blob: d731a2c1a34bffc0d80502c18876337649403967 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Filipe Cabecinhas0da99372016-04-29 15:22:48 +0000114// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
Benjamin Kramer214935e2012-10-26 17:31:32 +0000115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
Wei Mia49559b2016-02-04 01:27:38 +0000118static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
Jeroen Ketemae48e3932016-04-12 23:21:46 +0000120 cl::desc("Verify no dangling value in ScalarEvolution's "
Wei Mia49559b2016-02-04 01:27:38 +0000121 "ExprValueMap (slow)"));
Benjamin Kramer214935e2012-10-26 17:31:32 +0000122
Chris Lattnerd934c702004-04-02 20:23:17 +0000123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Davide Italiano2071f4c2015-10-25 19:55:24 +0000131LLVM_DUMP_METHOD
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136
Dan Gohman534749b2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000138 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000139 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000169 if (AR->hasNoUnsignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000170 OS << "nuw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000171 if (AR->hasNoSignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000172 OS << "nsw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000173 if (AR->hasNoSelfWrap() &&
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000185 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000196 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
Sanjoy Das76c48e02016-02-04 18:21:54 +0000203 if (NAry->hasNoUnsignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000204 OS << "<nuw>";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000205 if (NAry->hasNoSignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000206 OS << "<nsw>";
207 }
Dan Gohman534749b2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000226
Chris Lattner229907c2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000231 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000232 OS << ")";
233 return;
234 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000235
Dan Gohman534749b2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000237 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000243 }
244 llvm_unreachable("Unknown SCEV kind!");
245}
246
Chris Lattner229907c2011-07-18 04:54:35 +0000247Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000248 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000268 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000270}
271
Dan Gohmanbe928e32008-06-18 16:23:07 +0000272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
Chris Lattnerd934c702004-04-02 20:23:17 +0000283
Dan Gohman18a96bb2009-06-24 00:30:26 +0000284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
Andrew Trick881a7762012-01-07 00:27:31 +0000290/// isNonConstantNegative - Return true if the specified scev is negated, but
291/// not a constant.
292bool SCEV::isNonConstantNegative() const {
293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294 if (!Mul) return false;
295
296 // If there is a constant factor, it will be first.
297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298 if (!SC) return false;
299
300 // Return true if the value is negative, this matches things like (-42 * V).
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000301 return SC->getAPInt().isNegative();
Andrew Trick881a7762012-01-07 00:27:31 +0000302}
303
Owen Anderson04052ec2009-06-22 21:57:23 +0000304SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000306
Chris Lattnerd934c702004-04-02 20:23:17 +0000307bool SCEVCouldNotCompute::classof(const SCEV *S) {
308 return S->getSCEVType() == scCouldNotCompute;
309}
310
Dan Gohmanaf752342009-07-07 17:06:11 +0000311const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 FoldingSetNodeID ID;
313 ID.AddInteger(scConstant);
314 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000315 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000318 UniqueSCEVs.InsertNode(S, IP);
319 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000320}
Chris Lattnerd934c702004-04-02 20:23:17 +0000321
Nick Lewycky31eaca52014-01-27 10:04:03 +0000322const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000323 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000324}
325
Dan Gohmanaf752342009-07-07 17:06:11 +0000326const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000327ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000329 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000330}
331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000335
Dan Gohman24ceda82010-06-18 19:54:20 +0000336SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000337 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000338 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000341 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342}
Chris Lattnerd934c702004-04-02 20:23:17 +0000343
Dan Gohman24ceda82010-06-18 19:54:20 +0000344SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000345 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000346 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000349 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350}
351
Dan Gohman24ceda82010-06-18 19:54:20 +0000352SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000353 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000354 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000357 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358}
359
Dan Gohman7cac9572010-08-02 23:49:30 +0000360void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000361 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000362 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000363
364 // Remove this SCEVUnknown from the uniquing map.
365 SE->UniqueSCEVs.RemoveNode(this);
366
367 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000368 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000369}
370
371void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000372 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000373 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374
375 // Remove this SCEVUnknown from the uniquing map.
376 SE->UniqueSCEVs.RemoveNode(this);
377
378 // Update this SCEVUnknown to point to the new value. This is needed
379 // because there may still be outstanding SCEVs which still point to
380 // this SCEVUnknown.
381 setValPtr(New);
382}
383
Chris Lattner229907c2011-07-18 04:54:35 +0000384bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue() &&
390 CE->getNumOperands() == 2)
391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392 if (CI->isOne()) {
393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394 ->getElementType();
395 return true;
396 }
Dan Gohmancf913832010-01-28 02:15:55 +0000397
398 return false;
399}
400
Chris Lattner229907c2011-07-18 04:54:35 +0000401bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000403 if (VCE->getOpcode() == Instruction::PtrToInt)
404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (CE->getOpcode() == Instruction::GetElementPtr &&
406 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000409 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (!STy->isPacked() &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(1)->isNullValue()) {
413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414 if (CI->isOne() &&
415 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000416 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000417 AllocTy = STy->getElementType(1);
418 return true;
419 }
420 }
421 }
Dan Gohmancf913832010-01-28 02:15:55 +0000422
423 return false;
424}
425
Chris Lattner229907c2011-07-18 04:54:35 +0000426bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000428 if (VCE->getOpcode() == Instruction::PtrToInt)
429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430 if (CE->getOpcode() == Instruction::GetElementPtr &&
431 CE->getNumOperands() == 3 &&
432 CE->getOperand(0)->isNullValue() &&
433 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000434 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436 // Ignore vector types here so that ScalarEvolutionExpander doesn't
437 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000438 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000439 CTy = Ty;
440 FieldNo = CE->getOperand(2);
441 return true;
442 }
443 }
444
445 return false;
446}
447
Chris Lattnereb3e8402004-06-20 06:23:15 +0000448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
Sanjoy Das7881abd2015-12-08 04:32:51 +0000453/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454/// than the complexity of the RHS. This comparator is used to canonicalize
455/// expressions.
456class SCEVComplexityCompare {
457 const LoopInfo *const LI;
458public:
459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000460
Sanjoy Das7881abd2015-12-08 04:32:51 +0000461 // Return true or false if LHS is less than, or at least RHS, respectively.
462 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463 return compare(LHS, RHS) < 0;
464 }
Dan Gohman27065672010-08-27 15:26:01 +0000465
Sanjoy Das7881abd2015-12-08 04:32:51 +0000466 // Return negative, zero, or positive, if LHS is less than, equal to, or
467 // greater than RHS, respectively. A three-way result allows recursive
468 // comparisons to be more efficient.
469 int compare(const SCEV *LHS, const SCEV *RHS) const {
470 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471 if (LHS == RHS)
472 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473
Sanjoy Das7881abd2015-12-08 04:32:51 +0000474 // Primarily, sort the SCEVs by their getSCEVType().
475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476 if (LType != RType)
477 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000478
Sanjoy Das7881abd2015-12-08 04:32:51 +0000479 // Aside from the getSCEVType() ordering, the particular ordering
480 // isn't very important except that it's beneficial to be consistent,
481 // so that (a + b) and (b + a) don't end up as different expressions.
482 switch (static_cast<SCEVTypes>(LType)) {
483 case scUnknown: {
484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000486
Sanjoy Das7881abd2015-12-08 04:32:51 +0000487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488 // not as complete as it could be.
489 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000490
Sanjoy Das7881abd2015-12-08 04:32:51 +0000491 // Order pointer values after integer values. This helps SCEVExpander
492 // form GEPs.
493 bool LIsPointer = LV->getType()->isPointerTy(),
494 RIsPointer = RV->getType()->isPointerTy();
495 if (LIsPointer != RIsPointer)
496 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000497
Sanjoy Das7881abd2015-12-08 04:32:51 +0000498 // Compare getValueID values.
499 unsigned LID = LV->getValueID(),
500 RID = RV->getValueID();
501 if (LID != RID)
502 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000503
Sanjoy Das7881abd2015-12-08 04:32:51 +0000504 // Sort arguments by their position.
505 if (const Argument *LA = dyn_cast<Argument>(LV)) {
506 const Argument *RA = cast<Argument>(RV);
507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000509 }
510
Sanjoy Das7881abd2015-12-08 04:32:51 +0000511 // For instructions, compare their loop depth, and their operand
512 // count. This is pretty loose.
513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000515
Sanjoy Das7881abd2015-12-08 04:32:51 +0000516 // Compare loop depths.
517 const BasicBlock *LParent = LInst->getParent(),
518 *RParent = RInst->getParent();
519 if (LParent != RParent) {
520 unsigned LDepth = LI->getLoopDepth(LParent),
521 RDepth = LI->getLoopDepth(RParent);
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000523 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000524 }
Dan Gohman27065672010-08-27 15:26:01 +0000525
Sanjoy Das7881abd2015-12-08 04:32:51 +0000526 // Compare the number of operands.
527 unsigned LNumOps = LInst->getNumOperands(),
528 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000529 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000530 }
531
Sanjoy Das7881abd2015-12-08 04:32:51 +0000532 return 0;
533 }
Dan Gohman27065672010-08-27 15:26:01 +0000534
Sanjoy Das7881abd2015-12-08 04:32:51 +0000535 case scConstant: {
536 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538
539 // Compare constant values.
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000540 const APInt &LA = LC->getAPInt();
541 const APInt &RA = RC->getAPInt();
Sanjoy Das7881abd2015-12-08 04:32:51 +0000542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543 if (LBitWidth != RBitWidth)
544 return (int)LBitWidth - (int)RBitWidth;
545 return LA.ult(RA) ? -1 : 1;
546 }
547
548 case scAddRecExpr: {
549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551
552 // Compare addrec loop depths.
553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554 if (LLoop != RLoop) {
555 unsigned LDepth = LLoop->getLoopDepth(),
556 RDepth = RLoop->getLoopDepth();
557 if (LDepth != RDepth)
558 return (int)LDepth - (int)RDepth;
559 }
560
561 // Addrec complexity grows with operand count.
562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563 if (LNumOps != RNumOps)
564 return (int)LNumOps - (int)RNumOps;
565
566 // Lexicographically compare.
567 for (unsigned i = 0; i != LNumOps; ++i) {
568 long X = compare(LA->getOperand(i), RA->getOperand(i));
Dan Gohman27065672010-08-27 15:26:01 +0000569 if (X != 0)
570 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000571 }
572
Sanjoy Das7881abd2015-12-08 04:32:51 +0000573 return 0;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000574 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000575
576 case scAddExpr:
577 case scMulExpr:
578 case scSMaxExpr:
579 case scUMaxExpr: {
580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582
583 // Lexicographically compare n-ary expressions.
584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585 if (LNumOps != RNumOps)
586 return (int)LNumOps - (int)RNumOps;
587
588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
594 }
595 return (int)LNumOps - (int)RNumOps;
596 }
597
598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
607 }
608
609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
619 case scCouldNotCompute:
620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621 }
622 llvm_unreachable("Unknown SCEV kind!");
623 }
624};
625} // end anonymous namespace
Chris Lattnereb3e8402004-06-20 06:23:15 +0000626
627/// GroupByComplexity - Given a list of SCEV objects, order them by their
628/// complexity, and group objects of the same complexity together by value.
629/// When this routine is finished, we know that any duplicates in the vector are
630/// consecutive and that complexity is monotonically increasing.
631///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000632/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000633/// results from this routine. In other words, we don't want the results of
634/// this to depend on where the addresses of various SCEV objects happened to
635/// land in memory.
636///
Dan Gohmanaf752342009-07-07 17:06:11 +0000637static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000638 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000639 if (Ops.size() < 2) return; // Noop
640 if (Ops.size() == 2) {
641 // This is the common case, which also happens to be trivially simple.
642 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644 if (SCEVComplexityCompare(LI)(RHS, LHS))
645 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000646 return;
647 }
648
Dan Gohman24ceda82010-06-18 19:54:20 +0000649 // Do the rough sort by complexity.
650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651
652 // Now that we are sorted by complexity, group elements of the same
653 // complexity. Note that this is, at worst, N^2, but the vector is likely to
654 // be extremely short in practice. Note that we take this approach because we
655 // do not want to depend on the addresses of the objects we are grouping.
656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657 const SCEV *S = Ops[i];
658 unsigned Complexity = S->getSCEVType();
659
660 // If there are any objects of the same complexity and same value as this
661 // one, group them.
662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663 if (Ops[j] == S) { // Found a duplicate.
664 // Move it to immediately after i'th element.
665 std::swap(Ops[i+1], Ops[j]);
666 ++i; // no need to rescan it.
667 if (i == e-2) return; // Done!
668 }
669 }
670 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000671}
672
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000673// Returns the size of the SCEV S.
674static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000675 struct FindSCEVSize {
676 int Size;
677 FindSCEVSize() : Size(0) {}
678
679 bool follow(const SCEV *S) {
680 ++Size;
681 // Keep looking at all operands of S.
682 return true;
683 }
684 bool isDone() const {
685 return false;
686 }
687 };
688
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000689 FindSCEVSize F;
690 SCEVTraversal<FindSCEVSize> ST(F);
691 ST.visitAll(S);
692 return F.Size;
693}
694
695namespace {
696
David Majnemer4e879362014-12-14 09:12:33 +0000697struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000698public:
699 // Computes the Quotient and Remainder of the division of Numerator by
700 // Denominator.
701 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702 const SCEV *Denominator, const SCEV **Quotient,
703 const SCEV **Remainder) {
704 assert(Numerator && Denominator && "Uninitialized SCEV");
705
David Majnemer4e879362014-12-14 09:12:33 +0000706 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000707
708 // Check for the trivial case here to avoid having to check for it in the
709 // rest of the code.
710 if (Numerator == Denominator) {
711 *Quotient = D.One;
712 *Remainder = D.Zero;
713 return;
714 }
715
716 if (Numerator->isZero()) {
717 *Quotient = D.Zero;
718 *Remainder = D.Zero;
719 return;
720 }
721
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000722 // A simple case when N/1. The quotient is N.
723 if (Denominator->isOne()) {
724 *Quotient = Numerator;
725 *Remainder = D.Zero;
726 return;
727 }
728
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000767 APInt NumeratorVal = Numerator->getAPInt();
768 APInt DenominatorVal = D->getAPInt();
David Majnemer4e879362014-12-14 09:12:33 +0000769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000788 if (!Numerator->isAffine())
789 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000792 // Bail out if the types do not match.
793 Type *Ty = Denominator->getType();
794 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000795 Ty != StepQ->getType() || Ty != StepR->getType())
796 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800 Numerator->getNoWrapFlags());
801 }
802
803 void visitAddExpr(const SCEVAddExpr *Numerator) {
804 SmallVector<const SCEV *, 2> Qs, Rs;
805 Type *Ty = Denominator->getType();
806
807 for (const SCEV *Op : Numerator->operands()) {
808 const SCEV *Q, *R;
809 divide(SE, Op, Denominator, &Q, &R);
810
811 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000812 if (Ty != Q->getType() || Ty != R->getType())
813 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000814
815 Qs.push_back(Q);
816 Rs.push_back(R);
817 }
818
819 if (Qs.size() == 1) {
820 Quotient = Qs[0];
821 Remainder = Rs[0];
822 return;
823 }
824
825 Quotient = SE.getAddExpr(Qs);
826 Remainder = SE.getAddExpr(Rs);
827 }
828
829 void visitMulExpr(const SCEVMulExpr *Numerator) {
830 SmallVector<const SCEV *, 2> Qs;
831 Type *Ty = Denominator->getType();
832
833 bool FoundDenominatorTerm = false;
834 for (const SCEV *Op : Numerator->operands()) {
835 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000836 if (Ty != Op->getType())
837 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000853 if (Ty != Q->getType())
854 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000855
856 FoundDenominatorTerm = true;
857 Qs.push_back(Q);
858 }
859
860 if (FoundDenominatorTerm) {
861 Remainder = Zero;
862 if (Qs.size() == 1)
863 Quotient = Qs[0];
864 else
865 Quotient = SE.getMulExpr(Qs);
866 return;
867 }
868
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000869 if (!isa<SCEVUnknown>(Denominator))
870 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000871
872 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873 ValueToValueMap RewriteMap;
874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875 cast<SCEVConstant>(Zero)->getValue();
876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877
878 if (Remainder->isZero()) {
879 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(One)->getValue();
882 Quotient =
883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884 return;
885 }
886
887 // Quotient is (Numerator - Remainder) divided by Denominator.
888 const SCEV *Q, *R;
889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000890 // This SCEV does not seem to simplify: fail the division here.
891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000893 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000894 if (R != Zero)
895 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000896 Quotient = Q;
897 }
898
899private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901 const SCEV *Denominator)
902 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000903 Zero = SE.getZero(Denominator->getType());
904 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000905
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000906 // We generally do not know how to divide Expr by Denominator. We
907 // initialize the division to a "cannot divide" state to simplify the rest
908 // of the code.
909 cannotDivide(Numerator);
910 }
911
912 // Convenience function for giving up on the division. We set the quotient to
913 // be equal to zero and the remainder to be equal to the numerator.
914 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000915 Quotient = Zero;
916 Remainder = Numerator;
917 }
918
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000919 ScalarEvolution &SE;
920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000921};
922
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000923}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000924
Chris Lattnerd934c702004-04-02 20:23:17 +0000925//===----------------------------------------------------------------------===//
926// Simple SCEV method implementations
927//===----------------------------------------------------------------------===//
928
Eli Friedman61f67622008-08-04 23:49:06 +0000929/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000930/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000931static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000932 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000933 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000934 // Handle the simplest case efficiently.
935 if (K == 1)
936 return SE.getTruncateOrZeroExtend(It, ResultTy);
937
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000938 // We are using the following formula for BC(It, K):
939 //
940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941 //
Eli Friedman61f67622008-08-04 23:49:06 +0000942 // Suppose, W is the bitwidth of the return value. We must be prepared for
943 // overflow. Hence, we must assure that the result of our computation is
944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
945 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000946 //
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000948 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // This formula is trivially equivalent to the previous formula. However,
955 // this formula can be implemented much more efficiently. The trick is that
956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957 // arithmetic. To do exact division in modular arithmetic, all we have
958 // to do is multiply by the inverse. Therefore, this step can be done at
959 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000960 //
Eli Friedman61f67622008-08-04 23:49:06 +0000961 // The next issue is how to safely do the division by 2^T. The way this
962 // is done is by doing the multiplication step at a width of at least W + T
963 // bits. This way, the bottom W+T bits of the product are accurate. Then,
964 // when we perform the division by 2^T (which is equivalent to a right shift
965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
966 // truncated out after the division by 2^T.
967 //
968 // In comparison to just directly using the first formula, this technique
969 // is much more efficient; using the first formula requires W * K bits,
970 // but this formula less than W + K bits. Also, the first formula requires
971 // a division step, whereas this formula only requires multiplies and shifts.
972 //
973 // It doesn't matter whether the subtraction step is done in the calculation
974 // width or the input iteration count's width; if the subtraction overflows,
975 // the result must be zero anyway. We prefer here to do it in the width of
976 // the induction variable because it helps a lot for certain cases; CodeGen
977 // isn't smart enough to ignore the overflow, which leads to much less
978 // efficient code if the width of the subtraction is wider than the native
979 // register width.
980 //
981 // (It's possible to not widen at all by pulling out factors of 2 before
982 // the multiplication; for example, K=2 can be calculated as
983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984 // extra arithmetic, so it's not an obvious win, and it gets
985 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000986
Eli Friedman61f67622008-08-04 23:49:06 +0000987 // Protection from insane SCEVs; this bound is conservative,
988 // but it probably doesn't matter.
989 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000990 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000992 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Eli Friedman61f67622008-08-04 23:49:06 +0000994 // Calculate K! / 2^T and T; we divide out the factors of two before
995 // multiplying for calculating K! / 2^T to avoid overflow.
996 // Other overflow doesn't matter because we only care about the bottom
997 // W bits of the result.
998 APInt OddFactorial(W, 1);
999 unsigned T = 1;
1000 for (unsigned i = 3; i <= K; ++i) {
1001 APInt Mult(W, i);
1002 unsigned TwoFactors = Mult.countTrailingZeros();
1003 T += TwoFactors;
1004 Mult = Mult.lshr(TwoFactors);
1005 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001006 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001007
Eli Friedman61f67622008-08-04 23:49:06 +00001008 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001009 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001010
Dan Gohman8b0a4192010-03-01 17:49:51 +00001011 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001013
1014 // Calculate the multiplicative inverse of K! / 2^T;
1015 // this multiplication factor will perform the exact division by
1016 // K! / 2^T.
1017 APInt Mod = APInt::getSignedMinValue(W+1);
1018 APInt MultiplyFactor = OddFactorial.zext(W+1);
1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020 MultiplyFactor = MultiplyFactor.trunc(W);
1021
1022 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001024 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001026 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001028 Dividend = SE.getMulExpr(Dividend,
1029 SE.getTruncateOrZeroExtend(S, CalculationTy));
1030 }
1031
1032 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001034
1035 // Truncate the result, and divide by K! / 2^T.
1036
1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001039}
1040
Chris Lattnerd934c702004-04-02 20:23:17 +00001041/// evaluateAtIteration - Return the value of this chain of recurrences at
1042/// the specified iteration number. We can evaluate this recurrence by
1043/// multiplying each element in the chain by the binomial coefficient
1044/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Dan Gohmanaf752342009-07-07 17:06:11 +00001050const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001051 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001052 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001054 // The computation is correct in the face of overflow provided that the
1055 // multiplication is performed _after_ the evaluation of the binomial
1056 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001058 if (isa<SCEVCouldNotCompute>(Coeff))
1059 return Coeff;
1060
1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001062 }
1063 return Result;
1064}
1065
Chris Lattnerd934c702004-04-02 20:23:17 +00001066//===----------------------------------------------------------------------===//
1067// SCEV Expression folder implementations
1068//===----------------------------------------------------------------------===//
1069
Dan Gohmanaf752342009-07-07 17:06:11 +00001070const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001071 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001073 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001074 assert(isSCEVable(Ty) &&
1075 "This is not a conversion to a SCEVable type!");
1076 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001077
Dan Gohman3a302cb2009-07-13 20:50:19 +00001078 FoldingSetNodeID ID;
1079 ID.AddInteger(scTruncate);
1080 ID.AddPointer(Op);
1081 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001082 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084
Dan Gohman3423e722009-06-30 20:13:32 +00001085 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001087 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001089
Dan Gohman79af8542009-04-22 16:20:48 +00001090 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001092 return getTruncateExpr(ST->getOperand(), Ty);
1093
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097
1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001103 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105 SmallVector<const SCEV *, 4> Operands;
1106 bool hasTrunc = false;
1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001109 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001111 Operands.push_back(S);
1112 }
1113 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001114 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001116 }
1117
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001119 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121 SmallVector<const SCEV *, 4> Operands;
1122 bool hasTrunc = false;
1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001125 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001137 for (const SCEV *Op : AddRec->operands())
1138 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Sanjoy Das4153f472015-02-18 01:47:07 +00001151// Get the limit of a recurrence such that incrementing by Step cannot cause
1152// signed overflow as long as the value of the recurrence within the
1153// loop does not exceed this limit before incrementing.
1154static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155 ICmpInst::Predicate *Pred,
1156 ScalarEvolution *SE) {
1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158 if (SE->isKnownPositive(Step)) {
1159 *Pred = ICmpInst::ICMP_SLT;
1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161 SE->getSignedRange(Step).getSignedMax());
1162 }
1163 if (SE->isKnownNegative(Step)) {
1164 *Pred = ICmpInst::ICMP_SGT;
1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166 SE->getSignedRange(Step).getSignedMin());
1167 }
1168 return nullptr;
1169}
1170
1171// Get the limit of a recurrence such that incrementing by Step cannot cause
1172// unsigned overflow as long as the value of the recurrence within the loop does
1173// not exceed this limit before incrementing.
1174static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175 ICmpInst::Predicate *Pred,
1176 ScalarEvolution *SE) {
1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178 *Pred = ICmpInst::ICMP_ULT;
1179
1180 return SE->getConstant(APInt::getMinValue(BitWidth) -
1181 SE->getUnsignedRange(Step).getUnsignedMax());
1182}
1183
1184namespace {
1185
1186struct ExtendOpTraitsBase {
1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188};
1189
1190// Used to make code generic over signed and unsigned overflow.
1191template <typename ExtendOp> struct ExtendOpTraits {
1192 // Members present:
1193 //
1194 // static const SCEV::NoWrapFlags WrapType;
1195 //
1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197 //
1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199 // ICmpInst::Predicate *Pred,
1200 // ScalarEvolution *SE);
1201};
1202
1203template <>
1204struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206
1207 static const GetExtendExprTy GetExtendExpr;
1208
1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210 ICmpInst::Predicate *Pred,
1211 ScalarEvolution *SE) {
1212 return getSignedOverflowLimitForStep(Step, Pred, SE);
1213 }
1214};
1215
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001216const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218
1219template <>
1220struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222
1223 static const GetExtendExprTy GetExtendExpr;
1224
1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226 ICmpInst::Predicate *Pred,
1227 ScalarEvolution *SE) {
1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229 }
1230};
1231
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001232const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001234}
Sanjoy Das4153f472015-02-18 01:47:07 +00001235
1236// The recurrence AR has been shown to have no signed/unsigned wrap or something
1237// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241// expression "Step + sext/zext(PreIncAR)" is congruent with
1242// "sext/zext(PostIncAR)"
1243template <typename ExtendOpTy>
1244static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245 ScalarEvolution *SE) {
1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248
1249 const Loop *L = AR->getLoop();
1250 const SCEV *Start = AR->getStart();
1251 const SCEV *Step = AR->getStepRecurrence(*SE);
1252
1253 // Check for a simple looking step prior to loop entry.
1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255 if (!SA)
1256 return nullptr;
1257
1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259 // subtraction is expensive. For this purpose, perform a quick and dirty
1260 // difference, by checking for Step in the operand list.
1261 SmallVector<const SCEV *, 4> DiffOps;
1262 for (const SCEV *Op : SA->operands())
1263 if (Op != Step)
1264 DiffOps.push_back(Op);
1265
1266 if (DiffOps.size() == SA->getNumOperands())
1267 return nullptr;
1268
1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270 // `Step`:
1271
1272 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001273 auto PreStartFlags =
1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001281 //
1282
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001283 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001286 return PreStart;
1287
1288 // 2. Direct overflow check on the step operation's expression.
1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291 const SCEV *OperandExtendedStart =
1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293 (SE->*GetExtendExpr)(Step, WideTy));
1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300 }
1301 return PreStart;
1302 }
1303
1304 // 3. Loop precondition.
1305 ICmpInst::Predicate Pred;
1306 const SCEV *OverflowLimit =
1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001311 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001312
Sanjoy Das4153f472015-02-18 01:47:07 +00001313 return nullptr;
1314}
1315
1316// Get the normalized zero or sign extended expression for this AddRec's Start.
1317template <typename ExtendOpTy>
1318static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319 ScalarEvolution *SE) {
1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323 if (!PreStart)
1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327 (SE->*GetExtendExpr)(PreStart, Ty));
1328}
1329
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001330// Try to prove away overflow by looking at "nearby" add recurrences. A
1331// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333//
1334// Formally:
1335//
1336// {S,+,X} == {S-T,+,X} + T
1337// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338//
1339// If ({S-T,+,X} + T) does not overflow ... (1)
1340//
1341// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342//
1343// If {S-T,+,X} does not overflow ... (2)
1344//
1345// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346// == {Ext(S-T)+Ext(T),+,Ext(X)}
1347//
1348// If (S-T)+T does not overflow ... (3)
1349//
1350// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351// == {Ext(S),+,Ext(X)} == LHS
1352//
1353// Thus, if (1), (2) and (3) are true for some T, then
1354// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355//
1356// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357// does not overflow" restricted to the 0th iteration. Therefore we only need
1358// to check for (1) and (2).
1359//
1360// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361// is `Delta` (defined below).
1362//
1363template <typename ExtendOpTy>
1364bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365 const SCEV *Step,
1366 const Loop *L) {
1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369 // We restrict `Start` to a constant to prevent SCEV from spending too much
1370 // time here. It is correct (but more expensive) to continue with a
1371 // non-constant `Start` and do a general SCEV subtraction to compute
1372 // `PreStart` below.
1373 //
1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375 if (!StartC)
1376 return false;
1377
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001378 APInt StartAI = StartC->getAPInt();
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001379
1380 for (unsigned Delta : {-2, -1, 1, 2}) {
1381 const SCEV *PreStart = getConstant(StartAI - Delta);
1382
Sanjoy Das42801102015-10-23 06:57:21 +00001383 FoldingSetNodeID ID;
1384 ID.AddInteger(scAddRecExpr);
1385 ID.AddPointer(PreStart);
1386 ID.AddPointer(Step);
1387 ID.AddPointer(L);
1388 void *IP = nullptr;
1389 const auto *PreAR =
1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 // Give up if we don't already have the add recurrence we need because
1393 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398 DeltaS, &Pred, this);
1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
Dan Gohmanaf752342009-07-07 17:06:11 +00001407const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001408 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001411 assert(isSCEVable(Ty) &&
1412 "This is not a conversion to a SCEVable type!");
1413 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001414
Dan Gohman3423e722009-06-30 20:13:32 +00001415 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001419
Dan Gohman79af8542009-04-22 16:20:48 +00001420 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001422 return getZeroExtendExpr(SZ->getOperand(), Ty);
1423
Dan Gohman74a0ba12009-07-13 20:55:53 +00001424 // Before doing any expensive analysis, check to see if we've already
1425 // computed a SCEV for this Op and Ty.
1426 FoldingSetNodeID ID;
1427 ID.AddInteger(scZeroExtend);
1428 ID.AddPointer(Op);
1429 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001430 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001433 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435 // It's possible the bits taken off by the truncate were all zero bits. If
1436 // so, we should be able to simplify this further.
1437 const SCEV *X = ST->getOperand();
1438 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001439 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440 unsigned NewBits = getTypeSizeInBits(Ty);
1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001442 CR.zextOrTrunc(NewBits)))
1443 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001444 }
1445
Dan Gohman76466372009-04-27 20:16:15 +00001446 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001448 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001451 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001452 const SCEV *Start = AR->getStart();
1453 const SCEV *Step = AR->getStepRecurrence(*this);
1454 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455 const Loop *L = AR->getLoop();
1456
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001457 if (!AR->hasNoUnsignedWrap()) {
1458 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1459 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1460 }
1461
Dan Gohman62ef6a72009-07-25 01:22:26 +00001462 // If we have special knowledge that this addrec won't overflow,
1463 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001464 if (AR->hasNoUnsignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001465 return getAddRecExpr(
1466 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1467 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001468
Dan Gohman76466372009-04-27 20:16:15 +00001469 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1470 // Note that this serves two purposes: It filters out loops that are
1471 // simply not analyzable, and it covers the case where this code is
1472 // being called from within backedge-taken count analysis, such that
1473 // attempting to ask for the backedge-taken count would likely result
1474 // in infinite recursion. In the later case, the analysis code will
1475 // cope with a conservative value, and it will take care to purge
1476 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001477 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001479 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001480 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001481
1482 // Check whether the backedge-taken count can be losslessly casted to
1483 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001484 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001485 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001486 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001487 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1488 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001489 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001490 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001491 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1493 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1494 const SCEV *WideMaxBECount =
1495 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001496 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001497 getAddExpr(WideStart,
1498 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001499 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001500 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001501 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1502 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001503 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001504 return getAddRecExpr(
1505 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001507 }
Dan Gohman76466372009-04-27 20:16:15 +00001508 // Similar to above, only this time treat the step value as signed.
1509 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001510 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001511 getAddExpr(WideStart,
1512 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001513 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001514 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 // Cache knowledge of AR NW, which is propagated to this AddRec.
1516 // Negative step causes unsigned wrap, but it still can't self-wrap.
1517 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001518 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001519 return getAddRecExpr(
1520 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1521 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001522 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001523 }
1524
1525 // If the backedge is guarded by a comparison with the pre-inc value
1526 // the addrec is safe. Also, if the entry is guarded by a comparison
1527 // with the start value and the backedge is guarded by a comparison
1528 // with the post-inc value, the addrec is safe.
1529 if (isKnownPositive(Step)) {
1530 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1531 getUnsignedRange(Step).getUnsignedMax());
1532 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001533 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001534 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 AR->getPostIncExpr(*this), N))) {
1536 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001538 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001539 return getAddRecExpr(
1540 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1541 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 } else if (isKnownNegative(Step)) {
1544 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1545 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001546 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1547 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001548 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001549 AR->getPostIncExpr(*this), N))) {
1550 // Cache knowledge of AR NW, which is propagated to this AddRec.
1551 // Negative step causes unsigned wrap, but it still can't self-wrap.
1552 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1553 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001554 return getAddRecExpr(
1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001557 }
Dan Gohman76466372009-04-27 20:16:15 +00001558 }
1559 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001560
1561 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1563 return getAddRecExpr(
1564 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1565 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1566 }
Dan Gohman76466372009-04-27 20:16:15 +00001567 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001568
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001569 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1570 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001571 if (SA->hasNoUnsignedWrap()) {
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001572 // If the addition does not unsign overflow then we can, by definition,
1573 // commute the zero extension with the addition operation.
1574 SmallVector<const SCEV *, 4> Ops;
1575 for (const auto *Op : SA->operands())
1576 Ops.push_back(getZeroExtendExpr(Op, Ty));
1577 return getAddExpr(Ops, SCEV::FlagNUW);
1578 }
1579 }
1580
Dan Gohman74a0ba12009-07-13 20:55:53 +00001581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001588}
1589
Dan Gohmanaf752342009-07-07 17:06:11 +00001590const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001591 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001593 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001594 assert(isSCEVable(Ty) &&
1595 "This is not a conversion to a SCEVable type!");
1596 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001597
Dan Gohman3423e722009-06-30 20:13:32 +00001598 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1600 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001602
Dan Gohman79af8542009-04-22 16:20:48 +00001603 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001605 return getSignExtendExpr(SS->getOperand(), Ty);
1606
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001607 // sext(zext(x)) --> zext(x)
1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1609 return getZeroExtendExpr(SZ->getOperand(), Ty);
1610
Dan Gohman74a0ba12009-07-13 20:55:53 +00001611 // Before doing any expensive analysis, check to see if we've already
1612 // computed a SCEV for this Op and Ty.
1613 FoldingSetNodeID ID;
1614 ID.AddInteger(scSignExtend);
1615 ID.AddPointer(Op);
1616 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001617 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1619
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001620 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1621 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1622 // It's possible the bits taken off by the truncate were all sign bits. If
1623 // so, we should be able to simplify this further.
1624 const SCEV *X = ST->getOperand();
1625 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001626 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1627 unsigned NewBits = getTypeSizeInBits(Ty);
1628 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001629 CR.sextOrTrunc(NewBits)))
1630 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001631 }
1632
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001633 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001634 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001635 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001636 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1637 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001638 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001639 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001640 const APInt &C1 = SC1->getAPInt();
1641 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001642 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001643 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001644 return getAddExpr(getSignExtendExpr(SC1, Ty),
1645 getSignExtendExpr(SMul, Ty));
1646 }
1647 }
1648 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001649
1650 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001651 if (SA->hasNoSignedWrap()) {
Sanjoy Dasa060e602015-10-22 19:57:25 +00001652 // If the addition does not sign overflow then we can, by definition,
1653 // commute the sign extension with the addition operation.
1654 SmallVector<const SCEV *, 4> Ops;
1655 for (const auto *Op : SA->operands())
1656 Ops.push_back(getSignExtendExpr(Op, Ty));
1657 return getAddExpr(Ops, SCEV::FlagNSW);
1658 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001659 }
Dan Gohman76466372009-04-27 20:16:15 +00001660 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001661 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001662 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001663 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001665 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001666 const SCEV *Start = AR->getStart();
1667 const SCEV *Step = AR->getStepRecurrence(*this);
1668 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1669 const Loop *L = AR->getLoop();
1670
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001671 if (!AR->hasNoSignedWrap()) {
1672 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1673 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1674 }
1675
Dan Gohman62ef6a72009-07-25 01:22:26 +00001676 // If we have special knowledge that this addrec won't overflow,
1677 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001678 if (AR->hasNoSignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001679 return getAddRecExpr(
1680 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1681 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001682
Dan Gohman76466372009-04-27 20:16:15 +00001683 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1684 // Note that this serves two purposes: It filters out loops that are
1685 // simply not analyzable, and it covers the case where this code is
1686 // being called from within backedge-taken count analysis, such that
1687 // attempting to ask for the backedge-taken count would likely result
1688 // in infinite recursion. In the later case, the analysis code will
1689 // cope with a conservative value, and it will take care to purge
1690 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001691 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001692 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001693 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001694 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001695
1696 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001697 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001698 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001699 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001700 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001701 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1702 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001703 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001704 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001705 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001706 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1707 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1708 const SCEV *WideMaxBECount =
1709 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001710 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001711 getAddExpr(WideStart,
1712 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001713 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001714 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001715 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1716 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001717 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001718 return getAddRecExpr(
1719 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1720 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001721 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001722 // Similar to above, only this time treat the step value as unsigned.
1723 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001724 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001725 getAddExpr(WideStart,
1726 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001727 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001728 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001729 // If AR wraps around then
1730 //
1731 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1732 // => SAdd != OperandExtendedAdd
1733 //
1734 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1735 // (SAdd == OperandExtendedAdd => AR is NW)
1736
1737 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1738
Dan Gohman8c129d72009-07-16 17:34:36 +00001739 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001740 return getAddRecExpr(
1741 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1742 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001743 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001744 }
Sanjoy Das787c2462016-05-11 17:41:26 +00001745 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001746
Sanjoy Das787c2462016-05-11 17:41:26 +00001747 // Normally, in the cases we can prove no-overflow via a
1748 // backedge guarding condition, we can also compute a backedge
1749 // taken count for the loop. The exceptions are assumptions and
1750 // guards present in the loop -- SCEV is not great at exploiting
1751 // these to compute max backedge taken counts, but can still use
1752 // these to prove lack of overflow. Use this fact to avoid
1753 // doing extra work that may not pay off.
1754
1755 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1756 !AC.assumptions().empty()) {
1757 // If the backedge is guarded by a comparison with the pre-inc
1758 // value the addrec is safe. Also, if the entry is guarded by
1759 // a comparison with the start value and the backedge is
1760 // guarded by a comparison with the post-inc value, the addrec
1761 // is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001762 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001763 const SCEV *OverflowLimit =
1764 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001765 if (OverflowLimit &&
1766 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1767 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1768 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1769 OverflowLimit)))) {
1770 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1771 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001772 return getAddRecExpr(
1773 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1774 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001775 }
1776 }
Sanjoy Das787c2462016-05-11 17:41:26 +00001777
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001778 // If Start and Step are constants, check if we can apply this
1779 // transformation:
1780 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001781 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1782 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001783 if (SC1 && SC2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001784 const APInt &C1 = SC1->getAPInt();
1785 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001786 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1787 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001788 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001789 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1790 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001791 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1792 }
1793 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001794
1795 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1796 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1797 return getAddRecExpr(
1798 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1799 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1800 }
Dan Gohman76466372009-04-27 20:16:15 +00001801 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001802
Sanjoy Das11ef6062016-03-03 18:31:23 +00001803 // If the input value is provably positive and we could not simplify
1804 // away the sext build a zext instead.
1805 if (isKnownNonNegative(Op))
1806 return getZeroExtendExpr(Op, Ty);
1807
Dan Gohman74a0ba12009-07-13 20:55:53 +00001808 // The cast wasn't folded; create an explicit cast node.
1809 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001810 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001811 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1812 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001813 UniqueSCEVs.InsertNode(S, IP);
1814 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001815}
1816
Dan Gohman8db2edc2009-06-13 15:56:47 +00001817/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1818/// unspecified bits out to the given type.
1819///
Dan Gohmanaf752342009-07-07 17:06:11 +00001820const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001821 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001822 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1823 "This is not an extending conversion!");
1824 assert(isSCEVable(Ty) &&
1825 "This is not a conversion to a SCEVable type!");
1826 Ty = getEffectiveSCEVType(Ty);
1827
1828 // Sign-extend negative constants.
1829 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001830 if (SC->getAPInt().isNegative())
Dan Gohman8db2edc2009-06-13 15:56:47 +00001831 return getSignExtendExpr(Op, Ty);
1832
1833 // Peel off a truncate cast.
1834 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001835 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001836 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1837 return getAnyExtendExpr(NewOp, Ty);
1838 return getTruncateOrNoop(NewOp, Ty);
1839 }
1840
1841 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001842 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001843 if (!isa<SCEVZeroExtendExpr>(ZExt))
1844 return ZExt;
1845
1846 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001847 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001848 if (!isa<SCEVSignExtendExpr>(SExt))
1849 return SExt;
1850
Dan Gohman51ad99d2010-01-21 02:09:26 +00001851 // Force the cast to be folded into the operands of an addrec.
1852 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1853 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001854 for (const SCEV *Op : AR->operands())
1855 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001856 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001857 }
1858
Dan Gohman8db2edc2009-06-13 15:56:47 +00001859 // If the expression is obviously signed, use the sext cast value.
1860 if (isa<SCEVSMaxExpr>(Op))
1861 return SExt;
1862
1863 // Absent any other information, use the zext cast value.
1864 return ZExt;
1865}
1866
Dan Gohman038d02e2009-06-14 22:58:51 +00001867/// CollectAddOperandsWithScales - Process the given Ops list, which is
1868/// a list of operands to be added under the given scale, update the given
1869/// map. This is a helper function for getAddRecExpr. As an example of
1870/// what it does, given a sequence of operands that would form an add
1871/// expression like this:
1872///
Tobias Grosserba49e422014-03-05 10:37:17 +00001873/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001874///
1875/// where A and B are constants, update the map with these values:
1876///
1877/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1878///
1879/// and add 13 + A*B*29 to AccumulatedConstant.
1880/// This will allow getAddRecExpr to produce this:
1881///
1882/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1883///
1884/// This form often exposes folding opportunities that are hidden in
1885/// the original operand list.
1886///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001887/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001888/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1889/// the common case where no interesting opportunities are present, and
1890/// is also used as a check to avoid infinite recursion.
1891///
1892static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001893CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001894 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001896 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 const APInt &Scale,
1898 ScalarEvolution &SE) {
1899 bool Interesting = false;
1900
Dan Gohman45073042010-06-18 19:12:32 +00001901 // Iterate over the add operands. They are sorted, with constants first.
1902 unsigned i = 0;
1903 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1904 ++i;
1905 // Pull a buried constant out to the outside.
1906 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1907 Interesting = true;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001908 AccumulatedConstant += Scale * C->getAPInt();
Dan Gohman45073042010-06-18 19:12:32 +00001909 }
1910
1911 // Next comes everything else. We're especially interested in multiplies
1912 // here, but they're in the middle, so just visit the rest with one loop.
1913 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001914 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1915 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1916 APInt NewScale =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001917 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1919 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001920 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001921 Interesting |=
1922 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001923 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001924 NewScale, SE);
1925 } else {
1926 // A multiplication of a constant with some other value. Update
1927 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001928 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1929 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001930 auto Pair = M.insert({Key, NewScale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001931 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001932 NewOps.push_back(Pair.first->first);
1933 } else {
1934 Pair.first->second += NewScale;
1935 // The map already had an entry for this value, which may indicate
1936 // a folding opportunity.
1937 Interesting = true;
1938 }
1939 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001940 } else {
1941 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001942 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001943 M.insert({Ops[i], Scale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001944 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001945 NewOps.push_back(Pair.first->first);
1946 } else {
1947 Pair.first->second += Scale;
1948 // The map already had an entry for this value, which may indicate
1949 // a folding opportunity.
1950 Interesting = true;
1951 }
1952 }
1953 }
1954
1955 return Interesting;
1956}
1957
Sanjoy Das81401d42015-01-10 23:41:24 +00001958// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1959// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1960// can't-overflow flags for the operation if possible.
1961static SCEV::NoWrapFlags
1962StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1963 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001964 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001965 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001966 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001967
1968 bool CanAnalyze =
1969 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1970 (void)CanAnalyze;
1971 assert(CanAnalyze && "don't call from other places!");
1972
1973 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1974 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001975 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001976
1977 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001978 auto IsKnownNonNegative = [&](const SCEV *S) {
1979 return SE->isKnownNonNegative(S);
1980 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001981
Sanjoy Das3b827c72015-11-29 23:40:53 +00001982 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001983 Flags =
1984 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001985
Sanjoy Das8f274152015-10-22 19:57:19 +00001986 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1987
1988 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1989 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1990
1991 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1992 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1993
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001994 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
Sanjoy Das8f274152015-10-22 19:57:19 +00001995 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00001996 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1997 Instruction::Add, C, OBO::NoSignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00001998 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1999 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2000 }
2001 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00002002 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2003 Instruction::Add, C, OBO::NoUnsignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00002004 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2005 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2006 }
2007 }
2008
2009 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00002010}
2011
Dan Gohman4d5435d2009-05-24 23:45:28 +00002012/// getAddExpr - Get a canonical add expression, or something simpler if
2013/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002014const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002015 SCEV::NoWrapFlags Flags) {
2016 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2017 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002018 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002019 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002020#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002021 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002022 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002023 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002024 "SCEVAddExpr operand types don't match!");
2025#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002026
2027 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002028 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002029
Sanjoy Das64895612015-10-09 02:44:45 +00002030 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2031
Chris Lattnerd934c702004-04-02 20:23:17 +00002032 // If there are any constants, fold them together.
2033 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002034 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002035 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002036 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002037 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002038 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002039 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
Dan Gohman011cf682009-06-14 22:53:57 +00002040 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002041 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002042 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 }
2044
2045 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002046 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002047 Ops.erase(Ops.begin());
2048 --Idx;
2049 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002050
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002051 if (Ops.size() == 1) return Ops[0];
2052 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002053
Dan Gohman15871f22010-08-27 21:39:59 +00002054 // Okay, check to see if the same value occurs in the operand list more than
2055 // once. If so, merge them together into an multiply expression. Since we
2056 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002057 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002058 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002059 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002060 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002061 // Scan ahead to count how many equal operands there are.
2062 unsigned Count = 2;
2063 while (i+Count != e && Ops[i+Count] == Ops[i])
2064 ++Count;
2065 // Merge the values into a multiply.
2066 const SCEV *Scale = getConstant(Ty, Count);
2067 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2068 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002069 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002070 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002071 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002072 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002073 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002074 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002075 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002076 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002077
Dan Gohman2e55cc52009-05-08 21:03:19 +00002078 // Check for truncates. If all the operands are truncated from the same
2079 // type, see if factoring out the truncate would permit the result to be
2080 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2081 // if the contents of the resulting outer trunc fold to something simple.
2082 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2083 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002084 Type *DstType = Trunc->getType();
2085 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002086 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002087 bool Ok = true;
2088 // Check all the operands to see if they can be represented in the
2089 // source type of the truncate.
2090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2091 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2092 if (T->getOperand()->getType() != SrcType) {
2093 Ok = false;
2094 break;
2095 }
2096 LargeOps.push_back(T->getOperand());
2097 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002098 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002099 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002100 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002101 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2102 if (const SCEVTruncateExpr *T =
2103 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2104 if (T->getOperand()->getType() != SrcType) {
2105 Ok = false;
2106 break;
2107 }
2108 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002109 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002110 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002111 } else {
2112 Ok = false;
2113 break;
2114 }
2115 }
2116 if (Ok)
2117 LargeOps.push_back(getMulExpr(LargeMulOps));
2118 } else {
2119 Ok = false;
2120 break;
2121 }
2122 }
2123 if (Ok) {
2124 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002125 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002126 // If it folds to something simple, use it. Otherwise, don't.
2127 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2128 return getTruncateExpr(Fold, DstType);
2129 }
2130 }
2131
2132 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002133 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2134 ++Idx;
2135
2136 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002137 if (Idx < Ops.size()) {
2138 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002139 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002140 // If we have an add, expand the add operands onto the end of the operands
2141 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002142 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002143 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002144 DeletedAdd = true;
2145 }
2146
2147 // If we deleted at least one add, we added operands to the end of the list,
2148 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002149 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002150 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002151 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002152 }
2153
2154 // Skip over the add expression until we get to a multiply.
2155 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2156 ++Idx;
2157
Dan Gohman038d02e2009-06-14 22:58:51 +00002158 // Check to see if there are any folding opportunities present with
2159 // operands multiplied by constant values.
2160 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2161 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002162 DenseMap<const SCEV *, APInt> M;
2163 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002164 APInt AccumulatedConstant(BitWidth, 0);
2165 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002166 Ops.data(), Ops.size(),
2167 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002168 struct APIntCompare {
2169 bool operator()(const APInt &LHS, const APInt &RHS) const {
2170 return LHS.ult(RHS);
2171 }
2172 };
2173
Dan Gohman038d02e2009-06-14 22:58:51 +00002174 // Some interesting folding opportunity is present, so its worthwhile to
2175 // re-generate the operands list. Group the operands by constant scale,
2176 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002177 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002178 for (const SCEV *NewOp : NewOps)
2179 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002180 // Re-generate the operands list.
2181 Ops.clear();
2182 if (AccumulatedConstant != 0)
2183 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002184 for (auto &MulOp : MulOpLists)
2185 if (MulOp.first != 0)
2186 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2187 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002188 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002189 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002190 if (Ops.size() == 1)
2191 return Ops[0];
2192 return getAddExpr(Ops);
2193 }
2194 }
2195
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 // If we are adding something to a multiply expression, make sure the
2197 // something is not already an operand of the multiply. If so, merge it into
2198 // the multiply.
2199 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002200 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002201 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002202 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002203 if (isa<SCEVConstant>(MulOpSCEV))
2204 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002205 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002206 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002207 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002208 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002209 if (Mul->getNumOperands() != 2) {
2210 // If the multiply has more than two operands, we must get the
2211 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002212 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2213 Mul->op_begin()+MulOp);
2214 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002215 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002216 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002217 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002218 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002219 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002220 if (Ops.size() == 2) return OuterMul;
2221 if (AddOp < Idx) {
2222 Ops.erase(Ops.begin()+AddOp);
2223 Ops.erase(Ops.begin()+Idx-1);
2224 } else {
2225 Ops.erase(Ops.begin()+Idx);
2226 Ops.erase(Ops.begin()+AddOp-1);
2227 }
2228 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002229 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002230 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002231
Chris Lattnerd934c702004-04-02 20:23:17 +00002232 // Check this multiply against other multiplies being added together.
2233 for (unsigned OtherMulIdx = Idx+1;
2234 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2235 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002236 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002237 // If MulOp occurs in OtherMul, we can fold the two multiplies
2238 // together.
2239 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2240 OMulOp != e; ++OMulOp)
2241 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2242 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002243 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002244 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002245 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002246 Mul->op_begin()+MulOp);
2247 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002248 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002249 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002250 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002251 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002252 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002253 OtherMul->op_begin()+OMulOp);
2254 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002255 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002256 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002257 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2258 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002259 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002260 Ops.erase(Ops.begin()+Idx);
2261 Ops.erase(Ops.begin()+OtherMulIdx-1);
2262 Ops.push_back(OuterMul);
2263 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002264 }
2265 }
2266 }
2267 }
2268
2269 // If there are any add recurrences in the operands list, see if any other
2270 // added values are loop invariant. If so, we can fold them into the
2271 // recurrence.
2272 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2273 ++Idx;
2274
2275 // Scan over all recurrences, trying to fold loop invariants into them.
2276 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2277 // Scan all of the other operands to this add and add them to the vector if
2278 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002279 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002280 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002281 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002282 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002283 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002284 LIOps.push_back(Ops[i]);
2285 Ops.erase(Ops.begin()+i);
2286 --i; --e;
2287 }
2288
2289 // If we found some loop invariants, fold them into the recurrence.
2290 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002291 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002292 LIOps.push_back(AddRec->getStart());
2293
Dan Gohmanaf752342009-07-07 17:06:11 +00002294 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002295 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002296 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002297
Dan Gohman16206132010-06-30 07:16:37 +00002298 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002299 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002300 // Always propagate NW.
2301 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002302 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002303
Chris Lattnerd934c702004-04-02 20:23:17 +00002304 // If all of the other operands were loop invariant, we are done.
2305 if (Ops.size() == 1) return NewRec;
2306
Nick Lewyckydb66b822011-09-06 05:08:09 +00002307 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002308 for (unsigned i = 0;; ++i)
2309 if (Ops[i] == AddRec) {
2310 Ops[i] = NewRec;
2311 break;
2312 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002313 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002314 }
2315
2316 // Okay, if there weren't any loop invariants to be folded, check to see if
2317 // there are multiple AddRec's with the same loop induction variable being
2318 // added together. If so, we can fold them.
2319 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002320 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2321 ++OtherIdx)
2322 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2323 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2324 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2325 AddRec->op_end());
2326 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2327 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002328 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002329 if (OtherAddRec->getLoop() == AddRecLoop) {
2330 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2331 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002332 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002333 AddRecOps.append(OtherAddRec->op_begin()+i,
2334 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002335 break;
2336 }
Dan Gohman028c1812010-08-29 14:53:34 +00002337 AddRecOps[i] = getAddExpr(AddRecOps[i],
2338 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002339 }
2340 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002341 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002342 // Step size has changed, so we cannot guarantee no self-wraparound.
2343 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002344 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002345 }
2346
2347 // Otherwise couldn't fold anything into this recurrence. Move onto the
2348 // next one.
2349 }
2350
2351 // Okay, it looks like we really DO need an add expr. Check to see if we
2352 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002353 FoldingSetNodeID ID;
2354 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002355 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2356 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002357 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002358 SCEVAddExpr *S =
2359 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2360 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002361 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2362 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002363 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2364 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002365 UniqueSCEVs.InsertNode(S, IP);
2366 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002367 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002368 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002369}
2370
Nick Lewycky287682e2011-10-04 06:51:26 +00002371static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2372 uint64_t k = i*j;
2373 if (j > 1 && k / j != i) Overflow = true;
2374 return k;
2375}
2376
2377/// Compute the result of "n choose k", the binomial coefficient. If an
2378/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002379/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002380static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2381 // We use the multiplicative formula:
2382 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2383 // At each iteration, we take the n-th term of the numeral and divide by the
2384 // (k-n)th term of the denominator. This division will always produce an
2385 // integral result, and helps reduce the chance of overflow in the
2386 // intermediate computations. However, we can still overflow even when the
2387 // final result would fit.
2388
2389 if (n == 0 || n == k) return 1;
2390 if (k > n) return 0;
2391
2392 if (k > n/2)
2393 k = n-k;
2394
2395 uint64_t r = 1;
2396 for (uint64_t i = 1; i <= k; ++i) {
2397 r = umul_ov(r, n-(i-1), Overflow);
2398 r /= i;
2399 }
2400 return r;
2401}
2402
Nick Lewycky05044c22014-12-06 00:45:50 +00002403/// Determine if any of the operands in this SCEV are a constant or if
2404/// any of the add or multiply expressions in this SCEV contain a constant.
2405static bool containsConstantSomewhere(const SCEV *StartExpr) {
2406 SmallVector<const SCEV *, 4> Ops;
2407 Ops.push_back(StartExpr);
2408 while (!Ops.empty()) {
2409 const SCEV *CurrentExpr = Ops.pop_back_val();
2410 if (isa<SCEVConstant>(*CurrentExpr))
2411 return true;
2412
2413 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2414 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002415 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002416 }
2417 }
2418 return false;
2419}
2420
Dan Gohman4d5435d2009-05-24 23:45:28 +00002421/// getMulExpr - Get a canonical multiply expression, or something simpler if
2422/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002423const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002424 SCEV::NoWrapFlags Flags) {
2425 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2426 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002427 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002428 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002429#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002430 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002431 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002432 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002433 "SCEVMulExpr operand types don't match!");
2434#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002435
2436 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002437 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002438
Sanjoy Das64895612015-10-09 02:44:45 +00002439 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2440
Chris Lattnerd934c702004-04-02 20:23:17 +00002441 // If there are any constants, fold them together.
2442 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002443 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002444
2445 // C1*(C2+V) -> C1*C2 + C1*V
2446 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002447 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2448 // If any of Add's ops are Adds or Muls with a constant,
2449 // apply this transformation as well.
2450 if (Add->getNumOperands() == 2)
2451 if (containsConstantSomewhere(Add))
2452 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2453 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002454
Chris Lattnerd934c702004-04-02 20:23:17 +00002455 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002456 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002457 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002458 ConstantInt *Fold =
2459 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002460 Ops[0] = getConstant(Fold);
2461 Ops.erase(Ops.begin()+1); // Erase the folded element
2462 if (Ops.size() == 1) return Ops[0];
2463 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002464 }
2465
2466 // If we are left with a constant one being multiplied, strip it off.
2467 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2468 Ops.erase(Ops.begin());
2469 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002470 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002471 // If we have a multiply of zero, it will always be zero.
2472 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002473 } else if (Ops[0]->isAllOnesValue()) {
2474 // If we have a mul by -1 of an add, try distributing the -1 among the
2475 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002476 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002477 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2478 SmallVector<const SCEV *, 4> NewOps;
2479 bool AnyFolded = false;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002480 for (const SCEV *AddOp : Add->operands()) {
2481 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002482 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2483 NewOps.push_back(Mul);
2484 }
2485 if (AnyFolded)
2486 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002487 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002488 // Negation preserves a recurrence's no self-wrap property.
2489 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002490 for (const SCEV *AddRecOp : AddRec->operands())
2491 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2492
Andrew Tricke92dcce2011-03-14 17:38:54 +00002493 return getAddRecExpr(Operands, AddRec->getLoop(),
2494 AddRec->getNoWrapFlags(SCEV::FlagNW));
2495 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002496 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002497 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002498
2499 if (Ops.size() == 1)
2500 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002501 }
2502
2503 // Skip over the add expression until we get to a multiply.
2504 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2505 ++Idx;
2506
Chris Lattnerd934c702004-04-02 20:23:17 +00002507 // If there are mul operands inline them all into this expression.
2508 if (Idx < Ops.size()) {
2509 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002510 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002511 // If we have an mul, expand the mul operands onto the end of the operands
2512 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002513 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002514 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002515 DeletedMul = true;
2516 }
2517
2518 // If we deleted at least one mul, we added operands to the end of the list,
2519 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002520 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002521 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002522 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002523 }
2524
2525 // If there are any add recurrences in the operands list, see if any other
2526 // added values are loop invariant. If so, we can fold them into the
2527 // recurrence.
2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2529 ++Idx;
2530
2531 // Scan over all recurrences, trying to fold loop invariants into them.
2532 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2533 // Scan all of the other operands to this mul and add them to the vector if
2534 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002535 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002536 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002537 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002538 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002539 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002540 LIOps.push_back(Ops[i]);
2541 Ops.erase(Ops.begin()+i);
2542 --i; --e;
2543 }
2544
2545 // If we found some loop invariants, fold them into the recurrence.
2546 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002547 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002548 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002549 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002550 const SCEV *Scale = getMulExpr(LIOps);
2551 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2552 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002553
Dan Gohman16206132010-06-30 07:16:37 +00002554 // Build the new addrec. Propagate the NUW and NSW flags if both the
2555 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002556 //
2557 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002558 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002559 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2560 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002561
2562 // If all of the other operands were loop invariant, we are done.
2563 if (Ops.size() == 1) return NewRec;
2564
Nick Lewyckydb66b822011-09-06 05:08:09 +00002565 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002566 for (unsigned i = 0;; ++i)
2567 if (Ops[i] == AddRec) {
2568 Ops[i] = NewRec;
2569 break;
2570 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002571 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002572 }
2573
2574 // Okay, if there weren't any loop invariants to be folded, check to see if
2575 // there are multiple AddRec's with the same loop induction variable being
2576 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002577
2578 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2579 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2580 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2581 // ]]],+,...up to x=2n}.
2582 // Note that the arguments to choose() are always integers with values
2583 // known at compile time, never SCEV objects.
2584 //
2585 // The implementation avoids pointless extra computations when the two
2586 // addrec's are of different length (mathematically, it's equivalent to
2587 // an infinite stream of zeros on the right).
2588 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002589 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002590 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002591 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002592 const SCEVAddRecExpr *OtherAddRec =
2593 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2594 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002595 continue;
2596
Nick Lewycky97756402014-09-01 05:17:15 +00002597 bool Overflow = false;
2598 Type *Ty = AddRec->getType();
2599 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2600 SmallVector<const SCEV*, 7> AddRecOps;
2601 for (int x = 0, xe = AddRec->getNumOperands() +
2602 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002603 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002604 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2605 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2606 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2607 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2608 z < ze && !Overflow; ++z) {
2609 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2610 uint64_t Coeff;
2611 if (LargerThan64Bits)
2612 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2613 else
2614 Coeff = Coeff1*Coeff2;
2615 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2616 const SCEV *Term1 = AddRec->getOperand(y-z);
2617 const SCEV *Term2 = OtherAddRec->getOperand(z);
2618 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002619 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002620 }
Nick Lewycky97756402014-09-01 05:17:15 +00002621 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002622 }
Nick Lewycky97756402014-09-01 05:17:15 +00002623 if (!Overflow) {
2624 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2625 SCEV::FlagAnyWrap);
2626 if (Ops.size() == 2) return NewAddRec;
2627 Ops[Idx] = NewAddRec;
2628 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2629 OpsModified = true;
2630 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2631 if (!AddRec)
2632 break;
2633 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002634 }
Nick Lewycky97756402014-09-01 05:17:15 +00002635 if (OpsModified)
2636 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002637
2638 // Otherwise couldn't fold anything into this recurrence. Move onto the
2639 // next one.
2640 }
2641
2642 // Okay, it looks like we really DO need an mul expr. Check to see if we
2643 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002644 FoldingSetNodeID ID;
2645 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002646 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2647 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002648 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002649 SCEVMulExpr *S =
2650 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2651 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002652 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2653 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002654 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2655 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002656 UniqueSCEVs.InsertNode(S, IP);
2657 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002658 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002659 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002660}
2661
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002662/// getUDivExpr - Get a canonical unsigned division expression, or something
2663/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002664const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2665 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002666 assert(getEffectiveSCEVType(LHS->getType()) ==
2667 getEffectiveSCEVType(RHS->getType()) &&
2668 "SCEVUDivExpr operand types don't match!");
2669
Dan Gohmana30370b2009-05-04 22:02:23 +00002670 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002671 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002672 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002673 // If the denominator is zero, the result of the udiv is undefined. Don't
2674 // try to analyze it, because the resolution chosen here may differ from
2675 // the resolution chosen in other parts of the compiler.
2676 if (!RHSC->getValue()->isZero()) {
2677 // Determine if the division can be folded into the operands of
2678 // its operands.
2679 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002680 Type *Ty = LHS->getType();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002681 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002682 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002683 // For non-power-of-two values, effectively round the value up to the
2684 // nearest power of two.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002685 if (!RHSC->getAPInt().isPowerOf2())
Dan Gohmanacd700a2010-04-22 01:35:11 +00002686 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002687 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002688 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2690 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002691 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2692 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002693 const APInt &StepInt = Step->getAPInt();
2694 const APInt &DivInt = RHSC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002695 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002696 getZeroExtendExpr(AR, ExtTy) ==
2697 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2698 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002699 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002700 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002701 for (const SCEV *Op : AR->operands())
2702 Operands.push_back(getUDivExpr(Op, RHS));
2703 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002704 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002705 /// Get a canonical UDivExpr for a recurrence.
2706 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2707 // We can currently only fold X%N if X is constant.
2708 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2709 if (StartC && !DivInt.urem(StepInt) &&
2710 getZeroExtendExpr(AR, ExtTy) ==
2711 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2712 getZeroExtendExpr(Step, ExtTy),
2713 AR->getLoop(), SCEV::FlagAnyWrap)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002714 const APInt &StartInt = StartC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002715 const APInt &StartRem = StartInt.urem(StepInt);
2716 if (StartRem != 0)
2717 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2718 AR->getLoop(), SCEV::FlagNW);
2719 }
2720 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002721 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2722 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2723 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002724 for (const SCEV *Op : M->operands())
2725 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002726 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2727 // Find an operand that's safely divisible.
2728 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2729 const SCEV *Op = M->getOperand(i);
2730 const SCEV *Div = getUDivExpr(Op, RHSC);
2731 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2732 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2733 M->op_end());
2734 Operands[i] = Div;
2735 return getMulExpr(Operands);
2736 }
2737 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002738 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002739 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002740 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002741 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002742 for (const SCEV *Op : A->operands())
2743 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002744 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2745 Operands.clear();
2746 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2747 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2748 if (isa<SCEVUDivExpr>(Op) ||
2749 getMulExpr(Op, RHS) != A->getOperand(i))
2750 break;
2751 Operands.push_back(Op);
2752 }
2753 if (Operands.size() == A->getNumOperands())
2754 return getAddExpr(Operands);
2755 }
2756 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002757
Dan Gohmanacd700a2010-04-22 01:35:11 +00002758 // Fold if both operands are constant.
2759 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2760 Constant *LHSCV = LHSC->getValue();
2761 Constant *RHSCV = RHSC->getValue();
2762 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2763 RHSCV)));
2764 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002765 }
2766 }
2767
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002768 FoldingSetNodeID ID;
2769 ID.AddInteger(scUDivExpr);
2770 ID.AddPointer(LHS);
2771 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002772 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002773 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002774 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2775 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002776 UniqueSCEVs.InsertNode(S, IP);
2777 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002778}
2779
Nick Lewycky31eaca52014-01-27 10:04:03 +00002780static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002781 APInt A = C1->getAPInt().abs();
2782 APInt B = C2->getAPInt().abs();
Nick Lewycky31eaca52014-01-27 10:04:03 +00002783 uint32_t ABW = A.getBitWidth();
2784 uint32_t BBW = B.getBitWidth();
2785
2786 if (ABW > BBW)
2787 B = B.zext(ABW);
2788 else if (ABW < BBW)
2789 A = A.zext(BBW);
2790
2791 return APIntOps::GreatestCommonDivisor(A, B);
2792}
2793
2794/// getUDivExactExpr - Get a canonical unsigned division expression, or
2795/// something simpler if possible. There is no representation for an exact udiv
2796/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2797/// We can't do this when it's not exact because the udiv may be clearing bits.
2798const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2799 const SCEV *RHS) {
2800 // TODO: we could try to find factors in all sorts of things, but for now we
2801 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2802 // end of this file for inspiration.
2803
2804 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2805 if (!Mul)
2806 return getUDivExpr(LHS, RHS);
2807
2808 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2809 // If the mulexpr multiplies by a constant, then that constant must be the
2810 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002811 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002812 if (LHSCst == RHSCst) {
2813 SmallVector<const SCEV *, 2> Operands;
2814 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2815 return getMulExpr(Operands);
2816 }
2817
2818 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2819 // that there's a factor provided by one of the other terms. We need to
2820 // check.
2821 APInt Factor = gcd(LHSCst, RHSCst);
2822 if (!Factor.isIntN(1)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002823 LHSCst =
2824 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2825 RHSCst =
2826 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
Nick Lewycky31eaca52014-01-27 10:04:03 +00002827 SmallVector<const SCEV *, 2> Operands;
2828 Operands.push_back(LHSCst);
2829 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2830 LHS = getMulExpr(Operands);
2831 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002832 Mul = dyn_cast<SCEVMulExpr>(LHS);
2833 if (!Mul)
2834 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002835 }
2836 }
2837 }
2838
2839 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2840 if (Mul->getOperand(i) == RHS) {
2841 SmallVector<const SCEV *, 2> Operands;
2842 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2843 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2844 return getMulExpr(Operands);
2845 }
2846 }
2847
2848 return getUDivExpr(LHS, RHS);
2849}
Chris Lattnerd934c702004-04-02 20:23:17 +00002850
Dan Gohman4d5435d2009-05-24 23:45:28 +00002851/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2852/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002853const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2854 const Loop *L,
2855 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002856 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002857 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002858 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002859 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002860 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002861 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002862 }
2863
2864 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002865 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002866}
2867
Dan Gohman4d5435d2009-05-24 23:45:28 +00002868/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2869/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002870const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002871ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002872 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002873 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002874#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002875 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002876 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002877 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002878 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002879 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002880 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002881 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002882#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002883
Dan Gohmanbe928e32008-06-18 16:23:07 +00002884 if (Operands.back()->isZero()) {
2885 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002886 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002887 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002888
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002889 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2890 // use that information to infer NUW and NSW flags. However, computing a
2891 // BE count requires calling getAddRecExpr, so we may not yet have a
2892 // meaningful BE count at this point (and if we don't, we'd be stuck
2893 // with a SCEVCouldNotCompute as the cached BE count).
2894
Sanjoy Das81401d42015-01-10 23:41:24 +00002895 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002896
Dan Gohman223a5d22008-08-08 18:33:12 +00002897 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002898 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002899 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002900 if (L->contains(NestedLoop)
2901 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2902 : (!NestedLoop->contains(L) &&
2903 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002904 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002905 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002906 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002907 // AddRecs require their operands be loop-invariant with respect to their
2908 // loops. Don't perform this transformation if it would break this
2909 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002910 bool AllInvariant = all_of(
2911 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002912
Dan Gohmancc030b72009-06-26 22:36:20 +00002913 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002914 // Create a recurrence for the outer loop with the same step size.
2915 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002916 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2917 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002918 SCEV::NoWrapFlags OuterFlags =
2919 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002920
2921 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002922 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2923 return isLoopInvariant(Op, NestedLoop);
2924 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002925
Andrew Trick8b55b732011-03-14 16:50:06 +00002926 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002927 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002928 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002929 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2930 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002931 SCEV::NoWrapFlags InnerFlags =
2932 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002933 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2934 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002935 }
2936 // Reset Operands to its original state.
2937 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002938 }
2939 }
2940
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002941 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2942 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002943 FoldingSetNodeID ID;
2944 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002945 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2946 ID.AddPointer(Operands[i]);
2947 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002948 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002949 SCEVAddRecExpr *S =
2950 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2951 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002952 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2953 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002954 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2955 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002956 UniqueSCEVs.InsertNode(S, IP);
2957 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002958 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002959 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002960}
2961
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002962const SCEV *
2963ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2964 const SmallVectorImpl<const SCEV *> &IndexExprs,
2965 bool InBounds) {
2966 // getSCEV(Base)->getType() has the same address space as Base->getType()
2967 // because SCEV::getType() preserves the address space.
2968 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2969 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2970 // instruction to its SCEV, because the Instruction may be guarded by control
2971 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002972 // context. This can be fixed similarly to how these flags are handled for
2973 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002974 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2975
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002976 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002977 // The address space is unimportant. The first thing we do on CurTy is getting
2978 // its element type.
2979 Type *CurTy = PointerType::getUnqual(PointeeType);
2980 for (const SCEV *IndexExpr : IndexExprs) {
2981 // Compute the (potentially symbolic) offset in bytes for this index.
2982 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2983 // For a struct, add the member offset.
2984 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2985 unsigned FieldNo = Index->getZExtValue();
2986 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2987
2988 // Add the field offset to the running total offset.
2989 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2990
2991 // Update CurTy to the type of the field at Index.
2992 CurTy = STy->getTypeAtIndex(Index);
2993 } else {
2994 // Update CurTy to its element type.
2995 CurTy = cast<SequentialType>(CurTy)->getElementType();
2996 // For an array, add the element offset, explicitly scaled.
2997 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2998 // Getelementptr indices are signed.
2999 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3000
3001 // Multiply the index by the element size to compute the element offset.
3002 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3003
3004 // Add the element offset to the running total offset.
3005 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3006 }
3007 }
3008
3009 // Add the total offset from all the GEP indices to the base.
3010 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3011}
3012
Dan Gohmanabd17092009-06-24 14:49:00 +00003013const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3014 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003015 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003016 Ops.push_back(LHS);
3017 Ops.push_back(RHS);
3018 return getSMaxExpr(Ops);
3019}
3020
Dan Gohmanaf752342009-07-07 17:06:11 +00003021const SCEV *
3022ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003023 assert(!Ops.empty() && "Cannot get empty smax!");
3024 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003025#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003026 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003027 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003028 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003029 "SCEVSMaxExpr operand types don't match!");
3030#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003031
3032 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003033 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003034
3035 // If there are any constants, fold them together.
3036 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003037 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003038 ++Idx;
3039 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003040 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003041 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003042 ConstantInt *Fold = ConstantInt::get(
3043 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003044 Ops[0] = getConstant(Fold);
3045 Ops.erase(Ops.begin()+1); // Erase the folded element
3046 if (Ops.size() == 1) return Ops[0];
3047 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003048 }
3049
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003050 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003051 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3052 Ops.erase(Ops.begin());
3053 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003054 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3055 // If we have an smax with a constant maximum-int, it will always be
3056 // maximum-int.
3057 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003058 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003059
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003060 if (Ops.size() == 1) return Ops[0];
3061 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003062
3063 // Find the first SMax
3064 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3065 ++Idx;
3066
3067 // Check to see if one of the operands is an SMax. If so, expand its operands
3068 // onto our operand list, and recurse to simplify.
3069 if (Idx < Ops.size()) {
3070 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003071 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003072 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003073 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003074 DeletedSMax = true;
3075 }
3076
3077 if (DeletedSMax)
3078 return getSMaxExpr(Ops);
3079 }
3080
3081 // Okay, check to see if the same value occurs in the operand list twice. If
3082 // so, delete one. Since we sorted the list, these values are required to
3083 // be adjacent.
3084 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003085 // X smax Y smax Y --> X smax Y
3086 // X smax Y --> X, if X is always greater than Y
3087 if (Ops[i] == Ops[i+1] ||
3088 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3089 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3090 --i; --e;
3091 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003092 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3093 --i; --e;
3094 }
3095
3096 if (Ops.size() == 1) return Ops[0];
3097
3098 assert(!Ops.empty() && "Reduced smax down to nothing!");
3099
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003100 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003101 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003102 FoldingSetNodeID ID;
3103 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003104 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3105 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003106 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003108 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3109 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003110 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3111 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003112 UniqueSCEVs.InsertNode(S, IP);
3113 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003114}
3115
Dan Gohmanabd17092009-06-24 14:49:00 +00003116const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3117 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003118 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003119 Ops.push_back(LHS);
3120 Ops.push_back(RHS);
3121 return getUMaxExpr(Ops);
3122}
3123
Dan Gohmanaf752342009-07-07 17:06:11 +00003124const SCEV *
3125ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003126 assert(!Ops.empty() && "Cannot get empty umax!");
3127 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003128#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003129 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003130 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003131 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003132 "SCEVUMaxExpr operand types don't match!");
3133#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003134
3135 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003136 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003137
3138 // If there are any constants, fold them together.
3139 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003140 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003141 ++Idx;
3142 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003143 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003145 ConstantInt *Fold = ConstantInt::get(
3146 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003147 Ops[0] = getConstant(Fold);
3148 Ops.erase(Ops.begin()+1); // Erase the folded element
3149 if (Ops.size() == 1) return Ops[0];
3150 LHSC = cast<SCEVConstant>(Ops[0]);
3151 }
3152
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003153 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003154 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3155 Ops.erase(Ops.begin());
3156 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003157 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3158 // If we have an umax with a constant maximum-int, it will always be
3159 // maximum-int.
3160 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003161 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003162
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003163 if (Ops.size() == 1) return Ops[0];
3164 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003165
3166 // Find the first UMax
3167 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3168 ++Idx;
3169
3170 // Check to see if one of the operands is a UMax. If so, expand its operands
3171 // onto our operand list, and recurse to simplify.
3172 if (Idx < Ops.size()) {
3173 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003174 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003175 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003176 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003177 DeletedUMax = true;
3178 }
3179
3180 if (DeletedUMax)
3181 return getUMaxExpr(Ops);
3182 }
3183
3184 // Okay, check to see if the same value occurs in the operand list twice. If
3185 // so, delete one. Since we sorted the list, these values are required to
3186 // be adjacent.
3187 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003188 // X umax Y umax Y --> X umax Y
3189 // X umax Y --> X, if X is always greater than Y
3190 if (Ops[i] == Ops[i+1] ||
3191 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3192 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3193 --i; --e;
3194 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003195 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3196 --i; --e;
3197 }
3198
3199 if (Ops.size() == 1) return Ops[0];
3200
3201 assert(!Ops.empty() && "Reduced umax down to nothing!");
3202
3203 // Okay, it looks like we really DO need a umax expr. Check to see if we
3204 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003205 FoldingSetNodeID ID;
3206 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003207 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3208 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003209 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003210 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003211 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3212 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003213 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3214 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003215 UniqueSCEVs.InsertNode(S, IP);
3216 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003217}
3218
Dan Gohmanabd17092009-06-24 14:49:00 +00003219const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3220 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003221 // ~smax(~x, ~y) == smin(x, y).
3222 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3223}
3224
Dan Gohmanabd17092009-06-24 14:49:00 +00003225const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3226 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003227 // ~umax(~x, ~y) == umin(x, y)
3228 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3229}
3230
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003231const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003232 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003233 // constant expression and then folding it back into a ConstantInt.
3234 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003235 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003236}
3237
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003238const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3239 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003240 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003241 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003242 // constant expression and then folding it back into a ConstantInt.
3243 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003244 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003245 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003246}
3247
Dan Gohmanaf752342009-07-07 17:06:11 +00003248const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003249 // Don't attempt to do anything other than create a SCEVUnknown object
3250 // here. createSCEV only calls getUnknown after checking for all other
3251 // interesting possibilities, and any other code that calls getUnknown
3252 // is doing so in order to hide a value from SCEV canonicalization.
3253
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003254 FoldingSetNodeID ID;
3255 ID.AddInteger(scUnknown);
3256 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003257 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003258 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3259 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3260 "Stale SCEVUnknown in uniquing map!");
3261 return S;
3262 }
3263 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3264 FirstUnknown);
3265 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003266 UniqueSCEVs.InsertNode(S, IP);
3267 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003268}
3269
Chris Lattnerd934c702004-04-02 20:23:17 +00003270//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003271// Basic SCEV Analysis and PHI Idiom Recognition Code
3272//
3273
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003274/// isSCEVable - Test if values of the given type are analyzable within
3275/// the SCEV framework. This primarily includes integer types, and it
3276/// can optionally include pointer types if the ScalarEvolution class
3277/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003278bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003279 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003280 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003281}
3282
3283/// getTypeSizeInBits - Return the size in bits of the specified type,
3284/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003285uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003286 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003287 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003288}
3289
3290/// getEffectiveSCEVType - Return a type with the same bitwidth as
3291/// the given type and which represents how SCEV will treat the given
3292/// type, for which isSCEVable must return true. For pointer types,
3293/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003294Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003295 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3296
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003297 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003298 return Ty;
3299
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003300 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003301 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003302 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003303}
Chris Lattnerd934c702004-04-02 20:23:17 +00003304
Dan Gohmanaf752342009-07-07 17:06:11 +00003305const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003306 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003307}
3308
Sanjoy Das7d752672015-12-08 04:32:54 +00003309
3310bool ScalarEvolution::checkValidity(const SCEV *S) const {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003311 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3312 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3313 // is set iff if find such SCEVUnknown.
3314 //
3315 struct FindInvalidSCEVUnknown {
3316 bool FindOne;
3317 FindInvalidSCEVUnknown() { FindOne = false; }
3318 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003319 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003320 case scConstant:
3321 return false;
3322 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003323 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003324 FindOne = true;
3325 return false;
3326 default:
3327 return true;
3328 }
3329 }
3330 bool isDone() const { return FindOne; }
3331 };
Shuxin Yangefc4c012013-07-08 17:33:13 +00003332
Shuxin Yangefc4c012013-07-08 17:33:13 +00003333 FindInvalidSCEVUnknown F;
3334 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3335 ST.visitAll(S);
3336
3337 return !F.FindOne;
3338}
3339
Wei Mia49559b2016-02-04 01:27:38 +00003340namespace {
3341// Helper class working with SCEVTraversal to figure out if a SCEV contains
3342// a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3343// iff if such sub scAddRecExpr type SCEV is found.
3344struct FindAddRecurrence {
3345 bool FoundOne;
3346 FindAddRecurrence() : FoundOne(false) {}
3347
3348 bool follow(const SCEV *S) {
3349 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3350 case scAddRecExpr:
3351 FoundOne = true;
3352 case scConstant:
3353 case scUnknown:
3354 case scCouldNotCompute:
3355 return false;
3356 default:
3357 return true;
3358 }
3359 }
3360 bool isDone() const { return FoundOne; }
3361};
3362}
3363
3364bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3365 HasRecMapType::iterator I = HasRecMap.find_as(S);
3366 if (I != HasRecMap.end())
3367 return I->second;
3368
3369 FindAddRecurrence F;
3370 SCEVTraversal<FindAddRecurrence> ST(F);
3371 ST.visitAll(S);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003372 HasRecMap.insert({S, F.FoundOne});
Wei Mia49559b2016-02-04 01:27:38 +00003373 return F.FoundOne;
3374}
3375
3376/// getSCEVValues - Return the Value set from S.
3377SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3378 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3379 if (SI == ExprValueMap.end())
3380 return nullptr;
3381#ifndef NDEBUG
3382 if (VerifySCEVMap) {
3383 // Check there is no dangling Value in the set returned.
3384 for (const auto &VE : SI->second)
3385 assert(ValueExprMap.count(VE));
3386 }
3387#endif
3388 return &SI->second;
3389}
3390
3391/// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3392/// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3393/// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3394/// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3395void ScalarEvolution::eraseValueFromMap(Value *V) {
3396 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3397 if (I != ValueExprMap.end()) {
3398 const SCEV *S = I->second;
3399 SetVector<Value *> *SV = getSCEVValues(S);
3400 // Remove V from the set of ExprValueMap[S]
3401 if (SV)
3402 SV->remove(V);
3403 ValueExprMap.erase(V);
3404 }
3405}
3406
Chris Lattnerd934c702004-04-02 20:23:17 +00003407/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3408/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003409const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003410 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003411
Jingyue Wu42f1d672015-07-28 18:22:40 +00003412 const SCEV *S = getExistingSCEV(V);
3413 if (S == nullptr) {
3414 S = createSCEV(V);
Wei Mia49559b2016-02-04 01:27:38 +00003415 // During PHI resolution, it is possible to create two SCEVs for the same
3416 // V, so it is needed to double check whether V->S is inserted into
3417 // ValueExprMap before insert S->V into ExprValueMap.
3418 std::pair<ValueExprMapType::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003419 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
Wei Mia49559b2016-02-04 01:27:38 +00003420 if (Pair.second)
3421 ExprValueMap[S].insert(V);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003422 }
3423 return S;
3424}
3425
3426const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3427 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3428
Shuxin Yangefc4c012013-07-08 17:33:13 +00003429 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3430 if (I != ValueExprMap.end()) {
3431 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003432 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003433 return S;
Wei Mia49559b2016-02-04 01:27:38 +00003434 forgetMemoizedResults(S);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003435 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003436 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003437 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003438}
3439
Dan Gohman0a40ad92009-04-16 03:18:22 +00003440/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3441///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003442const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3443 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003444 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003445 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003446 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003447
Chris Lattner229907c2011-07-18 04:54:35 +00003448 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003449 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003450 return getMulExpr(
3451 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003452}
3453
3454/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003455const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003456 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003457 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003458 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003459
Chris Lattner229907c2011-07-18 04:54:35 +00003460 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003461 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003462 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003463 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003464 return getMinusSCEV(AllOnes, V);
3465}
3466
Andrew Trick8b55b732011-03-14 16:50:06 +00003467/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003468const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003469 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003470 // Fast path: X - X --> 0.
3471 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003472 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003473
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003474 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3475 // makes it so that we cannot make much use of NUW.
3476 auto AddFlags = SCEV::FlagAnyWrap;
3477 const bool RHSIsNotMinSigned =
3478 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3479 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3480 // Let M be the minimum representable signed value. Then (-1)*RHS
3481 // signed-wraps if and only if RHS is M. That can happen even for
3482 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3483 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3484 // (-1)*RHS, we need to prove that RHS != M.
3485 //
3486 // If LHS is non-negative and we know that LHS - RHS does not
3487 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3488 // either by proving that RHS > M or that LHS >= 0.
3489 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3490 AddFlags = SCEV::FlagNSW;
3491 }
3492 }
3493
3494 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3495 // RHS is NSW and LHS >= 0.
3496 //
3497 // The difficulty here is that the NSW flag may have been proven
3498 // relative to a loop that is to be found in a recurrence in LHS and
3499 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3500 // larger scope than intended.
3501 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3502
3503 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003504}
3505
3506/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3507/// input value to the specified type. If the type must be extended, it is zero
3508/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003509const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003510ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3511 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003512 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3513 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003514 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003515 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003516 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003517 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003518 return getTruncateExpr(V, Ty);
3519 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003520}
3521
3522/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3523/// input value to the specified type. If the type must be extended, it is sign
3524/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003525const SCEV *
3526ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003527 Type *Ty) {
3528 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003529 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3530 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003531 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003532 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003533 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003534 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003535 return getTruncateExpr(V, Ty);
3536 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003537}
3538
Dan Gohmane712a2f2009-05-13 03:46:30 +00003539/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3540/// input value to the specified type. If the type must be extended, it is zero
3541/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003542const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003543ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3544 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003545 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3546 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003547 "Cannot noop or zero extend with non-integer arguments!");
3548 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3549 "getNoopOrZeroExtend cannot truncate!");
3550 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3551 return V; // No conversion
3552 return getZeroExtendExpr(V, Ty);
3553}
3554
3555/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3556/// input value to the specified type. If the type must be extended, it is sign
3557/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003558const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003559ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3560 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003561 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3562 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003563 "Cannot noop or sign extend with non-integer arguments!");
3564 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3565 "getNoopOrSignExtend cannot truncate!");
3566 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3567 return V; // No conversion
3568 return getSignExtendExpr(V, Ty);
3569}
3570
Dan Gohman8db2edc2009-06-13 15:56:47 +00003571/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3572/// the input value to the specified type. If the type must be extended,
3573/// it is extended with unspecified bits. The conversion must not be
3574/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003575const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003576ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3577 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003578 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3579 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003580 "Cannot noop or any extend with non-integer arguments!");
3581 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3582 "getNoopOrAnyExtend cannot truncate!");
3583 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3584 return V; // No conversion
3585 return getAnyExtendExpr(V, Ty);
3586}
3587
Dan Gohmane712a2f2009-05-13 03:46:30 +00003588/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3589/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003590const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003591ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3592 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003593 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3594 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003595 "Cannot truncate or noop with non-integer arguments!");
3596 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3597 "getTruncateOrNoop cannot extend!");
3598 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3599 return V; // No conversion
3600 return getTruncateExpr(V, Ty);
3601}
3602
Dan Gohman96212b62009-06-22 00:31:57 +00003603/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3604/// the types using zero-extension, and then perform a umax operation
3605/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003606const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3607 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003608 const SCEV *PromotedLHS = LHS;
3609 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003610
3611 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3612 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3613 else
3614 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3615
3616 return getUMaxExpr(PromotedLHS, PromotedRHS);
3617}
3618
Dan Gohman2bc22302009-06-22 15:03:27 +00003619/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3620/// the types using zero-extension, and then perform a umin operation
3621/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003622const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3623 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003624 const SCEV *PromotedLHS = LHS;
3625 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003626
3627 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3628 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3629 else
3630 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3631
3632 return getUMinExpr(PromotedLHS, PromotedRHS);
3633}
3634
Andrew Trick87716c92011-03-17 23:51:11 +00003635/// getPointerBase - Transitively follow the chain of pointer-type operands
3636/// until reaching a SCEV that does not have a single pointer operand. This
3637/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3638/// but corner cases do exist.
3639const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3640 // A pointer operand may evaluate to a nonpointer expression, such as null.
3641 if (!V->getType()->isPointerTy())
3642 return V;
3643
3644 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3645 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003646 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003647 const SCEV *PtrOp = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003648 for (const SCEV *NAryOp : NAry->operands()) {
3649 if (NAryOp->getType()->isPointerTy()) {
Andrew Trick87716c92011-03-17 23:51:11 +00003650 // Cannot find the base of an expression with multiple pointer operands.
3651 if (PtrOp)
3652 return V;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003653 PtrOp = NAryOp;
Andrew Trick87716c92011-03-17 23:51:11 +00003654 }
3655 }
3656 if (!PtrOp)
3657 return V;
3658 return getPointerBase(PtrOp);
3659 }
3660 return V;
3661}
3662
Dan Gohman0b89dff2009-07-25 01:13:03 +00003663/// PushDefUseChildren - Push users of the given Instruction
3664/// onto the given Worklist.
3665static void
3666PushDefUseChildren(Instruction *I,
3667 SmallVectorImpl<Instruction *> &Worklist) {
3668 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003669 for (User *U : I->users())
3670 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003671}
3672
3673/// ForgetSymbolicValue - This looks up computed SCEV values for all
3674/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003675/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003676/// resolution.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00003677void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003678 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003679 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003680
Dan Gohman0b89dff2009-07-25 01:13:03 +00003681 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003682 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003683 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003684 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003685 if (!Visited.insert(I).second)
3686 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003687
Sanjoy Das63914592015-10-18 00:29:20 +00003688 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003689 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003690 const SCEV *Old = It->second;
3691
Dan Gohman0b89dff2009-07-25 01:13:03 +00003692 // Short-circuit the def-use traversal if the symbolic name
3693 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003694 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003695 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003696
Dan Gohman0b89dff2009-07-25 01:13:03 +00003697 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003698 // structure, it's a PHI that's in the progress of being computed
3699 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3700 // additional loop trip count information isn't going to change anything.
3701 // In the second case, createNodeForPHI will perform the necessary
3702 // updates on its own when it gets to that point. In the third, we do
3703 // want to forget the SCEVUnknown.
3704 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003705 !isa<SCEVUnknown>(Old) ||
3706 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003707 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003708 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003709 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003710 }
3711
3712 PushDefUseChildren(I, Worklist);
3713 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003714}
Chris Lattnerd934c702004-04-02 20:23:17 +00003715
Benjamin Kramer83709b12015-11-16 09:01:28 +00003716namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003717class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3718public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003719 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003720 ScalarEvolution &SE) {
3721 SCEVInitRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003722 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003723 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3724 }
3725
3726 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3727 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3728
3729 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3730 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3731 Valid = false;
3732 return Expr;
3733 }
3734
3735 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3736 // Only allow AddRecExprs for this loop.
3737 if (Expr->getLoop() == L)
3738 return Expr->getStart();
3739 Valid = false;
3740 return Expr;
3741 }
3742
3743 bool isValid() { return Valid; }
3744
3745private:
3746 const Loop *L;
3747 bool Valid;
3748};
3749
3750class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3751public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003752 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003753 ScalarEvolution &SE) {
3754 SCEVShiftRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003755 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003756 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3757 }
3758
3759 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3760 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3761
3762 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3763 // Only allow AddRecExprs for this loop.
3764 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3765 Valid = false;
3766 return Expr;
3767 }
3768
3769 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3770 if (Expr->getLoop() == L && Expr->isAffine())
3771 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3772 Valid = false;
3773 return Expr;
3774 }
3775 bool isValid() { return Valid; }
3776
3777private:
3778 const Loop *L;
3779 bool Valid;
3780};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003781} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003782
Sanjoy Das724f5cf2016-03-03 18:31:29 +00003783SCEV::NoWrapFlags
3784ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3785 if (!AR->isAffine())
3786 return SCEV::FlagAnyWrap;
3787
3788 typedef OverflowingBinaryOperator OBO;
3789 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3790
3791 if (!AR->hasNoSignedWrap()) {
3792 ConstantRange AddRecRange = getSignedRange(AR);
3793 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3794
3795 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3796 Instruction::Add, IncRange, OBO::NoSignedWrap);
3797 if (NSWRegion.contains(AddRecRange))
3798 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3799 }
3800
3801 if (!AR->hasNoUnsignedWrap()) {
3802 ConstantRange AddRecRange = getUnsignedRange(AR);
3803 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3804
3805 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3806 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3807 if (NUWRegion.contains(AddRecRange))
3808 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3809 }
3810
3811 return Result;
3812}
3813
Sanjoy Das118d9192016-03-31 05:14:22 +00003814namespace {
3815/// Represents an abstract binary operation. This may exist as a
3816/// normal instruction or constant expression, or may have been
3817/// derived from an expression tree.
3818struct BinaryOp {
3819 unsigned Opcode;
3820 Value *LHS;
3821 Value *RHS;
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003822 bool IsNSW;
3823 bool IsNUW;
Sanjoy Das118d9192016-03-31 05:14:22 +00003824
3825 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3826 /// constant expression.
3827 Operator *Op;
3828
3829 explicit BinaryOp(Operator *Op)
3830 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003831 IsNSW(false), IsNUW(false), Op(Op) {
3832 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3833 IsNSW = OBO->hasNoSignedWrap();
3834 IsNUW = OBO->hasNoUnsignedWrap();
3835 }
3836 }
Sanjoy Das118d9192016-03-31 05:14:22 +00003837
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003838 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3839 bool IsNUW = false)
3840 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3841 Op(nullptr) {}
Sanjoy Das118d9192016-03-31 05:14:22 +00003842};
3843}
3844
3845
3846/// Try to map \p V into a BinaryOp, and return \c None on failure.
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00003847static Optional<BinaryOp> MatchBinaryOp(Value *V) {
Sanjoy Das118d9192016-03-31 05:14:22 +00003848 auto *Op = dyn_cast<Operator>(V);
3849 if (!Op)
3850 return None;
3851
3852 // Implementation detail: all the cleverness here should happen without
3853 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3854 // SCEV expressions when possible, and we should not break that.
3855
3856 switch (Op->getOpcode()) {
3857 case Instruction::Add:
3858 case Instruction::Sub:
3859 case Instruction::Mul:
3860 case Instruction::UDiv:
3861 case Instruction::And:
3862 case Instruction::Or:
3863 case Instruction::AShr:
3864 case Instruction::Shl:
3865 return BinaryOp(Op);
3866
3867 case Instruction::Xor:
3868 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3869 // If the RHS of the xor is a signbit, then this is just an add.
3870 // Instcombine turns add of signbit into xor as a strength reduction step.
3871 if (RHSC->getValue().isSignBit())
3872 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3873 return BinaryOp(Op);
3874
3875 case Instruction::LShr:
3876 // Turn logical shift right of a constant into a unsigned divide.
3877 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3878 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3879
3880 // If the shift count is not less than the bitwidth, the result of
3881 // the shift is undefined. Don't try to analyze it, because the
3882 // resolution chosen here may differ from the resolution chosen in
3883 // other parts of the compiler.
3884 if (SA->getValue().ult(BitWidth)) {
3885 Constant *X =
3886 ConstantInt::get(SA->getContext(),
3887 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3888 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3889 }
3890 }
3891 return BinaryOp(Op);
3892
3893 default:
3894 break;
3895 }
3896
3897 return None;
3898}
3899
Sanjoy Das55015d22015-10-02 23:09:44 +00003900const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3901 const Loop *L = LI.getLoopFor(PN->getParent());
3902 if (!L || L->getHeader() != PN->getParent())
3903 return nullptr;
3904
3905 // The loop may have multiple entrances or multiple exits; we can analyze
3906 // this phi as an addrec if it has a unique entry value and a unique
3907 // backedge value.
3908 Value *BEValueV = nullptr, *StartValueV = nullptr;
3909 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3910 Value *V = PN->getIncomingValue(i);
3911 if (L->contains(PN->getIncomingBlock(i))) {
3912 if (!BEValueV) {
3913 BEValueV = V;
3914 } else if (BEValueV != V) {
3915 BEValueV = nullptr;
3916 break;
3917 }
3918 } else if (!StartValueV) {
3919 StartValueV = V;
3920 } else if (StartValueV != V) {
3921 StartValueV = nullptr;
3922 break;
3923 }
3924 }
3925 if (BEValueV && StartValueV) {
3926 // While we are analyzing this PHI node, handle its value symbolically.
3927 const SCEV *SymbolicName = getUnknown(PN);
3928 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3929 "PHI node already processed?");
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003930 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
Sanjoy Das55015d22015-10-02 23:09:44 +00003931
3932 // Using this symbolic name for the PHI, analyze the value coming around
3933 // the back-edge.
3934 const SCEV *BEValue = getSCEV(BEValueV);
3935
3936 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3937 // has a special value for the first iteration of the loop.
3938
3939 // If the value coming around the backedge is an add with the symbolic
3940 // value we just inserted, then we found a simple induction variable!
3941 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3942 // If there is a single occurrence of the symbolic value, replace it
3943 // with a recurrence.
3944 unsigned FoundIndex = Add->getNumOperands();
3945 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3946 if (Add->getOperand(i) == SymbolicName)
3947 if (FoundIndex == e) {
3948 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003949 break;
3950 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003951
3952 if (FoundIndex != Add->getNumOperands()) {
3953 // Create an add with everything but the specified operand.
3954 SmallVector<const SCEV *, 8> Ops;
3955 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3956 if (i != FoundIndex)
3957 Ops.push_back(Add->getOperand(i));
3958 const SCEV *Accum = getAddExpr(Ops);
3959
3960 // This is not a valid addrec if the step amount is varying each
3961 // loop iteration, but is not itself an addrec in this loop.
3962 if (isLoopInvariant(Accum, L) ||
3963 (isa<SCEVAddRecExpr>(Accum) &&
3964 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3965 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3966
3967 // If the increment doesn't overflow, then neither the addrec nor
3968 // the post-increment will overflow.
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00003969 if (auto BO = MatchBinaryOp(BEValueV)) {
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003970 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3971 if (BO->IsNUW)
Sanjoy Das55015d22015-10-02 23:09:44 +00003972 Flags = setFlags(Flags, SCEV::FlagNUW);
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003973 if (BO->IsNSW)
Sanjoy Das55015d22015-10-02 23:09:44 +00003974 Flags = setFlags(Flags, SCEV::FlagNSW);
3975 }
3976 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3977 // If the increment is an inbounds GEP, then we know the address
3978 // space cannot be wrapped around. We cannot make any guarantee
3979 // about signed or unsigned overflow because pointers are
3980 // unsigned but we may have a negative index from the base
3981 // pointer. We can guarantee that no unsigned wrap occurs if the
3982 // indices form a positive value.
3983 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3984 Flags = setFlags(Flags, SCEV::FlagNW);
3985
3986 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3987 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3988 Flags = setFlags(Flags, SCEV::FlagNUW);
3989 }
3990
3991 // We cannot transfer nuw and nsw flags from subtraction
3992 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3993 // for instance.
3994 }
3995
3996 const SCEV *StartVal = getSCEV(StartValueV);
3997 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3998
3999 // Since the no-wrap flags are on the increment, they apply to the
4000 // post-incremented value as well.
4001 if (isLoopInvariant(Accum, L))
4002 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4003
4004 // Okay, for the entire analysis of this edge we assumed the PHI
4005 // to be symbolic. We now need to go back and purge all of the
4006 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004007 forgetSymbolicName(PN, SymbolicName);
Sanjoy Das55015d22015-10-02 23:09:44 +00004008 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4009 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00004010 }
4011 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00004012 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00004013 // Otherwise, this could be a loop like this:
4014 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4015 // In this case, j = {1,+,1} and BEValue is j.
4016 // Because the other in-value of i (0) fits the evolution of BEValue
4017 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00004018 //
4019 // We can generalize this saying that i is the shifted value of BEValue
4020 // by one iteration:
4021 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4022 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4023 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4024 if (Shifted != getCouldNotCompute() &&
4025 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004026 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004027 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004028 // Okay, for the entire analysis of this edge we assumed the PHI
4029 // to be symbolic. We now need to go back and purge all of the
4030 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004031 forgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004032 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4033 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00004034 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004035 }
Dan Gohman6635bb22010-04-12 07:49:36 +00004036 }
Tobias Grosser934fcf42016-02-21 18:50:09 +00004037
4038 // Remove the temporary PHI node SCEV that has been inserted while intending
4039 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4040 // as it will prevent later (possibly simpler) SCEV expressions to be added
4041 // to the ValueExprMap.
4042 ValueExprMap.erase(PN);
Sanjoy Das55015d22015-10-02 23:09:44 +00004043 }
4044
4045 return nullptr;
4046}
4047
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004048// Checks if the SCEV S is available at BB. S is considered available at BB
4049// if S can be materialized at BB without introducing a fault.
4050static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4051 BasicBlock *BB) {
4052 struct CheckAvailable {
4053 bool TraversalDone = false;
4054 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004055
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004056 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4057 BasicBlock *BB = nullptr;
4058 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00004059
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004060 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4061 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00004062
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004063 bool setUnavailable() {
4064 TraversalDone = true;
4065 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004066 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004067 }
4068
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004069 bool follow(const SCEV *S) {
4070 switch (S->getSCEVType()) {
4071 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4072 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00004073 // These expressions are available if their operand(s) is/are.
4074 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004075
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004076 case scAddRecExpr: {
4077 // We allow add recurrences that are on the loop BB is in, or some
4078 // outer loop. This guarantees availability because the value of the
4079 // add recurrence at BB is simply the "current" value of the induction
4080 // variable. We can relax this in the future; for instance an add
4081 // recurrence on a sibling dominating loop is also available at BB.
4082 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4083 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00004084 return true;
4085
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004086 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00004087 }
4088
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004089 case scUnknown: {
4090 // For SCEVUnknown, we check for simple dominance.
4091 const auto *SU = cast<SCEVUnknown>(S);
4092 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00004093
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004094 if (isa<Argument>(V))
4095 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004096
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004097 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4098 return false;
4099
4100 return setUnavailable();
4101 }
4102
4103 case scUDivExpr:
4104 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00004105 // We do not try to smart about these at all.
4106 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004107 }
4108 llvm_unreachable("switch should be fully covered!");
4109 }
4110
4111 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00004112 };
4113
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004114 CheckAvailable CA(L, BB, DT);
4115 SCEVTraversal<CheckAvailable> ST(CA);
4116
4117 ST.visitAll(S);
4118 return CA.Available;
4119}
4120
4121// Try to match a control flow sequence that branches out at BI and merges back
4122// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4123// match.
4124static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4125 Value *&C, Value *&LHS, Value *&RHS) {
4126 C = BI->getCondition();
4127
4128 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4129 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4130
4131 if (!LeftEdge.isSingleEdge())
4132 return false;
4133
4134 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4135
4136 Use &LeftUse = Merge->getOperandUse(0);
4137 Use &RightUse = Merge->getOperandUse(1);
4138
4139 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4140 LHS = LeftUse;
4141 RHS = RightUse;
4142 return true;
4143 }
4144
4145 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4146 LHS = RightUse;
4147 RHS = LeftUse;
4148 return true;
4149 }
4150
4151 return false;
4152}
4153
4154const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004155 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004156 const Loop *L = LI.getLoopFor(PN->getParent());
4157
Sanjoy Das337d4782015-10-31 23:21:40 +00004158 // We don't want to break LCSSA, even in a SCEV expression tree.
4159 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4160 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4161 return nullptr;
4162
Sanjoy Das55015d22015-10-02 23:09:44 +00004163 // Try to match
4164 //
4165 // br %cond, label %left, label %right
4166 // left:
4167 // br label %merge
4168 // right:
4169 // br label %merge
4170 // merge:
4171 // V = phi [ %x, %left ], [ %y, %right ]
4172 //
4173 // as "select %cond, %x, %y"
4174
4175 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4176 assert(IDom && "At least the entry block should dominate PN");
4177
4178 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4179 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4180
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004181 if (BI && BI->isConditional() &&
4182 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4183 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4184 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00004185 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4186 }
4187
4188 return nullptr;
4189}
4190
4191const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4192 if (const SCEV *S = createAddRecFromPHI(PN))
4193 return S;
4194
4195 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4196 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00004197
Dan Gohmana9c205c2010-02-25 06:57:05 +00004198 // If the PHI has a single incoming value, follow that value, unless the
4199 // PHI's incoming blocks are in a different loop, in which case doing so
4200 // risks breaking LCSSA form. Instcombine would normally zap these, but
4201 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004202 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004203 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00004204 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00004205
Chris Lattnerd934c702004-04-02 20:23:17 +00004206 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00004207 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00004208}
4209
Sanjoy Das55015d22015-10-02 23:09:44 +00004210const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4211 Value *Cond,
4212 Value *TrueVal,
4213 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004214 // Handle "constant" branch or select. This can occur for instance when a
4215 // loop pass transforms an inner loop and moves on to process the outer loop.
4216 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4217 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4218
Sanjoy Dasd0671342015-10-02 19:39:59 +00004219 // Try to match some simple smax or umax patterns.
4220 auto *ICI = dyn_cast<ICmpInst>(Cond);
4221 if (!ICI)
4222 return getUnknown(I);
4223
4224 Value *LHS = ICI->getOperand(0);
4225 Value *RHS = ICI->getOperand(1);
4226
4227 switch (ICI->getPredicate()) {
4228 case ICmpInst::ICMP_SLT:
4229 case ICmpInst::ICMP_SLE:
4230 std::swap(LHS, RHS);
4231 // fall through
4232 case ICmpInst::ICMP_SGT:
4233 case ICmpInst::ICMP_SGE:
4234 // a >s b ? a+x : b+x -> smax(a, b)+x
4235 // a >s b ? b+x : a+x -> smin(a, b)+x
4236 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4237 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4238 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4239 const SCEV *LA = getSCEV(TrueVal);
4240 const SCEV *RA = getSCEV(FalseVal);
4241 const SCEV *LDiff = getMinusSCEV(LA, LS);
4242 const SCEV *RDiff = getMinusSCEV(RA, RS);
4243 if (LDiff == RDiff)
4244 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4245 LDiff = getMinusSCEV(LA, RS);
4246 RDiff = getMinusSCEV(RA, LS);
4247 if (LDiff == RDiff)
4248 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4249 }
4250 break;
4251 case ICmpInst::ICMP_ULT:
4252 case ICmpInst::ICMP_ULE:
4253 std::swap(LHS, RHS);
4254 // fall through
4255 case ICmpInst::ICMP_UGT:
4256 case ICmpInst::ICMP_UGE:
4257 // a >u b ? a+x : b+x -> umax(a, b)+x
4258 // a >u b ? b+x : a+x -> umin(a, b)+x
4259 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4260 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4261 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4262 const SCEV *LA = getSCEV(TrueVal);
4263 const SCEV *RA = getSCEV(FalseVal);
4264 const SCEV *LDiff = getMinusSCEV(LA, LS);
4265 const SCEV *RDiff = getMinusSCEV(RA, RS);
4266 if (LDiff == RDiff)
4267 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4268 LDiff = getMinusSCEV(LA, RS);
4269 RDiff = getMinusSCEV(RA, LS);
4270 if (LDiff == RDiff)
4271 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4272 }
4273 break;
4274 case ICmpInst::ICMP_NE:
4275 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4276 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4277 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4278 const SCEV *One = getOne(I->getType());
4279 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4280 const SCEV *LA = getSCEV(TrueVal);
4281 const SCEV *RA = getSCEV(FalseVal);
4282 const SCEV *LDiff = getMinusSCEV(LA, LS);
4283 const SCEV *RDiff = getMinusSCEV(RA, One);
4284 if (LDiff == RDiff)
4285 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4286 }
4287 break;
4288 case ICmpInst::ICMP_EQ:
4289 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4290 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4291 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4292 const SCEV *One = getOne(I->getType());
4293 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4294 const SCEV *LA = getSCEV(TrueVal);
4295 const SCEV *RA = getSCEV(FalseVal);
4296 const SCEV *LDiff = getMinusSCEV(LA, One);
4297 const SCEV *RDiff = getMinusSCEV(RA, LS);
4298 if (LDiff == RDiff)
4299 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4300 }
4301 break;
4302 default:
4303 break;
4304 }
4305
4306 return getUnknown(I);
4307}
4308
Dan Gohmanee750d12009-05-08 20:26:55 +00004309/// createNodeForGEP - Expand GEP instructions into add and multiply
4310/// operations. This allows them to be analyzed by regular SCEV code.
4311///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004312const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman30f24fe2009-05-09 00:14:52 +00004313 // Don't attempt to analyze GEPs over unsized objects.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004314 if (!GEP->getSourceElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004315 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004316
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004317 SmallVector<const SCEV *, 4> IndexExprs;
4318 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4319 IndexExprs.push_back(getSCEV(*Index));
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004320 return getGEPExpr(GEP->getSourceElementType(),
4321 getSCEV(GEP->getPointerOperand()),
4322 IndexExprs, GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004323}
4324
Nick Lewycky3783b462007-11-22 07:59:40 +00004325/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4326/// guaranteed to end in (at every loop iteration). It is, at the same time,
4327/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4328/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004329uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004330ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004331 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004332 return C->getAPInt().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004333
Dan Gohmana30370b2009-05-04 22:02:23 +00004334 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004335 return std::min(GetMinTrailingZeros(T->getOperand()),
4336 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004337
Dan Gohmana30370b2009-05-04 22:02:23 +00004338 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004339 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4340 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4341 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004342 }
4343
Dan Gohmana30370b2009-05-04 22:02:23 +00004344 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004345 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4346 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4347 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004348 }
4349
Dan Gohmana30370b2009-05-04 22:02:23 +00004350 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004351 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004352 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004353 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004354 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004355 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004356 }
4357
Dan Gohmana30370b2009-05-04 22:02:23 +00004358 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004359 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004360 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4361 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004362 for (unsigned i = 1, e = M->getNumOperands();
4363 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004364 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004365 BitWidth);
4366 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004367 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004368
Dan Gohmana30370b2009-05-04 22:02:23 +00004369 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004370 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004371 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004372 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004373 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004374 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004375 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004376
Dan Gohmana30370b2009-05-04 22:02:23 +00004377 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004378 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004379 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004380 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004381 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004382 return MinOpRes;
4383 }
4384
Dan Gohmana30370b2009-05-04 22:02:23 +00004385 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004386 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004387 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004388 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004389 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004390 return MinOpRes;
4391 }
4392
Dan Gohmanc702fc02009-06-19 23:29:04 +00004393 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4394 // For a SCEVUnknown, ask ValueTracking.
4395 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004396 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004397 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4398 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004399 return Zeros.countTrailingOnes();
4400 }
4401
4402 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004403 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004404}
Chris Lattnerd934c702004-04-02 20:23:17 +00004405
Sanjoy Das1f05c512014-10-10 21:22:34 +00004406/// GetRangeFromMetadata - Helper method to assign a range to V from
4407/// metadata present in the IR.
4408static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004409 if (Instruction *I = dyn_cast<Instruction>(V))
4410 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4411 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004412
4413 return None;
4414}
4415
Sanjoy Das91b54772015-03-09 21:43:43 +00004416/// getRange - Determine the range for a particular SCEV. If SignHint is
4417/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4418/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004419///
4420ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004421ScalarEvolution::getRange(const SCEV *S,
4422 ScalarEvolution::RangeSignHint SignHint) {
4423 DenseMap<const SCEV *, ConstantRange> &Cache =
4424 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4425 : SignedRanges;
4426
Dan Gohman761065e2010-11-17 02:44:44 +00004427 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004428 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4429 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004430 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004431
4432 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004433 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004434
Dan Gohman85be4332010-01-26 19:19:05 +00004435 unsigned BitWidth = getTypeSizeInBits(S->getType());
4436 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4437
Sanjoy Das91b54772015-03-09 21:43:43 +00004438 // If the value has known zeros, the maximum value will have those known zeros
4439 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004440 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004441 if (TZ != 0) {
4442 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4443 ConservativeResult =
4444 ConstantRange(APInt::getMinValue(BitWidth),
4445 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4446 else
4447 ConservativeResult = ConstantRange(
4448 APInt::getSignedMinValue(BitWidth),
4449 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4450 }
Dan Gohman85be4332010-01-26 19:19:05 +00004451
Dan Gohmane65c9172009-07-13 21:35:55 +00004452 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004453 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004454 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004455 X = X.add(getRange(Add->getOperand(i), SignHint));
4456 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004457 }
4458
4459 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004460 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004461 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004462 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4463 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004464 }
4465
4466 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004467 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004468 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004469 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4470 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004471 }
4472
4473 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004474 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004475 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004476 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4477 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004478 }
4479
4480 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004481 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4482 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4483 return setRange(UDiv, SignHint,
4484 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004485 }
4486
4487 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004488 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4489 return setRange(ZExt, SignHint,
4490 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004491 }
4492
4493 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004494 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4495 return setRange(SExt, SignHint,
4496 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004497 }
4498
4499 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004500 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4501 return setRange(Trunc, SignHint,
4502 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004503 }
4504
Dan Gohmane65c9172009-07-13 21:35:55 +00004505 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004506 // If there's no unsigned wrap, the value will never be less than its
4507 // initial value.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004508 if (AddRec->hasNoUnsignedWrap())
Dan Gohman51ad99d2010-01-21 02:09:26 +00004509 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004510 if (!C->getValue()->isZero())
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004511 ConservativeResult = ConservativeResult.intersectWith(
4512 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004513
Dan Gohman51ad99d2010-01-21 02:09:26 +00004514 // If there's no signed wrap, and all the operands have the same sign or
4515 // zero, the value won't ever change sign.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004516 if (AddRec->hasNoSignedWrap()) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004517 bool AllNonNeg = true;
4518 bool AllNonPos = true;
4519 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4520 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4521 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4522 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004523 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004524 ConservativeResult = ConservativeResult.intersectWith(
4525 ConstantRange(APInt(BitWidth, 0),
4526 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004527 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004528 ConservativeResult = ConservativeResult.intersectWith(
4529 ConstantRange(APInt::getSignedMinValue(BitWidth),
4530 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004531 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004532
4533 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004534 if (AddRec->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00004535 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004536 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4537 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Dasb765b632016-03-02 00:57:39 +00004538 auto RangeFromAffine = getRangeForAffineAR(
4539 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4540 BitWidth);
4541 if (!RangeFromAffine.isFullSet())
4542 ConservativeResult =
4543 ConservativeResult.intersectWith(RangeFromAffine);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004544
4545 auto RangeFromFactoring = getRangeViaFactoring(
4546 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4547 BitWidth);
4548 if (!RangeFromFactoring.isFullSet())
4549 ConservativeResult =
4550 ConservativeResult.intersectWith(RangeFromFactoring);
Dan Gohmand261d272009-06-24 01:05:09 +00004551 }
Dan Gohmand261d272009-06-24 01:05:09 +00004552 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004553
Sanjoy Das91b54772015-03-09 21:43:43 +00004554 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004555 }
4556
Dan Gohmanc702fc02009-06-19 23:29:04 +00004557 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004558 // Check if the IR explicitly contains !range metadata.
4559 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4560 if (MDRange.hasValue())
4561 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4562
Sanjoy Das91b54772015-03-09 21:43:43 +00004563 // Split here to avoid paying the compile-time cost of calling both
4564 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4565 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004566 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004567 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4568 // For a SCEVUnknown, ask ValueTracking.
4569 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004570 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004571 if (Ones != ~Zeros + 1)
4572 ConservativeResult =
4573 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4574 } else {
4575 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4576 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004577 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004578 if (NS > 1)
4579 ConservativeResult = ConservativeResult.intersectWith(
4580 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4581 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004582 }
4583
4584 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004585 }
4586
Sanjoy Das91b54772015-03-09 21:43:43 +00004587 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004588}
4589
Sanjoy Dasb765b632016-03-02 00:57:39 +00004590ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4591 const SCEV *Step,
4592 const SCEV *MaxBECount,
4593 unsigned BitWidth) {
4594 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4595 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4596 "Precondition!");
4597
4598 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4599
4600 // Check for overflow. This must be done with ConstantRange arithmetic
4601 // because we could be called from within the ScalarEvolution overflow
4602 // checking code.
4603
4604 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4605 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4606 ConstantRange ZExtMaxBECountRange =
4607 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4608
4609 ConstantRange StepSRange = getSignedRange(Step);
4610 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4611
4612 ConstantRange StartURange = getUnsignedRange(Start);
4613 ConstantRange EndURange =
4614 StartURange.add(MaxBECountRange.multiply(StepSRange));
4615
4616 // Check for unsigned overflow.
4617 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4618 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4619 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4620 ZExtEndURange) {
4621 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4622 EndURange.getUnsignedMin());
4623 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4624 EndURange.getUnsignedMax());
4625 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4626 if (!IsFullRange)
4627 Result =
4628 Result.intersectWith(ConstantRange(Min, Max + 1));
4629 }
4630
4631 ConstantRange StartSRange = getSignedRange(Start);
4632 ConstantRange EndSRange =
4633 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4634
4635 // Check for signed overflow. This must be done with ConstantRange
4636 // arithmetic because we could be called from within the ScalarEvolution
4637 // overflow checking code.
4638 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4639 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4640 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4641 SExtEndSRange) {
4642 APInt Min =
4643 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4644 APInt Max =
4645 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4646 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4647 if (!IsFullRange)
4648 Result =
4649 Result.intersectWith(ConstantRange(Min, Max + 1));
4650 }
4651
4652 return Result;
4653}
4654
Sanjoy Dasbf730982016-03-02 00:57:54 +00004655ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4656 const SCEV *Step,
4657 const SCEV *MaxBECount,
4658 unsigned BitWidth) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004659 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4660 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4661
4662 struct SelectPattern {
4663 Value *Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004664 APInt TrueValue;
4665 APInt FalseValue;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004666
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004667 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4668 const SCEV *S) {
4669 Optional<unsigned> CastOp;
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004670 APInt Offset(BitWidth, 0);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004671
4672 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4673 "Should be!");
4674
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004675 // Peel off a constant offset:
4676 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4677 // In the future we could consider being smarter here and handle
4678 // {Start+Step,+,Step} too.
4679 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4680 return;
4681
4682 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4683 S = SA->getOperand(1);
4684 }
4685
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004686 // Peel off a cast operation
4687 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4688 CastOp = SCast->getSCEVType();
4689 S = SCast->getOperand();
4690 }
4691
Sanjoy Dasbf730982016-03-02 00:57:54 +00004692 using namespace llvm::PatternMatch;
4693
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004694 auto *SU = dyn_cast<SCEVUnknown>(S);
4695 const APInt *TrueVal, *FalseVal;
4696 if (!SU ||
4697 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4698 m_APInt(FalseVal)))) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004699 Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004700 return;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004701 }
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004702
4703 TrueValue = *TrueVal;
4704 FalseValue = *FalseVal;
4705
4706 // Re-apply the cast we peeled off earlier
4707 if (CastOp.hasValue())
4708 switch (*CastOp) {
4709 default:
4710 llvm_unreachable("Unknown SCEV cast type!");
4711
4712 case scTruncate:
4713 TrueValue = TrueValue.trunc(BitWidth);
4714 FalseValue = FalseValue.trunc(BitWidth);
4715 break;
4716 case scZeroExtend:
4717 TrueValue = TrueValue.zext(BitWidth);
4718 FalseValue = FalseValue.zext(BitWidth);
4719 break;
4720 case scSignExtend:
4721 TrueValue = TrueValue.sext(BitWidth);
4722 FalseValue = FalseValue.sext(BitWidth);
4723 break;
4724 }
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004725
4726 // Re-apply the constant offset we peeled off earlier
4727 TrueValue += Offset;
4728 FalseValue += Offset;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004729 }
4730
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004731 bool isRecognized() { return Condition != nullptr; }
Sanjoy Dasbf730982016-03-02 00:57:54 +00004732 };
4733
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004734 SelectPattern StartPattern(*this, BitWidth, Start);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004735 if (!StartPattern.isRecognized())
4736 return ConstantRange(BitWidth, /* isFullSet = */ true);
4737
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004738 SelectPattern StepPattern(*this, BitWidth, Step);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004739 if (!StepPattern.isRecognized())
4740 return ConstantRange(BitWidth, /* isFullSet = */ true);
4741
4742 if (StartPattern.Condition != StepPattern.Condition) {
4743 // We don't handle this case today; but we could, by considering four
4744 // possibilities below instead of two. I'm not sure if there are cases where
4745 // that will help over what getRange already does, though.
4746 return ConstantRange(BitWidth, /* isFullSet = */ true);
4747 }
4748
4749 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4750 // construct arbitrary general SCEV expressions here. This function is called
4751 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4752 // say) can end up caching a suboptimal value.
4753
Sanjoy Das6b017a12016-03-02 02:56:29 +00004754 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4755 // C2352 and C2512 (otherwise it isn't needed).
4756
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004757 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004758 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004759 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004760 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
Sanjoy Das62a1c332016-03-02 02:15:42 +00004761
Sanjoy Das1168f932016-03-02 02:34:20 +00004762 ConstantRange TrueRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004763 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
Sanjoy Das1168f932016-03-02 02:34:20 +00004764 ConstantRange FalseRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004765 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004766
4767 return TrueRange.unionWith(FalseRange);
4768}
4769
Jingyue Wu42f1d672015-07-28 18:22:40 +00004770SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004771 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004772 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4773
4774 // Return early if there are no flags to propagate to the SCEV.
4775 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4776 if (BinOp->hasNoUnsignedWrap())
4777 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4778 if (BinOp->hasNoSignedWrap())
4779 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004780 if (Flags == SCEV::FlagAnyWrap)
Jingyue Wu42f1d672015-07-28 18:22:40 +00004781 return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004782
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004783 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4784}
4785
4786bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4787 // Here we check that I is in the header of the innermost loop containing I,
4788 // since we only deal with instructions in the loop header. The actual loop we
4789 // need to check later will come from an add recurrence, but getting that
4790 // requires computing the SCEV of the operands, which can be expensive. This
4791 // check we can do cheaply to rule out some cases early.
4792 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004793 if (InnermostContainingLoop == nullptr ||
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004794 InnermostContainingLoop->getHeader() != I->getParent())
4795 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004796
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004797 // Only proceed if we can prove that I does not yield poison.
4798 if (!isKnownNotFullPoison(I)) return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004799
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004800 // At this point we know that if I is executed, then it does not wrap
4801 // according to at least one of NSW or NUW. If I is not executed, then we do
4802 // not know if the calculation that I represents would wrap. Multiple
4803 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
Jingyue Wu42f1d672015-07-28 18:22:40 +00004804 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4805 // derived from other instructions that map to the same SCEV. We cannot make
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004806 // that guarantee for cases where I is not executed. So we need to find the
4807 // loop that I is considered in relation to and prove that I is executed for
4808 // every iteration of that loop. That implies that the value that I
Jingyue Wu42f1d672015-07-28 18:22:40 +00004809 // calculates does not wrap anywhere in the loop, so then we can apply the
4810 // flags to the SCEV.
4811 //
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004812 // We check isLoopInvariant to disambiguate in case we are adding recurrences
4813 // from different loops, so that we know which loop to prove that I is
4814 // executed in.
4815 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4816 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
Jingyue Wu42f1d672015-07-28 18:22:40 +00004817 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004818 bool AllOtherOpsLoopInvariant = true;
4819 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4820 ++OtherOpIndex) {
4821 if (OtherOpIndex != OpIndex) {
4822 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4823 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4824 AllOtherOpsLoopInvariant = false;
4825 break;
4826 }
4827 }
4828 }
4829 if (AllOtherOpsLoopInvariant &&
4830 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4831 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004832 }
4833 }
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004834 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004835}
4836
4837/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4838/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004839///
Dan Gohmanaf752342009-07-07 17:06:11 +00004840const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004841 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004842 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004843
Dan Gohman69451a02010-03-09 23:46:50 +00004844 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman69451a02010-03-09 23:46:50 +00004845 // Don't attempt to analyze instructions in blocks that aren't
4846 // reachable. Such instructions don't matter, and they aren't required
4847 // to obey basic rules for definitions dominating uses which this
4848 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004849 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004850 return getUnknown(V);
Sanjoy Das260ad4d2016-03-29 16:40:39 +00004851 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohmanf436bac2009-06-24 00:54:57 +00004852 return getConstant(CI);
4853 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004854 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004855 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
Sanjoy Das5ce32722016-04-08 00:48:30 +00004856 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
Sanjoy Das260ad4d2016-03-29 16:40:39 +00004857 else if (!isa<ConstantExpr>(V))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004858 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004859
Dan Gohman80ca01c2009-07-17 20:47:02 +00004860 Operator *U = cast<Operator>(V);
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00004861 if (auto BO = MatchBinaryOp(U)) {
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004862 switch (BO->Opcode) {
4863 case Instruction::Add: {
4864 // The simple thing to do would be to just call getSCEV on both operands
4865 // and call getAddExpr with the result. However if we're looking at a
4866 // bunch of things all added together, this can be quite inefficient,
4867 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4868 // Instead, gather up all the operands and make a single getAddExpr call.
4869 // LLVM IR canonical form means we need only traverse the left operands.
4870 SmallVector<const SCEV *, 4> AddOps;
4871 do {
4872 if (BO->Op) {
4873 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4874 AddOps.push_back(OpSCEV);
4875 break;
4876 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004877
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004878 // If a NUW or NSW flag can be applied to the SCEV for this
4879 // addition, then compute the SCEV for this addition by itself
4880 // with a separate call to getAddExpr. We need to do that
4881 // instead of pushing the operands of the addition onto AddOps,
4882 // since the flags are only known to apply to this particular
4883 // addition - they may not apply to other additions that can be
4884 // formed with operands from AddOps.
4885 const SCEV *RHS = getSCEV(BO->RHS);
4886 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4887 if (Flags != SCEV::FlagAnyWrap) {
4888 const SCEV *LHS = getSCEV(BO->LHS);
4889 if (BO->Opcode == Instruction::Sub)
4890 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4891 else
4892 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4893 break;
4894 }
Dan Gohman36bad002009-09-17 18:05:20 +00004895 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004896
4897 if (BO->Opcode == Instruction::Sub)
4898 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4899 else
4900 AddOps.push_back(getSCEV(BO->RHS));
4901
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00004902 auto NewBO = MatchBinaryOp(BO->LHS);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004903 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4904 NewBO->Opcode != Instruction::Sub)) {
4905 AddOps.push_back(getSCEV(BO->LHS));
4906 break;
4907 }
4908 BO = NewBO;
4909 } while (true);
4910
4911 return getAddExpr(AddOps);
4912 }
4913
4914 case Instruction::Mul: {
4915 SmallVector<const SCEV *, 4> MulOps;
4916 do {
4917 if (BO->Op) {
4918 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4919 MulOps.push_back(OpSCEV);
4920 break;
4921 }
4922
4923 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4924 if (Flags != SCEV::FlagAnyWrap) {
4925 MulOps.push_back(
4926 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
4927 break;
4928 }
4929 }
4930
4931 MulOps.push_back(getSCEV(BO->RHS));
Sanjoy Dasf9d88e62016-04-11 15:26:18 +00004932 auto NewBO = MatchBinaryOp(BO->LHS);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004933 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
4934 MulOps.push_back(getSCEV(BO->LHS));
4935 break;
4936 }
4937 BO = NewBO;
4938 } while (true);
4939
4940 return getMulExpr(MulOps);
4941 }
4942 case Instruction::UDiv:
4943 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
4944 case Instruction::Sub: {
4945 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4946 if (BO->Op)
4947 Flags = getNoWrapFlagsFromUB(BO->Op);
4948 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
4949 }
4950 case Instruction::And:
4951 // For an expression like x&255 that merely masks off the high bits,
4952 // use zext(trunc(x)) as the SCEV expression.
4953 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4954 if (CI->isNullValue())
4955 return getSCEV(BO->RHS);
4956 if (CI->isAllOnesValue())
4957 return getSCEV(BO->LHS);
4958 const APInt &A = CI->getValue();
4959
4960 // Instcombine's ShrinkDemandedConstant may strip bits out of
4961 // constants, obscuring what would otherwise be a low-bits mask.
4962 // Use computeKnownBits to compute what ShrinkDemandedConstant
4963 // knew about to reconstruct a low-bits mask value.
4964 unsigned LZ = A.countLeadingZeros();
4965 unsigned TZ = A.countTrailingZeros();
4966 unsigned BitWidth = A.getBitWidth();
4967 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4968 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
4969 0, &AC, nullptr, &DT);
4970
4971 APInt EffectiveMask =
4972 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4973 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4974 const SCEV *MulCount = getConstant(ConstantInt::get(
4975 getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4976 return getMulExpr(
4977 getZeroExtendExpr(
4978 getTruncateExpr(
4979 getUDivExactExpr(getSCEV(BO->LHS), MulCount),
4980 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4981 BO->LHS->getType()),
4982 MulCount);
4983 }
Dan Gohman36bad002009-09-17 18:05:20 +00004984 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004985 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004986
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004987 case Instruction::Or:
4988 // If the RHS of the Or is a constant, we may have something like:
4989 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4990 // optimizations will transparently handle this case.
4991 //
4992 // In order for this transformation to be safe, the LHS must be of the
4993 // form X*(2^n) and the Or constant must be less than 2^n.
4994 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4995 const SCEV *LHS = getSCEV(BO->LHS);
4996 const APInt &CIVal = CI->getValue();
4997 if (GetMinTrailingZeros(LHS) >=
4998 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4999 // Build a plain add SCEV.
5000 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5001 // If the LHS of the add was an addrec and it has no-wrap flags,
5002 // transfer the no-wrap flags, since an or won't introduce a wrap.
5003 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5004 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5005 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5006 OldAR->getNoWrapFlags());
5007 }
5008 return S;
5009 }
5010 }
5011 break;
Dan Gohman6350296e2009-05-18 16:29:04 +00005012
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005013 case Instruction::Xor:
5014 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5015 // If the RHS of xor is -1, then this is a not operation.
5016 if (CI->isAllOnesValue())
5017 return getNotSCEV(getSCEV(BO->LHS));
Dan Gohmaneddf7712009-06-18 00:00:20 +00005018
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005019 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5020 // This is a variant of the check for xor with -1, and it handles
5021 // the case where instcombine has trimmed non-demanded bits out
5022 // of an xor with -1.
5023 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5024 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5025 if (LBO->getOpcode() == Instruction::And &&
5026 LCI->getValue() == CI->getValue())
5027 if (const SCEVZeroExtendExpr *Z =
5028 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5029 Type *UTy = BO->LHS->getType();
5030 const SCEV *Z0 = Z->getOperand();
5031 Type *Z0Ty = Z0->getType();
5032 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
Dan Gohmaneddf7712009-06-18 00:00:20 +00005033
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005034 // If C is a low-bits mask, the zero extend is serving to
5035 // mask off the high bits. Complement the operand and
5036 // re-apply the zext.
5037 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5038 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5039
5040 // If C is a single bit, it may be in the sign-bit position
5041 // before the zero-extend. In this case, represent the xor
5042 // using an add, which is equivalent, and re-apply the zext.
5043 APInt Trunc = CI->getValue().trunc(Z0TySize);
5044 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5045 Trunc.isSignBit())
5046 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5047 UTy);
5048 }
5049 }
5050 break;
Dan Gohman05e89732008-06-22 19:56:46 +00005051
5052 case Instruction::Shl:
5053 // Turn shift left of a constant amount into a multiply.
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005054 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5055 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00005056
5057 // If the shift count is not less than the bitwidth, the result of
5058 // the shift is undefined. Don't try to analyze it, because the
5059 // resolution chosen here may differ from the resolution chosen in
5060 // other parts of the compiler.
5061 if (SA->getValue().uge(BitWidth))
5062 break;
5063
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005064 // It is currently not resolved how to interpret NSW for left
5065 // shift by BitWidth - 1, so we avoid applying flags in that
5066 // case. Remove this check (or this comment) once the situation
5067 // is resolved. See
5068 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5069 // and http://reviews.llvm.org/D8890 .
5070 auto Flags = SCEV::FlagAnyWrap;
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005071 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5072 Flags = getNoWrapFlagsFromUB(BO->Op);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005073
Owen Andersonedb4a702009-07-24 23:12:02 +00005074 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00005075 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005076 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00005077 }
5078 break;
5079
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005080 case Instruction::AShr:
5081 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5082 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5083 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5084 if (L->getOpcode() == Instruction::Shl &&
5085 L->getOperand(1) == BO->RHS) {
5086 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
Dan Gohmanacd700a2010-04-22 01:35:11 +00005087
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005088 // If the shift count is not less than the bitwidth, the result of
5089 // the shift is undefined. Don't try to analyze it, because the
5090 // resolution chosen here may differ from the resolution chosen in
5091 // other parts of the compiler.
5092 if (CI->getValue().uge(BitWidth))
5093 break;
Dan Gohmanacd700a2010-04-22 01:35:11 +00005094
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005095 uint64_t Amt = BitWidth - CI->getZExtValue();
5096 if (Amt == BitWidth)
5097 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5098 return getSignExtendExpr(
5099 getTruncateExpr(getSCEV(L->getOperand(0)),
5100 IntegerType::get(getContext(), Amt)),
5101 BO->LHS->getType());
5102 }
5103 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005104 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005105 }
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005106
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005107 switch (U->getOpcode()) {
Dan Gohman05e89732008-06-22 19:56:46 +00005108 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005109 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005110
5111 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005112 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005113
5114 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005115 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005116
5117 case Instruction::BitCast:
5118 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00005119 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00005120 return getSCEV(U->getOperand(0));
5121 break;
5122
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00005123 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5124 // lead to pointer expressions which cannot safely be expanded to GEPs,
5125 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5126 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00005127
Dan Gohmanee750d12009-05-08 20:26:55 +00005128 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00005129 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00005130
Dan Gohman05e89732008-06-22 19:56:46 +00005131 case Instruction::PHI:
5132 return createNodeForPHI(cast<PHINode>(U));
5133
5134 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00005135 // U can also be a select constant expr, which let fall through. Since
5136 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5137 // constant expressions cannot have instructions as operands, we'd have
5138 // returned getUnknown for a select constant expressions anyway.
5139 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00005140 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5141 U->getOperand(1), U->getOperand(2));
Chris Lattnerd934c702004-04-02 20:23:17 +00005142 }
5143
Dan Gohmanc8e23622009-04-21 23:15:49 +00005144 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005145}
5146
5147
5148
5149//===----------------------------------------------------------------------===//
5150// Iteration Count Computation Code
5151//
5152
Chandler Carruth6666c272014-10-11 00:12:11 +00005153unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5154 if (BasicBlock *ExitingBB = L->getExitingBlock())
5155 return getSmallConstantTripCount(L, ExitingBB);
5156
5157 // No trip count information for multiple exits.
5158 return 0;
5159}
5160
Andrew Trick2b6860f2011-08-11 23:36:16 +00005161/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00005162/// normal unsigned value. Returns 0 if the trip count is unknown or not
5163/// constant. Will also return 0 if the maximum trip count is very large (>=
5164/// 2^32).
5165///
5166/// This "trip count" assumes that control exits via ExitingBlock. More
5167/// precisely, it is the number of times that control may reach ExitingBlock
5168/// before taking the branch. For loops with multiple exits, it may not be the
5169/// number times that the loop header executes because the loop may exit
5170/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005171unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5172 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005173 assert(ExitingBlock && "Must pass a non-null exiting block!");
5174 assert(L->isLoopExiting(ExitingBlock) &&
5175 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00005176 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005177 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005178 if (!ExitCount)
5179 return 0;
5180
5181 ConstantInt *ExitConst = ExitCount->getValue();
5182
5183 // Guard against huge trip counts.
5184 if (ExitConst->getValue().getActiveBits() > 32)
5185 return 0;
5186
5187 // In case of integer overflow, this returns 0, which is correct.
5188 return ((unsigned)ExitConst->getZExtValue()) + 1;
5189}
5190
Chandler Carruth6666c272014-10-11 00:12:11 +00005191unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5192 if (BasicBlock *ExitingBB = L->getExitingBlock())
5193 return getSmallConstantTripMultiple(L, ExitingBB);
5194
5195 // No trip multiple information for multiple exits.
5196 return 0;
5197}
5198
Andrew Trick2b6860f2011-08-11 23:36:16 +00005199/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
5200/// trip count of this loop as a normal unsigned value, if possible. This
5201/// means that the actual trip count is always a multiple of the returned
5202/// value (don't forget the trip count could very well be zero as well!).
5203///
5204/// Returns 1 if the trip count is unknown or not guaranteed to be the
5205/// multiple of a constant (which is also the case if the trip count is simply
5206/// constant, use getSmallConstantTripCount for that case), Will also return 1
5207/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00005208///
5209/// As explained in the comments for getSmallConstantTripCount, this assumes
5210/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005211unsigned
5212ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5213 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005214 assert(ExitingBlock && "Must pass a non-null exiting block!");
5215 assert(L->isLoopExiting(ExitingBlock) &&
5216 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005217 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00005218 if (ExitCount == getCouldNotCompute())
5219 return 1;
5220
5221 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005222 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005223 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5224 // to factor simple cases.
5225 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5226 TCMul = Mul->getOperand(0);
5227
5228 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5229 if (!MulC)
5230 return 1;
5231
5232 ConstantInt *Result = MulC->getValue();
5233
Hal Finkel30bd9342012-10-24 19:46:44 +00005234 // Guard against huge trip counts (this requires checking
5235 // for zero to handle the case where the trip count == -1 and the
5236 // addition wraps).
5237 if (!Result || Result->getValue().getActiveBits() > 32 ||
5238 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00005239 return 1;
5240
5241 return (unsigned)Result->getZExtValue();
5242}
5243
Andrew Trick3ca3f982011-07-26 17:19:55 +00005244// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00005245// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00005246// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00005247const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5248 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005249}
5250
Silviu Baranga6f444df2016-04-08 14:29:09 +00005251const SCEV *
5252ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5253 SCEVUnionPredicate &Preds) {
5254 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5255}
5256
Dan Gohman0bddac12009-02-24 18:55:53 +00005257/// getBackedgeTakenCount - If the specified loop has a predictable
5258/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
5259/// object. The backedge-taken count is the number of times the loop header
5260/// will be branched to from within the loop. This is one less than the
5261/// trip count of the loop, since it doesn't count the first iteration,
5262/// when the header is branched to from outside the loop.
5263///
5264/// Note that it is not valid to call this method on a loop without a
5265/// loop-invariant backedge-taken count (see
5266/// hasLoopInvariantBackedgeTakenCount).
5267///
Dan Gohmanaf752342009-07-07 17:06:11 +00005268const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005269 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005270}
5271
5272/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5273/// return the least SCEV value that is known never to be less than the
5274/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00005275const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005276 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005277}
5278
Dan Gohmandc191042009-07-08 19:23:34 +00005279/// PushLoopPHIs - Push PHI nodes in the header of the given loop
5280/// onto the given Worklist.
5281static void
5282PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5283 BasicBlock *Header = L->getHeader();
5284
5285 // Push all Loop-header PHIs onto the Worklist stack.
5286 for (BasicBlock::iterator I = Header->begin();
5287 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5288 Worklist.push_back(PN);
5289}
5290
Dan Gohman2b8da352009-04-30 20:47:05 +00005291const ScalarEvolution::BackedgeTakenInfo &
Silviu Baranga6f444df2016-04-08 14:29:09 +00005292ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5293 auto &BTI = getBackedgeTakenInfo(L);
5294 if (BTI.hasFullInfo())
5295 return BTI;
5296
5297 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5298
5299 if (!Pair.second)
5300 return Pair.first->second;
5301
5302 BackedgeTakenInfo Result =
5303 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5304
5305 return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5306}
5307
5308const ScalarEvolution::BackedgeTakenInfo &
Dan Gohman2b8da352009-04-30 20:47:05 +00005309ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005310 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00005311 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00005312 // update the value. The temporary CouldNotCompute value tells SCEV
5313 // code elsewhere that it shouldn't attempt to request a new
5314 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00005315 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00005316 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
Chris Lattnera337f5e2011-01-09 02:16:18 +00005317 if (!Pair.second)
5318 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00005319
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005320 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00005321 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5322 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005323 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005324
5325 if (Result.getExact(this) != getCouldNotCompute()) {
5326 assert(isLoopInvariant(Result.getExact(this), L) &&
5327 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00005328 "Computed backedge-taken count isn't loop invariant for loop!");
5329 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005330 }
5331 else if (Result.getMax(this) == getCouldNotCompute() &&
5332 isa<PHINode>(L->getHeader()->begin())) {
5333 // Only count loops that have phi nodes as not being computable.
5334 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00005335 }
Dan Gohman2b8da352009-04-30 20:47:05 +00005336
Chris Lattnera337f5e2011-01-09 02:16:18 +00005337 // Now that we know more about the trip count for this loop, forget any
5338 // existing SCEV values for PHI nodes in this loop since they are only
5339 // conservative estimates made without the benefit of trip count
5340 // information. This is similar to the code in forgetLoop, except that
5341 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005342 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00005343 SmallVector<Instruction *, 16> Worklist;
5344 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005345
Chris Lattnera337f5e2011-01-09 02:16:18 +00005346 SmallPtrSet<Instruction *, 8> Visited;
5347 while (!Worklist.empty()) {
5348 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005349 if (!Visited.insert(I).second)
5350 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005351
Chris Lattnera337f5e2011-01-09 02:16:18 +00005352 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005353 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00005354 if (It != ValueExprMap.end()) {
5355 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00005356
Chris Lattnera337f5e2011-01-09 02:16:18 +00005357 // SCEVUnknown for a PHI either means that it has an unrecognized
5358 // structure, or it's a PHI that's in the progress of being computed
5359 // by createNodeForPHI. In the former case, additional loop trip
5360 // count information isn't going to change anything. In the later
5361 // case, createNodeForPHI will perform the necessary updates on its
5362 // own when it gets to that point.
5363 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5364 forgetMemoizedResults(Old);
5365 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005366 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005367 if (PHINode *PN = dyn_cast<PHINode>(I))
5368 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005369 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005370
5371 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005372 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005373 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005374
5375 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005376 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005377 // recusive call to getBackedgeTakenInfo (on a different
5378 // loop), which would invalidate the iterator computed
5379 // earlier.
5380 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005381}
5382
Dan Gohman880c92a2009-10-31 15:04:55 +00005383/// forgetLoop - This method should be called by the client when it has
5384/// changed a loop in a way that may effect ScalarEvolution's ability to
5385/// compute a trip count, or if the loop is deleted.
5386void ScalarEvolution::forgetLoop(const Loop *L) {
5387 // Drop any stored trip count value.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005388 auto RemoveLoopFromBackedgeMap =
5389 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5390 auto BTCPos = Map.find(L);
5391 if (BTCPos != Map.end()) {
5392 BTCPos->second.clear();
5393 Map.erase(BTCPos);
5394 }
5395 };
5396
5397 RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5398 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohmanf1505722009-05-02 17:43:35 +00005399
Dan Gohman880c92a2009-10-31 15:04:55 +00005400 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005401 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005402 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005403
Dan Gohmandc191042009-07-08 19:23:34 +00005404 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005405 while (!Worklist.empty()) {
5406 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005407 if (!Visited.insert(I).second)
5408 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005409
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005410 ValueExprMapType::iterator It =
5411 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005412 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005413 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005414 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005415 if (PHINode *PN = dyn_cast<PHINode>(I))
5416 ConstantEvolutionLoopExitValue.erase(PN);
5417 }
5418
5419 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005420 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005421
5422 // Forget all contained loops too, to avoid dangling entries in the
5423 // ValuesAtScopes map.
5424 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5425 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005426}
5427
Eric Christopheref6d5932010-07-29 01:25:38 +00005428/// forgetValue - This method should be called by the client when it has
5429/// changed a value in a way that may effect its value, or which may
5430/// disconnect it from a def-use chain linking it to a loop.
5431void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005432 Instruction *I = dyn_cast<Instruction>(V);
5433 if (!I) return;
5434
5435 // Drop information about expressions based on loop-header PHIs.
5436 SmallVector<Instruction *, 16> Worklist;
5437 Worklist.push_back(I);
5438
5439 SmallPtrSet<Instruction *, 8> Visited;
5440 while (!Worklist.empty()) {
5441 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005442 if (!Visited.insert(I).second)
5443 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005444
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005445 ValueExprMapType::iterator It =
5446 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005447 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005448 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005449 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005450 if (PHINode *PN = dyn_cast<PHINode>(I))
5451 ConstantEvolutionLoopExitValue.erase(PN);
5452 }
5453
5454 PushDefUseChildren(I, Worklist);
5455 }
5456}
5457
Andrew Trick3ca3f982011-07-26 17:19:55 +00005458/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005459/// exits. A computable result can only be returned for loops with a single
5460/// exit. Returning the minimum taken count among all exits is incorrect
5461/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5462/// assumes that the limit of each loop test is never skipped. This is a valid
5463/// assumption as long as the loop exits via that test. For precise results, it
5464/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005465/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005466const SCEV *
Silviu Baranga6f444df2016-04-08 14:29:09 +00005467ScalarEvolution::BackedgeTakenInfo::getExact(
5468 ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005469 // If any exits were not computable, the loop is not computable.
5470 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5471
Andrew Trick90c7a102011-11-16 00:52:40 +00005472 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005473 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005474 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5475
Craig Topper9f008862014-04-15 04:59:12 +00005476 const SCEV *BECount = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005477 for (auto &ENT : ExitNotTaken) {
5478 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005479
5480 if (!BECount)
Silviu Baranga6f444df2016-04-08 14:29:09 +00005481 BECount = ENT.ExactNotTaken;
5482 else if (BECount != ENT.ExactNotTaken)
Andrew Trick90c7a102011-11-16 00:52:40 +00005483 return SE->getCouldNotCompute();
Silviu Baranga6f444df2016-04-08 14:29:09 +00005484 if (Preds && ENT.getPred())
5485 Preds->add(ENT.getPred());
5486
5487 assert((Preds || ENT.hasAlwaysTruePred()) &&
5488 "Predicate should be always true!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005489 }
Silviu Baranga6f444df2016-04-08 14:29:09 +00005490
Andrew Trickbbb226a2011-09-02 21:20:46 +00005491 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005492 return BECount;
5493}
5494
5495/// getExact - Get the exact not taken count for this loop exit.
5496const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005497ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005498 ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005499 for (auto &ENT : ExitNotTaken)
5500 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5501 return ENT.ExactNotTaken;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005502
Andrew Trick3ca3f982011-07-26 17:19:55 +00005503 return SE->getCouldNotCompute();
5504}
5505
5506/// getMax - Get the max backedge taken count for the loop.
5507const SCEV *
5508ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005509 for (auto &ENT : ExitNotTaken)
5510 if (!ENT.hasAlwaysTruePred())
5511 return SE->getCouldNotCompute();
5512
Andrew Trick3ca3f982011-07-26 17:19:55 +00005513 return Max ? Max : SE->getCouldNotCompute();
5514}
5515
Andrew Trick9093e152013-03-26 03:14:53 +00005516bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5517 ScalarEvolution *SE) const {
5518 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5519 return true;
5520
5521 if (!ExitNotTaken.ExitingBlock)
5522 return false;
5523
Silviu Baranga6f444df2016-04-08 14:29:09 +00005524 for (auto &ENT : ExitNotTaken)
5525 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5526 SE->hasOperand(ENT.ExactNotTaken, S))
Silviu Barangaa393baf2016-04-06 14:06:32 +00005527 return true;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005528
Andrew Trick9093e152013-03-26 03:14:53 +00005529 return false;
5530}
5531
Andrew Trick3ca3f982011-07-26 17:19:55 +00005532/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5533/// computable exit into a persistent ExitNotTakenInfo array.
5534ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
Silviu Baranga6f444df2016-04-08 14:29:09 +00005535 SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5536 : Max(MaxCount) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005537
5538 if (!Complete)
5539 ExitNotTaken.setIncomplete();
5540
5541 unsigned NumExits = ExitCounts.size();
5542 if (NumExits == 0) return;
5543
Silviu Baranga6f444df2016-04-08 14:29:09 +00005544 ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5545 ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5546
5547 // Determine the number of ExitNotTakenExtras structures that we need.
5548 unsigned ExtraInfoSize = 0;
5549 if (NumExits > 1)
5550 ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5551 ExitCounts.end(), [](EdgeInfo &Entry) {
5552 return !Entry.Pred.isAlwaysTrue();
5553 });
5554 else if (!ExitCounts[0].Pred.isAlwaysTrue())
5555 ExtraInfoSize = 1;
5556
5557 ExitNotTakenExtras *ENT = nullptr;
5558
5559 // Allocate the ExitNotTakenExtras structures and initialize the first
5560 // element (ExitNotTaken).
5561 if (ExtraInfoSize > 0) {
5562 ENT = new ExitNotTakenExtras[ExtraInfoSize];
5563 ExitNotTaken.ExtraInfo = &ENT[0];
5564 *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5565 }
5566
5567 if (NumExits == 1)
5568 return;
5569
5570 auto &Exits = ExitNotTaken.ExtraInfo->Exits;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005571
5572 // Handle the rare case of multiple computable exits.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005573 for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5574 ExitNotTakenExtras *Ptr = nullptr;
5575 if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5576 Ptr = &ENT[PredPos++];
5577 Ptr->Pred = std::move(ExitCounts[i].Pred);
5578 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005579
Silviu Baranga6f444df2016-04-08 14:29:09 +00005580 Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005581 }
5582}
5583
5584/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5585void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005586 ExitNotTaken.ExitingBlock = nullptr;
5587 ExitNotTaken.ExactNotTaken = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005588 delete[] ExitNotTaken.ExtraInfo;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005589}
5590
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005591/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005592/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005593ScalarEvolution::BackedgeTakenInfo
Silviu Baranga6f444df2016-04-08 14:29:09 +00005594ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5595 bool AllowPredicates) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005596 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005597 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005598
Silviu Baranga6f444df2016-04-08 14:29:09 +00005599 SmallVector<EdgeInfo, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005600 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005601 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005602 const SCEV *MustExitMaxBECount = nullptr;
5603 const SCEV *MayExitMaxBECount = nullptr;
5604
5605 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5606 // and compute maxBECount.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005607 // Do a union of all the predicates here.
Dan Gohman96212b62009-06-22 00:31:57 +00005608 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005609 BasicBlock *ExitBB = ExitingBlocks[i];
Silviu Baranga6f444df2016-04-08 14:29:09 +00005610 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5611
5612 assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5613 "Predicated exit limit when predicates are not allowed!");
Andrew Trick839e30b2014-05-23 19:47:13 +00005614
5615 // 1. For each exit that can be computed, add an entry to ExitCounts.
5616 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005617 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005618 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005619 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005620 CouldComputeBECount = false;
5621 else
Silviu Baranga6f444df2016-04-08 14:29:09 +00005622 ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005623
Andrew Trick839e30b2014-05-23 19:47:13 +00005624 // 2. Derive the loop's MaxBECount from each exit's max number of
5625 // non-exiting iterations. Partition the loop exits into two kinds:
5626 // LoopMustExits and LoopMayExits.
5627 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005628 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5629 // is a LoopMayExit. If any computable LoopMustExit is found, then
5630 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5631 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5632 // considered greater than any computable EL.Max.
5633 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005634 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005635 if (!MustExitMaxBECount)
5636 MustExitMaxBECount = EL.Max;
5637 else {
5638 MustExitMaxBECount =
5639 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005640 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005641 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5642 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5643 MayExitMaxBECount = EL.Max;
5644 else {
5645 MayExitMaxBECount =
5646 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5647 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005648 }
Dan Gohman96212b62009-06-22 00:31:57 +00005649 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005650 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5651 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005652 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005653}
5654
Andrew Trick3ca3f982011-07-26 17:19:55 +00005655ScalarEvolution::ExitLimit
Silviu Baranga6f444df2016-04-08 14:29:09 +00005656ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5657 bool AllowPredicates) {
Dan Gohman96212b62009-06-22 00:31:57 +00005658
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005659 // Okay, we've chosen an exiting block. See what condition causes us to exit
5660 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005661 // lead to the loop header.
5662 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005663 BasicBlock *Exit = nullptr;
Sanjoy Das0ff07872016-01-19 20:53:46 +00005664 for (auto *SBB : successors(ExitingBlock))
5665 if (!L->contains(SBB)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005666 if (Exit) // Multiple exit successors.
5667 return getCouldNotCompute();
Sanjoy Das0ff07872016-01-19 20:53:46 +00005668 Exit = SBB;
5669 } else if (SBB != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005670 MustExecuteLoopHeader = false;
5671 }
Dan Gohmance973df2009-06-24 04:48:43 +00005672
Chris Lattner18954852007-01-07 02:24:26 +00005673 // At this point, we know we have a conditional branch that determines whether
5674 // the loop is exited. However, we don't know if the branch is executed each
5675 // time through the loop. If not, then the execution count of the branch will
5676 // not be equal to the trip count of the loop.
5677 //
5678 // Currently we check for this by checking to see if the Exit branch goes to
5679 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005680 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005681 // loop header. This is common for un-rotated loops.
5682 //
5683 // If both of those tests fail, walk up the unique predecessor chain to the
5684 // header, stopping if there is an edge that doesn't exit the loop. If the
5685 // header is reached, the execution count of the branch will be equal to the
5686 // trip count of the loop.
5687 //
5688 // More extensive analysis could be done to handle more cases here.
5689 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005690 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005691 // The simple checks failed, try climbing the unique predecessor chain
5692 // up to the header.
5693 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005694 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005695 BasicBlock *Pred = BB->getUniquePredecessor();
5696 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005697 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005698 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005699 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005700 if (PredSucc == BB)
5701 continue;
5702 // If the predecessor has a successor that isn't BB and isn't
5703 // outside the loop, assume the worst.
5704 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005705 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005706 }
5707 if (Pred == L->getHeader()) {
5708 Ok = true;
5709 break;
5710 }
5711 BB = Pred;
5712 }
5713 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005714 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005715 }
5716
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005717 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005718 TerminatorInst *Term = ExitingBlock->getTerminator();
5719 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5720 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5721 // Proceed to the next level to examine the exit condition expression.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005722 return computeExitLimitFromCond(
5723 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5724 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005725 }
5726
5727 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005728 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005729 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005730
5731 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005732}
5733
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005734/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005735/// backedge of the specified loop will execute if its exit condition
5736/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005737///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005738/// @param ControlsExit is true if ExitCond directly controls the exit
5739/// branch. In this case, we can assume that the loop exits only if the
5740/// condition is true and can infer that failing to meet the condition prior to
5741/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005742ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005743ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005744 Value *ExitCond,
5745 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005746 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005747 bool ControlsExit,
5748 bool AllowPredicates) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005749 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005750 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5751 if (BO->getOpcode() == Instruction::And) {
5752 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005753 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005754 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005755 ControlsExit && !EitherMayExit,
5756 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005757 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005758 ControlsExit && !EitherMayExit,
5759 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005760 const SCEV *BECount = getCouldNotCompute();
5761 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005762 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005763 // Both conditions must be true for the loop to continue executing.
5764 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005765 if (EL0.Exact == getCouldNotCompute() ||
5766 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005767 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005768 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005769 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5770 if (EL0.Max == getCouldNotCompute())
5771 MaxBECount = EL1.Max;
5772 else if (EL1.Max == getCouldNotCompute())
5773 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005774 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005775 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005776 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005777 // Both conditions must be true at the same time for the loop to exit.
5778 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005779 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005780 if (EL0.Max == EL1.Max)
5781 MaxBECount = EL0.Max;
5782 if (EL0.Exact == EL1.Exact)
5783 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005784 }
5785
Silviu Baranga6f444df2016-04-08 14:29:09 +00005786 SCEVUnionPredicate NP;
5787 NP.add(&EL0.Pred);
5788 NP.add(&EL1.Pred);
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005789 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5790 // to be more aggressive when computing BECount than when computing
5791 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5792 // to match, but for EL0.Max and EL1.Max to not.
5793 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5794 !isa<SCEVCouldNotCompute>(BECount))
5795 MaxBECount = BECount;
5796
Silviu Baranga6f444df2016-04-08 14:29:09 +00005797 return ExitLimit(BECount, MaxBECount, NP);
Dan Gohman96212b62009-06-22 00:31:57 +00005798 }
5799 if (BO->getOpcode() == Instruction::Or) {
5800 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005801 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005802 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005803 ControlsExit && !EitherMayExit,
5804 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005805 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005806 ControlsExit && !EitherMayExit,
5807 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005808 const SCEV *BECount = getCouldNotCompute();
5809 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005810 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005811 // Both conditions must be false for the loop to continue executing.
5812 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005813 if (EL0.Exact == getCouldNotCompute() ||
5814 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005815 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005816 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005817 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5818 if (EL0.Max == getCouldNotCompute())
5819 MaxBECount = EL1.Max;
5820 else if (EL1.Max == getCouldNotCompute())
5821 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005822 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005823 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005824 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005825 // Both conditions must be false at the same time for the loop to exit.
5826 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005827 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005828 if (EL0.Max == EL1.Max)
5829 MaxBECount = EL0.Max;
5830 if (EL0.Exact == EL1.Exact)
5831 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005832 }
5833
Silviu Baranga6f444df2016-04-08 14:29:09 +00005834 SCEVUnionPredicate NP;
5835 NP.add(&EL0.Pred);
5836 NP.add(&EL1.Pred);
5837 return ExitLimit(BECount, MaxBECount, NP);
Dan Gohman96212b62009-06-22 00:31:57 +00005838 }
5839 }
5840
5841 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005842 // Proceed to the next level to examine the icmp.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005843 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5844 ExitLimit EL =
5845 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5846 if (EL.hasFullInfo() || !AllowPredicates)
5847 return EL;
5848
5849 // Try again, but use SCEV predicates this time.
5850 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5851 /*AllowPredicates=*/true);
5852 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005853
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005854 // Check for a constant condition. These are normally stripped out by
5855 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5856 // preserve the CFG and is temporarily leaving constant conditions
5857 // in place.
5858 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5859 if (L->contains(FBB) == !CI->getZExtValue())
5860 // The backedge is always taken.
5861 return getCouldNotCompute();
5862 else
5863 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005864 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005865 }
5866
Eli Friedmanebf98b02009-05-09 12:32:42 +00005867 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005868 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005869}
5870
Andrew Trick3ca3f982011-07-26 17:19:55 +00005871ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005872ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005873 ICmpInst *ExitCond,
5874 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005875 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005876 bool ControlsExit,
5877 bool AllowPredicates) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005878
Reid Spencer266e42b2006-12-23 06:05:41 +00005879 // If the condition was exit on true, convert the condition to exit on false
5880 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005881 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005882 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005883 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005884 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005885
5886 // Handle common loops like: for (X = "string"; *X; ++X)
5887 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5888 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005889 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005890 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005891 if (ItCnt.hasAnyInfo())
5892 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005893 }
5894
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005895 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5896 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5897 if (ShiftEL.hasAnyInfo())
5898 return ShiftEL;
5899
Dan Gohmanaf752342009-07-07 17:06:11 +00005900 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5901 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005902
5903 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005904 LHS = getSCEVAtScope(LHS, L);
5905 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005906
Dan Gohmance973df2009-06-24 04:48:43 +00005907 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005908 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005909 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005910 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005911 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005912 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005913 }
5914
Dan Gohman81585c12010-05-03 16:35:17 +00005915 // Simplify the operands before analyzing them.
5916 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5917
Chris Lattnerd934c702004-04-02 20:23:17 +00005918 // If we have a comparison of a chrec against a constant, try to use value
5919 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005920 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5921 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005922 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005923 // Form the constant range.
5924 ConstantRange CompRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00005925 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005926
Dan Gohmanaf752342009-07-07 17:06:11 +00005927 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005928 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005929 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005930
Chris Lattnerd934c702004-04-02 20:23:17 +00005931 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005932 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005933 // Convert to: while (X-Y != 0)
Silviu Baranga6f444df2016-04-08 14:29:09 +00005934 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
5935 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005936 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005937 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005938 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005939 case ICmpInst::ICMP_EQ: { // while (X == Y)
5940 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005941 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5942 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005943 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005944 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005945 case ICmpInst::ICMP_SLT:
5946 case ICmpInst::ICMP_ULT: { // while (X < Y)
5947 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005948 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
5949 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005950 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005951 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005952 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005953 case ICmpInst::ICMP_SGT:
5954 case ICmpInst::ICMP_UGT: { // while (X > Y)
5955 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005956 ExitLimit EL =
5957 HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
5958 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005959 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005960 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005961 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005962 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005963 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005964 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005965 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005966}
5967
Benjamin Kramer5a188542014-02-11 15:44:32 +00005968ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005969ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005970 SwitchInst *Switch,
5971 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005972 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005973 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5974
5975 // Give up if the exit is the default dest of a switch.
5976 if (Switch->getDefaultDest() == ExitingBlock)
5977 return getCouldNotCompute();
5978
5979 assert(L->contains(Switch->getDefaultDest()) &&
5980 "Default case must not exit the loop!");
5981 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5982 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5983
5984 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005985 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005986 if (EL.hasAnyInfo())
5987 return EL;
5988
5989 return getCouldNotCompute();
5990}
5991
Chris Lattnerec901cc2004-10-12 01:49:27 +00005992static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005993EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5994 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005995 const SCEV *InVal = SE.getConstant(C);
5996 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005997 assert(isa<SCEVConstant>(Val) &&
5998 "Evaluation of SCEV at constant didn't fold correctly?");
5999 return cast<SCEVConstant>(Val)->getValue();
6000}
6001
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006002/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00006003/// 'icmp op load X, cst', try to see if we can compute the backedge
6004/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006005ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006006ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00006007 LoadInst *LI,
6008 Constant *RHS,
6009 const Loop *L,
6010 ICmpInst::Predicate predicate) {
6011
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006012 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006013
6014 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00006015 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006016 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006017 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006018
6019 // Make sure that it is really a constant global we are gepping, with an
6020 // initializer, and make sure the first IDX is really 0.
6021 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00006022 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006023 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6024 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006025 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006026
6027 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00006028 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00006029 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00006030 unsigned VarIdxNum = 0;
6031 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6032 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6033 Indexes.push_back(CI);
6034 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006035 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006036 VarIdx = GEP->getOperand(i);
6037 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00006038 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006039 }
6040
Andrew Trick7004e4b2012-03-26 22:33:59 +00006041 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6042 if (!VarIdx)
6043 return getCouldNotCompute();
6044
Chris Lattnerec901cc2004-10-12 01:49:27 +00006045 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6046 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006047 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00006048 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006049
6050 // We can only recognize very limited forms of loop index expressions, in
6051 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00006052 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00006053 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006054 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6055 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006056 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006057
6058 unsigned MaxSteps = MaxBruteForceIterations;
6059 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00006060 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00006061 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00006062 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006063
6064 // Form the GEP offset.
6065 Indexes[VarIdxNum] = Val;
6066
Chris Lattnere166a852012-01-24 05:49:24 +00006067 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6068 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00006069 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006070
6071 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00006072 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00006073 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00006074 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00006075 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00006076 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006077 }
6078 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006079 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006080}
6081
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006082ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6083 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6084 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6085 if (!RHS)
6086 return getCouldNotCompute();
6087
6088 const BasicBlock *Latch = L->getLoopLatch();
6089 if (!Latch)
6090 return getCouldNotCompute();
6091
6092 const BasicBlock *Predecessor = L->getLoopPredecessor();
6093 if (!Predecessor)
6094 return getCouldNotCompute();
6095
6096 // Return true if V is of the form "LHS `shift_op` <positive constant>".
6097 // Return LHS in OutLHS and shift_opt in OutOpCode.
6098 auto MatchPositiveShift =
6099 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6100
6101 using namespace PatternMatch;
6102
6103 ConstantInt *ShiftAmt;
6104 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6105 OutOpCode = Instruction::LShr;
6106 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6107 OutOpCode = Instruction::AShr;
6108 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6109 OutOpCode = Instruction::Shl;
6110 else
6111 return false;
6112
6113 return ShiftAmt->getValue().isStrictlyPositive();
6114 };
6115
6116 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6117 //
6118 // loop:
6119 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6120 // %iv.shifted = lshr i32 %iv, <positive constant>
6121 //
6122 // Return true on a succesful match. Return the corresponding PHI node (%iv
6123 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6124 auto MatchShiftRecurrence =
6125 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6126 Optional<Instruction::BinaryOps> PostShiftOpCode;
6127
6128 {
6129 Instruction::BinaryOps OpC;
6130 Value *V;
6131
6132 // If we encounter a shift instruction, "peel off" the shift operation,
6133 // and remember that we did so. Later when we inspect %iv's backedge
6134 // value, we will make sure that the backedge value uses the same
6135 // operation.
6136 //
6137 // Note: the peeled shift operation does not have to be the same
6138 // instruction as the one feeding into the PHI's backedge value. We only
6139 // really care about it being the same *kind* of shift instruction --
6140 // that's all that is required for our later inferences to hold.
6141 if (MatchPositiveShift(LHS, V, OpC)) {
6142 PostShiftOpCode = OpC;
6143 LHS = V;
6144 }
6145 }
6146
6147 PNOut = dyn_cast<PHINode>(LHS);
6148 if (!PNOut || PNOut->getParent() != L->getHeader())
6149 return false;
6150
6151 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6152 Value *OpLHS;
6153
6154 return
6155 // The backedge value for the PHI node must be a shift by a positive
6156 // amount
6157 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6158
6159 // of the PHI node itself
6160 OpLHS == PNOut &&
6161
6162 // and the kind of shift should be match the kind of shift we peeled
6163 // off, if any.
6164 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6165 };
6166
6167 PHINode *PN;
6168 Instruction::BinaryOps OpCode;
6169 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6170 return getCouldNotCompute();
6171
6172 const DataLayout &DL = getDataLayout();
6173
6174 // The key rationale for this optimization is that for some kinds of shift
6175 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6176 // within a finite number of iterations. If the condition guarding the
6177 // backedge (in the sense that the backedge is taken if the condition is true)
6178 // is false for the value the shift recurrence stabilizes to, then we know
6179 // that the backedge is taken only a finite number of times.
6180
6181 ConstantInt *StableValue = nullptr;
6182 switch (OpCode) {
6183 default:
6184 llvm_unreachable("Impossible case!");
6185
6186 case Instruction::AShr: {
6187 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6188 // bitwidth(K) iterations.
6189 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6190 bool KnownZero, KnownOne;
6191 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6192 Predecessor->getTerminator(), &DT);
6193 auto *Ty = cast<IntegerType>(RHS->getType());
6194 if (KnownZero)
6195 StableValue = ConstantInt::get(Ty, 0);
6196 else if (KnownOne)
6197 StableValue = ConstantInt::get(Ty, -1, true);
6198 else
6199 return getCouldNotCompute();
6200
6201 break;
6202 }
6203 case Instruction::LShr:
6204 case Instruction::Shl:
6205 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6206 // stabilize to 0 in at most bitwidth(K) iterations.
6207 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6208 break;
6209 }
6210
6211 auto *Result =
6212 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6213 assert(Result->getType()->isIntegerTy(1) &&
6214 "Otherwise cannot be an operand to a branch instruction");
6215
6216 if (Result->isZeroValue()) {
6217 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6218 const SCEV *UpperBound =
6219 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
Silviu Baranga6f444df2016-04-08 14:29:09 +00006220 SCEVUnionPredicate P;
6221 return ExitLimit(getCouldNotCompute(), UpperBound, P);
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006222 }
6223
6224 return getCouldNotCompute();
6225}
Chris Lattnerec901cc2004-10-12 01:49:27 +00006226
Chris Lattnerdd730472004-04-17 22:58:41 +00006227/// CanConstantFold - Return true if we can constant fold an instruction of the
6228/// specified type, assuming that all operands were constants.
6229static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00006230 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00006231 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6232 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00006233 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00006234
Chris Lattnerdd730472004-04-17 22:58:41 +00006235 if (const CallInst *CI = dyn_cast<CallInst>(I))
6236 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00006237 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00006238 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00006239}
6240
Andrew Trick3a86ba72011-10-05 03:25:31 +00006241/// Determine whether this instruction can constant evolve within this loop
6242/// assuming its operands can all constant evolve.
6243static bool canConstantEvolve(Instruction *I, const Loop *L) {
6244 // An instruction outside of the loop can't be derived from a loop PHI.
6245 if (!L->contains(I)) return false;
6246
6247 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00006248 // We don't currently keep track of the control flow needed to evaluate
6249 // PHIs, so we cannot handle PHIs inside of loops.
6250 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006251 }
6252
6253 // If we won't be able to constant fold this expression even if the operands
6254 // are constants, bail early.
6255 return CanConstantFold(I);
6256}
6257
6258/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6259/// recursing through each instruction operand until reaching a loop header phi.
6260static PHINode *
6261getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00006262 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00006263
6264 // Otherwise, we can evaluate this instruction if all of its operands are
6265 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00006266 PHINode *PHI = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006267 for (Value *Op : UseInst->operands()) {
6268 if (isa<Constant>(Op)) continue;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006269
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006270 Instruction *OpInst = dyn_cast<Instruction>(Op);
Craig Topper9f008862014-04-15 04:59:12 +00006271 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006272
6273 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00006274 if (!P)
6275 // If this operand is already visited, reuse the prior result.
6276 // We may have P != PHI if this is the deepest point at which the
6277 // inconsistent paths meet.
6278 P = PHIMap.lookup(OpInst);
6279 if (!P) {
6280 // Recurse and memoize the results, whether a phi is found or not.
6281 // This recursive call invalidates pointers into PHIMap.
6282 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6283 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00006284 }
Craig Topper9f008862014-04-15 04:59:12 +00006285 if (!P)
6286 return nullptr; // Not evolving from PHI
6287 if (PHI && PHI != P)
6288 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00006289 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006290 }
6291 // This is a expression evolving from a constant PHI!
6292 return PHI;
6293}
6294
Chris Lattnerdd730472004-04-17 22:58:41 +00006295/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6296/// in the loop that V is derived from. We allow arbitrary operations along the
6297/// way, but the operands of an operation must either be constants or a value
6298/// derived from a constant PHI. If this expression does not fit with these
6299/// constraints, return null.
6300static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006301 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006302 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006303
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00006304 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00006305 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00006306
Andrew Trick3a86ba72011-10-05 03:25:31 +00006307 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00006308 DenseMap<Instruction *, PHINode *> PHIMap;
6309 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00006310}
6311
6312/// EvaluateExpression - Given an expression that passes the
6313/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6314/// in the loop has the value PHIVal. If we can't fold this expression for some
6315/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006316static Constant *EvaluateExpression(Value *V, const Loop *L,
6317 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006318 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00006319 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006320 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00006321 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006322 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006323 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006324
Andrew Trick3a86ba72011-10-05 03:25:31 +00006325 if (Constant *C = Vals.lookup(I)) return C;
6326
Nick Lewyckya6674c72011-10-22 19:58:20 +00006327 // An instruction inside the loop depends on a value outside the loop that we
6328 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00006329 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006330
6331 // An unmapped PHI can be due to a branch or another loop inside this loop,
6332 // or due to this not being the initial iteration through a loop where we
6333 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00006334 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006335
Dan Gohmanf820bd32010-06-22 13:15:46 +00006336 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00006337
6338 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006339 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6340 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00006341 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006342 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006343 continue;
6344 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006345 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00006346 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00006347 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006348 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00006349 }
6350
Nick Lewyckya6674c72011-10-22 19:58:20 +00006351 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00006352 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006353 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006354 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6355 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006356 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006357 }
Manuel Jacobe9024592016-01-21 06:33:22 +00006358 return ConstantFoldInstOperands(I, Operands, DL, TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00006359}
6360
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006361
6362// If every incoming value to PN except the one for BB is a specific Constant,
6363// return that, else return nullptr.
6364static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6365 Constant *IncomingVal = nullptr;
6366
6367 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6368 if (PN->getIncomingBlock(i) == BB)
6369 continue;
6370
6371 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6372 if (!CurrentVal)
6373 return nullptr;
6374
6375 if (IncomingVal != CurrentVal) {
6376 if (IncomingVal)
6377 return nullptr;
6378 IncomingVal = CurrentVal;
6379 }
6380 }
6381
6382 return IncomingVal;
6383}
6384
Chris Lattnerdd730472004-04-17 22:58:41 +00006385/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6386/// in the header of its containing loop, we know the loop executes a
6387/// constant number of times, and the PHI node is just a recurrence
6388/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00006389Constant *
6390ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00006391 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00006392 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00006393 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00006394 if (I != ConstantEvolutionLoopExitValue.end())
6395 return I->second;
6396
Dan Gohman4ce1fb12010-04-08 23:03:40 +00006397 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00006398 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00006399
6400 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6401
Andrew Trick3a86ba72011-10-05 03:25:31 +00006402 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006403 BasicBlock *Header = L->getHeader();
6404 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00006405
Sanjoy Dasdd709962015-10-08 18:28:36 +00006406 BasicBlock *Latch = L->getLoopLatch();
6407 if (!Latch)
6408 return nullptr;
6409
Sanjoy Das4493b402015-10-07 17:38:25 +00006410 for (auto &I : *Header) {
6411 PHINode *PHI = dyn_cast<PHINode>(&I);
6412 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006413 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006414 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006415 CurrentIterVals[PHI] = StartCST;
6416 }
6417 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00006418 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006419
Sanjoy Dasdd709962015-10-08 18:28:36 +00006420 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00006421
6422 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00006423 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00006424 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00006425
Dan Gohman0bddac12009-02-24 18:55:53 +00006426 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00006427 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006428 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006429 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006430 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006431 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006432
Nick Lewyckya6674c72011-10-22 19:58:20 +00006433 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006434 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006435 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006436 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006437 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006438 if (!NextPHI)
6439 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006440 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006441
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006442 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6443
Nick Lewyckya6674c72011-10-22 19:58:20 +00006444 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6445 // cease to be able to evaluate one of them or if they stop evolving,
6446 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006447 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006448 for (const auto &I : CurrentIterVals) {
6449 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006450 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006451 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006452 }
6453 // We use two distinct loops because EvaluateExpression may invalidate any
6454 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006455 for (const auto &I : PHIsToCompute) {
6456 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006457 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006458 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006459 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006460 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006461 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006462 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006463 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006464 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006465
6466 // If all entries in CurrentIterVals == NextIterVals then we can stop
6467 // iterating, the loop can't continue to change.
6468 if (StoppedEvolving)
6469 return RetVal = CurrentIterVals[PN];
6470
Andrew Trick3a86ba72011-10-05 03:25:31 +00006471 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006472 }
6473}
6474
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006475const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006476 Value *Cond,
6477 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006478 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006479 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006480
Dan Gohman866971e2010-06-19 14:17:24 +00006481 // If the loop is canonicalized, the PHI will have exactly two entries.
6482 // That's the only form we support here.
6483 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6484
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006485 DenseMap<Instruction *, Constant *> CurrentIterVals;
6486 BasicBlock *Header = L->getHeader();
6487 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6488
Sanjoy Dasdd709962015-10-08 18:28:36 +00006489 BasicBlock *Latch = L->getLoopLatch();
6490 assert(Latch && "Should follow from NumIncomingValues == 2!");
6491
Sanjoy Das4493b402015-10-07 17:38:25 +00006492 for (auto &I : *Header) {
6493 PHINode *PHI = dyn_cast<PHINode>(&I);
6494 if (!PHI)
6495 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006496 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006497 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006498 CurrentIterVals[PHI] = StartCST;
6499 }
6500 if (!CurrentIterVals.count(PN))
6501 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006502
6503 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6504 // the loop symbolically to determine when the condition gets a value of
6505 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006506 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006507 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006508 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006509 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006510 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006511
Zhou Sheng75b871f2007-01-11 12:24:14 +00006512 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006513 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006514
Reid Spencer983e3b32007-03-01 07:25:48 +00006515 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006516 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006517 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006518 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006519
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006520 // Update all the PHI nodes for the next iteration.
6521 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006522
6523 // Create a list of which PHIs we need to compute. We want to do this before
6524 // calling EvaluateExpression on them because that may invalidate iterators
6525 // into CurrentIterVals.
6526 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006527 for (const auto &I : CurrentIterVals) {
6528 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006529 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006530 PHIsToCompute.push_back(PHI);
6531 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006532 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006533 Constant *&NextPHI = NextIterVals[PHI];
6534 if (NextPHI) continue; // Already computed!
6535
Sanjoy Dasdd709962015-10-08 18:28:36 +00006536 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006537 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006538 }
6539 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006540 }
6541
6542 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006543 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006544}
6545
Dan Gohman237d9e52009-09-03 15:00:26 +00006546/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006547/// at the specified scope in the program. The L value specifies a loop
6548/// nest to evaluate the expression at, where null is the top-level or a
6549/// specified loop is immediately inside of the loop.
6550///
6551/// This method can be used to compute the exit value for a variable defined
6552/// in a loop by querying what the value will hold in the parent loop.
6553///
Dan Gohman8ca08852009-05-24 23:25:42 +00006554/// In the case that a relevant loop exit value cannot be computed, the
6555/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006556const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006557 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6558 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006559 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006560 for (auto &LS : Values)
6561 if (LS.first == L)
6562 return LS.second ? LS.second : V;
6563
6564 Values.emplace_back(L, nullptr);
6565
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006566 // Otherwise compute it.
6567 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006568 for (auto &LS : reverse(ValuesAtScopes[V]))
6569 if (LS.first == L) {
6570 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006571 break;
6572 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006573 return C;
6574}
6575
Nick Lewyckya6674c72011-10-22 19:58:20 +00006576/// This builds up a Constant using the ConstantExpr interface. That way, we
6577/// will return Constants for objects which aren't represented by a
6578/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6579/// Returns NULL if the SCEV isn't representable as a Constant.
6580static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006581 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006582 case scCouldNotCompute:
6583 case scAddRecExpr:
6584 break;
6585 case scConstant:
6586 return cast<SCEVConstant>(V)->getValue();
6587 case scUnknown:
6588 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6589 case scSignExtend: {
6590 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6591 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6592 return ConstantExpr::getSExt(CastOp, SS->getType());
6593 break;
6594 }
6595 case scZeroExtend: {
6596 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6597 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6598 return ConstantExpr::getZExt(CastOp, SZ->getType());
6599 break;
6600 }
6601 case scTruncate: {
6602 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6603 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6604 return ConstantExpr::getTrunc(CastOp, ST->getType());
6605 break;
6606 }
6607 case scAddExpr: {
6608 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6609 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006610 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6611 unsigned AS = PTy->getAddressSpace();
6612 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6613 C = ConstantExpr::getBitCast(C, DestPtrTy);
6614 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006615 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6616 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006617 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006618
6619 // First pointer!
6620 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006621 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006622 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006623 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006624 // The offsets have been converted to bytes. We can add bytes to an
6625 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006626 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006627 }
6628
6629 // Don't bother trying to sum two pointers. We probably can't
6630 // statically compute a load that results from it anyway.
6631 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006632 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006633
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006634 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6635 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006636 C2 = ConstantExpr::getIntegerCast(
6637 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006638 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006639 } else
6640 C = ConstantExpr::getAdd(C, C2);
6641 }
6642 return C;
6643 }
6644 break;
6645 }
6646 case scMulExpr: {
6647 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6648 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6649 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006650 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006651 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6652 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006653 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006654 C = ConstantExpr::getMul(C, C2);
6655 }
6656 return C;
6657 }
6658 break;
6659 }
6660 case scUDivExpr: {
6661 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6662 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6663 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6664 if (LHS->getType() == RHS->getType())
6665 return ConstantExpr::getUDiv(LHS, RHS);
6666 break;
6667 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006668 case scSMaxExpr:
6669 case scUMaxExpr:
6670 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006671 }
Craig Topper9f008862014-04-15 04:59:12 +00006672 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006673}
6674
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006675const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006676 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006677
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006678 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006679 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006680 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006681 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006682 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006683 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6684 if (PHINode *PN = dyn_cast<PHINode>(I))
6685 if (PN->getParent() == LI->getHeader()) {
6686 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006687 // to see if the loop that contains it has a known backedge-taken
6688 // count. If so, we may be able to force computation of the exit
6689 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006690 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006691 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006692 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006693 // Okay, we know how many times the containing loop executes. If
6694 // this is a constant evolving PHI node, get the final value at
6695 // the specified iteration number.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006696 Constant *RV =
6697 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006698 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006699 }
6700 }
6701
Reid Spencere6328ca2006-12-04 21:33:23 +00006702 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006703 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006704 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006705 // result. This is particularly useful for computing loop exit values.
6706 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006707 SmallVector<Constant *, 4> Operands;
6708 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006709 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006710 if (Constant *C = dyn_cast<Constant>(Op)) {
6711 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006712 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006713 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006714
6715 // If any of the operands is non-constant and if they are
6716 // non-integer and non-pointer, don't even try to analyze them
6717 // with scev techniques.
6718 if (!isSCEVable(Op->getType()))
6719 return V;
6720
6721 const SCEV *OrigV = getSCEV(Op);
6722 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6723 MadeImprovement |= OrigV != OpV;
6724
Nick Lewyckya6674c72011-10-22 19:58:20 +00006725 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006726 if (!C) return V;
6727 if (C->getType() != Op->getType())
6728 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6729 Op->getType(),
6730 false),
6731 C, Op->getType());
6732 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006733 }
Dan Gohmance973df2009-06-24 04:48:43 +00006734
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006735 // Check to see if getSCEVAtScope actually made an improvement.
6736 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006737 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006738 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006739 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006740 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006741 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006742 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6743 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006744 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006745 } else
Manuel Jacobe9024592016-01-21 06:33:22 +00006746 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006747 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006748 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006749 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006750 }
6751 }
6752
6753 // This is some other type of SCEVUnknown, just return it.
6754 return V;
6755 }
6756
Dan Gohmana30370b2009-05-04 22:02:23 +00006757 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006758 // Avoid performing the look-up in the common case where the specified
6759 // expression has no loop-variant portions.
6760 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006761 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006762 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006763 // Okay, at least one of these operands is loop variant but might be
6764 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006765 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6766 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006767 NewOps.push_back(OpAtScope);
6768
6769 for (++i; i != e; ++i) {
6770 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006771 NewOps.push_back(OpAtScope);
6772 }
6773 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006774 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006775 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006776 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006777 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006778 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006779 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006780 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006781 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006782 }
6783 }
6784 // If we got here, all operands are loop invariant.
6785 return Comm;
6786 }
6787
Dan Gohmana30370b2009-05-04 22:02:23 +00006788 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006789 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6790 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006791 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6792 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006793 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006794 }
6795
6796 // If this is a loop recurrence for a loop that does not contain L, then we
6797 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006798 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006799 // First, attempt to evaluate each operand.
6800 // Avoid performing the look-up in the common case where the specified
6801 // expression has no loop-variant portions.
6802 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6803 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6804 if (OpAtScope == AddRec->getOperand(i))
6805 continue;
6806
6807 // Okay, at least one of these operands is loop variant but might be
6808 // foldable. Build a new instance of the folded commutative expression.
6809 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6810 AddRec->op_begin()+i);
6811 NewOps.push_back(OpAtScope);
6812 for (++i; i != e; ++i)
6813 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6814
Andrew Trick759ba082011-04-27 01:21:25 +00006815 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006816 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006817 AddRec->getNoWrapFlags(SCEV::FlagNW));
6818 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006819 // The addrec may be folded to a nonrecurrence, for example, if the
6820 // induction variable is multiplied by zero after constant folding. Go
6821 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006822 if (!AddRec)
6823 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006824 break;
6825 }
6826
6827 // If the scope is outside the addrec's loop, evaluate it by using the
6828 // loop exit value of the addrec.
6829 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006830 // To evaluate this recurrence, we need to know how many times the AddRec
6831 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006832 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006833 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006834
Eli Friedman61f67622008-08-04 23:49:06 +00006835 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006836 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006837 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006838
Dan Gohman8ca08852009-05-24 23:25:42 +00006839 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006840 }
6841
Dan Gohmana30370b2009-05-04 22:02:23 +00006842 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006843 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006844 if (Op == Cast->getOperand())
6845 return Cast; // must be loop invariant
6846 return getZeroExtendExpr(Op, Cast->getType());
6847 }
6848
Dan Gohmana30370b2009-05-04 22:02:23 +00006849 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006850 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006851 if (Op == Cast->getOperand())
6852 return Cast; // must be loop invariant
6853 return getSignExtendExpr(Op, Cast->getType());
6854 }
6855
Dan Gohmana30370b2009-05-04 22:02:23 +00006856 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006857 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006858 if (Op == Cast->getOperand())
6859 return Cast; // must be loop invariant
6860 return getTruncateExpr(Op, Cast->getType());
6861 }
6862
Torok Edwinfbcc6632009-07-14 16:55:14 +00006863 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006864}
6865
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006866/// getSCEVAtScope - This is a convenience function which does
6867/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006868const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006869 return getSCEVAtScope(getSCEV(V), L);
6870}
6871
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006872/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6873/// following equation:
6874///
6875/// A * X = B (mod N)
6876///
6877/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6878/// A and B isn't important.
6879///
6880/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006881static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006882 ScalarEvolution &SE) {
6883 uint32_t BW = A.getBitWidth();
6884 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6885 assert(A != 0 && "A must be non-zero.");
6886
6887 // 1. D = gcd(A, N)
6888 //
6889 // The gcd of A and N may have only one prime factor: 2. The number of
6890 // trailing zeros in A is its multiplicity
6891 uint32_t Mult2 = A.countTrailingZeros();
6892 // D = 2^Mult2
6893
6894 // 2. Check if B is divisible by D.
6895 //
6896 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6897 // is not less than multiplicity of this prime factor for D.
6898 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006899 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006900
6901 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6902 // modulo (N / D).
6903 //
6904 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6905 // bit width during computations.
6906 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6907 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006908 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006909 APInt I = AD.multiplicativeInverse(Mod);
6910
6911 // 4. Compute the minimum unsigned root of the equation:
6912 // I * (B / D) mod (N / D)
6913 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6914
6915 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6916 // bits.
6917 return SE.getConstant(Result.trunc(BW));
6918}
Chris Lattnerd934c702004-04-02 20:23:17 +00006919
6920/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6921/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6922/// might be the same) or two SCEVCouldNotCompute objects.
6923///
Dan Gohmanaf752342009-07-07 17:06:11 +00006924static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006925SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006926 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006927 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6928 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6929 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006930
Chris Lattnerd934c702004-04-02 20:23:17 +00006931 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006932 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006933 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006934 return {CNC, CNC};
Chris Lattnerd934c702004-04-02 20:23:17 +00006935 }
6936
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006937 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6938 const APInt &L = LC->getAPInt();
6939 const APInt &M = MC->getAPInt();
6940 const APInt &N = NC->getAPInt();
Reid Spencer983e3b32007-03-01 07:25:48 +00006941 APInt Two(BitWidth, 2);
6942 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006943
Dan Gohmance973df2009-06-24 04:48:43 +00006944 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006945 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006946 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006947 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6948 // The B coefficient is M-N/2
6949 APInt B(M);
6950 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006951
Reid Spencer983e3b32007-03-01 07:25:48 +00006952 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006953 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006954
Reid Spencer983e3b32007-03-01 07:25:48 +00006955 // Compute the B^2-4ac term.
6956 APInt SqrtTerm(B);
6957 SqrtTerm *= B;
6958 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006959
Nick Lewyckyfb780832012-08-01 09:14:36 +00006960 if (SqrtTerm.isNegative()) {
6961 // The loop is provably infinite.
6962 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006963 return {CNC, CNC};
Nick Lewyckyfb780832012-08-01 09:14:36 +00006964 }
6965
Reid Spencer983e3b32007-03-01 07:25:48 +00006966 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6967 // integer value or else APInt::sqrt() will assert.
6968 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006969
Dan Gohmance973df2009-06-24 04:48:43 +00006970 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006971 // The divisions must be performed as signed divisions.
6972 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006973 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006974 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006975 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006976 return {CNC, CNC};
Nick Lewycky7b14e202008-11-03 02:43:49 +00006977 }
6978
Owen Anderson47db9412009-07-22 00:24:57 +00006979 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006980
6981 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006982 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006983 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006984 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006985
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006986 return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
Nick Lewycky31555522011-10-03 07:10:45 +00006987 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006988}
6989
6990/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006991/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006992///
6993/// This is only used for loops with a "x != y" exit test. The exit condition is
6994/// now expressed as a single expression, V = x-y. So the exit test is
6995/// effectively V != 0. We know and take advantage of the fact that this
6996/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006997ScalarEvolution::ExitLimit
Silviu Baranga6f444df2016-04-08 14:29:09 +00006998ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
6999 bool AllowPredicates) {
7000 SCEVUnionPredicate P;
Chris Lattnerd934c702004-04-02 20:23:17 +00007001 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00007002 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007003 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00007004 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007005 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007006 }
7007
Dan Gohman48f82222009-05-04 22:30:44 +00007008 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007009 if (!AddRec && AllowPredicates)
7010 // Try to make this an AddRec using runtime tests, in the first X
7011 // iterations of this loop, where X is the SCEV expression found by the
7012 // algorithm below.
7013 AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7014
Chris Lattnerd934c702004-04-02 20:23:17 +00007015 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007016 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007017
Chris Lattnerdff679f2011-01-09 22:39:48 +00007018 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7019 // the quadratic equation to solve it.
7020 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7021 std::pair<const SCEV *,const SCEV *> Roots =
7022 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00007023 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7024 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00007025 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007026 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007027 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00007028 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
7029 R1->getValue(),
7030 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007031 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007032 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00007033
Chris Lattnerd934c702004-04-02 20:23:17 +00007034 // We can only use this value if the chrec ends up with an exact zero
7035 // value at this index. When solving for "X*X != 5", for example, we
7036 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00007037 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00007038 if (Val->isZero())
Silviu Baranga6f444df2016-04-08 14:29:09 +00007039 return ExitLimit(R1, R1, P); // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00007040 }
7041 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00007042 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007043 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007044
Chris Lattnerdff679f2011-01-09 22:39:48 +00007045 // Otherwise we can only handle this if it is affine.
7046 if (!AddRec->isAffine())
7047 return getCouldNotCompute();
7048
7049 // If this is an affine expression, the execution count of this branch is
7050 // the minimum unsigned root of the following equation:
7051 //
7052 // Start + Step*N = 0 (mod 2^BW)
7053 //
7054 // equivalent to:
7055 //
7056 // Step*N = -Start (mod 2^BW)
7057 //
7058 // where BW is the common bit width of Start and Step.
7059
7060 // Get the initial value for the loop.
7061 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7062 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7063
7064 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00007065 //
7066 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7067 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7068 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7069 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00007070 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00007071 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00007072 return getCouldNotCompute();
7073
Andrew Trick8b55b732011-03-14 16:50:06 +00007074 // For positive steps (counting up until unsigned overflow):
7075 // N = -Start/Step (as unsigned)
7076 // For negative steps (counting down to zero):
7077 // N = Start/-Step
7078 // First compute the unsigned distance from zero in the direction of Step.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007079 bool CountDown = StepC->getAPInt().isNegative();
Andrew Trickf1781db2011-03-14 17:28:02 +00007080 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00007081
7082 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00007083 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7084 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00007085 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7086 ConstantRange CR = getUnsignedRange(Start);
7087 const SCEV *MaxBECount;
7088 if (!CountDown && CR.getUnsignedMin().isMinValue())
7089 // When counting up, the worst starting value is 1, not 0.
7090 MaxBECount = CR.getUnsignedMax().isMinValue()
7091 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7092 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7093 else
7094 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7095 : -CR.getUnsignedMin());
Silviu Baranga6f444df2016-04-08 14:29:09 +00007096 return ExitLimit(Distance, MaxBECount, P);
Nick Lewycky31555522011-10-03 07:10:45 +00007097 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00007098
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007099 // As a special case, handle the instance where Step is a positive power of
7100 // two. In this case, determining whether Step divides Distance evenly can be
7101 // done by counting and comparing the number of trailing zeros of Step and
7102 // Distance.
7103 if (!CountDown) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007104 const APInt &StepV = StepC->getAPInt();
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007105 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
7106 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7107 // case is not handled as this code is guarded by !CountDown.
7108 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007109 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7110 // Here we've constrained the equation to be of the form
7111 //
7112 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
7113 //
7114 // where we're operating on a W bit wide integer domain and k is
7115 // non-negative. The smallest unsigned solution for X is the trip count.
7116 //
7117 // (0) is equivalent to:
7118 //
7119 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
7120 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7121 // <=> 2^k * Distance' - X = L * 2^(W - N)
7122 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7123 //
7124 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7125 // by 2^(W - N).
7126 //
7127 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7128 //
7129 // E.g. say we're solving
7130 //
7131 // 2 * Val = 2 * X (in i8) ... (3)
7132 //
7133 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7134 //
7135 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7136 // necessarily the smallest unsigned value of X that satisfies (3).
7137 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7138 // is i8 1, not i8 -127
7139
7140 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7141
7142 // Since SCEV does not have a URem node, we construct one using a truncate
7143 // and a zero extend.
7144
7145 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7146 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7147 auto *WideTy = Distance->getType();
7148
Silviu Baranga6f444df2016-04-08 14:29:09 +00007149 const SCEV *Limit =
7150 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7151 return ExitLimit(Limit, Limit, P);
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007152 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007153 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007154
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007155 // If the condition controls loop exit (the loop exits only if the expression
7156 // is true) and the addition is no-wrap we can use unsigned divide to
7157 // compute the backedge count. In this case, the step may not divide the
7158 // distance, but we don't care because if the condition is "missed" the loop
7159 // will have undefined behavior due to wrapping.
Sanjoy Das76c48e02016-02-04 18:21:54 +00007160 if (ControlsExit && AddRec->hasNoSelfWrap()) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007161 const SCEV *Exact =
7162 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007163 return ExitLimit(Exact, Exact, P);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007164 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007165
Chris Lattnerdff679f2011-01-09 22:39:48 +00007166 // Then, try to solve the above equation provided that Start is constant.
Silviu Baranga6f444df2016-04-08 14:29:09 +00007167 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7168 const SCEV *E = SolveLinEquationWithOverflow(
7169 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7170 return ExitLimit(E, E, P);
7171 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007172 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007173}
7174
7175/// HowFarToNonZero - Return the number of times a backedge checking the
7176/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007177/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00007178ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00007179ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007180 // Loops that look like: while (X == 0) are very strange indeed. We don't
7181 // handle them yet except for the trivial case. This could be expanded in the
7182 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00007183
Chris Lattnerd934c702004-04-02 20:23:17 +00007184 // If the value is a constant, check to see if it is known to be non-zero
7185 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00007186 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00007187 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007188 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007189 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007190 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007191
Chris Lattnerd934c702004-04-02 20:23:17 +00007192 // We could implement others, but I really doubt anyone writes loops like
7193 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007194 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007195}
7196
Dan Gohmanf9081a22008-09-15 22:18:04 +00007197/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
7198/// (which may not be an immediate predecessor) which has exactly one
7199/// successor from which BB is reachable, or null if no such block is
7200/// found.
7201///
Dan Gohman4e3c1132010-04-15 16:19:08 +00007202std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00007203ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00007204 // If the block has a unique predecessor, then there is no path from the
7205 // predecessor to the block that does not go through the direct edge
7206 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00007207 if (BasicBlock *Pred = BB->getSinglePredecessor())
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007208 return {Pred, BB};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007209
7210 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007211 // If the header has a unique predecessor outside the loop, it must be
7212 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007213 if (Loop *L = LI.getLoopFor(BB))
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007214 return {L->getLoopPredecessor(), L->getHeader()};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007215
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007216 return {nullptr, nullptr};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007217}
7218
Dan Gohman450f4e02009-06-20 00:35:32 +00007219/// HasSameValue - SCEV structural equivalence is usually sufficient for
7220/// testing whether two expressions are equal, however for the purposes of
7221/// looking for a condition guarding a loop, it can be useful to be a little
7222/// more general, since a front-end may have replicated the controlling
7223/// expression.
7224///
Dan Gohmanaf752342009-07-07 17:06:11 +00007225static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00007226 // Quick check to see if they are the same SCEV.
7227 if (A == B) return true;
7228
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007229 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7230 // Not all instructions that are "identical" compute the same value. For
7231 // instance, two distinct alloca instructions allocating the same type are
7232 // identical and do not read memory; but compute distinct values.
7233 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7234 };
7235
Dan Gohman450f4e02009-06-20 00:35:32 +00007236 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7237 // two different instructions with the same value. Check for this case.
7238 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7239 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7240 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7241 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007242 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00007243 return true;
7244
7245 // Otherwise assume they may have a different value.
7246 return false;
7247}
7248
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007249/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00007250/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007251///
7252bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007253 const SCEV *&LHS, const SCEV *&RHS,
7254 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007255 bool Changed = false;
7256
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007257 // If we hit the max recursion limit bail out.
7258 if (Depth >= 3)
7259 return false;
7260
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007261 // Canonicalize a constant to the right side.
7262 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7263 // Check for both operands constant.
7264 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7265 if (ConstantExpr::getICmp(Pred,
7266 LHSC->getValue(),
7267 RHSC->getValue())->isNullValue())
7268 goto trivially_false;
7269 else
7270 goto trivially_true;
7271 }
7272 // Otherwise swap the operands to put the constant on the right.
7273 std::swap(LHS, RHS);
7274 Pred = ICmpInst::getSwappedPredicate(Pred);
7275 Changed = true;
7276 }
7277
7278 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00007279 // addrec's loop, put the addrec on the left. Also make a dominance check,
7280 // as both operands could be addrecs loop-invariant in each other's loop.
7281 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7282 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00007283 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007284 std::swap(LHS, RHS);
7285 Pred = ICmpInst::getSwappedPredicate(Pred);
7286 Changed = true;
7287 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00007288 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007289
7290 // If there's a constant operand, canonicalize comparisons with boundary
7291 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7292 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007293 const APInt &RA = RC->getAPInt();
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007294 switch (Pred) {
7295 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7296 case ICmpInst::ICMP_EQ:
7297 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007298 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7299 if (!RA)
7300 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7301 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00007302 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7303 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007304 RHS = AE->getOperand(1);
7305 LHS = ME->getOperand(1);
7306 Changed = true;
7307 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007308 break;
7309 case ICmpInst::ICMP_UGE:
7310 if ((RA - 1).isMinValue()) {
7311 Pred = ICmpInst::ICMP_NE;
7312 RHS = getConstant(RA - 1);
7313 Changed = true;
7314 break;
7315 }
7316 if (RA.isMaxValue()) {
7317 Pred = ICmpInst::ICMP_EQ;
7318 Changed = true;
7319 break;
7320 }
7321 if (RA.isMinValue()) goto trivially_true;
7322
7323 Pred = ICmpInst::ICMP_UGT;
7324 RHS = getConstant(RA - 1);
7325 Changed = true;
7326 break;
7327 case ICmpInst::ICMP_ULE:
7328 if ((RA + 1).isMaxValue()) {
7329 Pred = ICmpInst::ICMP_NE;
7330 RHS = getConstant(RA + 1);
7331 Changed = true;
7332 break;
7333 }
7334 if (RA.isMinValue()) {
7335 Pred = ICmpInst::ICMP_EQ;
7336 Changed = true;
7337 break;
7338 }
7339 if (RA.isMaxValue()) goto trivially_true;
7340
7341 Pred = ICmpInst::ICMP_ULT;
7342 RHS = getConstant(RA + 1);
7343 Changed = true;
7344 break;
7345 case ICmpInst::ICMP_SGE:
7346 if ((RA - 1).isMinSignedValue()) {
7347 Pred = ICmpInst::ICMP_NE;
7348 RHS = getConstant(RA - 1);
7349 Changed = true;
7350 break;
7351 }
7352 if (RA.isMaxSignedValue()) {
7353 Pred = ICmpInst::ICMP_EQ;
7354 Changed = true;
7355 break;
7356 }
7357 if (RA.isMinSignedValue()) goto trivially_true;
7358
7359 Pred = ICmpInst::ICMP_SGT;
7360 RHS = getConstant(RA - 1);
7361 Changed = true;
7362 break;
7363 case ICmpInst::ICMP_SLE:
7364 if ((RA + 1).isMaxSignedValue()) {
7365 Pred = ICmpInst::ICMP_NE;
7366 RHS = getConstant(RA + 1);
7367 Changed = true;
7368 break;
7369 }
7370 if (RA.isMinSignedValue()) {
7371 Pred = ICmpInst::ICMP_EQ;
7372 Changed = true;
7373 break;
7374 }
7375 if (RA.isMaxSignedValue()) goto trivially_true;
7376
7377 Pred = ICmpInst::ICMP_SLT;
7378 RHS = getConstant(RA + 1);
7379 Changed = true;
7380 break;
7381 case ICmpInst::ICMP_UGT:
7382 if (RA.isMinValue()) {
7383 Pred = ICmpInst::ICMP_NE;
7384 Changed = true;
7385 break;
7386 }
7387 if ((RA + 1).isMaxValue()) {
7388 Pred = ICmpInst::ICMP_EQ;
7389 RHS = getConstant(RA + 1);
7390 Changed = true;
7391 break;
7392 }
7393 if (RA.isMaxValue()) goto trivially_false;
7394 break;
7395 case ICmpInst::ICMP_ULT:
7396 if (RA.isMaxValue()) {
7397 Pred = ICmpInst::ICMP_NE;
7398 Changed = true;
7399 break;
7400 }
7401 if ((RA - 1).isMinValue()) {
7402 Pred = ICmpInst::ICMP_EQ;
7403 RHS = getConstant(RA - 1);
7404 Changed = true;
7405 break;
7406 }
7407 if (RA.isMinValue()) goto trivially_false;
7408 break;
7409 case ICmpInst::ICMP_SGT:
7410 if (RA.isMinSignedValue()) {
7411 Pred = ICmpInst::ICMP_NE;
7412 Changed = true;
7413 break;
7414 }
7415 if ((RA + 1).isMaxSignedValue()) {
7416 Pred = ICmpInst::ICMP_EQ;
7417 RHS = getConstant(RA + 1);
7418 Changed = true;
7419 break;
7420 }
7421 if (RA.isMaxSignedValue()) goto trivially_false;
7422 break;
7423 case ICmpInst::ICMP_SLT:
7424 if (RA.isMaxSignedValue()) {
7425 Pred = ICmpInst::ICMP_NE;
7426 Changed = true;
7427 break;
7428 }
7429 if ((RA - 1).isMinSignedValue()) {
7430 Pred = ICmpInst::ICMP_EQ;
7431 RHS = getConstant(RA - 1);
7432 Changed = true;
7433 break;
7434 }
7435 if (RA.isMinSignedValue()) goto trivially_false;
7436 break;
7437 }
7438 }
7439
7440 // Check for obvious equality.
7441 if (HasSameValue(LHS, RHS)) {
7442 if (ICmpInst::isTrueWhenEqual(Pred))
7443 goto trivially_true;
7444 if (ICmpInst::isFalseWhenEqual(Pred))
7445 goto trivially_false;
7446 }
7447
Dan Gohman81585c12010-05-03 16:35:17 +00007448 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7449 // adding or subtracting 1 from one of the operands.
7450 switch (Pred) {
7451 case ICmpInst::ICMP_SLE:
7452 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7453 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007454 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007455 Pred = ICmpInst::ICMP_SLT;
7456 Changed = true;
7457 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007458 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007459 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007460 Pred = ICmpInst::ICMP_SLT;
7461 Changed = true;
7462 }
7463 break;
7464 case ICmpInst::ICMP_SGE:
7465 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007466 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007467 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007468 Pred = ICmpInst::ICMP_SGT;
7469 Changed = true;
7470 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7471 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007472 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007473 Pred = ICmpInst::ICMP_SGT;
7474 Changed = true;
7475 }
7476 break;
7477 case ICmpInst::ICMP_ULE:
7478 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007479 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007480 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007481 Pred = ICmpInst::ICMP_ULT;
7482 Changed = true;
7483 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007484 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007485 Pred = ICmpInst::ICMP_ULT;
7486 Changed = true;
7487 }
7488 break;
7489 case ICmpInst::ICMP_UGE:
7490 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007491 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007492 Pred = ICmpInst::ICMP_UGT;
7493 Changed = true;
7494 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007495 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007496 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007497 Pred = ICmpInst::ICMP_UGT;
7498 Changed = true;
7499 }
7500 break;
7501 default:
7502 break;
7503 }
7504
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007505 // TODO: More simplifications are possible here.
7506
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007507 // Recursively simplify until we either hit a recursion limit or nothing
7508 // changes.
7509 if (Changed)
7510 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7511
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007512 return Changed;
7513
7514trivially_true:
7515 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007516 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007517 Pred = ICmpInst::ICMP_EQ;
7518 return true;
7519
7520trivially_false:
7521 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007522 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007523 Pred = ICmpInst::ICMP_NE;
7524 return true;
7525}
7526
Dan Gohmane65c9172009-07-13 21:35:55 +00007527bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7528 return getSignedRange(S).getSignedMax().isNegative();
7529}
7530
7531bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7532 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7533}
7534
7535bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7536 return !getSignedRange(S).getSignedMin().isNegative();
7537}
7538
7539bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7540 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7541}
7542
7543bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7544 return isKnownNegative(S) || isKnownPositive(S);
7545}
7546
7547bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7548 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007549 // Canonicalize the inputs first.
7550 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7551
Dan Gohman07591692010-04-11 22:16:48 +00007552 // If LHS or RHS is an addrec, check to see if the condition is true in
7553 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007554 // If LHS and RHS are both addrec, both conditions must be true in
7555 // every iteration of the loop.
7556 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7557 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7558 bool LeftGuarded = false;
7559 bool RightGuarded = false;
7560 if (LAR) {
7561 const Loop *L = LAR->getLoop();
7562 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7563 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7564 if (!RAR) return true;
7565 LeftGuarded = true;
7566 }
7567 }
7568 if (RAR) {
7569 const Loop *L = RAR->getLoop();
7570 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7571 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7572 if (!LAR) return true;
7573 RightGuarded = true;
7574 }
7575 }
7576 if (LeftGuarded && RightGuarded)
7577 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007578
Sanjoy Das7d910f22015-10-02 18:50:30 +00007579 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7580 return true;
7581
Dan Gohman07591692010-04-11 22:16:48 +00007582 // Otherwise see what can be done with known constant ranges.
Sanjoy Das401e6312016-02-01 20:48:10 +00007583 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
Dan Gohman07591692010-04-11 22:16:48 +00007584}
7585
Sanjoy Das5dab2052015-07-27 21:42:49 +00007586bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7587 ICmpInst::Predicate Pred,
7588 bool &Increasing) {
7589 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7590
7591#ifndef NDEBUG
7592 // Verify an invariant: inverting the predicate should turn a monotonically
7593 // increasing change to a monotonically decreasing one, and vice versa.
7594 bool IncreasingSwapped;
7595 bool ResultSwapped = isMonotonicPredicateImpl(
7596 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7597
7598 assert(Result == ResultSwapped && "should be able to analyze both!");
7599 if (ResultSwapped)
7600 assert(Increasing == !IncreasingSwapped &&
7601 "monotonicity should flip as we flip the predicate");
7602#endif
7603
7604 return Result;
7605}
7606
7607bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7608 ICmpInst::Predicate Pred,
7609 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007610
7611 // A zero step value for LHS means the induction variable is essentially a
7612 // loop invariant value. We don't really depend on the predicate actually
7613 // flipping from false to true (for increasing predicates, and the other way
7614 // around for decreasing predicates), all we care about is that *if* the
7615 // predicate changes then it only changes from false to true.
7616 //
7617 // A zero step value in itself is not very useful, but there may be places
7618 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7619 // as general as possible.
7620
Sanjoy Das366acc12015-08-06 20:43:41 +00007621 switch (Pred) {
7622 default:
7623 return false; // Conservative answer
7624
7625 case ICmpInst::ICMP_UGT:
7626 case ICmpInst::ICMP_UGE:
7627 case ICmpInst::ICMP_ULT:
7628 case ICmpInst::ICMP_ULE:
Sanjoy Das76c48e02016-02-04 18:21:54 +00007629 if (!LHS->hasNoUnsignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007630 return false;
7631
7632 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007633 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007634
7635 case ICmpInst::ICMP_SGT:
7636 case ICmpInst::ICMP_SGE:
7637 case ICmpInst::ICMP_SLT:
7638 case ICmpInst::ICMP_SLE: {
Sanjoy Das76c48e02016-02-04 18:21:54 +00007639 if (!LHS->hasNoSignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007640 return false;
7641
7642 const SCEV *Step = LHS->getStepRecurrence(*this);
7643
7644 if (isKnownNonNegative(Step)) {
7645 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7646 return true;
7647 }
7648
7649 if (isKnownNonPositive(Step)) {
7650 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7651 return true;
7652 }
7653
7654 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007655 }
7656
Sanjoy Das5dab2052015-07-27 21:42:49 +00007657 }
7658
Sanjoy Das366acc12015-08-06 20:43:41 +00007659 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007660}
7661
7662bool ScalarEvolution::isLoopInvariantPredicate(
7663 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7664 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7665 const SCEV *&InvariantRHS) {
7666
7667 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7668 if (!isLoopInvariant(RHS, L)) {
7669 if (!isLoopInvariant(LHS, L))
7670 return false;
7671
7672 std::swap(LHS, RHS);
7673 Pred = ICmpInst::getSwappedPredicate(Pred);
7674 }
7675
7676 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7677 if (!ArLHS || ArLHS->getLoop() != L)
7678 return false;
7679
7680 bool Increasing;
7681 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7682 return false;
7683
7684 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7685 // true as the loop iterates, and the backedge is control dependent on
7686 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7687 //
7688 // * if the predicate was false in the first iteration then the predicate
7689 // is never evaluated again, since the loop exits without taking the
7690 // backedge.
7691 // * if the predicate was true in the first iteration then it will
7692 // continue to be true for all future iterations since it is
7693 // monotonically increasing.
7694 //
7695 // For both the above possibilities, we can replace the loop varying
7696 // predicate with its value on the first iteration of the loop (which is
7697 // loop invariant).
7698 //
7699 // A similar reasoning applies for a monotonically decreasing predicate, by
7700 // replacing true with false and false with true in the above two bullets.
7701
7702 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7703
7704 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7705 return false;
7706
7707 InvariantPred = Pred;
7708 InvariantLHS = ArLHS->getStart();
7709 InvariantRHS = RHS;
7710 return true;
7711}
7712
Sanjoy Das401e6312016-02-01 20:48:10 +00007713bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7714 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007715 if (HasSameValue(LHS, RHS))
7716 return ICmpInst::isTrueWhenEqual(Pred);
7717
Dan Gohman07591692010-04-11 22:16:48 +00007718 // This code is split out from isKnownPredicate because it is called from
7719 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007720
Sanjoy Das4c7b6d72016-02-01 20:48:14 +00007721 auto CheckRanges =
7722 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7723 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7724 .contains(RangeLHS);
7725 };
7726
7727 // The check at the top of the function catches the case where the values are
7728 // known to be equal.
7729 if (Pred == CmpInst::ICMP_EQ)
7730 return false;
7731
7732 if (Pred == CmpInst::ICMP_NE)
7733 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7734 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7735 isKnownNonZero(getMinusSCEV(LHS, RHS));
7736
7737 if (CmpInst::isSigned(Pred))
7738 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7739
7740 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
Dan Gohmane65c9172009-07-13 21:35:55 +00007741}
7742
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007743bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7744 const SCEV *LHS,
7745 const SCEV *RHS) {
7746
7747 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7748 // Return Y via OutY.
7749 auto MatchBinaryAddToConst =
7750 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7751 SCEV::NoWrapFlags ExpectedFlags) {
7752 const SCEV *NonConstOp, *ConstOp;
7753 SCEV::NoWrapFlags FlagsPresent;
7754
7755 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7756 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7757 return false;
7758
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007759 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007760 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7761 };
7762
7763 APInt C;
7764
7765 switch (Pred) {
7766 default:
7767 break;
7768
7769 case ICmpInst::ICMP_SGE:
7770 std::swap(LHS, RHS);
7771 case ICmpInst::ICMP_SLE:
7772 // X s<= (X + C)<nsw> if C >= 0
7773 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7774 return true;
7775
7776 // (X + C)<nsw> s<= X if C <= 0
7777 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7778 !C.isStrictlyPositive())
7779 return true;
7780 break;
7781
7782 case ICmpInst::ICMP_SGT:
7783 std::swap(LHS, RHS);
7784 case ICmpInst::ICMP_SLT:
7785 // X s< (X + C)<nsw> if C > 0
7786 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7787 C.isStrictlyPositive())
7788 return true;
7789
7790 // (X + C)<nsw> s< X if C < 0
7791 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7792 return true;
7793 break;
7794 }
7795
7796 return false;
7797}
7798
Sanjoy Das7d910f22015-10-02 18:50:30 +00007799bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7800 const SCEV *LHS,
7801 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007802 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007803 return false;
7804
7805 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7806 // the stack can result in exponential time complexity.
7807 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7808
7809 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7810 //
7811 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7812 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7813 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7814 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7815 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007816 return isKnownNonNegative(RHS) &&
7817 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7818 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007819}
7820
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007821bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7822 ICmpInst::Predicate Pred,
7823 const SCEV *LHS, const SCEV *RHS) {
7824 // No need to even try if we know the module has no guards.
7825 if (!HasGuards)
7826 return false;
7827
7828 return any_of(*BB, [&](Instruction &I) {
7829 using namespace llvm::PatternMatch;
7830
7831 Value *Condition;
7832 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7833 m_Value(Condition))) &&
7834 isImpliedCond(Pred, LHS, RHS, Condition, false);
7835 });
7836}
7837
Dan Gohmane65c9172009-07-13 21:35:55 +00007838/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7839/// protected by a conditional between LHS and RHS. This is used to
7840/// to eliminate casts.
7841bool
7842ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7843 ICmpInst::Predicate Pred,
7844 const SCEV *LHS, const SCEV *RHS) {
7845 // Interpret a null as meaning no loop, where there is obviously no guard
7846 // (interprocedural conditions notwithstanding).
7847 if (!L) return true;
7848
Sanjoy Das401e6312016-02-01 20:48:10 +00007849 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7850 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007851
Dan Gohmane65c9172009-07-13 21:35:55 +00007852 BasicBlock *Latch = L->getLoopLatch();
7853 if (!Latch)
7854 return false;
7855
7856 BranchInst *LoopContinuePredicate =
7857 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007858 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7859 isImpliedCond(Pred, LHS, RHS,
7860 LoopContinuePredicate->getCondition(),
7861 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7862 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007863
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007864 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007865 // -- that can lead to O(n!) time complexity.
7866 if (WalkingBEDominatingConds)
7867 return false;
7868
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007869 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007870
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007871 // See if we can exploit a trip count to prove the predicate.
7872 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7873 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7874 if (LatchBECount != getCouldNotCompute()) {
7875 // We know that Latch branches back to the loop header exactly
7876 // LatchBECount times. This means the backdege condition at Latch is
7877 // equivalent to "{0,+,1} u< LatchBECount".
7878 Type *Ty = LatchBECount->getType();
7879 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7880 const SCEV *LoopCounter =
7881 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7882 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7883 LatchBECount))
7884 return true;
7885 }
7886
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007887 // Check conditions due to any @llvm.assume intrinsics.
7888 for (auto &AssumeVH : AC.assumptions()) {
7889 if (!AssumeVH)
7890 continue;
7891 auto *CI = cast<CallInst>(AssumeVH);
7892 if (!DT.dominates(CI, Latch->getTerminator()))
7893 continue;
7894
7895 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7896 return true;
7897 }
7898
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007899 // If the loop is not reachable from the entry block, we risk running into an
7900 // infinite loop as we walk up into the dom tree. These loops do not matter
7901 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007902 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007903 return false;
7904
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007905 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7906 return true;
7907
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007908 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7909 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007910
7911 assert(DTN && "should reach the loop header before reaching the root!");
7912
7913 BasicBlock *BB = DTN->getBlock();
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007914 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7915 return true;
7916
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007917 BasicBlock *PBB = BB->getSinglePredecessor();
7918 if (!PBB)
7919 continue;
7920
7921 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7922 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7923 continue;
7924
7925 Value *Condition = ContinuePredicate->getCondition();
7926
7927 // If we have an edge `E` within the loop body that dominates the only
7928 // latch, the condition guarding `E` also guards the backedge. This
7929 // reasoning works only for loops with a single latch.
7930
7931 BasicBlockEdge DominatingEdge(PBB, BB);
7932 if (DominatingEdge.isSingleEdge()) {
7933 // We're constructively (and conservatively) enumerating edges within the
7934 // loop body that dominate the latch. The dominator tree better agree
7935 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007936 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007937
7938 if (isImpliedCond(Pred, LHS, RHS, Condition,
7939 BB != ContinuePredicate->getSuccessor(0)))
7940 return true;
7941 }
7942 }
7943
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007944 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007945}
7946
Dan Gohmanb50349a2010-04-11 19:27:13 +00007947/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007948/// by a conditional between LHS and RHS. This is used to help avoid max
7949/// expressions in loop trip counts, and to eliminate casts.
7950bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007951ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7952 ICmpInst::Predicate Pred,
7953 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007954 // Interpret a null as meaning no loop, where there is obviously no guard
7955 // (interprocedural conditions notwithstanding).
7956 if (!L) return false;
7957
Sanjoy Das401e6312016-02-01 20:48:10 +00007958 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7959 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007960
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007961 // Starting at the loop predecessor, climb up the predecessor chain, as long
7962 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007963 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007964 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007965 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007966 Pair.first;
7967 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007968
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007969 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7970 return true;
7971
Dan Gohman2a62fd92008-08-12 20:17:31 +00007972 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007973 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007974 if (!LoopEntryPredicate ||
7975 LoopEntryPredicate->isUnconditional())
7976 continue;
7977
Dan Gohmane18c2d62010-08-10 23:46:30 +00007978 if (isImpliedCond(Pred, LHS, RHS,
7979 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007980 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007981 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007982 }
7983
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007984 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007985 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007986 if (!AssumeVH)
7987 continue;
7988 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007989 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007990 continue;
7991
7992 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7993 return true;
7994 }
7995
Dan Gohman2a62fd92008-08-12 20:17:31 +00007996 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007997}
7998
Benjamin Kramer039b1042015-10-28 13:54:36 +00007999namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008000/// RAII wrapper to prevent recursive application of isImpliedCond.
8001/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8002/// currently evaluating isImpliedCond.
8003struct MarkPendingLoopPredicate {
8004 Value *Cond;
8005 DenseSet<Value*> &LoopPreds;
8006 bool Pending;
8007
8008 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8009 : Cond(C), LoopPreds(LP) {
8010 Pending = !LoopPreds.insert(Cond).second;
8011 }
8012 ~MarkPendingLoopPredicate() {
8013 if (!Pending)
8014 LoopPreds.erase(Cond);
8015 }
8016};
Benjamin Kramer039b1042015-10-28 13:54:36 +00008017} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008018
Dan Gohman430f0cc2009-07-21 23:03:19 +00008019/// isImpliedCond - Test whether the condition described by Pred, LHS,
8020/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00008021bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008022 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00008023 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008024 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008025 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8026 if (Mark.Pending)
8027 return false;
8028
Dan Gohman8b0a4192010-03-01 17:49:51 +00008029 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00008030 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008031 if (BO->getOpcode() == Instruction::And) {
8032 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00008033 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8034 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008035 } else if (BO->getOpcode() == Instruction::Or) {
8036 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00008037 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8038 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008039 }
8040 }
8041
Dan Gohmane18c2d62010-08-10 23:46:30 +00008042 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008043 if (!ICI) return false;
8044
Andrew Trickfa594032012-11-29 18:35:13 +00008045 // Now that we found a conditional branch that dominates the loop or controls
8046 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00008047 ICmpInst::Predicate FoundPred;
8048 if (Inverse)
8049 FoundPred = ICI->getInversePredicate();
8050 else
8051 FoundPred = ICI->getPredicate();
8052
8053 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8054 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00008055
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00008056 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8057}
8058
8059bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8060 const SCEV *RHS,
8061 ICmpInst::Predicate FoundPred,
8062 const SCEV *FoundLHS,
8063 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00008064 // Balance the types.
8065 if (getTypeSizeInBits(LHS->getType()) <
8066 getTypeSizeInBits(FoundLHS->getType())) {
8067 if (CmpInst::isSigned(Pred)) {
8068 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8069 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8070 } else {
8071 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8072 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8073 }
8074 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00008075 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00008076 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00008077 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8078 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8079 } else {
8080 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8081 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8082 }
8083 }
8084
Dan Gohman430f0cc2009-07-21 23:03:19 +00008085 // Canonicalize the query to match the way instcombine will have
8086 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00008087 if (SimplifyICmpOperands(Pred, LHS, RHS))
8088 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00008089 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00008090 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8091 if (FoundLHS == FoundRHS)
8092 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00008093
8094 // Check to see if we can make the LHS or RHS match.
8095 if (LHS == FoundRHS || RHS == FoundLHS) {
8096 if (isa<SCEVConstant>(RHS)) {
8097 std::swap(FoundLHS, FoundRHS);
8098 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8099 } else {
8100 std::swap(LHS, RHS);
8101 Pred = ICmpInst::getSwappedPredicate(Pred);
8102 }
8103 }
8104
8105 // Check whether the found predicate is the same as the desired predicate.
8106 if (FoundPred == Pred)
8107 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8108
8109 // Check whether swapping the found predicate makes it the same as the
8110 // desired predicate.
8111 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8112 if (isa<SCEVConstant>(RHS))
8113 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8114 else
8115 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8116 RHS, LHS, FoundLHS, FoundRHS);
8117 }
8118
Sanjoy Das6e78b172015-10-22 19:57:34 +00008119 // Unsigned comparison is the same as signed comparison when both the operands
8120 // are non-negative.
8121 if (CmpInst::isUnsigned(FoundPred) &&
8122 CmpInst::getSignedPredicate(FoundPred) == Pred &&
8123 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8124 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8125
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008126 // Check if we can make progress by sharpening ranges.
8127 if (FoundPred == ICmpInst::ICMP_NE &&
8128 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8129
8130 const SCEVConstant *C = nullptr;
8131 const SCEV *V = nullptr;
8132
8133 if (isa<SCEVConstant>(FoundLHS)) {
8134 C = cast<SCEVConstant>(FoundLHS);
8135 V = FoundRHS;
8136 } else {
8137 C = cast<SCEVConstant>(FoundRHS);
8138 V = FoundLHS;
8139 }
8140
8141 // The guarding predicate tells us that C != V. If the known range
8142 // of V is [C, t), we can sharpen the range to [C + 1, t). The
8143 // range we consider has to correspond to same signedness as the
8144 // predicate we're interested in folding.
8145
8146 APInt Min = ICmpInst::isSigned(Pred) ?
8147 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8148
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008149 if (Min == C->getAPInt()) {
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008150 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8151 // This is true even if (Min + 1) wraps around -- in case of
8152 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8153
8154 APInt SharperMin = Min + 1;
8155
8156 switch (Pred) {
8157 case ICmpInst::ICMP_SGE:
8158 case ICmpInst::ICMP_UGE:
8159 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8160 // RHS, we're done.
8161 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8162 getConstant(SharperMin)))
8163 return true;
8164
8165 case ICmpInst::ICMP_SGT:
8166 case ICmpInst::ICMP_UGT:
8167 // We know from the range information that (V `Pred` Min ||
8168 // V == Min). We know from the guarding condition that !(V
8169 // == Min). This gives us
8170 //
8171 // V `Pred` Min || V == Min && !(V == Min)
8172 // => V `Pred` Min
8173 //
8174 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8175
8176 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8177 return true;
8178
8179 default:
8180 // No change
8181 break;
8182 }
8183 }
8184 }
8185
Dan Gohman430f0cc2009-07-21 23:03:19 +00008186 // Check whether the actual condition is beyond sufficient.
8187 if (FoundPred == ICmpInst::ICMP_EQ)
8188 if (ICmpInst::isTrueWhenEqual(Pred))
8189 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8190 return true;
8191 if (Pred == ICmpInst::ICMP_NE)
8192 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8193 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8194 return true;
8195
8196 // Otherwise assume the worst.
8197 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00008198}
8199
Sanjoy Das1ed69102015-10-13 02:53:27 +00008200bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8201 const SCEV *&L, const SCEV *&R,
8202 SCEV::NoWrapFlags &Flags) {
8203 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8204 if (!AE || AE->getNumOperands() != 2)
8205 return false;
8206
8207 L = AE->getOperand(0);
8208 R = AE->getOperand(1);
8209 Flags = AE->getNoWrapFlags();
8210 return true;
8211}
8212
8213bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8214 const SCEV *More,
8215 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00008216 // We avoid subtracting expressions here because this function is usually
8217 // fairly deep in the call stack (i.e. is called many times).
8218
Sanjoy Das96709c42015-09-25 23:53:45 +00008219 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8220 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8221 const auto *MAR = cast<SCEVAddRecExpr>(More);
8222
8223 if (LAR->getLoop() != MAR->getLoop())
8224 return false;
8225
8226 // We look at affine expressions only; not for correctness but to keep
8227 // getStepRecurrence cheap.
8228 if (!LAR->isAffine() || !MAR->isAffine())
8229 return false;
8230
Sanjoy Das1ed69102015-10-13 02:53:27 +00008231 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00008232 return false;
8233
8234 Less = LAR->getStart();
8235 More = MAR->getStart();
8236
8237 // fall through
8238 }
8239
8240 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008241 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8242 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008243 C = M - L;
8244 return true;
8245 }
8246
8247 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008248 SCEV::NoWrapFlags Flags;
8249 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008250 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8251 if (R == More) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008252 C = -(LC->getAPInt());
Sanjoy Das96709c42015-09-25 23:53:45 +00008253 return true;
8254 }
8255
Sanjoy Das1ed69102015-10-13 02:53:27 +00008256 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008257 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8258 if (R == Less) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008259 C = LC->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008260 return true;
8261 }
8262
8263 return false;
8264}
8265
8266bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8267 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8268 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8269 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8270 return false;
8271
8272 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8273 if (!AddRecLHS)
8274 return false;
8275
8276 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8277 if (!AddRecFoundLHS)
8278 return false;
8279
8280 // We'd like to let SCEV reason about control dependencies, so we constrain
8281 // both the inequalities to be about add recurrences on the same loop. This
8282 // way we can use isLoopEntryGuardedByCond later.
8283
8284 const Loop *L = AddRecFoundLHS->getLoop();
8285 if (L != AddRecLHS->getLoop())
8286 return false;
8287
8288 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8289 //
8290 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8291 // ... (2)
8292 //
8293 // Informal proof for (2), assuming (1) [*]:
8294 //
8295 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8296 //
8297 // Then
8298 //
8299 // FoundLHS s< FoundRHS s< INT_MIN - C
8300 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8301 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8302 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8303 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8304 // <=> FoundLHS + C s< FoundRHS + C
8305 //
8306 // [*]: (1) can be proved by ruling out overflow.
8307 //
8308 // [**]: This can be proved by analyzing all the four possibilities:
8309 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8310 // (A s>= 0, B s>= 0).
8311 //
8312 // Note:
8313 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8314 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8315 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8316 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8317 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8318 // C)".
8319
8320 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008321 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8322 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00008323 LDiff != RDiff)
8324 return false;
8325
8326 if (LDiff == 0)
8327 return true;
8328
Sanjoy Das96709c42015-09-25 23:53:45 +00008329 APInt FoundRHSLimit;
8330
8331 if (Pred == CmpInst::ICMP_ULT) {
8332 FoundRHSLimit = -RDiff;
8333 } else {
8334 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00008335 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00008336 }
8337
8338 // Try to prove (1) or (2), as needed.
8339 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8340 getConstant(FoundRHSLimit));
8341}
8342
Dan Gohman430f0cc2009-07-21 23:03:19 +00008343/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00008344/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008345/// and FoundRHS is true.
8346bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8347 const SCEV *LHS, const SCEV *RHS,
8348 const SCEV *FoundLHS,
8349 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008350 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8351 return true;
8352
Sanjoy Das96709c42015-09-25 23:53:45 +00008353 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8354 return true;
8355
Dan Gohman430f0cc2009-07-21 23:03:19 +00008356 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8357 FoundLHS, FoundRHS) ||
8358 // ~x < ~y --> x > y
8359 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8360 getNotSCEV(FoundRHS),
8361 getNotSCEV(FoundLHS));
8362}
8363
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008364
8365/// If Expr computes ~A, return A else return nullptr
8366static const SCEV *MatchNotExpr(const SCEV *Expr) {
8367 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008368 if (!Add || Add->getNumOperands() != 2 ||
8369 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008370 return nullptr;
8371
8372 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008373 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8374 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008375 return nullptr;
8376
8377 return AddRHS->getOperand(1);
8378}
8379
8380
8381/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8382template<typename MaxExprType>
8383static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8384 const SCEV *Candidate) {
8385 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8386 if (!MaxExpr) return false;
8387
Sanjoy Das347d2722015-12-01 07:49:27 +00008388 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008389}
8390
8391
8392/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8393template<typename MaxExprType>
8394static bool IsMinConsistingOf(ScalarEvolution &SE,
8395 const SCEV *MaybeMinExpr,
8396 const SCEV *Candidate) {
8397 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8398 if (!MaybeMaxExpr)
8399 return false;
8400
8401 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8402}
8403
Hal Finkela8d205f2015-08-19 01:51:51 +00008404static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8405 ICmpInst::Predicate Pred,
8406 const SCEV *LHS, const SCEV *RHS) {
8407
8408 // If both sides are affine addrecs for the same loop, with equal
8409 // steps, and we know the recurrences don't wrap, then we only
8410 // need to check the predicate on the starting values.
8411
8412 if (!ICmpInst::isRelational(Pred))
8413 return false;
8414
8415 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8416 if (!LAR)
8417 return false;
8418 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8419 if (!RAR)
8420 return false;
8421 if (LAR->getLoop() != RAR->getLoop())
8422 return false;
8423 if (!LAR->isAffine() || !RAR->isAffine())
8424 return false;
8425
8426 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8427 return false;
8428
Hal Finkelff08a2e2015-08-19 17:26:07 +00008429 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8430 SCEV::FlagNSW : SCEV::FlagNUW;
8431 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008432 return false;
8433
8434 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8435}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008436
8437/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8438/// expression?
8439static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8440 ICmpInst::Predicate Pred,
8441 const SCEV *LHS, const SCEV *RHS) {
8442 switch (Pred) {
8443 default:
8444 return false;
8445
8446 case ICmpInst::ICMP_SGE:
8447 std::swap(LHS, RHS);
8448 // fall through
8449 case ICmpInst::ICMP_SLE:
8450 return
8451 // min(A, ...) <= A
8452 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8453 // A <= max(A, ...)
8454 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8455
8456 case ICmpInst::ICMP_UGE:
8457 std::swap(LHS, RHS);
8458 // fall through
8459 case ICmpInst::ICMP_ULE:
8460 return
8461 // min(A, ...) <= A
8462 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8463 // A <= max(A, ...)
8464 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8465 }
8466
8467 llvm_unreachable("covered switch fell through?!");
8468}
8469
Dan Gohman430f0cc2009-07-21 23:03:19 +00008470/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008471/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008472/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008473bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008474ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8475 const SCEV *LHS, const SCEV *RHS,
8476 const SCEV *FoundLHS,
8477 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008478 auto IsKnownPredicateFull =
8479 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Sanjoy Das401e6312016-02-01 20:48:10 +00008480 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008481 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008482 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8483 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008484 };
8485
Dan Gohmane65c9172009-07-13 21:35:55 +00008486 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008487 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8488 case ICmpInst::ICMP_EQ:
8489 case ICmpInst::ICMP_NE:
8490 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8491 return true;
8492 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008493 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008494 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008495 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8496 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008497 return true;
8498 break;
8499 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008500 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008501 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8502 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008503 return true;
8504 break;
8505 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008506 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008507 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8508 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008509 return true;
8510 break;
8511 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008512 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008513 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8514 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008515 return true;
8516 break;
8517 }
8518
8519 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008520}
8521
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008522/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8523/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8524bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8525 const SCEV *LHS,
8526 const SCEV *RHS,
8527 const SCEV *FoundLHS,
8528 const SCEV *FoundRHS) {
8529 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8530 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8531 // reduce the compile time impact of this optimization.
8532 return false;
8533
8534 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8535 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8536 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8537 return false;
8538
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008539 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008540
8541 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8542 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8543 ConstantRange FoundLHSRange =
8544 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8545
8546 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8547 // for `LHS`:
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008548 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008549 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8550
8551 // We can also compute the range of values for `LHS` that satisfy the
8552 // consequent, "`LHS` `Pred` `RHS`":
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008553 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008554 ConstantRange SatisfyingLHSRange =
8555 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8556
8557 // The antecedent implies the consequent if every value of `LHS` that
8558 // satisfies the antecedent also satisfies the consequent.
8559 return SatisfyingLHSRange.contains(LHSRange);
8560}
8561
Johannes Doerfert2683e562015-02-09 12:34:23 +00008562// Verify if an linear IV with positive stride can overflow when in a
8563// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008564// stride and the knowledge of NSW/NUW flags on the recurrence.
8565bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8566 bool IsSigned, bool NoWrap) {
8567 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008568
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008569 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008570 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008571
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008572 if (IsSigned) {
8573 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8574 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8575 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8576 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008577
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008578 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8579 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008580 }
Dan Gohman01048422009-06-21 23:46:38 +00008581
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008582 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8583 APInt MaxValue = APInt::getMaxValue(BitWidth);
8584 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8585 .getUnsignedMax();
8586
8587 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8588 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8589}
8590
Johannes Doerfert2683e562015-02-09 12:34:23 +00008591// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008592// greater-than comparison, knowing the invariant term of the comparison,
8593// the stride and the knowledge of NSW/NUW flags on the recurrence.
8594bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8595 bool IsSigned, bool NoWrap) {
8596 if (NoWrap) return false;
8597
8598 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008599 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008600
8601 if (IsSigned) {
8602 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8603 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8604 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8605 .getSignedMax();
8606
8607 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8608 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8609 }
8610
8611 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8612 APInt MinValue = APInt::getMinValue(BitWidth);
8613 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8614 .getUnsignedMax();
8615
8616 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8617 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8618}
8619
8620// Compute the backedge taken count knowing the interval difference, the
8621// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008622const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008623 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008624 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008625 Delta = Equality ? getAddExpr(Delta, Step)
8626 : getAddExpr(Delta, getMinusSCEV(Step, One));
8627 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008628}
8629
Chris Lattner587a75b2005-08-15 23:33:51 +00008630/// HowManyLessThans - Return the number of times a backedge containing the
8631/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008632/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008633///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008634/// @param ControlsExit is true when the LHS < RHS condition directly controls
8635/// the branch (loops exits only if condition is true). In this case, we can use
8636/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008637ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008638ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008639 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008640 bool ControlsExit, bool AllowPredicates) {
8641 SCEVUnionPredicate P;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008642 // We handle only IV < Invariant
8643 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008644 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008645
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008646 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008647 if (!IV && AllowPredicates)
8648 // Try to make this an AddRec using runtime tests, in the first X
8649 // iterations of this loop, where X is the SCEV expression found by the
8650 // algorithm below.
8651 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
Dan Gohman2b8da352009-04-30 20:47:05 +00008652
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008653 // Avoid weird loops
8654 if (!IV || IV->getLoop() != L || !IV->isAffine())
8655 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008656
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008657 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008658 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008659
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008660 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008661
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008662 // Avoid negative or zero stride values
8663 if (!isKnownPositive(Stride))
8664 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008665
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008666 // Avoid proven overflow cases: this will ensure that the backedge taken count
8667 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008668 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008669 // behaviors like the case of C language.
8670 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8671 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008672
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008673 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8674 : ICmpInst::ICMP_ULT;
8675 const SCEV *Start = IV->getStart();
8676 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008677 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8678 const SCEV *Diff = getMinusSCEV(RHS, Start);
8679 // If we have NoWrap set, then we can assume that the increment won't
8680 // overflow, in which case if RHS - Start is a constant, we don't need to
8681 // do a max operation since we can just figure it out statically
8682 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008683 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008684 if (D.isNegative())
8685 End = Start;
8686 } else
8687 End = IsSigned ? getSMaxExpr(RHS, Start)
8688 : getUMaxExpr(RHS, Start);
8689 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008690
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008691 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008692
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008693 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8694 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008695
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008696 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8697 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008698
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008699 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8700 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8701 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008702
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008703 // Although End can be a MAX expression we estimate MaxEnd considering only
8704 // the case End = RHS. This is safe because in the other case (End - Start)
8705 // is zero, leading to a zero maximum backedge taken count.
8706 APInt MaxEnd =
8707 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8708 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8709
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008710 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008711 if (isa<SCEVConstant>(BECount))
8712 MaxBECount = BECount;
8713 else
8714 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8715 getConstant(MinStride), false);
8716
8717 if (isa<SCEVCouldNotCompute>(MaxBECount))
8718 MaxBECount = BECount;
8719
Silviu Baranga6f444df2016-04-08 14:29:09 +00008720 return ExitLimit(BECount, MaxBECount, P);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008721}
8722
8723ScalarEvolution::ExitLimit
8724ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8725 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008726 bool ControlsExit, bool AllowPredicates) {
8727 SCEVUnionPredicate P;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008728 // We handle only IV > Invariant
8729 if (!isLoopInvariant(RHS, L))
8730 return getCouldNotCompute();
8731
8732 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008733 if (!IV && AllowPredicates)
8734 // Try to make this an AddRec using runtime tests, in the first X
8735 // iterations of this loop, where X is the SCEV expression found by the
8736 // algorithm below.
8737 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008738
8739 // Avoid weird loops
8740 if (!IV || IV->getLoop() != L || !IV->isAffine())
8741 return getCouldNotCompute();
8742
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008743 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008744 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8745
8746 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8747
8748 // Avoid negative or zero stride values
8749 if (!isKnownPositive(Stride))
8750 return getCouldNotCompute();
8751
8752 // Avoid proven overflow cases: this will ensure that the backedge taken count
8753 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008754 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008755 // behaviors like the case of C language.
8756 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8757 return getCouldNotCompute();
8758
8759 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8760 : ICmpInst::ICMP_UGT;
8761
8762 const SCEV *Start = IV->getStart();
8763 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008764 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8765 const SCEV *Diff = getMinusSCEV(RHS, Start);
8766 // If we have NoWrap set, then we can assume that the increment won't
8767 // overflow, in which case if RHS - Start is a constant, we don't need to
8768 // do a max operation since we can just figure it out statically
8769 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008770 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008771 if (!D.isNegative())
8772 End = Start;
8773 } else
8774 End = IsSigned ? getSMinExpr(RHS, Start)
8775 : getUMinExpr(RHS, Start);
8776 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008777
8778 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8779
8780 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8781 : getUnsignedRange(Start).getUnsignedMax();
8782
8783 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8784 : getUnsignedRange(Stride).getUnsignedMin();
8785
8786 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8787 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8788 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8789
8790 // Although End can be a MIN expression we estimate MinEnd considering only
8791 // the case End = RHS. This is safe because in the other case (Start - End)
8792 // is zero, leading to a zero maximum backedge taken count.
8793 APInt MinEnd =
8794 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8795 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8796
8797
8798 const SCEV *MaxBECount = getCouldNotCompute();
8799 if (isa<SCEVConstant>(BECount))
8800 MaxBECount = BECount;
8801 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008802 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008803 getConstant(MinStride), false);
8804
8805 if (isa<SCEVCouldNotCompute>(MaxBECount))
8806 MaxBECount = BECount;
8807
Silviu Baranga6f444df2016-04-08 14:29:09 +00008808 return ExitLimit(BECount, MaxBECount, P);
Chris Lattner587a75b2005-08-15 23:33:51 +00008809}
8810
Chris Lattnerd934c702004-04-02 20:23:17 +00008811/// getNumIterationsInRange - Return the number of iterations of this loop that
8812/// produce values in the specified constant range. Another way of looking at
8813/// this is that it returns the first iteration number where the value is not in
8814/// the condition, thus computing the exit count. If the iteration count can't
8815/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008816const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008817 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008818 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008819 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008820
8821 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008822 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008823 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008824 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008825 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008826 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008827 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008828 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008829 return ShiftedAddRec->getNumIterationsInRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008830 Range.subtract(SC->getAPInt()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008831 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008832 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008833 }
8834
8835 // The only time we can solve this is when we have all constant indices.
8836 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008837 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008838 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008839
8840 // Okay at this point we know that all elements of the chrec are constants and
8841 // that the start element is zero.
8842
8843 // First check to see if the range contains zero. If not, the first
8844 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008845 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008846 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008847 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008848
Chris Lattnerd934c702004-04-02 20:23:17 +00008849 if (isAffine()) {
8850 // If this is an affine expression then we have this situation:
8851 // Solve {0,+,A} in Range === Ax in Range
8852
Nick Lewycky52460262007-07-16 02:08:00 +00008853 // We know that zero is in the range. If A is positive then we know that
8854 // the upper value of the range must be the first possible exit value.
8855 // If A is negative then the lower of the range is the last possible loop
8856 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008857 APInt One(BitWidth,1);
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008858 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
Nick Lewycky52460262007-07-16 02:08:00 +00008859 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008860
Nick Lewycky52460262007-07-16 02:08:00 +00008861 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008862 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008863 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008864
8865 // Evaluate at the exit value. If we really did fall out of the valid
8866 // range, then we computed our trip count, otherwise wrap around or other
8867 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008868 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008869 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008870 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008871
8872 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008873 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008874 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008875 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008876 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008877 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008878 } else if (isQuadratic()) {
8879 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8880 // quadratic equation to solve it. To do this, we must frame our problem in
8881 // terms of figuring out when zero is crossed, instead of when
8882 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008883 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008884 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008885 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8886 // getNoWrapFlags(FlagNW)
8887 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008888
8889 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008890 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008891 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8892 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008893 if (R1) {
8894 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008895 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8896 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008897 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008898 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008899
Chris Lattnerd934c702004-04-02 20:23:17 +00008900 // Make sure the root is not off by one. The returned iteration should
8901 // not be in the range, but the previous one should be. When solving
8902 // for "X*X < 5", for example, we should not return a root of 2.
8903 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008904 R1->getValue(),
8905 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008906 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008907 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008908 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008909 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008910
Dan Gohmana37eaf22007-10-22 18:31:58 +00008911 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008912 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008913 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008914 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008915 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008916
Chris Lattnerd934c702004-04-02 20:23:17 +00008917 // If R1 was not in the range, then it is a good return value. Make
8918 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008919 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008920 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008921 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008922 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008923 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008924 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008925 }
8926 }
8927 }
8928
Dan Gohman31efa302009-04-18 17:58:19 +00008929 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008930}
8931
Sebastian Pop448712b2014-05-07 18:01:20 +00008932namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008933struct FindUndefs {
8934 bool Found;
8935 FindUndefs() : Found(false) {}
8936
8937 bool follow(const SCEV *S) {
8938 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8939 if (isa<UndefValue>(C->getValue()))
8940 Found = true;
8941 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8942 if (isa<UndefValue>(C->getValue()))
8943 Found = true;
8944 }
8945
8946 // Keep looking if we haven't found it yet.
8947 return !Found;
8948 }
8949 bool isDone() const {
8950 // Stop recursion if we have found an undef.
8951 return Found;
8952 }
8953};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008954}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008955
8956// Return true when S contains at least an undef value.
8957static inline bool
8958containsUndefs(const SCEV *S) {
8959 FindUndefs F;
8960 SCEVTraversal<FindUndefs> ST(F);
8961 ST.visitAll(S);
8962
8963 return F.Found;
8964}
8965
8966namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008967// Collect all steps of SCEV expressions.
8968struct SCEVCollectStrides {
8969 ScalarEvolution &SE;
8970 SmallVectorImpl<const SCEV *> &Strides;
8971
8972 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8973 : SE(SE), Strides(S) {}
8974
8975 bool follow(const SCEV *S) {
8976 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8977 Strides.push_back(AR->getStepRecurrence(SE));
8978 return true;
8979 }
8980 bool isDone() const { return false; }
8981};
8982
8983// Collect all SCEVUnknown and SCEVMulExpr expressions.
8984struct SCEVCollectTerms {
8985 SmallVectorImpl<const SCEV *> &Terms;
8986
8987 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8988 : Terms(T) {}
8989
8990 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008991 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008992 if (!containsUndefs(S))
8993 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008994
8995 // Stop recursion: once we collected a term, do not walk its operands.
8996 return false;
8997 }
8998
8999 // Keep looking.
9000 return true;
9001 }
9002 bool isDone() const { return false; }
9003};
Tobias Grosser374bce02015-10-12 08:02:00 +00009004
9005// Check if a SCEV contains an AddRecExpr.
9006struct SCEVHasAddRec {
9007 bool &ContainsAddRec;
9008
9009 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9010 ContainsAddRec = false;
9011 }
9012
9013 bool follow(const SCEV *S) {
9014 if (isa<SCEVAddRecExpr>(S)) {
9015 ContainsAddRec = true;
9016
9017 // Stop recursion: once we collected a term, do not walk its operands.
9018 return false;
9019 }
9020
9021 // Keep looking.
9022 return true;
9023 }
9024 bool isDone() const { return false; }
9025};
9026
9027// Find factors that are multiplied with an expression that (possibly as a
9028// subexpression) contains an AddRecExpr. In the expression:
9029//
9030// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
9031//
9032// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9033// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9034// parameters as they form a product with an induction variable.
9035//
9036// This collector expects all array size parameters to be in the same MulExpr.
9037// It might be necessary to later add support for collecting parameters that are
9038// spread over different nested MulExpr.
9039struct SCEVCollectAddRecMultiplies {
9040 SmallVectorImpl<const SCEV *> &Terms;
9041 ScalarEvolution &SE;
9042
9043 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9044 : Terms(T), SE(SE) {}
9045
9046 bool follow(const SCEV *S) {
9047 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9048 bool HasAddRec = false;
9049 SmallVector<const SCEV *, 0> Operands;
9050 for (auto Op : Mul->operands()) {
9051 if (isa<SCEVUnknown>(Op)) {
9052 Operands.push_back(Op);
9053 } else {
9054 bool ContainsAddRec;
9055 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9056 visitAll(Op, ContiansAddRec);
9057 HasAddRec |= ContainsAddRec;
9058 }
9059 }
9060 if (Operands.size() == 0)
9061 return true;
9062
9063 if (!HasAddRec)
9064 return false;
9065
9066 Terms.push_back(SE.getMulExpr(Operands));
9067 // Stop recursion: once we collected a term, do not walk its operands.
9068 return false;
9069 }
9070
9071 // Keep looking.
9072 return true;
9073 }
9074 bool isDone() const { return false; }
9075};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009076}
Sebastian Pop448712b2014-05-07 18:01:20 +00009077
Tobias Grosser374bce02015-10-12 08:02:00 +00009078/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9079/// two places:
9080/// 1) The strides of AddRec expressions.
9081/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009082void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9083 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009084 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009085 SCEVCollectStrides StrideCollector(*this, Strides);
9086 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009087
9088 DEBUG({
9089 dbgs() << "Strides:\n";
9090 for (const SCEV *S : Strides)
9091 dbgs() << *S << "\n";
9092 });
9093
9094 for (const SCEV *S : Strides) {
9095 SCEVCollectTerms TermCollector(Terms);
9096 visitAll(S, TermCollector);
9097 }
9098
9099 DEBUG({
9100 dbgs() << "Terms:\n";
9101 for (const SCEV *T : Terms)
9102 dbgs() << *T << "\n";
9103 });
Tobias Grosser374bce02015-10-12 08:02:00 +00009104
9105 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9106 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009107}
9108
Sebastian Popb1a548f2014-05-12 19:01:53 +00009109static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00009110 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00009111 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00009112 int Last = Terms.size() - 1;
9113 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00009114
Sebastian Pop448712b2014-05-07 18:01:20 +00009115 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00009116 if (Last == 0) {
9117 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009118 SmallVector<const SCEV *, 2> Qs;
9119 for (const SCEV *Op : M->operands())
9120 if (!isa<SCEVConstant>(Op))
9121 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00009122
Sebastian Pope30bd352014-05-27 22:41:56 +00009123 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00009124 }
9125
Sebastian Pope30bd352014-05-27 22:41:56 +00009126 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009127 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00009128 }
9129
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009130 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009131 // Normalize the terms before the next call to findArrayDimensionsRec.
9132 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009133 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009134
9135 // Bail out when GCD does not evenly divide one of the terms.
9136 if (!R->isZero())
9137 return false;
9138
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009139 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00009140 }
9141
Tobias Grosser3080cf12014-05-08 07:55:34 +00009142 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00009143 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9144 return isa<SCEVConstant>(E);
9145 }),
9146 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00009147
Sebastian Pop448712b2014-05-07 18:01:20 +00009148 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00009149 if (!findArrayDimensionsRec(SE, Terms, Sizes))
9150 return false;
9151
Sebastian Pope30bd352014-05-27 22:41:56 +00009152 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009153 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00009154}
Sebastian Popc62c6792013-11-12 22:47:20 +00009155
Sebastian Pop448712b2014-05-07 18:01:20 +00009156// Returns true when S contains at least a SCEVUnknown parameter.
9157static inline bool
9158containsParameters(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +00009159 struct FindParameter {
9160 bool FoundParameter;
9161 FindParameter() : FoundParameter(false) {}
9162
9163 bool follow(const SCEV *S) {
9164 if (isa<SCEVUnknown>(S)) {
9165 FoundParameter = true;
9166 // Stop recursion: we found a parameter.
9167 return false;
9168 }
9169 // Keep looking.
9170 return true;
9171 }
9172 bool isDone() const {
9173 // Stop recursion if we have found a parameter.
9174 return FoundParameter;
9175 }
9176 };
9177
Sebastian Pop448712b2014-05-07 18:01:20 +00009178 FindParameter F;
9179 SCEVTraversal<FindParameter> ST(F);
9180 ST.visitAll(S);
9181
9182 return F.FoundParameter;
9183}
9184
9185// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9186static inline bool
9187containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9188 for (const SCEV *T : Terms)
9189 if (containsParameters(T))
9190 return true;
9191 return false;
9192}
9193
9194// Return the number of product terms in S.
9195static inline int numberOfTerms(const SCEV *S) {
9196 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9197 return Expr->getNumOperands();
9198 return 1;
9199}
9200
Sebastian Popa6e58602014-05-27 22:41:45 +00009201static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9202 if (isa<SCEVConstant>(T))
9203 return nullptr;
9204
9205 if (isa<SCEVUnknown>(T))
9206 return T;
9207
9208 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9209 SmallVector<const SCEV *, 2> Factors;
9210 for (const SCEV *Op : M->operands())
9211 if (!isa<SCEVConstant>(Op))
9212 Factors.push_back(Op);
9213
9214 return SE.getMulExpr(Factors);
9215 }
9216
9217 return T;
9218}
9219
9220/// Return the size of an element read or written by Inst.
9221const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9222 Type *Ty;
9223 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9224 Ty = Store->getValueOperand()->getType();
9225 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00009226 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00009227 else
9228 return nullptr;
9229
9230 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9231 return getSizeOfExpr(ETy, Ty);
9232}
9233
Sebastian Pop448712b2014-05-07 18:01:20 +00009234/// Second step of delinearization: compute the array dimensions Sizes from the
9235/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00009236void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9237 SmallVectorImpl<const SCEV *> &Sizes,
9238 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00009239
Sebastian Pop53524082014-05-29 19:44:05 +00009240 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00009241 return;
9242
9243 // Early return when Terms do not contain parameters: we do not delinearize
9244 // non parametric SCEVs.
9245 if (!containsParameters(Terms))
9246 return;
9247
9248 DEBUG({
9249 dbgs() << "Terms:\n";
9250 for (const SCEV *T : Terms)
9251 dbgs() << *T << "\n";
9252 });
9253
9254 // Remove duplicates.
9255 std::sort(Terms.begin(), Terms.end());
9256 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9257
9258 // Put larger terms first.
9259 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9260 return numberOfTerms(LHS) > numberOfTerms(RHS);
9261 });
9262
Sebastian Popa6e58602014-05-27 22:41:45 +00009263 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9264
Tobias Grosser374bce02015-10-12 08:02:00 +00009265 // Try to divide all terms by the element size. If term is not divisible by
9266 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00009267 for (const SCEV *&Term : Terms) {
9268 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009269 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00009270 if (!Q->isZero())
9271 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00009272 }
9273
9274 SmallVector<const SCEV *, 4> NewTerms;
9275
9276 // Remove constant factors.
9277 for (const SCEV *T : Terms)
9278 if (const SCEV *NewT = removeConstantFactors(SE, T))
9279 NewTerms.push_back(NewT);
9280
Sebastian Pop448712b2014-05-07 18:01:20 +00009281 DEBUG({
9282 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00009283 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00009284 dbgs() << *T << "\n";
9285 });
9286
Sebastian Popa6e58602014-05-27 22:41:45 +00009287 if (NewTerms.empty() ||
9288 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00009289 Sizes.clear();
9290 return;
9291 }
Sebastian Pop448712b2014-05-07 18:01:20 +00009292
Sebastian Popa6e58602014-05-27 22:41:45 +00009293 // The last element to be pushed into Sizes is the size of an element.
9294 Sizes.push_back(ElementSize);
9295
Sebastian Pop448712b2014-05-07 18:01:20 +00009296 DEBUG({
9297 dbgs() << "Sizes:\n";
9298 for (const SCEV *S : Sizes)
9299 dbgs() << *S << "\n";
9300 });
9301}
9302
9303/// Third step of delinearization: compute the access functions for the
9304/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009305void ScalarEvolution::computeAccessFunctions(
9306 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9307 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009308
Sebastian Popb1a548f2014-05-12 19:01:53 +00009309 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009310 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009311 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009312
Sanjoy Das1195dbe2015-10-08 03:45:58 +00009313 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009314 if (!AR->isAffine())
9315 return;
9316
9317 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00009318 int Last = Sizes.size() - 1;
9319 for (int i = Last; i >= 0; i--) {
9320 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009321 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00009322
9323 DEBUG({
9324 dbgs() << "Res: " << *Res << "\n";
9325 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9326 dbgs() << "Res divided by Sizes[i]:\n";
9327 dbgs() << "Quotient: " << *Q << "\n";
9328 dbgs() << "Remainder: " << *R << "\n";
9329 });
9330
9331 Res = Q;
9332
Sebastian Popa6e58602014-05-27 22:41:45 +00009333 // Do not record the last subscript corresponding to the size of elements in
9334 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00009335 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00009336
9337 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00009338 if (isa<SCEVAddRecExpr>(R)) {
9339 Subscripts.clear();
9340 Sizes.clear();
9341 return;
9342 }
Sebastian Popa6e58602014-05-27 22:41:45 +00009343
Sebastian Pop448712b2014-05-07 18:01:20 +00009344 continue;
9345 }
9346
9347 // Record the access function for the current subscript.
9348 Subscripts.push_back(R);
9349 }
9350
9351 // Also push in last position the remainder of the last division: it will be
9352 // the access function of the innermost dimension.
9353 Subscripts.push_back(Res);
9354
9355 std::reverse(Subscripts.begin(), Subscripts.end());
9356
9357 DEBUG({
9358 dbgs() << "Subscripts:\n";
9359 for (const SCEV *S : Subscripts)
9360 dbgs() << *S << "\n";
9361 });
Sebastian Pop448712b2014-05-07 18:01:20 +00009362}
9363
Sebastian Popc62c6792013-11-12 22:47:20 +00009364/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9365/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00009366/// is the offset start of the array. The SCEV->delinearize algorithm computes
9367/// the multiples of SCEV coefficients: that is a pattern matching of sub
9368/// expressions in the stride and base of a SCEV corresponding to the
9369/// computation of a GCD (greatest common divisor) of base and stride. When
9370/// SCEV->delinearize fails, it returns the SCEV unchanged.
9371///
9372/// For example: when analyzing the memory access A[i][j][k] in this loop nest
9373///
9374/// void foo(long n, long m, long o, double A[n][m][o]) {
9375///
9376/// for (long i = 0; i < n; i++)
9377/// for (long j = 0; j < m; j++)
9378/// for (long k = 0; k < o; k++)
9379/// A[i][j][k] = 1.0;
9380/// }
9381///
9382/// the delinearization input is the following AddRec SCEV:
9383///
9384/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9385///
9386/// From this SCEV, we are able to say that the base offset of the access is %A
9387/// because it appears as an offset that does not divide any of the strides in
9388/// the loops:
9389///
9390/// CHECK: Base offset: %A
9391///
9392/// and then SCEV->delinearize determines the size of some of the dimensions of
9393/// the array as these are the multiples by which the strides are happening:
9394///
9395/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9396///
9397/// Note that the outermost dimension remains of UnknownSize because there are
9398/// no strides that would help identifying the size of the last dimension: when
9399/// the array has been statically allocated, one could compute the size of that
9400/// dimension by dividing the overall size of the array by the size of the known
9401/// dimensions: %m * %o * 8.
9402///
9403/// Finally delinearize provides the access functions for the array reference
9404/// that does correspond to A[i][j][k] of the above C testcase:
9405///
9406/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9407///
9408/// The testcases are checking the output of a function pass:
9409/// DelinearizationPass that walks through all loads and stores of a function
9410/// asking for the SCEV of the memory access with respect to all enclosing
9411/// loops, calling SCEV->delinearize on that and printing the results.
9412
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009413void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00009414 SmallVectorImpl<const SCEV *> &Subscripts,
9415 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009416 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009417 // First step: collect parametric terms.
9418 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009419 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00009420
Sebastian Popb1a548f2014-05-12 19:01:53 +00009421 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009422 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009423
Sebastian Pop448712b2014-05-07 18:01:20 +00009424 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009425 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00009426
Sebastian Popb1a548f2014-05-12 19:01:53 +00009427 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009428 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009429
Sebastian Pop448712b2014-05-07 18:01:20 +00009430 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009431 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009432
Sebastian Pop28e6b972014-05-27 22:41:51 +00009433 if (Subscripts.empty())
9434 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009435
Sebastian Pop448712b2014-05-07 18:01:20 +00009436 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009437 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009438 dbgs() << "ArrayDecl[UnknownSize]";
9439 for (const SCEV *S : Sizes)
9440 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009441
Sebastian Pop444621a2014-05-09 22:45:02 +00009442 dbgs() << "\nArrayRef";
9443 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009444 dbgs() << "[" << *S << "]";
9445 dbgs() << "\n";
9446 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009447}
Chris Lattnerd934c702004-04-02 20:23:17 +00009448
9449//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009450// SCEVCallbackVH Class Implementation
9451//===----------------------------------------------------------------------===//
9452
Dan Gohmand33a0902009-05-19 19:22:47 +00009453void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009454 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009455 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9456 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009457 SE->eraseValueFromMap(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009458 // this now dangles!
9459}
9460
Dan Gohman7a066722010-07-28 01:09:07 +00009461void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009462 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009463
Dan Gohman48f82222009-05-04 22:30:44 +00009464 // Forget all the expressions associated with users of the old value,
9465 // so that future queries will recompute the expressions using the new
9466 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009467 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009468 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009469 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009470 while (!Worklist.empty()) {
9471 User *U = Worklist.pop_back_val();
9472 // Deleting the Old value will cause this to dangle. Postpone
9473 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009474 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009475 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009476 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009477 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009478 if (PHINode *PN = dyn_cast<PHINode>(U))
9479 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009480 SE->eraseValueFromMap(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009481 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009482 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009483 // Delete the Old value.
9484 if (PHINode *PN = dyn_cast<PHINode>(Old))
9485 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009486 SE->eraseValueFromMap(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009487 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009488}
9489
Dan Gohmand33a0902009-05-19 19:22:47 +00009490ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009491 : CallbackVH(V), SE(se) {}
9492
9493//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009494// ScalarEvolution Class Implementation
9495//===----------------------------------------------------------------------===//
9496
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009497ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9498 AssumptionCache &AC, DominatorTree &DT,
9499 LoopInfo &LI)
9500 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9501 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009502 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9503 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
Sanjoy Das2512d0c2016-05-10 00:31:49 +00009504 FirstUnknown(nullptr) {
9505
9506 // To use guards for proving predicates, we need to scan every instruction in
9507 // relevant basic blocks, and not just terminators. Doing this is a waste of
9508 // time if the IR does not actually contain any calls to
9509 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9510 //
9511 // This pessimizes the case where a pass that preserves ScalarEvolution wants
9512 // to _add_ guards to the module when there weren't any before, and wants
9513 // ScalarEvolution to optimize based on those guards. For now we prefer to be
9514 // efficient in lieu of being smart in that rather obscure case.
9515
9516 auto *GuardDecl = F.getParent()->getFunction(
9517 Intrinsic::getName(Intrinsic::experimental_guard));
9518 HasGuards = GuardDecl && !GuardDecl->use_empty();
9519}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009520
9521ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
Sanjoy Das2512d0c2016-05-10 00:31:49 +00009522 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9523 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009524 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009525 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009526 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
Silviu Baranga6f444df2016-04-08 14:29:09 +00009527 PredicatedBackedgeTakenCounts(
9528 std::move(Arg.PredicatedBackedgeTakenCounts)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009529 ConstantEvolutionLoopExitValue(
9530 std::move(Arg.ConstantEvolutionLoopExitValue)),
9531 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9532 LoopDispositions(std::move(Arg.LoopDispositions)),
9533 BlockDispositions(std::move(Arg.BlockDispositions)),
9534 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9535 SignedRanges(std::move(Arg.SignedRanges)),
9536 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009537 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009538 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9539 FirstUnknown(Arg.FirstUnknown) {
9540 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009541}
9542
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009543ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009544 // Iterate through all the SCEVUnknown instances and call their
9545 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009546 for (SCEVUnknown *U = FirstUnknown; U;) {
9547 SCEVUnknown *Tmp = U;
9548 U = U->Next;
9549 Tmp->~SCEVUnknown();
9550 }
Craig Topper9f008862014-04-15 04:59:12 +00009551 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009552
Wei Mia49559b2016-02-04 01:27:38 +00009553 ExprValueMap.clear();
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009554 ValueExprMap.clear();
Wei Mia49559b2016-02-04 01:27:38 +00009555 HasRecMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009556
9557 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9558 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009559 for (auto &BTCI : BackedgeTakenCounts)
9560 BTCI.second.clear();
Silviu Baranga6f444df2016-04-08 14:29:09 +00009561 for (auto &BTCI : PredicatedBackedgeTakenCounts)
9562 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009563
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009564 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009565 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009566 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009567}
9568
Dan Gohmanc8e23622009-04-21 23:15:49 +00009569bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009570 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009571}
9572
Dan Gohmanc8e23622009-04-21 23:15:49 +00009573static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009574 const Loop *L) {
9575 // Print all inner loops first
9576 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9577 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009578
Dan Gohmanbc694912010-01-09 18:17:45 +00009579 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009580 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009581 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009582
Dan Gohmancb0efec2009-12-18 01:14:11 +00009583 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009584 L->getExitBlocks(ExitBlocks);
9585 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009586 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009587
Dan Gohman0bddac12009-02-24 18:55:53 +00009588 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9589 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009590 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009591 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009592 }
9593
Dan Gohmanbc694912010-01-09 18:17:45 +00009594 OS << "\n"
9595 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009596 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009597 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009598
9599 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9600 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9601 } else {
9602 OS << "Unpredictable max backedge-taken count. ";
9603 }
9604
Silviu Baranga6f444df2016-04-08 14:29:09 +00009605 OS << "\n"
9606 "Loop ";
9607 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9608 OS << ": ";
9609
9610 SCEVUnionPredicate Pred;
9611 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9612 if (!isa<SCEVCouldNotCompute>(PBT)) {
9613 OS << "Predicated backedge-taken count is " << *PBT << "\n";
9614 OS << " Predicates:\n";
9615 Pred.print(OS, 4);
9616 } else {
9617 OS << "Unpredictable predicated backedge-taken count. ";
9618 }
Dan Gohman69942932009-06-24 00:33:16 +00009619 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009620}
9621
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009622static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9623 switch (LD) {
9624 case ScalarEvolution::LoopVariant:
9625 return "Variant";
9626 case ScalarEvolution::LoopInvariant:
9627 return "Invariant";
9628 case ScalarEvolution::LoopComputable:
9629 return "Computable";
9630 }
Simon Pilgrim33ae13d2016-05-01 15:52:31 +00009631 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009632}
9633
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009634void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009635 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009636 // out SCEV values of all instructions that are interesting. Doing
9637 // this potentially causes it to create new SCEV objects though,
9638 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009639 // observable from outside the class though, so casting away the
9640 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009641 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009642
Dan Gohmanbc694912010-01-09 18:17:45 +00009643 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009644 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009645 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009646 for (Instruction &I : instructions(F))
9647 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9648 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009649 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009650 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009651 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009652 if (!isa<SCEVCouldNotCompute>(SV)) {
9653 OS << " U: ";
9654 SE.getUnsignedRange(SV).print(OS);
9655 OS << " S: ";
9656 SE.getSignedRange(SV).print(OS);
9657 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009658
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009659 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009660
Dan Gohmanaf752342009-07-07 17:06:11 +00009661 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009662 if (AtUse != SV) {
9663 OS << " --> ";
9664 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009665 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9666 OS << " U: ";
9667 SE.getUnsignedRange(AtUse).print(OS);
9668 OS << " S: ";
9669 SE.getSignedRange(AtUse).print(OS);
9670 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009671 }
9672
9673 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009674 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009675 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009676 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009677 OS << "<<Unknown>>";
9678 } else {
9679 OS << *ExitValue;
9680 }
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009681
9682 bool First = true;
9683 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9684 if (First) {
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009685 OS << "\t\t" "LoopDispositions: { ";
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009686 First = false;
9687 } else {
9688 OS << ", ";
9689 }
9690
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009691 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9692 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009693 }
9694
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009695 for (auto *InnerL : depth_first(L)) {
9696 if (InnerL == L)
9697 continue;
9698 if (First) {
9699 OS << "\t\t" "LoopDispositions: { ";
9700 First = false;
9701 } else {
9702 OS << ", ";
9703 }
9704
9705 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9706 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9707 }
9708
9709 OS << " }";
Chris Lattnerd934c702004-04-02 20:23:17 +00009710 }
9711
Chris Lattnerd934c702004-04-02 20:23:17 +00009712 OS << "\n";
9713 }
9714
Dan Gohmanbc694912010-01-09 18:17:45 +00009715 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009716 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009717 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009718 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009719 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009720}
Dan Gohmane20f8242009-04-21 00:47:46 +00009721
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009722ScalarEvolution::LoopDisposition
9723ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009724 auto &Values = LoopDispositions[S];
9725 for (auto &V : Values) {
9726 if (V.getPointer() == L)
9727 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009728 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009729 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009730 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009731 auto &Values2 = LoopDispositions[S];
9732 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9733 if (V.getPointer() == L) {
9734 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009735 break;
9736 }
9737 }
9738 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009739}
9740
9741ScalarEvolution::LoopDisposition
9742ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009743 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009744 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009745 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009746 case scTruncate:
9747 case scZeroExtend:
9748 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009749 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009750 case scAddRecExpr: {
9751 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9752
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009753 // If L is the addrec's loop, it's computable.
9754 if (AR->getLoop() == L)
9755 return LoopComputable;
9756
Dan Gohmanafd6db92010-11-17 21:23:15 +00009757 // Add recurrences are never invariant in the function-body (null loop).
9758 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009759 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009760
9761 // This recurrence is variant w.r.t. L if L contains AR's loop.
9762 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009763 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009764
9765 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9766 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009767 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009768
9769 // This recurrence is variant w.r.t. L if any of its operands
9770 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009771 for (auto *Op : AR->operands())
9772 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009773 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009774
9775 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009776 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009777 }
9778 case scAddExpr:
9779 case scMulExpr:
9780 case scUMaxExpr:
9781 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009782 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009783 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9784 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009785 if (D == LoopVariant)
9786 return LoopVariant;
9787 if (D == LoopComputable)
9788 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009789 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009790 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009791 }
9792 case scUDivExpr: {
9793 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009794 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9795 if (LD == LoopVariant)
9796 return LoopVariant;
9797 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9798 if (RD == LoopVariant)
9799 return LoopVariant;
9800 return (LD == LoopInvariant && RD == LoopInvariant) ?
9801 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009802 }
9803 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009804 // All non-instruction values are loop invariant. All instructions are loop
9805 // invariant if they are not contained in the specified loop.
9806 // Instructions are never considered invariant in the function body
9807 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009808 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009809 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9810 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009811 case scCouldNotCompute:
9812 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009813 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009814 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009815}
9816
9817bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9818 return getLoopDisposition(S, L) == LoopInvariant;
9819}
9820
9821bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9822 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009823}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009824
Dan Gohman8ea83d82010-11-18 00:34:22 +00009825ScalarEvolution::BlockDisposition
9826ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009827 auto &Values = BlockDispositions[S];
9828 for (auto &V : Values) {
9829 if (V.getPointer() == BB)
9830 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009831 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009832 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009833 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009834 auto &Values2 = BlockDispositions[S];
9835 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9836 if (V.getPointer() == BB) {
9837 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009838 break;
9839 }
9840 }
9841 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009842}
9843
Dan Gohman8ea83d82010-11-18 00:34:22 +00009844ScalarEvolution::BlockDisposition
9845ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009846 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009847 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009848 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009849 case scTruncate:
9850 case scZeroExtend:
9851 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009852 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009853 case scAddRecExpr: {
9854 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009855 // to test for proper dominance too, because the instruction which
9856 // produces the addrec's value is a PHI, and a PHI effectively properly
9857 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009858 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009859 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009860 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009861 }
9862 // FALL THROUGH into SCEVNAryExpr handling.
9863 case scAddExpr:
9864 case scMulExpr:
9865 case scUMaxExpr:
9866 case scSMaxExpr: {
9867 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009868 bool Proper = true;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00009869 for (const SCEV *NAryOp : NAry->operands()) {
9870 BlockDisposition D = getBlockDisposition(NAryOp, BB);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009871 if (D == DoesNotDominateBlock)
9872 return DoesNotDominateBlock;
9873 if (D == DominatesBlock)
9874 Proper = false;
9875 }
9876 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009877 }
9878 case scUDivExpr: {
9879 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009880 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9881 BlockDisposition LD = getBlockDisposition(LHS, BB);
9882 if (LD == DoesNotDominateBlock)
9883 return DoesNotDominateBlock;
9884 BlockDisposition RD = getBlockDisposition(RHS, BB);
9885 if (RD == DoesNotDominateBlock)
9886 return DoesNotDominateBlock;
9887 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9888 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009889 }
9890 case scUnknown:
9891 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009892 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9893 if (I->getParent() == BB)
9894 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009895 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009896 return ProperlyDominatesBlock;
9897 return DoesNotDominateBlock;
9898 }
9899 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009900 case scCouldNotCompute:
9901 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009902 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009903 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009904}
9905
9906bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9907 return getBlockDisposition(S, BB) >= DominatesBlock;
9908}
9909
9910bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9911 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009912}
Dan Gohman534749b2010-11-17 22:27:42 +00009913
9914bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das7d752672015-12-08 04:32:54 +00009915 // Search for a SCEV expression node within an expression tree.
9916 // Implements SCEVTraversal::Visitor.
9917 struct SCEVSearch {
9918 const SCEV *Node;
9919 bool IsFound;
9920
9921 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9922
9923 bool follow(const SCEV *S) {
9924 IsFound |= (S == Node);
9925 return !IsFound;
9926 }
9927 bool isDone() const { return IsFound; }
9928 };
9929
Andrew Trick365e31c2012-07-13 23:33:03 +00009930 SCEVSearch Search(Op);
9931 visitAll(S, Search);
9932 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009933}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009934
9935void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9936 ValuesAtScopes.erase(S);
9937 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009938 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009939 UnsignedRanges.erase(S);
9940 SignedRanges.erase(S);
Wei Mia49559b2016-02-04 01:27:38 +00009941 ExprValueMap.erase(S);
9942 HasRecMap.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009943
Silviu Baranga6f444df2016-04-08 14:29:09 +00009944 auto RemoveSCEVFromBackedgeMap =
9945 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9946 for (auto I = Map.begin(), E = Map.end(); I != E;) {
9947 BackedgeTakenInfo &BEInfo = I->second;
9948 if (BEInfo.hasOperand(S, this)) {
9949 BEInfo.clear();
9950 Map.erase(I++);
9951 } else
9952 ++I;
9953 }
9954 };
9955
9956 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9957 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009958}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009959
9960typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009961
Alp Tokercb402912014-01-24 17:20:08 +00009962/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009963static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9964 size_t Pos = 0;
9965 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9966 Str.replace(Pos, From.size(), To.data(), To.size());
9967 Pos += To.size();
9968 }
9969}
9970
Benjamin Kramer214935e2012-10-26 17:31:32 +00009971/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9972static void
9973getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009974 std::string &S = Map[L];
9975 if (S.empty()) {
9976 raw_string_ostream OS(S);
9977 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009978
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009979 // false and 0 are semantically equivalent. This can happen in dead loops.
9980 replaceSubString(OS.str(), "false", "0");
9981 // Remove wrap flags, their use in SCEV is highly fragile.
9982 // FIXME: Remove this when SCEV gets smarter about them.
9983 replaceSubString(OS.str(), "<nw>", "");
9984 replaceSubString(OS.str(), "<nsw>", "");
9985 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009986 }
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009987
JF Bastien61ad8b32015-12-23 18:18:53 +00009988 for (auto *R : reverse(*L))
9989 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
Benjamin Kramer214935e2012-10-26 17:31:32 +00009990}
9991
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009992void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009993 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9994
9995 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9996 // FIXME: It would be much better to store actual values instead of strings,
9997 // but SCEV pointers will change if we drop the caches.
9998 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009999 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +000010000 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
10001
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010002 // Gather stringified backedge taken counts for all loops using a fresh
10003 // ScalarEvolution object.
10004 ScalarEvolution SE2(F, TLI, AC, DT, LI);
10005 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10006 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +000010007
10008 // Now compare whether they're the same with and without caches. This allows
10009 // verifying that no pass changed the cache.
10010 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10011 "New loops suddenly appeared!");
10012
10013 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10014 OldE = BackedgeDumpsOld.end(),
10015 NewI = BackedgeDumpsNew.begin();
10016 OldI != OldE; ++OldI, ++NewI) {
10017 assert(OldI->first == NewI->first && "Loop order changed!");
10018
10019 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10020 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010021 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +000010022 // means that a pass is buggy or SCEV has to learn a new pattern but is
10023 // usually not harmful.
10024 if (OldI->second != NewI->second &&
10025 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010026 NewI->second.find("undef") == std::string::npos &&
10027 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +000010028 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010029 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +000010030 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010031 << "' changed from '" << OldI->second
10032 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +000010033 std::abort();
10034 }
10035 }
10036
10037 // TODO: Verify more things.
10038}
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010039
Chandler Carruthb4faf132016-03-11 10:22:49 +000010040char ScalarEvolutionAnalysis::PassID;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +000010041
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010042ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +000010043 AnalysisManager<Function> &AM) {
10044 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10045 AM.getResult<AssumptionAnalysis>(F),
10046 AM.getResult<DominatorTreeAnalysis>(F),
10047 AM.getResult<LoopAnalysis>(F));
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010048}
10049
10050PreservedAnalyses
Chandler Carruthb47f8012016-03-11 11:05:24 +000010051ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10052 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010053 return PreservedAnalyses::all();
10054}
10055
10056INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10057 "Scalar Evolution Analysis", false, true)
10058INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10059INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10060INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10061INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10062INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10063 "Scalar Evolution Analysis", false, true)
10064char ScalarEvolutionWrapperPass::ID = 0;
10065
10066ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10067 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10068}
10069
10070bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10071 SE.reset(new ScalarEvolution(
10072 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10073 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10074 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10075 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10076 return false;
10077}
10078
10079void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10080
10081void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10082 SE->print(OS);
10083}
10084
10085void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10086 if (!VerifySCEV)
10087 return;
10088
10089 SE->verify();
10090}
10091
10092void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10093 AU.setPreservesAll();
10094 AU.addRequiredTransitive<AssumptionCacheTracker>();
10095 AU.addRequiredTransitive<LoopInfoWrapperPass>();
10096 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10097 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10098}
Silviu Barangae3c05342015-11-02 14:41:02 +000010099
10100const SCEVPredicate *
10101ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10102 const SCEVConstant *RHS) {
10103 FoldingSetNodeID ID;
10104 // Unique this node based on the arguments
10105 ID.AddInteger(SCEVPredicate::P_Equal);
10106 ID.AddPointer(LHS);
10107 ID.AddPointer(RHS);
10108 void *IP = nullptr;
10109 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10110 return S;
10111 SCEVEqualPredicate *Eq = new (SCEVAllocator)
10112 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10113 UniquePreds.InsertNode(Eq, IP);
10114 return Eq;
10115}
10116
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010117const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10118 const SCEVAddRecExpr *AR,
10119 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10120 FoldingSetNodeID ID;
10121 // Unique this node based on the arguments
10122 ID.AddInteger(SCEVPredicate::P_Wrap);
10123 ID.AddPointer(AR);
10124 ID.AddInteger(AddedFlags);
10125 void *IP = nullptr;
10126 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10127 return S;
10128 auto *OF = new (SCEVAllocator)
10129 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10130 UniquePreds.InsertNode(OF, IP);
10131 return OF;
10132}
10133
Benjamin Kramer83709b12015-11-16 09:01:28 +000010134namespace {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010135
Silviu Barangae3c05342015-11-02 14:41:02 +000010136class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10137public:
Sanjoy Das807d33d2016-02-20 01:44:10 +000010138 // Rewrites \p S in the context of a loop L and the predicate A.
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010139 // If Assume is true, rewrite is free to add further predicates to A
10140 // such that the result will be an AddRecExpr.
Sanjoy Das807d33d2016-02-20 01:44:10 +000010141 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10142 SCEVUnionPredicate &A, bool Assume) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010143 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
Sanjoy Das807d33d2016-02-20 01:44:10 +000010144 return Rewriter.visit(S);
Silviu Barangae3c05342015-11-02 14:41:02 +000010145 }
10146
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010147 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10148 SCEVUnionPredicate &P, bool Assume)
10149 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
Silviu Barangae3c05342015-11-02 14:41:02 +000010150
10151 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10152 auto ExprPreds = P.getPredicatesForExpr(Expr);
10153 for (auto *Pred : ExprPreds)
10154 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10155 if (IPred->getLHS() == Expr)
10156 return IPred->getRHS();
10157
10158 return Expr;
10159 }
10160
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010161 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10162 const SCEV *Operand = visit(Expr->getOperand());
10163 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10164 if (AR && AR->getLoop() == L && AR->isAffine()) {
10165 // This couldn't be folded because the operand didn't have the nuw
10166 // flag. Add the nusw flag as an assumption that we could make.
10167 const SCEV *Step = AR->getStepRecurrence(SE);
10168 Type *Ty = Expr->getType();
10169 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10170 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10171 SE.getSignExtendExpr(Step, Ty), L,
10172 AR->getNoWrapFlags());
10173 }
10174 return SE.getZeroExtendExpr(Operand, Expr->getType());
10175 }
10176
10177 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10178 const SCEV *Operand = visit(Expr->getOperand());
10179 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10180 if (AR && AR->getLoop() == L && AR->isAffine()) {
10181 // This couldn't be folded because the operand didn't have the nsw
10182 // flag. Add the nssw flag as an assumption that we could make.
10183 const SCEV *Step = AR->getStepRecurrence(SE);
10184 Type *Ty = Expr->getType();
10185 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10186 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10187 SE.getSignExtendExpr(Step, Ty), L,
10188 AR->getNoWrapFlags());
10189 }
10190 return SE.getSignExtendExpr(Operand, Expr->getType());
10191 }
10192
Silviu Barangae3c05342015-11-02 14:41:02 +000010193private:
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010194 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10195 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10196 auto *A = SE.getWrapPredicate(AR, AddedFlags);
10197 if (!Assume) {
10198 // Check if we've already made this assumption.
10199 if (P.implies(A))
10200 return true;
10201 return false;
10202 }
10203 P.add(A);
10204 return true;
10205 }
10206
Silviu Barangae3c05342015-11-02 14:41:02 +000010207 SCEVUnionPredicate &P;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010208 const Loop *L;
10209 bool Assume;
Silviu Barangae3c05342015-11-02 14:41:02 +000010210};
Benjamin Kramer83709b12015-11-16 09:01:28 +000010211} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +000010212
Sanjoy Das807d33d2016-02-20 01:44:10 +000010213const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
Silviu Barangae3c05342015-11-02 14:41:02 +000010214 SCEVUnionPredicate &Preds) {
Sanjoy Das807d33d2016-02-20 01:44:10 +000010215 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010216}
10217
Silviu Barangad68ed852016-03-23 15:29:30 +000010218const SCEVAddRecExpr *
Sanjoy Das807d33d2016-02-20 01:44:10 +000010219ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10220 SCEVUnionPredicate &Preds) {
Silviu Barangad68ed852016-03-23 15:29:30 +000010221 SCEVUnionPredicate TransformPreds;
10222 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10223 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10224
10225 if (!AddRec)
10226 return nullptr;
10227
10228 // Since the transformation was successful, we can now transfer the SCEV
10229 // predicates.
10230 Preds.add(&TransformPreds);
10231 return AddRec;
Silviu Barangae3c05342015-11-02 14:41:02 +000010232}
10233
10234/// SCEV predicates
10235SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10236 SCEVPredicateKind Kind)
10237 : FastID(ID), Kind(Kind) {}
10238
10239SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10240 const SCEVUnknown *LHS,
10241 const SCEVConstant *RHS)
10242 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10243
10244bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10245 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10246
10247 if (!Op)
10248 return false;
10249
10250 return Op->LHS == LHS && Op->RHS == RHS;
10251}
10252
10253bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10254
10255const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10256
10257void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10258 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10259}
10260
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010261SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10262 const SCEVAddRecExpr *AR,
10263 IncrementWrapFlags Flags)
10264 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10265
10266const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10267
10268bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10269 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10270
10271 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10272}
10273
10274bool SCEVWrapPredicate::isAlwaysTrue() const {
10275 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10276 IncrementWrapFlags IFlags = Flags;
10277
10278 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10279 IFlags = clearFlags(IFlags, IncrementNSSW);
10280
10281 return IFlags == IncrementAnyWrap;
10282}
10283
10284void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10285 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10286 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10287 OS << "<nusw>";
10288 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10289 OS << "<nssw>";
10290 OS << "\n";
10291}
10292
10293SCEVWrapPredicate::IncrementWrapFlags
10294SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10295 ScalarEvolution &SE) {
10296 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10297 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10298
10299 // We can safely transfer the NSW flag as NSSW.
10300 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10301 ImpliedFlags = IncrementNSSW;
10302
10303 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10304 // If the increment is positive, the SCEV NUW flag will also imply the
10305 // WrapPredicate NUSW flag.
10306 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10307 if (Step->getValue()->getValue().isNonNegative())
10308 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10309 }
10310
10311 return ImpliedFlags;
10312}
10313
Silviu Barangae3c05342015-11-02 14:41:02 +000010314/// Union predicates don't get cached so create a dummy set ID for it.
10315SCEVUnionPredicate::SCEVUnionPredicate()
10316 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10317
10318bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +000010319 return all_of(Preds,
10320 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010321}
10322
10323ArrayRef<const SCEVPredicate *>
10324SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10325 auto I = SCEVToPreds.find(Expr);
10326 if (I == SCEVToPreds.end())
10327 return ArrayRef<const SCEVPredicate *>();
10328 return I->second;
10329}
10330
10331bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10332 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +000010333 return all_of(Set->Preds,
10334 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010335
10336 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10337 if (ScevPredsIt == SCEVToPreds.end())
10338 return false;
10339 auto &SCEVPreds = ScevPredsIt->second;
10340
Sanjoy Dasff3b8b42015-12-01 07:49:23 +000010341 return any_of(SCEVPreds,
10342 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010343}
10344
10345const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10346
10347void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10348 for (auto Pred : Preds)
10349 Pred->print(OS, Depth);
10350}
10351
10352void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10353 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10354 for (auto Pred : Set->Preds)
10355 add(Pred);
10356 return;
10357 }
10358
10359 if (implies(N))
10360 return;
10361
10362 const SCEV *Key = N->getExpr();
10363 assert(Key && "Only SCEVUnionPredicate doesn't have an "
10364 " associated expression!");
10365
10366 SCEVToPreds[Key].push_back(N);
10367 Preds.push_back(N);
10368}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010369
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010370PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10371 Loop &L)
Silviu Baranga6f444df2016-04-08 14:29:09 +000010372 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010373
10374const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10375 const SCEV *Expr = SE.getSCEV(V);
10376 RewriteEntry &Entry = RewriteMap[Expr];
10377
10378 // If we already have an entry and the version matches, return it.
10379 if (Entry.second && Generation == Entry.first)
10380 return Entry.second;
10381
10382 // We found an entry but it's stale. Rewrite the stale entry
10383 // acording to the current predicate.
10384 if (Entry.second)
10385 Expr = Entry.second;
10386
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010387 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010388 Entry = {Generation, NewSCEV};
10389
10390 return NewSCEV;
10391}
10392
Silviu Baranga6f444df2016-04-08 14:29:09 +000010393const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10394 if (!BackedgeCount) {
10395 SCEVUnionPredicate BackedgePred;
10396 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10397 addPredicate(BackedgePred);
10398 }
10399 return BackedgeCount;
10400}
10401
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010402void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10403 if (Preds.implies(&Pred))
10404 return;
10405 Preds.add(&Pred);
10406 updateGeneration();
10407}
10408
10409const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10410 return Preds;
10411}
10412
10413void PredicatedScalarEvolution::updateGeneration() {
10414 // If the generation number wrapped recompute everything.
10415 if (++Generation == 0) {
10416 for (auto &II : RewriteMap) {
10417 const SCEV *Rewritten = II.second.second;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010418 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010419 }
10420 }
10421}
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010422
10423void PredicatedScalarEvolution::setNoOverflow(
10424 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10425 const SCEV *Expr = getSCEV(V);
10426 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10427
10428 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10429
10430 // Clear the statically implied flags.
10431 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10432 addPredicate(*SE.getWrapPredicate(AR, Flags));
10433
10434 auto II = FlagsMap.insert({V, Flags});
10435 if (!II.second)
10436 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10437}
10438
10439bool PredicatedScalarEvolution::hasNoOverflow(
10440 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10441 const SCEV *Expr = getSCEV(V);
10442 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10443
10444 Flags = SCEVWrapPredicate::clearFlags(
10445 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10446
10447 auto II = FlagsMap.find(V);
10448
10449 if (II != FlagsMap.end())
10450 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10451
10452 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10453}
10454
Silviu Barangad68ed852016-03-23 15:29:30 +000010455const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010456 const SCEV *Expr = this->getSCEV(V);
Silviu Barangad68ed852016-03-23 15:29:30 +000010457 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10458
10459 if (!New)
10460 return nullptr;
10461
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010462 updateGeneration();
10463 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10464 return New;
10465}
10466
Silviu Baranga6f444df2016-04-08 14:29:09 +000010467PredicatedScalarEvolution::PredicatedScalarEvolution(
10468 const PredicatedScalarEvolution &Init)
10469 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10470 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010471 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10472 FlagsMap.insert(*I);
10473}
Silviu Barangab77365b2016-04-14 16:08:45 +000010474
10475void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10476 // For each block.
10477 for (auto *BB : L.getBlocks())
10478 for (auto &I : *BB) {
10479 if (!SE.isSCEVable(I.getType()))
10480 continue;
10481
10482 auto *Expr = SE.getSCEV(&I);
10483 auto II = RewriteMap.find(Expr);
10484
10485 if (II == RewriteMap.end())
10486 continue;
10487
10488 // Don't print things that are not interesting.
10489 if (II->second.second == Expr)
10490 continue;
10491
10492 OS.indent(Depth) << "[PSE]" << I << ":\n";
10493 OS.indent(Depth + 2) << *Expr << "\n";
10494 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10495 }
10496}