blob: 995b3e0c6de5bbbc9628fc12b9d0de5ccc9cbae0 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000020#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000022#include "llvm/Analysis/MemoryBuiltins.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000029#include "llvm/IR/DerivedTypes.h"
Hal Finkel60db0582014-09-07 18:57:58 +000030#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000031#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000039#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000040#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000041#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000042#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000043#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000044#include <algorithm>
45#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000046#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000047using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000048using namespace llvm::PatternMatch;
49
50const unsigned MaxDepth = 6;
51
Philip Reames1c292272015-03-10 22:43:20 +000052// Controls the number of uses of the value searched for possible
53// dominating comparisons.
54static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000055 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000056
Nikolai Bozhenov6710ba02017-06-28 12:15:13 +000057// This optimization is known to cause performance regressions is some cases,
58// keep it under a temporary flag for now.
59static cl::opt<bool>
60DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
61 cl::Hidden, cl::init(true));
62
Craig Topper6b3940a2017-05-03 22:25:19 +000063/// Returns the bitwidth of the given scalar or pointer type. For vector types,
64/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000065static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000066 if (unsigned BitWidth = Ty->getScalarSizeInBits())
67 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000068
Mehdi Aminia28d91d2015-03-10 02:37:25 +000069 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000070}
Chris Lattner965c7692008-06-02 01:18:21 +000071
Benjamin Kramercfd8d902014-09-12 08:56:53 +000072namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000073// Simplifying using an assume can only be done in a particular control-flow
74// context (the context instruction provides that context). If an assume and
75// the context instruction are not in the same block then the DT helps in
76// figuring out if we can use it.
77struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000078 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000079 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000080 const Instruction *CxtI;
81 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000082 // Unlike the other analyses, this may be a nullptr because not all clients
83 // provide it currently.
84 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000085
Matthias Braun37e5d792016-01-28 06:29:33 +000086 /// Set of assumptions that should be excluded from further queries.
87 /// This is because of the potential for mutual recursion to cause
88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
89 /// classic case of this is assume(x = y), which will attempt to determine
90 /// bits in x from bits in y, which will attempt to determine bits in y from
91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +000092 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
93 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +000094 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000095 unsigned NumExcluded;
96
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000098 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000100
101 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
103 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000104 Excluded = Q.Excluded;
105 Excluded[NumExcluded++] = NewExcl;
106 assert(NumExcluded <= Excluded.size());
107 }
108
109 bool isExcluded(const Value *Value) const {
110 if (NumExcluded == 0)
111 return false;
112 auto End = Excluded.begin() + NumExcluded;
113 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000114 }
115};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000116} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000117
Sanjay Patel547e9752014-11-04 16:09:50 +0000118// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000119// the preferred context instruction (if any).
120static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
121 // If we've been provided with a context instruction, then use that (provided
122 // it has been inserted).
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 // If the value is really an already-inserted instruction, then use that.
127 CxtI = dyn_cast<Instruction>(V);
128 if (CxtI && CxtI->getParent())
129 return CxtI;
130
131 return nullptr;
132}
133
Craig Topperb45eabc2017-04-26 16:39:58 +0000134static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000136
Craig Topperb45eabc2017-04-26 16:39:58 +0000137void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000138 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000139 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000140 const DominatorTree *DT,
141 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000144}
145
Craig Topper6e11a052017-05-08 16:22:48 +0000146static KnownBits computeKnownBits(const Value *V, unsigned Depth,
147 const Query &Q);
148
149KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
150 unsigned Depth, AssumptionCache *AC,
151 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000152 const DominatorTree *DT,
153 OptimizationRemarkEmitter *ORE) {
154 return ::computeKnownBits(V, Depth,
155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000156}
157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
159 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000161 const DominatorTree *DT) {
162 assert(LHS->getType() == RHS->getType() &&
163 "LHS and RHS should have the same type");
164 assert(LHS->getType()->isIntOrIntVectorTy() &&
165 "LHS and RHS should be integers");
166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 KnownBits LHSKnown(IT->getBitWidth());
168 KnownBits RHSKnown(IT->getBitWidth());
169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000172}
173
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000175bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
176 for (const User *U : CxtI->users()) {
177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
178 if (IC->isEquality())
179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
180 if (C->isNullValue())
181 continue;
182 return false;
183 }
184 return true;
185}
186
Pete Cooper35b00d52016-08-13 01:05:32 +0000187static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000188 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000189
Pete Cooper35b00d52016-08-13 01:05:32 +0000190bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
191 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000192 unsigned Depth, AssumptionCache *AC,
193 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000194 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000197}
198
Pete Cooper35b00d52016-08-13 01:05:32 +0000199static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 unsigned Depth,
209 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000210 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
212 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000216 AssumptionCache *AC, const Instruction *CxtI,
217 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000218 if (auto *CI = dyn_cast<ConstantInt>(V))
219 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000220
Philip Reames8f12eba2016-03-09 21:31:47 +0000221 // TODO: We'd doing two recursive queries here. We should factor this such
222 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000225}
226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
231 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000232}
233
Pete Cooper35b00d52016-08-13 01:05:32 +0000234static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000235
Pete Cooper35b00d52016-08-13 01:05:32 +0000236bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 const DataLayout &DL,
238 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000239 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
241 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000242 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000243}
244
Pete Cooper35b00d52016-08-13 01:05:32 +0000245static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000246 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000247
Pete Cooper35b00d52016-08-13 01:05:32 +0000248bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
249 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 unsigned Depth, AssumptionCache *AC,
251 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000252 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000253 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000254}
255
Pete Cooper35b00d52016-08-13 01:05:32 +0000256static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
257 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000258
Pete Cooper35b00d52016-08-13 01:05:32 +0000259unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000260 unsigned Depth, AssumptionCache *AC,
261 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000262 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000264}
265
Craig Topper8fbb74b2017-03-24 22:12:10 +0000266static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
267 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000268 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000269 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000270 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000271
272 // If an initial sequence of bits in the result is not needed, the
273 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000274 KnownBits LHSKnown(BitWidth);
275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
276 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000277
Craig Topperb498a232017-08-08 16:29:35 +0000278 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000279}
280
Pete Cooper35b00d52016-08-13 01:05:32 +0000281static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000282 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000283 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000284 unsigned BitWidth = Known.getBitWidth();
285 computeKnownBits(Op1, Known, Depth + 1, Q);
286 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000287
288 bool isKnownNegative = false;
289 bool isKnownNonNegative = false;
290 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000291 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000292 if (Op0 == Op1) {
293 // The product of a number with itself is non-negative.
294 isKnownNonNegative = true;
295 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000296 bool isKnownNonNegativeOp1 = Known.isNonNegative();
297 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
298 bool isKnownNegativeOp1 = Known.isNegative();
299 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000300 // The product of two numbers with the same sign is non-negative.
301 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
302 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
303 // The product of a negative number and a non-negative number is either
304 // negative or zero.
305 if (!isKnownNonNegative)
306 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000307 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000308 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000309 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000310 }
311 }
312
313 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000314 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000315 // More trickiness is possible, but this is sufficient for the
316 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000317 unsigned TrailZ = Known.countMinTrailingZeros() +
318 Known2.countMinTrailingZeros();
319 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
320 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321 BitWidth) - BitWidth;
322
323 TrailZ = std::min(TrailZ, BitWidth);
324 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000325 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000326 Known.Zero.setLowBits(TrailZ);
327 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000328
329 // Only make use of no-wrap flags if we failed to compute the sign bit
330 // directly. This matters if the multiplication always overflows, in
331 // which case we prefer to follow the result of the direct computation,
332 // though as the program is invoking undefined behaviour we can choose
333 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000334 if (isKnownNonNegative && !Known.isNegative())
335 Known.makeNonNegative();
336 else if (isKnownNegative && !Known.isNonNegative())
337 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000338}
339
Jingyue Wu37fcb592014-06-19 16:50:16 +0000340void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000341 KnownBits &Known) {
342 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000343 unsigned NumRanges = Ranges.getNumOperands() / 2;
344 assert(NumRanges >= 1);
345
Craig Topperf42b23f2017-04-28 06:28:56 +0000346 Known.Zero.setAllBits();
347 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000348
Rafael Espindola53190532012-03-30 15:52:11 +0000349 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000350 ConstantInt *Lower =
351 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
352 ConstantInt *Upper =
353 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000354 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000355
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000356 // The first CommonPrefixBits of all values in Range are equal.
357 unsigned CommonPrefixBits =
358 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
359
360 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000361 Known.One &= Range.getUnsignedMax() & Mask;
362 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000363 }
Rafael Espindola53190532012-03-30 15:52:11 +0000364}
Jay Foad5a29c362014-05-15 12:12:55 +0000365
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000366static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000367 SmallVector<const Value *, 16> WorkSet(1, I);
368 SmallPtrSet<const Value *, 32> Visited;
369 SmallPtrSet<const Value *, 16> EphValues;
370
Hal Finkelf2199b22015-10-23 20:37:08 +0000371 // The instruction defining an assumption's condition itself is always
372 // considered ephemeral to that assumption (even if it has other
373 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000374 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000375 return true;
376
Hal Finkel60db0582014-09-07 18:57:58 +0000377 while (!WorkSet.empty()) {
378 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000379 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000380 continue;
381
382 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000383 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000384 if (V == E)
385 return true;
386
387 EphValues.insert(V);
388 if (const User *U = dyn_cast<User>(V))
389 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
390 J != JE; ++J) {
391 if (isSafeToSpeculativelyExecute(*J))
392 WorkSet.push_back(*J);
393 }
394 }
395 }
396
397 return false;
398}
399
400// Is this an intrinsic that cannot be speculated but also cannot trap?
401static bool isAssumeLikeIntrinsic(const Instruction *I) {
402 if (const CallInst *CI = dyn_cast<CallInst>(I))
403 if (Function *F = CI->getCalledFunction())
404 switch (F->getIntrinsicID()) {
405 default: break;
406 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
407 case Intrinsic::assume:
408 case Intrinsic::dbg_declare:
409 case Intrinsic::dbg_value:
410 case Intrinsic::invariant_start:
411 case Intrinsic::invariant_end:
412 case Intrinsic::lifetime_start:
413 case Intrinsic::lifetime_end:
414 case Intrinsic::objectsize:
415 case Intrinsic::ptr_annotation:
416 case Intrinsic::var_annotation:
417 return true;
418 }
419
420 return false;
421}
422
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000423bool llvm::isValidAssumeForContext(const Instruction *Inv,
424 const Instruction *CxtI,
425 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000426
427 // There are two restrictions on the use of an assume:
428 // 1. The assume must dominate the context (or the control flow must
429 // reach the assume whenever it reaches the context).
430 // 2. The context must not be in the assume's set of ephemeral values
431 // (otherwise we will use the assume to prove that the condition
432 // feeding the assume is trivially true, thus causing the removal of
433 // the assume).
434
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000435 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000436 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000437 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000438 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
439 // We don't have a DT, but this trivially dominates.
440 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000441 }
442
Pete Cooper54a02552016-08-12 01:00:15 +0000443 // With or without a DT, the only remaining case we will check is if the
444 // instructions are in the same BB. Give up if that is not the case.
445 if (Inv->getParent() != CxtI->getParent())
446 return false;
447
448 // If we have a dom tree, then we now know that the assume doens't dominate
449 // the other instruction. If we don't have a dom tree then we can check if
450 // the assume is first in the BB.
451 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000452 // Search forward from the assume until we reach the context (or the end
453 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000454 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000455 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000456 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000457 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000458 }
459
Pete Cooper54a02552016-08-12 01:00:15 +0000460 // The context comes first, but they're both in the same block. Make sure
461 // there is nothing in between that might interrupt the control flow.
462 for (BasicBlock::const_iterator I =
463 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
464 I != IE; ++I)
465 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
466 return false;
467
468 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000469}
470
Craig Topperb45eabc2017-04-26 16:39:58 +0000471static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
472 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000473 // Use of assumptions is context-sensitive. If we don't have a context, we
474 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000475 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000476 return;
477
Craig Topperb45eabc2017-04-26 16:39:58 +0000478 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000479
Hal Finkel8a9a7832017-01-11 13:24:24 +0000480 // Note that the patterns below need to be kept in sync with the code
481 // in AssumptionCache::updateAffectedValues.
482
483 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000484 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000485 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000486 CallInst *I = cast<CallInst>(AssumeVH);
487 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
488 "Got assumption for the wrong function!");
489 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000490 continue;
491
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000492 // Warning: This loop can end up being somewhat performance sensetive.
493 // We're running this loop for once for each value queried resulting in a
494 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000495
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000496 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
497 "must be an assume intrinsic");
498
499 Value *Arg = I->getArgOperand(0);
500
501 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000502 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000503 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000504 return;
505 }
Sanjay Patel96669962017-01-17 18:15:49 +0000506 if (match(Arg, m_Not(m_Specific(V))) &&
507 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
508 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000509 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000510 return;
511 }
Hal Finkel60db0582014-09-07 18:57:58 +0000512
David Majnemer9b609752014-12-12 23:59:29 +0000513 // The remaining tests are all recursive, so bail out if we hit the limit.
514 if (Depth == MaxDepth)
515 continue;
516
Hal Finkel60db0582014-09-07 18:57:58 +0000517 Value *A, *B;
518 auto m_V = m_CombineOr(m_Specific(V),
519 m_CombineOr(m_PtrToInt(m_Specific(V)),
520 m_BitCast(m_Specific(V))));
521
522 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000523 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000524 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000525 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000526 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000527 KnownBits RHSKnown(BitWidth);
528 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
529 Known.Zero |= RHSKnown.Zero;
530 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000531 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000532 } else if (match(Arg,
533 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000534 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000535 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000536 KnownBits RHSKnown(BitWidth);
537 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
538 KnownBits MaskKnown(BitWidth);
539 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000540
541 // For those bits in the mask that are known to be one, we can propagate
542 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000543 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
544 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000545 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000546 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
547 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000548 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000549 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000550 KnownBits RHSKnown(BitWidth);
551 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
552 KnownBits MaskKnown(BitWidth);
553 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000554
555 // For those bits in the mask that are known to be one, we can propagate
556 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000557 Known.Zero |= RHSKnown.One & MaskKnown.One;
558 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000559 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000560 } else if (match(Arg,
561 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000562 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000564 KnownBits RHSKnown(BitWidth);
565 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
566 KnownBits BKnown(BitWidth);
567 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000568
569 // For those bits in B that are known to be zero, we can propagate known
570 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000571 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
572 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000573 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
575 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000576 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000578 KnownBits RHSKnown(BitWidth);
579 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
580 KnownBits BKnown(BitWidth);
581 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000582
583 // For those bits in B that are known to be zero, we can propagate
584 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000585 Known.Zero |= RHSKnown.One & BKnown.Zero;
586 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000588 } else if (match(Arg,
589 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000590 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000591 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000592 KnownBits RHSKnown(BitWidth);
593 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
594 KnownBits BKnown(BitWidth);
595 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596
597 // For those bits in B that are known to be zero, we can propagate known
598 // bits from the RHS to V. For those bits in B that are known to be one,
599 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000600 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
601 Known.One |= RHSKnown.One & BKnown.Zero;
602 Known.Zero |= RHSKnown.One & BKnown.One;
603 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000604 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000605 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
606 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000607 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000608 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000609 KnownBits RHSKnown(BitWidth);
610 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
611 KnownBits BKnown(BitWidth);
612 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613
614 // For those bits in B that are known to be zero, we can propagate
615 // inverted known bits from the RHS to V. For those bits in B that are
616 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000617 Known.Zero |= RHSKnown.One & BKnown.Zero;
618 Known.One |= RHSKnown.Zero & BKnown.Zero;
619 Known.Zero |= RHSKnown.Zero & BKnown.One;
620 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000622 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
623 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000624 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000626 KnownBits RHSKnown(BitWidth);
627 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000628 // For those bits in RHS that are known, we can propagate them to known
629 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000630 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
631 Known.Zero |= RHSKnown.Zero;
632 RHSKnown.One.lshrInPlace(C->getZExtValue());
633 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000634 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000635 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
636 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000637 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000639 KnownBits RHSKnown(BitWidth);
640 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641 // For those bits in RHS that are known, we can propagate them inverted
642 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000643 RHSKnown.One.lshrInPlace(C->getZExtValue());
644 Known.Zero |= RHSKnown.One;
645 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
646 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000648 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000649 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000650 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000653 KnownBits RHSKnown(BitWidth);
654 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000655 // For those bits in RHS that are known, we can propagate them to known
656 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000657 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
658 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000659 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000660 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000661 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000662 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000663 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000664 KnownBits RHSKnown(BitWidth);
665 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000666 // For those bits in RHS that are known, we can propagate them inverted
667 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000668 Known.Zero |= RHSKnown.One << C->getZExtValue();
669 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000670 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000671 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000672 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000674 KnownBits RHSKnown(BitWidth);
675 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000676
Craig Topperca48af32017-04-29 16:43:11 +0000677 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000679 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 }
681 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000682 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000683 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000685 KnownBits RHSKnown(BitWidth);
686 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687
Craig Topperf0aeee02017-05-05 17:36:09 +0000688 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000689 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000690 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 }
692 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000693 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000694 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000695 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000696 KnownBits RHSKnown(BitWidth);
697 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698
Craig Topperca48af32017-04-29 16:43:11 +0000699 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000700 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000701 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000702 }
703 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000707 KnownBits RHSKnown(BitWidth);
708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709
Craig Topperf0aeee02017-05-05 17:36:09 +0000710 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000711 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000712 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 }
714 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000716 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000718 KnownBits RHSKnown(BitWidth);
719 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720
721 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000722 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
723 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000724 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000725 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000727 KnownBits RHSKnown(BitWidth);
728 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000729
730 // Whatever high bits in c are zero are known to be zero (if c is a power
731 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000732 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000733 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 else
Craig Topper8df66c62017-05-12 17:20:30 +0000735 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000736 }
737 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000738
739 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000740 // have a logical fallacy. It's possible that the assumption is not reachable,
741 // so this isn't a real bug. On the other hand, the program may have undefined
742 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
743 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000744 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000745 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000746
747 if (Q.ORE) {
748 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
749 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
750 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
751 "have undefined behavior, or compiler may have "
752 "internal error.");
753 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000754 }
Hal Finkel60db0582014-09-07 18:57:58 +0000755}
756
Hal Finkelf2199b22015-10-23 20:37:08 +0000757// Compute known bits from a shift operator, including those with a
Craig Topperb45eabc2017-04-26 16:39:58 +0000758// non-constant shift amount. Known is the outputs of this function. Known2 is a
759// pre-allocated temporary with the/ same bit width as Known. KZF and KOF are
760// operator-specific functors that, given the known-zero or known-one bits
761// respectively, and a shift amount, compute the implied known-zero or known-one
762// bits of the shift operator's result respectively for that shift amount. The
763// results from calling KZF and KOF are conservatively combined for all
764// permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000765static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000766 const Operator *I, KnownBits &Known, KnownBits &Known2,
767 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000768 function_ref<APInt(const APInt &, unsigned)> KZF,
769 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000770 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000771
772 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
773 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
774
Craig Topperb45eabc2017-04-26 16:39:58 +0000775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
776 Known.Zero = KZF(Known.Zero, ShiftAmt);
777 Known.One = KOF(Known.One, ShiftAmt);
778 // If there is conflict between Known.Zero and Known.One, this must be an
779 // overflowing left shift, so the shift result is undefined. Clear Known
780 // bits so that other code could propagate this undef.
Craig Topperf0aeee02017-05-05 17:36:09 +0000781 if ((Known.Zero & Known.One) != 0)
782 Known.resetAll();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000783
Hal Finkelf2199b22015-10-23 20:37:08 +0000784 return;
785 }
786
Craig Topperb45eabc2017-04-26 16:39:58 +0000787 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000788
Oliver Stannard06204112017-03-14 10:13:17 +0000789 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
790 // value could be undef, so we don't know anything about it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000791 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000792 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000793 return;
794 }
795
Craig Topperb45eabc2017-04-26 16:39:58 +0000796 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000797 // BitWidth > 64 and any upper bits are known, we'll end up returning the
798 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000799 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
800 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000801
802 // It would be more-clearly correct to use the two temporaries for this
803 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000804 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000805
James Molloy493e57d2015-10-26 14:10:46 +0000806 // If we know the shifter operand is nonzero, we can sometimes infer more
807 // known bits. However this is expensive to compute, so be lazy about it and
808 // only compute it when absolutely necessary.
809 Optional<bool> ShifterOperandIsNonZero;
810
Hal Finkelf2199b22015-10-23 20:37:08 +0000811 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000812 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
813 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
James Molloy493e57d2015-10-26 14:10:46 +0000814 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000815 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000816 if (!*ShifterOperandIsNonZero)
817 return;
818 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
Craig Topperb45eabc2017-04-26 16:39:58 +0000820 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000821
Craig Topperb45eabc2017-04-26 16:39:58 +0000822 Known.Zero.setAllBits();
823 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000824 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
825 // Combine the shifted known input bits only for those shift amounts
826 // compatible with its known constraints.
827 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
828 continue;
829 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
830 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000831 // If we know the shifter is nonzero, we may be able to infer more known
832 // bits. This check is sunk down as far as possible to avoid the expensive
833 // call to isKnownNonZero if the cheaper checks above fail.
834 if (ShiftAmt == 0) {
835 if (!ShifterOperandIsNonZero.hasValue())
836 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000837 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000838 if (*ShifterOperandIsNonZero)
839 continue;
840 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000841
Craig Topperb45eabc2017-04-26 16:39:58 +0000842 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
843 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000844 }
845
846 // If there are no compatible shift amounts, then we've proven that the shift
847 // amount must be >= the BitWidth, and the result is undefined. We could
848 // return anything we'd like, but we need to make sure the sets of known bits
849 // stay disjoint (it should be better for some other code to actually
850 // propagate the undef than to pick a value here using known bits).
Craig Topperf0aeee02017-05-05 17:36:09 +0000851 if (Known.Zero.intersects(Known.One))
852 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000853}
854
Craig Topperb45eabc2017-04-26 16:39:58 +0000855static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
856 unsigned Depth, const Query &Q) {
857 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000858
Craig Topperb45eabc2017-04-26 16:39:58 +0000859 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000860 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000861 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000862 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000863 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000864 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000865 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000866 case Instruction::And: {
867 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000868 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
869 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000870
Chris Lattner965c7692008-06-02 01:18:21 +0000871 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000872 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000873 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000874 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000875
876 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
877 // here we handle the more general case of adding any odd number by
878 // matching the form add(x, add(x, y)) where y is odd.
879 // TODO: This could be generalized to clearing any bit set in y where the
880 // following bit is known to be unset in y.
881 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000882 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000883 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
884 m_Value(Y))) ||
885 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
886 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000887 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000888 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000889 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000890 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000891 }
Jay Foad5a29c362014-05-15 12:12:55 +0000892 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000893 }
894 case Instruction::Or: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
896 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000897
Chris Lattner965c7692008-06-02 01:18:21 +0000898 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000899 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000900 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000901 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000902 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000903 }
904 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000905 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
906 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000907
Chris Lattner965c7692008-06-02 01:18:21 +0000908 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000909 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000910 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000911 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
912 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000913 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000914 }
915 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000916 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000917 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
918 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000919 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000920 }
921 case Instruction::UDiv: {
922 // For the purposes of computing leading zeros we can conservatively
923 // treat a udiv as a logical right shift by the power of 2 known to
924 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000925 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000926 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000927
Craig Topperf0aeee02017-05-05 17:36:09 +0000928 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000929 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000930 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
931 if (RHSMaxLeadingZeros != BitWidth)
932 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000933
Craig Topperb45eabc2017-04-26 16:39:58 +0000934 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
David Majnemera19d0f22016-08-06 08:16:00 +0000937 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000938 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000939 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
940 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000941 computeKnownBits(RHS, Known, Depth + 1, Q);
942 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000943 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000944 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
945 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000946 }
947
948 unsigned MaxHighOnes = 0;
949 unsigned MaxHighZeros = 0;
950 if (SPF == SPF_SMAX) {
951 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000952 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000953 // We can derive a lower bound on the result by taking the max of the
954 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000955 MaxHighOnes =
956 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000957 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000958 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000959 MaxHighZeros = 1;
960 } else if (SPF == SPF_SMIN) {
961 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000962 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000963 // We can derive an upper bound on the result by taking the max of the
964 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000965 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
966 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +0000967 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000968 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000969 MaxHighOnes = 1;
970 } else if (SPF == SPF_UMAX) {
971 // We can derive a lower bound on the result by taking the max of the
972 // leading one bits.
973 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +0000974 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000975 } else if (SPF == SPF_UMIN) {
976 // We can derive an upper bound on the result by taking the max of the
977 // leading zero bits.
978 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +0000979 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +0000980 }
981
Chris Lattner965c7692008-06-02 01:18:21 +0000982 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000983 Known.One &= Known2.One;
984 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +0000985 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000986 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +0000987 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000988 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +0000989 break;
David Majnemera19d0f22016-08-06 08:16:00 +0000990 }
Chris Lattner965c7692008-06-02 01:18:21 +0000991 case Instruction::FPTrunc:
992 case Instruction::FPExt:
993 case Instruction::FPToUI:
994 case Instruction::FPToSI:
995 case Instruction::SIToFP:
996 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000997 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000998 case Instruction::PtrToInt:
999 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001000 // Fall through and handle them the same as zext/trunc.
1001 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001002 case Instruction::ZExt:
1003 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001004 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001005
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001006 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001007 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1008 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001009 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001010
1011 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001012 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001013 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001014 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001015 // Any top bits are known to be zero.
1016 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001017 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001018 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001019 }
1020 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001021 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001022 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001023 // TODO: For now, not handling conversions like:
1024 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001025 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001026 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001027 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001028 }
1029 break;
1030 }
1031 case Instruction::SExt: {
1032 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001033 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001034
Craig Topperd938fd12017-05-03 22:07:25 +00001035 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001036 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001037 // If the sign bit of the input is known set or clear, then we know the
1038 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001039 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001040 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001041 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001042 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001043 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001044 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001045 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1046 APInt KZResult = KnownZero << ShiftAmt;
1047 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001048 // If this shift has "nsw" keyword, then the result is either a poison
1049 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001050 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001051 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001052 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001053 };
1054
Craig Topperd73c6b42017-03-23 07:06:39 +00001055 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001056 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001057 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001058 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001059 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001060 };
1061
Craig Topperb45eabc2017-04-26 16:39:58 +00001062 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001063 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001064 }
1065 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001066 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001067 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1068 APInt KZResult = KnownZero.lshr(ShiftAmt);
1069 // High bits known zero.
1070 KZResult.setHighBits(ShiftAmt);
1071 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001072 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001073
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001074 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001075 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001076 };
1077
Craig Topperb45eabc2017-04-26 16:39:58 +00001078 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001079 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001080 }
1081 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001082 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001083 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001084 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001085 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001086
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001087 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001088 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001089 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001090
Craig Topperb45eabc2017-04-26 16:39:58 +00001091 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001092 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001093 }
Chris Lattner965c7692008-06-02 01:18:21 +00001094 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001095 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001096 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001097 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001098 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001099 }
Chris Lattner965c7692008-06-02 01:18:21 +00001100 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001101 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001102 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001103 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001104 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001105 }
1106 case Instruction::SRem:
1107 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001108 APInt RA = Rem->getValue().abs();
1109 if (RA.isPowerOf2()) {
1110 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001111 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001112
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001113 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001114 Known.Zero = Known2.Zero & LowBits;
1115 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001116
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001117 // If the first operand is non-negative or has all low bits zero, then
1118 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001119 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001120 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001121
1122 // If the first operand is negative and not all low bits are zero, then
1123 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001124 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001125 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001126
Craig Topperb45eabc2017-04-26 16:39:58 +00001127 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001128 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001129 }
1130 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001131
1132 // The sign bit is the LHS's sign bit, except when the result of the
1133 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001134 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001135 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001136 if (Known2.isNonNegative())
1137 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001138
Chris Lattner965c7692008-06-02 01:18:21 +00001139 break;
1140 case Instruction::URem: {
1141 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001142 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001143 if (RA.isPowerOf2()) {
1144 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1146 Known.Zero |= ~LowBits;
1147 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001148 break;
1149 }
1150 }
1151
1152 // Since the result is less than or equal to either operand, any leading
1153 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001154 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1155 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001156
Craig Topper8df66c62017-05-12 17:20:30 +00001157 unsigned Leaders =
1158 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001159 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001160 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001161 break;
1162 }
1163
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001164 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001165 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001166 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001167 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001168 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001169
Chris Lattner965c7692008-06-02 01:18:21 +00001170 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001171 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001172 break;
1173 }
1174 case Instruction::GetElementPtr: {
1175 // Analyze all of the subscripts of this getelementptr instruction
1176 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001177 KnownBits LocalKnown(BitWidth);
1178 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001179 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001180
1181 gep_type_iterator GTI = gep_type_begin(I);
1182 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1183 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001184 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001185 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001186
1187 // Handle case when index is vector zeroinitializer
1188 Constant *CIndex = cast<Constant>(Index);
1189 if (CIndex->isZeroValue())
1190 continue;
1191
1192 if (CIndex->getType()->isVectorTy())
1193 Index = CIndex->getSplatValue();
1194
Chris Lattner965c7692008-06-02 01:18:21 +00001195 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001196 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001197 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001198 TrailZ = std::min<unsigned>(TrailZ,
1199 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001200 } else {
1201 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001202 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001203 if (!IndexedTy->isSized()) {
1204 TrailZ = 0;
1205 break;
1206 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001207 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001208 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001209 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1210 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001211 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001212 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001213 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001214 }
1215 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001216
Craig Topperb45eabc2017-04-26 16:39:58 +00001217 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001218 break;
1219 }
1220 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001221 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001222 // Handle the case of a simple two-predecessor recurrence PHI.
1223 // There's a lot more that could theoretically be done here, but
1224 // this is sufficient to catch some interesting cases.
1225 if (P->getNumIncomingValues() == 2) {
1226 for (unsigned i = 0; i != 2; ++i) {
1227 Value *L = P->getIncomingValue(i);
1228 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001229 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001230 if (!LU)
1231 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001232 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001233 // Check for operations that have the property that if
1234 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001235 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001236 if (Opcode == Instruction::Add ||
1237 Opcode == Instruction::Sub ||
1238 Opcode == Instruction::And ||
1239 Opcode == Instruction::Or ||
1240 Opcode == Instruction::Mul) {
1241 Value *LL = LU->getOperand(0);
1242 Value *LR = LU->getOperand(1);
1243 // Find a recurrence.
1244 if (LL == I)
1245 L = LR;
1246 else if (LR == I)
1247 L = LL;
1248 else
1249 break;
1250 // Ok, we have a PHI of the form L op= R. Check for low
1251 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001252 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001253
1254 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001255 KnownBits Known3(Known);
1256 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001257
Craig Topper8df66c62017-05-12 17:20:30 +00001258 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1259 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001260
Nikolai Bozhenov6710ba02017-06-28 12:15:13 +00001261 if (DontImproveNonNegativePhiBits)
1262 break;
1263
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001264 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1265 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1266 // If initial value of recurrence is nonnegative, and we are adding
1267 // a nonnegative number with nsw, the result can only be nonnegative
1268 // or poison value regardless of the number of times we execute the
1269 // add in phi recurrence. If initial value is negative and we are
1270 // adding a negative number with nsw, the result can only be
1271 // negative or poison value. Similar arguments apply to sub and mul.
1272 //
1273 // (add non-negative, non-negative) --> non-negative
1274 // (add negative, negative) --> negative
1275 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001276 if (Known2.isNonNegative() && Known3.isNonNegative())
1277 Known.makeNonNegative();
1278 else if (Known2.isNegative() && Known3.isNegative())
1279 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001280 }
1281
1282 // (sub nsw non-negative, negative) --> non-negative
1283 // (sub nsw negative, non-negative) --> negative
1284 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001285 if (Known2.isNonNegative() && Known3.isNegative())
1286 Known.makeNonNegative();
1287 else if (Known2.isNegative() && Known3.isNonNegative())
1288 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001289 }
1290
1291 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001292 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1293 Known3.isNonNegative())
1294 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001295 }
1296
Chris Lattner965c7692008-06-02 01:18:21 +00001297 break;
1298 }
1299 }
1300 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001301
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001302 // Unreachable blocks may have zero-operand PHI nodes.
1303 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001304 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001305
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001306 // Otherwise take the unions of the known bit sets of the operands,
1307 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001308 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001309 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001310 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001311 break;
1312
Craig Topperb45eabc2017-04-26 16:39:58 +00001313 Known.Zero.setAllBits();
1314 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001315 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001316 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001317 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001318
Craig Topperb45eabc2017-04-26 16:39:58 +00001319 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001320 // Recurse, but cap the recursion to one level, because we don't
1321 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001322 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1323 Known.Zero &= Known2.Zero;
1324 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001325 // If all bits have been ruled out, there's no need to check
1326 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001327 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001328 break;
1329 }
1330 }
Chris Lattner965c7692008-06-02 01:18:21 +00001331 break;
1332 }
1333 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001334 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001335 // If range metadata is attached to this call, set known bits from that,
1336 // and then intersect with known bits based on other properties of the
1337 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001338 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001339 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001340 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001341 computeKnownBits(RV, Known2, Depth + 1, Q);
1342 Known.Zero |= Known2.Zero;
1343 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001344 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001345 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001346 switch (II->getIntrinsicID()) {
1347 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001348 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001349 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1350 Known.Zero |= Known2.Zero.reverseBits();
1351 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001352 break;
Philip Reames675418e2015-10-06 20:20:45 +00001353 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001354 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1355 Known.Zero |= Known2.Zero.byteSwap();
1356 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001357 break;
Craig Topper868813f2017-05-08 17:22:34 +00001358 case Intrinsic::ctlz: {
1359 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1360 // If we have a known 1, its position is our upper bound.
1361 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001362 // If this call is undefined for 0, the result will be less than 2^n.
1363 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001364 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1365 unsigned LowBits = Log2_32(PossibleLZ)+1;
1366 Known.Zero.setBitsFrom(LowBits);
1367 break;
1368 }
1369 case Intrinsic::cttz: {
1370 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1371 // If we have a known 1, its position is our upper bound.
1372 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1373 // If this call is undefined for 0, the result will be less than 2^n.
1374 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1375 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1376 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001377 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001378 break;
1379 }
1380 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001381 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001382 // We can bound the space the count needs. Also, bits known to be zero
1383 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001384 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001385 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001386 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001387 // TODO: we could bound KnownOne using the lower bound on the number
1388 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001389 break;
1390 }
Chad Rosierb3628842011-05-26 23:13:19 +00001391 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001392 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001393 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001394 }
1395 }
1396 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001397 case Instruction::ExtractElement:
1398 // Look through extract element. At the moment we keep this simple and skip
1399 // tracking the specific element. But at least we might find information
1400 // valid for all elements of the vector (for example if vector is sign
1401 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001402 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001403 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001404 case Instruction::ExtractValue:
1405 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001406 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001407 if (EVI->getNumIndices() != 1) break;
1408 if (EVI->getIndices()[0] == 0) {
1409 switch (II->getIntrinsicID()) {
1410 default: break;
1411 case Intrinsic::uadd_with_overflow:
1412 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001413 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001414 II->getArgOperand(1), false, Known, Known2,
1415 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001416 break;
1417 case Intrinsic::usub_with_overflow:
1418 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001419 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001420 II->getArgOperand(1), false, Known, Known2,
1421 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001422 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001423 case Intrinsic::umul_with_overflow:
1424 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001425 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001426 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001427 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001428 }
1429 }
1430 }
Chris Lattner965c7692008-06-02 01:18:21 +00001431 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001432}
1433
1434/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001435/// them.
1436KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1437 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1438 computeKnownBits(V, Known, Depth, Q);
1439 return Known;
1440}
1441
1442/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001443/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001444///
1445/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1446/// we cannot optimize based on the assumption that it is zero without changing
1447/// it to be an explicit zero. If we don't change it to zero, other code could
1448/// optimized based on the contradictory assumption that it is non-zero.
1449/// Because instcombine aggressively folds operations with undef args anyway,
1450/// this won't lose us code quality.
1451///
1452/// This function is defined on values with integer type, values with pointer
1453/// type, and vectors of integers. In the case
1454/// where V is a vector, known zero, and known one values are the
1455/// same width as the vector element, and the bit is set only if it is true
1456/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001457void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1458 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001459 assert(V && "No Value?");
1460 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001461 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001462
Craig Topperfde47232017-07-09 07:04:03 +00001463 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001464 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001465 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001466 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001467 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001468 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001469
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001470 const APInt *C;
1471 if (match(V, m_APInt(C))) {
1472 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001473 Known.One = *C;
1474 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001475 return;
1476 }
1477 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001478 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001479 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001480 return;
1481 }
1482 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001483 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001484 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001485 // We know that CDS must be a vector of integers. Take the intersection of
1486 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001487 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001488 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001489 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1490 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001491 Known.Zero &= ~Elt;
1492 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001493 }
1494 return;
1495 }
1496
Pete Cooper35b00d52016-08-13 01:05:32 +00001497 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001498 // We know that CV must be a vector of integers. Take the intersection of
1499 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001500 Known.Zero.setAllBits(); Known.One.setAllBits();
1501 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001502 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1503 Constant *Element = CV->getAggregateElement(i);
1504 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1505 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001506 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001507 return;
1508 }
1509 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001510 Known.Zero &= ~Elt;
1511 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001512 }
1513 return;
1514 }
1515
Jingyue Wu12b0c282015-06-15 05:46:29 +00001516 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001517 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001518
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001519 // We can't imply anything about undefs.
1520 if (isa<UndefValue>(V))
1521 return;
1522
1523 // There's no point in looking through other users of ConstantData for
1524 // assumptions. Confirm that we've handled them all.
1525 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1526
Jingyue Wu12b0c282015-06-15 05:46:29 +00001527 // Limit search depth.
1528 // All recursive calls that increase depth must come after this.
1529 if (Depth == MaxDepth)
1530 return;
1531
1532 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1533 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001534 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001535 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001536 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001537 return;
1538 }
1539
Pete Cooper35b00d52016-08-13 01:05:32 +00001540 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001541 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001542
Craig Topperb45eabc2017-04-26 16:39:58 +00001543 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001544 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001545 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001546 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001547 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001548 }
1549
Craig Topperb45eabc2017-04-26 16:39:58 +00001550 // computeKnownBitsFromAssume strictly refines Known.
1551 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001552
1553 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001554 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001555
Craig Topperb45eabc2017-04-26 16:39:58 +00001556 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001557}
1558
Sanjay Patelaee84212014-11-04 16:27:42 +00001559/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001560/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001561/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001562/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001563bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001564 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001565 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001566 if (C->isNullValue())
1567 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001568
1569 const APInt *ConstIntOrConstSplatInt;
1570 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1571 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001572 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001573
1574 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1575 // it is shifted off the end then the result is undefined.
1576 if (match(V, m_Shl(m_One(), m_Value())))
1577 return true;
1578
Craig Topperbcfd2d12017-04-20 16:56:25 +00001579 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1580 // the bottom. If it is shifted off the bottom then the result is undefined.
1581 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001582 return true;
1583
1584 // The remaining tests are all recursive, so bail out if we hit the limit.
1585 if (Depth++ == MaxDepth)
1586 return false;
1587
Craig Topper9f008862014-04-15 04:59:12 +00001588 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001589 // A shift left or a logical shift right of a power of two is a power of two
1590 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001591 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001592 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001593 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001594
Pete Cooper35b00d52016-08-13 01:05:32 +00001595 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001596 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001597
Pete Cooper35b00d52016-08-13 01:05:32 +00001598 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001599 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1600 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001601
Duncan Sandsba286d72011-10-26 20:55:21 +00001602 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1603 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001604 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1605 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001606 return true;
1607 // X & (-X) is always a power of two or zero.
1608 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1609 return true;
1610 return false;
1611 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001612
David Majnemerb7d54092013-07-30 21:01:36 +00001613 // Adding a power-of-two or zero to the same power-of-two or zero yields
1614 // either the original power-of-two, a larger power-of-two or zero.
1615 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001616 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001617 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1618 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1619 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001620 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001621 return true;
1622 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1623 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001624 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001625 return true;
1626
1627 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001628 KnownBits LHSBits(BitWidth);
1629 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001630
Craig Topperb45eabc2017-04-26 16:39:58 +00001631 KnownBits RHSBits(BitWidth);
1632 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001633 // If i8 V is a power of two or zero:
1634 // ZeroBits: 1 1 1 0 1 1 1 1
1635 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001636 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001637 // If OrZero isn't set, we cannot give back a zero result.
1638 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001639 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001640 return true;
1641 }
1642 }
David Majnemerbeab5672013-05-18 19:30:37 +00001643
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001644 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001645 // is a power of two only if the first operand is a power of two and not
1646 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001647 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1648 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001649 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001650 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001651 }
1652
Duncan Sandsd3951082011-01-25 09:38:29 +00001653 return false;
1654}
1655
Chandler Carruth80d3e562012-12-07 02:08:58 +00001656/// \brief Test whether a GEP's result is known to be non-null.
1657///
1658/// Uses properties inherent in a GEP to try to determine whether it is known
1659/// to be non-null.
1660///
1661/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001662static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001663 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001664 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1665 return false;
1666
1667 // FIXME: Support vector-GEPs.
1668 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1669
1670 // If the base pointer is non-null, we cannot walk to a null address with an
1671 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001672 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001673 return true;
1674
Chandler Carruth80d3e562012-12-07 02:08:58 +00001675 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1676 // If so, then the GEP cannot produce a null pointer, as doing so would
1677 // inherently violate the inbounds contract within address space zero.
1678 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1679 GTI != GTE; ++GTI) {
1680 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001681 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001682 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1683 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001684 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001685 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1686 if (ElementOffset > 0)
1687 return true;
1688 continue;
1689 }
1690
1691 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001692 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001693 continue;
1694
1695 // Fast path the constant operand case both for efficiency and so we don't
1696 // increment Depth when just zipping down an all-constant GEP.
1697 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1698 if (!OpC->isZero())
1699 return true;
1700 continue;
1701 }
1702
1703 // We post-increment Depth here because while isKnownNonZero increments it
1704 // as well, when we pop back up that increment won't persist. We don't want
1705 // to recurse 10k times just because we have 10k GEP operands. We don't
1706 // bail completely out because we want to handle constant GEPs regardless
1707 // of depth.
1708 if (Depth++ >= MaxDepth)
1709 continue;
1710
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001712 return true;
1713 }
1714
1715 return false;
1716}
1717
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001718/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1719/// ensure that the value it's attached to is never Value? 'RangeType' is
1720/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001721static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001722 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1723 assert(NumRanges >= 1);
1724 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001725 ConstantInt *Lower =
1726 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1727 ConstantInt *Upper =
1728 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001729 ConstantRange Range(Lower->getValue(), Upper->getValue());
1730 if (Range.contains(Value))
1731 return false;
1732 }
1733 return true;
1734}
1735
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001736/// Return true if the given value is known to be non-zero when defined. For
1737/// vectors, return true if every element is known to be non-zero when
1738/// defined. For pointers, if the context instruction and dominator tree are
1739/// specified, perform context-sensitive analysis and return true if the
1740/// pointer couldn't possibly be null at the specified instruction.
1741/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001742bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001743 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001744 if (C->isNullValue())
1745 return false;
1746 if (isa<ConstantInt>(C))
1747 // Must be non-zero due to null test above.
1748 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001749
1750 // For constant vectors, check that all elements are undefined or known
1751 // non-zero to determine that the whole vector is known non-zero.
1752 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1753 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1754 Constant *Elt = C->getAggregateElement(i);
1755 if (!Elt || Elt->isNullValue())
1756 return false;
1757 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1758 return false;
1759 }
1760 return true;
1761 }
1762
Duncan Sandsd3951082011-01-25 09:38:29 +00001763 return false;
1764 }
1765
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001766 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001767 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001768 // If the possible ranges don't contain zero, then the value is
1769 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001770 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001771 const APInt ZeroValue(Ty->getBitWidth(), 0);
1772 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1773 return true;
1774 }
1775 }
1776 }
1777
Duncan Sandsd3951082011-01-25 09:38:29 +00001778 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001779 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001780 return false;
1781
Chandler Carruth80d3e562012-12-07 02:08:58 +00001782 // Check for pointer simplifications.
1783 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001784 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001785 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001786 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001787 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001788 return true;
1789 }
1790
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001791 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001792
1793 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001794 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001795 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001796 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001797
1798 // ext X != 0 if X != 0.
1799 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001800 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001801
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001802 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001803 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001804 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001805 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001806 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001807 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001808 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001809
Craig Topperb45eabc2017-04-26 16:39:58 +00001810 KnownBits Known(BitWidth);
1811 computeKnownBits(X, Known, Depth, Q);
1812 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001813 return true;
1814 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001815 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001816 // defined if the sign bit is shifted off the end.
1817 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001818 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001819 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001820 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001821 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001822
Craig Topper6e11a052017-05-08 16:22:48 +00001823 KnownBits Known = computeKnownBits(X, Depth, Q);
1824 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001825 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001826
1827 // If the shifter operand is a constant, and all of the bits shifted
1828 // out are known to be zero, and X is known non-zero then at least one
1829 // non-zero bit must remain.
1830 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001831 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1832 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001833 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001834 return true;
1835 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001836 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001837 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001838 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001839 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001840 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001841 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001842 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001843 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001844 // X + Y.
1845 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001846 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1847 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001848
1849 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001850 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001851 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001852 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001853 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001854
1855 // If X and Y are both negative (as signed values) then their sum is not
1856 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001857 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001858 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1859 // The sign bit of X is set. If some other bit is set then X is not equal
1860 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001861 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001862 return true;
1863 // The sign bit of Y is set. If some other bit is set then Y is not equal
1864 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001865 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001866 return true;
1867 }
1868
1869 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001870 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001871 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001872 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001873 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001874 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001875 return true;
1876 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001877 // X * Y.
1878 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001879 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001880 // If X and Y are non-zero then so is X * Y as long as the multiplication
1881 // does not overflow.
1882 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001883 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001884 return true;
1885 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001886 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001887 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001888 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1889 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001890 return true;
1891 }
James Molloy897048b2015-09-29 14:08:45 +00001892 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001893 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001894 // Try and detect a recurrence that monotonically increases from a
1895 // starting value, as these are common as induction variables.
1896 if (PN->getNumIncomingValues() == 2) {
1897 Value *Start = PN->getIncomingValue(0);
1898 Value *Induction = PN->getIncomingValue(1);
1899 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1900 std::swap(Start, Induction);
1901 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1902 if (!C->isZero() && !C->isNegative()) {
1903 ConstantInt *X;
1904 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1905 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1906 !X->isNegative())
1907 return true;
1908 }
1909 }
1910 }
Jun Bum Limca832662016-02-01 17:03:07 +00001911 // Check if all incoming values are non-zero constant.
1912 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00001913 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00001914 });
1915 if (AllNonZeroConstants)
1916 return true;
James Molloy897048b2015-09-29 14:08:45 +00001917 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001918
Craig Topperb45eabc2017-04-26 16:39:58 +00001919 KnownBits Known(BitWidth);
1920 computeKnownBits(V, Known, Depth, Q);
1921 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00001922}
1923
James Molloy1d88d6f2015-10-22 13:18:42 +00001924/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001925static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1926 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001927 if (!BO || BO->getOpcode() != Instruction::Add)
1928 return false;
1929 Value *Op = nullptr;
1930 if (V2 == BO->getOperand(0))
1931 Op = BO->getOperand(1);
1932 else if (V2 == BO->getOperand(1))
1933 Op = BO->getOperand(0);
1934 else
1935 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001937}
1938
1939/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001940static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00001941 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00001942 return false;
1943 if (V1->getType() != V2->getType())
1944 // We can't look through casts yet.
1945 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001946 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001947 return true;
1948
Craig Topper3002d5b2017-06-06 07:13:15 +00001949 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001950 // Are any known bits in V1 contradictory to known bits in V2? If V1
1951 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00001952 KnownBits Known1 = computeKnownBits(V1, 0, Q);
1953 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001954
Craig Topper8365df82017-06-06 07:13:09 +00001955 if (Known1.Zero.intersects(Known2.One) ||
1956 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00001957 return true;
1958 }
1959 return false;
1960}
1961
Sanjay Patelaee84212014-11-04 16:27:42 +00001962/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1963/// simplify operations downstream. Mask is known to be zero for bits that V
1964/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001965///
1966/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001967/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001968/// where V is a vector, the mask, known zero, and known one values are the
1969/// same width as the vector element, and the bit is set only if it is true
1970/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001971bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001972 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001973 KnownBits Known(Mask.getBitWidth());
1974 computeKnownBits(V, Known, Depth, Q);
1975 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00001976}
1977
Sanjay Patela06d9892016-06-22 19:20:59 +00001978/// For vector constants, loop over the elements and find the constant with the
1979/// minimum number of sign bits. Return 0 if the value is not a vector constant
1980/// or if any element was not analyzed; otherwise, return the count for the
1981/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001982static unsigned computeNumSignBitsVectorConstant(const Value *V,
1983 unsigned TyBits) {
1984 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00001985 if (!CV || !CV->getType()->isVectorTy())
1986 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00001987
Sanjay Patela06d9892016-06-22 19:20:59 +00001988 unsigned MinSignBits = TyBits;
1989 unsigned NumElts = CV->getType()->getVectorNumElements();
1990 for (unsigned i = 0; i != NumElts; ++i) {
1991 // If we find a non-ConstantInt, bail out.
1992 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
1993 if (!Elt)
1994 return 0;
1995
1996 // If the sign bit is 1, flip the bits, so we always count leading zeros.
1997 APInt EltVal = Elt->getValue();
1998 if (EltVal.isNegative())
1999 EltVal = ~EltVal;
2000 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2001 }
2002
2003 return MinSignBits;
2004}
Chris Lattner965c7692008-06-02 01:18:21 +00002005
Sanjoy Das39a684d2017-02-25 20:30:45 +00002006static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2007 const Query &Q);
2008
2009static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2010 const Query &Q) {
2011 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2012 assert(Result > 0 && "At least one sign bit needs to be present!");
2013 return Result;
2014}
2015
Sanjay Patelaee84212014-11-04 16:27:42 +00002016/// Return the number of times the sign bit of the register is replicated into
2017/// the other bits. We know that at least 1 bit is always equal to the sign bit
2018/// (itself), but other cases can give us information. For example, immediately
2019/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002020/// other, so we return 3. For vectors, return the number of sign bits for the
2021/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002022static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2023 const Query &Q) {
2024
2025 // We return the minimum number of sign bits that are guaranteed to be present
2026 // in V, so for undef we have to conservatively return 1. We don't have the
2027 // same behavior for poison though -- that's a FIXME today.
2028
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002029 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002030 unsigned Tmp, Tmp2;
2031 unsigned FirstAnswer = 1;
2032
Jay Foada0653a32014-05-14 21:14:37 +00002033 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002034 // below.
2035
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002036 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002037 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002038
Pete Cooper35b00d52016-08-13 01:05:32 +00002039 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002040 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002041 default: break;
2042 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002043 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002044 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002045
Nadav Rotemc99a3872015-03-06 00:23:58 +00002046 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002047 const APInt *Denominator;
2048 // sdiv X, C -> adds log(C) sign bits.
2049 if (match(U->getOperand(1), m_APInt(Denominator))) {
2050
2051 // Ignore non-positive denominator.
2052 if (!Denominator->isStrictlyPositive())
2053 break;
2054
2055 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002056 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002057
2058 // Add floor(log(C)) bits to the numerator bits.
2059 return std::min(TyBits, NumBits + Denominator->logBase2());
2060 }
2061 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002062 }
2063
2064 case Instruction::SRem: {
2065 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002066 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2067 // positive constant. This let us put a lower bound on the number of sign
2068 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002069 if (match(U->getOperand(1), m_APInt(Denominator))) {
2070
2071 // Ignore non-positive denominator.
2072 if (!Denominator->isStrictlyPositive())
2073 break;
2074
2075 // Calculate the incoming numerator bits. SRem by a positive constant
2076 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002077 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002078 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002079
2080 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002081 // denominator. Given that the denominator is positive, there are two
2082 // cases:
2083 //
2084 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2085 // (1 << ceilLogBase2(C)).
2086 //
2087 // 2. the numerator is negative. Then the result range is (-C,0] and
2088 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2089 //
2090 // Thus a lower bound on the number of sign bits is `TyBits -
2091 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002092
Sanjoy Dase561fee2015-03-25 22:33:53 +00002093 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002094 return std::max(NumrBits, ResBits);
2095 }
2096 break;
2097 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002098
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002099 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002100 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002101 // ashr X, C -> adds C sign bits. Vectors too.
2102 const APInt *ShAmt;
2103 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002104 unsigned ShAmtLimited = ShAmt->getZExtValue();
2105 if (ShAmtLimited >= TyBits)
2106 break; // Bad shift.
2107 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002108 if (Tmp > TyBits) Tmp = TyBits;
2109 }
2110 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002111 }
2112 case Instruction::Shl: {
2113 const APInt *ShAmt;
2114 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002115 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002116 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002117 Tmp2 = ShAmt->getZExtValue();
2118 if (Tmp2 >= TyBits || // Bad shift.
2119 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2120 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002121 }
2122 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002123 }
Chris Lattner965c7692008-06-02 01:18:21 +00002124 case Instruction::And:
2125 case Instruction::Or:
2126 case Instruction::Xor: // NOT is handled here.
2127 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002128 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002129 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002130 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002131 FirstAnswer = std::min(Tmp, Tmp2);
2132 // We computed what we know about the sign bits as our first
2133 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002134 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002135 }
2136 break;
2137
2138 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002139 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002140 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002141 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002142 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002143
Chris Lattner965c7692008-06-02 01:18:21 +00002144 case Instruction::Add:
2145 // Add can have at most one carry bit. Thus we know that the output
2146 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002147 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002148 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002149
Chris Lattner965c7692008-06-02 01:18:21 +00002150 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002151 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002152 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002153 KnownBits Known(TyBits);
2154 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002155
Chris Lattner965c7692008-06-02 01:18:21 +00002156 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2157 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002158 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002159 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002160
Chris Lattner965c7692008-06-02 01:18:21 +00002161 // If we are subtracting one from a positive number, there is no carry
2162 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002163 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002164 return Tmp;
2165 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002166
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002167 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002168 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002169 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002170
Chris Lattner965c7692008-06-02 01:18:21 +00002171 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002172 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002173 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002174
Chris Lattner965c7692008-06-02 01:18:21 +00002175 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002176 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002177 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002178 KnownBits Known(TyBits);
2179 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002180 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2181 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002182 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002183 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002184
Chris Lattner965c7692008-06-02 01:18:21 +00002185 // If the input is known to be positive (the sign bit is known clear),
2186 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002187 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002188 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002189
Chris Lattner965c7692008-06-02 01:18:21 +00002190 // Otherwise, we treat this like a SUB.
2191 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002192
Chris Lattner965c7692008-06-02 01:18:21 +00002193 // Sub can have at most one carry bit. Thus we know that the output
2194 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002195 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002196 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002197 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002198
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002199 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002200 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002201 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002202 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002203 if (NumIncomingValues > 4) break;
2204 // Unreachable blocks may have zero-operand PHI nodes.
2205 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002206
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002207 // Take the minimum of all incoming values. This can't infinitely loop
2208 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002209 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002210 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002211 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002212 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002213 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002214 }
2215 return Tmp;
2216 }
2217
Chris Lattner965c7692008-06-02 01:18:21 +00002218 case Instruction::Trunc:
2219 // FIXME: it's tricky to do anything useful for this, but it is an important
2220 // case for targets like X86.
2221 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002222
2223 case Instruction::ExtractElement:
2224 // Look through extract element. At the moment we keep this simple and skip
2225 // tracking the specific element. But at least we might find information
2226 // valid for all elements of the vector (for example if vector is sign
2227 // extended, shifted, etc).
2228 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002229 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002230
Chris Lattner965c7692008-06-02 01:18:21 +00002231 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2232 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002233
2234 // If we can examine all elements of a vector constant successfully, we're
2235 // done (we can't do any better than that). If not, keep trying.
2236 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2237 return VecSignBits;
2238
Craig Topperb45eabc2017-04-26 16:39:58 +00002239 KnownBits Known(TyBits);
2240 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002241
Sanjay Patele0536212016-06-23 17:41:59 +00002242 // If we know that the sign bit is either zero or one, determine the number of
2243 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002244 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002245}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002246
Sanjay Patelaee84212014-11-04 16:27:42 +00002247/// This function computes the integer multiple of Base that equals V.
2248/// If successful, it returns true and returns the multiple in
2249/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002250/// through SExt instructions only if LookThroughSExt is true.
2251bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002252 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002253 const unsigned MaxDepth = 6;
2254
Dan Gohman6a976bb2009-11-18 00:58:27 +00002255 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002256 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002257 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002258
Chris Lattner229907c2011-07-18 04:54:35 +00002259 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002260
Dan Gohman6a976bb2009-11-18 00:58:27 +00002261 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002262
2263 if (Base == 0)
2264 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Victor Hernandez47444882009-11-10 08:28:35 +00002266 if (Base == 1) {
2267 Multiple = V;
2268 return true;
2269 }
2270
2271 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2272 Constant *BaseVal = ConstantInt::get(T, Base);
2273 if (CO && CO == BaseVal) {
2274 // Multiple is 1.
2275 Multiple = ConstantInt::get(T, 1);
2276 return true;
2277 }
2278
2279 if (CI && CI->getZExtValue() % Base == 0) {
2280 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002281 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002282 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002283
Victor Hernandez47444882009-11-10 08:28:35 +00002284 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Victor Hernandez47444882009-11-10 08:28:35 +00002286 Operator *I = dyn_cast<Operator>(V);
2287 if (!I) return false;
2288
2289 switch (I->getOpcode()) {
2290 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002291 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002292 if (!LookThroughSExt) return false;
2293 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002294 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002295 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002296 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2297 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002298 case Instruction::Shl:
2299 case Instruction::Mul: {
2300 Value *Op0 = I->getOperand(0);
2301 Value *Op1 = I->getOperand(1);
2302
2303 if (I->getOpcode() == Instruction::Shl) {
2304 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2305 if (!Op1CI) return false;
2306 // Turn Op0 << Op1 into Op0 * 2^Op1
2307 APInt Op1Int = Op1CI->getValue();
2308 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002309 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002310 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002311 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002312 }
2313
Craig Topper9f008862014-04-15 04:59:12 +00002314 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002315 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2316 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2317 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002318 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002319 MulC->getType()->getPrimitiveSizeInBits())
2320 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002321 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002322 MulC->getType()->getPrimitiveSizeInBits())
2323 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002324
Chris Lattner72d283c2010-09-05 17:20:46 +00002325 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2326 Multiple = ConstantExpr::getMul(MulC, Op1C);
2327 return true;
2328 }
Victor Hernandez47444882009-11-10 08:28:35 +00002329
2330 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2331 if (Mul0CI->getValue() == 1) {
2332 // V == Base * Op1, so return Op1
2333 Multiple = Op1;
2334 return true;
2335 }
2336 }
2337
Craig Topper9f008862014-04-15 04:59:12 +00002338 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002339 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2340 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2341 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002342 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002343 MulC->getType()->getPrimitiveSizeInBits())
2344 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002345 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002346 MulC->getType()->getPrimitiveSizeInBits())
2347 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002348
Chris Lattner72d283c2010-09-05 17:20:46 +00002349 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2350 Multiple = ConstantExpr::getMul(MulC, Op0C);
2351 return true;
2352 }
Victor Hernandez47444882009-11-10 08:28:35 +00002353
2354 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2355 if (Mul1CI->getValue() == 1) {
2356 // V == Base * Op0, so return Op0
2357 Multiple = Op0;
2358 return true;
2359 }
2360 }
Victor Hernandez47444882009-11-10 08:28:35 +00002361 }
2362 }
2363
2364 // We could not determine if V is a multiple of Base.
2365 return false;
2366}
2367
David Majnemerb4b27232016-04-19 19:10:21 +00002368Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2369 const TargetLibraryInfo *TLI) {
2370 const Function *F = ICS.getCalledFunction();
2371 if (!F)
2372 return Intrinsic::not_intrinsic;
2373
2374 if (F->isIntrinsic())
2375 return F->getIntrinsicID();
2376
2377 if (!TLI)
2378 return Intrinsic::not_intrinsic;
2379
David L. Jonesd21529f2017-01-23 23:16:46 +00002380 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002381 // We're going to make assumptions on the semantics of the functions, check
2382 // that the target knows that it's available in this environment and it does
2383 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002384 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2385 return Intrinsic::not_intrinsic;
2386
2387 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002388 return Intrinsic::not_intrinsic;
2389
2390 // Otherwise check if we have a call to a function that can be turned into a
2391 // vector intrinsic.
2392 switch (Func) {
2393 default:
2394 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002395 case LibFunc_sin:
2396 case LibFunc_sinf:
2397 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002398 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002399 case LibFunc_cos:
2400 case LibFunc_cosf:
2401 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002402 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002403 case LibFunc_exp:
2404 case LibFunc_expf:
2405 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002406 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002407 case LibFunc_exp2:
2408 case LibFunc_exp2f:
2409 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002410 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002411 case LibFunc_log:
2412 case LibFunc_logf:
2413 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002414 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002415 case LibFunc_log10:
2416 case LibFunc_log10f:
2417 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002418 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002419 case LibFunc_log2:
2420 case LibFunc_log2f:
2421 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002422 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002423 case LibFunc_fabs:
2424 case LibFunc_fabsf:
2425 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002426 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002427 case LibFunc_fmin:
2428 case LibFunc_fminf:
2429 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002430 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002431 case LibFunc_fmax:
2432 case LibFunc_fmaxf:
2433 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002434 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002435 case LibFunc_copysign:
2436 case LibFunc_copysignf:
2437 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002438 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002439 case LibFunc_floor:
2440 case LibFunc_floorf:
2441 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002442 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002443 case LibFunc_ceil:
2444 case LibFunc_ceilf:
2445 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002446 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002447 case LibFunc_trunc:
2448 case LibFunc_truncf:
2449 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002450 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002451 case LibFunc_rint:
2452 case LibFunc_rintf:
2453 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002454 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002455 case LibFunc_nearbyint:
2456 case LibFunc_nearbyintf:
2457 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002458 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002459 case LibFunc_round:
2460 case LibFunc_roundf:
2461 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002463 case LibFunc_pow:
2464 case LibFunc_powf:
2465 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002467 case LibFunc_sqrt:
2468 case LibFunc_sqrtf:
2469 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002470 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002471 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002472 return Intrinsic::not_intrinsic;
2473 }
2474
2475 return Intrinsic::not_intrinsic;
2476}
2477
Sanjay Patelaee84212014-11-04 16:27:42 +00002478/// Return true if we can prove that the specified FP value is never equal to
2479/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002480///
2481/// NOTE: this function will need to be revisited when we support non-default
2482/// rounding modes!
2483///
David Majnemer3ee5f342016-04-13 06:55:52 +00002484bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2485 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002486 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2487 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002488
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002489 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002490 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002491
Dan Gohman80ca01c2009-07-17 20:47:02 +00002492 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002493 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002494
2495 // Check if the nsz fast-math flag is set
2496 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2497 if (FPO->hasNoSignedZeros())
2498 return true;
2499
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002501 if (I->getOpcode() == Instruction::FAdd)
2502 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2503 if (CFP->isNullValue())
2504 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002505
Chris Lattnera12a6de2008-06-02 01:29:46 +00002506 // sitofp and uitofp turn into +0.0 for zero.
2507 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2508 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002509
David Majnemer3ee5f342016-04-13 06:55:52 +00002510 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002511 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002512 switch (IID) {
2513 default:
2514 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002515 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002516 case Intrinsic::sqrt:
2517 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2518 // fabs(x) != -0.0
2519 case Intrinsic::fabs:
2520 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002521 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002522 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002523
Chris Lattnera12a6de2008-06-02 01:29:46 +00002524 return false;
2525}
2526
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002527/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2528/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2529/// bit despite comparing equal.
2530static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2531 const TargetLibraryInfo *TLI,
2532 bool SignBitOnly,
2533 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002534 // TODO: This function does not do the right thing when SignBitOnly is true
2535 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2536 // which flips the sign bits of NaNs. See
2537 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2538
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002539 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2540 return !CFP->getValueAPF().isNegative() ||
2541 (!SignBitOnly && CFP->getValueAPF().isZero());
2542 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002543
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002544 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002545 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002546
2547 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002548 if (!I)
2549 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002550
2551 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002552 default:
2553 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002554 // Unsigned integers are always nonnegative.
2555 case Instruction::UIToFP:
2556 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002557 case Instruction::FMul:
2558 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002559 if (I->getOperand(0) == I->getOperand(1) &&
2560 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002561 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002562
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002563 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002564 case Instruction::FAdd:
2565 case Instruction::FDiv:
2566 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002567 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2568 Depth + 1) &&
2569 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2570 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002571 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002572 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2573 Depth + 1) &&
2574 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2575 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002576 case Instruction::FPExt:
2577 case Instruction::FPTrunc:
2578 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002579 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2580 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002581 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002582 const auto *CI = cast<CallInst>(I);
2583 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002584 switch (IID) {
2585 default:
2586 break;
2587 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002588 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2589 Depth + 1) ||
2590 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2591 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002592 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002593 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2594 Depth + 1) &&
2595 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2596 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002597 case Intrinsic::exp:
2598 case Intrinsic::exp2:
2599 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002600 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002601
2602 case Intrinsic::sqrt:
2603 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2604 if (!SignBitOnly)
2605 return true;
2606 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2607 CannotBeNegativeZero(CI->getOperand(0), TLI));
2608
David Majnemer3ee5f342016-04-13 06:55:52 +00002609 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002610 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002611 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002612 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002613 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002614 }
Justin Lebar322c1272017-01-27 00:58:34 +00002615 // TODO: This is not correct. Given that exp is an integer, here are the
2616 // ways that pow can return a negative value:
2617 //
2618 // pow(x, exp) --> negative if exp is odd and x is negative.
2619 // pow(-0, exp) --> -inf if exp is negative odd.
2620 // pow(-0, exp) --> -0 if exp is positive odd.
2621 // pow(-inf, exp) --> -0 if exp is negative odd.
2622 // pow(-inf, exp) --> -inf if exp is positive odd.
2623 //
2624 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2625 // but we must return false if x == -0. Unfortunately we do not currently
2626 // have a way of expressing this constraint. See details in
2627 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002628 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2629 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002630
David Majnemer3ee5f342016-04-13 06:55:52 +00002631 case Intrinsic::fma:
2632 case Intrinsic::fmuladd:
2633 // x*x+y is non-negative if y is non-negative.
2634 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002635 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2636 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2637 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002638 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002639 break;
2640 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002641 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002642}
2643
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002644bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2645 const TargetLibraryInfo *TLI) {
2646 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2647}
2648
2649bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2650 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2651}
2652
Sanjay Patelaee84212014-11-04 16:27:42 +00002653/// If the specified value can be set by repeating the same byte in memory,
2654/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002655/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2656/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2657/// byte store (e.g. i16 0x1234), return null.
2658Value *llvm::isBytewiseValue(Value *V) {
2659 // All byte-wide stores are splatable, even of arbitrary variables.
2660 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002661
2662 // Handle 'null' ConstantArrayZero etc.
2663 if (Constant *C = dyn_cast<Constant>(V))
2664 if (C->isNullValue())
2665 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002666
Chris Lattner9cb10352010-12-26 20:15:01 +00002667 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002668 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002669 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2670 if (CFP->getType()->isFloatTy())
2671 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2672 if (CFP->getType()->isDoubleTy())
2673 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2674 // Don't handle long double formats, which have strange constraints.
2675 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002676
Benjamin Kramer17d90152015-02-07 19:29:02 +00002677 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002678 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002679 if (CI->getBitWidth() % 8 == 0) {
2680 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002681
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002682 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002683 return nullptr;
2684 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002685 }
2686 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002687
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002688 // A ConstantDataArray/Vector is splatable if all its members are equal and
2689 // also splatable.
2690 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2691 Value *Elt = CA->getElementAsConstant(0);
2692 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002693 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002694 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002695
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002696 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2697 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002698 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002699
Chris Lattner9cb10352010-12-26 20:15:01 +00002700 return Val;
2701 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002702
Chris Lattner9cb10352010-12-26 20:15:01 +00002703 // Conceptually, we could handle things like:
2704 // %a = zext i8 %X to i16
2705 // %b = shl i16 %a, 8
2706 // %c = or i16 %a, %b
2707 // but until there is an example that actually needs this, it doesn't seem
2708 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002709 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002710}
2711
2712
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002713// This is the recursive version of BuildSubAggregate. It takes a few different
2714// arguments. Idxs is the index within the nested struct From that we are
2715// looking at now (which is of type IndexedType). IdxSkip is the number of
2716// indices from Idxs that should be left out when inserting into the resulting
2717// struct. To is the result struct built so far, new insertvalue instructions
2718// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002719static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002720 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002721 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002722 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002723 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002724 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002725 // Save the original To argument so we can modify it
2726 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002727 // General case, the type indexed by Idxs is a struct
2728 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2729 // Process each struct element recursively
2730 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002731 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002732 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002733 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002734 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002735 if (!To) {
2736 // Couldn't find any inserted value for this index? Cleanup
2737 while (PrevTo != OrigTo) {
2738 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2739 PrevTo = Del->getAggregateOperand();
2740 Del->eraseFromParent();
2741 }
2742 // Stop processing elements
2743 break;
2744 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002745 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002746 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002747 if (To)
2748 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002749 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002750 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2751 // the struct's elements had a value that was inserted directly. In the latter
2752 // case, perhaps we can't determine each of the subelements individually, but
2753 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002754
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002755 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002756 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002757
2758 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002759 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002760
2761 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002762 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002763 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002764}
2765
2766// This helper takes a nested struct and extracts a part of it (which is again a
2767// struct) into a new value. For example, given the struct:
2768// { a, { b, { c, d }, e } }
2769// and the indices "1, 1" this returns
2770// { c, d }.
2771//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002772// It does this by inserting an insertvalue for each element in the resulting
2773// struct, as opposed to just inserting a single struct. This will only work if
2774// each of the elements of the substruct are known (ie, inserted into From by an
2775// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002776//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002777// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002778static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002779 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002780 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002781 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002782 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002783 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002784 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002785 unsigned IdxSkip = Idxs.size();
2786
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002787 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002788}
2789
Sanjay Patelaee84212014-11-04 16:27:42 +00002790/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002791/// the scalar value indexed is already around as a register, for example if it
2792/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002793///
2794/// If InsertBefore is not null, this function will duplicate (modified)
2795/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002796Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2797 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002798 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002799 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002800 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002801 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002802 // We have indices, so V should have an indexable type.
2803 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2804 "Not looking at a struct or array?");
2805 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2806 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002807
Chris Lattner67058832012-01-25 06:48:06 +00002808 if (Constant *C = dyn_cast<Constant>(V)) {
2809 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002810 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002811 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2812 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002813
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002814 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002815 // Loop the indices for the insertvalue instruction in parallel with the
2816 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002817 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002818 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2819 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002820 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002821 // We can't handle this without inserting insertvalues
2822 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002823 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002824
2825 // The requested index identifies a part of a nested aggregate. Handle
2826 // this specially. For example,
2827 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2828 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2829 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2830 // This can be changed into
2831 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2832 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2833 // which allows the unused 0,0 element from the nested struct to be
2834 // removed.
2835 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2836 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002837 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002838
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002839 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002840 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002841 // looking for, then.
2842 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002843 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002844 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002845 }
2846 // If we end up here, the indices of the insertvalue match with those
2847 // requested (though possibly only partially). Now we recursively look at
2848 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002849 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002850 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002851 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002852 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002853
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002854 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002855 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002856 // something else, we can extract from that something else directly instead.
2857 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002858
2859 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002860 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002861 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002862 SmallVector<unsigned, 5> Idxs;
2863 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002864 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002865 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002866
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002867 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002868 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002869
Craig Topper1bef2c82012-12-22 19:15:35 +00002870 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002871 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002872
Jay Foad57aa6362011-07-13 10:26:04 +00002873 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002874 }
2875 // Otherwise, we don't know (such as, extracting from a function return value
2876 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002877 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002878}
Evan Chengda3db112008-06-30 07:31:25 +00002879
Sanjay Patelaee84212014-11-04 16:27:42 +00002880/// Analyze the specified pointer to see if it can be expressed as a base
2881/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002882Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002883 const DataLayout &DL) {
2884 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002885 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002886
2887 // We walk up the defs but use a visited set to handle unreachable code. In
2888 // that case, we stop after accumulating the cycle once (not that it
2889 // matters).
2890 SmallPtrSet<Value *, 16> Visited;
2891 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002892 if (Ptr->getType()->isVectorTy())
2893 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002894
Nuno Lopes368c4d02012-12-31 20:48:35 +00002895 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002896 // If one of the values we have visited is an addrspacecast, then
2897 // the pointer type of this GEP may be different from the type
2898 // of the Ptr parameter which was passed to this function. This
2899 // means when we construct GEPOffset, we need to use the size
2900 // of GEP's pointer type rather than the size of the original
2901 // pointer type.
2902 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002903 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2904 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002905
Tom Stellard17eb3412016-10-07 14:23:29 +00002906 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002907
Nuno Lopes368c4d02012-12-31 20:48:35 +00002908 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002909 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2910 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002911 Ptr = cast<Operator>(Ptr)->getOperand(0);
2912 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002913 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002914 break;
2915 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002916 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002917 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002918 }
2919 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002920 Offset = ByteOffset.getSExtValue();
2921 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002922}
2923
Matthias Braun50ec0b52017-05-19 22:37:09 +00002924bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
2925 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002926 // Make sure the GEP has exactly three arguments.
2927 if (GEP->getNumOperands() != 3)
2928 return false;
2929
Matthias Braun50ec0b52017-05-19 22:37:09 +00002930 // Make sure the index-ee is a pointer to array of \p CharSize integers.
2931 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00002932 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00002933 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00002934 return false;
2935
2936 // Check to make sure that the first operand of the GEP is an integer and
2937 // has value 0 so that we are sure we're indexing into the initializer.
2938 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2939 if (!FirstIdx || !FirstIdx->isZero())
2940 return false;
2941
2942 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002943}
Chris Lattnere28618d2010-11-30 22:25:26 +00002944
Matthias Braun50ec0b52017-05-19 22:37:09 +00002945bool llvm::getConstantDataArrayInfo(const Value *V,
2946 ConstantDataArraySlice &Slice,
2947 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002948 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002949
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002950 // Look through bitcast instructions and geps.
2951 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002952
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002953 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002954 // offset.
2955 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002956 // The GEP operator should be based on a pointer to string constant, and is
2957 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00002958 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002959 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002960
Evan Chengda3db112008-06-30 07:31:25 +00002961 // If the second index isn't a ConstantInt, then this is a variable index
2962 // into the array. If this occurs, we can't say anything meaningful about
2963 // the string.
2964 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002965 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002966 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002967 else
2968 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00002969 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
2970 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002971 }
Nick Lewycky46209882011-10-20 00:34:35 +00002972
Evan Chengda3db112008-06-30 07:31:25 +00002973 // The GEP instruction, constant or instruction, must reference a global
2974 // variable that is a constant and is initialized. The referenced constant
2975 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002976 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002977 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002978 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002979
Matthias Braun50ec0b52017-05-19 22:37:09 +00002980 const ConstantDataArray *Array;
2981 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002982 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00002983 Type *GVTy = GV->getValueType();
2984 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00002985 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00002986 Array = nullptr;
2987 } else {
2988 const DataLayout &DL = GV->getParent()->getDataLayout();
2989 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
2990 uint64_t Length = SizeInBytes / (ElementSize / 8);
2991 if (Length <= Offset)
2992 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002993
Matthias Braun50ec0b52017-05-19 22:37:09 +00002994 Slice.Array = nullptr;
2995 Slice.Offset = 0;
2996 Slice.Length = Length - Offset;
2997 return true;
2998 }
2999 } else {
3000 // This must be a ConstantDataArray.
3001 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3002 if (!Array)
3003 return false;
3004 ArrayTy = Array->getType();
3005 }
3006 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003007 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003008
Matthias Braun50ec0b52017-05-19 22:37:09 +00003009 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003010 if (Offset > NumElts)
3011 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003012
Matthias Braun50ec0b52017-05-19 22:37:09 +00003013 Slice.Array = Array;
3014 Slice.Offset = Offset;
3015 Slice.Length = NumElts - Offset;
3016 return true;
3017}
3018
3019/// This function computes the length of a null-terminated C string pointed to
3020/// by V. If successful, it returns true and returns the string in Str.
3021/// If unsuccessful, it returns false.
3022bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3023 uint64_t Offset, bool TrimAtNul) {
3024 ConstantDataArraySlice Slice;
3025 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3026 return false;
3027
3028 if (Slice.Array == nullptr) {
3029 if (TrimAtNul) {
3030 Str = StringRef();
3031 return true;
3032 }
3033 if (Slice.Length == 1) {
3034 Str = StringRef("", 1);
3035 return true;
3036 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003037 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003038 // of 0s at hand.
3039 return false;
3040 }
3041
3042 // Start out with the entire array in the StringRef.
3043 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003044 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003045 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003046
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003047 if (TrimAtNul) {
3048 // Trim off the \0 and anything after it. If the array is not nul
3049 // terminated, we just return the whole end of string. The client may know
3050 // some other way that the string is length-bound.
3051 Str = Str.substr(0, Str.find('\0'));
3052 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003053 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003054}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003055
3056// These next two are very similar to the above, but also look through PHI
3057// nodes.
3058// TODO: See if we can integrate these two together.
3059
Sanjay Patelaee84212014-11-04 16:27:42 +00003060/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003061/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003062static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003063 SmallPtrSetImpl<const PHINode*> &PHIs,
3064 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003065 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003066 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003067
3068 // If this is a PHI node, there are two cases: either we have already seen it
3069 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003070 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003071 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003072 return ~0ULL; // already in the set.
3073
3074 // If it was new, see if all the input strings are the same length.
3075 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003076 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003077 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003078 if (Len == 0) return 0; // Unknown length -> unknown.
3079
3080 if (Len == ~0ULL) continue;
3081
3082 if (Len != LenSoFar && LenSoFar != ~0ULL)
3083 return 0; // Disagree -> unknown.
3084 LenSoFar = Len;
3085 }
3086
3087 // Success, all agree.
3088 return LenSoFar;
3089 }
3090
3091 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003092 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003093 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003094 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003095 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003096 if (Len2 == 0) return 0;
3097 if (Len1 == ~0ULL) return Len2;
3098 if (Len2 == ~0ULL) return Len1;
3099 if (Len1 != Len2) return 0;
3100 return Len1;
3101 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003102
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003103 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003104 ConstantDataArraySlice Slice;
3105 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003106 return 0;
3107
Matthias Braun50ec0b52017-05-19 22:37:09 +00003108 if (Slice.Array == nullptr)
3109 return 1;
3110
3111 // Search for nul characters
3112 unsigned NullIndex = 0;
3113 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3114 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3115 break;
3116 }
3117
3118 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003119}
3120
Sanjay Patelaee84212014-11-04 16:27:42 +00003121/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003122/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003123uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003124 if (!V->getType()->isPointerTy()) return 0;
3125
Pete Cooper35b00d52016-08-13 01:05:32 +00003126 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003127 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003128 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3129 // an empty string as a length.
3130 return Len == ~0ULL ? 1 : Len;
3131}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003132
Adam Nemete2b885c2015-04-23 20:09:20 +00003133/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3134/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003135static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3136 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003137 // Find the loop-defined value.
3138 Loop *L = LI->getLoopFor(PN->getParent());
3139 if (PN->getNumIncomingValues() != 2)
3140 return true;
3141
3142 // Find the value from previous iteration.
3143 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3144 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3145 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3146 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3147 return true;
3148
3149 // If a new pointer is loaded in the loop, the pointer references a different
3150 // object in every iteration. E.g.:
3151 // for (i)
3152 // int *p = a[i];
3153 // ...
3154 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3155 if (!L->isLoopInvariant(Load->getPointerOperand()))
3156 return false;
3157 return true;
3158}
3159
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003160Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3161 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003162 if (!V->getType()->isPointerTy())
3163 return V;
3164 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3165 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3166 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003167 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3168 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003169 V = cast<Operator>(V)->getOperand(0);
3170 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003171 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003172 return V;
3173 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003174 } else if (isa<AllocaInst>(V)) {
3175 // An alloca can't be further simplified.
3176 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003177 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003178 if (auto CS = CallSite(V))
3179 if (Value *RV = CS.getReturnedArgOperand()) {
3180 V = RV;
3181 continue;
3182 }
3183
Dan Gohman05b18f12010-12-15 20:49:55 +00003184 // See if InstructionSimplify knows any relevant tricks.
3185 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003186 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003187 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003188 V = Simplified;
3189 continue;
3190 }
3191
Dan Gohmana4fcd242010-12-15 20:02:24 +00003192 return V;
3193 }
3194 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3195 }
3196 return V;
3197}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003198
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003199void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003200 const DataLayout &DL, LoopInfo *LI,
3201 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003202 SmallPtrSet<Value *, 4> Visited;
3203 SmallVector<Value *, 4> Worklist;
3204 Worklist.push_back(V);
3205 do {
3206 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003207 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003208
David Blaikie70573dc2014-11-19 07:49:26 +00003209 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003210 continue;
3211
3212 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3213 Worklist.push_back(SI->getTrueValue());
3214 Worklist.push_back(SI->getFalseValue());
3215 continue;
3216 }
3217
3218 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003219 // If this PHI changes the underlying object in every iteration of the
3220 // loop, don't look through it. Consider:
3221 // int **A;
3222 // for (i) {
3223 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3224 // Curr = A[i];
3225 // *Prev, *Curr;
3226 //
3227 // Prev is tracking Curr one iteration behind so they refer to different
3228 // underlying objects.
3229 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3230 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003231 for (Value *IncValue : PN->incoming_values())
3232 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003233 continue;
3234 }
3235
3236 Objects.push_back(P);
3237 } while (!Worklist.empty());
3238}
3239
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003240/// This is the function that does the work of looking through basic
3241/// ptrtoint+arithmetic+inttoptr sequences.
3242static const Value *getUnderlyingObjectFromInt(const Value *V) {
3243 do {
3244 if (const Operator *U = dyn_cast<Operator>(V)) {
3245 // If we find a ptrtoint, we can transfer control back to the
3246 // regular getUnderlyingObjectFromInt.
3247 if (U->getOpcode() == Instruction::PtrToInt)
3248 return U->getOperand(0);
3249 // If we find an add of a constant, a multiplied value, or a phi, it's
3250 // likely that the other operand will lead us to the base
3251 // object. We don't have to worry about the case where the
3252 // object address is somehow being computed by the multiply,
3253 // because our callers only care when the result is an
3254 // identifiable object.
3255 if (U->getOpcode() != Instruction::Add ||
3256 (!isa<ConstantInt>(U->getOperand(1)) &&
3257 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3258 !isa<PHINode>(U->getOperand(1))))
3259 return V;
3260 V = U->getOperand(0);
3261 } else {
3262 return V;
3263 }
3264 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3265 } while (true);
3266}
3267
3268/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3269/// ptrtoint+arithmetic+inttoptr sequences.
3270void llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3271 SmallVectorImpl<Value *> &Objects,
3272 const DataLayout &DL) {
3273 SmallPtrSet<const Value *, 16> Visited;
3274 SmallVector<const Value *, 4> Working(1, V);
3275 do {
3276 V = Working.pop_back_val();
3277
3278 SmallVector<Value *, 4> Objs;
3279 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3280
3281 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003282 if (!Visited.insert(V).second)
3283 continue;
3284 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3285 const Value *O =
3286 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3287 if (O->getType()->isPointerTy()) {
3288 Working.push_back(O);
3289 continue;
3290 }
3291 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003292 // If GetUnderlyingObjects fails to find an identifiable object,
3293 // getUnderlyingObjectsForCodeGen also fails for safety.
3294 if (!isIdentifiedObject(V)) {
3295 Objects.clear();
3296 return;
3297 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003298 Objects.push_back(const_cast<Value *>(V));
3299 }
3300 } while (!Working.empty());
3301}
3302
Sanjay Patelaee84212014-11-04 16:27:42 +00003303/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003304bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003305 for (const User *U : V->users()) {
3306 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003307 if (!II) return false;
3308
3309 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3310 II->getIntrinsicID() != Intrinsic::lifetime_end)
3311 return false;
3312 }
3313 return true;
3314}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003315
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003316bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3317 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003318 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003319 const Operator *Inst = dyn_cast<Operator>(V);
3320 if (!Inst)
3321 return false;
3322
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003323 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3324 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3325 if (C->canTrap())
3326 return false;
3327
3328 switch (Inst->getOpcode()) {
3329 default:
3330 return true;
3331 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003332 case Instruction::URem: {
3333 // x / y is undefined if y == 0.
3334 const APInt *V;
3335 if (match(Inst->getOperand(1), m_APInt(V)))
3336 return *V != 0;
3337 return false;
3338 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003339 case Instruction::SDiv:
3340 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003341 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003342 const APInt *Numerator, *Denominator;
3343 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3344 return false;
3345 // We cannot hoist this division if the denominator is 0.
3346 if (*Denominator == 0)
3347 return false;
3348 // It's safe to hoist if the denominator is not 0 or -1.
3349 if (*Denominator != -1)
3350 return true;
3351 // At this point we know that the denominator is -1. It is safe to hoist as
3352 // long we know that the numerator is not INT_MIN.
3353 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3354 return !Numerator->isMinSignedValue();
3355 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003356 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003357 }
3358 case Instruction::Load: {
3359 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003360 if (!LI->isUnordered() ||
3361 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003362 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003363 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003364 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003365 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003366 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003367 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3368 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003369 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003370 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003371 auto *CI = cast<const CallInst>(Inst);
3372 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003373
Matt Arsenault6a288c12017-05-03 02:26:10 +00003374 // The called function could have undefined behavior or side-effects, even
3375 // if marked readnone nounwind.
3376 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003377 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003378 case Instruction::VAArg:
3379 case Instruction::Alloca:
3380 case Instruction::Invoke:
3381 case Instruction::PHI:
3382 case Instruction::Store:
3383 case Instruction::Ret:
3384 case Instruction::Br:
3385 case Instruction::IndirectBr:
3386 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003387 case Instruction::Unreachable:
3388 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003389 case Instruction::AtomicRMW:
3390 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003391 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003392 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003393 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003394 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003395 case Instruction::CatchRet:
3396 case Instruction::CleanupPad:
3397 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003398 return false; // Misc instructions which have effects
3399 }
3400}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003401
Quentin Colombet6443cce2015-08-06 18:44:34 +00003402bool llvm::mayBeMemoryDependent(const Instruction &I) {
3403 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3404}
3405
Sanjay Patelaee84212014-11-04 16:27:42 +00003406/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003407bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003408 assert(V->getType()->isPointerTy() && "V must be pointer type");
3409
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003410 // Alloca never returns null, malloc might.
3411 if (isa<AllocaInst>(V)) return true;
3412
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003413 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003414 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003415 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003416
Peter Collingbourne235c2752016-12-08 19:01:00 +00003417 // A global variable in address space 0 is non null unless extern weak
3418 // or an absolute symbol reference. Other address spaces may have null as a
3419 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003420 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003421 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003422 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003423
Sanjoy Das5056e192016-05-07 02:08:22 +00003424 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003425 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003426 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003427
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003428 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003429 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003430 return true;
3431
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003432 return false;
3433}
David Majnemer491331a2015-01-02 07:29:43 +00003434
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003435static bool isKnownNonNullFromDominatingCondition(const Value *V,
3436 const Instruction *CtxI,
3437 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003438 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003439 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003440 assert(CtxI && "Context instruction required for analysis");
3441 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003442
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003443 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003444 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003445 // Avoid massive lists
3446 if (NumUsesExplored >= DomConditionsMaxUses)
3447 break;
3448 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003449
3450 // If the value is used as an argument to a call or invoke, then argument
3451 // attributes may provide an answer about null-ness.
3452 if (auto CS = ImmutableCallSite(U))
3453 if (auto *CalledFunc = CS.getCalledFunction())
3454 for (const Argument &Arg : CalledFunc->args())
3455 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3456 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3457 return true;
3458
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003459 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003460 CmpInst::Predicate Pred;
3461 if (!match(const_cast<User *>(U),
3462 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3463 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003464 continue;
3465
Sanjoy Das987aaa12016-05-07 02:08:24 +00003466 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003467 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3468 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003469
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003470 BasicBlock *NonNullSuccessor =
3471 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3472 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3473 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3474 return true;
3475 } else if (Pred == ICmpInst::ICMP_NE &&
3476 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3477 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003478 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003479 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003480 }
3481 }
3482
3483 return false;
3484}
3485
3486bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003487 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003488 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3489 return false;
3490
Sean Silva45835e72016-07-02 23:47:27 +00003491 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003492 return true;
3493
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003494 if (!CtxI || !DT)
3495 return false;
3496
3497 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003498}
3499
Pete Cooper35b00d52016-08-13 01:05:32 +00003500OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3501 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003502 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003503 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003504 const Instruction *CxtI,
3505 const DominatorTree *DT) {
3506 // Multiplying n * m significant bits yields a result of n + m significant
3507 // bits. If the total number of significant bits does not exceed the
3508 // result bit width (minus 1), there is no overflow.
3509 // This means if we have enough leading zero bits in the operands
3510 // we can guarantee that the result does not overflow.
3511 // Ref: "Hacker's Delight" by Henry Warren
3512 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003513 KnownBits LHSKnown(BitWidth);
3514 KnownBits RHSKnown(BitWidth);
3515 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3516 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003517 // Note that underestimating the number of zero bits gives a more
3518 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003519 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3520 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003521 // First handle the easy case: if we have enough zero bits there's
3522 // definitely no overflow.
3523 if (ZeroBits >= BitWidth)
3524 return OverflowResult::NeverOverflows;
3525
3526 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003527 APInt LHSMax = ~LHSKnown.Zero;
3528 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003529
3530 // We know the multiply operation doesn't overflow if the maximum values for
3531 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003532 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003533 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003534 if (!MaxOverflow)
3535 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003536
David Majnemerc8a576b2015-01-02 07:29:47 +00003537 // We know it always overflows if multiplying the smallest possible values for
3538 // the operands also results in overflow.
3539 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003540 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003541 if (MinOverflow)
3542 return OverflowResult::AlwaysOverflows;
3543
3544 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003545}
David Majnemer5310c1e2015-01-07 00:39:50 +00003546
Pete Cooper35b00d52016-08-13 01:05:32 +00003547OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3548 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003549 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003550 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003551 const Instruction *CxtI,
3552 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003553 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3554 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3555 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003556
Craig Topper6e11a052017-05-08 16:22:48 +00003557 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003558 // The sign bit is set in both cases: this MUST overflow.
3559 // Create a simple add instruction, and insert it into the struct.
3560 return OverflowResult::AlwaysOverflows;
3561 }
3562
Craig Topper6e11a052017-05-08 16:22:48 +00003563 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003564 // The sign bit is clear in both cases: this CANNOT overflow.
3565 // Create a simple add instruction, and insert it into the struct.
3566 return OverflowResult::NeverOverflows;
3567 }
3568 }
3569
3570 return OverflowResult::MayOverflow;
3571}
James Molloy71b91c22015-05-11 14:42:20 +00003572
Craig Topperbb973722017-05-15 02:44:08 +00003573/// \brief Return true if we can prove that adding the two values of the
3574/// knownbits will not overflow.
3575/// Otherwise return false.
3576static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3577 const KnownBits &RHSKnown) {
3578 // Addition of two 2's complement numbers having opposite signs will never
3579 // overflow.
3580 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3581 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3582 return true;
3583
3584 // If either of the values is known to be non-negative, adding them can only
3585 // overflow if the second is also non-negative, so we can assume that.
3586 // Two non-negative numbers will only overflow if there is a carry to the
3587 // sign bit, so we can check if even when the values are as big as possible
3588 // there is no overflow to the sign bit.
3589 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3590 APInt MaxLHS = ~LHSKnown.Zero;
3591 MaxLHS.clearSignBit();
3592 APInt MaxRHS = ~RHSKnown.Zero;
3593 MaxRHS.clearSignBit();
3594 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3595 return Result.isSignBitClear();
3596 }
3597
3598 // If either of the values is known to be negative, adding them can only
3599 // overflow if the second is also negative, so we can assume that.
3600 // Two negative number will only overflow if there is no carry to the sign
3601 // bit, so we can check if even when the values are as small as possible
3602 // there is overflow to the sign bit.
3603 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3604 APInt MinLHS = LHSKnown.One;
3605 MinLHS.clearSignBit();
3606 APInt MinRHS = RHSKnown.One;
3607 MinRHS.clearSignBit();
3608 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3609 return Result.isSignBitSet();
3610 }
3611
3612 // If we reached here it means that we know nothing about the sign bits.
3613 // In this case we can't know if there will be an overflow, since by
3614 // changing the sign bits any two values can be made to overflow.
3615 return false;
3616}
3617
Pete Cooper35b00d52016-08-13 01:05:32 +00003618static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3619 const Value *RHS,
3620 const AddOperator *Add,
3621 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003622 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003623 const Instruction *CxtI,
3624 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003625 if (Add && Add->hasNoSignedWrap()) {
3626 return OverflowResult::NeverOverflows;
3627 }
3628
Craig Topperbb973722017-05-15 02:44:08 +00003629 // If LHS and RHS each have at least two sign bits, the addition will look
3630 // like
3631 //
3632 // XX..... +
3633 // YY.....
3634 //
3635 // If the carry into the most significant position is 0, X and Y can't both
3636 // be 1 and therefore the carry out of the addition is also 0.
3637 //
3638 // If the carry into the most significant position is 1, X and Y can't both
3639 // be 0 and therefore the carry out of the addition is also 1.
3640 //
3641 // Since the carry into the most significant position is always equal to
3642 // the carry out of the addition, there is no signed overflow.
3643 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3644 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3645 return OverflowResult::NeverOverflows;
3646
Craig Topper6e11a052017-05-08 16:22:48 +00003647 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3648 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003649
Craig Topperbb973722017-05-15 02:44:08 +00003650 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003651 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003652
3653 // The remaining code needs Add to be available. Early returns if not so.
3654 if (!Add)
3655 return OverflowResult::MayOverflow;
3656
3657 // If the sign of Add is the same as at least one of the operands, this add
3658 // CANNOT overflow. This is particularly useful when the sum is
3659 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3660 // operands.
3661 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003662 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003663 bool LHSOrRHSKnownNegative =
3664 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003665 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003666 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3667 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3668 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003669 return OverflowResult::NeverOverflows;
3670 }
3671 }
3672
3673 return OverflowResult::MayOverflow;
3674}
3675
Pete Cooper35b00d52016-08-13 01:05:32 +00003676bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3677 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003678#ifndef NDEBUG
3679 auto IID = II->getIntrinsicID();
3680 assert((IID == Intrinsic::sadd_with_overflow ||
3681 IID == Intrinsic::uadd_with_overflow ||
3682 IID == Intrinsic::ssub_with_overflow ||
3683 IID == Intrinsic::usub_with_overflow ||
3684 IID == Intrinsic::smul_with_overflow ||
3685 IID == Intrinsic::umul_with_overflow) &&
3686 "Not an overflow intrinsic!");
3687#endif
3688
Pete Cooper35b00d52016-08-13 01:05:32 +00003689 SmallVector<const BranchInst *, 2> GuardingBranches;
3690 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003691
Pete Cooper35b00d52016-08-13 01:05:32 +00003692 for (const User *U : II->users()) {
3693 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003694 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3695
3696 if (EVI->getIndices()[0] == 0)
3697 Results.push_back(EVI);
3698 else {
3699 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3700
Pete Cooper35b00d52016-08-13 01:05:32 +00003701 for (const auto *U : EVI->users())
3702 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003703 assert(B->isConditional() && "How else is it using an i1?");
3704 GuardingBranches.push_back(B);
3705 }
3706 }
3707 } else {
3708 // We are using the aggregate directly in a way we don't want to analyze
3709 // here (storing it to a global, say).
3710 return false;
3711 }
3712 }
3713
Pete Cooper35b00d52016-08-13 01:05:32 +00003714 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003715 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3716 if (!NoWrapEdge.isSingleEdge())
3717 return false;
3718
3719 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003720 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003721 // If the extractvalue itself is not executed on overflow, the we don't
3722 // need to check each use separately, since domination is transitive.
3723 if (DT.dominates(NoWrapEdge, Result->getParent()))
3724 continue;
3725
3726 for (auto &RU : Result->uses())
3727 if (!DT.dominates(NoWrapEdge, RU))
3728 return false;
3729 }
3730
3731 return true;
3732 };
3733
3734 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3735}
3736
3737
Pete Cooper35b00d52016-08-13 01:05:32 +00003738OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003739 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003740 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003741 const Instruction *CxtI,
3742 const DominatorTree *DT) {
3743 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003744 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003745}
3746
Pete Cooper35b00d52016-08-13 01:05:32 +00003747OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3748 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003749 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003750 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003751 const Instruction *CxtI,
3752 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003753 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003754}
3755
Jingyue Wu42f1d672015-07-28 18:22:40 +00003756bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003757 // A memory operation returns normally if it isn't volatile. A volatile
3758 // operation is allowed to trap.
3759 //
3760 // An atomic operation isn't guaranteed to return in a reasonable amount of
3761 // time because it's possible for another thread to interfere with it for an
3762 // arbitrary length of time, but programs aren't allowed to rely on that.
3763 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3764 return !LI->isVolatile();
3765 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3766 return !SI->isVolatile();
3767 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3768 return !CXI->isVolatile();
3769 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3770 return !RMWI->isVolatile();
3771 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3772 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003773
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003774 // If there is no successor, then execution can't transfer to it.
3775 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3776 return !CRI->unwindsToCaller();
3777 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3778 return !CatchSwitch->unwindsToCaller();
3779 if (isa<ResumeInst>(I))
3780 return false;
3781 if (isa<ReturnInst>(I))
3782 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003783 if (isa<UnreachableInst>(I))
3784 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003785
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003786 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003787 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003788 // Call sites that throw have implicit non-local control flow.
3789 if (!CS.doesNotThrow())
3790 return false;
3791
3792 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3793 // etc. and thus not return. However, LLVM already assumes that
3794 //
3795 // - Thread exiting actions are modeled as writes to memory invisible to
3796 // the program.
3797 //
3798 // - Loops that don't have side effects (side effects are volatile/atomic
3799 // stores and IO) always terminate (see http://llvm.org/PR965).
3800 // Furthermore IO itself is also modeled as writes to memory invisible to
3801 // the program.
3802 //
3803 // We rely on those assumptions here, and use the memory effects of the call
3804 // target as a proxy for checking that it always returns.
3805
3806 // FIXME: This isn't aggressive enough; a call which only writes to a global
3807 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003808 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3809 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003810 }
3811
3812 // Other instructions return normally.
3813 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003814}
3815
3816bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3817 const Loop *L) {
3818 // The loop header is guaranteed to be executed for every iteration.
3819 //
3820 // FIXME: Relax this constraint to cover all basic blocks that are
3821 // guaranteed to be executed at every iteration.
3822 if (I->getParent() != L->getHeader()) return false;
3823
3824 for (const Instruction &LI : *L->getHeader()) {
3825 if (&LI == I) return true;
3826 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3827 }
3828 llvm_unreachable("Instruction not contained in its own parent basic block.");
3829}
3830
3831bool llvm::propagatesFullPoison(const Instruction *I) {
3832 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003833 case Instruction::Add:
3834 case Instruction::Sub:
3835 case Instruction::Xor:
3836 case Instruction::Trunc:
3837 case Instruction::BitCast:
3838 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003839 case Instruction::Mul:
3840 case Instruction::Shl:
3841 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003842 // These operations all propagate poison unconditionally. Note that poison
3843 // is not any particular value, so xor or subtraction of poison with
3844 // itself still yields poison, not zero.
3845 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003846
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003847 case Instruction::AShr:
3848 case Instruction::SExt:
3849 // For these operations, one bit of the input is replicated across
3850 // multiple output bits. A replicated poison bit is still poison.
3851 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003852
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003853 case Instruction::ICmp:
3854 // Comparing poison with any value yields poison. This is why, for
3855 // instance, x s< (x +nsw 1) can be folded to true.
3856 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003857
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003858 default:
3859 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003860 }
3861}
3862
3863const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3864 switch (I->getOpcode()) {
3865 case Instruction::Store:
3866 return cast<StoreInst>(I)->getPointerOperand();
3867
3868 case Instruction::Load:
3869 return cast<LoadInst>(I)->getPointerOperand();
3870
3871 case Instruction::AtomicCmpXchg:
3872 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3873
3874 case Instruction::AtomicRMW:
3875 return cast<AtomicRMWInst>(I)->getPointerOperand();
3876
3877 case Instruction::UDiv:
3878 case Instruction::SDiv:
3879 case Instruction::URem:
3880 case Instruction::SRem:
3881 return I->getOperand(1);
3882
3883 default:
3884 return nullptr;
3885 }
3886}
3887
Sanjoy Das08989c72017-04-30 19:41:19 +00003888bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003889 // We currently only look for uses of poison values within the same basic
3890 // block, as that makes it easier to guarantee that the uses will be
3891 // executed given that PoisonI is executed.
3892 //
3893 // FIXME: Expand this to consider uses beyond the same basic block. To do
3894 // this, look out for the distinction between post-dominance and strong
3895 // post-dominance.
3896 const BasicBlock *BB = PoisonI->getParent();
3897
3898 // Set of instructions that we have proved will yield poison if PoisonI
3899 // does.
3900 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003901 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003902 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003903 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003904
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003905 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003906
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003907 unsigned Iter = 0;
3908 while (Iter++ < MaxDepth) {
3909 for (auto &I : make_range(Begin, End)) {
3910 if (&I != PoisonI) {
3911 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3912 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3913 return true;
3914 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3915 return false;
3916 }
3917
3918 // Mark poison that propagates from I through uses of I.
3919 if (YieldsPoison.count(&I)) {
3920 for (const User *User : I.users()) {
3921 const Instruction *UserI = cast<Instruction>(User);
3922 if (propagatesFullPoison(UserI))
3923 YieldsPoison.insert(User);
3924 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003925 }
3926 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003927
3928 if (auto *NextBB = BB->getSingleSuccessor()) {
3929 if (Visited.insert(NextBB).second) {
3930 BB = NextBB;
3931 Begin = BB->getFirstNonPHI()->getIterator();
3932 End = BB->end();
3933 continue;
3934 }
3935 }
3936
3937 break;
3938 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003939 return false;
3940}
3941
Pete Cooper35b00d52016-08-13 01:05:32 +00003942static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003943 if (FMF.noNaNs())
3944 return true;
3945
3946 if (auto *C = dyn_cast<ConstantFP>(V))
3947 return !C->isNaN();
3948 return false;
3949}
3950
Pete Cooper35b00d52016-08-13 01:05:32 +00003951static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003952 if (auto *C = dyn_cast<ConstantFP>(V))
3953 return !C->isZero();
3954 return false;
3955}
3956
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00003957/// Match clamp pattern for float types without care about NaNs or signed zeros.
3958/// Given non-min/max outer cmp/select from the clamp pattern this
3959/// function recognizes if it can be substitued by a "canonical" min/max
3960/// pattern.
3961static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
3962 Value *CmpLHS, Value *CmpRHS,
3963 Value *TrueVal, Value *FalseVal,
3964 Value *&LHS, Value *&RHS) {
3965 // Try to match
3966 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
3967 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
3968 // and return description of the outer Max/Min.
3969
3970 // First, check if select has inverse order:
3971 if (CmpRHS == FalseVal) {
3972 std::swap(TrueVal, FalseVal);
3973 Pred = CmpInst::getInversePredicate(Pred);
3974 }
3975
3976 // Assume success now. If there's no match, callers should not use these anyway.
3977 LHS = TrueVal;
3978 RHS = FalseVal;
3979
3980 const APFloat *FC1;
3981 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
3982 return {SPF_UNKNOWN, SPNB_NA, false};
3983
3984 const APFloat *FC2;
3985 switch (Pred) {
3986 case CmpInst::FCMP_OLT:
3987 case CmpInst::FCMP_OLE:
3988 case CmpInst::FCMP_ULT:
3989 case CmpInst::FCMP_ULE:
3990 if (match(FalseVal,
3991 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
3992 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
3993 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
3994 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
3995 break;
3996 case CmpInst::FCMP_OGT:
3997 case CmpInst::FCMP_OGE:
3998 case CmpInst::FCMP_UGT:
3999 case CmpInst::FCMP_UGE:
4000 if (match(FalseVal,
4001 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4002 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4003 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4004 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4005 break;
4006 default:
4007 break;
4008 }
4009
4010 return {SPF_UNKNOWN, SPNB_NA, false};
4011}
4012
Sanjay Patel819f0962016-11-13 19:30:19 +00004013/// Match non-obvious integer minimum and maximum sequences.
4014static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4015 Value *CmpLHS, Value *CmpRHS,
4016 Value *TrueVal, Value *FalseVal,
4017 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00004018 // Assume success. If there's no match, callers should not use these anyway.
4019 LHS = TrueVal;
4020 RHS = FalseVal;
4021
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004022 // Recognize variations of:
4023 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4024 const APInt *C1;
4025 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4026 const APInt *C2;
4027
4028 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4029 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004030 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004031 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004032
4033 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4034 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004035 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004036 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004037
4038 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4039 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004040 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004041 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004042
4043 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4044 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004045 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004046 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004047 }
4048
Sanjay Patel819f0962016-11-13 19:30:19 +00004049 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4050 return {SPF_UNKNOWN, SPNB_NA, false};
4051
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004052 // Z = X -nsw Y
4053 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4054 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4055 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004056 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004057 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004058
4059 // Z = X -nsw Y
4060 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4061 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4062 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004063 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004064 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004065
Sanjay Patel819f0962016-11-13 19:30:19 +00004066 if (!match(CmpRHS, m_APInt(C1)))
4067 return {SPF_UNKNOWN, SPNB_NA, false};
4068
4069 // An unsigned min/max can be written with a signed compare.
4070 const APInt *C2;
4071 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4072 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4073 // Is the sign bit set?
4074 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4075 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004076 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004077 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004078
4079 // Is the sign bit clear?
4080 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4081 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4082 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004083 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004084 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004085 }
4086
4087 // Look through 'not' ops to find disguised signed min/max.
4088 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4089 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4090 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004091 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004092 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004093
4094 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4095 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4096 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004097 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004098 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004099
4100 return {SPF_UNKNOWN, SPNB_NA, false};
4101}
4102
James Molloy134bec22015-08-11 09:12:57 +00004103static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4104 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004105 Value *CmpLHS, Value *CmpRHS,
4106 Value *TrueVal, Value *FalseVal,
4107 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004108 LHS = CmpLHS;
4109 RHS = CmpRHS;
4110
James Molloy134bec22015-08-11 09:12:57 +00004111 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4112 // return inconsistent results between implementations.
4113 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4114 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4115 // Therefore we behave conservatively and only proceed if at least one of the
4116 // operands is known to not be zero, or if we don't care about signed zeroes.
4117 switch (Pred) {
4118 default: break;
4119 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4120 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4121 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4122 !isKnownNonZero(CmpRHS))
4123 return {SPF_UNKNOWN, SPNB_NA, false};
4124 }
4125
4126 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4127 bool Ordered = false;
4128
4129 // When given one NaN and one non-NaN input:
4130 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4131 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4132 // ordered comparison fails), which could be NaN or non-NaN.
4133 // so here we discover exactly what NaN behavior is required/accepted.
4134 if (CmpInst::isFPPredicate(Pred)) {
4135 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4136 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4137
4138 if (LHSSafe && RHSSafe) {
4139 // Both operands are known non-NaN.
4140 NaNBehavior = SPNB_RETURNS_ANY;
4141 } else if (CmpInst::isOrdered(Pred)) {
4142 // An ordered comparison will return false when given a NaN, so it
4143 // returns the RHS.
4144 Ordered = true;
4145 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004146 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004147 NaNBehavior = SPNB_RETURNS_NAN;
4148 else if (RHSSafe)
4149 NaNBehavior = SPNB_RETURNS_OTHER;
4150 else
4151 // Completely unsafe.
4152 return {SPF_UNKNOWN, SPNB_NA, false};
4153 } else {
4154 Ordered = false;
4155 // An unordered comparison will return true when given a NaN, so it
4156 // returns the LHS.
4157 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004158 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004159 NaNBehavior = SPNB_RETURNS_OTHER;
4160 else if (RHSSafe)
4161 NaNBehavior = SPNB_RETURNS_NAN;
4162 else
4163 // Completely unsafe.
4164 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004165 }
4166 }
4167
James Molloy71b91c22015-05-11 14:42:20 +00004168 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004169 std::swap(CmpLHS, CmpRHS);
4170 Pred = CmpInst::getSwappedPredicate(Pred);
4171 if (NaNBehavior == SPNB_RETURNS_NAN)
4172 NaNBehavior = SPNB_RETURNS_OTHER;
4173 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4174 NaNBehavior = SPNB_RETURNS_NAN;
4175 Ordered = !Ordered;
4176 }
4177
4178 // ([if]cmp X, Y) ? X : Y
4179 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004180 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004181 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004182 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004183 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004184 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004185 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004186 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004187 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004188 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004189 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4190 case FCmpInst::FCMP_UGT:
4191 case FCmpInst::FCMP_UGE:
4192 case FCmpInst::FCMP_OGT:
4193 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4194 case FCmpInst::FCMP_ULT:
4195 case FCmpInst::FCMP_ULE:
4196 case FCmpInst::FCMP_OLT:
4197 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004198 }
4199 }
4200
Sanjay Patele372aec2016-10-27 15:26:10 +00004201 const APInt *C1;
4202 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004203 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4204 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4205
4206 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4207 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004208 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004209 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004210 }
4211
4212 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4213 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004214 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004215 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004216 }
4217 }
James Molloy71b91c22015-05-11 14:42:20 +00004218 }
4219
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004220 if (CmpInst::isIntPredicate(Pred))
4221 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4222
4223 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4224 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4225 // semantics than minNum. Be conservative in such case.
4226 if (NaNBehavior != SPNB_RETURNS_ANY ||
4227 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4228 !isKnownNonZero(CmpRHS)))
4229 return {SPF_UNKNOWN, SPNB_NA, false};
4230
4231 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004232}
James Molloy270ef8c2015-05-15 16:04:50 +00004233
James Molloy569cea62015-09-02 17:25:25 +00004234static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4235 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004236 auto *Cast1 = dyn_cast<CastInst>(V1);
4237 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004238 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004239
Sanjay Patel14a4b812017-01-29 16:34:57 +00004240 *CastOp = Cast1->getOpcode();
4241 Type *SrcTy = Cast1->getSrcTy();
4242 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4243 // If V1 and V2 are both the same cast from the same type, look through V1.
4244 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4245 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004246 return nullptr;
4247 }
4248
Sanjay Patel14a4b812017-01-29 16:34:57 +00004249 auto *C = dyn_cast<Constant>(V2);
4250 if (!C)
4251 return nullptr;
4252
David Majnemerd2a074b2016-04-29 18:40:34 +00004253 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004254 switch (*CastOp) {
4255 case Instruction::ZExt:
4256 if (CmpI->isUnsigned())
4257 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4258 break;
4259 case Instruction::SExt:
4260 if (CmpI->isSigned())
4261 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4262 break;
4263 case Instruction::Trunc:
4264 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4265 break;
4266 case Instruction::FPTrunc:
4267 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4268 break;
4269 case Instruction::FPExt:
4270 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4271 break;
4272 case Instruction::FPToUI:
4273 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4274 break;
4275 case Instruction::FPToSI:
4276 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4277 break;
4278 case Instruction::UIToFP:
4279 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4280 break;
4281 case Instruction::SIToFP:
4282 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4283 break;
4284 default:
4285 break;
4286 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004287
4288 if (!CastedTo)
4289 return nullptr;
4290
David Majnemerd2a074b2016-04-29 18:40:34 +00004291 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004292 Constant *CastedBack =
4293 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004294 if (CastedBack != C)
4295 return nullptr;
4296
4297 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004298}
4299
Sanjay Patele8dc0902016-05-23 17:57:54 +00004300SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004301 Instruction::CastOps *CastOp) {
4302 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004303 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004304
James Molloy134bec22015-08-11 09:12:57 +00004305 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4306 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004307
James Molloy134bec22015-08-11 09:12:57 +00004308 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004309 Value *CmpLHS = CmpI->getOperand(0);
4310 Value *CmpRHS = CmpI->getOperand(1);
4311 Value *TrueVal = SI->getTrueValue();
4312 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004313 FastMathFlags FMF;
4314 if (isa<FPMathOperator>(CmpI))
4315 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004316
4317 // Bail out early.
4318 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004319 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004320
4321 // Deal with type mismatches.
4322 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004323 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004324 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004325 cast<CastInst>(TrueVal)->getOperand(0), C,
4326 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004327 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004328 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004329 C, cast<CastInst>(FalseVal)->getOperand(0),
4330 LHS, RHS);
4331 }
James Molloy134bec22015-08-11 09:12:57 +00004332 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004333 LHS, RHS);
4334}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004335
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004336/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004337static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4338 const Value *RHS, const DataLayout &DL,
4339 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004340 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004341 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4342 return true;
4343
4344 switch (Pred) {
4345 default:
4346 return false;
4347
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004348 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004349 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004350
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004351 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004352 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004353 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004354 return false;
4355 }
4356
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004357 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004358 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004359
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004360 // LHS u<= LHS +_{nuw} C for any C
4361 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004362 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004363
4364 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004365 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4366 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004367 const APInt *&CA, const APInt *&CB) {
4368 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4369 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4370 return true;
4371
4372 // If X & C == 0 then (X | C) == X +_{nuw} C
4373 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4374 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004375 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004376 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4377 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004378 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004379 return true;
4380 }
4381
4382 return false;
4383 };
4384
Pete Cooper35b00d52016-08-13 01:05:32 +00004385 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004386 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004387 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4388 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004389
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004390 return false;
4391 }
4392 }
4393}
4394
4395/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004396/// ALHS ARHS" is true. Otherwise, return None.
4397static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004398isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004399 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4400 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004401 switch (Pred) {
4402 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004403 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004404
4405 case CmpInst::ICMP_SLT:
4406 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004407 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4408 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004409 return true;
4410 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004411
4412 case CmpInst::ICMP_ULT:
4413 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004414 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4415 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004416 return true;
4417 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004418 }
4419}
4420
Chad Rosier226a7342016-05-05 17:41:19 +00004421/// Return true if the operands of the two compares match. IsSwappedOps is true
4422/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004423static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4424 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004425 bool &IsSwappedOps) {
4426
4427 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4428 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4429 return IsMatchingOps || IsSwappedOps;
4430}
4431
Chad Rosier41dd31f2016-04-20 19:15:26 +00004432/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4433/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4434/// BRHS" is false. Otherwise, return None if we can't infer anything.
4435static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004436 const Value *ALHS,
4437 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004438 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004439 const Value *BLHS,
4440 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004441 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004442 // Canonicalize the operands so they're matching.
4443 if (IsSwappedOps) {
4444 std::swap(BLHS, BRHS);
4445 BPred = ICmpInst::getSwappedPredicate(BPred);
4446 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004447 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004448 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004449 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004450 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004451
Chad Rosier41dd31f2016-04-20 19:15:26 +00004452 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004453}
4454
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004455/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4456/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4457/// C2" is false. Otherwise, return None if we can't infer anything.
4458static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004459isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4460 const ConstantInt *C1,
4461 CmpInst::Predicate BPred,
4462 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004463 assert(ALHS == BLHS && "LHS operands must match.");
4464 ConstantRange DomCR =
4465 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4466 ConstantRange CR =
4467 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4468 ConstantRange Intersection = DomCR.intersectWith(CR);
4469 ConstantRange Difference = DomCR.difference(CR);
4470 if (Intersection.isEmptySet())
4471 return false;
4472 if (Difference.isEmptySet())
4473 return true;
4474 return None;
4475}
4476
Chad Rosier2f498032017-07-28 18:47:43 +00004477/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4478/// false. Otherwise, return None if we can't infer anything.
4479static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4480 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004481 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004482 unsigned Depth) {
4483 Value *ALHS = LHS->getOperand(0);
4484 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004485 // The rest of the logic assumes the LHS condition is true. If that's not the
4486 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004487 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004488 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004489
4490 Value *BLHS = RHS->getOperand(0);
4491 Value *BRHS = RHS->getOperand(1);
4492 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004493
Chad Rosier226a7342016-05-05 17:41:19 +00004494 // Can we infer anything when the two compares have matching operands?
4495 bool IsSwappedOps;
4496 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4497 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4498 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004499 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004500 // No amount of additional analysis will infer the second condition, so
4501 // early exit.
4502 return None;
4503 }
4504
4505 // Can we infer anything when the LHS operands match and the RHS operands are
4506 // constants (not necessarily matching)?
4507 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4508 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4509 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4510 cast<ConstantInt>(BRHS)))
4511 return Implication;
4512 // No amount of additional analysis will infer the second condition, so
4513 // early exit.
4514 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004515 }
4516
Chad Rosier41dd31f2016-04-20 19:15:26 +00004517 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004518 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004519 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004520}
Chad Rosier2f498032017-07-28 18:47:43 +00004521
Chad Rosierf73a10d2017-08-01 19:22:36 +00004522/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4523/// false. Otherwise, return None if we can't infer anything. We expect the
4524/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4525static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4526 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004527 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004528 unsigned Depth) {
4529 // The LHS must be an 'or' or an 'and' instruction.
4530 assert((LHS->getOpcode() == Instruction::And ||
4531 LHS->getOpcode() == Instruction::Or) &&
4532 "Expected LHS to be 'and' or 'or'.");
4533
4534 // The remaining tests are all recursive, so bail out if we hit the limit.
4535 if (Depth == MaxDepth)
4536 return None;
4537
4538 // If the result of an 'or' is false, then we know both legs of the 'or' are
4539 // false. Similarly, if the result of an 'and' is true, then we know both
4540 // legs of the 'and' are true.
4541 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004542 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4543 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004544 // FIXME: Make this non-recursion.
4545 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004546 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004547 return Implication;
4548 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004549 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004550 return Implication;
4551 return None;
4552 }
4553 return None;
4554}
4555
Chad Rosier2f498032017-07-28 18:47:43 +00004556Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004557 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004558 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004559 // Bail out when we hit the limit.
4560 if (Depth == MaxDepth)
4561 return None;
4562
Chad Rosierf73a10d2017-08-01 19:22:36 +00004563 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4564 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004565 if (LHS->getType() != RHS->getType())
4566 return None;
4567
4568 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004569 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004570
4571 // LHS ==> RHS by definition
4572 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004573 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004574
Chad Rosierf73a10d2017-08-01 19:22:36 +00004575 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004576 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004577 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004578
Chad Rosier2f498032017-07-28 18:47:43 +00004579 assert(OpTy->isIntegerTy(1) && "implied by above");
4580
Chad Rosier2f498032017-07-28 18:47:43 +00004581 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004582 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4583 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4584 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004585 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004586
Chad Rosierf73a10d2017-08-01 19:22:36 +00004587 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4588 // an icmp. FIXME: Add support for and/or on the RHS.
4589 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4590 if (LHSBO && RHSCmp) {
4591 if ((LHSBO->getOpcode() == Instruction::And ||
4592 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004593 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004594 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004595 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004596}