1475For a more informal introduction to this model, see the :doc:`Atomics`.
1476
1477We define a *happens-before* partial order as the least partial order
1478that
1479
1480- Is a superset of single-thread program order, and
1481- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1482 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1483 techniques, like pthread locks, thread creation, thread joining,
1484 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1485 Constraints <ordering>`).
1486
1487Note that program order does not introduce *happens-before* edges
1488between a thread and signals executing inside that thread.
1489
1490Every (defined) read operation (load instructions, memcpy, atomic
1491loads/read-modify-writes, etc.) R reads a series of bytes written by
1492(defined) write operations (store instructions, atomic
1493stores/read-modify-writes, memcpy, etc.). For the purposes of this
1494section, initialized globals are considered to have a write of the
1495initializer which is atomic and happens before any other read or write
1496of the memory in question. For each byte of a read R, R\ :sub:`byte`
1497may see any write to the same byte, except:
1498
1499- If write\ :sub:`1` happens before write\ :sub:`2`, and
1500 write\ :sub:`2` happens before R\ :sub:`byte`, then
1501 R\ :sub:`byte` does not see write\ :sub:`1`.
1502- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1503 R\ :sub:`byte` does not see write\ :sub:`3`.
1504
1505Given that definition, R\ :sub:`byte` is defined as follows:
1506
1507- If R is volatile, the result is target-dependent. (Volatile is
1508 supposed to give guarantees which can support ``sig_atomic_t`` in
1509 C/C++, and may be used for accesses to addresses which do not behave
1510 like normal memory. It does not generally provide cross-thread
1511 synchronization.)
1512- Otherwise, if there is no write to the same byte that happens before
1513 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1514- Otherwise, if R\ :sub:`byte` may see exactly one write,
1515 R\ :sub:`byte` returns the value written by that write.
1516- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1517 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1518 Memory Ordering Constraints <ordering>` section for additional
1519 constraints on how the choice is made.
1520- Otherwise R\ :sub:`byte` returns ``undef``.
1521
1522R returns the value composed of the series of bytes it read. This
1523implies that some bytes within the value may be ``undef`` **without**
1524the entire value being ``undef``. Note that this only defines the
1525semantics of the operation; it doesn't mean that targets will emit more
1526than one instruction to read the series of bytes.
1527
1528Note that in cases where none of the atomic intrinsics are used, this
1529model places only one restriction on IR transformations on top of what
1530is required for single-threaded execution: introducing a store to a byte
1531which might not otherwise be stored is not allowed in general.
1532(Specifically, in the case where another thread might write to and read
1533from an address, introducing a store can change a load that may see
1534exactly one write into a load that may see multiple writes.)
1535
1536.. _ordering:
1537
1538Atomic Memory Ordering Constraints
1539----------------------------------
1540
1541Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1542:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1543:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001544ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001545the same address they *synchronize with*. These semantics are borrowed
1546from Java and C++0x, but are somewhat more colloquial. If these
1547descriptions aren't precise enough, check those specs (see spec
1548references in the :doc:`atomics guide <Atomics>`).
1549:ref:`fence <i_fence>` instructions treat these orderings somewhat
1550differently since they don't take an address. See that instruction's
1551documentation for details.
1552
1553For a simpler introduction to the ordering constraints, see the
1554:doc:`Atomics`.
1555
1556``unordered``
1557 The set of values that can be read is governed by the happens-before
1558 partial order. A value cannot be read unless some operation wrote
1559 it. This is intended to provide a guarantee strong enough to model
1560 Java's non-volatile shared variables. This ordering cannot be
1561 specified for read-modify-write operations; it is not strong enough
1562 to make them atomic in any interesting way.
1563``monotonic``
1564 In addition to the guarantees of ``unordered``, there is a single
1565 total order for modifications by ``monotonic`` operations on each
1566 address. All modification orders must be compatible with the
1567 happens-before order. There is no guarantee that the modification
1568 orders can be combined to a global total order for the whole program
1569 (and this often will not be possible). The read in an atomic
1570 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1571 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1572 order immediately before the value it writes. If one atomic read
1573 happens before another atomic read of the same address, the later
1574 read must see the same value or a later value in the address's
1575 modification order. This disallows reordering of ``monotonic`` (or
1576 stronger) operations on the same address. If an address is written
1577 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1578 read that address repeatedly, the other threads must eventually see
1579 the write. This corresponds to the C++0x/C1x
1580 ``memory_order_relaxed``.
1581``acquire``
1582 In addition to the guarantees of ``monotonic``, a
1583 *synchronizes-with* edge may be formed with a ``release`` operation.
1584 This is intended to model C++'s ``memory_order_acquire``.
1585``release``
1586 In addition to the guarantees of ``monotonic``, if this operation
1587 writes a value which is subsequently read by an ``acquire``
1588 operation, it *synchronizes-with* that operation. (This isn't a
1589 complete description; see the C++0x definition of a release
1590 sequence.) This corresponds to the C++0x/C1x
1591 ``memory_order_release``.
1592``acq_rel`` (acquire+release)
1593 Acts as both an ``acquire`` and ``release`` operation on its
1594 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1595``seq_cst`` (sequentially consistent)
1596 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1597 operation which only reads, ``release`` for an operation which only
1598 writes), there is a global total order on all
1599 sequentially-consistent operations on all addresses, which is
1600 consistent with the *happens-before* partial order and with the
1601 modification orders of all the affected addresses. Each
1602 sequentially-consistent read sees the last preceding write to the
1603 same address in this global order. This corresponds to the C++0x/C1x
1604 ``memory_order_seq_cst`` and Java volatile.
1605
1606.. _singlethread:
1607
1608If an atomic operation is marked ``singlethread``, it only *synchronizes
1609with* or participates in modification and seq\_cst total orderings with
1610other operations running in the same thread (for example, in signal
1611handlers).
1612
1613.. _fastmath:
1614
1615Fast-Math Flags
1616---------------
1617
1618LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1619:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1620:ref:`frem <i_frem>`) have the following flags that can set to enable
1621otherwise unsafe floating point operations
1622
1623``nnan``
1624 No NaNs - Allow optimizations to assume the arguments and result are not
1625 NaN. Such optimizations are required to retain defined behavior over
1626 NaNs, but the value of the result is undefined.
1627
1628``ninf``
1629 No Infs - Allow optimizations to assume the arguments and result are not
1630 +/-Inf. Such optimizations are required to retain defined behavior over
1631 +/-Inf, but the value of the result is undefined.
1632
1633``nsz``
1634 No Signed Zeros - Allow optimizations to treat the sign of a zero
1635 argument or result as insignificant.
1636
1637``arcp``
1638 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1639 argument rather than perform division.
1640
1641``fast``
1642 Fast - Allow algebraically equivalent transformations that may
1643 dramatically change results in floating point (e.g. reassociate). This
1644 flag implies all the others.
1645
1646.. _typesystem:
1647
1648Type System
1649===========
1650
1651The LLVM type system is one of the most important features of the
1652intermediate representation. Being typed enables a number of
1653optimizations to be performed on the intermediate representation
1654directly, without having to do extra analyses on the side before the
1655transformation. A strong type system makes it easier to read the
1656generated code and enables novel analyses and transformations that are
1657not feasible to perform on normal three address code representations.
1658
Rafael Espindola08013342013-12-07 19:34:20 +00001659.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001660
Rafael Espindola08013342013-12-07 19:34:20 +00001661Void Type
1662---------
Sean Silvab084af42012-12-07 10:36:55 +00001663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001664:Overview:
1665
Rafael Espindola08013342013-12-07 19:34:20 +00001666
1667The void type does not represent any value and has no size.
1668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Syntax:
1670
Rafael Espindola08013342013-12-07 19:34:20 +00001671
1672::
1673
1674 void
Sean Silvab084af42012-12-07 10:36:55 +00001675
1676
Rafael Espindola08013342013-12-07 19:34:20 +00001677.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001678
Rafael Espindola08013342013-12-07 19:34:20 +00001679Function Type
1680-------------
Sean Silvab084af42012-12-07 10:36:55 +00001681
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001682:Overview:
1683
Sean Silvab084af42012-12-07 10:36:55 +00001684
Rafael Espindola08013342013-12-07 19:34:20 +00001685The function type can be thought of as a function signature. It consists of a
1686return type and a list of formal parameter types. The return type of a function
1687type is a void type or first class type --- except for :ref:`label <t_label>`
1688and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001690:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001691
Rafael Espindola08013342013-12-07 19:34:20 +00001692::
Sean Silvab084af42012-12-07 10:36:55 +00001693
Rafael Espindola08013342013-12-07 19:34:20 +00001694 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001695
Rafael Espindola08013342013-12-07 19:34:20 +00001696...where '``<parameter list>``' is a comma-separated list of type
1697specifiers. Optionally, the parameter list may include a type ``...``, which
1698indicates that the function takes a variable number of arguments. Variable
1699argument functions can access their arguments with the :ref:`variable argument
1700handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1701except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001703:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001704
Rafael Espindola08013342013-12-07 19:34:20 +00001705+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1706| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1707+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1708| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1709+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1711+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1712| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1713+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1714
1715.. _t_firstclass:
1716
1717First Class Types
1718-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001719
1720The :ref:`first class <t_firstclass>` types are perhaps the most important.
1721Values of these types are the only ones which can be produced by
1722instructions.
1723
Rafael Espindola08013342013-12-07 19:34:20 +00001724.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001725
Rafael Espindola08013342013-12-07 19:34:20 +00001726Single Value Types
1727^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001728
Rafael Espindola08013342013-12-07 19:34:20 +00001729These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001730
1731.. _t_integer:
1732
1733Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001734""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001735
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001736:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001737
1738The integer type is a very simple type that simply specifies an
1739arbitrary bit width for the integer type desired. Any bit width from 1
1740bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1741
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001742:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001743
1744::
1745
1746 iN
1747
1748The number of bits the integer will occupy is specified by the ``N``
1749value.
1750
1751Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001752*********
Sean Silvab084af42012-12-07 10:36:55 +00001753
1754+----------------+------------------------------------------------+
1755| ``i1`` | a single-bit integer. |
1756+----------------+------------------------------------------------+
1757| ``i32`` | a 32-bit integer. |
1758+----------------+------------------------------------------------+
1759| ``i1942652`` | a really big integer of over 1 million bits. |
1760+----------------+------------------------------------------------+
1761
1762.. _t_floating:
1763
1764Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001765""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001766
1767.. list-table::
1768 :header-rows: 1
1769
1770 * - Type
1771 - Description
1772
1773 * - ``half``
1774 - 16-bit floating point value
1775
1776 * - ``float``
1777 - 32-bit floating point value
1778
1779 * - ``double``
1780 - 64-bit floating point value
1781
1782 * - ``fp128``
1783 - 128-bit floating point value (112-bit mantissa)
1784
1785 * - ``x86_fp80``
1786 - 80-bit floating point value (X87)
1787
1788 * - ``ppc_fp128``
1789 - 128-bit floating point value (two 64-bits)
1790
Reid Kleckner9a16d082014-03-05 02:41:37 +00001791X86_mmx Type
1792""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001795
Reid Kleckner9a16d082014-03-05 02:41:37 +00001796The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001797machine. The operations allowed on it are quite limited: parameters and
1798return values, load and store, and bitcast. User-specified MMX
1799instructions are represented as intrinsic or asm calls with arguments
1800and/or results of this type. There are no arrays, vectors or constants
1801of this type.
1802
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001803:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001804
1805::
1806
Reid Kleckner9a16d082014-03-05 02:41:37 +00001807 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001808
Sean Silvab084af42012-12-07 10:36:55 +00001809
Rafael Espindola08013342013-12-07 19:34:20 +00001810.. _t_pointer:
1811
1812Pointer Type
1813""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001814
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001815:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001816
Rafael Espindola08013342013-12-07 19:34:20 +00001817The pointer type is used to specify memory locations. Pointers are
1818commonly used to reference objects in memory.
1819
1820Pointer types may have an optional address space attribute defining the
1821numbered address space where the pointed-to object resides. The default
1822address space is number zero. The semantics of non-zero address spaces
1823are target-specific.
1824
1825Note that LLVM does not permit pointers to void (``void*``) nor does it
1826permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001829
1830::
1831
Rafael Espindola08013342013-12-07 19:34:20 +00001832 <type> *
1833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001835
1836+-------------------------+--------------------------------------------------------------------------------------------------------------+
1837| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1838+-------------------------+--------------------------------------------------------------------------------------------------------------+
1839| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1840+-------------------------+--------------------------------------------------------------------------------------------------------------+
1841| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1842+-------------------------+--------------------------------------------------------------------------------------------------------------+
1843
1844.. _t_vector:
1845
1846Vector Type
1847"""""""""""
1848
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001849:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001850
1851A vector type is a simple derived type that represents a vector of
1852elements. Vector types are used when multiple primitive data are
1853operated in parallel using a single instruction (SIMD). A vector type
1854requires a size (number of elements) and an underlying primitive data
1855type. Vector types are considered :ref:`first class <t_firstclass>`.
1856
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001857:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001858
1859::
1860
1861 < <# elements> x <elementtype> >
1862
1863The number of elements is a constant integer value larger than 0;
1864elementtype may be any integer or floating point type, or a pointer to
1865these types. Vectors of size zero are not allowed.
1866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001868
1869+-------------------+--------------------------------------------------+
1870| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1871+-------------------+--------------------------------------------------+
1872| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1873+-------------------+--------------------------------------------------+
1874| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1875+-------------------+--------------------------------------------------+
1876| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1877+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001878
1879.. _t_label:
1880
1881Label Type
1882^^^^^^^^^^
1883
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001884:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886The label type represents code labels.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890::
1891
1892 label
1893
1894.. _t_metadata:
1895
1896Metadata Type
1897^^^^^^^^^^^^^
1898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001899:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001900
1901The metadata type represents embedded metadata. No derived types may be
1902created from metadata except for :ref:`function <t_function>` arguments.
1903
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001904:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906::
1907
1908 metadata
1909
Sean Silvab084af42012-12-07 10:36:55 +00001910.. _t_aggregate:
1911
1912Aggregate Types
1913^^^^^^^^^^^^^^^
1914
1915Aggregate Types are a subset of derived types that can contain multiple
1916member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1917aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1918aggregate types.
1919
1920.. _t_array:
1921
1922Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001923""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001924
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001925:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001926
1927The array type is a very simple derived type that arranges elements
1928sequentially in memory. The array type requires a size (number of
1929elements) and an underlying data type.
1930
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001931:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001932
1933::
1934
1935 [<# elements> x <elementtype>]
1936
1937The number of elements is a constant integer value; ``elementtype`` may
1938be any type with a size.
1939
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001940:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942+------------------+--------------------------------------+
1943| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1944+------------------+--------------------------------------+
1945| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1946+------------------+--------------------------------------+
1947| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1948+------------------+--------------------------------------+
1949
1950Here are some examples of multidimensional arrays:
1951
1952+-----------------------------+----------------------------------------------------------+
1953| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1954+-----------------------------+----------------------------------------------------------+
1955| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1956+-----------------------------+----------------------------------------------------------+
1957| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1958+-----------------------------+----------------------------------------------------------+
1959
1960There is no restriction on indexing beyond the end of the array implied
1961by a static type (though there are restrictions on indexing beyond the
1962bounds of an allocated object in some cases). This means that
1963single-dimension 'variable sized array' addressing can be implemented in
1964LLVM with a zero length array type. An implementation of 'pascal style
1965arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1966example.
1967
Sean Silvab084af42012-12-07 10:36:55 +00001968.. _t_struct:
1969
1970Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001971""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975The structure type is used to represent a collection of data members
1976together in memory. The elements of a structure may be any type that has
1977a size.
1978
1979Structures in memory are accessed using '``load``' and '``store``' by
1980getting a pointer to a field with the '``getelementptr``' instruction.
1981Structures in registers are accessed using the '``extractvalue``' and
1982'``insertvalue``' instructions.
1983
1984Structures may optionally be "packed" structures, which indicate that
1985the alignment of the struct is one byte, and that there is no padding
1986between the elements. In non-packed structs, padding between field types
1987is inserted as defined by the DataLayout string in the module, which is
1988required to match what the underlying code generator expects.
1989
1990Structures can either be "literal" or "identified". A literal structure
1991is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1992identified types are always defined at the top level with a name.
1993Literal types are uniqued by their contents and can never be recursive
1994or opaque since there is no way to write one. Identified types can be
1995recursive, can be opaqued, and are never uniqued.
1996
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001997:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001998
1999::
2000
2001 %T1 = type { <type list> } ; Identified normal struct type
2002 %T2 = type <{ <type list> }> ; Identified packed struct type
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2007| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2008+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002009| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002010+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2011| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2012+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2013
2014.. _t_opaque:
2015
2016Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002017""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021Opaque structure types are used to represent named structure types that
2022do not have a body specified. This corresponds (for example) to the C
2023notion of a forward declared structure.
2024
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002025:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002026
2027::
2028
2029 %X = type opaque
2030 %52 = type opaque
2031
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002032:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002033
2034+--------------+-------------------+
2035| ``opaque`` | An opaque type. |
2036+--------------+-------------------+
2037
Sean Silva1703e702014-04-08 21:06:22 +00002038.. _constants:
2039
Sean Silvab084af42012-12-07 10:36:55 +00002040Constants
2041=========
2042
2043LLVM has several different basic types of constants. This section
2044describes them all and their syntax.
2045
2046Simple Constants
2047----------------
2048
2049**Boolean constants**
2050 The two strings '``true``' and '``false``' are both valid constants
2051 of the ``i1`` type.
2052**Integer constants**
2053 Standard integers (such as '4') are constants of the
2054 :ref:`integer <t_integer>` type. Negative numbers may be used with
2055 integer types.
2056**Floating point constants**
2057 Floating point constants use standard decimal notation (e.g.
2058 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2059 hexadecimal notation (see below). The assembler requires the exact
2060 decimal value of a floating-point constant. For example, the
2061 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2062 decimal in binary. Floating point constants must have a :ref:`floating
2063 point <t_floating>` type.
2064**Null pointer constants**
2065 The identifier '``null``' is recognized as a null pointer constant
2066 and must be of :ref:`pointer type <t_pointer>`.
2067
2068The one non-intuitive notation for constants is the hexadecimal form of
2069floating point constants. For example, the form
2070'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2071than) '``double 4.5e+15``'. The only time hexadecimal floating point
2072constants are required (and the only time that they are generated by the
2073disassembler) is when a floating point constant must be emitted but it
2074cannot be represented as a decimal floating point number in a reasonable
2075number of digits. For example, NaN's, infinities, and other special
2076values are represented in their IEEE hexadecimal format so that assembly
2077and disassembly do not cause any bits to change in the constants.
2078
2079When using the hexadecimal form, constants of types half, float, and
2080double are represented using the 16-digit form shown above (which
2081matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002082must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002083precision, respectively. Hexadecimal format is always used for long
2084double, and there are three forms of long double. The 80-bit format used
2085by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2086128-bit format used by PowerPC (two adjacent doubles) is represented by
2087``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002088represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2089will only work if they match the long double format on your target.
2090The IEEE 16-bit format (half precision) is represented by ``0xH``
2091followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2092(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002093
Reid Kleckner9a16d082014-03-05 02:41:37 +00002094There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002096.. _complexconstants:
2097
Sean Silvab084af42012-12-07 10:36:55 +00002098Complex Constants
2099-----------------
2100
2101Complex constants are a (potentially recursive) combination of simple
2102constants and smaller complex constants.
2103
2104**Structure constants**
2105 Structure constants are represented with notation similar to
2106 structure type definitions (a comma separated list of elements,
2107 surrounded by braces (``{}``)). For example:
2108 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2109 "``@G = external global i32``". Structure constants must have
2110 :ref:`structure type <t_struct>`, and the number and types of elements
2111 must match those specified by the type.
2112**Array constants**
2113 Array constants are represented with notation similar to array type
2114 definitions (a comma separated list of elements, surrounded by
2115 square brackets (``[]``)). For example:
2116 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2117 :ref:`array type <t_array>`, and the number and types of elements must
2118 match those specified by the type.
2119**Vector constants**
2120 Vector constants are represented with notation similar to vector
2121 type definitions (a comma separated list of elements, surrounded by
2122 less-than/greater-than's (``<>``)). For example:
2123 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2124 must have :ref:`vector type <t_vector>`, and the number and types of
2125 elements must match those specified by the type.
2126**Zero initialization**
2127 The string '``zeroinitializer``' can be used to zero initialize a
2128 value to zero of *any* type, including scalar and
2129 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2130 having to print large zero initializers (e.g. for large arrays) and
2131 is always exactly equivalent to using explicit zero initializers.
2132**Metadata node**
2133 A metadata node is a structure-like constant with :ref:`metadata
2134 type <t_metadata>`. For example:
2135 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2136 constants that are meant to be interpreted as part of the
2137 instruction stream, metadata is a place to attach additional
2138 information such as debug info.
2139
2140Global Variable and Function Addresses
2141--------------------------------------
2142
2143The addresses of :ref:`global variables <globalvars>` and
2144:ref:`functions <functionstructure>` are always implicitly valid
2145(link-time) constants. These constants are explicitly referenced when
2146the :ref:`identifier for the global <identifiers>` is used and always have
2147:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2148file:
2149
2150.. code-block:: llvm
2151
2152 @X = global i32 17
2153 @Y = global i32 42
2154 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2155
2156.. _undefvalues:
2157
2158Undefined Values
2159----------------
2160
2161The string '``undef``' can be used anywhere a constant is expected, and
2162indicates that the user of the value may receive an unspecified
2163bit-pattern. Undefined values may be of any type (other than '``label``'
2164or '``void``') and be used anywhere a constant is permitted.
2165
2166Undefined values are useful because they indicate to the compiler that
2167the program is well defined no matter what value is used. This gives the
2168compiler more freedom to optimize. Here are some examples of
2169(potentially surprising) transformations that are valid (in pseudo IR):
2170
2171.. code-block:: llvm
2172
2173 %A = add %X, undef
2174 %B = sub %X, undef
2175 %C = xor %X, undef
2176 Safe:
2177 %A = undef
2178 %B = undef
2179 %C = undef
2180
2181This is safe because all of the output bits are affected by the undef
2182bits. Any output bit can have a zero or one depending on the input bits.
2183
2184.. code-block:: llvm
2185
2186 %A = or %X, undef
2187 %B = and %X, undef
2188 Safe:
2189 %A = -1
2190 %B = 0
2191 Unsafe:
2192 %A = undef
2193 %B = undef
2194
2195These logical operations have bits that are not always affected by the
2196input. For example, if ``%X`` has a zero bit, then the output of the
2197'``and``' operation will always be a zero for that bit, no matter what
2198the corresponding bit from the '``undef``' is. As such, it is unsafe to
2199optimize or assume that the result of the '``and``' is '``undef``'.
2200However, it is safe to assume that all bits of the '``undef``' could be
22010, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2202all the bits of the '``undef``' operand to the '``or``' could be set,
2203allowing the '``or``' to be folded to -1.
2204
2205.. code-block:: llvm
2206
2207 %A = select undef, %X, %Y
2208 %B = select undef, 42, %Y
2209 %C = select %X, %Y, undef
2210 Safe:
2211 %A = %X (or %Y)
2212 %B = 42 (or %Y)
2213 %C = %Y
2214 Unsafe:
2215 %A = undef
2216 %B = undef
2217 %C = undef
2218
2219This set of examples shows that undefined '``select``' (and conditional
2220branch) conditions can go *either way*, but they have to come from one
2221of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2222both known to have a clear low bit, then ``%A`` would have to have a
2223cleared low bit. However, in the ``%C`` example, the optimizer is
2224allowed to assume that the '``undef``' operand could be the same as
2225``%Y``, allowing the whole '``select``' to be eliminated.
2226
2227.. code-block:: llvm
2228
2229 %A = xor undef, undef
2230
2231 %B = undef
2232 %C = xor %B, %B
2233
2234 %D = undef
2235 %E = icmp lt %D, 4
2236 %F = icmp gte %D, 4
2237
2238 Safe:
2239 %A = undef
2240 %B = undef
2241 %C = undef
2242 %D = undef
2243 %E = undef
2244 %F = undef
2245
2246This example points out that two '``undef``' operands are not
2247necessarily the same. This can be surprising to people (and also matches
2248C semantics) where they assume that "``X^X``" is always zero, even if
2249``X`` is undefined. This isn't true for a number of reasons, but the
2250short answer is that an '``undef``' "variable" can arbitrarily change
2251its value over its "live range". This is true because the variable
2252doesn't actually *have a live range*. Instead, the value is logically
2253read from arbitrary registers that happen to be around when needed, so
2254the value is not necessarily consistent over time. In fact, ``%A`` and
2255``%C`` need to have the same semantics or the core LLVM "replace all
2256uses with" concept would not hold.
2257
2258.. code-block:: llvm
2259
2260 %A = fdiv undef, %X
2261 %B = fdiv %X, undef
2262 Safe:
2263 %A = undef
2264 b: unreachable
2265
2266These examples show the crucial difference between an *undefined value*
2267and *undefined behavior*. An undefined value (like '``undef``') is
2268allowed to have an arbitrary bit-pattern. This means that the ``%A``
2269operation can be constant folded to '``undef``', because the '``undef``'
2270could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2271However, in the second example, we can make a more aggressive
2272assumption: because the ``undef`` is allowed to be an arbitrary value,
2273we are allowed to assume that it could be zero. Since a divide by zero
2274has *undefined behavior*, we are allowed to assume that the operation
2275does not execute at all. This allows us to delete the divide and all
2276code after it. Because the undefined operation "can't happen", the
2277optimizer can assume that it occurs in dead code.
2278
2279.. code-block:: llvm
2280
2281 a: store undef -> %X
2282 b: store %X -> undef
2283 Safe:
2284 a: <deleted>
2285 b: unreachable
2286
2287These examples reiterate the ``fdiv`` example: a store *of* an undefined
2288value can be assumed to not have any effect; we can assume that the
2289value is overwritten with bits that happen to match what was already
2290there. However, a store *to* an undefined location could clobber
2291arbitrary memory, therefore, it has undefined behavior.
2292
2293.. _poisonvalues:
2294
2295Poison Values
2296-------------
2297
2298Poison values are similar to :ref:`undef values <undefvalues>`, however
2299they also represent the fact that an instruction or constant expression
2300which cannot evoke side effects has nevertheless detected a condition
2301which results in undefined behavior.
2302
2303There is currently no way of representing a poison value in the IR; they
2304only exist when produced by operations such as :ref:`add <i_add>` with
2305the ``nsw`` flag.
2306
2307Poison value behavior is defined in terms of value *dependence*:
2308
2309- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2310- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2311 their dynamic predecessor basic block.
2312- Function arguments depend on the corresponding actual argument values
2313 in the dynamic callers of their functions.
2314- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2315 instructions that dynamically transfer control back to them.
2316- :ref:`Invoke <i_invoke>` instructions depend on the
2317 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2318 call instructions that dynamically transfer control back to them.
2319- Non-volatile loads and stores depend on the most recent stores to all
2320 of the referenced memory addresses, following the order in the IR
2321 (including loads and stores implied by intrinsics such as
2322 :ref:`@llvm.memcpy <int_memcpy>`.)
2323- An instruction with externally visible side effects depends on the
2324 most recent preceding instruction with externally visible side
2325 effects, following the order in the IR. (This includes :ref:`volatile
2326 operations <volatile>`.)
2327- An instruction *control-depends* on a :ref:`terminator
2328 instruction <terminators>` if the terminator instruction has
2329 multiple successors and the instruction is always executed when
2330 control transfers to one of the successors, and may not be executed
2331 when control is transferred to another.
2332- Additionally, an instruction also *control-depends* on a terminator
2333 instruction if the set of instructions it otherwise depends on would
2334 be different if the terminator had transferred control to a different
2335 successor.
2336- Dependence is transitive.
2337
2338Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2339with the additional affect that any instruction which has a *dependence*
2340on a poison value has undefined behavior.
2341
2342Here are some examples:
2343
2344.. code-block:: llvm
2345
2346 entry:
2347 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2348 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2349 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2350 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2351
2352 store i32 %poison, i32* @g ; Poison value stored to memory.
2353 %poison2 = load i32* @g ; Poison value loaded back from memory.
2354
2355 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2356
2357 %narrowaddr = bitcast i32* @g to i16*
2358 %wideaddr = bitcast i32* @g to i64*
2359 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2360 %poison4 = load i64* %wideaddr ; Returns a poison value.
2361
2362 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2363 br i1 %cmp, label %true, label %end ; Branch to either destination.
2364
2365 true:
2366 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2367 ; it has undefined behavior.
2368 br label %end
2369
2370 end:
2371 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2372 ; Both edges into this PHI are
2373 ; control-dependent on %cmp, so this
2374 ; always results in a poison value.
2375
2376 store volatile i32 0, i32* @g ; This would depend on the store in %true
2377 ; if %cmp is true, or the store in %entry
2378 ; otherwise, so this is undefined behavior.
2379
2380 br i1 %cmp, label %second_true, label %second_end
2381 ; The same branch again, but this time the
2382 ; true block doesn't have side effects.
2383
2384 second_true:
2385 ; No side effects!
2386 ret void
2387
2388 second_end:
2389 store volatile i32 0, i32* @g ; This time, the instruction always depends
2390 ; on the store in %end. Also, it is
2391 ; control-equivalent to %end, so this is
2392 ; well-defined (ignoring earlier undefined
2393 ; behavior in this example).
2394
2395.. _blockaddress:
2396
2397Addresses of Basic Blocks
2398-------------------------
2399
2400``blockaddress(@function, %block)``
2401
2402The '``blockaddress``' constant computes the address of the specified
2403basic block in the specified function, and always has an ``i8*`` type.
2404Taking the address of the entry block is illegal.
2405
2406This value only has defined behavior when used as an operand to the
2407':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2408against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002409undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002410no label is equal to the null pointer. This may be passed around as an
2411opaque pointer sized value as long as the bits are not inspected. This
2412allows ``ptrtoint`` and arithmetic to be performed on these values so
2413long as the original value is reconstituted before the ``indirectbr``
2414instruction.
2415
2416Finally, some targets may provide defined semantics when using the value
2417as the operand to an inline assembly, but that is target specific.
2418
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002419.. _constantexprs:
2420
Sean Silvab084af42012-12-07 10:36:55 +00002421Constant Expressions
2422--------------------
2423
2424Constant expressions are used to allow expressions involving other
2425constants to be used as constants. Constant expressions may be of any
2426:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2427that does not have side effects (e.g. load and call are not supported).
2428The following is the syntax for constant expressions:
2429
2430``trunc (CST to TYPE)``
2431 Truncate a constant to another type. The bit size of CST must be
2432 larger than the bit size of TYPE. Both types must be integers.
2433``zext (CST to TYPE)``
2434 Zero extend a constant to another type. The bit size of CST must be
2435 smaller than the bit size of TYPE. Both types must be integers.
2436``sext (CST to TYPE)``
2437 Sign extend a constant to another type. The bit size of CST must be
2438 smaller than the bit size of TYPE. Both types must be integers.
2439``fptrunc (CST to TYPE)``
2440 Truncate a floating point constant to another floating point type.
2441 The size of CST must be larger than the size of TYPE. Both types
2442 must be floating point.
2443``fpext (CST to TYPE)``
2444 Floating point extend a constant to another type. The size of CST
2445 must be smaller or equal to the size of TYPE. Both types must be
2446 floating point.
2447``fptoui (CST to TYPE)``
2448 Convert a floating point constant to the corresponding unsigned
2449 integer constant. TYPE must be a scalar or vector integer type. CST
2450 must be of scalar or vector floating point type. Both CST and TYPE
2451 must be scalars, or vectors of the same number of elements. If the
2452 value won't fit in the integer type, the results are undefined.
2453``fptosi (CST to TYPE)``
2454 Convert a floating point constant to the corresponding signed
2455 integer constant. TYPE must be a scalar or vector integer type. CST
2456 must be of scalar or vector floating point type. Both CST and TYPE
2457 must be scalars, or vectors of the same number of elements. If the
2458 value won't fit in the integer type, the results are undefined.
2459``uitofp (CST to TYPE)``
2460 Convert an unsigned integer constant to the corresponding floating
2461 point constant. TYPE must be a scalar or vector floating point type.
2462 CST must be of scalar or vector integer type. Both CST and TYPE must
2463 be scalars, or vectors of the same number of elements. If the value
2464 won't fit in the floating point type, the results are undefined.
2465``sitofp (CST to TYPE)``
2466 Convert a signed integer constant to the corresponding floating
2467 point constant. TYPE must be a scalar or vector floating point type.
2468 CST must be of scalar or vector integer type. Both CST and TYPE must
2469 be scalars, or vectors of the same number of elements. If the value
2470 won't fit in the floating point type, the results are undefined.
2471``ptrtoint (CST to TYPE)``
2472 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002473 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002474 pointer type. The ``CST`` value is zero extended, truncated, or
2475 unchanged to make it fit in ``TYPE``.
2476``inttoptr (CST to TYPE)``
2477 Convert an integer constant to a pointer constant. TYPE must be a
2478 pointer type. CST must be of integer type. The CST value is zero
2479 extended, truncated, or unchanged to make it fit in a pointer size.
2480 This one is *really* dangerous!
2481``bitcast (CST to TYPE)``
2482 Convert a constant, CST, to another TYPE. The constraints of the
2483 operands are the same as those for the :ref:`bitcast
2484 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002485``addrspacecast (CST to TYPE)``
2486 Convert a constant pointer or constant vector of pointer, CST, to another
2487 TYPE in a different address space. The constraints of the operands are the
2488 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002489``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2490 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2491 constants. As with the :ref:`getelementptr <i_getelementptr>`
2492 instruction, the index list may have zero or more indexes, which are
2493 required to make sense for the type of "CSTPTR".
2494``select (COND, VAL1, VAL2)``
2495 Perform the :ref:`select operation <i_select>` on constants.
2496``icmp COND (VAL1, VAL2)``
2497 Performs the :ref:`icmp operation <i_icmp>` on constants.
2498``fcmp COND (VAL1, VAL2)``
2499 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2500``extractelement (VAL, IDX)``
2501 Perform the :ref:`extractelement operation <i_extractelement>` on
2502 constants.
2503``insertelement (VAL, ELT, IDX)``
2504 Perform the :ref:`insertelement operation <i_insertelement>` on
2505 constants.
2506``shufflevector (VEC1, VEC2, IDXMASK)``
2507 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2508 constants.
2509``extractvalue (VAL, IDX0, IDX1, ...)``
2510 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2511 constants. The index list is interpreted in a similar manner as
2512 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2513 least one index value must be specified.
2514``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2515 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2516 The index list is interpreted in a similar manner as indices in a
2517 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2518 value must be specified.
2519``OPCODE (LHS, RHS)``
2520 Perform the specified operation of the LHS and RHS constants. OPCODE
2521 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2522 binary <bitwiseops>` operations. The constraints on operands are
2523 the same as those for the corresponding instruction (e.g. no bitwise
2524 operations on floating point values are allowed).
2525
2526Other Values
2527============
2528
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002529.. _inlineasmexprs:
2530
Sean Silvab084af42012-12-07 10:36:55 +00002531Inline Assembler Expressions
2532----------------------------
2533
2534LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2535Inline Assembly <moduleasm>`) through the use of a special value. This
2536value represents the inline assembler as a string (containing the
2537instructions to emit), a list of operand constraints (stored as a
2538string), a flag that indicates whether or not the inline asm expression
2539has side effects, and a flag indicating whether the function containing
2540the asm needs to align its stack conservatively. An example inline
2541assembler expression is:
2542
2543.. code-block:: llvm
2544
2545 i32 (i32) asm "bswap $0", "=r,r"
2546
2547Inline assembler expressions may **only** be used as the callee operand
2548of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2549Thus, typically we have:
2550
2551.. code-block:: llvm
2552
2553 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2554
2555Inline asms with side effects not visible in the constraint list must be
2556marked as having side effects. This is done through the use of the
2557'``sideeffect``' keyword, like so:
2558
2559.. code-block:: llvm
2560
2561 call void asm sideeffect "eieio", ""()
2562
2563In some cases inline asms will contain code that will not work unless
2564the stack is aligned in some way, such as calls or SSE instructions on
2565x86, yet will not contain code that does that alignment within the asm.
2566The compiler should make conservative assumptions about what the asm
2567might contain and should generate its usual stack alignment code in the
2568prologue if the '``alignstack``' keyword is present:
2569
2570.. code-block:: llvm
2571
2572 call void asm alignstack "eieio", ""()
2573
2574Inline asms also support using non-standard assembly dialects. The
2575assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2576the inline asm is using the Intel dialect. Currently, ATT and Intel are
2577the only supported dialects. An example is:
2578
2579.. code-block:: llvm
2580
2581 call void asm inteldialect "eieio", ""()
2582
2583If multiple keywords appear the '``sideeffect``' keyword must come
2584first, the '``alignstack``' keyword second and the '``inteldialect``'
2585keyword last.
2586
2587Inline Asm Metadata
2588^^^^^^^^^^^^^^^^^^^
2589
2590The call instructions that wrap inline asm nodes may have a
2591"``!srcloc``" MDNode attached to it that contains a list of constant
2592integers. If present, the code generator will use the integer as the
2593location cookie value when report errors through the ``LLVMContext``
2594error reporting mechanisms. This allows a front-end to correlate backend
2595errors that occur with inline asm back to the source code that produced
2596it. For example:
2597
2598.. code-block:: llvm
2599
2600 call void asm sideeffect "something bad", ""(), !srcloc !42
2601 ...
2602 !42 = !{ i32 1234567 }
2603
2604It is up to the front-end to make sense of the magic numbers it places
2605in the IR. If the MDNode contains multiple constants, the code generator
2606will use the one that corresponds to the line of the asm that the error
2607occurs on.
2608
2609.. _metadata:
2610
2611Metadata Nodes and Metadata Strings
2612-----------------------------------
2613
2614LLVM IR allows metadata to be attached to instructions in the program
2615that can convey extra information about the code to the optimizers and
2616code generator. One example application of metadata is source-level
2617debug information. There are two metadata primitives: strings and nodes.
2618All metadata has the ``metadata`` type and is identified in syntax by a
2619preceding exclamation point ('``!``').
2620
2621A metadata string is a string surrounded by double quotes. It can
2622contain any character by escaping non-printable characters with
2623"``\xx``" where "``xx``" is the two digit hex code. For example:
2624"``!"test\00"``".
2625
2626Metadata nodes are represented with notation similar to structure
2627constants (a comma separated list of elements, surrounded by braces and
2628preceded by an exclamation point). Metadata nodes can have any values as
2629their operand. For example:
2630
2631.. code-block:: llvm
2632
2633 !{ metadata !"test\00", i32 10}
2634
2635A :ref:`named metadata <namedmetadatastructure>` is a collection of
2636metadata nodes, which can be looked up in the module symbol table. For
2637example:
2638
2639.. code-block:: llvm
2640
2641 !foo = metadata !{!4, !3}
2642
2643Metadata can be used as function arguments. Here ``llvm.dbg.value``
2644function is using two metadata arguments:
2645
2646.. code-block:: llvm
2647
2648 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2649
2650Metadata can be attached with an instruction. Here metadata ``!21`` is
2651attached to the ``add`` instruction using the ``!dbg`` identifier:
2652
2653.. code-block:: llvm
2654
2655 %indvar.next = add i64 %indvar, 1, !dbg !21
2656
2657More information about specific metadata nodes recognized by the
2658optimizers and code generator is found below.
2659
2660'``tbaa``' Metadata
2661^^^^^^^^^^^^^^^^^^^
2662
2663In LLVM IR, memory does not have types, so LLVM's own type system is not
2664suitable for doing TBAA. Instead, metadata is added to the IR to
2665describe a type system of a higher level language. This can be used to
2666implement typical C/C++ TBAA, but it can also be used to implement
2667custom alias analysis behavior for other languages.
2668
2669The current metadata format is very simple. TBAA metadata nodes have up
2670to three fields, e.g.:
2671
2672.. code-block:: llvm
2673
2674 !0 = metadata !{ metadata !"an example type tree" }
2675 !1 = metadata !{ metadata !"int", metadata !0 }
2676 !2 = metadata !{ metadata !"float", metadata !0 }
2677 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2678
2679The first field is an identity field. It can be any value, usually a
2680metadata string, which uniquely identifies the type. The most important
2681name in the tree is the name of the root node. Two trees with different
2682root node names are entirely disjoint, even if they have leaves with
2683common names.
2684
2685The second field identifies the type's parent node in the tree, or is
2686null or omitted for a root node. A type is considered to alias all of
2687its descendants and all of its ancestors in the tree. Also, a type is
2688considered to alias all types in other trees, so that bitcode produced
2689from multiple front-ends is handled conservatively.
2690
2691If the third field is present, it's an integer which if equal to 1
2692indicates that the type is "constant" (meaning
2693``pointsToConstantMemory`` should return true; see `other useful
2694AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2695
2696'``tbaa.struct``' Metadata
2697^^^^^^^^^^^^^^^^^^^^^^^^^^
2698
2699The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2700aggregate assignment operations in C and similar languages, however it
2701is defined to copy a contiguous region of memory, which is more than
2702strictly necessary for aggregate types which contain holes due to
2703padding. Also, it doesn't contain any TBAA information about the fields
2704of the aggregate.
2705
2706``!tbaa.struct`` metadata can describe which memory subregions in a
2707memcpy are padding and what the TBAA tags of the struct are.
2708
2709The current metadata format is very simple. ``!tbaa.struct`` metadata
2710nodes are a list of operands which are in conceptual groups of three.
2711For each group of three, the first operand gives the byte offset of a
2712field in bytes, the second gives its size in bytes, and the third gives
2713its tbaa tag. e.g.:
2714
2715.. code-block:: llvm
2716
2717 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2718
2719This describes a struct with two fields. The first is at offset 0 bytes
2720with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2721and has size 4 bytes and has tbaa tag !2.
2722
2723Note that the fields need not be contiguous. In this example, there is a
27244 byte gap between the two fields. This gap represents padding which
2725does not carry useful data and need not be preserved.
2726
2727'``fpmath``' Metadata
2728^^^^^^^^^^^^^^^^^^^^^
2729
2730``fpmath`` metadata may be attached to any instruction of floating point
2731type. It can be used to express the maximum acceptable error in the
2732result of that instruction, in ULPs, thus potentially allowing the
2733compiler to use a more efficient but less accurate method of computing
2734it. ULP is defined as follows:
2735
2736 If ``x`` is a real number that lies between two finite consecutive
2737 floating-point numbers ``a`` and ``b``, without being equal to one
2738 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2739 distance between the two non-equal finite floating-point numbers
2740 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2741
2742The metadata node shall consist of a single positive floating point
2743number representing the maximum relative error, for example:
2744
2745.. code-block:: llvm
2746
2747 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2748
2749'``range``' Metadata
2750^^^^^^^^^^^^^^^^^^^^
2751
Jingyue Wu37fcb592014-06-19 16:50:16 +00002752``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2753integer types. It expresses the possible ranges the loaded value or the value
2754returned by the called function at this call site is in. The ranges are
2755represented with a flattened list of integers. The loaded value or the value
2756returned is known to be in the union of the ranges defined by each consecutive
2757pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002758
2759- The type must match the type loaded by the instruction.
2760- The pair ``a,b`` represents the range ``[a,b)``.
2761- Both ``a`` and ``b`` are constants.
2762- The range is allowed to wrap.
2763- The range should not represent the full or empty set. That is,
2764 ``a!=b``.
2765
2766In addition, the pairs must be in signed order of the lower bound and
2767they must be non-contiguous.
2768
2769Examples:
2770
2771.. code-block:: llvm
2772
2773 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2774 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002775 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2776 %d = invoke i8 @bar() to label %cont
2777 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002778 ...
2779 !0 = metadata !{ i8 0, i8 2 }
2780 !1 = metadata !{ i8 255, i8 2 }
2781 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2782 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2783
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002784'``llvm.loop``'
2785^^^^^^^^^^^^^^^
2786
2787It is sometimes useful to attach information to loop constructs. Currently,
2788loop metadata is implemented as metadata attached to the branch instruction
2789in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002790guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002791specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002792
2793The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002794itself to avoid merging it with any other identifier metadata, e.g.,
2795during module linkage or function inlining. That is, each loop should refer
2796to their own identification metadata even if they reside in separate functions.
2797The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002798constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002799
2800.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002801
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002802 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002803 !1 = metadata !{ metadata !1 }
2804
Paul Redmond5fdf8362013-05-28 20:00:34 +00002805The loop identifier metadata can be used to specify additional per-loop
2806metadata. Any operands after the first operand can be treated as user-defined
2807metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2808by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002809
Paul Redmond5fdf8362013-05-28 20:00:34 +00002810.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002811
Paul Redmond5fdf8362013-05-28 20:00:34 +00002812 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2813 ...
2814 !0 = metadata !{ metadata !0, metadata !1 }
2815 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002816
2817'``llvm.mem``'
2818^^^^^^^^^^^^^^^
2819
2820Metadata types used to annotate memory accesses with information helpful
2821for optimizations are prefixed with ``llvm.mem``.
2822
2823'``llvm.mem.parallel_loop_access``' Metadata
2824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2825
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002826The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2827or metadata containing a list of loop identifiers for nested loops.
2828The metadata is attached to memory accessing instructions and denotes that
2829no loop carried memory dependence exist between it and other instructions denoted
2830with the same loop identifier.
2831
2832Precisely, given two instructions ``m1`` and ``m2`` that both have the
2833``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2834set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00002835carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002836``L2``.
2837
2838As a special case, if all memory accessing instructions in a loop have
2839``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2840loop has no loop carried memory dependences and is considered to be a parallel
2841loop.
2842
2843Note that if not all memory access instructions have such metadata referring to
2844the loop, then the loop is considered not being trivially parallel. Additional
2845memory dependence analysis is required to make that determination. As a fail
2846safe mechanism, this causes loops that were originally parallel to be considered
2847sequential (if optimization passes that are unaware of the parallel semantics
2848insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002849
2850Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002851both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002852metadata types that refer to the same loop identifier metadata.
2853
2854.. code-block:: llvm
2855
2856 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002857 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002858 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002859 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002860 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002861 ...
2862 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002863
2864 for.end:
2865 ...
2866 !0 = metadata !{ metadata !0 }
2867
2868It is also possible to have nested parallel loops. In that case the
2869memory accesses refer to a list of loop identifier metadata nodes instead of
2870the loop identifier metadata node directly:
2871
2872.. code-block:: llvm
2873
2874 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002875 ...
2876 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2877 ...
2878 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002879
2880 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002881 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002882 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002883 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002884 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002885 ...
2886 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002887
2888 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002889 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002890 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002891 ...
2892 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002893
2894 outer.for.end: ; preds = %for.body
2895 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002896 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2897 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2898 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002899
Paul Redmond5fdf8362013-05-28 20:00:34 +00002900'``llvm.vectorizer``'
2901^^^^^^^^^^^^^^^^^^^^^
2902
2903Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2904vectorization parameters such as vectorization factor and unroll factor.
2905
2906``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2907loop identification metadata.
2908
2909'``llvm.vectorizer.unroll``' Metadata
2910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2911
2912This metadata instructs the loop vectorizer to unroll the specified
2913loop exactly ``N`` times.
2914
2915The first operand is the string ``llvm.vectorizer.unroll`` and the second
2916operand is an integer specifying the unroll factor. For example:
2917
2918.. code-block:: llvm
2919
2920 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2921
2922Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2923loop.
2924
2925If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2926determined automatically.
2927
2928'``llvm.vectorizer.width``' Metadata
2929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2930
Paul Redmondeccbb322013-05-30 17:22:46 +00002931This metadata sets the target width of the vectorizer to ``N``. Without
2932this metadata, the vectorizer will choose a width automatically.
2933Regardless of this metadata, the vectorizer will only vectorize loops if
2934it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002935
2936The first operand is the string ``llvm.vectorizer.width`` and the second
2937operand is an integer specifying the width. For example:
2938
2939.. code-block:: llvm
2940
2941 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2942
2943Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2944loop.
2945
2946If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2947automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002948
Sean Silvab084af42012-12-07 10:36:55 +00002949Module Flags Metadata
2950=====================
2951
2952Information about the module as a whole is difficult to convey to LLVM's
2953subsystems. The LLVM IR isn't sufficient to transmit this information.
2954The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002955this. These flags are in the form of key / value pairs --- much like a
2956dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002957look it up.
2958
2959The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2960Each triplet has the following form:
2961
2962- The first element is a *behavior* flag, which specifies the behavior
2963 when two (or more) modules are merged together, and it encounters two
2964 (or more) metadata with the same ID. The supported behaviors are
2965 described below.
2966- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002967 metadata. Each module may only have one flag entry for each unique ID (not
2968 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002969- The third element is the value of the flag.
2970
2971When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002972``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2973each unique metadata ID string, there will be exactly one entry in the merged
2974modules ``llvm.module.flags`` metadata table, and the value for that entry will
2975be determined by the merge behavior flag, as described below. The only exception
2976is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002977
2978The following behaviors are supported:
2979
2980.. list-table::
2981 :header-rows: 1
2982 :widths: 10 90
2983
2984 * - Value
2985 - Behavior
2986
2987 * - 1
2988 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002989 Emits an error if two values disagree, otherwise the resulting value
2990 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002991
2992 * - 2
2993 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002994 Emits a warning if two values disagree. The result value will be the
2995 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002996
2997 * - 3
2998 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002999 Adds a requirement that another module flag be present and have a
3000 specified value after linking is performed. The value must be a
3001 metadata pair, where the first element of the pair is the ID of the
3002 module flag to be restricted, and the second element of the pair is
3003 the value the module flag should be restricted to. This behavior can
3004 be used to restrict the allowable results (via triggering of an
3005 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003006
3007 * - 4
3008 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003009 Uses the specified value, regardless of the behavior or value of the
3010 other module. If both modules specify **Override**, but the values
3011 differ, an error will be emitted.
3012
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003013 * - 5
3014 - **Append**
3015 Appends the two values, which are required to be metadata nodes.
3016
3017 * - 6
3018 - **AppendUnique**
3019 Appends the two values, which are required to be metadata
3020 nodes. However, duplicate entries in the second list are dropped
3021 during the append operation.
3022
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003023It is an error for a particular unique flag ID to have multiple behaviors,
3024except in the case of **Require** (which adds restrictions on another metadata
3025value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003026
3027An example of module flags:
3028
3029.. code-block:: llvm
3030
3031 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3032 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3033 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3034 !3 = metadata !{ i32 3, metadata !"qux",
3035 metadata !{
3036 metadata !"foo", i32 1
3037 }
3038 }
3039 !llvm.module.flags = !{ !0, !1, !2, !3 }
3040
3041- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3042 if two or more ``!"foo"`` flags are seen is to emit an error if their
3043 values are not equal.
3044
3045- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3046 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003047 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003048
3049- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3050 behavior if two or more ``!"qux"`` flags are seen is to emit a
3051 warning if their values are not equal.
3052
3053- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3054
3055 ::
3056
3057 metadata !{ metadata !"foo", i32 1 }
3058
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003059 The behavior is to emit an error if the ``llvm.module.flags`` does not
3060 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3061 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003062
3063Objective-C Garbage Collection Module Flags Metadata
3064----------------------------------------------------
3065
3066On the Mach-O platform, Objective-C stores metadata about garbage
3067collection in a special section called "image info". The metadata
3068consists of a version number and a bitmask specifying what types of
3069garbage collection are supported (if any) by the file. If two or more
3070modules are linked together their garbage collection metadata needs to
3071be merged rather than appended together.
3072
3073The Objective-C garbage collection module flags metadata consists of the
3074following key-value pairs:
3075
3076.. list-table::
3077 :header-rows: 1
3078 :widths: 30 70
3079
3080 * - Key
3081 - Value
3082
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003083 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003084 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003085
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003086 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003087 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003088 always 0.
3089
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003090 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003091 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003092 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3093 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3094 Objective-C ABI version 2.
3095
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003096 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003097 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003098 not. Valid values are 0, for no garbage collection, and 2, for garbage
3099 collection supported.
3100
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003101 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003102 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003103 If present, its value must be 6. This flag requires that the
3104 ``Objective-C Garbage Collection`` flag have the value 2.
3105
3106Some important flag interactions:
3107
3108- If a module with ``Objective-C Garbage Collection`` set to 0 is
3109 merged with a module with ``Objective-C Garbage Collection`` set to
3110 2, then the resulting module has the
3111 ``Objective-C Garbage Collection`` flag set to 0.
3112- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3113 merged with a module with ``Objective-C GC Only`` set to 6.
3114
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003115Automatic Linker Flags Module Flags Metadata
3116--------------------------------------------
3117
3118Some targets support embedding flags to the linker inside individual object
3119files. Typically this is used in conjunction with language extensions which
3120allow source files to explicitly declare the libraries they depend on, and have
3121these automatically be transmitted to the linker via object files.
3122
3123These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003124using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003125to be ``AppendUnique``, and the value for the key is expected to be a metadata
3126node which should be a list of other metadata nodes, each of which should be a
3127list of metadata strings defining linker options.
3128
3129For example, the following metadata section specifies two separate sets of
3130linker options, presumably to link against ``libz`` and the ``Cocoa``
3131framework::
3132
Michael Liaoa7699082013-03-06 18:24:34 +00003133 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003134 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003135 metadata !{ metadata !"-lz" },
3136 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003137 !llvm.module.flags = !{ !0 }
3138
3139The metadata encoding as lists of lists of options, as opposed to a collapsed
3140list of options, is chosen so that the IR encoding can use multiple option
3141strings to specify e.g., a single library, while still having that specifier be
3142preserved as an atomic element that can be recognized by a target specific
3143assembly writer or object file emitter.
3144
3145Each individual option is required to be either a valid option for the target's
3146linker, or an option that is reserved by the target specific assembly writer or
3147object file emitter. No other aspect of these options is defined by the IR.
3148
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003149.. _intrinsicglobalvariables:
3150
Sean Silvab084af42012-12-07 10:36:55 +00003151Intrinsic Global Variables
3152==========================
3153
3154LLVM has a number of "magic" global variables that contain data that
3155affect code generation or other IR semantics. These are documented here.
3156All globals of this sort should have a section specified as
3157"``llvm.metadata``". This section and all globals that start with
3158"``llvm.``" are reserved for use by LLVM.
3159
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003160.. _gv_llvmused:
3161
Sean Silvab084af42012-12-07 10:36:55 +00003162The '``llvm.used``' Global Variable
3163-----------------------------------
3164
Rafael Espindola74f2e462013-04-22 14:58:02 +00003165The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003166:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003167pointers to named global variables, functions and aliases which may optionally
3168have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003169use of it is:
3170
3171.. code-block:: llvm
3172
3173 @X = global i8 4
3174 @Y = global i32 123
3175
3176 @llvm.used = appending global [2 x i8*] [
3177 i8* @X,
3178 i8* bitcast (i32* @Y to i8*)
3179 ], section "llvm.metadata"
3180
Rafael Espindola74f2e462013-04-22 14:58:02 +00003181If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3182and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003183symbol that it cannot see (which is why they have to be named). For example, if
3184a variable has internal linkage and no references other than that from the
3185``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3186references from inline asms and other things the compiler cannot "see", and
3187corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003188
3189On some targets, the code generator must emit a directive to the
3190assembler or object file to prevent the assembler and linker from
3191molesting the symbol.
3192
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003193.. _gv_llvmcompilerused:
3194
Sean Silvab084af42012-12-07 10:36:55 +00003195The '``llvm.compiler.used``' Global Variable
3196--------------------------------------------
3197
3198The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3199directive, except that it only prevents the compiler from touching the
3200symbol. On targets that support it, this allows an intelligent linker to
3201optimize references to the symbol without being impeded as it would be
3202by ``@llvm.used``.
3203
3204This is a rare construct that should only be used in rare circumstances,
3205and should not be exposed to source languages.
3206
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003207.. _gv_llvmglobalctors:
3208
Sean Silvab084af42012-12-07 10:36:55 +00003209The '``llvm.global_ctors``' Global Variable
3210-------------------------------------------
3211
3212.. code-block:: llvm
3213
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003214 %0 = type { i32, void ()*, i8* }
3215 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003216
3217The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003218functions, priorities, and an optional associated global or function.
3219The functions referenced by this array will be called in ascending order
3220of priority (i.e. lowest first) when the module is loaded. The order of
3221functions with the same priority is not defined.
3222
3223If the third field is present, non-null, and points to a global variable
3224or function, the initializer function will only run if the associated
3225data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003226
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003227.. _llvmglobaldtors:
3228
Sean Silvab084af42012-12-07 10:36:55 +00003229The '``llvm.global_dtors``' Global Variable
3230-------------------------------------------
3231
3232.. code-block:: llvm
3233
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003234 %0 = type { i32, void ()*, i8* }
3235 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003236
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003237The ``@llvm.global_dtors`` array contains a list of destructor
3238functions, priorities, and an optional associated global or function.
3239The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003240order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003241order of functions with the same priority is not defined.
3242
3243If the third field is present, non-null, and points to a global variable
3244or function, the destructor function will only run if the associated
3245data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003246
3247Instruction Reference
3248=====================
3249
3250The LLVM instruction set consists of several different classifications
3251of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3252instructions <binaryops>`, :ref:`bitwise binary
3253instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3254:ref:`other instructions <otherops>`.
3255
3256.. _terminators:
3257
3258Terminator Instructions
3259-----------------------
3260
3261As mentioned :ref:`previously <functionstructure>`, every basic block in a
3262program ends with a "Terminator" instruction, which indicates which
3263block should be executed after the current block is finished. These
3264terminator instructions typically yield a '``void``' value: they produce
3265control flow, not values (the one exception being the
3266':ref:`invoke <i_invoke>`' instruction).
3267
3268The terminator instructions are: ':ref:`ret <i_ret>`',
3269':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3270':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3271':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3272
3273.. _i_ret:
3274
3275'``ret``' Instruction
3276^^^^^^^^^^^^^^^^^^^^^
3277
3278Syntax:
3279"""""""
3280
3281::
3282
3283 ret <type> <value> ; Return a value from a non-void function
3284 ret void ; Return from void function
3285
3286Overview:
3287"""""""""
3288
3289The '``ret``' instruction is used to return control flow (and optionally
3290a value) from a function back to the caller.
3291
3292There are two forms of the '``ret``' instruction: one that returns a
3293value and then causes control flow, and one that just causes control
3294flow to occur.
3295
3296Arguments:
3297""""""""""
3298
3299The '``ret``' instruction optionally accepts a single argument, the
3300return value. The type of the return value must be a ':ref:`first
3301class <t_firstclass>`' type.
3302
3303A function is not :ref:`well formed <wellformed>` if it it has a non-void
3304return type and contains a '``ret``' instruction with no return value or
3305a return value with a type that does not match its type, or if it has a
3306void return type and contains a '``ret``' instruction with a return
3307value.
3308
3309Semantics:
3310""""""""""
3311
3312When the '``ret``' instruction is executed, control flow returns back to
3313the calling function's context. If the caller is a
3314":ref:`call <i_call>`" instruction, execution continues at the
3315instruction after the call. If the caller was an
3316":ref:`invoke <i_invoke>`" instruction, execution continues at the
3317beginning of the "normal" destination block. If the instruction returns
3318a value, that value shall set the call or invoke instruction's return
3319value.
3320
3321Example:
3322""""""""
3323
3324.. code-block:: llvm
3325
3326 ret i32 5 ; Return an integer value of 5
3327 ret void ; Return from a void function
3328 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3329
3330.. _i_br:
3331
3332'``br``' Instruction
3333^^^^^^^^^^^^^^^^^^^^
3334
3335Syntax:
3336"""""""
3337
3338::
3339
3340 br i1 <cond>, label <iftrue>, label <iffalse>
3341 br label <dest> ; Unconditional branch
3342
3343Overview:
3344"""""""""
3345
3346The '``br``' instruction is used to cause control flow to transfer to a
3347different basic block in the current function. There are two forms of
3348this instruction, corresponding to a conditional branch and an
3349unconditional branch.
3350
3351Arguments:
3352""""""""""
3353
3354The conditional branch form of the '``br``' instruction takes a single
3355'``i1``' value and two '``label``' values. The unconditional form of the
3356'``br``' instruction takes a single '``label``' value as a target.
3357
3358Semantics:
3359""""""""""
3360
3361Upon execution of a conditional '``br``' instruction, the '``i1``'
3362argument is evaluated. If the value is ``true``, control flows to the
3363'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3364to the '``iffalse``' ``label`` argument.
3365
3366Example:
3367""""""""
3368
3369.. code-block:: llvm
3370
3371 Test:
3372 %cond = icmp eq i32 %a, %b
3373 br i1 %cond, label %IfEqual, label %IfUnequal
3374 IfEqual:
3375 ret i32 1
3376 IfUnequal:
3377 ret i32 0
3378
3379.. _i_switch:
3380
3381'``switch``' Instruction
3382^^^^^^^^^^^^^^^^^^^^^^^^
3383
3384Syntax:
3385"""""""
3386
3387::
3388
3389 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3390
3391Overview:
3392"""""""""
3393
3394The '``switch``' instruction is used to transfer control flow to one of
3395several different places. It is a generalization of the '``br``'
3396instruction, allowing a branch to occur to one of many possible
3397destinations.
3398
3399Arguments:
3400""""""""""
3401
3402The '``switch``' instruction uses three parameters: an integer
3403comparison value '``value``', a default '``label``' destination, and an
3404array of pairs of comparison value constants and '``label``'s. The table
3405is not allowed to contain duplicate constant entries.
3406
3407Semantics:
3408""""""""""
3409
3410The ``switch`` instruction specifies a table of values and destinations.
3411When the '``switch``' instruction is executed, this table is searched
3412for the given value. If the value is found, control flow is transferred
3413to the corresponding destination; otherwise, control flow is transferred
3414to the default destination.
3415
3416Implementation:
3417"""""""""""""""
3418
3419Depending on properties of the target machine and the particular
3420``switch`` instruction, this instruction may be code generated in
3421different ways. For example, it could be generated as a series of
3422chained conditional branches or with a lookup table.
3423
3424Example:
3425""""""""
3426
3427.. code-block:: llvm
3428
3429 ; Emulate a conditional br instruction
3430 %Val = zext i1 %value to i32
3431 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3432
3433 ; Emulate an unconditional br instruction
3434 switch i32 0, label %dest [ ]
3435
3436 ; Implement a jump table:
3437 switch i32 %val, label %otherwise [ i32 0, label %onzero
3438 i32 1, label %onone
3439 i32 2, label %ontwo ]
3440
3441.. _i_indirectbr:
3442
3443'``indirectbr``' Instruction
3444^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3445
3446Syntax:
3447"""""""
3448
3449::
3450
3451 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3452
3453Overview:
3454"""""""""
3455
3456The '``indirectbr``' instruction implements an indirect branch to a
3457label within the current function, whose address is specified by
3458"``address``". Address must be derived from a
3459:ref:`blockaddress <blockaddress>` constant.
3460
3461Arguments:
3462""""""""""
3463
3464The '``address``' argument is the address of the label to jump to. The
3465rest of the arguments indicate the full set of possible destinations
3466that the address may point to. Blocks are allowed to occur multiple
3467times in the destination list, though this isn't particularly useful.
3468
3469This destination list is required so that dataflow analysis has an
3470accurate understanding of the CFG.
3471
3472Semantics:
3473""""""""""
3474
3475Control transfers to the block specified in the address argument. All
3476possible destination blocks must be listed in the label list, otherwise
3477this instruction has undefined behavior. This implies that jumps to
3478labels defined in other functions have undefined behavior as well.
3479
3480Implementation:
3481"""""""""""""""
3482
3483This is typically implemented with a jump through a register.
3484
3485Example:
3486""""""""
3487
3488.. code-block:: llvm
3489
3490 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3491
3492.. _i_invoke:
3493
3494'``invoke``' Instruction
3495^^^^^^^^^^^^^^^^^^^^^^^^
3496
3497Syntax:
3498"""""""
3499
3500::
3501
3502 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3503 to label <normal label> unwind label <exception label>
3504
3505Overview:
3506"""""""""
3507
3508The '``invoke``' instruction causes control to transfer to a specified
3509function, with the possibility of control flow transfer to either the
3510'``normal``' label or the '``exception``' label. If the callee function
3511returns with the "``ret``" instruction, control flow will return to the
3512"normal" label. If the callee (or any indirect callees) returns via the
3513":ref:`resume <i_resume>`" instruction or other exception handling
3514mechanism, control is interrupted and continued at the dynamically
3515nearest "exception" label.
3516
3517The '``exception``' label is a `landing
3518pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3519'``exception``' label is required to have the
3520":ref:`landingpad <i_landingpad>`" instruction, which contains the
3521information about the behavior of the program after unwinding happens,
3522as its first non-PHI instruction. The restrictions on the
3523"``landingpad``" instruction's tightly couples it to the "``invoke``"
3524instruction, so that the important information contained within the
3525"``landingpad``" instruction can't be lost through normal code motion.
3526
3527Arguments:
3528""""""""""
3529
3530This instruction requires several arguments:
3531
3532#. The optional "cconv" marker indicates which :ref:`calling
3533 convention <callingconv>` the call should use. If none is
3534 specified, the call defaults to using C calling conventions.
3535#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3536 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3537 are valid here.
3538#. '``ptr to function ty``': shall be the signature of the pointer to
3539 function value being invoked. In most cases, this is a direct
3540 function invocation, but indirect ``invoke``'s are just as possible,
3541 branching off an arbitrary pointer to function value.
3542#. '``function ptr val``': An LLVM value containing a pointer to a
3543 function to be invoked.
3544#. '``function args``': argument list whose types match the function
3545 signature argument types and parameter attributes. All arguments must
3546 be of :ref:`first class <t_firstclass>` type. If the function signature
3547 indicates the function accepts a variable number of arguments, the
3548 extra arguments can be specified.
3549#. '``normal label``': the label reached when the called function
3550 executes a '``ret``' instruction.
3551#. '``exception label``': the label reached when a callee returns via
3552 the :ref:`resume <i_resume>` instruction or other exception handling
3553 mechanism.
3554#. The optional :ref:`function attributes <fnattrs>` list. Only
3555 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3556 attributes are valid here.
3557
3558Semantics:
3559""""""""""
3560
3561This instruction is designed to operate as a standard '``call``'
3562instruction in most regards. The primary difference is that it
3563establishes an association with a label, which is used by the runtime
3564library to unwind the stack.
3565
3566This instruction is used in languages with destructors to ensure that
3567proper cleanup is performed in the case of either a ``longjmp`` or a
3568thrown exception. Additionally, this is important for implementation of
3569'``catch``' clauses in high-level languages that support them.
3570
3571For the purposes of the SSA form, the definition of the value returned
3572by the '``invoke``' instruction is deemed to occur on the edge from the
3573current block to the "normal" label. If the callee unwinds then no
3574return value is available.
3575
3576Example:
3577""""""""
3578
3579.. code-block:: llvm
3580
3581 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003582 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003583 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003584 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003585
3586.. _i_resume:
3587
3588'``resume``' Instruction
3589^^^^^^^^^^^^^^^^^^^^^^^^
3590
3591Syntax:
3592"""""""
3593
3594::
3595
3596 resume <type> <value>
3597
3598Overview:
3599"""""""""
3600
3601The '``resume``' instruction is a terminator instruction that has no
3602successors.
3603
3604Arguments:
3605""""""""""
3606
3607The '``resume``' instruction requires one argument, which must have the
3608same type as the result of any '``landingpad``' instruction in the same
3609function.
3610
3611Semantics:
3612""""""""""
3613
3614The '``resume``' instruction resumes propagation of an existing
3615(in-flight) exception whose unwinding was interrupted with a
3616:ref:`landingpad <i_landingpad>` instruction.
3617
3618Example:
3619""""""""
3620
3621.. code-block:: llvm
3622
3623 resume { i8*, i32 } %exn
3624
3625.. _i_unreachable:
3626
3627'``unreachable``' Instruction
3628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3629
3630Syntax:
3631"""""""
3632
3633::
3634
3635 unreachable
3636
3637Overview:
3638"""""""""
3639
3640The '``unreachable``' instruction has no defined semantics. This
3641instruction is used to inform the optimizer that a particular portion of
3642the code is not reachable. This can be used to indicate that the code
3643after a no-return function cannot be reached, and other facts.
3644
3645Semantics:
3646""""""""""
3647
3648The '``unreachable``' instruction has no defined semantics.
3649
3650.. _binaryops:
3651
3652Binary Operations
3653-----------------
3654
3655Binary operators are used to do most of the computation in a program.
3656They require two operands of the same type, execute an operation on
3657them, and produce a single value. The operands might represent multiple
3658data, as is the case with the :ref:`vector <t_vector>` data type. The
3659result value has the same type as its operands.
3660
3661There are several different binary operators:
3662
3663.. _i_add:
3664
3665'``add``' Instruction
3666^^^^^^^^^^^^^^^^^^^^^
3667
3668Syntax:
3669"""""""
3670
3671::
3672
Tim Northover675a0962014-06-13 14:24:23 +00003673 <result> = add <ty> <op1>, <op2> ; yields ty:result
3674 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3675 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3676 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003677
3678Overview:
3679"""""""""
3680
3681The '``add``' instruction returns the sum of its two operands.
3682
3683Arguments:
3684""""""""""
3685
3686The two arguments to the '``add``' instruction must be
3687:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3688arguments must have identical types.
3689
3690Semantics:
3691""""""""""
3692
3693The value produced is the integer sum of the two operands.
3694
3695If the sum has unsigned overflow, the result returned is the
3696mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3697the result.
3698
3699Because LLVM integers use a two's complement representation, this
3700instruction is appropriate for both signed and unsigned integers.
3701
3702``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3703respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3704result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3705unsigned and/or signed overflow, respectively, occurs.
3706
3707Example:
3708""""""""
3709
3710.. code-block:: llvm
3711
Tim Northover675a0962014-06-13 14:24:23 +00003712 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003713
3714.. _i_fadd:
3715
3716'``fadd``' Instruction
3717^^^^^^^^^^^^^^^^^^^^^^
3718
3719Syntax:
3720"""""""
3721
3722::
3723
Tim Northover675a0962014-06-13 14:24:23 +00003724 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003725
3726Overview:
3727"""""""""
3728
3729The '``fadd``' instruction returns the sum of its two operands.
3730
3731Arguments:
3732""""""""""
3733
3734The two arguments to the '``fadd``' instruction must be :ref:`floating
3735point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3736Both arguments must have identical types.
3737
3738Semantics:
3739""""""""""
3740
3741The value produced is the floating point sum of the two operands. This
3742instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3743which are optimization hints to enable otherwise unsafe floating point
3744optimizations:
3745
3746Example:
3747""""""""
3748
3749.. code-block:: llvm
3750
Tim Northover675a0962014-06-13 14:24:23 +00003751 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003752
3753'``sub``' Instruction
3754^^^^^^^^^^^^^^^^^^^^^
3755
3756Syntax:
3757"""""""
3758
3759::
3760
Tim Northover675a0962014-06-13 14:24:23 +00003761 <result> = sub <ty> <op1>, <op2> ; yields ty:result
3762 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
3763 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
3764 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003765
3766Overview:
3767"""""""""
3768
3769The '``sub``' instruction returns the difference of its two operands.
3770
3771Note that the '``sub``' instruction is used to represent the '``neg``'
3772instruction present in most other intermediate representations.
3773
3774Arguments:
3775""""""""""
3776
3777The two arguments to the '``sub``' instruction must be
3778:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3779arguments must have identical types.
3780
3781Semantics:
3782""""""""""
3783
3784The value produced is the integer difference of the two operands.
3785
3786If the difference has unsigned overflow, the result returned is the
3787mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3788the result.
3789
3790Because LLVM integers use a two's complement representation, this
3791instruction is appropriate for both signed and unsigned integers.
3792
3793``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3794respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3795result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3796unsigned and/or signed overflow, respectively, occurs.
3797
3798Example:
3799""""""""
3800
3801.. code-block:: llvm
3802
Tim Northover675a0962014-06-13 14:24:23 +00003803 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
3804 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003805
3806.. _i_fsub:
3807
3808'``fsub``' Instruction
3809^^^^^^^^^^^^^^^^^^^^^^
3810
3811Syntax:
3812"""""""
3813
3814::
3815
Tim Northover675a0962014-06-13 14:24:23 +00003816 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003817
3818Overview:
3819"""""""""
3820
3821The '``fsub``' instruction returns the difference of its two operands.
3822
3823Note that the '``fsub``' instruction is used to represent the '``fneg``'
3824instruction present in most other intermediate representations.
3825
3826Arguments:
3827""""""""""
3828
3829The two arguments to the '``fsub``' instruction must be :ref:`floating
3830point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3831Both arguments must have identical types.
3832
3833Semantics:
3834""""""""""
3835
3836The value produced is the floating point difference of the two operands.
3837This instruction can also take any number of :ref:`fast-math
3838flags <fastmath>`, which are optimization hints to enable otherwise
3839unsafe floating point optimizations:
3840
3841Example:
3842""""""""
3843
3844.. code-block:: llvm
3845
Tim Northover675a0962014-06-13 14:24:23 +00003846 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
3847 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003848
3849'``mul``' Instruction
3850^^^^^^^^^^^^^^^^^^^^^
3851
3852Syntax:
3853"""""""
3854
3855::
3856
Tim Northover675a0962014-06-13 14:24:23 +00003857 <result> = mul <ty> <op1>, <op2> ; yields ty:result
3858 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
3859 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
3860 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003861
3862Overview:
3863"""""""""
3864
3865The '``mul``' instruction returns the product of its two operands.
3866
3867Arguments:
3868""""""""""
3869
3870The two arguments to the '``mul``' instruction must be
3871:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3872arguments must have identical types.
3873
3874Semantics:
3875""""""""""
3876
3877The value produced is the integer product of the two operands.
3878
3879If the result of the multiplication has unsigned overflow, the result
3880returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3881bit width of the result.
3882
3883Because LLVM integers use a two's complement representation, and the
3884result is the same width as the operands, this instruction returns the
3885correct result for both signed and unsigned integers. If a full product
3886(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3887sign-extended or zero-extended as appropriate to the width of the full
3888product.
3889
3890``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3891respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3892result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3893unsigned and/or signed overflow, respectively, occurs.
3894
3895Example:
3896""""""""
3897
3898.. code-block:: llvm
3899
Tim Northover675a0962014-06-13 14:24:23 +00003900 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00003901
3902.. _i_fmul:
3903
3904'``fmul``' Instruction
3905^^^^^^^^^^^^^^^^^^^^^^
3906
3907Syntax:
3908"""""""
3909
3910::
3911
Tim Northover675a0962014-06-13 14:24:23 +00003912 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003913
3914Overview:
3915"""""""""
3916
3917The '``fmul``' instruction returns the product of its two operands.
3918
3919Arguments:
3920""""""""""
3921
3922The two arguments to the '``fmul``' instruction must be :ref:`floating
3923point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3924Both arguments must have identical types.
3925
3926Semantics:
3927""""""""""
3928
3929The value produced is the floating point product of the two operands.
3930This instruction can also take any number of :ref:`fast-math
3931flags <fastmath>`, which are optimization hints to enable otherwise
3932unsafe floating point optimizations:
3933
3934Example:
3935""""""""
3936
3937.. code-block:: llvm
3938
Tim Northover675a0962014-06-13 14:24:23 +00003939 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00003940
3941'``udiv``' Instruction
3942^^^^^^^^^^^^^^^^^^^^^^
3943
3944Syntax:
3945"""""""
3946
3947::
3948
Tim Northover675a0962014-06-13 14:24:23 +00003949 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
3950 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003951
3952Overview:
3953"""""""""
3954
3955The '``udiv``' instruction returns the quotient of its two operands.
3956
3957Arguments:
3958""""""""""
3959
3960The two arguments to the '``udiv``' instruction must be
3961:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3962arguments must have identical types.
3963
3964Semantics:
3965""""""""""
3966
3967The value produced is the unsigned integer quotient of the two operands.
3968
3969Note that unsigned integer division and signed integer division are
3970distinct operations; for signed integer division, use '``sdiv``'.
3971
3972Division by zero leads to undefined behavior.
3973
3974If the ``exact`` keyword is present, the result value of the ``udiv`` is
3975a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3976such, "((a udiv exact b) mul b) == a").
3977
3978Example:
3979""""""""
3980
3981.. code-block:: llvm
3982
Tim Northover675a0962014-06-13 14:24:23 +00003983 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00003984
3985'``sdiv``' Instruction
3986^^^^^^^^^^^^^^^^^^^^^^
3987
3988Syntax:
3989"""""""
3990
3991::
3992
Tim Northover675a0962014-06-13 14:24:23 +00003993 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
3994 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003995
3996Overview:
3997"""""""""
3998
3999The '``sdiv``' instruction returns the quotient of its two operands.
4000
4001Arguments:
4002""""""""""
4003
4004The two arguments to the '``sdiv``' instruction must be
4005:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4006arguments must have identical types.
4007
4008Semantics:
4009""""""""""
4010
4011The value produced is the signed integer quotient of the two operands
4012rounded towards zero.
4013
4014Note that signed integer division and unsigned integer division are
4015distinct operations; for unsigned integer division, use '``udiv``'.
4016
4017Division by zero leads to undefined behavior. Overflow also leads to
4018undefined behavior; this is a rare case, but can occur, for example, by
4019doing a 32-bit division of -2147483648 by -1.
4020
4021If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4022a :ref:`poison value <poisonvalues>` if the result would be rounded.
4023
4024Example:
4025""""""""
4026
4027.. code-block:: llvm
4028
Tim Northover675a0962014-06-13 14:24:23 +00004029 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004030
4031.. _i_fdiv:
4032
4033'``fdiv``' Instruction
4034^^^^^^^^^^^^^^^^^^^^^^
4035
4036Syntax:
4037"""""""
4038
4039::
4040
Tim Northover675a0962014-06-13 14:24:23 +00004041 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004042
4043Overview:
4044"""""""""
4045
4046The '``fdiv``' instruction returns the quotient of its two operands.
4047
4048Arguments:
4049""""""""""
4050
4051The two arguments to the '``fdiv``' instruction must be :ref:`floating
4052point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4053Both arguments must have identical types.
4054
4055Semantics:
4056""""""""""
4057
4058The value produced is the floating point quotient of the two operands.
4059This instruction can also take any number of :ref:`fast-math
4060flags <fastmath>`, which are optimization hints to enable otherwise
4061unsafe floating point optimizations:
4062
4063Example:
4064""""""""
4065
4066.. code-block:: llvm
4067
Tim Northover675a0962014-06-13 14:24:23 +00004068 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004069
4070'``urem``' Instruction
4071^^^^^^^^^^^^^^^^^^^^^^
4072
4073Syntax:
4074"""""""
4075
4076::
4077
Tim Northover675a0962014-06-13 14:24:23 +00004078 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004079
4080Overview:
4081"""""""""
4082
4083The '``urem``' instruction returns the remainder from the unsigned
4084division of its two arguments.
4085
4086Arguments:
4087""""""""""
4088
4089The two arguments to the '``urem``' instruction must be
4090:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4091arguments must have identical types.
4092
4093Semantics:
4094""""""""""
4095
4096This instruction returns the unsigned integer *remainder* of a division.
4097This instruction always performs an unsigned division to get the
4098remainder.
4099
4100Note that unsigned integer remainder and signed integer remainder are
4101distinct operations; for signed integer remainder, use '``srem``'.
4102
4103Taking the remainder of a division by zero leads to undefined behavior.
4104
4105Example:
4106""""""""
4107
4108.. code-block:: llvm
4109
Tim Northover675a0962014-06-13 14:24:23 +00004110 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004111
4112'``srem``' Instruction
4113^^^^^^^^^^^^^^^^^^^^^^
4114
4115Syntax:
4116"""""""
4117
4118::
4119
Tim Northover675a0962014-06-13 14:24:23 +00004120 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004121
4122Overview:
4123"""""""""
4124
4125The '``srem``' instruction returns the remainder from the signed
4126division of its two operands. This instruction can also take
4127:ref:`vector <t_vector>` versions of the values in which case the elements
4128must be integers.
4129
4130Arguments:
4131""""""""""
4132
4133The two arguments to the '``srem``' instruction must be
4134:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4135arguments must have identical types.
4136
4137Semantics:
4138""""""""""
4139
4140This instruction returns the *remainder* of a division (where the result
4141is either zero or has the same sign as the dividend, ``op1``), not the
4142*modulo* operator (where the result is either zero or has the same sign
4143as the divisor, ``op2``) of a value. For more information about the
4144difference, see `The Math
4145Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4146table of how this is implemented in various languages, please see
4147`Wikipedia: modulo
4148operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4149
4150Note that signed integer remainder and unsigned integer remainder are
4151distinct operations; for unsigned integer remainder, use '``urem``'.
4152
4153Taking the remainder of a division by zero leads to undefined behavior.
4154Overflow also leads to undefined behavior; this is a rare case, but can
4155occur, for example, by taking the remainder of a 32-bit division of
4156-2147483648 by -1. (The remainder doesn't actually overflow, but this
4157rule lets srem be implemented using instructions that return both the
4158result of the division and the remainder.)
4159
4160Example:
4161""""""""
4162
4163.. code-block:: llvm
4164
Tim Northover675a0962014-06-13 14:24:23 +00004165 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004166
4167.. _i_frem:
4168
4169'``frem``' Instruction
4170^^^^^^^^^^^^^^^^^^^^^^
4171
4172Syntax:
4173"""""""
4174
4175::
4176
Tim Northover675a0962014-06-13 14:24:23 +00004177 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004178
4179Overview:
4180"""""""""
4181
4182The '``frem``' instruction returns the remainder from the division of
4183its two operands.
4184
4185Arguments:
4186""""""""""
4187
4188The two arguments to the '``frem``' instruction must be :ref:`floating
4189point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4190Both arguments must have identical types.
4191
4192Semantics:
4193""""""""""
4194
4195This instruction returns the *remainder* of a division. The remainder
4196has the same sign as the dividend. This instruction can also take any
4197number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4198to enable otherwise unsafe floating point optimizations:
4199
4200Example:
4201""""""""
4202
4203.. code-block:: llvm
4204
Tim Northover675a0962014-06-13 14:24:23 +00004205 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004206
4207.. _bitwiseops:
4208
4209Bitwise Binary Operations
4210-------------------------
4211
4212Bitwise binary operators are used to do various forms of bit-twiddling
4213in a program. They are generally very efficient instructions and can
4214commonly be strength reduced from other instructions. They require two
4215operands of the same type, execute an operation on them, and produce a
4216single value. The resulting value is the same type as its operands.
4217
4218'``shl``' Instruction
4219^^^^^^^^^^^^^^^^^^^^^
4220
4221Syntax:
4222"""""""
4223
4224::
4225
Tim Northover675a0962014-06-13 14:24:23 +00004226 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4227 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4228 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4229 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004230
4231Overview:
4232"""""""""
4233
4234The '``shl``' instruction returns the first operand shifted to the left
4235a specified number of bits.
4236
4237Arguments:
4238""""""""""
4239
4240Both arguments to the '``shl``' instruction must be the same
4241:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4242'``op2``' is treated as an unsigned value.
4243
4244Semantics:
4245""""""""""
4246
4247The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4248where ``n`` is the width of the result. If ``op2`` is (statically or
4249dynamically) negative or equal to or larger than the number of bits in
4250``op1``, the result is undefined. If the arguments are vectors, each
4251vector element of ``op1`` is shifted by the corresponding shift amount
4252in ``op2``.
4253
4254If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4255value <poisonvalues>` if it shifts out any non-zero bits. If the
4256``nsw`` keyword is present, then the shift produces a :ref:`poison
4257value <poisonvalues>` if it shifts out any bits that disagree with the
4258resultant sign bit. As such, NUW/NSW have the same semantics as they
4259would if the shift were expressed as a mul instruction with the same
4260nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4261
4262Example:
4263""""""""
4264
4265.. code-block:: llvm
4266
Tim Northover675a0962014-06-13 14:24:23 +00004267 <result> = shl i32 4, %var ; yields i32: 4 << %var
4268 <result> = shl i32 4, 2 ; yields i32: 16
4269 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004270 <result> = shl i32 1, 32 ; undefined
4271 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4272
4273'``lshr``' Instruction
4274^^^^^^^^^^^^^^^^^^^^^^
4275
4276Syntax:
4277"""""""
4278
4279::
4280
Tim Northover675a0962014-06-13 14:24:23 +00004281 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4282 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004283
4284Overview:
4285"""""""""
4286
4287The '``lshr``' instruction (logical shift right) returns the first
4288operand shifted to the right a specified number of bits with zero fill.
4289
4290Arguments:
4291""""""""""
4292
4293Both arguments to the '``lshr``' instruction must be the same
4294:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4295'``op2``' is treated as an unsigned value.
4296
4297Semantics:
4298""""""""""
4299
4300This instruction always performs a logical shift right operation. The
4301most significant bits of the result will be filled with zero bits after
4302the shift. If ``op2`` is (statically or dynamically) equal to or larger
4303than the number of bits in ``op1``, the result is undefined. If the
4304arguments are vectors, each vector element of ``op1`` is shifted by the
4305corresponding shift amount in ``op2``.
4306
4307If the ``exact`` keyword is present, the result value of the ``lshr`` is
4308a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4309non-zero.
4310
4311Example:
4312""""""""
4313
4314.. code-block:: llvm
4315
Tim Northover675a0962014-06-13 14:24:23 +00004316 <result> = lshr i32 4, 1 ; yields i32:result = 2
4317 <result> = lshr i32 4, 2 ; yields i32:result = 1
4318 <result> = lshr i8 4, 3 ; yields i8:result = 0
4319 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004320 <result> = lshr i32 1, 32 ; undefined
4321 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4322
4323'``ashr``' Instruction
4324^^^^^^^^^^^^^^^^^^^^^^
4325
4326Syntax:
4327"""""""
4328
4329::
4330
Tim Northover675a0962014-06-13 14:24:23 +00004331 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4332 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004333
4334Overview:
4335"""""""""
4336
4337The '``ashr``' instruction (arithmetic shift right) returns the first
4338operand shifted to the right a specified number of bits with sign
4339extension.
4340
4341Arguments:
4342""""""""""
4343
4344Both arguments to the '``ashr``' instruction must be the same
4345:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4346'``op2``' is treated as an unsigned value.
4347
4348Semantics:
4349""""""""""
4350
4351This instruction always performs an arithmetic shift right operation,
4352The most significant bits of the result will be filled with the sign bit
4353of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4354than the number of bits in ``op1``, the result is undefined. If the
4355arguments are vectors, each vector element of ``op1`` is shifted by the
4356corresponding shift amount in ``op2``.
4357
4358If the ``exact`` keyword is present, the result value of the ``ashr`` is
4359a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4360non-zero.
4361
4362Example:
4363""""""""
4364
4365.. code-block:: llvm
4366
Tim Northover675a0962014-06-13 14:24:23 +00004367 <result> = ashr i32 4, 1 ; yields i32:result = 2
4368 <result> = ashr i32 4, 2 ; yields i32:result = 1
4369 <result> = ashr i8 4, 3 ; yields i8:result = 0
4370 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004371 <result> = ashr i32 1, 32 ; undefined
4372 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4373
4374'``and``' Instruction
4375^^^^^^^^^^^^^^^^^^^^^
4376
4377Syntax:
4378"""""""
4379
4380::
4381
Tim Northover675a0962014-06-13 14:24:23 +00004382 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004383
4384Overview:
4385"""""""""
4386
4387The '``and``' instruction returns the bitwise logical and of its two
4388operands.
4389
4390Arguments:
4391""""""""""
4392
4393The two arguments to the '``and``' instruction must be
4394:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4395arguments must have identical types.
4396
4397Semantics:
4398""""""""""
4399
4400The truth table used for the '``and``' instruction is:
4401
4402+-----+-----+-----+
4403| In0 | In1 | Out |
4404+-----+-----+-----+
4405| 0 | 0 | 0 |
4406+-----+-----+-----+
4407| 0 | 1 | 0 |
4408+-----+-----+-----+
4409| 1 | 0 | 0 |
4410+-----+-----+-----+
4411| 1 | 1 | 1 |
4412+-----+-----+-----+
4413
4414Example:
4415""""""""
4416
4417.. code-block:: llvm
4418
Tim Northover675a0962014-06-13 14:24:23 +00004419 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4420 <result> = and i32 15, 40 ; yields i32:result = 8
4421 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004422
4423'``or``' Instruction
4424^^^^^^^^^^^^^^^^^^^^
4425
4426Syntax:
4427"""""""
4428
4429::
4430
Tim Northover675a0962014-06-13 14:24:23 +00004431 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004432
4433Overview:
4434"""""""""
4435
4436The '``or``' instruction returns the bitwise logical inclusive or of its
4437two operands.
4438
4439Arguments:
4440""""""""""
4441
4442The two arguments to the '``or``' instruction must be
4443:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4444arguments must have identical types.
4445
4446Semantics:
4447""""""""""
4448
4449The truth table used for the '``or``' instruction is:
4450
4451+-----+-----+-----+
4452| In0 | In1 | Out |
4453+-----+-----+-----+
4454| 0 | 0 | 0 |
4455+-----+-----+-----+
4456| 0 | 1 | 1 |
4457+-----+-----+-----+
4458| 1 | 0 | 1 |
4459+-----+-----+-----+
4460| 1 | 1 | 1 |
4461+-----+-----+-----+
4462
4463Example:
4464""""""""
4465
4466::
4467
Tim Northover675a0962014-06-13 14:24:23 +00004468 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4469 <result> = or i32 15, 40 ; yields i32:result = 47
4470 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472'``xor``' Instruction
4473^^^^^^^^^^^^^^^^^^^^^
4474
4475Syntax:
4476"""""""
4477
4478::
4479
Tim Northover675a0962014-06-13 14:24:23 +00004480 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004481
4482Overview:
4483"""""""""
4484
4485The '``xor``' instruction returns the bitwise logical exclusive or of
4486its two operands. The ``xor`` is used to implement the "one's
4487complement" operation, which is the "~" operator in C.
4488
4489Arguments:
4490""""""""""
4491
4492The two arguments to the '``xor``' instruction must be
4493:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4494arguments must have identical types.
4495
4496Semantics:
4497""""""""""
4498
4499The truth table used for the '``xor``' instruction is:
4500
4501+-----+-----+-----+
4502| In0 | In1 | Out |
4503+-----+-----+-----+
4504| 0 | 0 | 0 |
4505+-----+-----+-----+
4506| 0 | 1 | 1 |
4507+-----+-----+-----+
4508| 1 | 0 | 1 |
4509+-----+-----+-----+
4510| 1 | 1 | 0 |
4511+-----+-----+-----+
4512
4513Example:
4514""""""""
4515
4516.. code-block:: llvm
4517
Tim Northover675a0962014-06-13 14:24:23 +00004518 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4519 <result> = xor i32 15, 40 ; yields i32:result = 39
4520 <result> = xor i32 4, 8 ; yields i32:result = 12
4521 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004522
4523Vector Operations
4524-----------------
4525
4526LLVM supports several instructions to represent vector operations in a
4527target-independent manner. These instructions cover the element-access
4528and vector-specific operations needed to process vectors effectively.
4529While LLVM does directly support these vector operations, many
4530sophisticated algorithms will want to use target-specific intrinsics to
4531take full advantage of a specific target.
4532
4533.. _i_extractelement:
4534
4535'``extractelement``' Instruction
4536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4537
4538Syntax:
4539"""""""
4540
4541::
4542
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004543 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004544
4545Overview:
4546"""""""""
4547
4548The '``extractelement``' instruction extracts a single scalar element
4549from a vector at a specified index.
4550
4551Arguments:
4552""""""""""
4553
4554The first operand of an '``extractelement``' instruction is a value of
4555:ref:`vector <t_vector>` type. The second operand is an index indicating
4556the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004557variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004558
4559Semantics:
4560""""""""""
4561
4562The result is a scalar of the same type as the element type of ``val``.
4563Its value is the value at position ``idx`` of ``val``. If ``idx``
4564exceeds the length of ``val``, the results are undefined.
4565
4566Example:
4567""""""""
4568
4569.. code-block:: llvm
4570
4571 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4572
4573.. _i_insertelement:
4574
4575'``insertelement``' Instruction
4576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4577
4578Syntax:
4579"""""""
4580
4581::
4582
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004583 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004584
4585Overview:
4586"""""""""
4587
4588The '``insertelement``' instruction inserts a scalar element into a
4589vector at a specified index.
4590
4591Arguments:
4592""""""""""
4593
4594The first operand of an '``insertelement``' instruction is a value of
4595:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4596type must equal the element type of the first operand. The third operand
4597is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004598index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004599
4600Semantics:
4601""""""""""
4602
4603The result is a vector of the same type as ``val``. Its element values
4604are those of ``val`` except at position ``idx``, where it gets the value
4605``elt``. If ``idx`` exceeds the length of ``val``, the results are
4606undefined.
4607
4608Example:
4609""""""""
4610
4611.. code-block:: llvm
4612
4613 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4614
4615.. _i_shufflevector:
4616
4617'``shufflevector``' Instruction
4618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4619
4620Syntax:
4621"""""""
4622
4623::
4624
4625 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4626
4627Overview:
4628"""""""""
4629
4630The '``shufflevector``' instruction constructs a permutation of elements
4631from two input vectors, returning a vector with the same element type as
4632the input and length that is the same as the shuffle mask.
4633
4634Arguments:
4635""""""""""
4636
4637The first two operands of a '``shufflevector``' instruction are vectors
4638with the same type. The third argument is a shuffle mask whose element
4639type is always 'i32'. The result of the instruction is a vector whose
4640length is the same as the shuffle mask and whose element type is the
4641same as the element type of the first two operands.
4642
4643The shuffle mask operand is required to be a constant vector with either
4644constant integer or undef values.
4645
4646Semantics:
4647""""""""""
4648
4649The elements of the two input vectors are numbered from left to right
4650across both of the vectors. The shuffle mask operand specifies, for each
4651element of the result vector, which element of the two input vectors the
4652result element gets. The element selector may be undef (meaning "don't
4653care") and the second operand may be undef if performing a shuffle from
4654only one vector.
4655
4656Example:
4657""""""""
4658
4659.. code-block:: llvm
4660
4661 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4662 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4663 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4664 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4665 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4666 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4667 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4668 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4669
4670Aggregate Operations
4671--------------------
4672
4673LLVM supports several instructions for working with
4674:ref:`aggregate <t_aggregate>` values.
4675
4676.. _i_extractvalue:
4677
4678'``extractvalue``' Instruction
4679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4680
4681Syntax:
4682"""""""
4683
4684::
4685
4686 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4687
4688Overview:
4689"""""""""
4690
4691The '``extractvalue``' instruction extracts the value of a member field
4692from an :ref:`aggregate <t_aggregate>` value.
4693
4694Arguments:
4695""""""""""
4696
4697The first operand of an '``extractvalue``' instruction is a value of
4698:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4699constant indices to specify which value to extract in a similar manner
4700as indices in a '``getelementptr``' instruction.
4701
4702The major differences to ``getelementptr`` indexing are:
4703
4704- Since the value being indexed is not a pointer, the first index is
4705 omitted and assumed to be zero.
4706- At least one index must be specified.
4707- Not only struct indices but also array indices must be in bounds.
4708
4709Semantics:
4710""""""""""
4711
4712The result is the value at the position in the aggregate specified by
4713the index operands.
4714
4715Example:
4716""""""""
4717
4718.. code-block:: llvm
4719
4720 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4721
4722.. _i_insertvalue:
4723
4724'``insertvalue``' Instruction
4725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4726
4727Syntax:
4728"""""""
4729
4730::
4731
4732 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4733
4734Overview:
4735"""""""""
4736
4737The '``insertvalue``' instruction inserts a value into a member field in
4738an :ref:`aggregate <t_aggregate>` value.
4739
4740Arguments:
4741""""""""""
4742
4743The first operand of an '``insertvalue``' instruction is a value of
4744:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4745a first-class value to insert. The following operands are constant
4746indices indicating the position at which to insert the value in a
4747similar manner as indices in a '``extractvalue``' instruction. The value
4748to insert must have the same type as the value identified by the
4749indices.
4750
4751Semantics:
4752""""""""""
4753
4754The result is an aggregate of the same type as ``val``. Its value is
4755that of ``val`` except that the value at the position specified by the
4756indices is that of ``elt``.
4757
4758Example:
4759""""""""
4760
4761.. code-block:: llvm
4762
4763 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4764 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4765 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4766
4767.. _memoryops:
4768
4769Memory Access and Addressing Operations
4770---------------------------------------
4771
4772A key design point of an SSA-based representation is how it represents
4773memory. In LLVM, no memory locations are in SSA form, which makes things
4774very simple. This section describes how to read, write, and allocate
4775memory in LLVM.
4776
4777.. _i_alloca:
4778
4779'``alloca``' Instruction
4780^^^^^^^^^^^^^^^^^^^^^^^^
4781
4782Syntax:
4783"""""""
4784
4785::
4786
Tim Northover675a0962014-06-13 14:24:23 +00004787 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00004788
4789Overview:
4790"""""""""
4791
4792The '``alloca``' instruction allocates memory on the stack frame of the
4793currently executing function, to be automatically released when this
4794function returns to its caller. The object is always allocated in the
4795generic address space (address space zero).
4796
4797Arguments:
4798""""""""""
4799
4800The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4801bytes of memory on the runtime stack, returning a pointer of the
4802appropriate type to the program. If "NumElements" is specified, it is
4803the number of elements allocated, otherwise "NumElements" is defaulted
4804to be one. If a constant alignment is specified, the value result of the
4805allocation is guaranteed to be aligned to at least that boundary. If not
4806specified, or if zero, the target can choose to align the allocation on
4807any convenient boundary compatible with the type.
4808
4809'``type``' may be any sized type.
4810
4811Semantics:
4812""""""""""
4813
4814Memory is allocated; a pointer is returned. The operation is undefined
4815if there is insufficient stack space for the allocation. '``alloca``'d
4816memory is automatically released when the function returns. The
4817'``alloca``' instruction is commonly used to represent automatic
4818variables that must have an address available. When the function returns
4819(either with the ``ret`` or ``resume`` instructions), the memory is
4820reclaimed. Allocating zero bytes is legal, but the result is undefined.
4821The order in which memory is allocated (ie., which way the stack grows)
4822is not specified.
4823
4824Example:
4825""""""""
4826
4827.. code-block:: llvm
4828
Tim Northover675a0962014-06-13 14:24:23 +00004829 %ptr = alloca i32 ; yields i32*:ptr
4830 %ptr = alloca i32, i32 4 ; yields i32*:ptr
4831 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
4832 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00004833
4834.. _i_load:
4835
4836'``load``' Instruction
4837^^^^^^^^^^^^^^^^^^^^^^
4838
4839Syntax:
4840"""""""
4841
4842::
4843
4844 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4845 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4846 !<index> = !{ i32 1 }
4847
4848Overview:
4849"""""""""
4850
4851The '``load``' instruction is used to read from memory.
4852
4853Arguments:
4854""""""""""
4855
Eli Bendersky239a78b2013-04-17 20:17:08 +00004856The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004857from which to load. The pointer must point to a :ref:`first
4858class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4859then the optimizer is not allowed to modify the number or order of
4860execution of this ``load`` with other :ref:`volatile
4861operations <volatile>`.
4862
4863If the ``load`` is marked as ``atomic``, it takes an extra
4864:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4865``release`` and ``acq_rel`` orderings are not valid on ``load``
4866instructions. Atomic loads produce :ref:`defined <memmodel>` results
4867when they may see multiple atomic stores. The type of the pointee must
4868be an integer type whose bit width is a power of two greater than or
4869equal to eight and less than or equal to a target-specific size limit.
4870``align`` must be explicitly specified on atomic loads, and the load has
4871undefined behavior if the alignment is not set to a value which is at
4872least the size in bytes of the pointee. ``!nontemporal`` does not have
4873any defined semantics for atomic loads.
4874
4875The optional constant ``align`` argument specifies the alignment of the
4876operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004877or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004878alignment for the target. It is the responsibility of the code emitter
4879to ensure that the alignment information is correct. Overestimating the
4880alignment results in undefined behavior. Underestimating the alignment
4881may produce less efficient code. An alignment of 1 is always safe.
4882
4883The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004884metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004885``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004886metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004887that this load is not expected to be reused in the cache. The code
4888generator may select special instructions to save cache bandwidth, such
4889as the ``MOVNT`` instruction on x86.
4890
4891The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004892metadata name ``<index>`` corresponding to a metadata node with no
4893entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004894instruction tells the optimizer and code generator that this load
4895address points to memory which does not change value during program
4896execution. The optimizer may then move this load around, for example, by
4897hoisting it out of loops using loop invariant code motion.
4898
4899Semantics:
4900""""""""""
4901
4902The location of memory pointed to is loaded. If the value being loaded
4903is of scalar type then the number of bytes read does not exceed the
4904minimum number of bytes needed to hold all bits of the type. For
4905example, loading an ``i24`` reads at most three bytes. When loading a
4906value of a type like ``i20`` with a size that is not an integral number
4907of bytes, the result is undefined if the value was not originally
4908written using a store of the same type.
4909
4910Examples:
4911"""""""""
4912
4913.. code-block:: llvm
4914
Tim Northover675a0962014-06-13 14:24:23 +00004915 %ptr = alloca i32 ; yields i32*:ptr
4916 store i32 3, i32* %ptr ; yields void
4917 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00004918
4919.. _i_store:
4920
4921'``store``' Instruction
4922^^^^^^^^^^^^^^^^^^^^^^^
4923
4924Syntax:
4925"""""""
4926
4927::
4928
Tim Northover675a0962014-06-13 14:24:23 +00004929 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
4930 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00004931
4932Overview:
4933"""""""""
4934
4935The '``store``' instruction is used to write to memory.
4936
4937Arguments:
4938""""""""""
4939
Eli Benderskyca380842013-04-17 17:17:20 +00004940There are two arguments to the ``store`` instruction: a value to store
4941and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004942operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004943the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004944then the optimizer is not allowed to modify the number or order of
4945execution of this ``store`` with other :ref:`volatile
4946operations <volatile>`.
4947
4948If the ``store`` is marked as ``atomic``, it takes an extra
4949:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4950``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4951instructions. Atomic loads produce :ref:`defined <memmodel>` results
4952when they may see multiple atomic stores. The type of the pointee must
4953be an integer type whose bit width is a power of two greater than or
4954equal to eight and less than or equal to a target-specific size limit.
4955``align`` must be explicitly specified on atomic stores, and the store
4956has undefined behavior if the alignment is not set to a value which is
4957at least the size in bytes of the pointee. ``!nontemporal`` does not
4958have any defined semantics for atomic stores.
4959
Eli Benderskyca380842013-04-17 17:17:20 +00004960The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004961operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004962or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004963alignment for the target. It is the responsibility of the code emitter
4964to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004965alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004966alignment may produce less efficient code. An alignment of 1 is always
4967safe.
4968
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004969The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004970name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004971value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004972tells the optimizer and code generator that this load is not expected to
4973be reused in the cache. The code generator may select special
4974instructions to save cache bandwidth, such as the MOVNT instruction on
4975x86.
4976
4977Semantics:
4978""""""""""
4979
Eli Benderskyca380842013-04-17 17:17:20 +00004980The contents of memory are updated to contain ``<value>`` at the
4981location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004982of scalar type then the number of bytes written does not exceed the
4983minimum number of bytes needed to hold all bits of the type. For
4984example, storing an ``i24`` writes at most three bytes. When writing a
4985value of a type like ``i20`` with a size that is not an integral number
4986of bytes, it is unspecified what happens to the extra bits that do not
4987belong to the type, but they will typically be overwritten.
4988
4989Example:
4990""""""""
4991
4992.. code-block:: llvm
4993
Tim Northover675a0962014-06-13 14:24:23 +00004994 %ptr = alloca i32 ; yields i32*:ptr
4995 store i32 3, i32* %ptr ; yields void
4996 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00004997
4998.. _i_fence:
4999
5000'``fence``' Instruction
5001^^^^^^^^^^^^^^^^^^^^^^^
5002
5003Syntax:
5004"""""""
5005
5006::
5007
Tim Northover675a0962014-06-13 14:24:23 +00005008 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005009
5010Overview:
5011"""""""""
5012
5013The '``fence``' instruction is used to introduce happens-before edges
5014between operations.
5015
5016Arguments:
5017""""""""""
5018
5019'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5020defines what *synchronizes-with* edges they add. They can only be given
5021``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5022
5023Semantics:
5024""""""""""
5025
5026A fence A which has (at least) ``release`` ordering semantics
5027*synchronizes with* a fence B with (at least) ``acquire`` ordering
5028semantics if and only if there exist atomic operations X and Y, both
5029operating on some atomic object M, such that A is sequenced before X, X
5030modifies M (either directly or through some side effect of a sequence
5031headed by X), Y is sequenced before B, and Y observes M. This provides a
5032*happens-before* dependency between A and B. Rather than an explicit
5033``fence``, one (but not both) of the atomic operations X or Y might
5034provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5035still *synchronize-with* the explicit ``fence`` and establish the
5036*happens-before* edge.
5037
5038A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5039``acquire`` and ``release`` semantics specified above, participates in
5040the global program order of other ``seq_cst`` operations and/or fences.
5041
5042The optional ":ref:`singlethread <singlethread>`" argument specifies
5043that the fence only synchronizes with other fences in the same thread.
5044(This is useful for interacting with signal handlers.)
5045
5046Example:
5047""""""""
5048
5049.. code-block:: llvm
5050
Tim Northover675a0962014-06-13 14:24:23 +00005051 fence acquire ; yields void
5052 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005053
5054.. _i_cmpxchg:
5055
5056'``cmpxchg``' Instruction
5057^^^^^^^^^^^^^^^^^^^^^^^^^
5058
5059Syntax:
5060"""""""
5061
5062::
5063
Tim Northover675a0962014-06-13 14:24:23 +00005064 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005065
5066Overview:
5067"""""""""
5068
5069The '``cmpxchg``' instruction is used to atomically modify memory. It
5070loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005071equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005072
5073Arguments:
5074""""""""""
5075
5076There are three arguments to the '``cmpxchg``' instruction: an address
5077to operate on, a value to compare to the value currently be at that
5078address, and a new value to place at that address if the compared values
5079are equal. The type of '<cmp>' must be an integer type whose bit width
5080is a power of two greater than or equal to eight and less than or equal
5081to a target-specific size limit. '<cmp>' and '<new>' must have the same
5082type, and the type of '<pointer>' must be a pointer to that type. If the
5083``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5084to modify the number or order of execution of this ``cmpxchg`` with
5085other :ref:`volatile operations <volatile>`.
5086
Tim Northovere94a5182014-03-11 10:48:52 +00005087The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005088``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5089must be at least ``monotonic``, the ordering constraint on failure must be no
5090stronger than that on success, and the failure ordering cannot be either
5091``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005092
5093The optional "``singlethread``" argument declares that the ``cmpxchg``
5094is only atomic with respect to code (usually signal handlers) running in
5095the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5096respect to all other code in the system.
5097
5098The pointer passed into cmpxchg must have alignment greater than or
5099equal to the size in memory of the operand.
5100
5101Semantics:
5102""""""""""
5103
Tim Northover420a2162014-06-13 14:24:07 +00005104The contents of memory at the location specified by the '``<pointer>``' operand
5105is read and compared to '``<cmp>``'; if the read value is the equal, the
5106'``<new>``' is written. The original value at the location is returned, together
5107with a flag indicating success (true) or failure (false).
5108
5109If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5110permitted: the operation may not write ``<new>`` even if the comparison
5111matched.
5112
5113If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5114if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005115
Tim Northovere94a5182014-03-11 10:48:52 +00005116A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5117identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5118load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005119
5120Example:
5121""""""""
5122
5123.. code-block:: llvm
5124
5125 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005126 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005127 br label %loop
5128
5129 loop:
5130 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5131 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005132 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005133 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5134 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005135 br i1 %success, label %done, label %loop
5136
5137 done:
5138 ...
5139
5140.. _i_atomicrmw:
5141
5142'``atomicrmw``' Instruction
5143^^^^^^^^^^^^^^^^^^^^^^^^^^^
5144
5145Syntax:
5146"""""""
5147
5148::
5149
Tim Northover675a0962014-06-13 14:24:23 +00005150 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005151
5152Overview:
5153"""""""""
5154
5155The '``atomicrmw``' instruction is used to atomically modify memory.
5156
5157Arguments:
5158""""""""""
5159
5160There are three arguments to the '``atomicrmw``' instruction: an
5161operation to apply, an address whose value to modify, an argument to the
5162operation. The operation must be one of the following keywords:
5163
5164- xchg
5165- add
5166- sub
5167- and
5168- nand
5169- or
5170- xor
5171- max
5172- min
5173- umax
5174- umin
5175
5176The type of '<value>' must be an integer type whose bit width is a power
5177of two greater than or equal to eight and less than or equal to a
5178target-specific size limit. The type of the '``<pointer>``' operand must
5179be a pointer to that type. If the ``atomicrmw`` is marked as
5180``volatile``, then the optimizer is not allowed to modify the number or
5181order of execution of this ``atomicrmw`` with other :ref:`volatile
5182operations <volatile>`.
5183
5184Semantics:
5185""""""""""
5186
5187The contents of memory at the location specified by the '``<pointer>``'
5188operand are atomically read, modified, and written back. The original
5189value at the location is returned. The modification is specified by the
5190operation argument:
5191
5192- xchg: ``*ptr = val``
5193- add: ``*ptr = *ptr + val``
5194- sub: ``*ptr = *ptr - val``
5195- and: ``*ptr = *ptr & val``
5196- nand: ``*ptr = ~(*ptr & val)``
5197- or: ``*ptr = *ptr | val``
5198- xor: ``*ptr = *ptr ^ val``
5199- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5200- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5201- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5202 comparison)
5203- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5204 comparison)
5205
5206Example:
5207""""""""
5208
5209.. code-block:: llvm
5210
Tim Northover675a0962014-06-13 14:24:23 +00005211 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005212
5213.. _i_getelementptr:
5214
5215'``getelementptr``' Instruction
5216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5217
5218Syntax:
5219"""""""
5220
5221::
5222
5223 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5224 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5225 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5226
5227Overview:
5228"""""""""
5229
5230The '``getelementptr``' instruction is used to get the address of a
5231subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5232address calculation only and does not access memory.
5233
5234Arguments:
5235""""""""""
5236
5237The first argument is always a pointer or a vector of pointers, and
5238forms the basis of the calculation. The remaining arguments are indices
5239that indicate which of the elements of the aggregate object are indexed.
5240The interpretation of each index is dependent on the type being indexed
5241into. The first index always indexes the pointer value given as the
5242first argument, the second index indexes a value of the type pointed to
5243(not necessarily the value directly pointed to, since the first index
5244can be non-zero), etc. The first type indexed into must be a pointer
5245value, subsequent types can be arrays, vectors, and structs. Note that
5246subsequent types being indexed into can never be pointers, since that
5247would require loading the pointer before continuing calculation.
5248
5249The type of each index argument depends on the type it is indexing into.
5250When indexing into a (optionally packed) structure, only ``i32`` integer
5251**constants** are allowed (when using a vector of indices they must all
5252be the **same** ``i32`` integer constant). When indexing into an array,
5253pointer or vector, integers of any width are allowed, and they are not
5254required to be constant. These integers are treated as signed values
5255where relevant.
5256
5257For example, let's consider a C code fragment and how it gets compiled
5258to LLVM:
5259
5260.. code-block:: c
5261
5262 struct RT {
5263 char A;
5264 int B[10][20];
5265 char C;
5266 };
5267 struct ST {
5268 int X;
5269 double Y;
5270 struct RT Z;
5271 };
5272
5273 int *foo(struct ST *s) {
5274 return &s[1].Z.B[5][13];
5275 }
5276
5277The LLVM code generated by Clang is:
5278
5279.. code-block:: llvm
5280
5281 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5282 %struct.ST = type { i32, double, %struct.RT }
5283
5284 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5285 entry:
5286 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5287 ret i32* %arrayidx
5288 }
5289
5290Semantics:
5291""""""""""
5292
5293In the example above, the first index is indexing into the
5294'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5295= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5296indexes into the third element of the structure, yielding a
5297'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5298structure. The third index indexes into the second element of the
5299structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5300dimensions of the array are subscripted into, yielding an '``i32``'
5301type. The '``getelementptr``' instruction returns a pointer to this
5302element, thus computing a value of '``i32*``' type.
5303
5304Note that it is perfectly legal to index partially through a structure,
5305returning a pointer to an inner element. Because of this, the LLVM code
5306for the given testcase is equivalent to:
5307
5308.. code-block:: llvm
5309
5310 define i32* @foo(%struct.ST* %s) {
5311 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5312 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5313 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5314 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5315 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5316 ret i32* %t5
5317 }
5318
5319If the ``inbounds`` keyword is present, the result value of the
5320``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5321pointer is not an *in bounds* address of an allocated object, or if any
5322of the addresses that would be formed by successive addition of the
5323offsets implied by the indices to the base address with infinitely
5324precise signed arithmetic are not an *in bounds* address of that
5325allocated object. The *in bounds* addresses for an allocated object are
5326all the addresses that point into the object, plus the address one byte
5327past the end. In cases where the base is a vector of pointers the
5328``inbounds`` keyword applies to each of the computations element-wise.
5329
5330If the ``inbounds`` keyword is not present, the offsets are added to the
5331base address with silently-wrapping two's complement arithmetic. If the
5332offsets have a different width from the pointer, they are sign-extended
5333or truncated to the width of the pointer. The result value of the
5334``getelementptr`` may be outside the object pointed to by the base
5335pointer. The result value may not necessarily be used to access memory
5336though, even if it happens to point into allocated storage. See the
5337:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5338information.
5339
5340The getelementptr instruction is often confusing. For some more insight
5341into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5342
5343Example:
5344""""""""
5345
5346.. code-block:: llvm
5347
5348 ; yields [12 x i8]*:aptr
5349 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5350 ; yields i8*:vptr
5351 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5352 ; yields i8*:eptr
5353 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5354 ; yields i32*:iptr
5355 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5356
5357In cases where the pointer argument is a vector of pointers, each index
5358must be a vector with the same number of elements. For example:
5359
5360.. code-block:: llvm
5361
5362 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5363
5364Conversion Operations
5365---------------------
5366
5367The instructions in this category are the conversion instructions
5368(casting) which all take a single operand and a type. They perform
5369various bit conversions on the operand.
5370
5371'``trunc .. to``' Instruction
5372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5373
5374Syntax:
5375"""""""
5376
5377::
5378
5379 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5380
5381Overview:
5382"""""""""
5383
5384The '``trunc``' instruction truncates its operand to the type ``ty2``.
5385
5386Arguments:
5387""""""""""
5388
5389The '``trunc``' instruction takes a value to trunc, and a type to trunc
5390it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5391of the same number of integers. The bit size of the ``value`` must be
5392larger than the bit size of the destination type, ``ty2``. Equal sized
5393types are not allowed.
5394
5395Semantics:
5396""""""""""
5397
5398The '``trunc``' instruction truncates the high order bits in ``value``
5399and converts the remaining bits to ``ty2``. Since the source size must
5400be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5401It will always truncate bits.
5402
5403Example:
5404""""""""
5405
5406.. code-block:: llvm
5407
5408 %X = trunc i32 257 to i8 ; yields i8:1
5409 %Y = trunc i32 123 to i1 ; yields i1:true
5410 %Z = trunc i32 122 to i1 ; yields i1:false
5411 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5412
5413'``zext .. to``' Instruction
5414^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5415
5416Syntax:
5417"""""""
5418
5419::
5420
5421 <result> = zext <ty> <value> to <ty2> ; yields ty2
5422
5423Overview:
5424"""""""""
5425
5426The '``zext``' instruction zero extends its operand to type ``ty2``.
5427
5428Arguments:
5429""""""""""
5430
5431The '``zext``' instruction takes a value to cast, and a type to cast it
5432to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5433the same number of integers. The bit size of the ``value`` must be
5434smaller than the bit size of the destination type, ``ty2``.
5435
5436Semantics:
5437""""""""""
5438
5439The ``zext`` fills the high order bits of the ``value`` with zero bits
5440until it reaches the size of the destination type, ``ty2``.
5441
5442When zero extending from i1, the result will always be either 0 or 1.
5443
5444Example:
5445""""""""
5446
5447.. code-block:: llvm
5448
5449 %X = zext i32 257 to i64 ; yields i64:257
5450 %Y = zext i1 true to i32 ; yields i32:1
5451 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5452
5453'``sext .. to``' Instruction
5454^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5455
5456Syntax:
5457"""""""
5458
5459::
5460
5461 <result> = sext <ty> <value> to <ty2> ; yields ty2
5462
5463Overview:
5464"""""""""
5465
5466The '``sext``' sign extends ``value`` to the type ``ty2``.
5467
5468Arguments:
5469""""""""""
5470
5471The '``sext``' instruction takes a value to cast, and a type to cast it
5472to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5473the same number of integers. The bit size of the ``value`` must be
5474smaller than the bit size of the destination type, ``ty2``.
5475
5476Semantics:
5477""""""""""
5478
5479The '``sext``' instruction performs a sign extension by copying the sign
5480bit (highest order bit) of the ``value`` until it reaches the bit size
5481of the type ``ty2``.
5482
5483When sign extending from i1, the extension always results in -1 or 0.
5484
5485Example:
5486""""""""
5487
5488.. code-block:: llvm
5489
5490 %X = sext i8 -1 to i16 ; yields i16 :65535
5491 %Y = sext i1 true to i32 ; yields i32:-1
5492 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5493
5494'``fptrunc .. to``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
5502 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5503
5504Overview:
5505"""""""""
5506
5507The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5508
5509Arguments:
5510""""""""""
5511
5512The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5513value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5514The size of ``value`` must be larger than the size of ``ty2``. This
5515implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5516
5517Semantics:
5518""""""""""
5519
5520The '``fptrunc``' instruction truncates a ``value`` from a larger
5521:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5522point <t_floating>` type. If the value cannot fit within the
5523destination type, ``ty2``, then the results are undefined.
5524
5525Example:
5526""""""""
5527
5528.. code-block:: llvm
5529
5530 %X = fptrunc double 123.0 to float ; yields float:123.0
5531 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5532
5533'``fpext .. to``' Instruction
5534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5535
5536Syntax:
5537"""""""
5538
5539::
5540
5541 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5542
5543Overview:
5544"""""""""
5545
5546The '``fpext``' extends a floating point ``value`` to a larger floating
5547point value.
5548
5549Arguments:
5550""""""""""
5551
5552The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5553``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5554to. The source type must be smaller than the destination type.
5555
5556Semantics:
5557""""""""""
5558
5559The '``fpext``' instruction extends the ``value`` from a smaller
5560:ref:`floating point <t_floating>` type to a larger :ref:`floating
5561point <t_floating>` type. The ``fpext`` cannot be used to make a
5562*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5563*no-op cast* for a floating point cast.
5564
5565Example:
5566""""""""
5567
5568.. code-block:: llvm
5569
5570 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5571 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5572
5573'``fptoui .. to``' Instruction
5574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5575
5576Syntax:
5577"""""""
5578
5579::
5580
5581 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5582
5583Overview:
5584"""""""""
5585
5586The '``fptoui``' converts a floating point ``value`` to its unsigned
5587integer equivalent of type ``ty2``.
5588
5589Arguments:
5590""""""""""
5591
5592The '``fptoui``' instruction takes a value to cast, which must be a
5593scalar or vector :ref:`floating point <t_floating>` value, and a type to
5594cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5595``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5596type with the same number of elements as ``ty``
5597
5598Semantics:
5599""""""""""
5600
5601The '``fptoui``' instruction converts its :ref:`floating
5602point <t_floating>` operand into the nearest (rounding towards zero)
5603unsigned integer value. If the value cannot fit in ``ty2``, the results
5604are undefined.
5605
5606Example:
5607""""""""
5608
5609.. code-block:: llvm
5610
5611 %X = fptoui double 123.0 to i32 ; yields i32:123
5612 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5613 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5614
5615'``fptosi .. to``' Instruction
5616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5617
5618Syntax:
5619"""""""
5620
5621::
5622
5623 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5624
5625Overview:
5626"""""""""
5627
5628The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5629``value`` to type ``ty2``.
5630
5631Arguments:
5632""""""""""
5633
5634The '``fptosi``' instruction takes a value to cast, which must be a
5635scalar or vector :ref:`floating point <t_floating>` value, and a type to
5636cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5637``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5638type with the same number of elements as ``ty``
5639
5640Semantics:
5641""""""""""
5642
5643The '``fptosi``' instruction converts its :ref:`floating
5644point <t_floating>` operand into the nearest (rounding towards zero)
5645signed integer value. If the value cannot fit in ``ty2``, the results
5646are undefined.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653 %X = fptosi double -123.0 to i32 ; yields i32:-123
5654 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5655 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5656
5657'``uitofp .. to``' Instruction
5658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5659
5660Syntax:
5661"""""""
5662
5663::
5664
5665 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5666
5667Overview:
5668"""""""""
5669
5670The '``uitofp``' instruction regards ``value`` as an unsigned integer
5671and converts that value to the ``ty2`` type.
5672
5673Arguments:
5674""""""""""
5675
5676The '``uitofp``' instruction takes a value to cast, which must be a
5677scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5678``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5679``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5680type with the same number of elements as ``ty``
5681
5682Semantics:
5683""""""""""
5684
5685The '``uitofp``' instruction interprets its operand as an unsigned
5686integer quantity and converts it to the corresponding floating point
5687value. If the value cannot fit in the floating point value, the results
5688are undefined.
5689
5690Example:
5691""""""""
5692
5693.. code-block:: llvm
5694
5695 %X = uitofp i32 257 to float ; yields float:257.0
5696 %Y = uitofp i8 -1 to double ; yields double:255.0
5697
5698'``sitofp .. to``' Instruction
5699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5700
5701Syntax:
5702"""""""
5703
5704::
5705
5706 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5707
5708Overview:
5709"""""""""
5710
5711The '``sitofp``' instruction regards ``value`` as a signed integer and
5712converts that value to the ``ty2`` type.
5713
5714Arguments:
5715""""""""""
5716
5717The '``sitofp``' instruction takes a value to cast, which must be a
5718scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5719``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5720``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5721type with the same number of elements as ``ty``
5722
5723Semantics:
5724""""""""""
5725
5726The '``sitofp``' instruction interprets its operand as a signed integer
5727quantity and converts it to the corresponding floating point value. If
5728the value cannot fit in the floating point value, the results are
5729undefined.
5730
5731Example:
5732""""""""
5733
5734.. code-block:: llvm
5735
5736 %X = sitofp i32 257 to float ; yields float:257.0
5737 %Y = sitofp i8 -1 to double ; yields double:-1.0
5738
5739.. _i_ptrtoint:
5740
5741'``ptrtoint .. to``' Instruction
5742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5743
5744Syntax:
5745"""""""
5746
5747::
5748
5749 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5750
5751Overview:
5752"""""""""
5753
5754The '``ptrtoint``' instruction converts the pointer or a vector of
5755pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5756
5757Arguments:
5758""""""""""
5759
5760The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5761a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5762type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5763a vector of integers type.
5764
5765Semantics:
5766""""""""""
5767
5768The '``ptrtoint``' instruction converts ``value`` to integer type
5769``ty2`` by interpreting the pointer value as an integer and either
5770truncating or zero extending that value to the size of the integer type.
5771If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5772``value`` is larger than ``ty2`` then a truncation is done. If they are
5773the same size, then nothing is done (*no-op cast*) other than a type
5774change.
5775
5776Example:
5777""""""""
5778
5779.. code-block:: llvm
5780
5781 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5782 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5783 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5784
5785.. _i_inttoptr:
5786
5787'``inttoptr .. to``' Instruction
5788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5789
5790Syntax:
5791"""""""
5792
5793::
5794
5795 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5796
5797Overview:
5798"""""""""
5799
5800The '``inttoptr``' instruction converts an integer ``value`` to a
5801pointer type, ``ty2``.
5802
5803Arguments:
5804""""""""""
5805
5806The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5807cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5808type.
5809
5810Semantics:
5811""""""""""
5812
5813The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5814applying either a zero extension or a truncation depending on the size
5815of the integer ``value``. If ``value`` is larger than the size of a
5816pointer then a truncation is done. If ``value`` is smaller than the size
5817of a pointer then a zero extension is done. If they are the same size,
5818nothing is done (*no-op cast*).
5819
5820Example:
5821""""""""
5822
5823.. code-block:: llvm
5824
5825 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5826 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5827 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5828 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5829
5830.. _i_bitcast:
5831
5832'``bitcast .. to``' Instruction
5833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5834
5835Syntax:
5836"""""""
5837
5838::
5839
5840 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5841
5842Overview:
5843"""""""""
5844
5845The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5846changing any bits.
5847
5848Arguments:
5849""""""""""
5850
5851The '``bitcast``' instruction takes a value to cast, which must be a
5852non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005853also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5854bit sizes of ``value`` and the destination type, ``ty2``, must be
5855identical. If the source type is a pointer, the destination type must
5856also be a pointer of the same size. This instruction supports bitwise
5857conversion of vectors to integers and to vectors of other types (as
5858long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005859
5860Semantics:
5861""""""""""
5862
Matt Arsenault24b49c42013-07-31 17:49:08 +00005863The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5864is always a *no-op cast* because no bits change with this
5865conversion. The conversion is done as if the ``value`` had been stored
5866to memory and read back as type ``ty2``. Pointer (or vector of
5867pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005868pointers) types with the same address space through this instruction.
5869To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5870or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872Example:
5873""""""""
5874
5875.. code-block:: llvm
5876
5877 %X = bitcast i8 255 to i8 ; yields i8 :-1
5878 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5879 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5880 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5881
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005882.. _i_addrspacecast:
5883
5884'``addrspacecast .. to``' Instruction
5885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5886
5887Syntax:
5888"""""""
5889
5890::
5891
5892 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5893
5894Overview:
5895"""""""""
5896
5897The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5898address space ``n`` to type ``pty2`` in address space ``m``.
5899
5900Arguments:
5901""""""""""
5902
5903The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5904to cast and a pointer type to cast it to, which must have a different
5905address space.
5906
5907Semantics:
5908""""""""""
5909
5910The '``addrspacecast``' instruction converts the pointer value
5911``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005912value modification, depending on the target and the address space
5913pair. Pointer conversions within the same address space must be
5914performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005915conversion is legal then both result and operand refer to the same memory
5916location.
5917
5918Example:
5919""""""""
5920
5921.. code-block:: llvm
5922
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005923 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5924 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5925 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005926
Sean Silvab084af42012-12-07 10:36:55 +00005927.. _otherops:
5928
5929Other Operations
5930----------------
5931
5932The instructions in this category are the "miscellaneous" instructions,
5933which defy better classification.
5934
5935.. _i_icmp:
5936
5937'``icmp``' Instruction
5938^^^^^^^^^^^^^^^^^^^^^^
5939
5940Syntax:
5941"""""""
5942
5943::
5944
Tim Northover675a0962014-06-13 14:24:23 +00005945 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947Overview:
5948"""""""""
5949
5950The '``icmp``' instruction returns a boolean value or a vector of
5951boolean values based on comparison of its two integer, integer vector,
5952pointer, or pointer vector operands.
5953
5954Arguments:
5955""""""""""
5956
5957The '``icmp``' instruction takes three operands. The first operand is
5958the condition code indicating the kind of comparison to perform. It is
5959not a value, just a keyword. The possible condition code are:
5960
5961#. ``eq``: equal
5962#. ``ne``: not equal
5963#. ``ugt``: unsigned greater than
5964#. ``uge``: unsigned greater or equal
5965#. ``ult``: unsigned less than
5966#. ``ule``: unsigned less or equal
5967#. ``sgt``: signed greater than
5968#. ``sge``: signed greater or equal
5969#. ``slt``: signed less than
5970#. ``sle``: signed less or equal
5971
5972The remaining two arguments must be :ref:`integer <t_integer>` or
5973:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5974must also be identical types.
5975
5976Semantics:
5977""""""""""
5978
5979The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5980code given as ``cond``. The comparison performed always yields either an
5981:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5982
5983#. ``eq``: yields ``true`` if the operands are equal, ``false``
5984 otherwise. No sign interpretation is necessary or performed.
5985#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5986 otherwise. No sign interpretation is necessary or performed.
5987#. ``ugt``: interprets the operands as unsigned values and yields
5988 ``true`` if ``op1`` is greater than ``op2``.
5989#. ``uge``: interprets the operands as unsigned values and yields
5990 ``true`` if ``op1`` is greater than or equal to ``op2``.
5991#. ``ult``: interprets the operands as unsigned values and yields
5992 ``true`` if ``op1`` is less than ``op2``.
5993#. ``ule``: interprets the operands as unsigned values and yields
5994 ``true`` if ``op1`` is less than or equal to ``op2``.
5995#. ``sgt``: interprets the operands as signed values and yields ``true``
5996 if ``op1`` is greater than ``op2``.
5997#. ``sge``: interprets the operands as signed values and yields ``true``
5998 if ``op1`` is greater than or equal to ``op2``.
5999#. ``slt``: interprets the operands as signed values and yields ``true``
6000 if ``op1`` is less than ``op2``.
6001#. ``sle``: interprets the operands as signed values and yields ``true``
6002 if ``op1`` is less than or equal to ``op2``.
6003
6004If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6005are compared as if they were integers.
6006
6007If the operands are integer vectors, then they are compared element by
6008element. The result is an ``i1`` vector with the same number of elements
6009as the values being compared. Otherwise, the result is an ``i1``.
6010
6011Example:
6012""""""""
6013
6014.. code-block:: llvm
6015
6016 <result> = icmp eq i32 4, 5 ; yields: result=false
6017 <result> = icmp ne float* %X, %X ; yields: result=false
6018 <result> = icmp ult i16 4, 5 ; yields: result=true
6019 <result> = icmp sgt i16 4, 5 ; yields: result=false
6020 <result> = icmp ule i16 -4, 5 ; yields: result=false
6021 <result> = icmp sge i16 4, 5 ; yields: result=false
6022
6023Note that the code generator does not yet support vector types with the
6024``icmp`` instruction.
6025
6026.. _i_fcmp:
6027
6028'``fcmp``' Instruction
6029^^^^^^^^^^^^^^^^^^^^^^
6030
6031Syntax:
6032"""""""
6033
6034::
6035
Tim Northover675a0962014-06-13 14:24:23 +00006036 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006037
6038Overview:
6039"""""""""
6040
6041The '``fcmp``' instruction returns a boolean value or vector of boolean
6042values based on comparison of its operands.
6043
6044If the operands are floating point scalars, then the result type is a
6045boolean (:ref:`i1 <t_integer>`).
6046
6047If the operands are floating point vectors, then the result type is a
6048vector of boolean with the same number of elements as the operands being
6049compared.
6050
6051Arguments:
6052""""""""""
6053
6054The '``fcmp``' instruction takes three operands. The first operand is
6055the condition code indicating the kind of comparison to perform. It is
6056not a value, just a keyword. The possible condition code are:
6057
6058#. ``false``: no comparison, always returns false
6059#. ``oeq``: ordered and equal
6060#. ``ogt``: ordered and greater than
6061#. ``oge``: ordered and greater than or equal
6062#. ``olt``: ordered and less than
6063#. ``ole``: ordered and less than or equal
6064#. ``one``: ordered and not equal
6065#. ``ord``: ordered (no nans)
6066#. ``ueq``: unordered or equal
6067#. ``ugt``: unordered or greater than
6068#. ``uge``: unordered or greater than or equal
6069#. ``ult``: unordered or less than
6070#. ``ule``: unordered or less than or equal
6071#. ``une``: unordered or not equal
6072#. ``uno``: unordered (either nans)
6073#. ``true``: no comparison, always returns true
6074
6075*Ordered* means that neither operand is a QNAN while *unordered* means
6076that either operand may be a QNAN.
6077
6078Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6079point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6080type. They must have identical types.
6081
6082Semantics:
6083""""""""""
6084
6085The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6086condition code given as ``cond``. If the operands are vectors, then the
6087vectors are compared element by element. Each comparison performed
6088always yields an :ref:`i1 <t_integer>` result, as follows:
6089
6090#. ``false``: always yields ``false``, regardless of operands.
6091#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6092 is equal to ``op2``.
6093#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6094 is greater than ``op2``.
6095#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6096 is greater than or equal to ``op2``.
6097#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6098 is less than ``op2``.
6099#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6100 is less than or equal to ``op2``.
6101#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6102 is not equal to ``op2``.
6103#. ``ord``: yields ``true`` if both operands are not a QNAN.
6104#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6105 equal to ``op2``.
6106#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6107 greater than ``op2``.
6108#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6109 greater than or equal to ``op2``.
6110#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6111 less than ``op2``.
6112#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6113 less than or equal to ``op2``.
6114#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6115 not equal to ``op2``.
6116#. ``uno``: yields ``true`` if either operand is a QNAN.
6117#. ``true``: always yields ``true``, regardless of operands.
6118
6119Example:
6120""""""""
6121
6122.. code-block:: llvm
6123
6124 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6125 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6126 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6127 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6128
6129Note that the code generator does not yet support vector types with the
6130``fcmp`` instruction.
6131
6132.. _i_phi:
6133
6134'``phi``' Instruction
6135^^^^^^^^^^^^^^^^^^^^^
6136
6137Syntax:
6138"""""""
6139
6140::
6141
6142 <result> = phi <ty> [ <val0>, <label0>], ...
6143
6144Overview:
6145"""""""""
6146
6147The '``phi``' instruction is used to implement the φ node in the SSA
6148graph representing the function.
6149
6150Arguments:
6151""""""""""
6152
6153The type of the incoming values is specified with the first type field.
6154After this, the '``phi``' instruction takes a list of pairs as
6155arguments, with one pair for each predecessor basic block of the current
6156block. Only values of :ref:`first class <t_firstclass>` type may be used as
6157the value arguments to the PHI node. Only labels may be used as the
6158label arguments.
6159
6160There must be no non-phi instructions between the start of a basic block
6161and the PHI instructions: i.e. PHI instructions must be first in a basic
6162block.
6163
6164For the purposes of the SSA form, the use of each incoming value is
6165deemed to occur on the edge from the corresponding predecessor block to
6166the current block (but after any definition of an '``invoke``'
6167instruction's return value on the same edge).
6168
6169Semantics:
6170""""""""""
6171
6172At runtime, the '``phi``' instruction logically takes on the value
6173specified by the pair corresponding to the predecessor basic block that
6174executed just prior to the current block.
6175
6176Example:
6177""""""""
6178
6179.. code-block:: llvm
6180
6181 Loop: ; Infinite loop that counts from 0 on up...
6182 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6183 %nextindvar = add i32 %indvar, 1
6184 br label %Loop
6185
6186.. _i_select:
6187
6188'``select``' Instruction
6189^^^^^^^^^^^^^^^^^^^^^^^^
6190
6191Syntax:
6192"""""""
6193
6194::
6195
6196 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6197
6198 selty is either i1 or {<N x i1>}
6199
6200Overview:
6201"""""""""
6202
6203The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006204condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006205
6206Arguments:
6207""""""""""
6208
6209The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6210values indicating the condition, and two values of the same :ref:`first
6211class <t_firstclass>` type. If the val1/val2 are vectors and the
6212condition is a scalar, then entire vectors are selected, not individual
6213elements.
6214
6215Semantics:
6216""""""""""
6217
6218If the condition is an i1 and it evaluates to 1, the instruction returns
6219the first value argument; otherwise, it returns the second value
6220argument.
6221
6222If the condition is a vector of i1, then the value arguments must be
6223vectors of the same size, and the selection is done element by element.
6224
6225Example:
6226""""""""
6227
6228.. code-block:: llvm
6229
6230 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6231
6232.. _i_call:
6233
6234'``call``' Instruction
6235^^^^^^^^^^^^^^^^^^^^^^
6236
6237Syntax:
6238"""""""
6239
6240::
6241
Reid Kleckner5772b772014-04-24 20:14:34 +00006242 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006243
6244Overview:
6245"""""""""
6246
6247The '``call``' instruction represents a simple function call.
6248
6249Arguments:
6250""""""""""
6251
6252This instruction requires several arguments:
6253
Reid Kleckner5772b772014-04-24 20:14:34 +00006254#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6255 should perform tail call optimization. The ``tail`` marker is a hint that
6256 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6257 means that the call must be tail call optimized in order for the program to
6258 be correct. The ``musttail`` marker provides these guarantees:
6259
6260 #. The call will not cause unbounded stack growth if it is part of a
6261 recursive cycle in the call graph.
6262 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6263 forwarded in place.
6264
6265 Both markers imply that the callee does not access allocas or varargs from
6266 the caller. Calls marked ``musttail`` must obey the following additional
6267 rules:
6268
6269 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6270 or a pointer bitcast followed by a ret instruction.
6271 - The ret instruction must return the (possibly bitcasted) value
6272 produced by the call or void.
6273 - The caller and callee prototypes must match. Pointer types of
6274 parameters or return types may differ in pointee type, but not
6275 in address space.
6276 - The calling conventions of the caller and callee must match.
6277 - All ABI-impacting function attributes, such as sret, byval, inreg,
6278 returned, and inalloca, must match.
6279
6280 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6281 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006282
6283 - Caller and callee both have the calling convention ``fastcc``.
6284 - The call is in tail position (ret immediately follows call and ret
6285 uses value of call or is void).
6286 - Option ``-tailcallopt`` is enabled, or
6287 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6288 - `Platform specific constraints are
6289 met. <CodeGenerator.html#tailcallopt>`_
6290
6291#. The optional "cconv" marker indicates which :ref:`calling
6292 convention <callingconv>` the call should use. If none is
6293 specified, the call defaults to using C calling conventions. The
6294 calling convention of the call must match the calling convention of
6295 the target function, or else the behavior is undefined.
6296#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6297 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6298 are valid here.
6299#. '``ty``': the type of the call instruction itself which is also the
6300 type of the return value. Functions that return no value are marked
6301 ``void``.
6302#. '``fnty``': shall be the signature of the pointer to function value
6303 being invoked. The argument types must match the types implied by
6304 this signature. This type can be omitted if the function is not
6305 varargs and if the function type does not return a pointer to a
6306 function.
6307#. '``fnptrval``': An LLVM value containing a pointer to a function to
6308 be invoked. In most cases, this is a direct function invocation, but
6309 indirect ``call``'s are just as possible, calling an arbitrary pointer
6310 to function value.
6311#. '``function args``': argument list whose types match the function
6312 signature argument types and parameter attributes. All arguments must
6313 be of :ref:`first class <t_firstclass>` type. If the function signature
6314 indicates the function accepts a variable number of arguments, the
6315 extra arguments can be specified.
6316#. The optional :ref:`function attributes <fnattrs>` list. Only
6317 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6318 attributes are valid here.
6319
6320Semantics:
6321""""""""""
6322
6323The '``call``' instruction is used to cause control flow to transfer to
6324a specified function, with its incoming arguments bound to the specified
6325values. Upon a '``ret``' instruction in the called function, control
6326flow continues with the instruction after the function call, and the
6327return value of the function is bound to the result argument.
6328
6329Example:
6330""""""""
6331
6332.. code-block:: llvm
6333
6334 %retval = call i32 @test(i32 %argc)
6335 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6336 %X = tail call i32 @foo() ; yields i32
6337 %Y = tail call fastcc i32 @foo() ; yields i32
6338 call void %foo(i8 97 signext)
6339
6340 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006341 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006342 %gr = extractvalue %struct.A %r, 0 ; yields i32
6343 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6344 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6345 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6346
6347llvm treats calls to some functions with names and arguments that match
6348the standard C99 library as being the C99 library functions, and may
6349perform optimizations or generate code for them under that assumption.
6350This is something we'd like to change in the future to provide better
6351support for freestanding environments and non-C-based languages.
6352
6353.. _i_va_arg:
6354
6355'``va_arg``' Instruction
6356^^^^^^^^^^^^^^^^^^^^^^^^
6357
6358Syntax:
6359"""""""
6360
6361::
6362
6363 <resultval> = va_arg <va_list*> <arglist>, <argty>
6364
6365Overview:
6366"""""""""
6367
6368The '``va_arg``' instruction is used to access arguments passed through
6369the "variable argument" area of a function call. It is used to implement
6370the ``va_arg`` macro in C.
6371
6372Arguments:
6373""""""""""
6374
6375This instruction takes a ``va_list*`` value and the type of the
6376argument. It returns a value of the specified argument type and
6377increments the ``va_list`` to point to the next argument. The actual
6378type of ``va_list`` is target specific.
6379
6380Semantics:
6381""""""""""
6382
6383The '``va_arg``' instruction loads an argument of the specified type
6384from the specified ``va_list`` and causes the ``va_list`` to point to
6385the next argument. For more information, see the variable argument
6386handling :ref:`Intrinsic Functions <int_varargs>`.
6387
6388It is legal for this instruction to be called in a function which does
6389not take a variable number of arguments, for example, the ``vfprintf``
6390function.
6391
6392``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6393function <intrinsics>` because it takes a type as an argument.
6394
6395Example:
6396""""""""
6397
6398See the :ref:`variable argument processing <int_varargs>` section.
6399
6400Note that the code generator does not yet fully support va\_arg on many
6401targets. Also, it does not currently support va\_arg with aggregate
6402types on any target.
6403
6404.. _i_landingpad:
6405
6406'``landingpad``' Instruction
6407^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6408
6409Syntax:
6410"""""""
6411
6412::
6413
6414 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6415 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6416
6417 <clause> := catch <type> <value>
6418 <clause> := filter <array constant type> <array constant>
6419
6420Overview:
6421"""""""""
6422
6423The '``landingpad``' instruction is used by `LLVM's exception handling
6424system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006425is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006426code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6427defines values supplied by the personality function (``pers_fn``) upon
6428re-entry to the function. The ``resultval`` has the type ``resultty``.
6429
6430Arguments:
6431""""""""""
6432
6433This instruction takes a ``pers_fn`` value. This is the personality
6434function associated with the unwinding mechanism. The optional
6435``cleanup`` flag indicates that the landing pad block is a cleanup.
6436
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006437A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006438contains the global variable representing the "type" that may be caught
6439or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6440clause takes an array constant as its argument. Use
6441"``[0 x i8**] undef``" for a filter which cannot throw. The
6442'``landingpad``' instruction must contain *at least* one ``clause`` or
6443the ``cleanup`` flag.
6444
6445Semantics:
6446""""""""""
6447
6448The '``landingpad``' instruction defines the values which are set by the
6449personality function (``pers_fn``) upon re-entry to the function, and
6450therefore the "result type" of the ``landingpad`` instruction. As with
6451calling conventions, how the personality function results are
6452represented in LLVM IR is target specific.
6453
6454The clauses are applied in order from top to bottom. If two
6455``landingpad`` instructions are merged together through inlining, the
6456clauses from the calling function are appended to the list of clauses.
6457When the call stack is being unwound due to an exception being thrown,
6458the exception is compared against each ``clause`` in turn. If it doesn't
6459match any of the clauses, and the ``cleanup`` flag is not set, then
6460unwinding continues further up the call stack.
6461
6462The ``landingpad`` instruction has several restrictions:
6463
6464- A landing pad block is a basic block which is the unwind destination
6465 of an '``invoke``' instruction.
6466- A landing pad block must have a '``landingpad``' instruction as its
6467 first non-PHI instruction.
6468- There can be only one '``landingpad``' instruction within the landing
6469 pad block.
6470- A basic block that is not a landing pad block may not include a
6471 '``landingpad``' instruction.
6472- All '``landingpad``' instructions in a function must have the same
6473 personality function.
6474
6475Example:
6476""""""""
6477
6478.. code-block:: llvm
6479
6480 ;; A landing pad which can catch an integer.
6481 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6482 catch i8** @_ZTIi
6483 ;; A landing pad that is a cleanup.
6484 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6485 cleanup
6486 ;; A landing pad which can catch an integer and can only throw a double.
6487 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6488 catch i8** @_ZTIi
6489 filter [1 x i8**] [@_ZTId]
6490
6491.. _intrinsics:
6492
6493Intrinsic Functions
6494===================
6495
6496LLVM supports the notion of an "intrinsic function". These functions
6497have well known names and semantics and are required to follow certain
6498restrictions. Overall, these intrinsics represent an extension mechanism
6499for the LLVM language that does not require changing all of the
6500transformations in LLVM when adding to the language (or the bitcode
6501reader/writer, the parser, etc...).
6502
6503Intrinsic function names must all start with an "``llvm.``" prefix. This
6504prefix is reserved in LLVM for intrinsic names; thus, function names may
6505not begin with this prefix. Intrinsic functions must always be external
6506functions: you cannot define the body of intrinsic functions. Intrinsic
6507functions may only be used in call or invoke instructions: it is illegal
6508to take the address of an intrinsic function. Additionally, because
6509intrinsic functions are part of the LLVM language, it is required if any
6510are added that they be documented here.
6511
6512Some intrinsic functions can be overloaded, i.e., the intrinsic
6513represents a family of functions that perform the same operation but on
6514different data types. Because LLVM can represent over 8 million
6515different integer types, overloading is used commonly to allow an
6516intrinsic function to operate on any integer type. One or more of the
6517argument types or the result type can be overloaded to accept any
6518integer type. Argument types may also be defined as exactly matching a
6519previous argument's type or the result type. This allows an intrinsic
6520function which accepts multiple arguments, but needs all of them to be
6521of the same type, to only be overloaded with respect to a single
6522argument or the result.
6523
6524Overloaded intrinsics will have the names of its overloaded argument
6525types encoded into its function name, each preceded by a period. Only
6526those types which are overloaded result in a name suffix. Arguments
6527whose type is matched against another type do not. For example, the
6528``llvm.ctpop`` function can take an integer of any width and returns an
6529integer of exactly the same integer width. This leads to a family of
6530functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6531``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6532overloaded, and only one type suffix is required. Because the argument's
6533type is matched against the return type, it does not require its own
6534name suffix.
6535
6536To learn how to add an intrinsic function, please see the `Extending
6537LLVM Guide <ExtendingLLVM.html>`_.
6538
6539.. _int_varargs:
6540
6541Variable Argument Handling Intrinsics
6542-------------------------------------
6543
6544Variable argument support is defined in LLVM with the
6545:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6546functions. These functions are related to the similarly named macros
6547defined in the ``<stdarg.h>`` header file.
6548
6549All of these functions operate on arguments that use a target-specific
6550value type "``va_list``". The LLVM assembly language reference manual
6551does not define what this type is, so all transformations should be
6552prepared to handle these functions regardless of the type used.
6553
6554This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6555variable argument handling intrinsic functions are used.
6556
6557.. code-block:: llvm
6558
6559 define i32 @test(i32 %X, ...) {
6560 ; Initialize variable argument processing
6561 %ap = alloca i8*
6562 %ap2 = bitcast i8** %ap to i8*
6563 call void @llvm.va_start(i8* %ap2)
6564
6565 ; Read a single integer argument
6566 %tmp = va_arg i8** %ap, i32
6567
6568 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6569 %aq = alloca i8*
6570 %aq2 = bitcast i8** %aq to i8*
6571 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6572 call void @llvm.va_end(i8* %aq2)
6573
6574 ; Stop processing of arguments.
6575 call void @llvm.va_end(i8* %ap2)
6576 ret i32 %tmp
6577 }
6578
6579 declare void @llvm.va_start(i8*)
6580 declare void @llvm.va_copy(i8*, i8*)
6581 declare void @llvm.va_end(i8*)
6582
6583.. _int_va_start:
6584
6585'``llvm.va_start``' Intrinsic
6586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6587
6588Syntax:
6589"""""""
6590
6591::
6592
Nick Lewycky04f6de02013-09-11 22:04:52 +00006593 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006594
6595Overview:
6596"""""""""
6597
6598The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6599subsequent use by ``va_arg``.
6600
6601Arguments:
6602""""""""""
6603
6604The argument is a pointer to a ``va_list`` element to initialize.
6605
6606Semantics:
6607""""""""""
6608
6609The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6610available in C. In a target-dependent way, it initializes the
6611``va_list`` element to which the argument points, so that the next call
6612to ``va_arg`` will produce the first variable argument passed to the
6613function. Unlike the C ``va_start`` macro, this intrinsic does not need
6614to know the last argument of the function as the compiler can figure
6615that out.
6616
6617'``llvm.va_end``' Intrinsic
6618^^^^^^^^^^^^^^^^^^^^^^^^^^^
6619
6620Syntax:
6621"""""""
6622
6623::
6624
6625 declare void @llvm.va_end(i8* <arglist>)
6626
6627Overview:
6628"""""""""
6629
6630The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6631initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6632
6633Arguments:
6634""""""""""
6635
6636The argument is a pointer to a ``va_list`` to destroy.
6637
6638Semantics:
6639""""""""""
6640
6641The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6642available in C. In a target-dependent way, it destroys the ``va_list``
6643element to which the argument points. Calls to
6644:ref:`llvm.va_start <int_va_start>` and
6645:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6646``llvm.va_end``.
6647
6648.. _int_va_copy:
6649
6650'``llvm.va_copy``' Intrinsic
6651^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6652
6653Syntax:
6654"""""""
6655
6656::
6657
6658 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6659
6660Overview:
6661"""""""""
6662
6663The '``llvm.va_copy``' intrinsic copies the current argument position
6664from the source argument list to the destination argument list.
6665
6666Arguments:
6667""""""""""
6668
6669The first argument is a pointer to a ``va_list`` element to initialize.
6670The second argument is a pointer to a ``va_list`` element to copy from.
6671
6672Semantics:
6673""""""""""
6674
6675The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6676available in C. In a target-dependent way, it copies the source
6677``va_list`` element into the destination ``va_list`` element. This
6678intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6679arbitrarily complex and require, for example, memory allocation.
6680
6681Accurate Garbage Collection Intrinsics
6682--------------------------------------
6683
6684LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6685(GC) requires the implementation and generation of these intrinsics.
6686These intrinsics allow identification of :ref:`GC roots on the
6687stack <int_gcroot>`, as well as garbage collector implementations that
6688require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6689Front-ends for type-safe garbage collected languages should generate
6690these intrinsics to make use of the LLVM garbage collectors. For more
6691details, see `Accurate Garbage Collection with
6692LLVM <GarbageCollection.html>`_.
6693
6694The garbage collection intrinsics only operate on objects in the generic
6695address space (address space zero).
6696
6697.. _int_gcroot:
6698
6699'``llvm.gcroot``' Intrinsic
6700^^^^^^^^^^^^^^^^^^^^^^^^^^^
6701
6702Syntax:
6703"""""""
6704
6705::
6706
6707 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6708
6709Overview:
6710"""""""""
6711
6712The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6713the code generator, and allows some metadata to be associated with it.
6714
6715Arguments:
6716""""""""""
6717
6718The first argument specifies the address of a stack object that contains
6719the root pointer. The second pointer (which must be either a constant or
6720a global value address) contains the meta-data to be associated with the
6721root.
6722
6723Semantics:
6724""""""""""
6725
6726At runtime, a call to this intrinsic stores a null pointer into the
6727"ptrloc" location. At compile-time, the code generator generates
6728information to allow the runtime to find the pointer at GC safe points.
6729The '``llvm.gcroot``' intrinsic may only be used in a function which
6730:ref:`specifies a GC algorithm <gc>`.
6731
6732.. _int_gcread:
6733
6734'``llvm.gcread``' Intrinsic
6735^^^^^^^^^^^^^^^^^^^^^^^^^^^
6736
6737Syntax:
6738"""""""
6739
6740::
6741
6742 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6743
6744Overview:
6745"""""""""
6746
6747The '``llvm.gcread``' intrinsic identifies reads of references from heap
6748locations, allowing garbage collector implementations that require read
6749barriers.
6750
6751Arguments:
6752""""""""""
6753
6754The second argument is the address to read from, which should be an
6755address allocated from the garbage collector. The first object is a
6756pointer to the start of the referenced object, if needed by the language
6757runtime (otherwise null).
6758
6759Semantics:
6760""""""""""
6761
6762The '``llvm.gcread``' intrinsic has the same semantics as a load
6763instruction, but may be replaced with substantially more complex code by
6764the garbage collector runtime, as needed. The '``llvm.gcread``'
6765intrinsic may only be used in a function which :ref:`specifies a GC
6766algorithm <gc>`.
6767
6768.. _int_gcwrite:
6769
6770'``llvm.gcwrite``' Intrinsic
6771^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
6778 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6779
6780Overview:
6781"""""""""
6782
6783The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6784locations, allowing garbage collector implementations that require write
6785barriers (such as generational or reference counting collectors).
6786
6787Arguments:
6788""""""""""
6789
6790The first argument is the reference to store, the second is the start of
6791the object to store it to, and the third is the address of the field of
6792Obj to store to. If the runtime does not require a pointer to the
6793object, Obj may be null.
6794
6795Semantics:
6796""""""""""
6797
6798The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6799instruction, but may be replaced with substantially more complex code by
6800the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6801intrinsic may only be used in a function which :ref:`specifies a GC
6802algorithm <gc>`.
6803
6804Code Generator Intrinsics
6805-------------------------
6806
6807These intrinsics are provided by LLVM to expose special features that
6808may only be implemented with code generator support.
6809
6810'``llvm.returnaddress``' Intrinsic
6811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816::
6817
6818 declare i8 *@llvm.returnaddress(i32 <level>)
6819
6820Overview:
6821"""""""""
6822
6823The '``llvm.returnaddress``' intrinsic attempts to compute a
6824target-specific value indicating the return address of the current
6825function or one of its callers.
6826
6827Arguments:
6828""""""""""
6829
6830The argument to this intrinsic indicates which function to return the
6831address for. Zero indicates the calling function, one indicates its
6832caller, etc. The argument is **required** to be a constant integer
6833value.
6834
6835Semantics:
6836""""""""""
6837
6838The '``llvm.returnaddress``' intrinsic either returns a pointer
6839indicating the return address of the specified call frame, or zero if it
6840cannot be identified. The value returned by this intrinsic is likely to
6841be incorrect or 0 for arguments other than zero, so it should only be
6842used for debugging purposes.
6843
6844Note that calling this intrinsic does not prevent function inlining or
6845other aggressive transformations, so the value returned may not be that
6846of the obvious source-language caller.
6847
6848'``llvm.frameaddress``' Intrinsic
6849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6850
6851Syntax:
6852"""""""
6853
6854::
6855
6856 declare i8* @llvm.frameaddress(i32 <level>)
6857
6858Overview:
6859"""""""""
6860
6861The '``llvm.frameaddress``' intrinsic attempts to return the
6862target-specific frame pointer value for the specified stack frame.
6863
6864Arguments:
6865""""""""""
6866
6867The argument to this intrinsic indicates which function to return the
6868frame pointer for. Zero indicates the calling function, one indicates
6869its caller, etc. The argument is **required** to be a constant integer
6870value.
6871
6872Semantics:
6873""""""""""
6874
6875The '``llvm.frameaddress``' intrinsic either returns a pointer
6876indicating the frame address of the specified call frame, or zero if it
6877cannot be identified. The value returned by this intrinsic is likely to
6878be incorrect or 0 for arguments other than zero, so it should only be
6879used for debugging purposes.
6880
6881Note that calling this intrinsic does not prevent function inlining or
6882other aggressive transformations, so the value returned may not be that
6883of the obvious source-language caller.
6884
Renato Golinc7aea402014-05-06 16:51:25 +00006885.. _int_read_register:
6886.. _int_write_register:
6887
6888'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6890
6891Syntax:
6892"""""""
6893
6894::
6895
6896 declare i32 @llvm.read_register.i32(metadata)
6897 declare i64 @llvm.read_register.i64(metadata)
6898 declare void @llvm.write_register.i32(metadata, i32 @value)
6899 declare void @llvm.write_register.i64(metadata, i64 @value)
6900 !0 = metadata !{metadata !"sp\00"}
6901
6902Overview:
6903"""""""""
6904
6905The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6906provides access to the named register. The register must be valid on
6907the architecture being compiled to. The type needs to be compatible
6908with the register being read.
6909
6910Semantics:
6911""""""""""
6912
6913The '``llvm.read_register``' intrinsic returns the current value of the
6914register, where possible. The '``llvm.write_register``' intrinsic sets
6915the current value of the register, where possible.
6916
6917This is useful to implement named register global variables that need
6918to always be mapped to a specific register, as is common practice on
6919bare-metal programs including OS kernels.
6920
6921The compiler doesn't check for register availability or use of the used
6922register in surrounding code, including inline assembly. Because of that,
6923allocatable registers are not supported.
6924
6925Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006926architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006927work is needed to support other registers and even more so, allocatable
6928registers.
6929
Sean Silvab084af42012-12-07 10:36:55 +00006930.. _int_stacksave:
6931
6932'``llvm.stacksave``' Intrinsic
6933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6934
6935Syntax:
6936"""""""
6937
6938::
6939
6940 declare i8* @llvm.stacksave()
6941
6942Overview:
6943"""""""""
6944
6945The '``llvm.stacksave``' intrinsic is used to remember the current state
6946of the function stack, for use with
6947:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6948implementing language features like scoped automatic variable sized
6949arrays in C99.
6950
6951Semantics:
6952""""""""""
6953
6954This intrinsic returns a opaque pointer value that can be passed to
6955:ref:`llvm.stackrestore <int_stackrestore>`. When an
6956``llvm.stackrestore`` intrinsic is executed with a value saved from
6957``llvm.stacksave``, it effectively restores the state of the stack to
6958the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6959practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6960were allocated after the ``llvm.stacksave`` was executed.
6961
6962.. _int_stackrestore:
6963
6964'``llvm.stackrestore``' Intrinsic
6965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6966
6967Syntax:
6968"""""""
6969
6970::
6971
6972 declare void @llvm.stackrestore(i8* %ptr)
6973
6974Overview:
6975"""""""""
6976
6977The '``llvm.stackrestore``' intrinsic is used to restore the state of
6978the function stack to the state it was in when the corresponding
6979:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6980useful for implementing language features like scoped automatic variable
6981sized arrays in C99.
6982
6983Semantics:
6984""""""""""
6985
6986See the description for :ref:`llvm.stacksave <int_stacksave>`.
6987
6988'``llvm.prefetch``' Intrinsic
6989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994::
6995
6996 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6997
6998Overview:
6999"""""""""
7000
7001The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7002insert a prefetch instruction if supported; otherwise, it is a noop.
7003Prefetches have no effect on the behavior of the program but can change
7004its performance characteristics.
7005
7006Arguments:
7007""""""""""
7008
7009``address`` is the address to be prefetched, ``rw`` is the specifier
7010determining if the fetch should be for a read (0) or write (1), and
7011``locality`` is a temporal locality specifier ranging from (0) - no
7012locality, to (3) - extremely local keep in cache. The ``cache type``
7013specifies whether the prefetch is performed on the data (1) or
7014instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7015arguments must be constant integers.
7016
7017Semantics:
7018""""""""""
7019
7020This intrinsic does not modify the behavior of the program. In
7021particular, prefetches cannot trap and do not produce a value. On
7022targets that support this intrinsic, the prefetch can provide hints to
7023the processor cache for better performance.
7024
7025'``llvm.pcmarker``' Intrinsic
7026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7027
7028Syntax:
7029"""""""
7030
7031::
7032
7033 declare void @llvm.pcmarker(i32 <id>)
7034
7035Overview:
7036"""""""""
7037
7038The '``llvm.pcmarker``' intrinsic is a method to export a Program
7039Counter (PC) in a region of code to simulators and other tools. The
7040method is target specific, but it is expected that the marker will use
7041exported symbols to transmit the PC of the marker. The marker makes no
7042guarantees that it will remain with any specific instruction after
7043optimizations. It is possible that the presence of a marker will inhibit
7044optimizations. The intended use is to be inserted after optimizations to
7045allow correlations of simulation runs.
7046
7047Arguments:
7048""""""""""
7049
7050``id`` is a numerical id identifying the marker.
7051
7052Semantics:
7053""""""""""
7054
7055This intrinsic does not modify the behavior of the program. Backends
7056that do not support this intrinsic may ignore it.
7057
7058'``llvm.readcyclecounter``' Intrinsic
7059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7060
7061Syntax:
7062"""""""
7063
7064::
7065
7066 declare i64 @llvm.readcyclecounter()
7067
7068Overview:
7069"""""""""
7070
7071The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7072counter register (or similar low latency, high accuracy clocks) on those
7073targets that support it. On X86, it should map to RDTSC. On Alpha, it
7074should map to RPCC. As the backing counters overflow quickly (on the
7075order of 9 seconds on alpha), this should only be used for small
7076timings.
7077
7078Semantics:
7079""""""""""
7080
7081When directly supported, reading the cycle counter should not modify any
7082memory. Implementations are allowed to either return a application
7083specific value or a system wide value. On backends without support, this
7084is lowered to a constant 0.
7085
Tim Northoverbc933082013-05-23 19:11:20 +00007086Note that runtime support may be conditional on the privilege-level code is
7087running at and the host platform.
7088
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007089'``llvm.clear_cache``' Intrinsic
7090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7091
7092Syntax:
7093"""""""
7094
7095::
7096
7097 declare void @llvm.clear_cache(i8*, i8*)
7098
7099Overview:
7100"""""""""
7101
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007102The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7103in the specified range to the execution unit of the processor. On
7104targets with non-unified instruction and data cache, the implementation
7105flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007106
7107Semantics:
7108""""""""""
7109
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007110On platforms with coherent instruction and data caches (e.g. x86), this
7111intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007112cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007113instructions or a system call, if cache flushing requires special
7114privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007115
Sean Silvad02bf3e2014-04-07 22:29:53 +00007116The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007117time library.
Renato Golin93010e62014-03-26 14:01:32 +00007118
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007119This instrinsic does *not* empty the instruction pipeline. Modifications
7120of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007121
Sean Silvab084af42012-12-07 10:36:55 +00007122Standard C Library Intrinsics
7123-----------------------------
7124
7125LLVM provides intrinsics for a few important standard C library
7126functions. These intrinsics allow source-language front-ends to pass
7127information about the alignment of the pointer arguments to the code
7128generator, providing opportunity for more efficient code generation.
7129
7130.. _int_memcpy:
7131
7132'``llvm.memcpy``' Intrinsic
7133^^^^^^^^^^^^^^^^^^^^^^^^^^^
7134
7135Syntax:
7136"""""""
7137
7138This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7139integer bit width and for different address spaces. Not all targets
7140support all bit widths however.
7141
7142::
7143
7144 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7145 i32 <len>, i32 <align>, i1 <isvolatile>)
7146 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7147 i64 <len>, i32 <align>, i1 <isvolatile>)
7148
7149Overview:
7150"""""""""
7151
7152The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7153source location to the destination location.
7154
7155Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7156intrinsics do not return a value, takes extra alignment/isvolatile
7157arguments and the pointers can be in specified address spaces.
7158
7159Arguments:
7160""""""""""
7161
7162The first argument is a pointer to the destination, the second is a
7163pointer to the source. The third argument is an integer argument
7164specifying the number of bytes to copy, the fourth argument is the
7165alignment of the source and destination locations, and the fifth is a
7166boolean indicating a volatile access.
7167
7168If the call to this intrinsic has an alignment value that is not 0 or 1,
7169then the caller guarantees that both the source and destination pointers
7170are aligned to that boundary.
7171
7172If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7173a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7174very cleanly specified and it is unwise to depend on it.
7175
7176Semantics:
7177""""""""""
7178
7179The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7180source location to the destination location, which are not allowed to
7181overlap. It copies "len" bytes of memory over. If the argument is known
7182to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007183argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007184
7185'``llvm.memmove``' Intrinsic
7186^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7187
7188Syntax:
7189"""""""
7190
7191This is an overloaded intrinsic. You can use llvm.memmove on any integer
7192bit width and for different address space. Not all targets support all
7193bit widths however.
7194
7195::
7196
7197 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7198 i32 <len>, i32 <align>, i1 <isvolatile>)
7199 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7200 i64 <len>, i32 <align>, i1 <isvolatile>)
7201
7202Overview:
7203"""""""""
7204
7205The '``llvm.memmove.*``' intrinsics move a block of memory from the
7206source location to the destination location. It is similar to the
7207'``llvm.memcpy``' intrinsic but allows the two memory locations to
7208overlap.
7209
7210Note that, unlike the standard libc function, the ``llvm.memmove.*``
7211intrinsics do not return a value, takes extra alignment/isvolatile
7212arguments and the pointers can be in specified address spaces.
7213
7214Arguments:
7215""""""""""
7216
7217The first argument is a pointer to the destination, the second is a
7218pointer to the source. The third argument is an integer argument
7219specifying the number of bytes to copy, the fourth argument is the
7220alignment of the source and destination locations, and the fifth is a
7221boolean indicating a volatile access.
7222
7223If the call to this intrinsic has an alignment value that is not 0 or 1,
7224then the caller guarantees that the source and destination pointers are
7225aligned to that boundary.
7226
7227If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7228is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7229not very cleanly specified and it is unwise to depend on it.
7230
7231Semantics:
7232""""""""""
7233
7234The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7235source location to the destination location, which may overlap. It
7236copies "len" bytes of memory over. If the argument is known to be
7237aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007238otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007239
7240'``llvm.memset.*``' Intrinsics
7241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7242
7243Syntax:
7244"""""""
7245
7246This is an overloaded intrinsic. You can use llvm.memset on any integer
7247bit width and for different address spaces. However, not all targets
7248support all bit widths.
7249
7250::
7251
7252 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7253 i32 <len>, i32 <align>, i1 <isvolatile>)
7254 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7255 i64 <len>, i32 <align>, i1 <isvolatile>)
7256
7257Overview:
7258"""""""""
7259
7260The '``llvm.memset.*``' intrinsics fill a block of memory with a
7261particular byte value.
7262
7263Note that, unlike the standard libc function, the ``llvm.memset``
7264intrinsic does not return a value and takes extra alignment/volatile
7265arguments. Also, the destination can be in an arbitrary address space.
7266
7267Arguments:
7268""""""""""
7269
7270The first argument is a pointer to the destination to fill, the second
7271is the byte value with which to fill it, the third argument is an
7272integer argument specifying the number of bytes to fill, and the fourth
7273argument is the known alignment of the destination location.
7274
7275If the call to this intrinsic has an alignment value that is not 0 or 1,
7276then the caller guarantees that the destination pointer is aligned to
7277that boundary.
7278
7279If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7280a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7281very cleanly specified and it is unwise to depend on it.
7282
7283Semantics:
7284""""""""""
7285
7286The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7287at the destination location. If the argument is known to be aligned to
7288some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007289it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007290
7291'``llvm.sqrt.*``' Intrinsic
7292^^^^^^^^^^^^^^^^^^^^^^^^^^^
7293
7294Syntax:
7295"""""""
7296
7297This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7298floating point or vector of floating point type. Not all targets support
7299all types however.
7300
7301::
7302
7303 declare float @llvm.sqrt.f32(float %Val)
7304 declare double @llvm.sqrt.f64(double %Val)
7305 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7306 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7307 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7308
7309Overview:
7310"""""""""
7311
7312The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7313returning the same value as the libm '``sqrt``' functions would. Unlike
7314``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7315negative numbers other than -0.0 (which allows for better optimization,
7316because there is no need to worry about errno being set).
7317``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7318
7319Arguments:
7320""""""""""
7321
7322The argument and return value are floating point numbers of the same
7323type.
7324
7325Semantics:
7326""""""""""
7327
7328This function returns the sqrt of the specified operand if it is a
7329nonnegative floating point number.
7330
7331'``llvm.powi.*``' Intrinsic
7332^^^^^^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7338floating point or vector of floating point type. Not all targets support
7339all types however.
7340
7341::
7342
7343 declare float @llvm.powi.f32(float %Val, i32 %power)
7344 declare double @llvm.powi.f64(double %Val, i32 %power)
7345 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7346 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7347 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7348
7349Overview:
7350"""""""""
7351
7352The '``llvm.powi.*``' intrinsics return the first operand raised to the
7353specified (positive or negative) power. The order of evaluation of
7354multiplications is not defined. When a vector of floating point type is
7355used, the second argument remains a scalar integer value.
7356
7357Arguments:
7358""""""""""
7359
7360The second argument is an integer power, and the first is a value to
7361raise to that power.
7362
7363Semantics:
7364""""""""""
7365
7366This function returns the first value raised to the second power with an
7367unspecified sequence of rounding operations.
7368
7369'``llvm.sin.*``' Intrinsic
7370^^^^^^^^^^^^^^^^^^^^^^^^^^
7371
7372Syntax:
7373"""""""
7374
7375This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7376floating point or vector of floating point type. Not all targets support
7377all types however.
7378
7379::
7380
7381 declare float @llvm.sin.f32(float %Val)
7382 declare double @llvm.sin.f64(double %Val)
7383 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7384 declare fp128 @llvm.sin.f128(fp128 %Val)
7385 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7386
7387Overview:
7388"""""""""
7389
7390The '``llvm.sin.*``' intrinsics return the sine of the operand.
7391
7392Arguments:
7393""""""""""
7394
7395The argument and return value are floating point numbers of the same
7396type.
7397
7398Semantics:
7399""""""""""
7400
7401This function returns the sine of the specified operand, returning the
7402same values as the libm ``sin`` functions would, and handles error
7403conditions in the same way.
7404
7405'``llvm.cos.*``' Intrinsic
7406^^^^^^^^^^^^^^^^^^^^^^^^^^
7407
7408Syntax:
7409"""""""
7410
7411This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7412floating point or vector of floating point type. Not all targets support
7413all types however.
7414
7415::
7416
7417 declare float @llvm.cos.f32(float %Val)
7418 declare double @llvm.cos.f64(double %Val)
7419 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7420 declare fp128 @llvm.cos.f128(fp128 %Val)
7421 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7422
7423Overview:
7424"""""""""
7425
7426The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7427
7428Arguments:
7429""""""""""
7430
7431The argument and return value are floating point numbers of the same
7432type.
7433
7434Semantics:
7435""""""""""
7436
7437This function returns the cosine of the specified operand, returning the
7438same values as the libm ``cos`` functions would, and handles error
7439conditions in the same way.
7440
7441'``llvm.pow.*``' Intrinsic
7442^^^^^^^^^^^^^^^^^^^^^^^^^^
7443
7444Syntax:
7445"""""""
7446
7447This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7448floating point or vector of floating point type. Not all targets support
7449all types however.
7450
7451::
7452
7453 declare float @llvm.pow.f32(float %Val, float %Power)
7454 declare double @llvm.pow.f64(double %Val, double %Power)
7455 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7456 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7457 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7458
7459Overview:
7460"""""""""
7461
7462The '``llvm.pow.*``' intrinsics return the first operand raised to the
7463specified (positive or negative) power.
7464
7465Arguments:
7466""""""""""
7467
7468The second argument is a floating point power, and the first is a value
7469to raise to that power.
7470
7471Semantics:
7472""""""""""
7473
7474This function returns the first value raised to the second power,
7475returning the same values as the libm ``pow`` functions would, and
7476handles error conditions in the same way.
7477
7478'``llvm.exp.*``' Intrinsic
7479^^^^^^^^^^^^^^^^^^^^^^^^^^
7480
7481Syntax:
7482"""""""
7483
7484This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7485floating point or vector of floating point type. Not all targets support
7486all types however.
7487
7488::
7489
7490 declare float @llvm.exp.f32(float %Val)
7491 declare double @llvm.exp.f64(double %Val)
7492 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7493 declare fp128 @llvm.exp.f128(fp128 %Val)
7494 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7495
7496Overview:
7497"""""""""
7498
7499The '``llvm.exp.*``' intrinsics perform the exp function.
7500
7501Arguments:
7502""""""""""
7503
7504The argument and return value are floating point numbers of the same
7505type.
7506
7507Semantics:
7508""""""""""
7509
7510This function returns the same values as the libm ``exp`` functions
7511would, and handles error conditions in the same way.
7512
7513'``llvm.exp2.*``' Intrinsic
7514^^^^^^^^^^^^^^^^^^^^^^^^^^^
7515
7516Syntax:
7517"""""""
7518
7519This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7520floating point or vector of floating point type. Not all targets support
7521all types however.
7522
7523::
7524
7525 declare float @llvm.exp2.f32(float %Val)
7526 declare double @llvm.exp2.f64(double %Val)
7527 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7528 declare fp128 @llvm.exp2.f128(fp128 %Val)
7529 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7530
7531Overview:
7532"""""""""
7533
7534The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7535
7536Arguments:
7537""""""""""
7538
7539The argument and return value are floating point numbers of the same
7540type.
7541
7542Semantics:
7543""""""""""
7544
7545This function returns the same values as the libm ``exp2`` functions
7546would, and handles error conditions in the same way.
7547
7548'``llvm.log.*``' Intrinsic
7549^^^^^^^^^^^^^^^^^^^^^^^^^^
7550
7551Syntax:
7552"""""""
7553
7554This is an overloaded intrinsic. You can use ``llvm.log`` on any
7555floating point or vector of floating point type. Not all targets support
7556all types however.
7557
7558::
7559
7560 declare float @llvm.log.f32(float %Val)
7561 declare double @llvm.log.f64(double %Val)
7562 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7563 declare fp128 @llvm.log.f128(fp128 %Val)
7564 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7565
7566Overview:
7567"""""""""
7568
7569The '``llvm.log.*``' intrinsics perform the log function.
7570
7571Arguments:
7572""""""""""
7573
7574The argument and return value are floating point numbers of the same
7575type.
7576
7577Semantics:
7578""""""""""
7579
7580This function returns the same values as the libm ``log`` functions
7581would, and handles error conditions in the same way.
7582
7583'``llvm.log10.*``' Intrinsic
7584^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7585
7586Syntax:
7587"""""""
7588
7589This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7590floating point or vector of floating point type. Not all targets support
7591all types however.
7592
7593::
7594
7595 declare float @llvm.log10.f32(float %Val)
7596 declare double @llvm.log10.f64(double %Val)
7597 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7598 declare fp128 @llvm.log10.f128(fp128 %Val)
7599 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7600
7601Overview:
7602"""""""""
7603
7604The '``llvm.log10.*``' intrinsics perform the log10 function.
7605
7606Arguments:
7607""""""""""
7608
7609The argument and return value are floating point numbers of the same
7610type.
7611
7612Semantics:
7613""""""""""
7614
7615This function returns the same values as the libm ``log10`` functions
7616would, and handles error conditions in the same way.
7617
7618'``llvm.log2.*``' Intrinsic
7619^^^^^^^^^^^^^^^^^^^^^^^^^^^
7620
7621Syntax:
7622"""""""
7623
7624This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7625floating point or vector of floating point type. Not all targets support
7626all types however.
7627
7628::
7629
7630 declare float @llvm.log2.f32(float %Val)
7631 declare double @llvm.log2.f64(double %Val)
7632 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7633 declare fp128 @llvm.log2.f128(fp128 %Val)
7634 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7635
7636Overview:
7637"""""""""
7638
7639The '``llvm.log2.*``' intrinsics perform the log2 function.
7640
7641Arguments:
7642""""""""""
7643
7644The argument and return value are floating point numbers of the same
7645type.
7646
7647Semantics:
7648""""""""""
7649
7650This function returns the same values as the libm ``log2`` functions
7651would, and handles error conditions in the same way.
7652
7653'``llvm.fma.*``' Intrinsic
7654^^^^^^^^^^^^^^^^^^^^^^^^^^
7655
7656Syntax:
7657"""""""
7658
7659This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7660floating point or vector of floating point type. Not all targets support
7661all types however.
7662
7663::
7664
7665 declare float @llvm.fma.f32(float %a, float %b, float %c)
7666 declare double @llvm.fma.f64(double %a, double %b, double %c)
7667 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7668 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7669 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7670
7671Overview:
7672"""""""""
7673
7674The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7675operation.
7676
7677Arguments:
7678""""""""""
7679
7680The argument and return value are floating point numbers of the same
7681type.
7682
7683Semantics:
7684""""""""""
7685
7686This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007687would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007688
7689'``llvm.fabs.*``' Intrinsic
7690^^^^^^^^^^^^^^^^^^^^^^^^^^^
7691
7692Syntax:
7693"""""""
7694
7695This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7696floating point or vector of floating point type. Not all targets support
7697all types however.
7698
7699::
7700
7701 declare float @llvm.fabs.f32(float %Val)
7702 declare double @llvm.fabs.f64(double %Val)
7703 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7704 declare fp128 @llvm.fabs.f128(fp128 %Val)
7705 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7706
7707Overview:
7708"""""""""
7709
7710The '``llvm.fabs.*``' intrinsics return the absolute value of the
7711operand.
7712
7713Arguments:
7714""""""""""
7715
7716The argument and return value are floating point numbers of the same
7717type.
7718
7719Semantics:
7720""""""""""
7721
7722This function returns the same values as the libm ``fabs`` functions
7723would, and handles error conditions in the same way.
7724
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007725'``llvm.copysign.*``' Intrinsic
7726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7727
7728Syntax:
7729"""""""
7730
7731This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7732floating point or vector of floating point type. Not all targets support
7733all types however.
7734
7735::
7736
7737 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7738 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7739 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7740 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7741 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7742
7743Overview:
7744"""""""""
7745
7746The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7747first operand and the sign of the second operand.
7748
7749Arguments:
7750""""""""""
7751
7752The arguments and return value are floating point numbers of the same
7753type.
7754
7755Semantics:
7756""""""""""
7757
7758This function returns the same values as the libm ``copysign``
7759functions would, and handles error conditions in the same way.
7760
Sean Silvab084af42012-12-07 10:36:55 +00007761'``llvm.floor.*``' Intrinsic
7762^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7763
7764Syntax:
7765"""""""
7766
7767This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7768floating point or vector of floating point type. Not all targets support
7769all types however.
7770
7771::
7772
7773 declare float @llvm.floor.f32(float %Val)
7774 declare double @llvm.floor.f64(double %Val)
7775 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7776 declare fp128 @llvm.floor.f128(fp128 %Val)
7777 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7778
7779Overview:
7780"""""""""
7781
7782The '``llvm.floor.*``' intrinsics return the floor of the operand.
7783
7784Arguments:
7785""""""""""
7786
7787The argument and return value are floating point numbers of the same
7788type.
7789
7790Semantics:
7791""""""""""
7792
7793This function returns the same values as the libm ``floor`` functions
7794would, and handles error conditions in the same way.
7795
7796'``llvm.ceil.*``' Intrinsic
7797^^^^^^^^^^^^^^^^^^^^^^^^^^^
7798
7799Syntax:
7800"""""""
7801
7802This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7803floating point or vector of floating point type. Not all targets support
7804all types however.
7805
7806::
7807
7808 declare float @llvm.ceil.f32(float %Val)
7809 declare double @llvm.ceil.f64(double %Val)
7810 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7811 declare fp128 @llvm.ceil.f128(fp128 %Val)
7812 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7813
7814Overview:
7815"""""""""
7816
7817The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7818
7819Arguments:
7820""""""""""
7821
7822The argument and return value are floating point numbers of the same
7823type.
7824
7825Semantics:
7826""""""""""
7827
7828This function returns the same values as the libm ``ceil`` functions
7829would, and handles error conditions in the same way.
7830
7831'``llvm.trunc.*``' Intrinsic
7832^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7833
7834Syntax:
7835"""""""
7836
7837This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7838floating point or vector of floating point type. Not all targets support
7839all types however.
7840
7841::
7842
7843 declare float @llvm.trunc.f32(float %Val)
7844 declare double @llvm.trunc.f64(double %Val)
7845 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7846 declare fp128 @llvm.trunc.f128(fp128 %Val)
7847 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7848
7849Overview:
7850"""""""""
7851
7852The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7853nearest integer not larger in magnitude than the operand.
7854
7855Arguments:
7856""""""""""
7857
7858The argument and return value are floating point numbers of the same
7859type.
7860
7861Semantics:
7862""""""""""
7863
7864This function returns the same values as the libm ``trunc`` functions
7865would, and handles error conditions in the same way.
7866
7867'``llvm.rint.*``' Intrinsic
7868^^^^^^^^^^^^^^^^^^^^^^^^^^^
7869
7870Syntax:
7871"""""""
7872
7873This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7874floating point or vector of floating point type. Not all targets support
7875all types however.
7876
7877::
7878
7879 declare float @llvm.rint.f32(float %Val)
7880 declare double @llvm.rint.f64(double %Val)
7881 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7882 declare fp128 @llvm.rint.f128(fp128 %Val)
7883 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7884
7885Overview:
7886"""""""""
7887
7888The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7889nearest integer. It may raise an inexact floating-point exception if the
7890operand isn't an integer.
7891
7892Arguments:
7893""""""""""
7894
7895The argument and return value are floating point numbers of the same
7896type.
7897
7898Semantics:
7899""""""""""
7900
7901This function returns the same values as the libm ``rint`` functions
7902would, and handles error conditions in the same way.
7903
7904'``llvm.nearbyint.*``' Intrinsic
7905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7911floating point or vector of floating point type. Not all targets support
7912all types however.
7913
7914::
7915
7916 declare float @llvm.nearbyint.f32(float %Val)
7917 declare double @llvm.nearbyint.f64(double %Val)
7918 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7919 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7920 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7926nearest integer.
7927
7928Arguments:
7929""""""""""
7930
7931The argument and return value are floating point numbers of the same
7932type.
7933
7934Semantics:
7935""""""""""
7936
7937This function returns the same values as the libm ``nearbyint``
7938functions would, and handles error conditions in the same way.
7939
Hal Finkel171817e2013-08-07 22:49:12 +00007940'``llvm.round.*``' Intrinsic
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946This is an overloaded intrinsic. You can use ``llvm.round`` on any
7947floating point or vector of floating point type. Not all targets support
7948all types however.
7949
7950::
7951
7952 declare float @llvm.round.f32(float %Val)
7953 declare double @llvm.round.f64(double %Val)
7954 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7955 declare fp128 @llvm.round.f128(fp128 %Val)
7956 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7957
7958Overview:
7959"""""""""
7960
7961The '``llvm.round.*``' intrinsics returns the operand rounded to the
7962nearest integer.
7963
7964Arguments:
7965""""""""""
7966
7967The argument and return value are floating point numbers of the same
7968type.
7969
7970Semantics:
7971""""""""""
7972
7973This function returns the same values as the libm ``round``
7974functions would, and handles error conditions in the same way.
7975
Sean Silvab084af42012-12-07 10:36:55 +00007976Bit Manipulation Intrinsics
7977---------------------------
7978
7979LLVM provides intrinsics for a few important bit manipulation
7980operations. These allow efficient code generation for some algorithms.
7981
7982'``llvm.bswap.*``' Intrinsics
7983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7984
7985Syntax:
7986"""""""
7987
7988This is an overloaded intrinsic function. You can use bswap on any
7989integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7990
7991::
7992
7993 declare i16 @llvm.bswap.i16(i16 <id>)
7994 declare i32 @llvm.bswap.i32(i32 <id>)
7995 declare i64 @llvm.bswap.i64(i64 <id>)
7996
7997Overview:
7998"""""""""
7999
8000The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8001values with an even number of bytes (positive multiple of 16 bits).
8002These are useful for performing operations on data that is not in the
8003target's native byte order.
8004
8005Semantics:
8006""""""""""
8007
8008The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8009and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8010intrinsic returns an i32 value that has the four bytes of the input i32
8011swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8012returned i32 will have its bytes in 3, 2, 1, 0 order. The
8013``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8014concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8015respectively).
8016
8017'``llvm.ctpop.*``' Intrinsic
8018^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8019
8020Syntax:
8021"""""""
8022
8023This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8024bit width, or on any vector with integer elements. Not all targets
8025support all bit widths or vector types, however.
8026
8027::
8028
8029 declare i8 @llvm.ctpop.i8(i8 <src>)
8030 declare i16 @llvm.ctpop.i16(i16 <src>)
8031 declare i32 @llvm.ctpop.i32(i32 <src>)
8032 declare i64 @llvm.ctpop.i64(i64 <src>)
8033 declare i256 @llvm.ctpop.i256(i256 <src>)
8034 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8035
8036Overview:
8037"""""""""
8038
8039The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8040in a value.
8041
8042Arguments:
8043""""""""""
8044
8045The only argument is the value to be counted. The argument may be of any
8046integer type, or a vector with integer elements. The return type must
8047match the argument type.
8048
8049Semantics:
8050""""""""""
8051
8052The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8053each element of a vector.
8054
8055'``llvm.ctlz.*``' Intrinsic
8056^^^^^^^^^^^^^^^^^^^^^^^^^^^
8057
8058Syntax:
8059"""""""
8060
8061This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8062integer bit width, or any vector whose elements are integers. Not all
8063targets support all bit widths or vector types, however.
8064
8065::
8066
8067 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8068 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8069 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8070 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8071 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8072 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8073
8074Overview:
8075"""""""""
8076
8077The '``llvm.ctlz``' family of intrinsic functions counts the number of
8078leading zeros in a variable.
8079
8080Arguments:
8081""""""""""
8082
8083The first argument is the value to be counted. This argument may be of
8084any integer type, or a vectory with integer element type. The return
8085type must match the first argument type.
8086
8087The second argument must be a constant and is a flag to indicate whether
8088the intrinsic should ensure that a zero as the first argument produces a
8089defined result. Historically some architectures did not provide a
8090defined result for zero values as efficiently, and many algorithms are
8091now predicated on avoiding zero-value inputs.
8092
8093Semantics:
8094""""""""""
8095
8096The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8097zeros in a variable, or within each element of the vector. If
8098``src == 0`` then the result is the size in bits of the type of ``src``
8099if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8100``llvm.ctlz(i32 2) = 30``.
8101
8102'``llvm.cttz.*``' Intrinsic
8103^^^^^^^^^^^^^^^^^^^^^^^^^^^
8104
8105Syntax:
8106"""""""
8107
8108This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8109integer bit width, or any vector of integer elements. Not all targets
8110support all bit widths or vector types, however.
8111
8112::
8113
8114 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8115 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8116 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8117 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8118 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8119 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8120
8121Overview:
8122"""""""""
8123
8124The '``llvm.cttz``' family of intrinsic functions counts the number of
8125trailing zeros.
8126
8127Arguments:
8128""""""""""
8129
8130The first argument is the value to be counted. This argument may be of
8131any integer type, or a vectory with integer element type. The return
8132type must match the first argument type.
8133
8134The second argument must be a constant and is a flag to indicate whether
8135the intrinsic should ensure that a zero as the first argument produces a
8136defined result. Historically some architectures did not provide a
8137defined result for zero values as efficiently, and many algorithms are
8138now predicated on avoiding zero-value inputs.
8139
8140Semantics:
8141""""""""""
8142
8143The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8144zeros in a variable, or within each element of a vector. If ``src == 0``
8145then the result is the size in bits of the type of ``src`` if
8146``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8147``llvm.cttz(2) = 1``.
8148
8149Arithmetic with Overflow Intrinsics
8150-----------------------------------
8151
8152LLVM provides intrinsics for some arithmetic with overflow operations.
8153
8154'``llvm.sadd.with.overflow.*``' Intrinsics
8155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8156
8157Syntax:
8158"""""""
8159
8160This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8161on any integer bit width.
8162
8163::
8164
8165 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8166 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8167 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8168
8169Overview:
8170"""""""""
8171
8172The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8173a signed addition of the two arguments, and indicate whether an overflow
8174occurred during the signed summation.
8175
8176Arguments:
8177""""""""""
8178
8179The arguments (%a and %b) and the first element of the result structure
8180may be of integer types of any bit width, but they must have the same
8181bit width. The second element of the result structure must be of type
8182``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8183addition.
8184
8185Semantics:
8186""""""""""
8187
8188The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008189a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008190first element of which is the signed summation, and the second element
8191of which is a bit specifying if the signed summation resulted in an
8192overflow.
8193
8194Examples:
8195"""""""""
8196
8197.. code-block:: llvm
8198
8199 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8200 %sum = extractvalue {i32, i1} %res, 0
8201 %obit = extractvalue {i32, i1} %res, 1
8202 br i1 %obit, label %overflow, label %normal
8203
8204'``llvm.uadd.with.overflow.*``' Intrinsics
8205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8206
8207Syntax:
8208"""""""
8209
8210This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8211on any integer bit width.
8212
8213::
8214
8215 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8216 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8217 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8218
8219Overview:
8220"""""""""
8221
8222The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8223an unsigned addition of the two arguments, and indicate whether a carry
8224occurred during the unsigned summation.
8225
8226Arguments:
8227""""""""""
8228
8229The arguments (%a and %b) and the first element of the result structure
8230may be of integer types of any bit width, but they must have the same
8231bit width. The second element of the result structure must be of type
8232``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8233addition.
8234
8235Semantics:
8236""""""""""
8237
8238The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008239an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008240first element of which is the sum, and the second element of which is a
8241bit specifying if the unsigned summation resulted in a carry.
8242
8243Examples:
8244"""""""""
8245
8246.. code-block:: llvm
8247
8248 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8249 %sum = extractvalue {i32, i1} %res, 0
8250 %obit = extractvalue {i32, i1} %res, 1
8251 br i1 %obit, label %carry, label %normal
8252
8253'``llvm.ssub.with.overflow.*``' Intrinsics
8254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8255
8256Syntax:
8257"""""""
8258
8259This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8260on any integer bit width.
8261
8262::
8263
8264 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8265 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8266 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8267
8268Overview:
8269"""""""""
8270
8271The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8272a signed subtraction of the two arguments, and indicate whether an
8273overflow occurred during the signed subtraction.
8274
8275Arguments:
8276""""""""""
8277
8278The arguments (%a and %b) and the first element of the result structure
8279may be of integer types of any bit width, but they must have the same
8280bit width. The second element of the result structure must be of type
8281``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8282subtraction.
8283
8284Semantics:
8285""""""""""
8286
8287The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008288a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008289first element of which is the subtraction, and the second element of
8290which is a bit specifying if the signed subtraction resulted in an
8291overflow.
8292
8293Examples:
8294"""""""""
8295
8296.. code-block:: llvm
8297
8298 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8299 %sum = extractvalue {i32, i1} %res, 0
8300 %obit = extractvalue {i32, i1} %res, 1
8301 br i1 %obit, label %overflow, label %normal
8302
8303'``llvm.usub.with.overflow.*``' Intrinsics
8304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8305
8306Syntax:
8307"""""""
8308
8309This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8310on any integer bit width.
8311
8312::
8313
8314 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8315 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8316 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8317
8318Overview:
8319"""""""""
8320
8321The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8322an unsigned subtraction of the two arguments, and indicate whether an
8323overflow occurred during the unsigned subtraction.
8324
8325Arguments:
8326""""""""""
8327
8328The arguments (%a and %b) and the first element of the result structure
8329may be of integer types of any bit width, but they must have the same
8330bit width. The second element of the result structure must be of type
8331``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8332subtraction.
8333
8334Semantics:
8335""""""""""
8336
8337The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008338an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008339the first element of which is the subtraction, and the second element of
8340which is a bit specifying if the unsigned subtraction resulted in an
8341overflow.
8342
8343Examples:
8344"""""""""
8345
8346.. code-block:: llvm
8347
8348 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8349 %sum = extractvalue {i32, i1} %res, 0
8350 %obit = extractvalue {i32, i1} %res, 1
8351 br i1 %obit, label %overflow, label %normal
8352
8353'``llvm.smul.with.overflow.*``' Intrinsics
8354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8355
8356Syntax:
8357"""""""
8358
8359This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8360on any integer bit width.
8361
8362::
8363
8364 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8365 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8366 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8367
8368Overview:
8369"""""""""
8370
8371The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8372a signed multiplication of the two arguments, and indicate whether an
8373overflow occurred during the signed multiplication.
8374
8375Arguments:
8376""""""""""
8377
8378The arguments (%a and %b) and the first element of the result structure
8379may be of integer types of any bit width, but they must have the same
8380bit width. The second element of the result structure must be of type
8381``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8382multiplication.
8383
8384Semantics:
8385""""""""""
8386
8387The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008388a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008389the first element of which is the multiplication, and the second element
8390of which is a bit specifying if the signed multiplication resulted in an
8391overflow.
8392
8393Examples:
8394"""""""""
8395
8396.. code-block:: llvm
8397
8398 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8399 %sum = extractvalue {i32, i1} %res, 0
8400 %obit = extractvalue {i32, i1} %res, 1
8401 br i1 %obit, label %overflow, label %normal
8402
8403'``llvm.umul.with.overflow.*``' Intrinsics
8404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8405
8406Syntax:
8407"""""""
8408
8409This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8410on any integer bit width.
8411
8412::
8413
8414 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8415 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8416 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8417
8418Overview:
8419"""""""""
8420
8421The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8422a unsigned multiplication of the two arguments, and indicate whether an
8423overflow occurred during the unsigned multiplication.
8424
8425Arguments:
8426""""""""""
8427
8428The arguments (%a and %b) and the first element of the result structure
8429may be of integer types of any bit width, but they must have the same
8430bit width. The second element of the result structure must be of type
8431``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8432multiplication.
8433
8434Semantics:
8435""""""""""
8436
8437The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008438an unsigned multiplication of the two arguments. They return a structure ---
8439the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008440element of which is a bit specifying if the unsigned multiplication
8441resulted in an overflow.
8442
8443Examples:
8444"""""""""
8445
8446.. code-block:: llvm
8447
8448 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8449 %sum = extractvalue {i32, i1} %res, 0
8450 %obit = extractvalue {i32, i1} %res, 1
8451 br i1 %obit, label %overflow, label %normal
8452
8453Specialised Arithmetic Intrinsics
8454---------------------------------
8455
8456'``llvm.fmuladd.*``' Intrinsic
8457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462::
8463
8464 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8465 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8466
8467Overview:
8468"""""""""
8469
8470The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008471expressions that can be fused if the code generator determines that (a) the
8472target instruction set has support for a fused operation, and (b) that the
8473fused operation is more efficient than the equivalent, separate pair of mul
8474and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008475
8476Arguments:
8477""""""""""
8478
8479The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8480multiplicands, a and b, and an addend c.
8481
8482Semantics:
8483""""""""""
8484
8485The expression:
8486
8487::
8488
8489 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8490
8491is equivalent to the expression a \* b + c, except that rounding will
8492not be performed between the multiplication and addition steps if the
8493code generator fuses the operations. Fusion is not guaranteed, even if
8494the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008495corresponding llvm.fma.\* intrinsic function should be used
8496instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008497
8498Examples:
8499"""""""""
8500
8501.. code-block:: llvm
8502
Tim Northover675a0962014-06-13 14:24:23 +00008503 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008504
8505Half Precision Floating Point Intrinsics
8506----------------------------------------
8507
8508For most target platforms, half precision floating point is a
8509storage-only format. This means that it is a dense encoding (in memory)
8510but does not support computation in the format.
8511
8512This means that code must first load the half-precision floating point
8513value as an i16, then convert it to float with
8514:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8515then be performed on the float value (including extending to double
8516etc). To store the value back to memory, it is first converted to float
8517if needed, then converted to i16 with
8518:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8519i16 value.
8520
8521.. _int_convert_to_fp16:
8522
8523'``llvm.convert.to.fp16``' Intrinsic
8524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8525
8526Syntax:
8527"""""""
8528
8529::
8530
8531 declare i16 @llvm.convert.to.fp16(f32 %a)
8532
8533Overview:
8534"""""""""
8535
8536The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8537from single precision floating point format to half precision floating
8538point format.
8539
8540Arguments:
8541""""""""""
8542
8543The intrinsic function contains single argument - the value to be
8544converted.
8545
8546Semantics:
8547""""""""""
8548
8549The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8550from single precision floating point format to half precision floating
8551point format. The return value is an ``i16`` which contains the
8552converted number.
8553
8554Examples:
8555"""""""""
8556
8557.. code-block:: llvm
8558
8559 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8560 store i16 %res, i16* @x, align 2
8561
8562.. _int_convert_from_fp16:
8563
8564'``llvm.convert.from.fp16``' Intrinsic
8565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8566
8567Syntax:
8568"""""""
8569
8570::
8571
8572 declare f32 @llvm.convert.from.fp16(i16 %a)
8573
8574Overview:
8575"""""""""
8576
8577The '``llvm.convert.from.fp16``' intrinsic function performs a
8578conversion from half precision floating point format to single precision
8579floating point format.
8580
8581Arguments:
8582""""""""""
8583
8584The intrinsic function contains single argument - the value to be
8585converted.
8586
8587Semantics:
8588""""""""""
8589
8590The '``llvm.convert.from.fp16``' intrinsic function performs a
8591conversion from half single precision floating point format to single
8592precision floating point format. The input half-float value is
8593represented by an ``i16`` value.
8594
8595Examples:
8596"""""""""
8597
8598.. code-block:: llvm
8599
8600 %a = load i16* @x, align 2
8601 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8602
8603Debugger Intrinsics
8604-------------------
8605
8606The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8607prefix), are described in the `LLVM Source Level
8608Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8609document.
8610
8611Exception Handling Intrinsics
8612-----------------------------
8613
8614The LLVM exception handling intrinsics (which all start with
8615``llvm.eh.`` prefix), are described in the `LLVM Exception
8616Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8617
8618.. _int_trampoline:
8619
8620Trampoline Intrinsics
8621---------------------
8622
8623These intrinsics make it possible to excise one parameter, marked with
8624the :ref:`nest <nest>` attribute, from a function. The result is a
8625callable function pointer lacking the nest parameter - the caller does
8626not need to provide a value for it. Instead, the value to use is stored
8627in advance in a "trampoline", a block of memory usually allocated on the
8628stack, which also contains code to splice the nest value into the
8629argument list. This is used to implement the GCC nested function address
8630extension.
8631
8632For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8633then the resulting function pointer has signature ``i32 (i32, i32)*``.
8634It can be created as follows:
8635
8636.. code-block:: llvm
8637
8638 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8639 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8640 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8641 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8642 %fp = bitcast i8* %p to i32 (i32, i32)*
8643
8644The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8645``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8646
8647.. _int_it:
8648
8649'``llvm.init.trampoline``' Intrinsic
8650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8651
8652Syntax:
8653"""""""
8654
8655::
8656
8657 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8658
8659Overview:
8660"""""""""
8661
8662This fills the memory pointed to by ``tramp`` with executable code,
8663turning it into a trampoline.
8664
8665Arguments:
8666""""""""""
8667
8668The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8669pointers. The ``tramp`` argument must point to a sufficiently large and
8670sufficiently aligned block of memory; this memory is written to by the
8671intrinsic. Note that the size and the alignment are target-specific -
8672LLVM currently provides no portable way of determining them, so a
8673front-end that generates this intrinsic needs to have some
8674target-specific knowledge. The ``func`` argument must hold a function
8675bitcast to an ``i8*``.
8676
8677Semantics:
8678""""""""""
8679
8680The block of memory pointed to by ``tramp`` is filled with target
8681dependent code, turning it into a function. Then ``tramp`` needs to be
8682passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8683be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8684function's signature is the same as that of ``func`` with any arguments
8685marked with the ``nest`` attribute removed. At most one such ``nest``
8686argument is allowed, and it must be of pointer type. Calling the new
8687function is equivalent to calling ``func`` with the same argument list,
8688but with ``nval`` used for the missing ``nest`` argument. If, after
8689calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8690modified, then the effect of any later call to the returned function
8691pointer is undefined.
8692
8693.. _int_at:
8694
8695'``llvm.adjust.trampoline``' Intrinsic
8696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8697
8698Syntax:
8699"""""""
8700
8701::
8702
8703 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8704
8705Overview:
8706"""""""""
8707
8708This performs any required machine-specific adjustment to the address of
8709a trampoline (passed as ``tramp``).
8710
8711Arguments:
8712""""""""""
8713
8714``tramp`` must point to a block of memory which already has trampoline
8715code filled in by a previous call to
8716:ref:`llvm.init.trampoline <int_it>`.
8717
8718Semantics:
8719""""""""""
8720
8721On some architectures the address of the code to be executed needs to be
8722different to the address where the trampoline is actually stored. This
8723intrinsic returns the executable address corresponding to ``tramp``
8724after performing the required machine specific adjustments. The pointer
8725returned can then be :ref:`bitcast and executed <int_trampoline>`.
8726
8727Memory Use Markers
8728------------------
8729
8730This class of intrinsics exists to information about the lifetime of
8731memory objects and ranges where variables are immutable.
8732
Reid Klecknera534a382013-12-19 02:14:12 +00008733.. _int_lifestart:
8734
Sean Silvab084af42012-12-07 10:36:55 +00008735'``llvm.lifetime.start``' Intrinsic
8736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8737
8738Syntax:
8739"""""""
8740
8741::
8742
8743 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8744
8745Overview:
8746"""""""""
8747
8748The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8749object's lifetime.
8750
8751Arguments:
8752""""""""""
8753
8754The first argument is a constant integer representing the size of the
8755object, or -1 if it is variable sized. The second argument is a pointer
8756to the object.
8757
8758Semantics:
8759""""""""""
8760
8761This intrinsic indicates that before this point in the code, the value
8762of the memory pointed to by ``ptr`` is dead. This means that it is known
8763to never be used and has an undefined value. A load from the pointer
8764that precedes this intrinsic can be replaced with ``'undef'``.
8765
Reid Klecknera534a382013-12-19 02:14:12 +00008766.. _int_lifeend:
8767
Sean Silvab084af42012-12-07 10:36:55 +00008768'``llvm.lifetime.end``' Intrinsic
8769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8770
8771Syntax:
8772"""""""
8773
8774::
8775
8776 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8777
8778Overview:
8779"""""""""
8780
8781The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8782object's lifetime.
8783
8784Arguments:
8785""""""""""
8786
8787The first argument is a constant integer representing the size of the
8788object, or -1 if it is variable sized. The second argument is a pointer
8789to the object.
8790
8791Semantics:
8792""""""""""
8793
8794This intrinsic indicates that after this point in the code, the value of
8795the memory pointed to by ``ptr`` is dead. This means that it is known to
8796never be used and has an undefined value. Any stores into the memory
8797object following this intrinsic may be removed as dead.
8798
8799'``llvm.invariant.start``' Intrinsic
8800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8801
8802Syntax:
8803"""""""
8804
8805::
8806
8807 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8808
8809Overview:
8810"""""""""
8811
8812The '``llvm.invariant.start``' intrinsic specifies that the contents of
8813a memory object will not change.
8814
8815Arguments:
8816""""""""""
8817
8818The first argument is a constant integer representing the size of the
8819object, or -1 if it is variable sized. The second argument is a pointer
8820to the object.
8821
8822Semantics:
8823""""""""""
8824
8825This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8826the return value, the referenced memory location is constant and
8827unchanging.
8828
8829'``llvm.invariant.end``' Intrinsic
8830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8831
8832Syntax:
8833"""""""
8834
8835::
8836
8837 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8838
8839Overview:
8840"""""""""
8841
8842The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8843memory object are mutable.
8844
8845Arguments:
8846""""""""""
8847
8848The first argument is the matching ``llvm.invariant.start`` intrinsic.
8849The second argument is a constant integer representing the size of the
8850object, or -1 if it is variable sized and the third argument is a
8851pointer to the object.
8852
8853Semantics:
8854""""""""""
8855
8856This intrinsic indicates that the memory is mutable again.
8857
8858General Intrinsics
8859------------------
8860
8861This class of intrinsics is designed to be generic and has no specific
8862purpose.
8863
8864'``llvm.var.annotation``' Intrinsic
8865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8866
8867Syntax:
8868"""""""
8869
8870::
8871
8872 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8873
8874Overview:
8875"""""""""
8876
8877The '``llvm.var.annotation``' intrinsic.
8878
8879Arguments:
8880""""""""""
8881
8882The first argument is a pointer to a value, the second is a pointer to a
8883global string, the third is a pointer to a global string which is the
8884source file name, and the last argument is the line number.
8885
8886Semantics:
8887""""""""""
8888
8889This intrinsic allows annotation of local variables with arbitrary
8890strings. This can be useful for special purpose optimizations that want
8891to look for these annotations. These have no other defined use; they are
8892ignored by code generation and optimization.
8893
Michael Gottesman88d18832013-03-26 00:34:27 +00008894'``llvm.ptr.annotation.*``' Intrinsic
8895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8896
8897Syntax:
8898"""""""
8899
8900This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8901pointer to an integer of any width. *NOTE* you must specify an address space for
8902the pointer. The identifier for the default address space is the integer
8903'``0``'.
8904
8905::
8906
8907 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8908 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8909 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8910 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8911 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8912
8913Overview:
8914"""""""""
8915
8916The '``llvm.ptr.annotation``' intrinsic.
8917
8918Arguments:
8919""""""""""
8920
8921The first argument is a pointer to an integer value of arbitrary bitwidth
8922(result of some expression), the second is a pointer to a global string, the
8923third is a pointer to a global string which is the source file name, and the
8924last argument is the line number. It returns the value of the first argument.
8925
8926Semantics:
8927""""""""""
8928
8929This intrinsic allows annotation of a pointer to an integer with arbitrary
8930strings. This can be useful for special purpose optimizations that want to look
8931for these annotations. These have no other defined use; they are ignored by code
8932generation and optimization.
8933
Sean Silvab084af42012-12-07 10:36:55 +00008934'``llvm.annotation.*``' Intrinsic
8935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8936
8937Syntax:
8938"""""""
8939
8940This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8941any integer bit width.
8942
8943::
8944
8945 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8946 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8947 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8948 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8949 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8950
8951Overview:
8952"""""""""
8953
8954The '``llvm.annotation``' intrinsic.
8955
8956Arguments:
8957""""""""""
8958
8959The first argument is an integer value (result of some expression), the
8960second is a pointer to a global string, the third is a pointer to a
8961global string which is the source file name, and the last argument is
8962the line number. It returns the value of the first argument.
8963
8964Semantics:
8965""""""""""
8966
8967This intrinsic allows annotations to be put on arbitrary expressions
8968with arbitrary strings. This can be useful for special purpose
8969optimizations that want to look for these annotations. These have no
8970other defined use; they are ignored by code generation and optimization.
8971
8972'``llvm.trap``' Intrinsic
8973^^^^^^^^^^^^^^^^^^^^^^^^^
8974
8975Syntax:
8976"""""""
8977
8978::
8979
8980 declare void @llvm.trap() noreturn nounwind
8981
8982Overview:
8983"""""""""
8984
8985The '``llvm.trap``' intrinsic.
8986
8987Arguments:
8988""""""""""
8989
8990None.
8991
8992Semantics:
8993""""""""""
8994
8995This intrinsic is lowered to the target dependent trap instruction. If
8996the target does not have a trap instruction, this intrinsic will be
8997lowered to a call of the ``abort()`` function.
8998
8999'``llvm.debugtrap``' Intrinsic
9000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9001
9002Syntax:
9003"""""""
9004
9005::
9006
9007 declare void @llvm.debugtrap() nounwind
9008
9009Overview:
9010"""""""""
9011
9012The '``llvm.debugtrap``' intrinsic.
9013
9014Arguments:
9015""""""""""
9016
9017None.
9018
9019Semantics:
9020""""""""""
9021
9022This intrinsic is lowered to code which is intended to cause an
9023execution trap with the intention of requesting the attention of a
9024debugger.
9025
9026'``llvm.stackprotector``' Intrinsic
9027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9028
9029Syntax:
9030"""""""
9031
9032::
9033
9034 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9035
9036Overview:
9037"""""""""
9038
9039The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9040onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9041is placed on the stack before local variables.
9042
9043Arguments:
9044""""""""""
9045
9046The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9047The first argument is the value loaded from the stack guard
9048``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9049enough space to hold the value of the guard.
9050
9051Semantics:
9052""""""""""
9053
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009054This intrinsic causes the prologue/epilogue inserter to force the position of
9055the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9056to ensure that if a local variable on the stack is overwritten, it will destroy
9057the value of the guard. When the function exits, the guard on the stack is
9058checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9059different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9060calling the ``__stack_chk_fail()`` function.
9061
9062'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009064
9065Syntax:
9066"""""""
9067
9068::
9069
9070 declare void @llvm.stackprotectorcheck(i8** <guard>)
9071
9072Overview:
9073"""""""""
9074
9075The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009076created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009077``__stack_chk_fail()`` function.
9078
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009079Arguments:
9080""""""""""
9081
9082The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9083the variable ``@__stack_chk_guard``.
9084
9085Semantics:
9086""""""""""
9087
9088This intrinsic is provided to perform the stack protector check by comparing
9089``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9090values do not match call the ``__stack_chk_fail()`` function.
9091
9092The reason to provide this as an IR level intrinsic instead of implementing it
9093via other IR operations is that in order to perform this operation at the IR
9094level without an intrinsic, one would need to create additional basic blocks to
9095handle the success/failure cases. This makes it difficult to stop the stack
9096protector check from disrupting sibling tail calls in Codegen. With this
9097intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009098codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009099
Sean Silvab084af42012-12-07 10:36:55 +00009100'``llvm.objectsize``' Intrinsic
9101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9102
9103Syntax:
9104"""""""
9105
9106::
9107
9108 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9109 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9110
9111Overview:
9112"""""""""
9113
9114The ``llvm.objectsize`` intrinsic is designed to provide information to
9115the optimizers to determine at compile time whether a) an operation
9116(like memcpy) will overflow a buffer that corresponds to an object, or
9117b) that a runtime check for overflow isn't necessary. An object in this
9118context means an allocation of a specific class, structure, array, or
9119other object.
9120
9121Arguments:
9122""""""""""
9123
9124The ``llvm.objectsize`` intrinsic takes two arguments. The first
9125argument is a pointer to or into the ``object``. The second argument is
9126a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9127or -1 (if false) when the object size is unknown. The second argument
9128only accepts constants.
9129
9130Semantics:
9131""""""""""
9132
9133The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9134the size of the object concerned. If the size cannot be determined at
9135compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9136on the ``min`` argument).
9137
9138'``llvm.expect``' Intrinsic
9139^^^^^^^^^^^^^^^^^^^^^^^^^^^
9140
9141Syntax:
9142"""""""
9143
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009144This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9145integer bit width.
9146
Sean Silvab084af42012-12-07 10:36:55 +00009147::
9148
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009149 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009150 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9151 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9152
9153Overview:
9154"""""""""
9155
9156The ``llvm.expect`` intrinsic provides information about expected (the
9157most probable) value of ``val``, which can be used by optimizers.
9158
9159Arguments:
9160""""""""""
9161
9162The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9163a value. The second argument is an expected value, this needs to be a
9164constant value, variables are not allowed.
9165
9166Semantics:
9167""""""""""
9168
9169This intrinsic is lowered to the ``val``.
9170
9171'``llvm.donothing``' Intrinsic
9172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9173
9174Syntax:
9175"""""""
9176
9177::
9178
9179 declare void @llvm.donothing() nounwind readnone
9180
9181Overview:
9182"""""""""
9183
9184The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9185only intrinsic that can be called with an invoke instruction.
9186
9187Arguments:
9188""""""""""
9189
9190None.
9191
9192Semantics:
9193""""""""""
9194
9195This intrinsic does nothing, and it's removed by optimizers and ignored
9196by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009197
9198Stack Map Intrinsics
9199--------------------
9200
9201LLVM provides experimental intrinsics to support runtime patching
9202mechanisms commonly desired in dynamic language JITs. These intrinsics
9203are described in :doc:`StackMaps`.