blob: e505b1cc5a1cc1116d727d10fa1f2bfab865f6d4 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Chandler Carruth37c7b082017-08-14 07:03:24 +000086// This optimization is known to cause performance regressions is some cases,
87// keep it under a temporary flag for now.
88static cl::opt<bool>
89DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
90 cl::Hidden, cl::init(true));
91
Craig Topper6b3940a2017-05-03 22:25:19 +000092/// Returns the bitwidth of the given scalar or pointer type. For vector types,
93/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000094static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000095 if (unsigned BitWidth = Ty->getScalarSizeInBits())
96 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000097
Mehdi Aminia28d91d2015-03-10 02:37:25 +000098 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000099}
Chris Lattner965c7692008-06-02 01:18:21 +0000100
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000101namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000102
Hal Finkel60db0582014-09-07 18:57:58 +0000103// Simplifying using an assume can only be done in a particular control-flow
104// context (the context instruction provides that context). If an assume and
105// the context instruction are not in the same block then the DT helps in
106// figuring out if we can use it.
107struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000108 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000109 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000110 const Instruction *CxtI;
111 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000112
Sanjay Patel54656ca2017-02-06 18:26:06 +0000113 // Unlike the other analyses, this may be a nullptr because not all clients
114 // provide it currently.
115 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000116
Matthias Braun37e5d792016-01-28 06:29:33 +0000117 /// Set of assumptions that should be excluded from further queries.
118 /// This is because of the potential for mutual recursion to cause
119 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
120 /// classic case of this is assume(x = y), which will attempt to determine
121 /// bits in x from bits in y, which will attempt to determine bits in y from
122 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000123 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
124 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000125 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000126
127 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000128
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000129 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000130 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000131 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000132
133 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000134 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
135 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000136 Excluded = Q.Excluded;
137 Excluded[NumExcluded++] = NewExcl;
138 assert(NumExcluded <= Excluded.size());
139 }
140
141 bool isExcluded(const Value *Value) const {
142 if (NumExcluded == 0)
143 return false;
144 auto End = Excluded.begin() + NumExcluded;
145 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000146 }
147};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000148
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000149} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000150
Sanjay Patel547e9752014-11-04 16:09:50 +0000151// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000152// the preferred context instruction (if any).
153static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
154 // If we've been provided with a context instruction, then use that (provided
155 // it has been inserted).
156 if (CxtI && CxtI->getParent())
157 return CxtI;
158
159 // If the value is really an already-inserted instruction, then use that.
160 CxtI = dyn_cast<Instruction>(V);
161 if (CxtI && CxtI->getParent())
162 return CxtI;
163
164 return nullptr;
165}
166
Craig Topperb45eabc2017-04-26 16:39:58 +0000167static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000168 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000169
Craig Topperb45eabc2017-04-26 16:39:58 +0000170void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000172 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000173 const DominatorTree *DT,
174 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000175 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000176 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000177}
178
Craig Topper6e11a052017-05-08 16:22:48 +0000179static KnownBits computeKnownBits(const Value *V, unsigned Depth,
180 const Query &Q);
181
182KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
183 unsigned Depth, AssumptionCache *AC,
184 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000185 const DominatorTree *DT,
186 OptimizationRemarkEmitter *ORE) {
187 return ::computeKnownBits(V, Depth,
188 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000189}
190
Pete Cooper35b00d52016-08-13 01:05:32 +0000191bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
192 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000193 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000194 const DominatorTree *DT) {
195 assert(LHS->getType() == RHS->getType() &&
196 "LHS and RHS should have the same type");
197 assert(LHS->getType()->isIntOrIntVectorTy() &&
198 "LHS and RHS should be integers");
199 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000200 KnownBits LHSKnown(IT->getBitWidth());
201 KnownBits RHSKnown(IT->getBitWidth());
202 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
203 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
204 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000205}
206
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000207bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
208 for (const User *U : CxtI->users()) {
209 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
210 if (IC->isEquality())
211 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
212 if (C->isNullValue())
213 continue;
214 return false;
215 }
216 return true;
217}
218
Pete Cooper35b00d52016-08-13 01:05:32 +0000219static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000220 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000221
Pete Cooper35b00d52016-08-13 01:05:32 +0000222bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
223 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000224 unsigned Depth, AssumptionCache *AC,
225 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000226 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000229}
230
Pete Cooper35b00d52016-08-13 01:05:32 +0000231static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 AssumptionCache *AC, const Instruction *CxtI,
235 const DominatorTree *DT) {
236 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000237}
238
Pete Cooper35b00d52016-08-13 01:05:32 +0000239bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 unsigned Depth,
241 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000242 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000243 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
244 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000248 AssumptionCache *AC, const Instruction *CxtI,
249 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000250 if (auto *CI = dyn_cast<ConstantInt>(V))
251 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000252
Philip Reames8f12eba2016-03-09 21:31:47 +0000253 // TODO: We'd doing two recursive queries here. We should factor this such
254 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000255 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
256 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000257}
258
Pete Cooper35b00d52016-08-13 01:05:32 +0000259bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000260 AssumptionCache *AC, const Instruction *CxtI,
261 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000262 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
263 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000264}
265
Pete Cooper35b00d52016-08-13 01:05:32 +0000266static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000267
Pete Cooper35b00d52016-08-13 01:05:32 +0000268bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000269 const DataLayout &DL,
270 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000271 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000272 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
273 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000274 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000275}
276
Pete Cooper35b00d52016-08-13 01:05:32 +0000277static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000278 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000279
Pete Cooper35b00d52016-08-13 01:05:32 +0000280bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
281 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000282 unsigned Depth, AssumptionCache *AC,
283 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000284 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000285 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000286}
287
Pete Cooper35b00d52016-08-13 01:05:32 +0000288static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
289 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000290
Pete Cooper35b00d52016-08-13 01:05:32 +0000291unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000292 unsigned Depth, AssumptionCache *AC,
293 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000294 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000295 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000296}
297
Craig Topper8fbb74b2017-03-24 22:12:10 +0000298static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
299 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000300 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000301 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000302 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303
304 // If an initial sequence of bits in the result is not needed, the
305 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000306 KnownBits LHSKnown(BitWidth);
307 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
308 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000309
Craig Topperb498a232017-08-08 16:29:35 +0000310 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000311}
312
Pete Cooper35b00d52016-08-13 01:05:32 +0000313static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000314 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000315 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000316 unsigned BitWidth = Known.getBitWidth();
317 computeKnownBits(Op1, Known, Depth + 1, Q);
318 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000319
320 bool isKnownNegative = false;
321 bool isKnownNonNegative = false;
322 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000323 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000324 if (Op0 == Op1) {
325 // The product of a number with itself is non-negative.
326 isKnownNonNegative = true;
327 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000328 bool isKnownNonNegativeOp1 = Known.isNonNegative();
329 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
330 bool isKnownNegativeOp1 = Known.isNegative();
331 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 // The product of two numbers with the same sign is non-negative.
333 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
334 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
335 // The product of a negative number and a non-negative number is either
336 // negative or zero.
337 if (!isKnownNonNegative)
338 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000339 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 }
343 }
344
345 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000346 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000347 // More trickiness is possible, but this is sufficient for the
348 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000349 unsigned TrailZ = Known.countMinTrailingZeros() +
350 Known2.countMinTrailingZeros();
351 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
352 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000353 BitWidth) - BitWidth;
354
355 TrailZ = std::min(TrailZ, BitWidth);
356 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000357 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000358 Known.Zero.setLowBits(TrailZ);
359 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000360
361 // Only make use of no-wrap flags if we failed to compute the sign bit
362 // directly. This matters if the multiplication always overflows, in
363 // which case we prefer to follow the result of the direct computation,
364 // though as the program is invoking undefined behaviour we can choose
365 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000366 if (isKnownNonNegative && !Known.isNegative())
367 Known.makeNonNegative();
368 else if (isKnownNegative && !Known.isNonNegative())
369 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000370}
371
Jingyue Wu37fcb592014-06-19 16:50:16 +0000372void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000373 KnownBits &Known) {
374 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000375 unsigned NumRanges = Ranges.getNumOperands() / 2;
376 assert(NumRanges >= 1);
377
Craig Topperf42b23f2017-04-28 06:28:56 +0000378 Known.Zero.setAllBits();
379 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000380
Rafael Espindola53190532012-03-30 15:52:11 +0000381 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000382 ConstantInt *Lower =
383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
384 ConstantInt *Upper =
385 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000386 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000387
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 // The first CommonPrefixBits of all values in Range are equal.
389 unsigned CommonPrefixBits =
390 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
391
392 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000393 Known.One &= Range.getUnsignedMax() & Mask;
394 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000395 }
Rafael Espindola53190532012-03-30 15:52:11 +0000396}
Jay Foad5a29c362014-05-15 12:12:55 +0000397
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000398static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000399 SmallVector<const Value *, 16> WorkSet(1, I);
400 SmallPtrSet<const Value *, 32> Visited;
401 SmallPtrSet<const Value *, 16> EphValues;
402
Hal Finkelf2199b22015-10-23 20:37:08 +0000403 // The instruction defining an assumption's condition itself is always
404 // considered ephemeral to that assumption (even if it has other
405 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000406 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000407 return true;
408
Hal Finkel60db0582014-09-07 18:57:58 +0000409 while (!WorkSet.empty()) {
410 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000411 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000412 continue;
413
414 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000415 if (llvm::all_of(V->users(), [&](const User *U) {
416 return EphValues.count(U);
417 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000418 if (V == E)
419 return true;
420
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000421 if (V == I || isSafeToSpeculativelyExecute(V)) {
422 EphValues.insert(V);
423 if (const User *U = dyn_cast<User>(V))
424 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
425 J != JE; ++J)
426 WorkSet.push_back(*J);
427 }
Hal Finkel60db0582014-09-07 18:57:58 +0000428 }
429 }
430
431 return false;
432}
433
434// Is this an intrinsic that cannot be speculated but also cannot trap?
435static bool isAssumeLikeIntrinsic(const Instruction *I) {
436 if (const CallInst *CI = dyn_cast<CallInst>(I))
437 if (Function *F = CI->getCalledFunction())
438 switch (F->getIntrinsicID()) {
439 default: break;
440 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
441 case Intrinsic::assume:
442 case Intrinsic::dbg_declare:
443 case Intrinsic::dbg_value:
444 case Intrinsic::invariant_start:
445 case Intrinsic::invariant_end:
446 case Intrinsic::lifetime_start:
447 case Intrinsic::lifetime_end:
448 case Intrinsic::objectsize:
449 case Intrinsic::ptr_annotation:
450 case Intrinsic::var_annotation:
451 return true;
452 }
453
454 return false;
455}
456
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000457bool llvm::isValidAssumeForContext(const Instruction *Inv,
458 const Instruction *CxtI,
459 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000460 // There are two restrictions on the use of an assume:
461 // 1. The assume must dominate the context (or the control flow must
462 // reach the assume whenever it reaches the context).
463 // 2. The context must not be in the assume's set of ephemeral values
464 // (otherwise we will use the assume to prove that the condition
465 // feeding the assume is trivially true, thus causing the removal of
466 // the assume).
467
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000468 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000469 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000470 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000471 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
472 // We don't have a DT, but this trivially dominates.
473 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000474 }
475
Pete Cooper54a02552016-08-12 01:00:15 +0000476 // With or without a DT, the only remaining case we will check is if the
477 // instructions are in the same BB. Give up if that is not the case.
478 if (Inv->getParent() != CxtI->getParent())
479 return false;
480
481 // If we have a dom tree, then we now know that the assume doens't dominate
482 // the other instruction. If we don't have a dom tree then we can check if
483 // the assume is first in the BB.
484 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000485 // Search forward from the assume until we reach the context (or the end
486 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000487 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000488 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000489 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000490 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000491 }
492
Pete Cooper54a02552016-08-12 01:00:15 +0000493 // The context comes first, but they're both in the same block. Make sure
494 // there is nothing in between that might interrupt the control flow.
495 for (BasicBlock::const_iterator I =
496 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
497 I != IE; ++I)
498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
499 return false;
500
501 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000502}
503
Craig Topperb45eabc2017-04-26 16:39:58 +0000504static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
505 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000506 // Use of assumptions is context-sensitive. If we don't have a context, we
507 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000508 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000509 return;
510
Craig Topperb45eabc2017-04-26 16:39:58 +0000511 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000512
Hal Finkel8a9a7832017-01-11 13:24:24 +0000513 // Note that the patterns below need to be kept in sync with the code
514 // in AssumptionCache::updateAffectedValues.
515
516 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000517 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000518 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000519 CallInst *I = cast<CallInst>(AssumeVH);
520 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
521 "Got assumption for the wrong function!");
522 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000523 continue;
524
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000525 // Warning: This loop can end up being somewhat performance sensetive.
526 // We're running this loop for once for each value queried resulting in a
527 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000528
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000529 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
530 "must be an assume intrinsic");
531
532 Value *Arg = I->getArgOperand(0);
533
534 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000535 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000536 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000537 return;
538 }
Sanjay Patel96669962017-01-17 18:15:49 +0000539 if (match(Arg, m_Not(m_Specific(V))) &&
540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
541 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000542 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000543 return;
544 }
Hal Finkel60db0582014-09-07 18:57:58 +0000545
David Majnemer9b609752014-12-12 23:59:29 +0000546 // The remaining tests are all recursive, so bail out if we hit the limit.
547 if (Depth == MaxDepth)
548 continue;
549
Hal Finkel60db0582014-09-07 18:57:58 +0000550 Value *A, *B;
551 auto m_V = m_CombineOr(m_Specific(V),
552 m_CombineOr(m_PtrToInt(m_Specific(V)),
553 m_BitCast(m_Specific(V))));
554
555 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000556 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000557 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000558 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000559 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000560 KnownBits RHSKnown(BitWidth);
561 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
562 Known.Zero |= RHSKnown.Zero;
563 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000564 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000565 } else if (match(Arg,
566 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000568 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000569 KnownBits RHSKnown(BitWidth);
570 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
571 KnownBits MaskKnown(BitWidth);
572 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000573
574 // For those bits in the mask that are known to be one, we can propagate
575 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000576 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
577 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000578 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000579 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
580 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000581 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000582 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000583 KnownBits RHSKnown(BitWidth);
584 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
585 KnownBits MaskKnown(BitWidth);
586 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587
588 // For those bits in the mask that are known to be one, we can propagate
589 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000590 Known.Zero |= RHSKnown.One & MaskKnown.One;
591 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000592 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000593 } else if (match(Arg,
594 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000595 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000596 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000597 KnownBits RHSKnown(BitWidth);
598 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
599 KnownBits BKnown(BitWidth);
600 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601
602 // For those bits in B that are known to be zero, we can propagate known
603 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000604 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
605 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000606 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000607 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
608 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000609 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000611 KnownBits RHSKnown(BitWidth);
612 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
613 KnownBits BKnown(BitWidth);
614 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615
616 // For those bits in B that are known to be zero, we can propagate
617 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000618 Known.Zero |= RHSKnown.One & BKnown.Zero;
619 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000620 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000621 } else if (match(Arg,
622 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000623 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000624 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000625 KnownBits RHSKnown(BitWidth);
626 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
627 KnownBits BKnown(BitWidth);
628 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629
630 // For those bits in B that are known to be zero, we can propagate known
631 // bits from the RHS to V. For those bits in B that are known to be one,
632 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000633 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
634 Known.One |= RHSKnown.One & BKnown.Zero;
635 Known.Zero |= RHSKnown.One & BKnown.One;
636 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000638 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
639 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000640 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000641 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000642 KnownBits RHSKnown(BitWidth);
643 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
644 KnownBits BKnown(BitWidth);
645 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000646
647 // For those bits in B that are known to be zero, we can propagate
648 // inverted known bits from the RHS to V. For those bits in B that are
649 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000650 Known.Zero |= RHSKnown.One & BKnown.Zero;
651 Known.One |= RHSKnown.Zero & BKnown.Zero;
652 Known.Zero |= RHSKnown.Zero & BKnown.One;
653 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000655 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
656 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000657 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000658 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000659 KnownBits RHSKnown(BitWidth);
660 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // For those bits in RHS that are known, we can propagate them to known
662 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000663 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
664 Known.Zero |= RHSKnown.Zero;
665 RHSKnown.One.lshrInPlace(C->getZExtValue());
666 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000670 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000672 KnownBits RHSKnown(BitWidth);
673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // For those bits in RHS that are known, we can propagate them inverted
675 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000676 RHSKnown.One.lshrInPlace(C->getZExtValue());
677 Known.Zero |= RHSKnown.One;
678 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
679 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000681 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000682 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000683 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000684 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000686 KnownBits RHSKnown(BitWidth);
687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000688 // For those bits in RHS that are known, we can propagate them to known
689 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000690 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
691 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000692 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000693 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000694 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000695 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000697 KnownBits RHSKnown(BitWidth);
698 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000699 // For those bits in RHS that are known, we can propagate them inverted
700 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000701 Known.Zero |= RHSKnown.One << C->getZExtValue();
702 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000707 KnownBits RHSKnown(BitWidth);
708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709
Craig Topperca48af32017-04-29 16:43:11 +0000710 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000711 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000712 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 }
714 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000716 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000718 KnownBits RHSKnown(BitWidth);
719 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720
Craig Topperf0aeee02017-05-05 17:36:09 +0000721 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000722 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000723 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 }
725 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000726 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000727 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000729 KnownBits RHSKnown(BitWidth);
730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000731
Craig Topperca48af32017-04-29 16:43:11 +0000732 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000733 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000734 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735 }
736 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000737 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000738 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000740 KnownBits RHSKnown(BitWidth);
741 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000742
Craig Topperf0aeee02017-05-05 17:36:09 +0000743 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000744 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000745 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 }
747 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000748 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000749 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000750 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000751 KnownBits RHSKnown(BitWidth);
752 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000753
754 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000755 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
756 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000757 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000758 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000760 KnownBits RHSKnown(BitWidth);
761 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762
763 // Whatever high bits in c are zero are known to be zero (if c is a power
764 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000765 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000766 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 else
Craig Topper8df66c62017-05-12 17:20:30 +0000768 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000769 }
770 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000771
772 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000773 // have a logical fallacy. It's possible that the assumption is not reachable,
774 // so this isn't a real bug. On the other hand, the program may have undefined
775 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
776 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000777 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000778 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000779
Vivek Pandya95906582017-10-11 17:12:59 +0000780 if (Q.ORE)
781 Q.ORE->emit([&]() {
782 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
783 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
784 CxtI)
785 << "Detected conflicting code assumptions. Program may "
786 "have undefined behavior, or compiler may have "
787 "internal error.";
788 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000789 }
Hal Finkel60db0582014-09-07 18:57:58 +0000790}
791
Hal Finkelf2199b22015-10-23 20:37:08 +0000792// Compute known bits from a shift operator, including those with a
Craig Topperb45eabc2017-04-26 16:39:58 +0000793// non-constant shift amount. Known is the outputs of this function. Known2 is a
794// pre-allocated temporary with the/ same bit width as Known. KZF and KOF are
795// operator-specific functors that, given the known-zero or known-one bits
796// respectively, and a shift amount, compute the implied known-zero or known-one
797// bits of the shift operator's result respectively for that shift amount. The
798// results from calling KZF and KOF are conservatively combined for all
799// permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000800static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000801 const Operator *I, KnownBits &Known, KnownBits &Known2,
802 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000803 function_ref<APInt(const APInt &, unsigned)> KZF,
804 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000805 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000806
807 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
808 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
809
Craig Topperb45eabc2017-04-26 16:39:58 +0000810 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
811 Known.Zero = KZF(Known.Zero, ShiftAmt);
812 Known.One = KOF(Known.One, ShiftAmt);
813 // If there is conflict between Known.Zero and Known.One, this must be an
814 // overflowing left shift, so the shift result is undefined. Clear Known
815 // bits so that other code could propagate this undef.
Craig Topperf0aeee02017-05-05 17:36:09 +0000816 if ((Known.Zero & Known.One) != 0)
817 Known.resetAll();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000818
Hal Finkelf2199b22015-10-23 20:37:08 +0000819 return;
820 }
821
Craig Topperb45eabc2017-04-26 16:39:58 +0000822 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000823
Oliver Stannard06204112017-03-14 10:13:17 +0000824 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
825 // value could be undef, so we don't know anything about it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000826 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000827 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000828 return;
829 }
830
Craig Topperb45eabc2017-04-26 16:39:58 +0000831 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000832 // BitWidth > 64 and any upper bits are known, we'll end up returning the
833 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000834 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
835 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000836
837 // It would be more-clearly correct to use the two temporaries for this
838 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000839 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000840
James Molloy493e57d2015-10-26 14:10:46 +0000841 // If we know the shifter operand is nonzero, we can sometimes infer more
842 // known bits. However this is expensive to compute, so be lazy about it and
843 // only compute it when absolutely necessary.
844 Optional<bool> ShifterOperandIsNonZero;
845
Hal Finkelf2199b22015-10-23 20:37:08 +0000846 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000847 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
848 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
James Molloy493e57d2015-10-26 14:10:46 +0000849 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000850 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000851 if (!*ShifterOperandIsNonZero)
852 return;
853 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000854
Craig Topperb45eabc2017-04-26 16:39:58 +0000855 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000856
Craig Topperb45eabc2017-04-26 16:39:58 +0000857 Known.Zero.setAllBits();
858 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000859 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
860 // Combine the shifted known input bits only for those shift amounts
861 // compatible with its known constraints.
862 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
863 continue;
864 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
865 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000866 // If we know the shifter is nonzero, we may be able to infer more known
867 // bits. This check is sunk down as far as possible to avoid the expensive
868 // call to isKnownNonZero if the cheaper checks above fail.
869 if (ShiftAmt == 0) {
870 if (!ShifterOperandIsNonZero.hasValue())
871 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000872 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000873 if (*ShifterOperandIsNonZero)
874 continue;
875 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000876
Craig Topperb45eabc2017-04-26 16:39:58 +0000877 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
878 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000879 }
880
881 // If there are no compatible shift amounts, then we've proven that the shift
882 // amount must be >= the BitWidth, and the result is undefined. We could
883 // return anything we'd like, but we need to make sure the sets of known bits
884 // stay disjoint (it should be better for some other code to actually
885 // propagate the undef than to pick a value here using known bits).
Craig Topperf0aeee02017-05-05 17:36:09 +0000886 if (Known.Zero.intersects(Known.One))
887 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000888}
889
Craig Topperb45eabc2017-04-26 16:39:58 +0000890static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
891 unsigned Depth, const Query &Q) {
892 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000893
Craig Topperb45eabc2017-04-26 16:39:58 +0000894 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000895 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000896 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000897 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000898 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000899 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000900 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000901 case Instruction::And: {
902 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000903 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
904 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000905
Chris Lattner965c7692008-06-02 01:18:21 +0000906 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000907 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000908 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000909 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000910
911 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
912 // here we handle the more general case of adding any odd number by
913 // matching the form add(x, add(x, y)) where y is odd.
914 // TODO: This could be generalized to clearing any bit set in y where the
915 // following bit is known to be unset in y.
916 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000917 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000918 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
919 m_Value(Y))) ||
920 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
921 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000922 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000923 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000924 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000925 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000926 }
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000929 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000930 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
931 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000932
Chris Lattner965c7692008-06-02 01:18:21 +0000933 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000934 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000935 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000936 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000937 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000938 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000939 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
940 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000941
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000943 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000944 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000945 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
946 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000947 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000948 }
949 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000950 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000951 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
952 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000953 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000954 }
955 case Instruction::UDiv: {
956 // For the purposes of computing leading zeros we can conservatively
957 // treat a udiv as a logical right shift by the power of 2 known to
958 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000959 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000960 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000961
Craig Topperf0aeee02017-05-05 17:36:09 +0000962 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000963 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000964 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
965 if (RHSMaxLeadingZeros != BitWidth)
966 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000967
Craig Topperb45eabc2017-04-26 16:39:58 +0000968 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000969 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000970 }
David Majnemera19d0f22016-08-06 08:16:00 +0000971 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000972 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000973 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
974 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000975 computeKnownBits(RHS, Known, Depth + 1, Q);
976 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000977 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000978 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
979 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000980 }
981
982 unsigned MaxHighOnes = 0;
983 unsigned MaxHighZeros = 0;
984 if (SPF == SPF_SMAX) {
985 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000986 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000987 // We can derive a lower bound on the result by taking the max of the
988 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000989 MaxHighOnes =
990 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000991 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000992 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000993 MaxHighZeros = 1;
994 } else if (SPF == SPF_SMIN) {
995 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000996 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000997 // We can derive an upper bound on the result by taking the max of the
998 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000999 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1000 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001001 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001002 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001003 MaxHighOnes = 1;
1004 } else if (SPF == SPF_UMAX) {
1005 // We can derive a lower bound on the result by taking the max of the
1006 // leading one bits.
1007 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001008 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001009 } else if (SPF == SPF_UMIN) {
1010 // We can derive an upper bound on the result by taking the max of the
1011 // leading zero bits.
1012 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001013 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001014 }
1015
Chris Lattner965c7692008-06-02 01:18:21 +00001016 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001017 Known.One &= Known2.One;
1018 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001019 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001020 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001021 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001022 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001023 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001024 }
Chris Lattner965c7692008-06-02 01:18:21 +00001025 case Instruction::FPTrunc:
1026 case Instruction::FPExt:
1027 case Instruction::FPToUI:
1028 case Instruction::FPToSI:
1029 case Instruction::SIToFP:
1030 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001031 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001032 case Instruction::PtrToInt:
1033 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001034 // Fall through and handle them the same as zext/trunc.
1035 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001036 case Instruction::ZExt:
1037 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001038 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001039
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001040 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001041 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1042 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001043 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001044
1045 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001046 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001047 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001048 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001049 // Any top bits are known to be zero.
1050 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001051 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001052 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001053 }
1054 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001055 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001056 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001057 // TODO: For now, not handling conversions like:
1058 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001059 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001060 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001061 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001062 }
1063 break;
1064 }
1065 case Instruction::SExt: {
1066 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001067 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001068
Craig Topperd938fd12017-05-03 22:07:25 +00001069 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001070 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001071 // If the sign bit of the input is known set or clear, then we know the
1072 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001073 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001074 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001075 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001076 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001077 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001078 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001079 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1080 APInt KZResult = KnownZero << ShiftAmt;
1081 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001082 // If this shift has "nsw" keyword, then the result is either a poison
1083 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001084 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001085 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001086 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001087 };
1088
Craig Topperd73c6b42017-03-23 07:06:39 +00001089 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001090 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001091 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001092 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001093 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001094 };
1095
Craig Topperb45eabc2017-04-26 16:39:58 +00001096 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001097 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001098 }
1099 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001100 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001101 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1102 APInt KZResult = KnownZero.lshr(ShiftAmt);
1103 // High bits known zero.
1104 KZResult.setHighBits(ShiftAmt);
1105 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001106 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001107
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001108 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001109 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001110 };
1111
Craig Topperb45eabc2017-04-26 16:39:58 +00001112 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001113 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001114 }
1115 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001116 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001117 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001118 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001120
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001121 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001122 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001123 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001124
Craig Topperb45eabc2017-04-26 16:39:58 +00001125 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001126 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001127 }
Chris Lattner965c7692008-06-02 01:18:21 +00001128 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001129 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001130 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001131 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001132 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001133 }
Chris Lattner965c7692008-06-02 01:18:21 +00001134 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001135 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001136 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001137 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001139 }
1140 case Instruction::SRem:
1141 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001142 APInt RA = Rem->getValue().abs();
1143 if (RA.isPowerOf2()) {
1144 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001145 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001146
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001147 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001148 Known.Zero = Known2.Zero & LowBits;
1149 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001150
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001151 // If the first operand is non-negative or has all low bits zero, then
1152 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001153 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001154 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001155
1156 // If the first operand is negative and not all low bits are zero, then
1157 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001158 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001159 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001160
Craig Topperb45eabc2017-04-26 16:39:58 +00001161 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001162 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001163 }
1164 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001165
1166 // The sign bit is the LHS's sign bit, except when the result of the
1167 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001168 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001169 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001170 if (Known2.isNonNegative())
1171 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001172
Chris Lattner965c7692008-06-02 01:18:21 +00001173 break;
1174 case Instruction::URem: {
1175 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001176 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001177 if (RA.isPowerOf2()) {
1178 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001179 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1180 Known.Zero |= ~LowBits;
1181 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001182 break;
1183 }
1184 }
1185
1186 // Since the result is less than or equal to either operand, any leading
1187 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001188 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1189 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001190
Craig Topper8df66c62017-05-12 17:20:30 +00001191 unsigned Leaders =
1192 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001193 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001194 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001195 break;
1196 }
1197
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001198 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001199 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001200 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001201 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001202 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001203
Chris Lattner965c7692008-06-02 01:18:21 +00001204 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001205 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001206 break;
1207 }
1208 case Instruction::GetElementPtr: {
1209 // Analyze all of the subscripts of this getelementptr instruction
1210 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001211 KnownBits LocalKnown(BitWidth);
1212 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001213 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001214
1215 gep_type_iterator GTI = gep_type_begin(I);
1216 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1217 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001218 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001219 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001220
1221 // Handle case when index is vector zeroinitializer
1222 Constant *CIndex = cast<Constant>(Index);
1223 if (CIndex->isZeroValue())
1224 continue;
1225
1226 if (CIndex->getType()->isVectorTy())
1227 Index = CIndex->getSplatValue();
1228
Chris Lattner965c7692008-06-02 01:18:21 +00001229 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001230 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001231 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001232 TrailZ = std::min<unsigned>(TrailZ,
1233 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001234 } else {
1235 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001236 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001237 if (!IndexedTy->isSized()) {
1238 TrailZ = 0;
1239 break;
1240 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001241 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001242 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001243 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1244 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001245 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001246 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001247 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001248 }
1249 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001250
Craig Topperb45eabc2017-04-26 16:39:58 +00001251 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001252 break;
1253 }
1254 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001255 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001256 // Handle the case of a simple two-predecessor recurrence PHI.
1257 // There's a lot more that could theoretically be done here, but
1258 // this is sufficient to catch some interesting cases.
1259 if (P->getNumIncomingValues() == 2) {
1260 for (unsigned i = 0; i != 2; ++i) {
1261 Value *L = P->getIncomingValue(i);
1262 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001263 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001264 if (!LU)
1265 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001266 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001267 // Check for operations that have the property that if
1268 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001269 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001270 if (Opcode == Instruction::Add ||
1271 Opcode == Instruction::Sub ||
1272 Opcode == Instruction::And ||
1273 Opcode == Instruction::Or ||
1274 Opcode == Instruction::Mul) {
1275 Value *LL = LU->getOperand(0);
1276 Value *LR = LU->getOperand(1);
1277 // Find a recurrence.
1278 if (LL == I)
1279 L = LR;
1280 else if (LR == I)
1281 L = LL;
1282 else
1283 break;
1284 // Ok, we have a PHI of the form L op= R. Check for low
1285 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001286 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001287
1288 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001289 KnownBits Known3(Known);
1290 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001291
Craig Topper8df66c62017-05-12 17:20:30 +00001292 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1293 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001294
Chandler Carruth37c7b082017-08-14 07:03:24 +00001295 if (DontImproveNonNegativePhiBits)
1296 break;
1297
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001298 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1299 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1300 // If initial value of recurrence is nonnegative, and we are adding
1301 // a nonnegative number with nsw, the result can only be nonnegative
1302 // or poison value regardless of the number of times we execute the
1303 // add in phi recurrence. If initial value is negative and we are
1304 // adding a negative number with nsw, the result can only be
1305 // negative or poison value. Similar arguments apply to sub and mul.
1306 //
1307 // (add non-negative, non-negative) --> non-negative
1308 // (add negative, negative) --> negative
1309 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001310 if (Known2.isNonNegative() && Known3.isNonNegative())
1311 Known.makeNonNegative();
1312 else if (Known2.isNegative() && Known3.isNegative())
1313 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001314 }
1315
1316 // (sub nsw non-negative, negative) --> non-negative
1317 // (sub nsw negative, non-negative) --> negative
1318 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001319 if (Known2.isNonNegative() && Known3.isNegative())
1320 Known.makeNonNegative();
1321 else if (Known2.isNegative() && Known3.isNonNegative())
1322 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001323 }
1324
1325 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001326 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1327 Known3.isNonNegative())
1328 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001329 }
1330
Chris Lattner965c7692008-06-02 01:18:21 +00001331 break;
1332 }
1333 }
1334 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001335
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001336 // Unreachable blocks may have zero-operand PHI nodes.
1337 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001338 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001339
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001340 // Otherwise take the unions of the known bit sets of the operands,
1341 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001342 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001343 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001344 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001345 break;
1346
Craig Topperb45eabc2017-04-26 16:39:58 +00001347 Known.Zero.setAllBits();
1348 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001349 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001350 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001351 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001352
Craig Topperb45eabc2017-04-26 16:39:58 +00001353 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001354 // Recurse, but cap the recursion to one level, because we don't
1355 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001356 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1357 Known.Zero &= Known2.Zero;
1358 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001359 // If all bits have been ruled out, there's no need to check
1360 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001361 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001362 break;
1363 }
1364 }
Chris Lattner965c7692008-06-02 01:18:21 +00001365 break;
1366 }
1367 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001368 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001369 // If range metadata is attached to this call, set known bits from that,
1370 // and then intersect with known bits based on other properties of the
1371 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001372 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001373 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001374 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001375 computeKnownBits(RV, Known2, Depth + 1, Q);
1376 Known.Zero |= Known2.Zero;
1377 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001378 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001379 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001380 switch (II->getIntrinsicID()) {
1381 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001382 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001383 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1384 Known.Zero |= Known2.Zero.reverseBits();
1385 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001386 break;
Philip Reames675418e2015-10-06 20:20:45 +00001387 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001388 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1389 Known.Zero |= Known2.Zero.byteSwap();
1390 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001391 break;
Craig Topper868813f2017-05-08 17:22:34 +00001392 case Intrinsic::ctlz: {
1393 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1394 // If we have a known 1, its position is our upper bound.
1395 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001396 // If this call is undefined for 0, the result will be less than 2^n.
1397 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001398 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1399 unsigned LowBits = Log2_32(PossibleLZ)+1;
1400 Known.Zero.setBitsFrom(LowBits);
1401 break;
1402 }
1403 case Intrinsic::cttz: {
1404 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1405 // If we have a known 1, its position is our upper bound.
1406 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1407 // If this call is undefined for 0, the result will be less than 2^n.
1408 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1409 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1410 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001411 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001412 break;
1413 }
1414 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001415 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001416 // We can bound the space the count needs. Also, bits known to be zero
1417 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001418 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001419 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001420 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001421 // TODO: we could bound KnownOne using the lower bound on the number
1422 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001423 break;
1424 }
Chad Rosierb3628842011-05-26 23:13:19 +00001425 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001426 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001427 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001428 }
1429 }
1430 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001431 case Instruction::ExtractElement:
1432 // Look through extract element. At the moment we keep this simple and skip
1433 // tracking the specific element. But at least we might find information
1434 // valid for all elements of the vector (for example if vector is sign
1435 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001436 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001437 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001438 case Instruction::ExtractValue:
1439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001440 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001441 if (EVI->getNumIndices() != 1) break;
1442 if (EVI->getIndices()[0] == 0) {
1443 switch (II->getIntrinsicID()) {
1444 default: break;
1445 case Intrinsic::uadd_with_overflow:
1446 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001447 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001448 II->getArgOperand(1), false, Known, Known2,
1449 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001450 break;
1451 case Intrinsic::usub_with_overflow:
1452 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001453 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001454 II->getArgOperand(1), false, Known, Known2,
1455 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001456 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001457 case Intrinsic::umul_with_overflow:
1458 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001459 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001460 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001461 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001462 }
1463 }
1464 }
Chris Lattner965c7692008-06-02 01:18:21 +00001465 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001466}
1467
1468/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001469/// them.
1470KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1471 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1472 computeKnownBits(V, Known, Depth, Q);
1473 return Known;
1474}
1475
1476/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001477/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001478///
1479/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1480/// we cannot optimize based on the assumption that it is zero without changing
1481/// it to be an explicit zero. If we don't change it to zero, other code could
1482/// optimized based on the contradictory assumption that it is non-zero.
1483/// Because instcombine aggressively folds operations with undef args anyway,
1484/// this won't lose us code quality.
1485///
1486/// This function is defined on values with integer type, values with pointer
1487/// type, and vectors of integers. In the case
1488/// where V is a vector, known zero, and known one values are the
1489/// same width as the vector element, and the bit is set only if it is true
1490/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001491void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1492 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001493 assert(V && "No Value?");
1494 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001495 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001496
Craig Topperfde47232017-07-09 07:04:03 +00001497 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001498 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001499 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001500 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001501 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001502 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001503
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001504 const APInt *C;
1505 if (match(V, m_APInt(C))) {
1506 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001507 Known.One = *C;
1508 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509 return;
1510 }
1511 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001512 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001513 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001514 return;
1515 }
1516 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001517 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001518 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001519 // We know that CDS must be a vector of integers. Take the intersection of
1520 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001521 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001522 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001523 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1524 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001525 Known.Zero &= ~Elt;
1526 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001527 }
1528 return;
1529 }
1530
Pete Cooper35b00d52016-08-13 01:05:32 +00001531 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001532 // We know that CV must be a vector of integers. Take the intersection of
1533 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001534 Known.Zero.setAllBits(); Known.One.setAllBits();
1535 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001536 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1537 Constant *Element = CV->getAggregateElement(i);
1538 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1539 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001540 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001541 return;
1542 }
1543 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001544 Known.Zero &= ~Elt;
1545 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001546 }
1547 return;
1548 }
1549
Jingyue Wu12b0c282015-06-15 05:46:29 +00001550 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001551 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001552
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001553 // We can't imply anything about undefs.
1554 if (isa<UndefValue>(V))
1555 return;
1556
1557 // There's no point in looking through other users of ConstantData for
1558 // assumptions. Confirm that we've handled them all.
1559 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1560
Jingyue Wu12b0c282015-06-15 05:46:29 +00001561 // Limit search depth.
1562 // All recursive calls that increase depth must come after this.
1563 if (Depth == MaxDepth)
1564 return;
1565
1566 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1567 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001568 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001569 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001570 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001571 return;
1572 }
1573
Pete Cooper35b00d52016-08-13 01:05:32 +00001574 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001575 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001576
Craig Topperb45eabc2017-04-26 16:39:58 +00001577 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001578 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001579 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001580 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001581 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001582 }
1583
Craig Topperb45eabc2017-04-26 16:39:58 +00001584 // computeKnownBitsFromAssume strictly refines Known.
1585 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001586
1587 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001588 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001589
Craig Topperb45eabc2017-04-26 16:39:58 +00001590 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001591}
1592
Sanjay Patelaee84212014-11-04 16:27:42 +00001593/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001594/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001595/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001596/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001597bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001598 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001599 assert(Depth <= MaxDepth && "Limit Search Depth");
1600
Pete Cooper35b00d52016-08-13 01:05:32 +00001601 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001602 if (C->isNullValue())
1603 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001604
1605 const APInt *ConstIntOrConstSplatInt;
1606 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1607 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001608 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001609
1610 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1611 // it is shifted off the end then the result is undefined.
1612 if (match(V, m_Shl(m_One(), m_Value())))
1613 return true;
1614
Craig Topperbcfd2d12017-04-20 16:56:25 +00001615 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1616 // the bottom. If it is shifted off the bottom then the result is undefined.
1617 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001618 return true;
1619
1620 // The remaining tests are all recursive, so bail out if we hit the limit.
1621 if (Depth++ == MaxDepth)
1622 return false;
1623
Craig Topper9f008862014-04-15 04:59:12 +00001624 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001625 // A shift left or a logical shift right of a power of two is a power of two
1626 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001627 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001628 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001629 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001630
Pete Cooper35b00d52016-08-13 01:05:32 +00001631 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001632 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001633
Pete Cooper35b00d52016-08-13 01:05:32 +00001634 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001635 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1636 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001637
Duncan Sandsba286d72011-10-26 20:55:21 +00001638 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1639 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001640 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1641 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001642 return true;
1643 // X & (-X) is always a power of two or zero.
1644 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1645 return true;
1646 return false;
1647 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001648
David Majnemerb7d54092013-07-30 21:01:36 +00001649 // Adding a power-of-two or zero to the same power-of-two or zero yields
1650 // either the original power-of-two, a larger power-of-two or zero.
1651 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001652 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001653 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1654 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1655 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001656 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001657 return true;
1658 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1659 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001660 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001661 return true;
1662
1663 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001664 KnownBits LHSBits(BitWidth);
1665 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001666
Craig Topperb45eabc2017-04-26 16:39:58 +00001667 KnownBits RHSBits(BitWidth);
1668 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001669 // If i8 V is a power of two or zero:
1670 // ZeroBits: 1 1 1 0 1 1 1 1
1671 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001672 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001673 // If OrZero isn't set, we cannot give back a zero result.
1674 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001675 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001676 return true;
1677 }
1678 }
David Majnemerbeab5672013-05-18 19:30:37 +00001679
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001680 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001681 // is a power of two only if the first operand is a power of two and not
1682 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001683 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1684 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001685 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001686 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001687 }
1688
Duncan Sandsd3951082011-01-25 09:38:29 +00001689 return false;
1690}
1691
Chandler Carruth80d3e562012-12-07 02:08:58 +00001692/// \brief Test whether a GEP's result is known to be non-null.
1693///
1694/// Uses properties inherent in a GEP to try to determine whether it is known
1695/// to be non-null.
1696///
1697/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001698static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001699 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001700 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1701 return false;
1702
1703 // FIXME: Support vector-GEPs.
1704 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1705
1706 // If the base pointer is non-null, we cannot walk to a null address with an
1707 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001708 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 return true;
1710
Chandler Carruth80d3e562012-12-07 02:08:58 +00001711 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1712 // If so, then the GEP cannot produce a null pointer, as doing so would
1713 // inherently violate the inbounds contract within address space zero.
1714 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1715 GTI != GTE; ++GTI) {
1716 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001717 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001718 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1719 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001720 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001721 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1722 if (ElementOffset > 0)
1723 return true;
1724 continue;
1725 }
1726
1727 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001728 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001729 continue;
1730
1731 // Fast path the constant operand case both for efficiency and so we don't
1732 // increment Depth when just zipping down an all-constant GEP.
1733 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1734 if (!OpC->isZero())
1735 return true;
1736 continue;
1737 }
1738
1739 // We post-increment Depth here because while isKnownNonZero increments it
1740 // as well, when we pop back up that increment won't persist. We don't want
1741 // to recurse 10k times just because we have 10k GEP operands. We don't
1742 // bail completely out because we want to handle constant GEPs regardless
1743 // of depth.
1744 if (Depth++ >= MaxDepth)
1745 continue;
1746
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001747 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001748 return true;
1749 }
1750
1751 return false;
1752}
1753
Nuno Lopes404f1062017-09-09 18:23:11 +00001754static bool isKnownNonNullFromDominatingCondition(const Value *V,
1755 const Instruction *CtxI,
1756 const DominatorTree *DT) {
1757 assert(V->getType()->isPointerTy() && "V must be pointer type");
1758 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1759
1760 if (!CtxI || !DT)
1761 return false;
1762
1763 unsigned NumUsesExplored = 0;
1764 for (auto *U : V->users()) {
1765 // Avoid massive lists
1766 if (NumUsesExplored >= DomConditionsMaxUses)
1767 break;
1768 NumUsesExplored++;
1769
1770 // If the value is used as an argument to a call or invoke, then argument
1771 // attributes may provide an answer about null-ness.
1772 if (auto CS = ImmutableCallSite(U))
1773 if (auto *CalledFunc = CS.getCalledFunction())
1774 for (const Argument &Arg : CalledFunc->args())
1775 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1776 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1777 return true;
1778
1779 // Consider only compare instructions uniquely controlling a branch
1780 CmpInst::Predicate Pred;
1781 if (!match(const_cast<User *>(U),
1782 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1783 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1784 continue;
1785
1786 for (auto *CmpU : U->users()) {
1787 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1788 assert(BI->isConditional() && "uses a comparison!");
1789
1790 BasicBlock *NonNullSuccessor =
1791 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1792 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1793 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1794 return true;
1795 } else if (Pred == ICmpInst::ICMP_NE &&
1796 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1797 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1798 return true;
1799 }
1800 }
1801 }
1802
1803 return false;
1804}
1805
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001806/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1807/// ensure that the value it's attached to is never Value? 'RangeType' is
1808/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001809static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001810 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1811 assert(NumRanges >= 1);
1812 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001813 ConstantInt *Lower =
1814 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1815 ConstantInt *Upper =
1816 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001817 ConstantRange Range(Lower->getValue(), Upper->getValue());
1818 if (Range.contains(Value))
1819 return false;
1820 }
1821 return true;
1822}
1823
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001824/// Return true if the given value is known to be non-zero when defined. For
1825/// vectors, return true if every element is known to be non-zero when
1826/// defined. For pointers, if the context instruction and dominator tree are
1827/// specified, perform context-sensitive analysis and return true if the
1828/// pointer couldn't possibly be null at the specified instruction.
1829/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001830bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001831 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001832 if (C->isNullValue())
1833 return false;
1834 if (isa<ConstantInt>(C))
1835 // Must be non-zero due to null test above.
1836 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001837
1838 // For constant vectors, check that all elements are undefined or known
1839 // non-zero to determine that the whole vector is known non-zero.
1840 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1841 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1842 Constant *Elt = C->getAggregateElement(i);
1843 if (!Elt || Elt->isNullValue())
1844 return false;
1845 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1846 return false;
1847 }
1848 return true;
1849 }
1850
Nuno Lopes404f1062017-09-09 18:23:11 +00001851 // A global variable in address space 0 is non null unless extern weak
1852 // or an absolute symbol reference. Other address spaces may have null as a
1853 // valid address for a global, so we can't assume anything.
1854 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1855 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1856 GV->getType()->getAddressSpace() == 0)
1857 return true;
1858 } else
1859 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 }
1861
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001862 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001863 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001864 // If the possible ranges don't contain zero, then the value is
1865 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001866 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001867 const APInt ZeroValue(Ty->getBitWidth(), 0);
1868 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1869 return true;
1870 }
1871 }
1872 }
1873
Nuno Lopes404f1062017-09-09 18:23:11 +00001874 // Check for pointer simplifications.
1875 if (V->getType()->isPointerTy()) {
1876 // Alloca never returns null, malloc might.
1877 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1878 return true;
1879
1880 // A byval, inalloca, or nonnull argument is never null.
1881 if (const Argument *A = dyn_cast<Argument>(V))
1882 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1883 return true;
1884
1885 // A Load tagged with nonnull metadata is never null.
1886 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1887 if (LI->getMetadata(LLVMContext::MD_nonnull))
1888 return true;
1889
1890 if (auto CS = ImmutableCallSite(V))
1891 if (CS.isReturnNonNull())
1892 return true;
1893 }
1894
Duncan Sandsd3951082011-01-25 09:38:29 +00001895 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001896 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001897 return false;
1898
Nuno Lopes404f1062017-09-09 18:23:11 +00001899 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001900 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001901 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001902 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001903
Pete Cooper35b00d52016-08-13 01:05:32 +00001904 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001905 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001906 return true;
1907 }
1908
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001909 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001910
1911 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001912 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001913 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001914 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001915
1916 // ext X != 0 if X != 0.
1917 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001918 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001919
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001920 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001921 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001922 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001923 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001924 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001925 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001926 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001927
Craig Topperb45eabc2017-04-26 16:39:58 +00001928 KnownBits Known(BitWidth);
1929 computeKnownBits(X, Known, Depth, Q);
1930 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001931 return true;
1932 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001933 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 // defined if the sign bit is shifted off the end.
1935 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001936 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001937 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001938 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001939 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001940
Craig Topper6e11a052017-05-08 16:22:48 +00001941 KnownBits Known = computeKnownBits(X, Depth, Q);
1942 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001943 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001944
1945 // If the shifter operand is a constant, and all of the bits shifted
1946 // out are known to be zero, and X is known non-zero then at least one
1947 // non-zero bit must remain.
1948 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001949 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1950 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001951 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001952 return true;
1953 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001954 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001955 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001956 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001957 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001958 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001959 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001960 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001961 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001962 // X + Y.
1963 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001964 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1965 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001966
1967 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001968 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001969 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001970 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001971 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001972
1973 // If X and Y are both negative (as signed values) then their sum is not
1974 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001975 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001976 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1977 // The sign bit of X is set. If some other bit is set then X is not equal
1978 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001979 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001980 return true;
1981 // The sign bit of Y is set. If some other bit is set then Y is not equal
1982 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001983 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001984 return true;
1985 }
1986
1987 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001988 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001989 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001990 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001991 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001992 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001993 return true;
1994 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001995 // X * Y.
1996 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001997 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001998 // If X and Y are non-zero then so is X * Y as long as the multiplication
1999 // does not overflow.
2000 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002001 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002002 return true;
2003 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002004 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002005 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002006 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2007 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002008 return true;
2009 }
James Molloy897048b2015-09-29 14:08:45 +00002010 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002011 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002012 // Try and detect a recurrence that monotonically increases from a
2013 // starting value, as these are common as induction variables.
2014 if (PN->getNumIncomingValues() == 2) {
2015 Value *Start = PN->getIncomingValue(0);
2016 Value *Induction = PN->getIncomingValue(1);
2017 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2018 std::swap(Start, Induction);
2019 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2020 if (!C->isZero() && !C->isNegative()) {
2021 ConstantInt *X;
2022 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2023 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2024 !X->isNegative())
2025 return true;
2026 }
2027 }
2028 }
Jun Bum Limca832662016-02-01 17:03:07 +00002029 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002030 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002031 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002032 });
2033 if (AllNonZeroConstants)
2034 return true;
James Molloy897048b2015-09-29 14:08:45 +00002035 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002036
Craig Topperb45eabc2017-04-26 16:39:58 +00002037 KnownBits Known(BitWidth);
2038 computeKnownBits(V, Known, Depth, Q);
2039 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002040}
2041
James Molloy1d88d6f2015-10-22 13:18:42 +00002042/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002043static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2044 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002045 if (!BO || BO->getOpcode() != Instruction::Add)
2046 return false;
2047 Value *Op = nullptr;
2048 if (V2 == BO->getOperand(0))
2049 Op = BO->getOperand(1);
2050 else if (V2 == BO->getOperand(1))
2051 Op = BO->getOperand(0);
2052 else
2053 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002054 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002055}
2056
2057/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002058static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002059 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002060 return false;
2061 if (V1->getType() != V2->getType())
2062 // We can't look through casts yet.
2063 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002064 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002065 return true;
2066
Craig Topper3002d5b2017-06-06 07:13:15 +00002067 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002068 // Are any known bits in V1 contradictory to known bits in V2? If V1
2069 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002070 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2071 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002072
Craig Topper8365df82017-06-06 07:13:09 +00002073 if (Known1.Zero.intersects(Known2.One) ||
2074 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002075 return true;
2076 }
2077 return false;
2078}
2079
Sanjay Patelaee84212014-11-04 16:27:42 +00002080/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2081/// simplify operations downstream. Mask is known to be zero for bits that V
2082/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002083///
2084/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002085/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002086/// where V is a vector, the mask, known zero, and known one values are the
2087/// same width as the vector element, and the bit is set only if it is true
2088/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002089bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002090 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002091 KnownBits Known(Mask.getBitWidth());
2092 computeKnownBits(V, Known, Depth, Q);
2093 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002094}
2095
Sanjay Patela06d9892016-06-22 19:20:59 +00002096/// For vector constants, loop over the elements and find the constant with the
2097/// minimum number of sign bits. Return 0 if the value is not a vector constant
2098/// or if any element was not analyzed; otherwise, return the count for the
2099/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002100static unsigned computeNumSignBitsVectorConstant(const Value *V,
2101 unsigned TyBits) {
2102 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002103 if (!CV || !CV->getType()->isVectorTy())
2104 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002105
Sanjay Patela06d9892016-06-22 19:20:59 +00002106 unsigned MinSignBits = TyBits;
2107 unsigned NumElts = CV->getType()->getVectorNumElements();
2108 for (unsigned i = 0; i != NumElts; ++i) {
2109 // If we find a non-ConstantInt, bail out.
2110 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2111 if (!Elt)
2112 return 0;
2113
2114 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2115 APInt EltVal = Elt->getValue();
2116 if (EltVal.isNegative())
2117 EltVal = ~EltVal;
2118 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2119 }
2120
2121 return MinSignBits;
2122}
Chris Lattner965c7692008-06-02 01:18:21 +00002123
Sanjoy Das39a684d2017-02-25 20:30:45 +00002124static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2125 const Query &Q);
2126
2127static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2128 const Query &Q) {
2129 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2130 assert(Result > 0 && "At least one sign bit needs to be present!");
2131 return Result;
2132}
2133
Sanjay Patelaee84212014-11-04 16:27:42 +00002134/// Return the number of times the sign bit of the register is replicated into
2135/// the other bits. We know that at least 1 bit is always equal to the sign bit
2136/// (itself), but other cases can give us information. For example, immediately
2137/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002138/// other, so we return 3. For vectors, return the number of sign bits for the
2139/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002140static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2141 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002142 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002143
2144 // We return the minimum number of sign bits that are guaranteed to be present
2145 // in V, so for undef we have to conservatively return 1. We don't have the
2146 // same behavior for poison though -- that's a FIXME today.
2147
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002148 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002149 unsigned Tmp, Tmp2;
2150 unsigned FirstAnswer = 1;
2151
Jay Foada0653a32014-05-14 21:14:37 +00002152 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002153 // below.
2154
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002155 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002156 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002157
Pete Cooper35b00d52016-08-13 01:05:32 +00002158 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002159 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002160 default: break;
2161 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002162 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002163 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002164
Nadav Rotemc99a3872015-03-06 00:23:58 +00002165 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002166 const APInt *Denominator;
2167 // sdiv X, C -> adds log(C) sign bits.
2168 if (match(U->getOperand(1), m_APInt(Denominator))) {
2169
2170 // Ignore non-positive denominator.
2171 if (!Denominator->isStrictlyPositive())
2172 break;
2173
2174 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002175 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002176
2177 // Add floor(log(C)) bits to the numerator bits.
2178 return std::min(TyBits, NumBits + Denominator->logBase2());
2179 }
2180 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002181 }
2182
2183 case Instruction::SRem: {
2184 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002185 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2186 // positive constant. This let us put a lower bound on the number of sign
2187 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002188 if (match(U->getOperand(1), m_APInt(Denominator))) {
2189
2190 // Ignore non-positive denominator.
2191 if (!Denominator->isStrictlyPositive())
2192 break;
2193
2194 // Calculate the incoming numerator bits. SRem by a positive constant
2195 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002196 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002197 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002198
2199 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002200 // denominator. Given that the denominator is positive, there are two
2201 // cases:
2202 //
2203 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2204 // (1 << ceilLogBase2(C)).
2205 //
2206 // 2. the numerator is negative. Then the result range is (-C,0] and
2207 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2208 //
2209 // Thus a lower bound on the number of sign bits is `TyBits -
2210 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002211
Sanjoy Dase561fee2015-03-25 22:33:53 +00002212 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002213 return std::max(NumrBits, ResBits);
2214 }
2215 break;
2216 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002217
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002218 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002219 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002220 // ashr X, C -> adds C sign bits. Vectors too.
2221 const APInt *ShAmt;
2222 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002223 unsigned ShAmtLimited = ShAmt->getZExtValue();
2224 if (ShAmtLimited >= TyBits)
2225 break; // Bad shift.
2226 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002227 if (Tmp > TyBits) Tmp = TyBits;
2228 }
2229 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002230 }
2231 case Instruction::Shl: {
2232 const APInt *ShAmt;
2233 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002234 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002235 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002236 Tmp2 = ShAmt->getZExtValue();
2237 if (Tmp2 >= TyBits || // Bad shift.
2238 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2239 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002240 }
2241 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002242 }
Chris Lattner965c7692008-06-02 01:18:21 +00002243 case Instruction::And:
2244 case Instruction::Or:
2245 case Instruction::Xor: // NOT is handled here.
2246 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002247 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002248 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002249 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002250 FirstAnswer = std::min(Tmp, Tmp2);
2251 // We computed what we know about the sign bits as our first
2252 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002253 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002254 }
2255 break;
2256
2257 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002258 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002259 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002260 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002261 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002262
Chris Lattner965c7692008-06-02 01:18:21 +00002263 case Instruction::Add:
2264 // Add can have at most one carry bit. Thus we know that the output
2265 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002266 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002267 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Chris Lattner965c7692008-06-02 01:18:21 +00002269 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002270 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002271 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002272 KnownBits Known(TyBits);
2273 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002274
Chris Lattner965c7692008-06-02 01:18:21 +00002275 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2276 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002277 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002278 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002279
Chris Lattner965c7692008-06-02 01:18:21 +00002280 // If we are subtracting one from a positive number, there is no carry
2281 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002282 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002283 return Tmp;
2284 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002286 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002287 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002288 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002289
Chris Lattner965c7692008-06-02 01:18:21 +00002290 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002291 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002292 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002293
Chris Lattner965c7692008-06-02 01:18:21 +00002294 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002295 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002296 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002297 KnownBits Known(TyBits);
2298 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002299 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2300 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002301 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002302 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002303
Chris Lattner965c7692008-06-02 01:18:21 +00002304 // If the input is known to be positive (the sign bit is known clear),
2305 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002306 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002307 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002308
Chris Lattner965c7692008-06-02 01:18:21 +00002309 // Otherwise, we treat this like a SUB.
2310 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002311
Chris Lattner965c7692008-06-02 01:18:21 +00002312 // Sub can have at most one carry bit. Thus we know that the output
2313 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002314 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002315 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002316 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002317
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002318 case Instruction::Mul: {
2319 // The output of the Mul can be at most twice the valid bits in the inputs.
2320 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2321 if (SignBitsOp0 == 1) return 1; // Early out.
2322 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2323 if (SignBitsOp1 == 1) return 1;
2324 unsigned OutValidBits =
2325 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2326 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2327 }
2328
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002329 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002330 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002331 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002332 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002333 if (NumIncomingValues > 4) break;
2334 // Unreachable blocks may have zero-operand PHI nodes.
2335 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002336
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002337 // Take the minimum of all incoming values. This can't infinitely loop
2338 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002339 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002340 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002341 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002342 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002343 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002344 }
2345 return Tmp;
2346 }
2347
Chris Lattner965c7692008-06-02 01:18:21 +00002348 case Instruction::Trunc:
2349 // FIXME: it's tricky to do anything useful for this, but it is an important
2350 // case for targets like X86.
2351 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002352
2353 case Instruction::ExtractElement:
2354 // Look through extract element. At the moment we keep this simple and skip
2355 // tracking the specific element. But at least we might find information
2356 // valid for all elements of the vector (for example if vector is sign
2357 // extended, shifted, etc).
2358 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002359 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002360
Chris Lattner965c7692008-06-02 01:18:21 +00002361 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2362 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002363
2364 // If we can examine all elements of a vector constant successfully, we're
2365 // done (we can't do any better than that). If not, keep trying.
2366 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2367 return VecSignBits;
2368
Craig Topperb45eabc2017-04-26 16:39:58 +00002369 KnownBits Known(TyBits);
2370 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002371
Sanjay Patele0536212016-06-23 17:41:59 +00002372 // If we know that the sign bit is either zero or one, determine the number of
2373 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002374 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002375}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002376
Sanjay Patelaee84212014-11-04 16:27:42 +00002377/// This function computes the integer multiple of Base that equals V.
2378/// If successful, it returns true and returns the multiple in
2379/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002380/// through SExt instructions only if LookThroughSExt is true.
2381bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002382 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002383 const unsigned MaxDepth = 6;
2384
Dan Gohman6a976bb2009-11-18 00:58:27 +00002385 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002386 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002387 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002388
Chris Lattner229907c2011-07-18 04:54:35 +00002389 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002390
Dan Gohman6a976bb2009-11-18 00:58:27 +00002391 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002392
2393 if (Base == 0)
2394 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002395
Victor Hernandez47444882009-11-10 08:28:35 +00002396 if (Base == 1) {
2397 Multiple = V;
2398 return true;
2399 }
2400
2401 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2402 Constant *BaseVal = ConstantInt::get(T, Base);
2403 if (CO && CO == BaseVal) {
2404 // Multiple is 1.
2405 Multiple = ConstantInt::get(T, 1);
2406 return true;
2407 }
2408
2409 if (CI && CI->getZExtValue() % Base == 0) {
2410 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002411 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002412 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002413
Victor Hernandez47444882009-11-10 08:28:35 +00002414 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002415
Victor Hernandez47444882009-11-10 08:28:35 +00002416 Operator *I = dyn_cast<Operator>(V);
2417 if (!I) return false;
2418
2419 switch (I->getOpcode()) {
2420 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002421 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002422 if (!LookThroughSExt) return false;
2423 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002424 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002425 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002426 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2427 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002428 case Instruction::Shl:
2429 case Instruction::Mul: {
2430 Value *Op0 = I->getOperand(0);
2431 Value *Op1 = I->getOperand(1);
2432
2433 if (I->getOpcode() == Instruction::Shl) {
2434 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2435 if (!Op1CI) return false;
2436 // Turn Op0 << Op1 into Op0 * 2^Op1
2437 APInt Op1Int = Op1CI->getValue();
2438 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002439 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002440 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002441 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002442 }
2443
Craig Topper9f008862014-04-15 04:59:12 +00002444 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002445 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2446 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2447 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002448 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002449 MulC->getType()->getPrimitiveSizeInBits())
2450 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002451 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002452 MulC->getType()->getPrimitiveSizeInBits())
2453 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002454
Chris Lattner72d283c2010-09-05 17:20:46 +00002455 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2456 Multiple = ConstantExpr::getMul(MulC, Op1C);
2457 return true;
2458 }
Victor Hernandez47444882009-11-10 08:28:35 +00002459
2460 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2461 if (Mul0CI->getValue() == 1) {
2462 // V == Base * Op1, so return Op1
2463 Multiple = Op1;
2464 return true;
2465 }
2466 }
2467
Craig Topper9f008862014-04-15 04:59:12 +00002468 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002469 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2470 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2471 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002472 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002473 MulC->getType()->getPrimitiveSizeInBits())
2474 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002475 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002476 MulC->getType()->getPrimitiveSizeInBits())
2477 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002478
Chris Lattner72d283c2010-09-05 17:20:46 +00002479 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2480 Multiple = ConstantExpr::getMul(MulC, Op0C);
2481 return true;
2482 }
Victor Hernandez47444882009-11-10 08:28:35 +00002483
2484 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2485 if (Mul1CI->getValue() == 1) {
2486 // V == Base * Op0, so return Op0
2487 Multiple = Op0;
2488 return true;
2489 }
2490 }
Victor Hernandez47444882009-11-10 08:28:35 +00002491 }
2492 }
2493
2494 // We could not determine if V is a multiple of Base.
2495 return false;
2496}
2497
David Majnemerb4b27232016-04-19 19:10:21 +00002498Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2499 const TargetLibraryInfo *TLI) {
2500 const Function *F = ICS.getCalledFunction();
2501 if (!F)
2502 return Intrinsic::not_intrinsic;
2503
2504 if (F->isIntrinsic())
2505 return F->getIntrinsicID();
2506
2507 if (!TLI)
2508 return Intrinsic::not_intrinsic;
2509
David L. Jonesd21529f2017-01-23 23:16:46 +00002510 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002511 // We're going to make assumptions on the semantics of the functions, check
2512 // that the target knows that it's available in this environment and it does
2513 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002514 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2515 return Intrinsic::not_intrinsic;
2516
2517 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002518 return Intrinsic::not_intrinsic;
2519
2520 // Otherwise check if we have a call to a function that can be turned into a
2521 // vector intrinsic.
2522 switch (Func) {
2523 default:
2524 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002525 case LibFunc_sin:
2526 case LibFunc_sinf:
2527 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002528 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002529 case LibFunc_cos:
2530 case LibFunc_cosf:
2531 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002532 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002533 case LibFunc_exp:
2534 case LibFunc_expf:
2535 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002536 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002537 case LibFunc_exp2:
2538 case LibFunc_exp2f:
2539 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002540 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002541 case LibFunc_log:
2542 case LibFunc_logf:
2543 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002544 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002545 case LibFunc_log10:
2546 case LibFunc_log10f:
2547 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002548 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002549 case LibFunc_log2:
2550 case LibFunc_log2f:
2551 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002552 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002553 case LibFunc_fabs:
2554 case LibFunc_fabsf:
2555 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002556 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002557 case LibFunc_fmin:
2558 case LibFunc_fminf:
2559 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002560 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002561 case LibFunc_fmax:
2562 case LibFunc_fmaxf:
2563 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002564 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002565 case LibFunc_copysign:
2566 case LibFunc_copysignf:
2567 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002568 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002569 case LibFunc_floor:
2570 case LibFunc_floorf:
2571 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002572 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002573 case LibFunc_ceil:
2574 case LibFunc_ceilf:
2575 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002576 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002577 case LibFunc_trunc:
2578 case LibFunc_truncf:
2579 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002580 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002581 case LibFunc_rint:
2582 case LibFunc_rintf:
2583 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002584 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002585 case LibFunc_nearbyint:
2586 case LibFunc_nearbyintf:
2587 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002588 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002589 case LibFunc_round:
2590 case LibFunc_roundf:
2591 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002592 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002593 case LibFunc_pow:
2594 case LibFunc_powf:
2595 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002596 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002597 case LibFunc_sqrt:
2598 case LibFunc_sqrtf:
2599 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002600 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002601 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002602 return Intrinsic::not_intrinsic;
2603 }
2604
2605 return Intrinsic::not_intrinsic;
2606}
2607
Sanjay Patelaee84212014-11-04 16:27:42 +00002608/// Return true if we can prove that the specified FP value is never equal to
2609/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002610///
2611/// NOTE: this function will need to be revisited when we support non-default
2612/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002613bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2614 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002615 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2616 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002617
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002618 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002619 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002620
Dan Gohman80ca01c2009-07-17 20:47:02 +00002621 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002622 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002623
2624 // Check if the nsz fast-math flag is set
2625 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2626 if (FPO->hasNoSignedZeros())
2627 return true;
2628
Chris Lattnera12a6de2008-06-02 01:29:46 +00002629 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002630 if (I->getOpcode() == Instruction::FAdd)
2631 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2632 if (CFP->isNullValue())
2633 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002634
Chris Lattnera12a6de2008-06-02 01:29:46 +00002635 // sitofp and uitofp turn into +0.0 for zero.
2636 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2637 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002638
David Majnemer3ee5f342016-04-13 06:55:52 +00002639 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002640 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002641 switch (IID) {
2642 default:
2643 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002644 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002645 case Intrinsic::sqrt:
2646 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2647 // fabs(x) != -0.0
2648 case Intrinsic::fabs:
2649 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002650 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002651 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002652
Chris Lattnera12a6de2008-06-02 01:29:46 +00002653 return false;
2654}
2655
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002656/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2657/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2658/// bit despite comparing equal.
2659static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2660 const TargetLibraryInfo *TLI,
2661 bool SignBitOnly,
2662 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002663 // TODO: This function does not do the right thing when SignBitOnly is true
2664 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2665 // which flips the sign bits of NaNs. See
2666 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2667
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002668 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2669 return !CFP->getValueAPF().isNegative() ||
2670 (!SignBitOnly && CFP->getValueAPF().isZero());
2671 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002672
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002673 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002674 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002675
2676 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002677 if (!I)
2678 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002679
2680 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002681 default:
2682 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002683 // Unsigned integers are always nonnegative.
2684 case Instruction::UIToFP:
2685 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002686 case Instruction::FMul:
2687 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002688 if (I->getOperand(0) == I->getOperand(1) &&
2689 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002690 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002691
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002692 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002693 case Instruction::FAdd:
2694 case Instruction::FDiv:
2695 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002696 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2697 Depth + 1) &&
2698 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2699 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002700 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002701 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2702 Depth + 1) &&
2703 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2704 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002705 case Instruction::FPExt:
2706 case Instruction::FPTrunc:
2707 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002708 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2709 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002710 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002711 const auto *CI = cast<CallInst>(I);
2712 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002713 switch (IID) {
2714 default:
2715 break;
2716 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002717 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2718 Depth + 1) ||
2719 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2720 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002721 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002722 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2723 Depth + 1) &&
2724 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2725 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002726 case Intrinsic::exp:
2727 case Intrinsic::exp2:
2728 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002729 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002730
2731 case Intrinsic::sqrt:
2732 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2733 if (!SignBitOnly)
2734 return true;
2735 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2736 CannotBeNegativeZero(CI->getOperand(0), TLI));
2737
David Majnemer3ee5f342016-04-13 06:55:52 +00002738 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002739 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002740 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002741 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002742 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002743 }
Justin Lebar322c1272017-01-27 00:58:34 +00002744 // TODO: This is not correct. Given that exp is an integer, here are the
2745 // ways that pow can return a negative value:
2746 //
2747 // pow(x, exp) --> negative if exp is odd and x is negative.
2748 // pow(-0, exp) --> -inf if exp is negative odd.
2749 // pow(-0, exp) --> -0 if exp is positive odd.
2750 // pow(-inf, exp) --> -0 if exp is negative odd.
2751 // pow(-inf, exp) --> -inf if exp is positive odd.
2752 //
2753 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2754 // but we must return false if x == -0. Unfortunately we do not currently
2755 // have a way of expressing this constraint. See details in
2756 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002757 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2758 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002759
David Majnemer3ee5f342016-04-13 06:55:52 +00002760 case Intrinsic::fma:
2761 case Intrinsic::fmuladd:
2762 // x*x+y is non-negative if y is non-negative.
2763 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002764 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2765 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2766 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002767 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002768 break;
2769 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002770 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002771}
2772
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002773bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2774 const TargetLibraryInfo *TLI) {
2775 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2776}
2777
2778bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2779 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2780}
2781
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002782bool llvm::isKnownNeverNaN(const Value *V) {
2783 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2784
2785 // If we're told that NaNs won't happen, assume they won't.
2786 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2787 if (FPMathOp->hasNoNaNs())
2788 return true;
2789
2790 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2791 // functions. For example, the result of sitofp is never NaN.
2792
2793 // Handle scalar constants.
2794 if (auto *CFP = dyn_cast<ConstantFP>(V))
2795 return !CFP->isNaN();
2796
2797 // Bail out for constant expressions, but try to handle vector constants.
2798 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2799 return false;
2800
2801 // For vectors, verify that each element is not NaN.
2802 unsigned NumElts = V->getType()->getVectorNumElements();
2803 for (unsigned i = 0; i != NumElts; ++i) {
2804 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2805 if (!Elt)
2806 return false;
2807 if (isa<UndefValue>(Elt))
2808 continue;
2809 auto *CElt = dyn_cast<ConstantFP>(Elt);
2810 if (!CElt || CElt->isNaN())
2811 return false;
2812 }
2813 // All elements were confirmed not-NaN or undefined.
2814 return true;
2815}
2816
Sanjay Patelaee84212014-11-04 16:27:42 +00002817/// If the specified value can be set by repeating the same byte in memory,
2818/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002819/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2820/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2821/// byte store (e.g. i16 0x1234), return null.
2822Value *llvm::isBytewiseValue(Value *V) {
2823 // All byte-wide stores are splatable, even of arbitrary variables.
2824 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002825
2826 // Handle 'null' ConstantArrayZero etc.
2827 if (Constant *C = dyn_cast<Constant>(V))
2828 if (C->isNullValue())
2829 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002830
Chris Lattner9cb10352010-12-26 20:15:01 +00002831 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002832 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002833 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2834 if (CFP->getType()->isFloatTy())
2835 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2836 if (CFP->getType()->isDoubleTy())
2837 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2838 // Don't handle long double formats, which have strange constraints.
2839 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002840
Benjamin Kramer17d90152015-02-07 19:29:02 +00002841 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002842 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002843 if (CI->getBitWidth() % 8 == 0) {
2844 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002845
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002846 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002847 return nullptr;
2848 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002849 }
2850 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002851
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002852 // A ConstantDataArray/Vector is splatable if all its members are equal and
2853 // also splatable.
2854 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2855 Value *Elt = CA->getElementAsConstant(0);
2856 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002857 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002858 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002859
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002860 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2861 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002862 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002863
Chris Lattner9cb10352010-12-26 20:15:01 +00002864 return Val;
2865 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002866
Chris Lattner9cb10352010-12-26 20:15:01 +00002867 // Conceptually, we could handle things like:
2868 // %a = zext i8 %X to i16
2869 // %b = shl i16 %a, 8
2870 // %c = or i16 %a, %b
2871 // but until there is an example that actually needs this, it doesn't seem
2872 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002873 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002874}
2875
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002876// This is the recursive version of BuildSubAggregate. It takes a few different
2877// arguments. Idxs is the index within the nested struct From that we are
2878// looking at now (which is of type IndexedType). IdxSkip is the number of
2879// indices from Idxs that should be left out when inserting into the resulting
2880// struct. To is the result struct built so far, new insertvalue instructions
2881// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002882static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002883 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002884 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002885 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002886 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002887 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002888 // Save the original To argument so we can modify it
2889 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002890 // General case, the type indexed by Idxs is a struct
2891 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2892 // Process each struct element recursively
2893 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002894 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002895 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002896 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002897 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002898 if (!To) {
2899 // Couldn't find any inserted value for this index? Cleanup
2900 while (PrevTo != OrigTo) {
2901 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2902 PrevTo = Del->getAggregateOperand();
2903 Del->eraseFromParent();
2904 }
2905 // Stop processing elements
2906 break;
2907 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002908 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002909 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002910 if (To)
2911 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002912 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002913 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2914 // the struct's elements had a value that was inserted directly. In the latter
2915 // case, perhaps we can't determine each of the subelements individually, but
2916 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002917
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002918 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002919 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002920
2921 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002922 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002923
2924 // Insert the value in the new (sub) aggregrate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002925 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2926 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002927}
2928
2929// This helper takes a nested struct and extracts a part of it (which is again a
2930// struct) into a new value. For example, given the struct:
2931// { a, { b, { c, d }, e } }
2932// and the indices "1, 1" this returns
2933// { c, d }.
2934//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002935// It does this by inserting an insertvalue for each element in the resulting
2936// struct, as opposed to just inserting a single struct. This will only work if
2937// each of the elements of the substruct are known (ie, inserted into From by an
2938// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002939//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002940// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002941static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002942 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002943 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002944 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002945 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002946 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002947 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002948 unsigned IdxSkip = Idxs.size();
2949
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002950 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002951}
2952
Sanjay Patelaee84212014-11-04 16:27:42 +00002953/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002954/// the scalar value indexed is already around as a register, for example if it
2955/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002956///
2957/// If InsertBefore is not null, this function will duplicate (modified)
2958/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002959Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2960 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002961 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002962 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002963 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002964 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002965 // We have indices, so V should have an indexable type.
2966 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2967 "Not looking at a struct or array?");
2968 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2969 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002970
Chris Lattner67058832012-01-25 06:48:06 +00002971 if (Constant *C = dyn_cast<Constant>(V)) {
2972 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002973 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002974 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2975 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002976
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002977 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002978 // Loop the indices for the insertvalue instruction in parallel with the
2979 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002980 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002981 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2982 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002983 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002984 // We can't handle this without inserting insertvalues
2985 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002986 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002987
2988 // The requested index identifies a part of a nested aggregate. Handle
2989 // this specially. For example,
2990 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2991 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2992 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2993 // This can be changed into
2994 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2995 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2996 // which allows the unused 0,0 element from the nested struct to be
2997 // removed.
2998 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2999 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00003000 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003001
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003002 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003003 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003004 // looking for, then.
3005 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003006 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003007 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003008 }
3009 // If we end up here, the indices of the insertvalue match with those
3010 // requested (though possibly only partially). Now we recursively look at
3011 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003012 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003013 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003014 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003015 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003016
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003017 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003018 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003019 // something else, we can extract from that something else directly instead.
3020 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003021
3022 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003023 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003024 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003025 SmallVector<unsigned, 5> Idxs;
3026 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003027 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003028 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003029
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003030 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003031 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003032
Craig Topper1bef2c82012-12-22 19:15:35 +00003033 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003034 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003035
Jay Foad57aa6362011-07-13 10:26:04 +00003036 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003037 }
3038 // Otherwise, we don't know (such as, extracting from a function return value
3039 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003040 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003041}
Evan Chengda3db112008-06-30 07:31:25 +00003042
Sanjay Patelaee84212014-11-04 16:27:42 +00003043/// Analyze the specified pointer to see if it can be expressed as a base
3044/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003045Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003046 const DataLayout &DL) {
3047 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003048 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003049
3050 // We walk up the defs but use a visited set to handle unreachable code. In
3051 // that case, we stop after accumulating the cycle once (not that it
3052 // matters).
3053 SmallPtrSet<Value *, 16> Visited;
3054 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003055 if (Ptr->getType()->isVectorTy())
3056 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003057
Nuno Lopes368c4d02012-12-31 20:48:35 +00003058 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003059 // If one of the values we have visited is an addrspacecast, then
3060 // the pointer type of this GEP may be different from the type
3061 // of the Ptr parameter which was passed to this function. This
3062 // means when we construct GEPOffset, we need to use the size
3063 // of GEP's pointer type rather than the size of the original
3064 // pointer type.
3065 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003066 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3067 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003068
Tom Stellard17eb3412016-10-07 14:23:29 +00003069 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003070
Nuno Lopes368c4d02012-12-31 20:48:35 +00003071 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003072 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3073 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003074 Ptr = cast<Operator>(Ptr)->getOperand(0);
3075 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003076 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003077 break;
3078 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003079 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003080 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003081 }
3082 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003083 Offset = ByteOffset.getSExtValue();
3084 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003085}
3086
Matthias Braun50ec0b52017-05-19 22:37:09 +00003087bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3088 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003089 // Make sure the GEP has exactly three arguments.
3090 if (GEP->getNumOperands() != 3)
3091 return false;
3092
Matthias Braun50ec0b52017-05-19 22:37:09 +00003093 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3094 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003095 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003096 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003097 return false;
3098
3099 // Check to make sure that the first operand of the GEP is an integer and
3100 // has value 0 so that we are sure we're indexing into the initializer.
3101 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3102 if (!FirstIdx || !FirstIdx->isZero())
3103 return false;
3104
3105 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003106}
Chris Lattnere28618d2010-11-30 22:25:26 +00003107
Matthias Braun50ec0b52017-05-19 22:37:09 +00003108bool llvm::getConstantDataArrayInfo(const Value *V,
3109 ConstantDataArraySlice &Slice,
3110 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003111 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003112
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003113 // Look through bitcast instructions and geps.
3114 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003115
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003116 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003117 // offset.
3118 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003119 // The GEP operator should be based on a pointer to string constant, and is
3120 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003121 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003122 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003123
Evan Chengda3db112008-06-30 07:31:25 +00003124 // If the second index isn't a ConstantInt, then this is a variable index
3125 // into the array. If this occurs, we can't say anything meaningful about
3126 // the string.
3127 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003128 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003129 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003130 else
3131 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003132 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3133 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003134 }
Nick Lewycky46209882011-10-20 00:34:35 +00003135
Evan Chengda3db112008-06-30 07:31:25 +00003136 // The GEP instruction, constant or instruction, must reference a global
3137 // variable that is a constant and is initialized. The referenced constant
3138 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003139 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003140 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003141 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003142
Matthias Braun50ec0b52017-05-19 22:37:09 +00003143 const ConstantDataArray *Array;
3144 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003145 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003146 Type *GVTy = GV->getValueType();
3147 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003148 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003149 Array = nullptr;
3150 } else {
3151 const DataLayout &DL = GV->getParent()->getDataLayout();
3152 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3153 uint64_t Length = SizeInBytes / (ElementSize / 8);
3154 if (Length <= Offset)
3155 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003156
Matthias Braun50ec0b52017-05-19 22:37:09 +00003157 Slice.Array = nullptr;
3158 Slice.Offset = 0;
3159 Slice.Length = Length - Offset;
3160 return true;
3161 }
3162 } else {
3163 // This must be a ConstantDataArray.
3164 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3165 if (!Array)
3166 return false;
3167 ArrayTy = Array->getType();
3168 }
3169 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003170 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003171
Matthias Braun50ec0b52017-05-19 22:37:09 +00003172 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003173 if (Offset > NumElts)
3174 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003175
Matthias Braun50ec0b52017-05-19 22:37:09 +00003176 Slice.Array = Array;
3177 Slice.Offset = Offset;
3178 Slice.Length = NumElts - Offset;
3179 return true;
3180}
3181
3182/// This function computes the length of a null-terminated C string pointed to
3183/// by V. If successful, it returns true and returns the string in Str.
3184/// If unsuccessful, it returns false.
3185bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3186 uint64_t Offset, bool TrimAtNul) {
3187 ConstantDataArraySlice Slice;
3188 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3189 return false;
3190
3191 if (Slice.Array == nullptr) {
3192 if (TrimAtNul) {
3193 Str = StringRef();
3194 return true;
3195 }
3196 if (Slice.Length == 1) {
3197 Str = StringRef("", 1);
3198 return true;
3199 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003200 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003201 // of 0s at hand.
3202 return false;
3203 }
3204
3205 // Start out with the entire array in the StringRef.
3206 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003207 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003208 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003209
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003210 if (TrimAtNul) {
3211 // Trim off the \0 and anything after it. If the array is not nul
3212 // terminated, we just return the whole end of string. The client may know
3213 // some other way that the string is length-bound.
3214 Str = Str.substr(0, Str.find('\0'));
3215 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003216 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003217}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003218
3219// These next two are very similar to the above, but also look through PHI
3220// nodes.
3221// TODO: See if we can integrate these two together.
3222
Sanjay Patelaee84212014-11-04 16:27:42 +00003223/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003224/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003225static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003226 SmallPtrSetImpl<const PHINode*> &PHIs,
3227 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003228 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003229 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003230
3231 // If this is a PHI node, there are two cases: either we have already seen it
3232 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003233 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003234 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003235 return ~0ULL; // already in the set.
3236
3237 // If it was new, see if all the input strings are the same length.
3238 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003239 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003240 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003241 if (Len == 0) return 0; // Unknown length -> unknown.
3242
3243 if (Len == ~0ULL) continue;
3244
3245 if (Len != LenSoFar && LenSoFar != ~0ULL)
3246 return 0; // Disagree -> unknown.
3247 LenSoFar = Len;
3248 }
3249
3250 // Success, all agree.
3251 return LenSoFar;
3252 }
3253
3254 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003255 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003256 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003257 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003258 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003259 if (Len2 == 0) return 0;
3260 if (Len1 == ~0ULL) return Len2;
3261 if (Len2 == ~0ULL) return Len1;
3262 if (Len1 != Len2) return 0;
3263 return Len1;
3264 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003265
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003266 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003267 ConstantDataArraySlice Slice;
3268 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003269 return 0;
3270
Matthias Braun50ec0b52017-05-19 22:37:09 +00003271 if (Slice.Array == nullptr)
3272 return 1;
3273
3274 // Search for nul characters
3275 unsigned NullIndex = 0;
3276 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3277 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3278 break;
3279 }
3280
3281 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003282}
3283
Sanjay Patelaee84212014-11-04 16:27:42 +00003284/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003285/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003286uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003287 if (!V->getType()->isPointerTy()) return 0;
3288
Pete Cooper35b00d52016-08-13 01:05:32 +00003289 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003290 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003291 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3292 // an empty string as a length.
3293 return Len == ~0ULL ? 1 : Len;
3294}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003295
Adam Nemete2b885c2015-04-23 20:09:20 +00003296/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3297/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003298static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3299 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003300 // Find the loop-defined value.
3301 Loop *L = LI->getLoopFor(PN->getParent());
3302 if (PN->getNumIncomingValues() != 2)
3303 return true;
3304
3305 // Find the value from previous iteration.
3306 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3307 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3308 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3309 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3310 return true;
3311
3312 // If a new pointer is loaded in the loop, the pointer references a different
3313 // object in every iteration. E.g.:
3314 // for (i)
3315 // int *p = a[i];
3316 // ...
3317 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3318 if (!L->isLoopInvariant(Load->getPointerOperand()))
3319 return false;
3320 return true;
3321}
3322
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003323Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3324 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003325 if (!V->getType()->isPointerTy())
3326 return V;
3327 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3328 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3329 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003330 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3331 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003332 V = cast<Operator>(V)->getOperand(0);
3333 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003334 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003335 return V;
3336 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003337 } else if (isa<AllocaInst>(V)) {
3338 // An alloca can't be further simplified.
3339 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003340 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003341 if (auto CS = CallSite(V))
3342 if (Value *RV = CS.getReturnedArgOperand()) {
3343 V = RV;
3344 continue;
3345 }
3346
Dan Gohman05b18f12010-12-15 20:49:55 +00003347 // See if InstructionSimplify knows any relevant tricks.
3348 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003349 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003350 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003351 V = Simplified;
3352 continue;
3353 }
3354
Dan Gohmana4fcd242010-12-15 20:02:24 +00003355 return V;
3356 }
3357 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3358 }
3359 return V;
3360}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003361
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003362void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003363 const DataLayout &DL, LoopInfo *LI,
3364 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003365 SmallPtrSet<Value *, 4> Visited;
3366 SmallVector<Value *, 4> Worklist;
3367 Worklist.push_back(V);
3368 do {
3369 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003370 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003371
David Blaikie70573dc2014-11-19 07:49:26 +00003372 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003373 continue;
3374
3375 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3376 Worklist.push_back(SI->getTrueValue());
3377 Worklist.push_back(SI->getFalseValue());
3378 continue;
3379 }
3380
3381 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003382 // If this PHI changes the underlying object in every iteration of the
3383 // loop, don't look through it. Consider:
3384 // int **A;
3385 // for (i) {
3386 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3387 // Curr = A[i];
3388 // *Prev, *Curr;
3389 //
3390 // Prev is tracking Curr one iteration behind so they refer to different
3391 // underlying objects.
3392 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3393 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003394 for (Value *IncValue : PN->incoming_values())
3395 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003396 continue;
3397 }
3398
3399 Objects.push_back(P);
3400 } while (!Worklist.empty());
3401}
3402
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003403/// This is the function that does the work of looking through basic
3404/// ptrtoint+arithmetic+inttoptr sequences.
3405static const Value *getUnderlyingObjectFromInt(const Value *V) {
3406 do {
3407 if (const Operator *U = dyn_cast<Operator>(V)) {
3408 // If we find a ptrtoint, we can transfer control back to the
3409 // regular getUnderlyingObjectFromInt.
3410 if (U->getOpcode() == Instruction::PtrToInt)
3411 return U->getOperand(0);
3412 // If we find an add of a constant, a multiplied value, or a phi, it's
3413 // likely that the other operand will lead us to the base
3414 // object. We don't have to worry about the case where the
3415 // object address is somehow being computed by the multiply,
3416 // because our callers only care when the result is an
3417 // identifiable object.
3418 if (U->getOpcode() != Instruction::Add ||
3419 (!isa<ConstantInt>(U->getOperand(1)) &&
3420 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3421 !isa<PHINode>(U->getOperand(1))))
3422 return V;
3423 V = U->getOperand(0);
3424 } else {
3425 return V;
3426 }
3427 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3428 } while (true);
3429}
3430
3431/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3432/// ptrtoint+arithmetic+inttoptr sequences.
3433void llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3434 SmallVectorImpl<Value *> &Objects,
3435 const DataLayout &DL) {
3436 SmallPtrSet<const Value *, 16> Visited;
3437 SmallVector<const Value *, 4> Working(1, V);
3438 do {
3439 V = Working.pop_back_val();
3440
3441 SmallVector<Value *, 4> Objs;
3442 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3443
3444 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003445 if (!Visited.insert(V).second)
3446 continue;
3447 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3448 const Value *O =
3449 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3450 if (O->getType()->isPointerTy()) {
3451 Working.push_back(O);
3452 continue;
3453 }
3454 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003455 // If GetUnderlyingObjects fails to find an identifiable object,
3456 // getUnderlyingObjectsForCodeGen also fails for safety.
3457 if (!isIdentifiedObject(V)) {
3458 Objects.clear();
3459 return;
3460 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003461 Objects.push_back(const_cast<Value *>(V));
3462 }
3463 } while (!Working.empty());
3464}
3465
Sanjay Patelaee84212014-11-04 16:27:42 +00003466/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003467bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003468 for (const User *U : V->users()) {
3469 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003470 if (!II) return false;
3471
3472 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3473 II->getIntrinsicID() != Intrinsic::lifetime_end)
3474 return false;
3475 }
3476 return true;
3477}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003478
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003479bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3480 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003481 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003482 const Operator *Inst = dyn_cast<Operator>(V);
3483 if (!Inst)
3484 return false;
3485
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003486 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3487 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3488 if (C->canTrap())
3489 return false;
3490
3491 switch (Inst->getOpcode()) {
3492 default:
3493 return true;
3494 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003495 case Instruction::URem: {
3496 // x / y is undefined if y == 0.
3497 const APInt *V;
3498 if (match(Inst->getOperand(1), m_APInt(V)))
3499 return *V != 0;
3500 return false;
3501 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003502 case Instruction::SDiv:
3503 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003504 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003505 const APInt *Numerator, *Denominator;
3506 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3507 return false;
3508 // We cannot hoist this division if the denominator is 0.
3509 if (*Denominator == 0)
3510 return false;
3511 // It's safe to hoist if the denominator is not 0 or -1.
3512 if (*Denominator != -1)
3513 return true;
3514 // At this point we know that the denominator is -1. It is safe to hoist as
3515 // long we know that the numerator is not INT_MIN.
3516 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3517 return !Numerator->isMinSignedValue();
3518 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003519 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003520 }
3521 case Instruction::Load: {
3522 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003523 if (!LI->isUnordered() ||
3524 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003525 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003526 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003527 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003528 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003529 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003530 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3531 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003532 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003533 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003534 auto *CI = cast<const CallInst>(Inst);
3535 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003536
Matt Arsenault6a288c12017-05-03 02:26:10 +00003537 // The called function could have undefined behavior or side-effects, even
3538 // if marked readnone nounwind.
3539 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003540 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003541 case Instruction::VAArg:
3542 case Instruction::Alloca:
3543 case Instruction::Invoke:
3544 case Instruction::PHI:
3545 case Instruction::Store:
3546 case Instruction::Ret:
3547 case Instruction::Br:
3548 case Instruction::IndirectBr:
3549 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003550 case Instruction::Unreachable:
3551 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003552 case Instruction::AtomicRMW:
3553 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003554 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003555 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003556 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003557 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003558 case Instruction::CatchRet:
3559 case Instruction::CleanupPad:
3560 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003561 return false; // Misc instructions which have effects
3562 }
3563}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003564
Quentin Colombet6443cce2015-08-06 18:44:34 +00003565bool llvm::mayBeMemoryDependent(const Instruction &I) {
3566 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3567}
3568
Pete Cooper35b00d52016-08-13 01:05:32 +00003569OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3570 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003571 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003572 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003573 const Instruction *CxtI,
3574 const DominatorTree *DT) {
3575 // Multiplying n * m significant bits yields a result of n + m significant
3576 // bits. If the total number of significant bits does not exceed the
3577 // result bit width (minus 1), there is no overflow.
3578 // This means if we have enough leading zero bits in the operands
3579 // we can guarantee that the result does not overflow.
3580 // Ref: "Hacker's Delight" by Henry Warren
3581 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003582 KnownBits LHSKnown(BitWidth);
3583 KnownBits RHSKnown(BitWidth);
3584 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3585 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003586 // Note that underestimating the number of zero bits gives a more
3587 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003588 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3589 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003590 // First handle the easy case: if we have enough zero bits there's
3591 // definitely no overflow.
3592 if (ZeroBits >= BitWidth)
3593 return OverflowResult::NeverOverflows;
3594
3595 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003596 APInt LHSMax = ~LHSKnown.Zero;
3597 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003598
3599 // We know the multiply operation doesn't overflow if the maximum values for
3600 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003601 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003602 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003603 if (!MaxOverflow)
3604 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003605
David Majnemerc8a576b2015-01-02 07:29:47 +00003606 // We know it always overflows if multiplying the smallest possible values for
3607 // the operands also results in overflow.
3608 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003609 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003610 if (MinOverflow)
3611 return OverflowResult::AlwaysOverflows;
3612
3613 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003614}
David Majnemer5310c1e2015-01-07 00:39:50 +00003615
Pete Cooper35b00d52016-08-13 01:05:32 +00003616OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3617 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003618 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003619 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003620 const Instruction *CxtI,
3621 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003622 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3623 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3624 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003625
Craig Topper6e11a052017-05-08 16:22:48 +00003626 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003627 // The sign bit is set in both cases: this MUST overflow.
3628 // Create a simple add instruction, and insert it into the struct.
3629 return OverflowResult::AlwaysOverflows;
3630 }
3631
Craig Topper6e11a052017-05-08 16:22:48 +00003632 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003633 // The sign bit is clear in both cases: this CANNOT overflow.
3634 // Create a simple add instruction, and insert it into the struct.
3635 return OverflowResult::NeverOverflows;
3636 }
3637 }
3638
3639 return OverflowResult::MayOverflow;
3640}
James Molloy71b91c22015-05-11 14:42:20 +00003641
Craig Topperbb973722017-05-15 02:44:08 +00003642/// \brief Return true if we can prove that adding the two values of the
3643/// knownbits will not overflow.
3644/// Otherwise return false.
3645static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3646 const KnownBits &RHSKnown) {
3647 // Addition of two 2's complement numbers having opposite signs will never
3648 // overflow.
3649 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3650 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3651 return true;
3652
3653 // If either of the values is known to be non-negative, adding them can only
3654 // overflow if the second is also non-negative, so we can assume that.
3655 // Two non-negative numbers will only overflow if there is a carry to the
3656 // sign bit, so we can check if even when the values are as big as possible
3657 // there is no overflow to the sign bit.
3658 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3659 APInt MaxLHS = ~LHSKnown.Zero;
3660 MaxLHS.clearSignBit();
3661 APInt MaxRHS = ~RHSKnown.Zero;
3662 MaxRHS.clearSignBit();
3663 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3664 return Result.isSignBitClear();
3665 }
3666
3667 // If either of the values is known to be negative, adding them can only
3668 // overflow if the second is also negative, so we can assume that.
3669 // Two negative number will only overflow if there is no carry to the sign
3670 // bit, so we can check if even when the values are as small as possible
3671 // there is overflow to the sign bit.
3672 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3673 APInt MinLHS = LHSKnown.One;
3674 MinLHS.clearSignBit();
3675 APInt MinRHS = RHSKnown.One;
3676 MinRHS.clearSignBit();
3677 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3678 return Result.isSignBitSet();
3679 }
3680
3681 // If we reached here it means that we know nothing about the sign bits.
3682 // In this case we can't know if there will be an overflow, since by
3683 // changing the sign bits any two values can be made to overflow.
3684 return false;
3685}
3686
Pete Cooper35b00d52016-08-13 01:05:32 +00003687static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3688 const Value *RHS,
3689 const AddOperator *Add,
3690 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003691 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003692 const Instruction *CxtI,
3693 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003694 if (Add && Add->hasNoSignedWrap()) {
3695 return OverflowResult::NeverOverflows;
3696 }
3697
Craig Topperbb973722017-05-15 02:44:08 +00003698 // If LHS and RHS each have at least two sign bits, the addition will look
3699 // like
3700 //
3701 // XX..... +
3702 // YY.....
3703 //
3704 // If the carry into the most significant position is 0, X and Y can't both
3705 // be 1 and therefore the carry out of the addition is also 0.
3706 //
3707 // If the carry into the most significant position is 1, X and Y can't both
3708 // be 0 and therefore the carry out of the addition is also 1.
3709 //
3710 // Since the carry into the most significant position is always equal to
3711 // the carry out of the addition, there is no signed overflow.
3712 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3713 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3714 return OverflowResult::NeverOverflows;
3715
Craig Topper6e11a052017-05-08 16:22:48 +00003716 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3717 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003718
Craig Topperbb973722017-05-15 02:44:08 +00003719 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003720 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003721
3722 // The remaining code needs Add to be available. Early returns if not so.
3723 if (!Add)
3724 return OverflowResult::MayOverflow;
3725
3726 // If the sign of Add is the same as at least one of the operands, this add
3727 // CANNOT overflow. This is particularly useful when the sum is
3728 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3729 // operands.
3730 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003731 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003732 bool LHSOrRHSKnownNegative =
3733 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003734 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003735 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3736 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3737 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003738 return OverflowResult::NeverOverflows;
3739 }
3740 }
3741
3742 return OverflowResult::MayOverflow;
3743}
3744
Pete Cooper35b00d52016-08-13 01:05:32 +00003745bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3746 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003747#ifndef NDEBUG
3748 auto IID = II->getIntrinsicID();
3749 assert((IID == Intrinsic::sadd_with_overflow ||
3750 IID == Intrinsic::uadd_with_overflow ||
3751 IID == Intrinsic::ssub_with_overflow ||
3752 IID == Intrinsic::usub_with_overflow ||
3753 IID == Intrinsic::smul_with_overflow ||
3754 IID == Intrinsic::umul_with_overflow) &&
3755 "Not an overflow intrinsic!");
3756#endif
3757
Pete Cooper35b00d52016-08-13 01:05:32 +00003758 SmallVector<const BranchInst *, 2> GuardingBranches;
3759 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003760
Pete Cooper35b00d52016-08-13 01:05:32 +00003761 for (const User *U : II->users()) {
3762 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003763 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3764
3765 if (EVI->getIndices()[0] == 0)
3766 Results.push_back(EVI);
3767 else {
3768 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3769
Pete Cooper35b00d52016-08-13 01:05:32 +00003770 for (const auto *U : EVI->users())
3771 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003772 assert(B->isConditional() && "How else is it using an i1?");
3773 GuardingBranches.push_back(B);
3774 }
3775 }
3776 } else {
3777 // We are using the aggregate directly in a way we don't want to analyze
3778 // here (storing it to a global, say).
3779 return false;
3780 }
3781 }
3782
Pete Cooper35b00d52016-08-13 01:05:32 +00003783 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003784 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3785 if (!NoWrapEdge.isSingleEdge())
3786 return false;
3787
3788 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003789 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003790 // If the extractvalue itself is not executed on overflow, the we don't
3791 // need to check each use separately, since domination is transitive.
3792 if (DT.dominates(NoWrapEdge, Result->getParent()))
3793 continue;
3794
3795 for (auto &RU : Result->uses())
3796 if (!DT.dominates(NoWrapEdge, RU))
3797 return false;
3798 }
3799
3800 return true;
3801 };
3802
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003803 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003804}
3805
3806
Pete Cooper35b00d52016-08-13 01:05:32 +00003807OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003808 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003809 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003810 const Instruction *CxtI,
3811 const DominatorTree *DT) {
3812 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003813 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003814}
3815
Pete Cooper35b00d52016-08-13 01:05:32 +00003816OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3817 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003818 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003819 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003820 const Instruction *CxtI,
3821 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003822 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003823}
3824
Jingyue Wu42f1d672015-07-28 18:22:40 +00003825bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003826 // A memory operation returns normally if it isn't volatile. A volatile
3827 // operation is allowed to trap.
3828 //
3829 // An atomic operation isn't guaranteed to return in a reasonable amount of
3830 // time because it's possible for another thread to interfere with it for an
3831 // arbitrary length of time, but programs aren't allowed to rely on that.
3832 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3833 return !LI->isVolatile();
3834 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3835 return !SI->isVolatile();
3836 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3837 return !CXI->isVolatile();
3838 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3839 return !RMWI->isVolatile();
3840 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3841 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003842
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003843 // If there is no successor, then execution can't transfer to it.
3844 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3845 return !CRI->unwindsToCaller();
3846 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3847 return !CatchSwitch->unwindsToCaller();
3848 if (isa<ResumeInst>(I))
3849 return false;
3850 if (isa<ReturnInst>(I))
3851 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003852 if (isa<UnreachableInst>(I))
3853 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003854
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003855 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003856 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003857 // Call sites that throw have implicit non-local control flow.
3858 if (!CS.doesNotThrow())
3859 return false;
3860
3861 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3862 // etc. and thus not return. However, LLVM already assumes that
3863 //
3864 // - Thread exiting actions are modeled as writes to memory invisible to
3865 // the program.
3866 //
3867 // - Loops that don't have side effects (side effects are volatile/atomic
3868 // stores and IO) always terminate (see http://llvm.org/PR965).
3869 // Furthermore IO itself is also modeled as writes to memory invisible to
3870 // the program.
3871 //
3872 // We rely on those assumptions here, and use the memory effects of the call
3873 // target as a proxy for checking that it always returns.
3874
3875 // FIXME: This isn't aggressive enough; a call which only writes to a global
3876 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003877 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3878 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003879 }
3880
3881 // Other instructions return normally.
3882 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003883}
3884
3885bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3886 const Loop *L) {
3887 // The loop header is guaranteed to be executed for every iteration.
3888 //
3889 // FIXME: Relax this constraint to cover all basic blocks that are
3890 // guaranteed to be executed at every iteration.
3891 if (I->getParent() != L->getHeader()) return false;
3892
3893 for (const Instruction &LI : *L->getHeader()) {
3894 if (&LI == I) return true;
3895 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3896 }
3897 llvm_unreachable("Instruction not contained in its own parent basic block.");
3898}
3899
3900bool llvm::propagatesFullPoison(const Instruction *I) {
3901 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003902 case Instruction::Add:
3903 case Instruction::Sub:
3904 case Instruction::Xor:
3905 case Instruction::Trunc:
3906 case Instruction::BitCast:
3907 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003908 case Instruction::Mul:
3909 case Instruction::Shl:
3910 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003911 // These operations all propagate poison unconditionally. Note that poison
3912 // is not any particular value, so xor or subtraction of poison with
3913 // itself still yields poison, not zero.
3914 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003915
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003916 case Instruction::AShr:
3917 case Instruction::SExt:
3918 // For these operations, one bit of the input is replicated across
3919 // multiple output bits. A replicated poison bit is still poison.
3920 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003921
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003922 case Instruction::ICmp:
3923 // Comparing poison with any value yields poison. This is why, for
3924 // instance, x s< (x +nsw 1) can be folded to true.
3925 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003926
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003927 default:
3928 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003929 }
3930}
3931
3932const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3933 switch (I->getOpcode()) {
3934 case Instruction::Store:
3935 return cast<StoreInst>(I)->getPointerOperand();
3936
3937 case Instruction::Load:
3938 return cast<LoadInst>(I)->getPointerOperand();
3939
3940 case Instruction::AtomicCmpXchg:
3941 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3942
3943 case Instruction::AtomicRMW:
3944 return cast<AtomicRMWInst>(I)->getPointerOperand();
3945
3946 case Instruction::UDiv:
3947 case Instruction::SDiv:
3948 case Instruction::URem:
3949 case Instruction::SRem:
3950 return I->getOperand(1);
3951
3952 default:
3953 return nullptr;
3954 }
3955}
3956
Sanjoy Das08989c72017-04-30 19:41:19 +00003957bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003958 // We currently only look for uses of poison values within the same basic
3959 // block, as that makes it easier to guarantee that the uses will be
3960 // executed given that PoisonI is executed.
3961 //
3962 // FIXME: Expand this to consider uses beyond the same basic block. To do
3963 // this, look out for the distinction between post-dominance and strong
3964 // post-dominance.
3965 const BasicBlock *BB = PoisonI->getParent();
3966
3967 // Set of instructions that we have proved will yield poison if PoisonI
3968 // does.
3969 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003970 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003971 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003972 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003973
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003974 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003975
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003976 unsigned Iter = 0;
3977 while (Iter++ < MaxDepth) {
3978 for (auto &I : make_range(Begin, End)) {
3979 if (&I != PoisonI) {
3980 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3981 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3982 return true;
3983 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3984 return false;
3985 }
3986
3987 // Mark poison that propagates from I through uses of I.
3988 if (YieldsPoison.count(&I)) {
3989 for (const User *User : I.users()) {
3990 const Instruction *UserI = cast<Instruction>(User);
3991 if (propagatesFullPoison(UserI))
3992 YieldsPoison.insert(User);
3993 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003994 }
3995 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003996
3997 if (auto *NextBB = BB->getSingleSuccessor()) {
3998 if (Visited.insert(NextBB).second) {
3999 BB = NextBB;
4000 Begin = BB->getFirstNonPHI()->getIterator();
4001 End = BB->end();
4002 continue;
4003 }
4004 }
4005
4006 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004007 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004008 return false;
4009}
4010
Pete Cooper35b00d52016-08-13 01:05:32 +00004011static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004012 if (FMF.noNaNs())
4013 return true;
4014
4015 if (auto *C = dyn_cast<ConstantFP>(V))
4016 return !C->isNaN();
4017 return false;
4018}
4019
Pete Cooper35b00d52016-08-13 01:05:32 +00004020static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004021 if (auto *C = dyn_cast<ConstantFP>(V))
4022 return !C->isZero();
4023 return false;
4024}
4025
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004026/// Match clamp pattern for float types without care about NaNs or signed zeros.
4027/// Given non-min/max outer cmp/select from the clamp pattern this
4028/// function recognizes if it can be substitued by a "canonical" min/max
4029/// pattern.
4030static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4031 Value *CmpLHS, Value *CmpRHS,
4032 Value *TrueVal, Value *FalseVal,
4033 Value *&LHS, Value *&RHS) {
4034 // Try to match
4035 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4036 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4037 // and return description of the outer Max/Min.
4038
4039 // First, check if select has inverse order:
4040 if (CmpRHS == FalseVal) {
4041 std::swap(TrueVal, FalseVal);
4042 Pred = CmpInst::getInversePredicate(Pred);
4043 }
4044
4045 // Assume success now. If there's no match, callers should not use these anyway.
4046 LHS = TrueVal;
4047 RHS = FalseVal;
4048
4049 const APFloat *FC1;
4050 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4051 return {SPF_UNKNOWN, SPNB_NA, false};
4052
4053 const APFloat *FC2;
4054 switch (Pred) {
4055 case CmpInst::FCMP_OLT:
4056 case CmpInst::FCMP_OLE:
4057 case CmpInst::FCMP_ULT:
4058 case CmpInst::FCMP_ULE:
4059 if (match(FalseVal,
4060 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4061 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4062 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4063 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4064 break;
4065 case CmpInst::FCMP_OGT:
4066 case CmpInst::FCMP_OGE:
4067 case CmpInst::FCMP_UGT:
4068 case CmpInst::FCMP_UGE:
4069 if (match(FalseVal,
4070 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4071 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4072 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4073 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4074 break;
4075 default:
4076 break;
4077 }
4078
4079 return {SPF_UNKNOWN, SPNB_NA, false};
4080}
4081
Sanjay Patel819f0962016-11-13 19:30:19 +00004082/// Match non-obvious integer minimum and maximum sequences.
4083static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4084 Value *CmpLHS, Value *CmpRHS,
4085 Value *TrueVal, Value *FalseVal,
4086 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00004087 // Assume success. If there's no match, callers should not use these anyway.
4088 LHS = TrueVal;
4089 RHS = FalseVal;
4090
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004091 // Recognize variations of:
4092 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4093 const APInt *C1;
4094 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4095 const APInt *C2;
4096
4097 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4098 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004099 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004100 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004101
4102 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4103 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004104 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004105 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004106
4107 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4108 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004109 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004110 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004111
4112 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4113 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004114 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004115 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004116 }
4117
Sanjay Patel819f0962016-11-13 19:30:19 +00004118 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4119 return {SPF_UNKNOWN, SPNB_NA, false};
4120
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004121 // Z = X -nsw Y
4122 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4123 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4124 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004125 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004126 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004127
4128 // Z = X -nsw Y
4129 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4130 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4131 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004132 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004133 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004134
Sanjay Patel819f0962016-11-13 19:30:19 +00004135 if (!match(CmpRHS, m_APInt(C1)))
4136 return {SPF_UNKNOWN, SPNB_NA, false};
4137
4138 // An unsigned min/max can be written with a signed compare.
4139 const APInt *C2;
4140 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4141 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4142 // Is the sign bit set?
4143 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4144 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004145 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004146 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004147
4148 // Is the sign bit clear?
4149 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4150 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4151 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004152 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004153 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004154 }
4155
4156 // Look through 'not' ops to find disguised signed min/max.
4157 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4158 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4159 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004160 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004161 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004162
4163 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4164 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4165 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004166 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004167 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004168
4169 return {SPF_UNKNOWN, SPNB_NA, false};
4170}
4171
James Molloy134bec22015-08-11 09:12:57 +00004172static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4173 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004174 Value *CmpLHS, Value *CmpRHS,
4175 Value *TrueVal, Value *FalseVal,
4176 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004177 LHS = CmpLHS;
4178 RHS = CmpRHS;
4179
James Molloy134bec22015-08-11 09:12:57 +00004180 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4181 // return inconsistent results between implementations.
4182 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4183 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4184 // Therefore we behave conservatively and only proceed if at least one of the
4185 // operands is known to not be zero, or if we don't care about signed zeroes.
4186 switch (Pred) {
4187 default: break;
4188 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4189 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4190 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4191 !isKnownNonZero(CmpRHS))
4192 return {SPF_UNKNOWN, SPNB_NA, false};
4193 }
4194
4195 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4196 bool Ordered = false;
4197
4198 // When given one NaN and one non-NaN input:
4199 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4200 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4201 // ordered comparison fails), which could be NaN or non-NaN.
4202 // so here we discover exactly what NaN behavior is required/accepted.
4203 if (CmpInst::isFPPredicate(Pred)) {
4204 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4205 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4206
4207 if (LHSSafe && RHSSafe) {
4208 // Both operands are known non-NaN.
4209 NaNBehavior = SPNB_RETURNS_ANY;
4210 } else if (CmpInst::isOrdered(Pred)) {
4211 // An ordered comparison will return false when given a NaN, so it
4212 // returns the RHS.
4213 Ordered = true;
4214 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004215 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004216 NaNBehavior = SPNB_RETURNS_NAN;
4217 else if (RHSSafe)
4218 NaNBehavior = SPNB_RETURNS_OTHER;
4219 else
4220 // Completely unsafe.
4221 return {SPF_UNKNOWN, SPNB_NA, false};
4222 } else {
4223 Ordered = false;
4224 // An unordered comparison will return true when given a NaN, so it
4225 // returns the LHS.
4226 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004227 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004228 NaNBehavior = SPNB_RETURNS_OTHER;
4229 else if (RHSSafe)
4230 NaNBehavior = SPNB_RETURNS_NAN;
4231 else
4232 // Completely unsafe.
4233 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004234 }
4235 }
4236
James Molloy71b91c22015-05-11 14:42:20 +00004237 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004238 std::swap(CmpLHS, CmpRHS);
4239 Pred = CmpInst::getSwappedPredicate(Pred);
4240 if (NaNBehavior == SPNB_RETURNS_NAN)
4241 NaNBehavior = SPNB_RETURNS_OTHER;
4242 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4243 NaNBehavior = SPNB_RETURNS_NAN;
4244 Ordered = !Ordered;
4245 }
4246
4247 // ([if]cmp X, Y) ? X : Y
4248 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004249 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004250 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004251 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004252 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004253 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004254 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004255 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004256 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004257 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004258 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4259 case FCmpInst::FCMP_UGT:
4260 case FCmpInst::FCMP_UGE:
4261 case FCmpInst::FCMP_OGT:
4262 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4263 case FCmpInst::FCMP_ULT:
4264 case FCmpInst::FCMP_ULE:
4265 case FCmpInst::FCMP_OLT:
4266 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004267 }
4268 }
4269
Sanjay Patele372aec2016-10-27 15:26:10 +00004270 const APInt *C1;
4271 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004272 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4273 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4274
4275 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4276 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004277 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004278 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004279 }
4280
4281 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4282 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004283 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004284 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004285 }
4286 }
James Molloy71b91c22015-05-11 14:42:20 +00004287 }
4288
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004289 if (CmpInst::isIntPredicate(Pred))
4290 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4291
4292 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4293 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4294 // semantics than minNum. Be conservative in such case.
4295 if (NaNBehavior != SPNB_RETURNS_ANY ||
4296 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4297 !isKnownNonZero(CmpRHS)))
4298 return {SPF_UNKNOWN, SPNB_NA, false};
4299
4300 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004301}
James Molloy270ef8c2015-05-15 16:04:50 +00004302
James Molloy569cea62015-09-02 17:25:25 +00004303static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4304 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004305 auto *Cast1 = dyn_cast<CastInst>(V1);
4306 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004307 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004308
Sanjay Patel14a4b812017-01-29 16:34:57 +00004309 *CastOp = Cast1->getOpcode();
4310 Type *SrcTy = Cast1->getSrcTy();
4311 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4312 // If V1 and V2 are both the same cast from the same type, look through V1.
4313 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4314 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004315 return nullptr;
4316 }
4317
Sanjay Patel14a4b812017-01-29 16:34:57 +00004318 auto *C = dyn_cast<Constant>(V2);
4319 if (!C)
4320 return nullptr;
4321
David Majnemerd2a074b2016-04-29 18:40:34 +00004322 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004323 switch (*CastOp) {
4324 case Instruction::ZExt:
4325 if (CmpI->isUnsigned())
4326 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4327 break;
4328 case Instruction::SExt:
4329 if (CmpI->isSigned())
4330 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4331 break;
4332 case Instruction::Trunc:
4333 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4334 break;
4335 case Instruction::FPTrunc:
4336 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4337 break;
4338 case Instruction::FPExt:
4339 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4340 break;
4341 case Instruction::FPToUI:
4342 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4343 break;
4344 case Instruction::FPToSI:
4345 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4346 break;
4347 case Instruction::UIToFP:
4348 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4349 break;
4350 case Instruction::SIToFP:
4351 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4352 break;
4353 default:
4354 break;
4355 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004356
4357 if (!CastedTo)
4358 return nullptr;
4359
David Majnemerd2a074b2016-04-29 18:40:34 +00004360 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004361 Constant *CastedBack =
4362 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004363 if (CastedBack != C)
4364 return nullptr;
4365
4366 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004367}
4368
Sanjay Patele8dc0902016-05-23 17:57:54 +00004369SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004370 Instruction::CastOps *CastOp) {
4371 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004372 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004373
James Molloy134bec22015-08-11 09:12:57 +00004374 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4375 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004376
James Molloy134bec22015-08-11 09:12:57 +00004377 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004378 Value *CmpLHS = CmpI->getOperand(0);
4379 Value *CmpRHS = CmpI->getOperand(1);
4380 Value *TrueVal = SI->getTrueValue();
4381 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004382 FastMathFlags FMF;
4383 if (isa<FPMathOperator>(CmpI))
4384 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004385
4386 // Bail out early.
4387 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004388 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004389
4390 // Deal with type mismatches.
4391 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004392 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004393 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004394 cast<CastInst>(TrueVal)->getOperand(0), C,
4395 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004396 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004397 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004398 C, cast<CastInst>(FalseVal)->getOperand(0),
4399 LHS, RHS);
4400 }
James Molloy134bec22015-08-11 09:12:57 +00004401 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004402 LHS, RHS);
4403}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004404
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004405/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004406static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4407 const Value *RHS, const DataLayout &DL,
4408 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004409 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004410 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4411 return true;
4412
4413 switch (Pred) {
4414 default:
4415 return false;
4416
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004417 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004418 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004419
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004420 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004421 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004422 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004423 return false;
4424 }
4425
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004426 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004427 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004428
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004429 // LHS u<= LHS +_{nuw} C for any C
4430 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004431 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004432
4433 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004434 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4435 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004436 const APInt *&CA, const APInt *&CB) {
4437 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4438 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4439 return true;
4440
4441 // If X & C == 0 then (X | C) == X +_{nuw} C
4442 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4443 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004444 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004445 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4446 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004447 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004448 return true;
4449 }
4450
4451 return false;
4452 };
4453
Pete Cooper35b00d52016-08-13 01:05:32 +00004454 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004455 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004456 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4457 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004458
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004459 return false;
4460 }
4461 }
4462}
4463
4464/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004465/// ALHS ARHS" is true. Otherwise, return None.
4466static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004467isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004468 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4469 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004470 switch (Pred) {
4471 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004472 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004473
4474 case CmpInst::ICMP_SLT:
4475 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004476 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4477 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004478 return true;
4479 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004480
4481 case CmpInst::ICMP_ULT:
4482 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004483 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4484 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004485 return true;
4486 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004487 }
4488}
4489
Chad Rosier226a7342016-05-05 17:41:19 +00004490/// Return true if the operands of the two compares match. IsSwappedOps is true
4491/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004492static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4493 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004494 bool &IsSwappedOps) {
4495
4496 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4497 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4498 return IsMatchingOps || IsSwappedOps;
4499}
4500
Chad Rosier41dd31f2016-04-20 19:15:26 +00004501/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4502/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4503/// BRHS" is false. Otherwise, return None if we can't infer anything.
4504static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004505 const Value *ALHS,
4506 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004507 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004508 const Value *BLHS,
4509 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004510 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004511 // Canonicalize the operands so they're matching.
4512 if (IsSwappedOps) {
4513 std::swap(BLHS, BRHS);
4514 BPred = ICmpInst::getSwappedPredicate(BPred);
4515 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004516 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004517 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004518 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004519 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004520
Chad Rosier41dd31f2016-04-20 19:15:26 +00004521 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004522}
4523
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004524/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4525/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4526/// C2" is false. Otherwise, return None if we can't infer anything.
4527static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004528isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4529 const ConstantInt *C1,
4530 CmpInst::Predicate BPred,
4531 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004532 assert(ALHS == BLHS && "LHS operands must match.");
4533 ConstantRange DomCR =
4534 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4535 ConstantRange CR =
4536 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4537 ConstantRange Intersection = DomCR.intersectWith(CR);
4538 ConstantRange Difference = DomCR.difference(CR);
4539 if (Intersection.isEmptySet())
4540 return false;
4541 if (Difference.isEmptySet())
4542 return true;
4543 return None;
4544}
4545
Chad Rosier2f498032017-07-28 18:47:43 +00004546/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4547/// false. Otherwise, return None if we can't infer anything.
4548static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4549 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004550 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004551 unsigned Depth) {
4552 Value *ALHS = LHS->getOperand(0);
4553 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004554 // The rest of the logic assumes the LHS condition is true. If that's not the
4555 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004556 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004557 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004558
4559 Value *BLHS = RHS->getOperand(0);
4560 Value *BRHS = RHS->getOperand(1);
4561 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004562
Chad Rosier226a7342016-05-05 17:41:19 +00004563 // Can we infer anything when the two compares have matching operands?
4564 bool IsSwappedOps;
4565 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4566 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4567 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004568 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004569 // No amount of additional analysis will infer the second condition, so
4570 // early exit.
4571 return None;
4572 }
4573
4574 // Can we infer anything when the LHS operands match and the RHS operands are
4575 // constants (not necessarily matching)?
4576 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4577 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4578 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4579 cast<ConstantInt>(BRHS)))
4580 return Implication;
4581 // No amount of additional analysis will infer the second condition, so
4582 // early exit.
4583 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004584 }
4585
Chad Rosier41dd31f2016-04-20 19:15:26 +00004586 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004587 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004588 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004589}
Chad Rosier2f498032017-07-28 18:47:43 +00004590
Chad Rosierf73a10d2017-08-01 19:22:36 +00004591/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4592/// false. Otherwise, return None if we can't infer anything. We expect the
4593/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4594static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4595 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004596 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004597 unsigned Depth) {
4598 // The LHS must be an 'or' or an 'and' instruction.
4599 assert((LHS->getOpcode() == Instruction::And ||
4600 LHS->getOpcode() == Instruction::Or) &&
4601 "Expected LHS to be 'and' or 'or'.");
4602
Davide Italiano1a943a92017-08-09 16:06:54 +00004603 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004604
4605 // If the result of an 'or' is false, then we know both legs of the 'or' are
4606 // false. Similarly, if the result of an 'and' is true, then we know both
4607 // legs of the 'and' are true.
4608 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004609 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4610 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004611 // FIXME: Make this non-recursion.
4612 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004613 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004614 return Implication;
4615 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004616 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004617 return Implication;
4618 return None;
4619 }
4620 return None;
4621}
4622
Chad Rosier2f498032017-07-28 18:47:43 +00004623Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004624 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004625 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004626 // Bail out when we hit the limit.
4627 if (Depth == MaxDepth)
4628 return None;
4629
Chad Rosierf73a10d2017-08-01 19:22:36 +00004630 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4631 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004632 if (LHS->getType() != RHS->getType())
4633 return None;
4634
4635 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004636 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004637
4638 // LHS ==> RHS by definition
4639 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004640 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004641
Chad Rosierf73a10d2017-08-01 19:22:36 +00004642 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004643 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004644 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004645
Chad Rosier2f498032017-07-28 18:47:43 +00004646 assert(OpTy->isIntegerTy(1) && "implied by above");
4647
Chad Rosier2f498032017-07-28 18:47:43 +00004648 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004649 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4650 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4651 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004652 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004653
Chad Rosierf73a10d2017-08-01 19:22:36 +00004654 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4655 // an icmp. FIXME: Add support for and/or on the RHS.
4656 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4657 if (LHSBO && RHSCmp) {
4658 if ((LHSBO->getOpcode() == Instruction::And ||
4659 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004660 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004661 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004662 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004663}