blob: ea45e9d72c78bfd6f0f2a7fb6f00cba8352db545 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000160 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000161 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNW) &&
165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168 OS << ">";
169 return;
170 }
171 case scAddExpr:
172 case scMulExpr:
173 case scUMaxExpr:
174 case scSMaxExpr: {
175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000176 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 switch (NAry->getSCEVType()) {
178 case scAddExpr: OpStr = " + "; break;
179 case scMulExpr: OpStr = " * "; break;
180 case scUMaxExpr: OpStr = " umax "; break;
181 case scSMaxExpr: OpStr = " smax "; break;
182 }
183 OS << "(";
184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185 I != E; ++I) {
186 OS << **I;
187 if (llvm::next(I) != E)
188 OS << OpStr;
189 }
190 OS << ")";
191 return;
192 }
193 case scUDivExpr: {
194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196 return;
197 }
198 case scUnknown: {
199 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000200 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 if (U->isSizeOf(AllocTy)) {
202 OS << "sizeof(" << *AllocTy << ")";
203 return;
204 }
205 if (U->isAlignOf(AllocTy)) {
206 OS << "alignof(" << *AllocTy << ")";
207 return;
208 }
Andrew Trick635f7182011-03-09 17:23:39 +0000209
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 Constant *FieldNo;
212 if (U->isOffsetOf(CTy, FieldNo)) {
213 OS << "offsetof(" << *CTy << ", ";
214 WriteAsOperand(OS, FieldNo, false);
215 OS << ")";
216 return;
217 }
Andrew Trick635f7182011-03-09 17:23:39 +0000218
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 // Otherwise just print it normally.
220 WriteAsOperand(OS, U->getValue(), false);
221 return;
222 }
223 case scCouldNotCompute:
224 OS << "***COULDNOTCOMPUTE***";
225 return;
226 default: break;
227 }
228 llvm_unreachable("Unknown SCEV kind!");
229}
230
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000231Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000232 switch (getSCEVType()) {
233 case scConstant:
234 return cast<SCEVConstant>(this)->getType();
235 case scTruncate:
236 case scZeroExtend:
237 case scSignExtend:
238 return cast<SCEVCastExpr>(this)->getType();
239 case scAddRecExpr:
240 case scMulExpr:
241 case scUMaxExpr:
242 case scSMaxExpr:
243 return cast<SCEVNAryExpr>(this)->getType();
244 case scAddExpr:
245 return cast<SCEVAddExpr>(this)->getType();
246 case scUDivExpr:
247 return cast<SCEVUDivExpr>(this)->getType();
248 case scUnknown:
249 return cast<SCEVUnknown>(this)->getType();
250 case scCouldNotCompute:
251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252 return 0;
253 default: break;
254 }
255 llvm_unreachable("Unknown SCEV kind!");
256 return 0;
257}
258
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000259bool SCEV::isZero() const {
260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261 return SC->getValue()->isZero();
262 return false;
263}
264
Dan Gohman70a1fe72009-05-18 15:22:39 +0000265bool SCEV::isOne() const {
266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267 return SC->getValue()->isOne();
268 return false;
269}
Chris Lattner53e677a2004-04-02 20:23:17 +0000270
Dan Gohman4d289bf2009-06-24 00:30:26 +0000271bool SCEV::isAllOnesValue() const {
272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273 return SC->getValue()->isAllOnesValue();
274 return false;
275}
276
Owen Anderson753ad612009-06-22 21:57:23 +0000277SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000279
Chris Lattner53e677a2004-04-02 20:23:17 +0000280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281 return S->getSCEVType() == scCouldNotCompute;
282}
283
Dan Gohman0bba49c2009-07-07 17:06:11 +0000284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000285 FoldingSetNodeID ID;
286 ID.AddInteger(scConstant);
287 ID.AddPointer(V);
288 void *IP = 0;
289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000291 UniqueSCEVs.InsertNode(S, IP);
292 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
Chris Lattner53e677a2004-04-02 20:23:17 +0000294
Dan Gohman0bba49c2009-07-07 17:06:11 +0000295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000296 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000297}
298
Dan Gohman0bba49c2009-07-07 17:06:11 +0000299const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000302 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000303}
304
Dan Gohman3bf63762010-06-18 19:54:20 +0000305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000306 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000308
Dan Gohman3bf63762010-06-18 19:54:20 +0000309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000310 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000311 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000314 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman3bf63762010-06-18 19:54:20 +0000317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000318 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Dan Gohman3bf63762010-06-18 19:54:20 +0000325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000327 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000330 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000331}
332
Dan Gohmanab37f502010-08-02 23:49:30 +0000333void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000334 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000335 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000336
337 // Remove this SCEVUnknown from the uniquing map.
338 SE->UniqueSCEVs.RemoveNode(this);
339
340 // Release the value.
341 setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000345 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000346 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000347
348 // Remove this SCEVUnknown from the uniquing map.
349 SE->UniqueSCEVs.RemoveNode(this);
350
351 // Update this SCEVUnknown to point to the new value. This is needed
352 // because there may still be outstanding SCEVs which still point to
353 // this SCEVUnknown.
354 setValPtr(New);
355}
356
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000359 if (VCE->getOpcode() == Instruction::PtrToInt)
360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000361 if (CE->getOpcode() == Instruction::GetElementPtr &&
362 CE->getOperand(0)->isNullValue() &&
363 CE->getNumOperands() == 2)
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365 if (CI->isOne()) {
366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367 ->getElementType();
368 return true;
369 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000370
371 return false;
372}
373
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000376 if (VCE->getOpcode() == Instruction::PtrToInt)
377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000378 if (CE->getOpcode() == Instruction::GetElementPtr &&
379 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000380 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000382 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (!STy->isPacked() &&
384 CE->getNumOperands() == 3 &&
385 CE->getOperand(1)->isNullValue()) {
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387 if (CI->isOne() &&
388 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000389 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000390 AllocTy = STy->getElementType(1);
391 return true;
392 }
393 }
394 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000395
396 return false;
397}
398
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getNumOperands() == 3 &&
405 CE->getOperand(0)->isNullValue() &&
406 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409 // Ignore vector types here so that ScalarEvolutionExpander doesn't
410 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000411 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000412 CTy = Ty;
413 FieldNo = CE->getOperand(2);
414 return true;
415 }
416 }
417
418 return false;
419}
420
Chris Lattner8d741b82004-06-20 06:23:15 +0000421//===----------------------------------------------------------------------===//
422// SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427 /// than the complexity of the RHS. This comparator is used to canonicalize
428 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000429 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000430 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000431 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000433
Dan Gohman67ef74e2010-08-27 15:26:01 +0000434 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000435 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000436 return compare(LHS, RHS) < 0;
437 }
438
439 // Return negative, zero, or positive, if LHS is less than, equal to, or
440 // greater than RHS, respectively. A three-way result allows recursive
441 // comparisons to be more efficient.
442 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000443 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000445 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000446
Dan Gohman72861302009-05-07 14:39:04 +0000447 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000450 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000451
Dan Gohman3bf63762010-06-18 19:54:20 +0000452 // Aside from the getSCEVType() ordering, the particular ordering
453 // isn't very important except that it's beneficial to be consistent,
454 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000455 switch (LType) {
456 case scUnknown: {
457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000459
460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000462 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000463
464 // Order pointer values after integer values. This helps SCEVExpander
465 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000466 bool LIsPointer = LV->getType()->isPointerTy(),
467 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000468 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000470
471 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000472 unsigned LID = LV->getValueID(),
473 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000474 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000476
477 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000478 if (const Argument *LA = dyn_cast<Argument>(LV)) {
479 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 }
483
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 // For instructions, compare their loop depth, and their operand
485 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488
489 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 const BasicBlock *LParent = LInst->getParent(),
491 *RParent = RInst->getParent();
492 if (LParent != RParent) {
493 unsigned LDepth = LI->getLoopDepth(LParent),
494 RDepth = LI->getLoopDepth(RParent);
495 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000496 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 unsigned LNumOps = LInst->getNumOperands(),
501 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 case scConstant: {
509 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000511
512 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000513 const APInt &LA = LC->getValue()->getValue();
514 const APInt &RA = RC->getValue()->getValue();
515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000516 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000517 return (int)LBitWidth - (int)RBitWidth;
518 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000519 }
520
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521 case scAddRecExpr: {
522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524
525 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527 if (LLoop != RLoop) {
528 unsigned LDepth = LLoop->getLoopDepth(),
529 RDepth = RLoop->getLoopDepth();
530 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000532 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Addrec complexity grows with operand count.
535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536 if (LNumOps != RNumOps)
537 return (int)LNumOps - (int)RNumOps;
538
539 // Lexicographically compare.
540 for (unsigned i = 0; i != LNumOps; ++i) {
541 long X = compare(LA->getOperand(i), RA->getOperand(i));
542 if (X != 0)
543 return X;
544 }
545
546 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 }
548
Dan Gohman67ef74e2010-08-27 15:26:01 +0000549 case scAddExpr:
550 case scMulExpr:
551 case scSMaxExpr:
552 case scUMaxExpr: {
553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558 for (unsigned i = 0; i != LNumOps; ++i) {
559 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560 return 1;
561 long X = compare(LC->getOperand(i), RC->getOperand(i));
562 if (X != 0)
563 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000564 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000566 }
567
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568 case scUDivExpr: {
569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571
572 // Lexicographically compare udiv expressions.
573 long X = compare(LC->getLHS(), RC->getLHS());
574 if (X != 0)
575 return X;
576 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scTruncate:
580 case scZeroExtend:
581 case scSignExtend: {
582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584
585 // Compare cast expressions by operand.
586 return compare(LC->getOperand(), RC->getOperand());
587 }
588
589 default:
590 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000591 }
592
593 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000595 }
596 };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000604/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000605/// results from this routine. In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000610 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 if (Ops.size() < 2) return; // Noop
612 if (Ops.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
614 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616 if (SCEVComplexityCompare(LI)(RHS, LHS))
617 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000618 return;
619 }
620
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 // Do the rough sort by complexity.
622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624 // Now that we are sorted by complexity, group elements of the same
625 // complexity. Note that this is, at worst, N^2, but the vector is likely to
626 // be extremely short in practice. Note that we take this approach because we
627 // do not want to depend on the addresses of the objects we are grouping.
628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629 const SCEV *S = Ops[i];
630 unsigned Complexity = S->getSCEVType();
631
632 // If there are any objects of the same complexity and same value as this
633 // one, group them.
634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635 if (Ops[j] == S) { // Found a duplicate.
636 // Move it to immediately after i'th element.
637 std::swap(Ops[i+1], Ops[j]);
638 ++i; // no need to rescan it.
639 if (i == e-2) return; // Done!
640 }
641 }
642 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000643}
644
Chris Lattner53e677a2004-04-02 20:23:17 +0000645
Chris Lattner53e677a2004-04-02 20:23:17 +0000646
647//===----------------------------------------------------------------------===//
648// Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
Eli Friedmanb42a6262008-08-04 23:49:06 +0000651/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000652/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000654 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000655 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 // Handle the simplest case efficiently.
657 if (K == 1)
658 return SE.getTruncateOrZeroExtend(It, ResultTy);
659
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000660 // We are using the following formula for BC(It, K):
661 //
662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // Suppose, W is the bitwidth of the return value. We must be prepared for
665 // overflow. Hence, we must assure that the result of our computation is
666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
667 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000670 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676 // This formula is trivially equivalent to the previous formula. However,
677 // this formula can be implemented much more efficiently. The trick is that
678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679 // arithmetic. To do exact division in modular arithmetic, all we have
680 // to do is multiply by the inverse. Therefore, this step can be done at
681 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // The next issue is how to safely do the division by 2^T. The way this
684 // is done is by doing the multiplication step at a width of at least W + T
685 // bits. This way, the bottom W+T bits of the product are accurate. Then,
686 // when we perform the division by 2^T (which is equivalent to a right shift
687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
688 // truncated out after the division by 2^T.
689 //
690 // In comparison to just directly using the first formula, this technique
691 // is much more efficient; using the first formula requires W * K bits,
692 // but this formula less than W + K bits. Also, the first formula requires
693 // a division step, whereas this formula only requires multiplies and shifts.
694 //
695 // It doesn't matter whether the subtraction step is done in the calculation
696 // width or the input iteration count's width; if the subtraction overflows,
697 // the result must be zero anyway. We prefer here to do it in the width of
698 // the induction variable because it helps a lot for certain cases; CodeGen
699 // isn't smart enough to ignore the overflow, which leads to much less
700 // efficient code if the width of the subtraction is wider than the native
701 // register width.
702 //
703 // (It's possible to not widen at all by pulling out factors of 2 before
704 // the multiplication; for example, K=2 can be calculated as
705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706 // extra arithmetic, so it's not an obvious win, and it gets
707 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000708
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Protection from insane SCEVs; this bound is conservative,
710 // but it probably doesn't matter.
711 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000712 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000714 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000715
Eli Friedmanb42a6262008-08-04 23:49:06 +0000716 // Calculate K! / 2^T and T; we divide out the factors of two before
717 // multiplying for calculating K! / 2^T to avoid overflow.
718 // Other overflow doesn't matter because we only care about the bottom
719 // W bits of the result.
720 APInt OddFactorial(W, 1);
721 unsigned T = 1;
722 for (unsigned i = 3; i <= K; ++i) {
723 APInt Mult(W, i);
724 unsigned TwoFactors = Mult.countTrailingZeros();
725 T += TwoFactors;
726 Mult = Mult.lshr(TwoFactors);
727 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000728 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000731 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000732
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000733 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000734 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736 // Calculate the multiplicative inverse of K! / 2^T;
737 // this multiplication factor will perform the exact division by
738 // K! / 2^T.
739 APInt Mod = APInt::getSignedMinValue(W+1);
740 APInt MultiplyFactor = OddFactorial.zext(W+1);
741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742 MultiplyFactor = MultiplyFactor.trunc(W);
743
744 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000746 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000750 Dividend = SE.getMulExpr(Dividend,
751 SE.getTruncateOrZeroExtend(S, CalculationTy));
752 }
753
754 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756
757 // Truncate the result, and divide by K! / 2^T.
758
759 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000761}
762
Chris Lattner53e677a2004-04-02 20:23:17 +0000763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number. We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000769///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000770/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000771///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000773 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 // The computation is correct in the face of overflow provided that the
777 // multiplication is performed _after_ the evaluation of the binomial
778 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000780 if (isa<SCEVCouldNotCompute>(Coeff))
781 return Coeff;
782
783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000784 }
785 return Result;
786}
787
Chris Lattner53e677a2004-04-02 20:23:17 +0000788//===----------------------------------------------------------------------===//
789// SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000793 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000795 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000796 assert(isSCEVable(Ty) &&
797 "This is not a conversion to a SCEVable type!");
798 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000799
Dan Gohmanc050fd92009-07-13 20:50:19 +0000800 FoldingSetNodeID ID;
801 ID.AddInteger(scTruncate);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000807 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000809 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000812
Dan Gohman20900ca2009-04-22 16:20:48 +0000813 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000815 return getTruncateExpr(ST->getOperand(), Ty);
816
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000819 return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826 // eliminate all the truncates.
827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828 SmallVector<const SCEV *, 4> Operands;
829 bool hasTrunc = false;
830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832 hasTrunc = isa<SCEVTruncateExpr>(S);
833 Operands.push_back(S);
834 }
835 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000836 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000838 }
839
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841 // eliminate all the truncates.
842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843 SmallVector<const SCEV *, 4> Operands;
844 bool hasTrunc = false;
845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847 hasTrunc = isa<SCEVTruncateExpr>(S);
848 Operands.push_back(S);
849 }
850 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000851 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000853 }
854
Dan Gohman6864db62009-06-18 16:24:47 +0000855 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000861 }
862
Dan Gohmanf53462d2010-07-15 20:02:11 +0000863 // As a special case, fold trunc(undef) to undef. We don't want to
864 // know too much about SCEVUnknowns, but this special case is handy
865 // and harmless.
866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867 if (isa<UndefValue>(U->getValue()))
868 return getSCEV(UndefValue::get(Ty));
869
Dan Gohman420ab912010-06-25 18:47:08 +0000870 // The cast wasn't folded; create an explicit cast node. We can reuse
871 // the existing insert position since if we get here, we won't have
872 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000875 UniqueSCEVs.InsertNode(S, IP);
876 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877}
878
Dan Gohman0bba49c2009-07-07 17:06:11 +0000879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000880 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000882 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000883 assert(isSCEVable(Ty) &&
884 "This is not a conversion to a SCEVable type!");
885 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000886
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000887 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889 return getConstant(
890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000892
Dan Gohman20900ca2009-04-22 16:20:48 +0000893 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000895 return getZeroExtendExpr(SZ->getOperand(), Ty);
896
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000897 // Before doing any expensive analysis, check to see if we've already
898 // computed a SCEV for this Op and Ty.
899 FoldingSetNodeID ID;
900 ID.AddInteger(scZeroExtend);
901 ID.AddPointer(Op);
902 ID.AddPointer(Ty);
903 void *IP = 0;
904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
Nick Lewycky630d85a2011-01-23 06:20:19 +0000906 // zext(trunc(x)) --> zext(x) or x or trunc(x)
907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908 // It's possible the bits taken off by the truncate were all zero bits. If
909 // so, we should be able to simplify this further.
910 const SCEV *X = ST->getOperand();
911 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000912 unsigned TruncBits = getTypeSizeInBits(ST->getType());
913 unsigned NewBits = getTypeSizeInBits(Ty);
914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000915 CR.zextOrTrunc(NewBits)))
916 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000917 }
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000921 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000924 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000925 const SCEV *Start = AR->getStart();
926 const SCEV *Step = AR->getStepRecurrence(*this);
927 unsigned BitWidth = getTypeSizeInBits(AR->getType());
928 const Loop *L = AR->getLoop();
929
Dan Gohmaneb490a72009-07-25 01:22:26 +0000930 // If we have special knowledge that this addrec won't overflow,
931 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000932 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000935 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // Check whether the backedge-taken count is SCEVCouldNotCompute.
938 // Note that this serves two purposes: It filters out loops that are
939 // simply not analyzable, and it covers the case where this code is
940 // being called from within backedge-taken count analysis, such that
941 // attempting to ask for the backedge-taken count would likely result
942 // in infinite recursion. In the later case, the analysis code will
943 // cope with a conservative value, and it will take care to purge
944 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000947 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000949
950 // Check whether the backedge-taken count can be losslessly casted to
951 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000952 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000953 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *Add = getAddExpr(Start, ZMul);
961 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000962 getAddExpr(getZeroExtendExpr(Start, WideTy),
963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966 // Cache knowledge of AR NUW, which is propagated to this AddRec.
967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000968 // Return the expression with the addrec on the outside.
969 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000971 L, AR->getNoWrapFlags());
972 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 // Similar to above, only this time treat the step value as signed.
974 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000977 OperandExtendedAdd =
978 getAddExpr(getZeroExtendExpr(Start, WideTy),
979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982 // Cache knowledge of AR NW, which is propagated to this AddRec.
983 // Negative step causes unsigned wrap, but it still can't self-wrap.
984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000988 L, AR->getNoWrapFlags());
989 }
Dan Gohman85b05a22009-07-13 21:35:55 +0000990 }
991
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step)) {
997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998 getUnsignedRange(Step).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001002 AR->getPostIncExpr(*this), N))) {
1003 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001010 } else if (isKnownNegative(Step)) {
1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001016 AR->getPostIncExpr(*this), N))) {
1017 // Cache knowledge of AR NW, which is propagated to this AddRec.
1018 // Negative step causes unsigned wrap, but it still can't self-wrap.
1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001021 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001023 L, AR->getNoWrapFlags());
1024 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 }
1026 }
1027 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // The cast wasn't folded; create an explicit cast node.
1030 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001034 UniqueSCEVs.InsertNode(S, IP);
1035 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001036}
1037
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042 ICmpInst::Predicate *Pred,
1043 ScalarEvolution *SE) {
1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045 if (SE->isKnownPositive(Step)) {
1046 *Pred = ICmpInst::ICMP_SLT;
1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048 SE->getSignedRange(Step).getSignedMax());
1049 }
1050 if (SE->isKnownNegative(Step)) {
1051 *Pred = ICmpInst::ICMP_SGT;
1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053 SE->getSignedRange(Step).getSignedMin());
1054 }
1055 return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001065 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001066 ScalarEvolution *SE) {
1067 const Loop *L = AR->getLoop();
1068 const SCEV *Start = AR->getStart();
1069 const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071 // Check for a simple looking step prior to loop entry.
1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001073 if (!SA)
1074 return 0;
1075
1076 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1077 // subtraction is expensive. For this purpose, perform a quick and dirty
1078 // difference, by checking for Step in the operand list.
1079 SmallVector<const SCEV *, 4> DiffOps;
1080 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1081 I != E; ++I) {
1082 if (*I != Step)
1083 DiffOps.push_back(*I);
1084 }
1085 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001086 return 0;
1087
1088 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1089 // same three conditions that getSignExtendedExpr checks.
1090
1091 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001092 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001093 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1094 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1095
Andrew Trickcf31f912011-06-01 19:14:56 +00001096 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001097 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001098
1099 // 2. Direct overflow check on the step operation's expression.
1100 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001101 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001102 const SCEV *OperandExtendedStart =
1103 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1104 SE->getSignExtendExpr(Step, WideTy));
1105 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1106 // Cache knowledge of PreAR NSW.
1107 if (PreAR)
1108 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1109 // FIXME: this optimization needs a unit test
1110 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1111 return PreStart;
1112 }
1113
1114 // 3. Loop precondition.
1115 ICmpInst::Predicate Pred;
1116 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1117
Andrew Trickcf31f912011-06-01 19:14:56 +00001118 if (OverflowLimit &&
1119 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120 return PreStart;
1121 }
1122 return 0;
1123}
1124
1125// Get the normalized sign-extended expression for this AddRec's Start.
1126static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001127 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001128 ScalarEvolution *SE) {
1129 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1130 if (!PreStart)
1131 return SE->getSignExtendExpr(AR->getStart(), Ty);
1132
1133 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1134 SE->getSignExtendExpr(PreStart, Ty));
1135}
1136
Dan Gohman0bba49c2009-07-07 17:06:11 +00001137const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001138 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001139 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001140 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001141 assert(isSCEVable(Ty) &&
1142 "This is not a conversion to a SCEVable type!");
1143 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001144
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001145 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001146 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1147 return getConstant(
1148 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1149 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001150
Dan Gohman20900ca2009-04-22 16:20:48 +00001151 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001152 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001153 return getSignExtendExpr(SS->getOperand(), Ty);
1154
Nick Lewycky73f565e2011-01-19 15:56:12 +00001155 // sext(zext(x)) --> zext(x)
1156 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1157 return getZeroExtendExpr(SZ->getOperand(), Ty);
1158
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001159 // Before doing any expensive analysis, check to see if we've already
1160 // computed a SCEV for this Op and Ty.
1161 FoldingSetNodeID ID;
1162 ID.AddInteger(scSignExtend);
1163 ID.AddPointer(Op);
1164 ID.AddPointer(Ty);
1165 void *IP = 0;
1166 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1167
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001168 // If the input value is provably positive, build a zext instead.
1169 if (isKnownNonNegative(Op))
1170 return getZeroExtendExpr(Op, Ty);
1171
Nick Lewycky630d85a2011-01-23 06:20:19 +00001172 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1173 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1174 // It's possible the bits taken off by the truncate were all sign bits. If
1175 // so, we should be able to simplify this further.
1176 const SCEV *X = ST->getOperand();
1177 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001178 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1179 unsigned NewBits = getTypeSizeInBits(Ty);
1180 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001181 CR.sextOrTrunc(NewBits)))
1182 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001183 }
1184
Dan Gohman01ecca22009-04-27 20:16:15 +00001185 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001186 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001187 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001188 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001189 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001190 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001191 const SCEV *Start = AR->getStart();
1192 const SCEV *Step = AR->getStepRecurrence(*this);
1193 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1194 const Loop *L = AR->getLoop();
1195
Dan Gohmaneb490a72009-07-25 01:22:26 +00001196 // If we have special knowledge that this addrec won't overflow,
1197 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001198 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001199 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001200 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001201 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001202
Dan Gohman01ecca22009-04-27 20:16:15 +00001203 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1204 // Note that this serves two purposes: It filters out loops that are
1205 // simply not analyzable, and it covers the case where this code is
1206 // being called from within backedge-taken count analysis, such that
1207 // attempting to ask for the backedge-taken count would likely result
1208 // in infinite recursion. In the later case, the analysis code will
1209 // cope with a conservative value, and it will take care to purge
1210 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001211 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001212 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001213 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001214 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001215
1216 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001217 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001218 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001219 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001220 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001221 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1222 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001223 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001224 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001225 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001226 const SCEV *Add = getAddExpr(Start, SMul);
1227 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001228 getAddExpr(getSignExtendExpr(Start, WideTy),
1229 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1230 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001231 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1232 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1233 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001234 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001235 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001236 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001237 L, AR->getNoWrapFlags());
1238 }
Dan Gohman850f7912009-07-16 17:34:36 +00001239 // Similar to above, only this time treat the step value as unsigned.
1240 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001241 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001242 Add = getAddExpr(Start, UMul);
1243 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001244 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001245 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1246 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001247 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1248 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1249 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001250 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001251 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001252 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001253 L, AR->getNoWrapFlags());
1254 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001255 }
1256
1257 // If the backedge is guarded by a comparison with the pre-inc value
1258 // the addrec is safe. Also, if the entry is guarded by a comparison
1259 // with the start value and the backedge is guarded by a comparison
1260 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001261 ICmpInst::Predicate Pred;
1262 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1263 if (OverflowLimit &&
1264 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1265 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1266 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1267 OverflowLimit)))) {
1268 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1270 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1271 getSignExtendExpr(Step, Ty),
1272 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001273 }
1274 }
1275 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001276
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001277 // The cast wasn't folded; create an explicit cast node.
1278 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001279 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001280 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1281 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001282 UniqueSCEVs.InsertNode(S, IP);
1283 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001284}
1285
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001286/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1287/// unspecified bits out to the given type.
1288///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001289const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001290 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001291 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1292 "This is not an extending conversion!");
1293 assert(isSCEVable(Ty) &&
1294 "This is not a conversion to a SCEVable type!");
1295 Ty = getEffectiveSCEVType(Ty);
1296
1297 // Sign-extend negative constants.
1298 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1299 if (SC->getValue()->getValue().isNegative())
1300 return getSignExtendExpr(Op, Ty);
1301
1302 // Peel off a truncate cast.
1303 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001304 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1306 return getAnyExtendExpr(NewOp, Ty);
1307 return getTruncateOrNoop(NewOp, Ty);
1308 }
1309
1310 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001311 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001312 if (!isa<SCEVZeroExtendExpr>(ZExt))
1313 return ZExt;
1314
1315 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001316 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001317 if (!isa<SCEVSignExtendExpr>(SExt))
1318 return SExt;
1319
Dan Gohmana10756e2010-01-21 02:09:26 +00001320 // Force the cast to be folded into the operands of an addrec.
1321 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1322 SmallVector<const SCEV *, 4> Ops;
1323 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1324 I != E; ++I)
1325 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001326 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001327 }
1328
Dan Gohmanf53462d2010-07-15 20:02:11 +00001329 // As a special case, fold anyext(undef) to undef. We don't want to
1330 // know too much about SCEVUnknowns, but this special case is handy
1331 // and harmless.
1332 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1333 if (isa<UndefValue>(U->getValue()))
1334 return getSCEV(UndefValue::get(Ty));
1335
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001336 // If the expression is obviously signed, use the sext cast value.
1337 if (isa<SCEVSMaxExpr>(Op))
1338 return SExt;
1339
1340 // Absent any other information, use the zext cast value.
1341 return ZExt;
1342}
1343
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001344/// CollectAddOperandsWithScales - Process the given Ops list, which is
1345/// a list of operands to be added under the given scale, update the given
1346/// map. This is a helper function for getAddRecExpr. As an example of
1347/// what it does, given a sequence of operands that would form an add
1348/// expression like this:
1349///
1350/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1351///
1352/// where A and B are constants, update the map with these values:
1353///
1354/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1355///
1356/// and add 13 + A*B*29 to AccumulatedConstant.
1357/// This will allow getAddRecExpr to produce this:
1358///
1359/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1360///
1361/// This form often exposes folding opportunities that are hidden in
1362/// the original operand list.
1363///
1364/// Return true iff it appears that any interesting folding opportunities
1365/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1366/// the common case where no interesting opportunities are present, and
1367/// is also used as a check to avoid infinite recursion.
1368///
1369static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001370CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1371 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001372 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001373 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001374 const APInt &Scale,
1375 ScalarEvolution &SE) {
1376 bool Interesting = false;
1377
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001378 // Iterate over the add operands. They are sorted, with constants first.
1379 unsigned i = 0;
1380 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1381 ++i;
1382 // Pull a buried constant out to the outside.
1383 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1384 Interesting = true;
1385 AccumulatedConstant += Scale * C->getValue()->getValue();
1386 }
1387
1388 // Next comes everything else. We're especially interested in multiplies
1389 // here, but they're in the middle, so just visit the rest with one loop.
1390 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001391 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1392 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1393 APInt NewScale =
1394 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1395 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1396 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001397 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001398 Interesting |=
1399 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001400 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001401 NewScale, SE);
1402 } else {
1403 // A multiplication of a constant with some other value. Update
1404 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001405 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1406 const SCEV *Key = SE.getMulExpr(MulOps);
1407 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001408 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001409 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 NewOps.push_back(Pair.first->first);
1411 } else {
1412 Pair.first->second += NewScale;
1413 // The map already had an entry for this value, which may indicate
1414 // a folding opportunity.
1415 Interesting = true;
1416 }
1417 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001418 } else {
1419 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001420 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001421 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001423 NewOps.push_back(Pair.first->first);
1424 } else {
1425 Pair.first->second += Scale;
1426 // The map already had an entry for this value, which may indicate
1427 // a folding opportunity.
1428 Interesting = true;
1429 }
1430 }
1431 }
1432
1433 return Interesting;
1434}
1435
1436namespace {
1437 struct APIntCompare {
1438 bool operator()(const APInt &LHS, const APInt &RHS) const {
1439 return LHS.ult(RHS);
1440 }
1441 };
1442}
1443
Dan Gohman6c0866c2009-05-24 23:45:28 +00001444/// getAddExpr - Get a canonical add expression, or something simpler if
1445/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001446const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001447 SCEV::NoWrapFlags Flags) {
1448 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1449 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001450 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001451 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001452#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001453 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001454 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001455 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001456 "SCEVAddExpr operand types don't match!");
1457#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001458
Andrew Trick3228cc22011-03-14 16:50:06 +00001459 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001460 // And vice-versa.
1461 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1462 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1463 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001464 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001465 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1466 E = Ops.end(); I != E; ++I)
1467 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001468 All = false;
1469 break;
1470 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001471 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001472 }
1473
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001475 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001476
1477 // If there are any constants, fold them together.
1478 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001479 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001481 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001482 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001483 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001484 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1485 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001486 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001487 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001488 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 }
1490
1491 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001492 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 Ops.erase(Ops.begin());
1494 --Idx;
1495 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001496
Dan Gohmanbca091d2010-04-12 23:08:18 +00001497 if (Ops.size() == 1) return Ops[0];
1498 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001499
Dan Gohman68ff7762010-08-27 21:39:59 +00001500 // Okay, check to see if the same value occurs in the operand list more than
1501 // once. If so, merge them together into an multiply expression. Since we
1502 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001503 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001504 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001505 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001506 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001507 // Scan ahead to count how many equal operands there are.
1508 unsigned Count = 2;
1509 while (i+Count != e && Ops[i+Count] == Ops[i])
1510 ++Count;
1511 // Merge the values into a multiply.
1512 const SCEV *Scale = getConstant(Ty, Count);
1513 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1514 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001516 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001517 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001518 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001519 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001521 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001522 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001523
Dan Gohman728c7f32009-05-08 21:03:19 +00001524 // Check for truncates. If all the operands are truncated from the same
1525 // type, see if factoring out the truncate would permit the result to be
1526 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1527 // if the contents of the resulting outer trunc fold to something simple.
1528 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1529 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001530 Type *DstType = Trunc->getType();
1531 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001532 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001533 bool Ok = true;
1534 // Check all the operands to see if they can be represented in the
1535 // source type of the truncate.
1536 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1537 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1538 if (T->getOperand()->getType() != SrcType) {
1539 Ok = false;
1540 break;
1541 }
1542 LargeOps.push_back(T->getOperand());
1543 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001544 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001545 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001546 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001547 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1548 if (const SCEVTruncateExpr *T =
1549 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1550 if (T->getOperand()->getType() != SrcType) {
1551 Ok = false;
1552 break;
1553 }
1554 LargeMulOps.push_back(T->getOperand());
1555 } else if (const SCEVConstant *C =
1556 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001557 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001558 } else {
1559 Ok = false;
1560 break;
1561 }
1562 }
1563 if (Ok)
1564 LargeOps.push_back(getMulExpr(LargeMulOps));
1565 } else {
1566 Ok = false;
1567 break;
1568 }
1569 }
1570 if (Ok) {
1571 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001572 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001573 // If it folds to something simple, use it. Otherwise, don't.
1574 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1575 return getTruncateExpr(Fold, DstType);
1576 }
1577 }
1578
1579 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001580 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1581 ++Idx;
1582
1583 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 if (Idx < Ops.size()) {
1585 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001586 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 // If we have an add, expand the add operands onto the end of the operands
1588 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001590 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 DeletedAdd = true;
1592 }
1593
1594 // If we deleted at least one add, we added operands to the end of the list,
1595 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001596 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001598 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 }
1600
1601 // Skip over the add expression until we get to a multiply.
1602 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1603 ++Idx;
1604
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001605 // Check to see if there are any folding opportunities present with
1606 // operands multiplied by constant values.
1607 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1608 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001609 DenseMap<const SCEV *, APInt> M;
1610 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001611 APInt AccumulatedConstant(BitWidth, 0);
1612 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001613 Ops.data(), Ops.size(),
1614 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001615 // Some interesting folding opportunity is present, so its worthwhile to
1616 // re-generate the operands list. Group the operands by constant scale,
1617 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001618 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001619 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001620 E = NewOps.end(); I != E; ++I)
1621 MulOpLists[M.find(*I)->second].push_back(*I);
1622 // Re-generate the operands list.
1623 Ops.clear();
1624 if (AccumulatedConstant != 0)
1625 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001626 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1627 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001628 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001629 Ops.push_back(getMulExpr(getConstant(I->first),
1630 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001631 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001632 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001633 if (Ops.size() == 1)
1634 return Ops[0];
1635 return getAddExpr(Ops);
1636 }
1637 }
1638
Chris Lattner53e677a2004-04-02 20:23:17 +00001639 // If we are adding something to a multiply expression, make sure the
1640 // something is not already an operand of the multiply. If so, merge it into
1641 // the multiply.
1642 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001643 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001644 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001645 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001646 if (isa<SCEVConstant>(MulOpSCEV))
1647 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001649 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001651 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 if (Mul->getNumOperands() != 2) {
1653 // If the multiply has more than two operands, we must get the
1654 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001655 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1656 Mul->op_begin()+MulOp);
1657 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001658 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001660 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001661 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001662 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 if (Ops.size() == 2) return OuterMul;
1664 if (AddOp < Idx) {
1665 Ops.erase(Ops.begin()+AddOp);
1666 Ops.erase(Ops.begin()+Idx-1);
1667 } else {
1668 Ops.erase(Ops.begin()+Idx);
1669 Ops.erase(Ops.begin()+AddOp-1);
1670 }
1671 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001672 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001674
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 // Check this multiply against other multiplies being added together.
1676 for (unsigned OtherMulIdx = Idx+1;
1677 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1678 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001679 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 // If MulOp occurs in OtherMul, we can fold the two multiplies
1681 // together.
1682 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1683 OMulOp != e; ++OMulOp)
1684 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1685 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001686 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001688 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001689 Mul->op_begin()+MulOp);
1690 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001691 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001693 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001694 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001695 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001696 OtherMul->op_begin()+OMulOp);
1697 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001698 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001700 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1701 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001703 Ops.erase(Ops.begin()+Idx);
1704 Ops.erase(Ops.begin()+OtherMulIdx-1);
1705 Ops.push_back(OuterMul);
1706 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
1708 }
1709 }
1710 }
1711
1712 // If there are any add recurrences in the operands list, see if any other
1713 // added values are loop invariant. If so, we can fold them into the
1714 // recurrence.
1715 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1716 ++Idx;
1717
1718 // Scan over all recurrences, trying to fold loop invariants into them.
1719 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1720 // Scan all of the other operands to this add and add them to the vector if
1721 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001722 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001723 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001724 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001726 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 LIOps.push_back(Ops[i]);
1728 Ops.erase(Ops.begin()+i);
1729 --i; --e;
1730 }
1731
1732 // If we found some loop invariants, fold them into the recurrence.
1733 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001734 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 LIOps.push_back(AddRec->getStart());
1736
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001738 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001739 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001740
Dan Gohmanb9f96512010-06-30 07:16:37 +00001741 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001742 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001743 // Always propagate NW.
1744 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001745 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001746
Chris Lattner53e677a2004-04-02 20:23:17 +00001747 // If all of the other operands were loop invariant, we are done.
1748 if (Ops.size() == 1) return NewRec;
1749
Nick Lewycky980e9f32011-09-06 05:08:09 +00001750 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001751 for (unsigned i = 0;; ++i)
1752 if (Ops[i] == AddRec) {
1753 Ops[i] = NewRec;
1754 break;
1755 }
Dan Gohman246b2562007-10-22 18:31:58 +00001756 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 }
1758
1759 // Okay, if there weren't any loop invariants to be folded, check to see if
1760 // there are multiple AddRec's with the same loop induction variable being
1761 // added together. If so, we can fold them.
1762 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001763 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1764 ++OtherIdx)
1765 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1766 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1767 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1768 AddRec->op_end());
1769 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1770 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001771 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001772 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001773 if (OtherAddRec->getLoop() == AddRecLoop) {
1774 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1775 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001776 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001777 AddRecOps.append(OtherAddRec->op_begin()+i,
1778 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001779 break;
1780 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001781 AddRecOps[i] = getAddExpr(AddRecOps[i],
1782 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001783 }
1784 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001785 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001786 // Step size has changed, so we cannot guarantee no self-wraparound.
1787 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001788 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 }
1790
1791 // Otherwise couldn't fold anything into this recurrence. Move onto the
1792 // next one.
1793 }
1794
1795 // Okay, it looks like we really DO need an add expr. Check to see if we
1796 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001797 FoldingSetNodeID ID;
1798 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001799 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1800 ID.AddPointer(Ops[i]);
1801 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001802 SCEVAddExpr *S =
1803 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1804 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001805 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1806 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001807 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1808 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001809 UniqueSCEVs.InsertNode(S, IP);
1810 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001811 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001812 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001813}
1814
Dan Gohman6c0866c2009-05-24 23:45:28 +00001815/// getMulExpr - Get a canonical multiply expression, or something simpler if
1816/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001817const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001818 SCEV::NoWrapFlags Flags) {
1819 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1820 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001821 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001822 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001823#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001824 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001825 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001826 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001827 "SCEVMulExpr operand types don't match!");
1828#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001829
Andrew Trick3228cc22011-03-14 16:50:06 +00001830 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001831 // And vice-versa.
1832 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1833 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1834 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001835 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001836 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1837 E = Ops.end(); I != E; ++I)
1838 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001839 All = false;
1840 break;
1841 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001842 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001843 }
1844
Chris Lattner53e677a2004-04-02 20:23:17 +00001845 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001846 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001847
1848 // If there are any constants, fold them together.
1849 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001850 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001851
1852 // C1*(C2+V) -> C1*C2 + C1*V
1853 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001854 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001855 if (Add->getNumOperands() == 2 &&
1856 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001857 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1858 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001859
Chris Lattner53e677a2004-04-02 20:23:17 +00001860 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001861 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001862 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001863 ConstantInt *Fold = ConstantInt::get(getContext(),
1864 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001865 RHSC->getValue()->getValue());
1866 Ops[0] = getConstant(Fold);
1867 Ops.erase(Ops.begin()+1); // Erase the folded element
1868 if (Ops.size() == 1) return Ops[0];
1869 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001870 }
1871
1872 // If we are left with a constant one being multiplied, strip it off.
1873 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1874 Ops.erase(Ops.begin());
1875 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001876 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001877 // If we have a multiply of zero, it will always be zero.
1878 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001879 } else if (Ops[0]->isAllOnesValue()) {
1880 // If we have a mul by -1 of an add, try distributing the -1 among the
1881 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001882 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001883 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1884 SmallVector<const SCEV *, 4> NewOps;
1885 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001886 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1887 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001888 const SCEV *Mul = getMulExpr(Ops[0], *I);
1889 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1890 NewOps.push_back(Mul);
1891 }
1892 if (AnyFolded)
1893 return getAddExpr(NewOps);
1894 }
Andrew Tricka053b212011-03-14 17:38:54 +00001895 else if (const SCEVAddRecExpr *
1896 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1897 // Negation preserves a recurrence's no self-wrap property.
1898 SmallVector<const SCEV *, 4> Operands;
1899 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1900 E = AddRec->op_end(); I != E; ++I) {
1901 Operands.push_back(getMulExpr(Ops[0], *I));
1902 }
1903 return getAddRecExpr(Operands, AddRec->getLoop(),
1904 AddRec->getNoWrapFlags(SCEV::FlagNW));
1905 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001906 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001907 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001908
1909 if (Ops.size() == 1)
1910 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 }
1912
1913 // Skip over the add expression until we get to a multiply.
1914 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1915 ++Idx;
1916
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 // If there are mul operands inline them all into this expression.
1918 if (Idx < Ops.size()) {
1919 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001920 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 // If we have an mul, expand the mul operands onto the end of the operands
1922 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001923 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001924 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001925 DeletedMul = true;
1926 }
1927
1928 // If we deleted at least one mul, we added operands to the end of the list,
1929 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001930 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001931 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001932 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001933 }
1934
1935 // If there are any add recurrences in the operands list, see if any other
1936 // added values are loop invariant. If so, we can fold them into the
1937 // recurrence.
1938 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1939 ++Idx;
1940
1941 // Scan over all recurrences, trying to fold loop invariants into them.
1942 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1943 // Scan all of the other operands to this mul and add them to the vector if
1944 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001945 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001946 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001947 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001948 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001949 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 LIOps.push_back(Ops[i]);
1951 Ops.erase(Ops.begin()+i);
1952 --i; --e;
1953 }
1954
1955 // If we found some loop invariants, fold them into the recurrence.
1956 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001957 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001958 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001960 const SCEV *Scale = getMulExpr(LIOps);
1961 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1962 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001963
Dan Gohmanb9f96512010-06-30 07:16:37 +00001964 // Build the new addrec. Propagate the NUW and NSW flags if both the
1965 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00001966 //
1967 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001968 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00001969 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1970 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001971
1972 // If all of the other operands were loop invariant, we are done.
1973 if (Ops.size() == 1) return NewRec;
1974
Nick Lewycky980e9f32011-09-06 05:08:09 +00001975 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001976 for (unsigned i = 0;; ++i)
1977 if (Ops[i] == AddRec) {
1978 Ops[i] = NewRec;
1979 break;
1980 }
Dan Gohman246b2562007-10-22 18:31:58 +00001981 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001982 }
1983
1984 // Okay, if there weren't any loop invariants to be folded, check to see if
1985 // there are multiple AddRec's with the same loop induction variable being
1986 // multiplied together. If so, we can fold them.
1987 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001988 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00001989 ++OtherIdx) {
1990 bool Retry = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001991 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewycky8cfb2f82011-09-06 06:39:54 +00001992 // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
Nick Lewycky28682ae2011-09-06 05:33:18 +00001993 //
Nick Lewycky8cfb2f82011-09-06 06:39:54 +00001994 // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2
1995 // Given an equation of the form x + y*It + z*It^2 (above), we want to
1996 // express it in terms of {X,+,Y,+,Z}.
1997 // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2.
Nick Lewyckye6180992011-09-06 06:46:01 +00001998 // Rearranging, X = x, Y = y+z, Z = 2z.
Nick Lewycky28682ae2011-09-06 05:33:18 +00001999 //
Nick Lewycky8cfb2f82011-09-06 06:39:54 +00002000 // x = A*C, y = (A*D + B*C), z = B*D.
Nick Lewyckyc103a082011-09-06 21:42:18 +00002001 // Therefore X = A*C, Y = A*D + B*C + B*D and Z = 2*B*D.
Dan Gohman6a0c1252010-08-31 22:52:12 +00002002 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2003 ++OtherIdx)
2004 if (const SCEVAddRecExpr *OtherAddRec =
2005 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2006 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckyfa151a72011-09-06 05:05:14 +00002007 const SCEV *A = AddRec->getStart();
2008 const SCEV *B = AddRec->getStepRecurrence(*this);
2009 const SCEV *C = OtherAddRec->getStart();
2010 const SCEV *D = OtherAddRec->getStepRecurrence(*this);
2011 const SCEV *NewStart = getMulExpr(A, C);
2012 const SCEV *BD = getMulExpr(B, D);
2013 const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
Nick Lewycky9115fba2011-09-06 06:56:00 +00002014 getMulExpr(B, C), BD);
Nick Lewyckyfa151a72011-09-06 05:05:14 +00002015 const SCEV *NewSecondOrderStep =
2016 getMulExpr(BD, getConstant(BD->getType(), 2));
2017
Nick Lewyckyc103a082011-09-06 21:42:18 +00002018 // This can happen when AddRec or OtherAddRec have >3 operands.
2019 // TODO: support these add-recs.
2020 if (isLoopInvariant(NewStart, AddRecLoop) &&
2021 isLoopInvariant(NewStep, AddRecLoop) &&
2022 isLoopInvariant(NewSecondOrderStep, AddRecLoop)) {
2023 SmallVector<const SCEV *, 3> AddRecOps;
2024 AddRecOps.push_back(NewStart);
2025 AddRecOps.push_back(NewStep);
2026 AddRecOps.push_back(NewSecondOrderStep);
2027 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2028 AddRec->getLoop(),
2029 SCEV::FlagAnyWrap);
2030 if (Ops.size() == 2) return NewAddRec;
2031 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2032 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2033 Retry = true;
2034 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002035 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002036 if (Retry)
2037 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002038 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002039 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002040
2041 // Otherwise couldn't fold anything into this recurrence. Move onto the
2042 // next one.
2043 }
2044
2045 // Okay, it looks like we really DO need an mul expr. Check to see if we
2046 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002047 FoldingSetNodeID ID;
2048 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002049 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2050 ID.AddPointer(Ops[i]);
2051 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002052 SCEVMulExpr *S =
2053 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2054 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002055 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2056 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002057 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2058 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002059 UniqueSCEVs.InsertNode(S, IP);
2060 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002061 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002062 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002063}
2064
Andreas Bolka8a11c982009-08-07 22:55:26 +00002065/// getUDivExpr - Get a canonical unsigned division expression, or something
2066/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002067const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2068 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002069 assert(getEffectiveSCEVType(LHS->getType()) ==
2070 getEffectiveSCEVType(RHS->getType()) &&
2071 "SCEVUDivExpr operand types don't match!");
2072
Dan Gohman622ed672009-05-04 22:02:23 +00002073 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002074 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002075 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002076 // If the denominator is zero, the result of the udiv is undefined. Don't
2077 // try to analyze it, because the resolution chosen here may differ from
2078 // the resolution chosen in other parts of the compiler.
2079 if (!RHSC->getValue()->isZero()) {
2080 // Determine if the division can be folded into the operands of
2081 // its operands.
2082 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002083 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002084 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002085 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002086 // For non-power-of-two values, effectively round the value up to the
2087 // nearest power of two.
2088 if (!RHSC->getValue()->getValue().isPowerOf2())
2089 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002090 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002091 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002092 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2093 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002094 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2095 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2096 const APInt &StepInt = Step->getValue()->getValue();
2097 const APInt &DivInt = RHSC->getValue()->getValue();
2098 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002099 getZeroExtendExpr(AR, ExtTy) ==
2100 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2101 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002102 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002103 SmallVector<const SCEV *, 4> Operands;
2104 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2105 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002106 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002107 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002108 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002109 /// Get a canonical UDivExpr for a recurrence.
2110 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2111 // We can currently only fold X%N if X is constant.
2112 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2113 if (StartC && !DivInt.urem(StepInt) &&
2114 getZeroExtendExpr(AR, ExtTy) ==
2115 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2116 getZeroExtendExpr(Step, ExtTy),
2117 AR->getLoop(), SCEV::FlagAnyWrap)) {
2118 const APInt &StartInt = StartC->getValue()->getValue();
2119 const APInt &StartRem = StartInt.urem(StepInt);
2120 if (StartRem != 0)
2121 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2122 AR->getLoop(), SCEV::FlagNW);
2123 }
2124 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002125 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2126 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2127 SmallVector<const SCEV *, 4> Operands;
2128 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2129 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2130 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2131 // Find an operand that's safely divisible.
2132 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2133 const SCEV *Op = M->getOperand(i);
2134 const SCEV *Div = getUDivExpr(Op, RHSC);
2135 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2136 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2137 M->op_end());
2138 Operands[i] = Div;
2139 return getMulExpr(Operands);
2140 }
2141 }
Dan Gohman185cf032009-05-08 20:18:49 +00002142 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002143 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002144 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002145 SmallVector<const SCEV *, 4> Operands;
2146 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2147 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2148 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2149 Operands.clear();
2150 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2151 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2152 if (isa<SCEVUDivExpr>(Op) ||
2153 getMulExpr(Op, RHS) != A->getOperand(i))
2154 break;
2155 Operands.push_back(Op);
2156 }
2157 if (Operands.size() == A->getNumOperands())
2158 return getAddExpr(Operands);
2159 }
2160 }
Dan Gohman185cf032009-05-08 20:18:49 +00002161
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002162 // Fold if both operands are constant.
2163 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2164 Constant *LHSCV = LHSC->getValue();
2165 Constant *RHSCV = RHSC->getValue();
2166 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2167 RHSCV)));
2168 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002169 }
2170 }
2171
Dan Gohman1c343752009-06-27 21:21:31 +00002172 FoldingSetNodeID ID;
2173 ID.AddInteger(scUDivExpr);
2174 ID.AddPointer(LHS);
2175 ID.AddPointer(RHS);
2176 void *IP = 0;
2177 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002178 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2179 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002180 UniqueSCEVs.InsertNode(S, IP);
2181 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002182}
2183
2184
Dan Gohman6c0866c2009-05-24 23:45:28 +00002185/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2186/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002187const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2188 const Loop *L,
2189 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002190 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002191 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002192 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002193 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002194 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002195 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002196 }
2197
2198 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002199 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002200}
2201
Dan Gohman6c0866c2009-05-24 23:45:28 +00002202/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2203/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002204const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002205ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002206 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002207 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002208#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002209 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002210 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002211 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002212 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002213 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002214 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002215 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002216#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002217
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002218 if (Operands.back()->isZero()) {
2219 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002220 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002221 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002222
Dan Gohmanbc028532010-02-19 18:49:22 +00002223 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2224 // use that information to infer NUW and NSW flags. However, computing a
2225 // BE count requires calling getAddRecExpr, so we may not yet have a
2226 // meaningful BE count at this point (and if we don't, we'd be stuck
2227 // with a SCEVCouldNotCompute as the cached BE count).
2228
Andrew Trick3228cc22011-03-14 16:50:06 +00002229 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002230 // And vice-versa.
2231 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2232 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2233 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002234 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002235 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2236 E = Operands.end(); I != E; ++I)
2237 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002238 All = false;
2239 break;
2240 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002241 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002242 }
2243
Dan Gohmand9cc7492008-08-08 18:33:12 +00002244 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002245 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002246 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002247 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002248 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002249 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002250 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002251 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002252 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002253 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002254 // AddRecs require their operands be loop-invariant with respect to their
2255 // loops. Don't perform this transformation if it would break this
2256 // requirement.
2257 bool AllInvariant = true;
2258 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002259 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002260 AllInvariant = false;
2261 break;
2262 }
2263 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002264 // Create a recurrence for the outer loop with the same step size.
2265 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002266 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2267 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002268 SCEV::NoWrapFlags OuterFlags =
2269 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002270
2271 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002272 AllInvariant = true;
2273 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002274 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002275 AllInvariant = false;
2276 break;
2277 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002278 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002279 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002280 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002281 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2282 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002283 SCEV::NoWrapFlags InnerFlags =
2284 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002285 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2286 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002287 }
2288 // Reset Operands to its original state.
2289 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002290 }
2291 }
2292
Dan Gohman67847532010-01-19 22:27:22 +00002293 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2294 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002295 FoldingSetNodeID ID;
2296 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002297 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2298 ID.AddPointer(Operands[i]);
2299 ID.AddPointer(L);
2300 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002301 SCEVAddRecExpr *S =
2302 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2303 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002304 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2305 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002306 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2307 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002308 UniqueSCEVs.InsertNode(S, IP);
2309 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002310 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002311 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002312}
2313
Dan Gohman9311ef62009-06-24 14:49:00 +00002314const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2315 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002316 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002317 Ops.push_back(LHS);
2318 Ops.push_back(RHS);
2319 return getSMaxExpr(Ops);
2320}
2321
Dan Gohman0bba49c2009-07-07 17:06:11 +00002322const SCEV *
2323ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002324 assert(!Ops.empty() && "Cannot get empty smax!");
2325 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002326#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002327 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002328 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002329 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002330 "SCEVSMaxExpr operand types don't match!");
2331#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002332
2333 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002334 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002335
2336 // If there are any constants, fold them together.
2337 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002338 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002339 ++Idx;
2340 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002341 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002342 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002343 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002344 APIntOps::smax(LHSC->getValue()->getValue(),
2345 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002346 Ops[0] = getConstant(Fold);
2347 Ops.erase(Ops.begin()+1); // Erase the folded element
2348 if (Ops.size() == 1) return Ops[0];
2349 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002350 }
2351
Dan Gohmane5aceed2009-06-24 14:46:22 +00002352 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002353 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2354 Ops.erase(Ops.begin());
2355 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002356 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2357 // If we have an smax with a constant maximum-int, it will always be
2358 // maximum-int.
2359 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002360 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002361
Dan Gohman3ab13122010-04-13 16:49:23 +00002362 if (Ops.size() == 1) return Ops[0];
2363 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002364
2365 // Find the first SMax
2366 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2367 ++Idx;
2368
2369 // Check to see if one of the operands is an SMax. If so, expand its operands
2370 // onto our operand list, and recurse to simplify.
2371 if (Idx < Ops.size()) {
2372 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002373 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002374 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002375 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002376 DeletedSMax = true;
2377 }
2378
2379 if (DeletedSMax)
2380 return getSMaxExpr(Ops);
2381 }
2382
2383 // Okay, check to see if the same value occurs in the operand list twice. If
2384 // so, delete one. Since we sorted the list, these values are required to
2385 // be adjacent.
2386 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002387 // X smax Y smax Y --> X smax Y
2388 // X smax Y --> X, if X is always greater than Y
2389 if (Ops[i] == Ops[i+1] ||
2390 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2391 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2392 --i; --e;
2393 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2395 --i; --e;
2396 }
2397
2398 if (Ops.size() == 1) return Ops[0];
2399
2400 assert(!Ops.empty() && "Reduced smax down to nothing!");
2401
Nick Lewycky3e630762008-02-20 06:48:22 +00002402 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002404 FoldingSetNodeID ID;
2405 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002406 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2407 ID.AddPointer(Ops[i]);
2408 void *IP = 0;
2409 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002410 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2411 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002412 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2413 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002414 UniqueSCEVs.InsertNode(S, IP);
2415 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002416}
2417
Dan Gohman9311ef62009-06-24 14:49:00 +00002418const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2419 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002420 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002421 Ops.push_back(LHS);
2422 Ops.push_back(RHS);
2423 return getUMaxExpr(Ops);
2424}
2425
Dan Gohman0bba49c2009-07-07 17:06:11 +00002426const SCEV *
2427ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002428 assert(!Ops.empty() && "Cannot get empty umax!");
2429 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002430#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002431 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002432 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002433 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002434 "SCEVUMaxExpr operand types don't match!");
2435#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002436
2437 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002438 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002439
2440 // If there are any constants, fold them together.
2441 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002442 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002443 ++Idx;
2444 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002445 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002446 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002447 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002448 APIntOps::umax(LHSC->getValue()->getValue(),
2449 RHSC->getValue()->getValue()));
2450 Ops[0] = getConstant(Fold);
2451 Ops.erase(Ops.begin()+1); // Erase the folded element
2452 if (Ops.size() == 1) return Ops[0];
2453 LHSC = cast<SCEVConstant>(Ops[0]);
2454 }
2455
Dan Gohmane5aceed2009-06-24 14:46:22 +00002456 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002457 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2458 Ops.erase(Ops.begin());
2459 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002460 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2461 // If we have an umax with a constant maximum-int, it will always be
2462 // maximum-int.
2463 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002464 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002465
Dan Gohman3ab13122010-04-13 16:49:23 +00002466 if (Ops.size() == 1) return Ops[0];
2467 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002468
2469 // Find the first UMax
2470 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2471 ++Idx;
2472
2473 // Check to see if one of the operands is a UMax. If so, expand its operands
2474 // onto our operand list, and recurse to simplify.
2475 if (Idx < Ops.size()) {
2476 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002477 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002478 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002479 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002480 DeletedUMax = true;
2481 }
2482
2483 if (DeletedUMax)
2484 return getUMaxExpr(Ops);
2485 }
2486
2487 // Okay, check to see if the same value occurs in the operand list twice. If
2488 // so, delete one. Since we sorted the list, these values are required to
2489 // be adjacent.
2490 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002491 // X umax Y umax Y --> X umax Y
2492 // X umax Y --> X, if X is always greater than Y
2493 if (Ops[i] == Ops[i+1] ||
2494 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2495 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2496 --i; --e;
2497 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002498 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2499 --i; --e;
2500 }
2501
2502 if (Ops.size() == 1) return Ops[0];
2503
2504 assert(!Ops.empty() && "Reduced umax down to nothing!");
2505
2506 // Okay, it looks like we really DO need a umax expr. Check to see if we
2507 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002508 FoldingSetNodeID ID;
2509 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002510 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2511 ID.AddPointer(Ops[i]);
2512 void *IP = 0;
2513 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002514 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2515 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002516 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2517 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002518 UniqueSCEVs.InsertNode(S, IP);
2519 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002520}
2521
Dan Gohman9311ef62009-06-24 14:49:00 +00002522const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2523 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002524 // ~smax(~x, ~y) == smin(x, y).
2525 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2526}
2527
Dan Gohman9311ef62009-06-24 14:49:00 +00002528const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2529 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002530 // ~umax(~x, ~y) == umin(x, y)
2531 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2532}
2533
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002534const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002535 // If we have TargetData, we can bypass creating a target-independent
2536 // constant expression and then folding it back into a ConstantInt.
2537 // This is just a compile-time optimization.
2538 if (TD)
2539 return getConstant(TD->getIntPtrType(getContext()),
2540 TD->getTypeAllocSize(AllocTy));
2541
Dan Gohman4f8eea82010-02-01 18:27:38 +00002542 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2543 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002544 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2545 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002546 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002547 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2548}
2549
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002550const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002551 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2552 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002553 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2554 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002555 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002556 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2557}
2558
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002559const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002560 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002561 // If we have TargetData, we can bypass creating a target-independent
2562 // constant expression and then folding it back into a ConstantInt.
2563 // This is just a compile-time optimization.
2564 if (TD)
2565 return getConstant(TD->getIntPtrType(getContext()),
2566 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2567
Dan Gohman0f5efe52010-01-28 02:15:55 +00002568 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002570 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2571 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002572 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002573 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002574}
2575
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002576const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002577 Constant *FieldNo) {
2578 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002579 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002580 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2581 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002582 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002583 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002584}
2585
Dan Gohman0bba49c2009-07-07 17:06:11 +00002586const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002587 // Don't attempt to do anything other than create a SCEVUnknown object
2588 // here. createSCEV only calls getUnknown after checking for all other
2589 // interesting possibilities, and any other code that calls getUnknown
2590 // is doing so in order to hide a value from SCEV canonicalization.
2591
Dan Gohman1c343752009-06-27 21:21:31 +00002592 FoldingSetNodeID ID;
2593 ID.AddInteger(scUnknown);
2594 ID.AddPointer(V);
2595 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002596 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2597 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2598 "Stale SCEVUnknown in uniquing map!");
2599 return S;
2600 }
2601 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2602 FirstUnknown);
2603 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002604 UniqueSCEVs.InsertNode(S, IP);
2605 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002606}
2607
Chris Lattner53e677a2004-04-02 20:23:17 +00002608//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002609// Basic SCEV Analysis and PHI Idiom Recognition Code
2610//
2611
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002612/// isSCEVable - Test if values of the given type are analyzable within
2613/// the SCEV framework. This primarily includes integer types, and it
2614/// can optionally include pointer types if the ScalarEvolution class
2615/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002616bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002617 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002618 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002619}
2620
2621/// getTypeSizeInBits - Return the size in bits of the specified type,
2622/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002623uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002624 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2625
2626 // If we have a TargetData, use it!
2627 if (TD)
2628 return TD->getTypeSizeInBits(Ty);
2629
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002630 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002631 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002632 return Ty->getPrimitiveSizeInBits();
2633
2634 // The only other support type is pointer. Without TargetData, conservatively
2635 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002636 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002637 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002638}
2639
2640/// getEffectiveSCEVType - Return a type with the same bitwidth as
2641/// the given type and which represents how SCEV will treat the given
2642/// type, for which isSCEVable must return true. For pointer types,
2643/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002644Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002645 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2646
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002647 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002648 return Ty;
2649
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002650 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002651 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002652 if (TD) return TD->getIntPtrType(getContext());
2653
2654 // Without TargetData, conservatively assume pointers are 64-bit.
2655 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002656}
Chris Lattner53e677a2004-04-02 20:23:17 +00002657
Dan Gohman0bba49c2009-07-07 17:06:11 +00002658const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002659 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002660}
2661
Chris Lattner53e677a2004-04-02 20:23:17 +00002662/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2663/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002664const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002665 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002666
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002667 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2668 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002669 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002670
2671 // The process of creating a SCEV for V may have caused other SCEVs
2672 // to have been created, so it's necessary to insert the new entry
2673 // from scratch, rather than trying to remember the insert position
2674 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002675 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002676 return S;
2677}
2678
Dan Gohman2d1be872009-04-16 03:18:22 +00002679/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2680///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002681const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002682 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002683 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002684 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002685
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002686 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002687 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002688 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002689 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002690}
2691
2692/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002693const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002694 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002695 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002696 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002697
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002698 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002699 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002700 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002701 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002702 return getMinusSCEV(AllOnes, V);
2703}
2704
Andrew Trick3228cc22011-03-14 16:50:06 +00002705/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002706const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002707 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002708 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2709
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002710 // Fast path: X - X --> 0.
2711 if (LHS == RHS)
2712 return getConstant(LHS->getType(), 0);
2713
Dan Gohman2d1be872009-04-16 03:18:22 +00002714 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002715 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002716}
2717
2718/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2719/// input value to the specified type. If the type must be extended, it is zero
2720/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002721const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002722ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2723 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002724 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2725 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002726 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002727 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002728 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002729 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002730 return getTruncateExpr(V, Ty);
2731 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002732}
2733
2734/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2735/// input value to the specified type. If the type must be extended, it is sign
2736/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002737const SCEV *
2738ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002739 Type *Ty) {
2740 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002741 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2742 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002743 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002744 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002745 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002746 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002747 return getTruncateExpr(V, Ty);
2748 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002749}
2750
Dan Gohman467c4302009-05-13 03:46:30 +00002751/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2752/// input value to the specified type. If the type must be extended, it is zero
2753/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002754const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002755ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2756 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002757 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2758 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002759 "Cannot noop or zero extend with non-integer arguments!");
2760 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2761 "getNoopOrZeroExtend cannot truncate!");
2762 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2763 return V; // No conversion
2764 return getZeroExtendExpr(V, Ty);
2765}
2766
2767/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2768/// input value to the specified type. If the type must be extended, it is sign
2769/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002770const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002771ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2772 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002773 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2774 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002775 "Cannot noop or sign extend with non-integer arguments!");
2776 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2777 "getNoopOrSignExtend cannot truncate!");
2778 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2779 return V; // No conversion
2780 return getSignExtendExpr(V, Ty);
2781}
2782
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002783/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2784/// the input value to the specified type. If the type must be extended,
2785/// it is extended with unspecified bits. The conversion must not be
2786/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002787const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002788ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2789 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002790 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2791 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002792 "Cannot noop or any extend with non-integer arguments!");
2793 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2794 "getNoopOrAnyExtend cannot truncate!");
2795 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2796 return V; // No conversion
2797 return getAnyExtendExpr(V, Ty);
2798}
2799
Dan Gohman467c4302009-05-13 03:46:30 +00002800/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2801/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002802const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002803ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2804 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002805 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002807 "Cannot truncate or noop with non-integer arguments!");
2808 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2809 "getTruncateOrNoop cannot extend!");
2810 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2811 return V; // No conversion
2812 return getTruncateExpr(V, Ty);
2813}
2814
Dan Gohmana334aa72009-06-22 00:31:57 +00002815/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2816/// the types using zero-extension, and then perform a umax operation
2817/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002818const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2819 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002820 const SCEV *PromotedLHS = LHS;
2821 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002822
2823 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2824 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2825 else
2826 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2827
2828 return getUMaxExpr(PromotedLHS, PromotedRHS);
2829}
2830
Dan Gohmanc9759e82009-06-22 15:03:27 +00002831/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2832/// the types using zero-extension, and then perform a umin operation
2833/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002834const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2835 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002836 const SCEV *PromotedLHS = LHS;
2837 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002838
2839 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2840 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2841 else
2842 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2843
2844 return getUMinExpr(PromotedLHS, PromotedRHS);
2845}
2846
Andrew Trickb12a7542011-03-17 23:51:11 +00002847/// getPointerBase - Transitively follow the chain of pointer-type operands
2848/// until reaching a SCEV that does not have a single pointer operand. This
2849/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2850/// but corner cases do exist.
2851const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2852 // A pointer operand may evaluate to a nonpointer expression, such as null.
2853 if (!V->getType()->isPointerTy())
2854 return V;
2855
2856 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2857 return getPointerBase(Cast->getOperand());
2858 }
2859 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2860 const SCEV *PtrOp = 0;
2861 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2862 I != E; ++I) {
2863 if ((*I)->getType()->isPointerTy()) {
2864 // Cannot find the base of an expression with multiple pointer operands.
2865 if (PtrOp)
2866 return V;
2867 PtrOp = *I;
2868 }
2869 }
2870 if (!PtrOp)
2871 return V;
2872 return getPointerBase(PtrOp);
2873 }
2874 return V;
2875}
2876
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002877/// PushDefUseChildren - Push users of the given Instruction
2878/// onto the given Worklist.
2879static void
2880PushDefUseChildren(Instruction *I,
2881 SmallVectorImpl<Instruction *> &Worklist) {
2882 // Push the def-use children onto the Worklist stack.
2883 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2884 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002885 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002886}
2887
2888/// ForgetSymbolicValue - This looks up computed SCEV values for all
2889/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002890/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002891/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002892void
Dan Gohman85669632010-02-25 06:57:05 +00002893ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002894 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002895 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002896
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002897 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002898 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002899 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002900 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002901 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002902
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002903 ValueExprMapType::iterator It =
2904 ValueExprMap.find(static_cast<Value *>(I));
2905 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002906 const SCEV *Old = It->second;
2907
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002908 // Short-circuit the def-use traversal if the symbolic name
2909 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002910 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002911 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002912
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002913 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002914 // structure, it's a PHI that's in the progress of being computed
2915 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2916 // additional loop trip count information isn't going to change anything.
2917 // In the second case, createNodeForPHI will perform the necessary
2918 // updates on its own when it gets to that point. In the third, we do
2919 // want to forget the SCEVUnknown.
2920 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002921 !isa<SCEVUnknown>(Old) ||
2922 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002923 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002924 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002925 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002926 }
2927
2928 PushDefUseChildren(I, Worklist);
2929 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002930}
Chris Lattner53e677a2004-04-02 20:23:17 +00002931
2932/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2933/// a loop header, making it a potential recurrence, or it doesn't.
2934///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002935const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002936 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2937 if (L->getHeader() == PN->getParent()) {
2938 // The loop may have multiple entrances or multiple exits; we can analyze
2939 // this phi as an addrec if it has a unique entry value and a unique
2940 // backedge value.
2941 Value *BEValueV = 0, *StartValueV = 0;
2942 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2943 Value *V = PN->getIncomingValue(i);
2944 if (L->contains(PN->getIncomingBlock(i))) {
2945 if (!BEValueV) {
2946 BEValueV = V;
2947 } else if (BEValueV != V) {
2948 BEValueV = 0;
2949 break;
2950 }
2951 } else if (!StartValueV) {
2952 StartValueV = V;
2953 } else if (StartValueV != V) {
2954 StartValueV = 0;
2955 break;
2956 }
2957 }
2958 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002959 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002960 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002961 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002962 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002963 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002964
2965 // Using this symbolic name for the PHI, analyze the value coming around
2966 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002967 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002968
2969 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2970 // has a special value for the first iteration of the loop.
2971
2972 // If the value coming around the backedge is an add with the symbolic
2973 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002974 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002975 // If there is a single occurrence of the symbolic value, replace it
2976 // with a recurrence.
2977 unsigned FoundIndex = Add->getNumOperands();
2978 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2979 if (Add->getOperand(i) == SymbolicName)
2980 if (FoundIndex == e) {
2981 FoundIndex = i;
2982 break;
2983 }
2984
2985 if (FoundIndex != Add->getNumOperands()) {
2986 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002987 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002988 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2989 if (i != FoundIndex)
2990 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002991 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002992
2993 // This is not a valid addrec if the step amount is varying each
2994 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002995 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002996 (isa<SCEVAddRecExpr>(Accum) &&
2997 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002998 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00002999
3000 // If the increment doesn't overflow, then neither the addrec nor
3001 // the post-increment will overflow.
3002 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3003 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003004 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003005 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003006 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003007 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003008 dyn_cast<GEPOperator>(BEValueV)) {
3009 // If the increment is an inbounds GEP, then we know the address
3010 // space cannot be wrapped around. We cannot make any guarantee
3011 // about signed or unsigned overflow because pointers are
3012 // unsigned but we may have a negative index from the base
3013 // pointer.
3014 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003015 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003016 }
3017
Dan Gohman27dead42010-04-12 07:49:36 +00003018 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003019 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003020
Dan Gohmana10756e2010-01-21 02:09:26 +00003021 // Since the no-wrap flags are on the increment, they apply to the
3022 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003023 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003024 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003025 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003026
3027 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003028 // to be symbolic. We now need to go back and purge all of the
3029 // entries for the scalars that use the symbolic expression.
3030 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003031 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003032 return PHISCEV;
3033 }
3034 }
Dan Gohman622ed672009-05-04 22:02:23 +00003035 } else if (const SCEVAddRecExpr *AddRec =
3036 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003037 // Otherwise, this could be a loop like this:
3038 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3039 // In this case, j = {1,+,1} and BEValue is j.
3040 // Because the other in-value of i (0) fits the evolution of BEValue
3041 // i really is an addrec evolution.
3042 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003043 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003044
3045 // If StartVal = j.start - j.stride, we can use StartVal as the
3046 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003047 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003048 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003049 // FIXME: For constant StartVal, we should be able to infer
3050 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003051 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003052 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3053 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003054
3055 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003056 // to be symbolic. We now need to go back and purge all of the
3057 // entries for the scalars that use the symbolic expression.
3058 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003059 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003060 return PHISCEV;
3061 }
3062 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003063 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003064 }
Dan Gohman27dead42010-04-12 07:49:36 +00003065 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003066
Dan Gohman85669632010-02-25 06:57:05 +00003067 // If the PHI has a single incoming value, follow that value, unless the
3068 // PHI's incoming blocks are in a different loop, in which case doing so
3069 // risks breaking LCSSA form. Instcombine would normally zap these, but
3070 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003071 if (Value *V = SimplifyInstruction(PN, TD, DT))
3072 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003073 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003074
Chris Lattner53e677a2004-04-02 20:23:17 +00003075 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003076 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003077}
3078
Dan Gohman26466c02009-05-08 20:26:55 +00003079/// createNodeForGEP - Expand GEP instructions into add and multiply
3080/// operations. This allows them to be analyzed by regular SCEV code.
3081///
Dan Gohmand281ed22009-12-18 02:09:29 +00003082const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003083
Dan Gohmanb9f96512010-06-30 07:16:37 +00003084 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3085 // Add expression, because the Instruction may be guarded by control flow
3086 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003087 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003088 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003089
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003090 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003091 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003092 // Don't attempt to analyze GEPs over unsized objects.
3093 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3094 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003095 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003096 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003097 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003098 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003099 I != E; ++I) {
3100 Value *Index = *I;
3101 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003102 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003103 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003104 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003105 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3106
Dan Gohmanb9f96512010-06-30 07:16:37 +00003107 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003108 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003109 } else {
3110 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003111 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3112 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003113 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003114 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3115
Dan Gohmanb9f96512010-06-30 07:16:37 +00003116 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003117 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3118 isInBounds ? SCEV::FlagNSW :
3119 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003120
3121 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003122 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003123 }
3124 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003125
3126 // Get the SCEV for the GEP base.
3127 const SCEV *BaseS = getSCEV(Base);
3128
Dan Gohmanb9f96512010-06-30 07:16:37 +00003129 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003130 return getAddExpr(BaseS, TotalOffset,
3131 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003132}
3133
Nick Lewycky83bb0052007-11-22 07:59:40 +00003134/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3135/// guaranteed to end in (at every loop iteration). It is, at the same time,
3136/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3137/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003138uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003139ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003140 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003141 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003142
Dan Gohman622ed672009-05-04 22:02:23 +00003143 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003144 return std::min(GetMinTrailingZeros(T->getOperand()),
3145 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003146
Dan Gohman622ed672009-05-04 22:02:23 +00003147 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003148 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3149 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3150 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003151 }
3152
Dan Gohman622ed672009-05-04 22:02:23 +00003153 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003154 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3155 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3156 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003157 }
3158
Dan Gohman622ed672009-05-04 22:02:23 +00003159 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003160 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003161 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003162 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003163 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003164 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003165 }
3166
Dan Gohman622ed672009-05-04 22:02:23 +00003167 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003168 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003169 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3170 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003171 for (unsigned i = 1, e = M->getNumOperands();
3172 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003173 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003174 BitWidth);
3175 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003176 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003177
Dan Gohman622ed672009-05-04 22:02:23 +00003178 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003179 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003180 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003181 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003182 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003183 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003184 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003185
Dan Gohman622ed672009-05-04 22:02:23 +00003186 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003187 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003188 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003189 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003190 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003191 return MinOpRes;
3192 }
3193
Dan Gohman622ed672009-05-04 22:02:23 +00003194 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003195 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003196 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003197 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003198 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003199 return MinOpRes;
3200 }
3201
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3203 // For a SCEVUnknown, ask ValueTracking.
3204 unsigned BitWidth = getTypeSizeInBits(U->getType());
3205 APInt Mask = APInt::getAllOnesValue(BitWidth);
3206 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3207 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3208 return Zeros.countTrailingOnes();
3209 }
3210
3211 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003212 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003213}
Chris Lattner53e677a2004-04-02 20:23:17 +00003214
Dan Gohman85b05a22009-07-13 21:35:55 +00003215/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3216///
3217ConstantRange
3218ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003219 // See if we've computed this range already.
3220 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3221 if (I != UnsignedRanges.end())
3222 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003223
3224 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003225 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003226
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003227 unsigned BitWidth = getTypeSizeInBits(S->getType());
3228 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3229
3230 // If the value has known zeros, the maximum unsigned value will have those
3231 // known zeros as well.
3232 uint32_t TZ = GetMinTrailingZeros(S);
3233 if (TZ != 0)
3234 ConservativeResult =
3235 ConstantRange(APInt::getMinValue(BitWidth),
3236 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3237
Dan Gohman85b05a22009-07-13 21:35:55 +00003238 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3239 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3240 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3241 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003242 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003243 }
3244
3245 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3246 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3247 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3248 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003249 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003250 }
3251
3252 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3253 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3254 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3255 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003256 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003257 }
3258
3259 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3260 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3261 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3262 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003263 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003264 }
3265
3266 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3267 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3268 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003269 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003270 }
3271
3272 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3273 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003274 return setUnsignedRange(ZExt,
3275 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003276 }
3277
3278 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3279 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003280 return setUnsignedRange(SExt,
3281 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003282 }
3283
3284 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3285 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003286 return setUnsignedRange(Trunc,
3287 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003288 }
3289
Dan Gohman85b05a22009-07-13 21:35:55 +00003290 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003291 // If there's no unsigned wrap, the value will never be less than its
3292 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003293 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003294 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003295 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003296 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003297 ConservativeResult.intersectWith(
3298 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003299
3300 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003301 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003302 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003303 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003304 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3305 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003306 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3307
3308 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003309 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003310
3311 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003312 ConstantRange StepRange = getSignedRange(Step);
3313 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3314 ConstantRange EndRange =
3315 StartRange.add(MaxBECountRange.multiply(StepRange));
3316
3317 // Check for overflow. This must be done with ConstantRange arithmetic
3318 // because we could be called from within the ScalarEvolution overflow
3319 // checking code.
3320 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3321 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3322 ConstantRange ExtMaxBECountRange =
3323 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3324 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3325 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3326 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003327 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003328
Dan Gohman85b05a22009-07-13 21:35:55 +00003329 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3330 EndRange.getUnsignedMin());
3331 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3332 EndRange.getUnsignedMax());
3333 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003334 return setUnsignedRange(AddRec, ConservativeResult);
3335 return setUnsignedRange(AddRec,
3336 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 }
3338 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003339
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003340 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003341 }
3342
3343 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3344 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003345 APInt Mask = APInt::getAllOnesValue(BitWidth);
3346 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3347 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003348 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003349 return setUnsignedRange(U, ConservativeResult);
3350 return setUnsignedRange(U,
3351 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003352 }
3353
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003354 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003355}
3356
Dan Gohman85b05a22009-07-13 21:35:55 +00003357/// getSignedRange - Determine the signed range for a particular SCEV.
3358///
3359ConstantRange
3360ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003361 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003362 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3363 if (I != SignedRanges.end())
3364 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003365
Dan Gohman85b05a22009-07-13 21:35:55 +00003366 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003367 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003368
Dan Gohman52fddd32010-01-26 04:40:18 +00003369 unsigned BitWidth = getTypeSizeInBits(S->getType());
3370 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3371
3372 // If the value has known zeros, the maximum signed value will have those
3373 // known zeros as well.
3374 uint32_t TZ = GetMinTrailingZeros(S);
3375 if (TZ != 0)
3376 ConservativeResult =
3377 ConstantRange(APInt::getSignedMinValue(BitWidth),
3378 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3379
Dan Gohman85b05a22009-07-13 21:35:55 +00003380 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3381 ConstantRange X = getSignedRange(Add->getOperand(0));
3382 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3383 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003384 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003385 }
3386
Dan Gohman85b05a22009-07-13 21:35:55 +00003387 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3388 ConstantRange X = getSignedRange(Mul->getOperand(0));
3389 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3390 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003391 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003392 }
3393
Dan Gohman85b05a22009-07-13 21:35:55 +00003394 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3395 ConstantRange X = getSignedRange(SMax->getOperand(0));
3396 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3397 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003398 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003399 }
Dan Gohman62849c02009-06-24 01:05:09 +00003400
Dan Gohman85b05a22009-07-13 21:35:55 +00003401 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3402 ConstantRange X = getSignedRange(UMax->getOperand(0));
3403 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3404 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003405 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003406 }
Dan Gohman62849c02009-06-24 01:05:09 +00003407
Dan Gohman85b05a22009-07-13 21:35:55 +00003408 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3409 ConstantRange X = getSignedRange(UDiv->getLHS());
3410 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003411 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003412 }
Dan Gohman62849c02009-06-24 01:05:09 +00003413
Dan Gohman85b05a22009-07-13 21:35:55 +00003414 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3415 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003416 return setSignedRange(ZExt,
3417 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003418 }
3419
3420 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3421 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003422 return setSignedRange(SExt,
3423 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003424 }
3425
3426 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3427 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003428 return setSignedRange(Trunc,
3429 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003430 }
3431
Dan Gohman85b05a22009-07-13 21:35:55 +00003432 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003433 // If there's no signed wrap, and all the operands have the same sign or
3434 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003435 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003436 bool AllNonNeg = true;
3437 bool AllNonPos = true;
3438 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3439 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3440 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3441 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003442 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003443 ConservativeResult = ConservativeResult.intersectWith(
3444 ConstantRange(APInt(BitWidth, 0),
3445 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003446 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003447 ConservativeResult = ConservativeResult.intersectWith(
3448 ConstantRange(APInt::getSignedMinValue(BitWidth),
3449 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003450 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003451
3452 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003453 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003454 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003455 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003456 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3457 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003458 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3459
3460 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003461 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003462
3463 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003464 ConstantRange StepRange = getSignedRange(Step);
3465 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3466 ConstantRange EndRange =
3467 StartRange.add(MaxBECountRange.multiply(StepRange));
3468
3469 // Check for overflow. This must be done with ConstantRange arithmetic
3470 // because we could be called from within the ScalarEvolution overflow
3471 // checking code.
3472 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3473 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3474 ConstantRange ExtMaxBECountRange =
3475 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3476 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3477 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3478 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003479 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003480
Dan Gohman85b05a22009-07-13 21:35:55 +00003481 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3482 EndRange.getSignedMin());
3483 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3484 EndRange.getSignedMax());
3485 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003486 return setSignedRange(AddRec, ConservativeResult);
3487 return setSignedRange(AddRec,
3488 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003489 }
Dan Gohman62849c02009-06-24 01:05:09 +00003490 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003491
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003492 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003493 }
3494
Dan Gohman2c364ad2009-06-19 23:29:04 +00003495 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3496 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003497 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003498 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003499 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3500 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003501 return setSignedRange(U, ConservativeResult);
3502 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003503 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003504 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003505 }
3506
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003507 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003508}
3509
Chris Lattner53e677a2004-04-02 20:23:17 +00003510/// createSCEV - We know that there is no SCEV for the specified value.
3511/// Analyze the expression.
3512///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003513const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003514 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003515 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003516
Dan Gohman6c459a22008-06-22 19:56:46 +00003517 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003518 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003519 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003520
3521 // Don't attempt to analyze instructions in blocks that aren't
3522 // reachable. Such instructions don't matter, and they aren't required
3523 // to obey basic rules for definitions dominating uses which this
3524 // analysis depends on.
3525 if (!DT->isReachableFromEntry(I->getParent()))
3526 return getUnknown(V);
3527 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003528 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003529 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3530 return getConstant(CI);
3531 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003532 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003533 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3534 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003535 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003536 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003537
Dan Gohmanca178902009-07-17 20:47:02 +00003538 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003539 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003540 case Instruction::Add: {
3541 // The simple thing to do would be to just call getSCEV on both operands
3542 // and call getAddExpr with the result. However if we're looking at a
3543 // bunch of things all added together, this can be quite inefficient,
3544 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3545 // Instead, gather up all the operands and make a single getAddExpr call.
3546 // LLVM IR canonical form means we need only traverse the left operands.
3547 SmallVector<const SCEV *, 4> AddOps;
3548 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003549 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3550 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3551 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3552 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003553 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003554 const SCEV *Op1 = getSCEV(U->getOperand(1));
3555 if (Opcode == Instruction::Sub)
3556 AddOps.push_back(getNegativeSCEV(Op1));
3557 else
3558 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003559 }
3560 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trick54337672011-09-10 01:09:50 +00003561 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3562 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
3563 if (OBO->hasNoSignedWrap())
3564 setFlags(Flags, SCEV::FlagNSW);
3565 if (OBO->hasNoUnsignedWrap())
3566 setFlags(Flags, SCEV::FlagNUW);
3567 return getAddExpr(AddOps, Flags);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003568 }
3569 case Instruction::Mul: {
3570 // See the Add code above.
3571 SmallVector<const SCEV *, 4> MulOps;
3572 MulOps.push_back(getSCEV(U->getOperand(1)));
3573 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003574 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003575 Op = U->getOperand(0)) {
3576 U = cast<Operator>(Op);
3577 MulOps.push_back(getSCEV(U->getOperand(1)));
3578 }
3579 MulOps.push_back(getSCEV(U->getOperand(0)));
3580 return getMulExpr(MulOps);
3581 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003582 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003583 return getUDivExpr(getSCEV(U->getOperand(0)),
3584 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003585 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003586 return getMinusSCEV(getSCEV(U->getOperand(0)),
3587 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003588 case Instruction::And:
3589 // For an expression like x&255 that merely masks off the high bits,
3590 // use zext(trunc(x)) as the SCEV expression.
3591 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003592 if (CI->isNullValue())
3593 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003594 if (CI->isAllOnesValue())
3595 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003596 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003597
3598 // Instcombine's ShrinkDemandedConstant may strip bits out of
3599 // constants, obscuring what would otherwise be a low-bits mask.
3600 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3601 // knew about to reconstruct a low-bits mask value.
3602 unsigned LZ = A.countLeadingZeros();
3603 unsigned BitWidth = A.getBitWidth();
3604 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3605 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3606 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3607
3608 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3609
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003610 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003611 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003612 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003613 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003614 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003615 }
3616 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003617
Dan Gohman6c459a22008-06-22 19:56:46 +00003618 case Instruction::Or:
3619 // If the RHS of the Or is a constant, we may have something like:
3620 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3621 // optimizations will transparently handle this case.
3622 //
3623 // In order for this transformation to be safe, the LHS must be of the
3624 // form X*(2^n) and the Or constant must be less than 2^n.
3625 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003626 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003627 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003628 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003629 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3630 // Build a plain add SCEV.
3631 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3632 // If the LHS of the add was an addrec and it has no-wrap flags,
3633 // transfer the no-wrap flags, since an or won't introduce a wrap.
3634 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3635 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003636 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3637 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003638 }
3639 return S;
3640 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003641 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003642 break;
3643 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003644 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003645 // If the RHS of the xor is a signbit, then this is just an add.
3646 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003647 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003648 return getAddExpr(getSCEV(U->getOperand(0)),
3649 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003650
3651 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003652 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003653 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003654
3655 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3656 // This is a variant of the check for xor with -1, and it handles
3657 // the case where instcombine has trimmed non-demanded bits out
3658 // of an xor with -1.
3659 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3660 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3661 if (BO->getOpcode() == Instruction::And &&
3662 LCI->getValue() == CI->getValue())
3663 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003664 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003665 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003666 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003667 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003668 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3669
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003670 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003671 // mask off the high bits. Complement the operand and
3672 // re-apply the zext.
3673 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3674 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3675
3676 // If C is a single bit, it may be in the sign-bit position
3677 // before the zero-extend. In this case, represent the xor
3678 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003679 APInt Trunc = CI->getValue().trunc(Z0TySize);
3680 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003681 Trunc.isSignBit())
3682 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3683 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003684 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003685 }
3686 break;
3687
3688 case Instruction::Shl:
3689 // Turn shift left of a constant amount into a multiply.
3690 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003691 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003692
3693 // If the shift count is not less than the bitwidth, the result of
3694 // the shift is undefined. Don't try to analyze it, because the
3695 // resolution chosen here may differ from the resolution chosen in
3696 // other parts of the compiler.
3697 if (SA->getValue().uge(BitWidth))
3698 break;
3699
Owen Andersoneed707b2009-07-24 23:12:02 +00003700 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003701 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003702 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003703 }
3704 break;
3705
Nick Lewycky01eaf802008-07-07 06:15:49 +00003706 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003707 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003708 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003709 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003710
3711 // If the shift count is not less than the bitwidth, the result of
3712 // the shift is undefined. Don't try to analyze it, because the
3713 // resolution chosen here may differ from the resolution chosen in
3714 // other parts of the compiler.
3715 if (SA->getValue().uge(BitWidth))
3716 break;
3717
Owen Andersoneed707b2009-07-24 23:12:02 +00003718 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003719 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003720 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003721 }
3722 break;
3723
Dan Gohman4ee29af2009-04-21 02:26:00 +00003724 case Instruction::AShr:
3725 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3726 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003727 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003728 if (L->getOpcode() == Instruction::Shl &&
3729 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003730 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3731
3732 // If the shift count is not less than the bitwidth, the result of
3733 // the shift is undefined. Don't try to analyze it, because the
3734 // resolution chosen here may differ from the resolution chosen in
3735 // other parts of the compiler.
3736 if (CI->getValue().uge(BitWidth))
3737 break;
3738
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003739 uint64_t Amt = BitWidth - CI->getZExtValue();
3740 if (Amt == BitWidth)
3741 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003742 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003743 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003744 IntegerType::get(getContext(),
3745 Amt)),
3746 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003747 }
3748 break;
3749
Dan Gohman6c459a22008-06-22 19:56:46 +00003750 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003751 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003752
3753 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003754 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003755
3756 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003757 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003758
3759 case Instruction::BitCast:
3760 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003761 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003762 return getSCEV(U->getOperand(0));
3763 break;
3764
Dan Gohman4f8eea82010-02-01 18:27:38 +00003765 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3766 // lead to pointer expressions which cannot safely be expanded to GEPs,
3767 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3768 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003769
Dan Gohman26466c02009-05-08 20:26:55 +00003770 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003771 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003772
Dan Gohman6c459a22008-06-22 19:56:46 +00003773 case Instruction::PHI:
3774 return createNodeForPHI(cast<PHINode>(U));
3775
3776 case Instruction::Select:
3777 // This could be a smax or umax that was lowered earlier.
3778 // Try to recover it.
3779 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3780 Value *LHS = ICI->getOperand(0);
3781 Value *RHS = ICI->getOperand(1);
3782 switch (ICI->getPredicate()) {
3783 case ICmpInst::ICMP_SLT:
3784 case ICmpInst::ICMP_SLE:
3785 std::swap(LHS, RHS);
3786 // fall through
3787 case ICmpInst::ICMP_SGT:
3788 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003789 // a >s b ? a+x : b+x -> smax(a, b)+x
3790 // a >s b ? b+x : a+x -> smin(a, b)+x
3791 if (LHS->getType() == U->getType()) {
3792 const SCEV *LS = getSCEV(LHS);
3793 const SCEV *RS = getSCEV(RHS);
3794 const SCEV *LA = getSCEV(U->getOperand(1));
3795 const SCEV *RA = getSCEV(U->getOperand(2));
3796 const SCEV *LDiff = getMinusSCEV(LA, LS);
3797 const SCEV *RDiff = getMinusSCEV(RA, RS);
3798 if (LDiff == RDiff)
3799 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3800 LDiff = getMinusSCEV(LA, RS);
3801 RDiff = getMinusSCEV(RA, LS);
3802 if (LDiff == RDiff)
3803 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3804 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003805 break;
3806 case ICmpInst::ICMP_ULT:
3807 case ICmpInst::ICMP_ULE:
3808 std::swap(LHS, RHS);
3809 // fall through
3810 case ICmpInst::ICMP_UGT:
3811 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003812 // a >u b ? a+x : b+x -> umax(a, b)+x
3813 // a >u b ? b+x : a+x -> umin(a, b)+x
3814 if (LHS->getType() == U->getType()) {
3815 const SCEV *LS = getSCEV(LHS);
3816 const SCEV *RS = getSCEV(RHS);
3817 const SCEV *LA = getSCEV(U->getOperand(1));
3818 const SCEV *RA = getSCEV(U->getOperand(2));
3819 const SCEV *LDiff = getMinusSCEV(LA, LS);
3820 const SCEV *RDiff = getMinusSCEV(RA, RS);
3821 if (LDiff == RDiff)
3822 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3823 LDiff = getMinusSCEV(LA, RS);
3824 RDiff = getMinusSCEV(RA, LS);
3825 if (LDiff == RDiff)
3826 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3827 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003828 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003829 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003830 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3831 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003832 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003833 cast<ConstantInt>(RHS)->isZero()) {
3834 const SCEV *One = getConstant(LHS->getType(), 1);
3835 const SCEV *LS = getSCEV(LHS);
3836 const SCEV *LA = getSCEV(U->getOperand(1));
3837 const SCEV *RA = getSCEV(U->getOperand(2));
3838 const SCEV *LDiff = getMinusSCEV(LA, LS);
3839 const SCEV *RDiff = getMinusSCEV(RA, One);
3840 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003841 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003842 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003843 break;
3844 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003845 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3846 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003847 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003848 cast<ConstantInt>(RHS)->isZero()) {
3849 const SCEV *One = getConstant(LHS->getType(), 1);
3850 const SCEV *LS = getSCEV(LHS);
3851 const SCEV *LA = getSCEV(U->getOperand(1));
3852 const SCEV *RA = getSCEV(U->getOperand(2));
3853 const SCEV *LDiff = getMinusSCEV(LA, One);
3854 const SCEV *RDiff = getMinusSCEV(RA, LS);
3855 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003856 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003857 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003858 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003859 default:
3860 break;
3861 }
3862 }
3863
3864 default: // We cannot analyze this expression.
3865 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003866 }
3867
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003868 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003869}
3870
3871
3872
3873//===----------------------------------------------------------------------===//
3874// Iteration Count Computation Code
3875//
3876
Andrew Trickb1831c62011-08-11 23:36:16 +00003877/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3878/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3879/// or not constant. Will also return 0 if the maximum trip count is very large
3880/// (>= 2^32)
3881unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3882 BasicBlock *ExitBlock) {
3883 const SCEVConstant *ExitCount =
3884 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3885 if (!ExitCount)
3886 return 0;
3887
3888 ConstantInt *ExitConst = ExitCount->getValue();
3889
3890 // Guard against huge trip counts.
3891 if (ExitConst->getValue().getActiveBits() > 32)
3892 return 0;
3893
3894 // In case of integer overflow, this returns 0, which is correct.
3895 return ((unsigned)ExitConst->getZExtValue()) + 1;
3896}
3897
3898/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3899/// trip count of this loop as a normal unsigned value, if possible. This
3900/// means that the actual trip count is always a multiple of the returned
3901/// value (don't forget the trip count could very well be zero as well!).
3902///
3903/// Returns 1 if the trip count is unknown or not guaranteed to be the
3904/// multiple of a constant (which is also the case if the trip count is simply
3905/// constant, use getSmallConstantTripCount for that case), Will also return 1
3906/// if the trip count is very large (>= 2^32).
3907unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3908 BasicBlock *ExitBlock) {
3909 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3910 if (ExitCount == getCouldNotCompute())
3911 return 1;
3912
3913 // Get the trip count from the BE count by adding 1.
3914 const SCEV *TCMul = getAddExpr(ExitCount,
3915 getConstant(ExitCount->getType(), 1));
3916 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3917 // to factor simple cases.
3918 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3919 TCMul = Mul->getOperand(0);
3920
3921 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3922 if (!MulC)
3923 return 1;
3924
3925 ConstantInt *Result = MulC->getValue();
3926
3927 // Guard against huge trip counts.
3928 if (!Result || Result->getValue().getActiveBits() > 32)
3929 return 1;
3930
3931 return (unsigned)Result->getZExtValue();
3932}
3933
Andrew Trick5116ff62011-07-26 17:19:55 +00003934// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003935// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003936// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003937const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3938 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003939}
3940
Dan Gohman46bdfb02009-02-24 18:55:53 +00003941/// getBackedgeTakenCount - If the specified loop has a predictable
3942/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3943/// object. The backedge-taken count is the number of times the loop header
3944/// will be branched to from within the loop. This is one less than the
3945/// trip count of the loop, since it doesn't count the first iteration,
3946/// when the header is branched to from outside the loop.
3947///
3948/// Note that it is not valid to call this method on a loop without a
3949/// loop-invariant backedge-taken count (see
3950/// hasLoopInvariantBackedgeTakenCount).
3951///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003952const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003953 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003954}
3955
3956/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3957/// return the least SCEV value that is known never to be less than the
3958/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003959const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003960 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003961}
3962
Dan Gohman59ae6b92009-07-08 19:23:34 +00003963/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3964/// onto the given Worklist.
3965static void
3966PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3967 BasicBlock *Header = L->getHeader();
3968
3969 // Push all Loop-header PHIs onto the Worklist stack.
3970 for (BasicBlock::iterator I = Header->begin();
3971 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3972 Worklist.push_back(PN);
3973}
3974
Dan Gohmana1af7572009-04-30 20:47:05 +00003975const ScalarEvolution::BackedgeTakenInfo &
3976ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003977 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003978 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003979 // update the value. The temporary CouldNotCompute value tells SCEV
3980 // code elsewhere that it shouldn't attempt to request a new
3981 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00003982 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00003983 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003984 if (!Pair.second)
3985 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003986
Andrew Trick5116ff62011-07-26 17:19:55 +00003987 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3988 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3989 // must be cleared in this scope.
3990 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3991
3992 if (Result.getExact(this) != getCouldNotCompute()) {
3993 assert(isLoopInvariant(Result.getExact(this), L) &&
3994 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00003995 "Computed backedge-taken count isn't loop invariant for loop!");
3996 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00003997 }
3998 else if (Result.getMax(this) == getCouldNotCompute() &&
3999 isa<PHINode>(L->getHeader()->begin())) {
4000 // Only count loops that have phi nodes as not being computable.
4001 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004002 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004003
Chris Lattnerf1859892011-01-09 02:16:18 +00004004 // Now that we know more about the trip count for this loop, forget any
4005 // existing SCEV values for PHI nodes in this loop since they are only
4006 // conservative estimates made without the benefit of trip count
4007 // information. This is similar to the code in forgetLoop, except that
4008 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004009 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004010 SmallVector<Instruction *, 16> Worklist;
4011 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004012
Chris Lattnerf1859892011-01-09 02:16:18 +00004013 SmallPtrSet<Instruction *, 8> Visited;
4014 while (!Worklist.empty()) {
4015 Instruction *I = Worklist.pop_back_val();
4016 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004017
Chris Lattnerf1859892011-01-09 02:16:18 +00004018 ValueExprMapType::iterator It =
4019 ValueExprMap.find(static_cast<Value *>(I));
4020 if (It != ValueExprMap.end()) {
4021 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004022
Chris Lattnerf1859892011-01-09 02:16:18 +00004023 // SCEVUnknown for a PHI either means that it has an unrecognized
4024 // structure, or it's a PHI that's in the progress of being computed
4025 // by createNodeForPHI. In the former case, additional loop trip
4026 // count information isn't going to change anything. In the later
4027 // case, createNodeForPHI will perform the necessary updates on its
4028 // own when it gets to that point.
4029 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4030 forgetMemoizedResults(Old);
4031 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004032 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004033 if (PHINode *PN = dyn_cast<PHINode>(I))
4034 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004035 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004036
4037 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004038 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004039 }
Dan Gohman308bec32011-04-25 22:48:29 +00004040
4041 // Re-lookup the insert position, since the call to
4042 // ComputeBackedgeTakenCount above could result in a
4043 // recusive call to getBackedgeTakenInfo (on a different
4044 // loop), which would invalidate the iterator computed
4045 // earlier.
4046 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004047}
4048
Dan Gohman4c7279a2009-10-31 15:04:55 +00004049/// forgetLoop - This method should be called by the client when it has
4050/// changed a loop in a way that may effect ScalarEvolution's ability to
4051/// compute a trip count, or if the loop is deleted.
4052void ScalarEvolution::forgetLoop(const Loop *L) {
4053 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004054 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4055 BackedgeTakenCounts.find(L);
4056 if (BTCPos != BackedgeTakenCounts.end()) {
4057 BTCPos->second.clear();
4058 BackedgeTakenCounts.erase(BTCPos);
4059 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004060
Dan Gohman4c7279a2009-10-31 15:04:55 +00004061 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004062 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004063 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004064
Dan Gohman59ae6b92009-07-08 19:23:34 +00004065 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004066 while (!Worklist.empty()) {
4067 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004068 if (!Visited.insert(I)) continue;
4069
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004070 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4071 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004072 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004073 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004074 if (PHINode *PN = dyn_cast<PHINode>(I))
4075 ConstantEvolutionLoopExitValue.erase(PN);
4076 }
4077
4078 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004079 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004080
4081 // Forget all contained loops too, to avoid dangling entries in the
4082 // ValuesAtScopes map.
4083 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4084 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004085}
4086
Eric Christophere6cbfa62010-07-29 01:25:38 +00004087/// forgetValue - This method should be called by the client when it has
4088/// changed a value in a way that may effect its value, or which may
4089/// disconnect it from a def-use chain linking it to a loop.
4090void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004091 Instruction *I = dyn_cast<Instruction>(V);
4092 if (!I) return;
4093
4094 // Drop information about expressions based on loop-header PHIs.
4095 SmallVector<Instruction *, 16> Worklist;
4096 Worklist.push_back(I);
4097
4098 SmallPtrSet<Instruction *, 8> Visited;
4099 while (!Worklist.empty()) {
4100 I = Worklist.pop_back_val();
4101 if (!Visited.insert(I)) continue;
4102
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004103 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4104 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004105 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004106 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004107 if (PHINode *PN = dyn_cast<PHINode>(I))
4108 ConstantEvolutionLoopExitValue.erase(PN);
4109 }
4110
4111 PushDefUseChildren(I, Worklist);
4112 }
4113}
4114
Andrew Trick5116ff62011-07-26 17:19:55 +00004115/// getExact - Get the exact loop backedge taken count considering all loop
4116/// exits. If all exits are computable, this is the minimum computed count.
4117const SCEV *
4118ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4119 // If any exits were not computable, the loop is not computable.
4120 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4121
4122 // We need at least one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004123 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004124 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4125
4126 const SCEV *BECount = 0;
4127 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4128 ENT != 0; ENT = ENT->getNextExit()) {
4129
4130 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4131
4132 if (!BECount)
4133 BECount = ENT->ExactNotTaken;
4134 else
4135 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4136 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004137 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004138 return BECount;
4139}
4140
4141/// getExact - Get the exact not taken count for this loop exit.
4142const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004143ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004144 ScalarEvolution *SE) const {
4145 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4146 ENT != 0; ENT = ENT->getNextExit()) {
4147
Andrew Trickfcb43562011-08-02 04:23:35 +00004148 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004149 return ENT->ExactNotTaken;
4150 }
4151 return SE->getCouldNotCompute();
4152}
4153
4154/// getMax - Get the max backedge taken count for the loop.
4155const SCEV *
4156ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4157 return Max ? Max : SE->getCouldNotCompute();
4158}
4159
4160/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4161/// computable exit into a persistent ExitNotTakenInfo array.
4162ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4163 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4164 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4165
4166 if (!Complete)
4167 ExitNotTaken.setIncomplete();
4168
4169 unsigned NumExits = ExitCounts.size();
4170 if (NumExits == 0) return;
4171
Andrew Trickfcb43562011-08-02 04:23:35 +00004172 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004173 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4174 if (NumExits == 1) return;
4175
4176 // Handle the rare case of multiple computable exits.
4177 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4178
4179 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4180 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4181 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004182 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004183 ENT->ExactNotTaken = ExitCounts[i].second;
4184 }
4185}
4186
4187/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4188void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004189 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004190 ExitNotTaken.ExactNotTaken = 0;
4191 delete[] ExitNotTaken.getNextExit();
4192}
4193
Dan Gohman46bdfb02009-02-24 18:55:53 +00004194/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4195/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004196ScalarEvolution::BackedgeTakenInfo
4197ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004198 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004199 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004200
Dan Gohmana334aa72009-06-22 00:31:57 +00004201 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004202 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004203 bool CouldComputeBECount = true;
4204 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004205 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004206 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4207 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004208 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004209 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004210 CouldComputeBECount = false;
4211 else
4212 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4213
Dan Gohman1c343752009-06-27 21:21:31 +00004214 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004215 MaxBECount = EL.Max;
4216 else if (EL.Max != getCouldNotCompute())
4217 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004218 }
4219
Andrew Trick5116ff62011-07-26 17:19:55 +00004220 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004221}
4222
Andrew Trick5116ff62011-07-26 17:19:55 +00004223/// ComputeExitLimit - Compute the number of times the backedge of the specified
4224/// loop will execute if it exits via the specified block.
4225ScalarEvolution::ExitLimit
4226ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004227
4228 // Okay, we've chosen an exiting block. See what condition causes us to
4229 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004230 //
4231 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004232 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004233 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004234 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004235
Chris Lattner8b0e3602007-01-07 02:24:26 +00004236 // At this point, we know we have a conditional branch that determines whether
4237 // the loop is exited. However, we don't know if the branch is executed each
4238 // time through the loop. If not, then the execution count of the branch will
4239 // not be equal to the trip count of the loop.
4240 //
4241 // Currently we check for this by checking to see if the Exit branch goes to
4242 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004243 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004244 // loop header. This is common for un-rotated loops.
4245 //
4246 // If both of those tests fail, walk up the unique predecessor chain to the
4247 // header, stopping if there is an edge that doesn't exit the loop. If the
4248 // header is reached, the execution count of the branch will be equal to the
4249 // trip count of the loop.
4250 //
4251 // More extensive analysis could be done to handle more cases here.
4252 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004253 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004254 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004255 ExitBr->getParent() != L->getHeader()) {
4256 // The simple checks failed, try climbing the unique predecessor chain
4257 // up to the header.
4258 bool Ok = false;
4259 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4260 BasicBlock *Pred = BB->getUniquePredecessor();
4261 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004262 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004263 TerminatorInst *PredTerm = Pred->getTerminator();
4264 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4265 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4266 if (PredSucc == BB)
4267 continue;
4268 // If the predecessor has a successor that isn't BB and isn't
4269 // outside the loop, assume the worst.
4270 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004271 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004272 }
4273 if (Pred == L->getHeader()) {
4274 Ok = true;
4275 break;
4276 }
4277 BB = Pred;
4278 }
4279 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004280 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004281 }
4282
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004283 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004284 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4285 ExitBr->getSuccessor(0),
4286 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004287}
4288
Andrew Trick5116ff62011-07-26 17:19:55 +00004289/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004290/// backedge of the specified loop will execute if its exit condition
4291/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004292ScalarEvolution::ExitLimit
4293ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4294 Value *ExitCond,
4295 BasicBlock *TBB,
4296 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004297 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004298 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4299 if (BO->getOpcode() == Instruction::And) {
4300 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004301 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4302 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004303 const SCEV *BECount = getCouldNotCompute();
4304 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004305 if (L->contains(TBB)) {
4306 // Both conditions must be true for the loop to continue executing.
4307 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004308 if (EL0.Exact == getCouldNotCompute() ||
4309 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004310 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004311 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004312 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4313 if (EL0.Max == getCouldNotCompute())
4314 MaxBECount = EL1.Max;
4315 else if (EL1.Max == getCouldNotCompute())
4316 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004317 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004318 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004319 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004320 // Both conditions must be true at the same time for the loop to exit.
4321 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004322 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004323 if (EL0.Max == EL1.Max)
4324 MaxBECount = EL0.Max;
4325 if (EL0.Exact == EL1.Exact)
4326 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004327 }
4328
Andrew Trick5116ff62011-07-26 17:19:55 +00004329 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004330 }
4331 if (BO->getOpcode() == Instruction::Or) {
4332 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004333 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4334 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004335 const SCEV *BECount = getCouldNotCompute();
4336 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004337 if (L->contains(FBB)) {
4338 // Both conditions must be false for the loop to continue executing.
4339 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004340 if (EL0.Exact == getCouldNotCompute() ||
4341 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004342 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004343 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004344 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4345 if (EL0.Max == getCouldNotCompute())
4346 MaxBECount = EL1.Max;
4347 else if (EL1.Max == getCouldNotCompute())
4348 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004349 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004350 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004351 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004352 // Both conditions must be false at the same time for the loop to exit.
4353 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004354 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004355 if (EL0.Max == EL1.Max)
4356 MaxBECount = EL0.Max;
4357 if (EL0.Exact == EL1.Exact)
4358 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004359 }
4360
Andrew Trick5116ff62011-07-26 17:19:55 +00004361 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004362 }
4363 }
4364
4365 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004366 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004367 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004368 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004369
Dan Gohman00cb5b72010-02-19 18:12:07 +00004370 // Check for a constant condition. These are normally stripped out by
4371 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4372 // preserve the CFG and is temporarily leaving constant conditions
4373 // in place.
4374 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4375 if (L->contains(FBB) == !CI->getZExtValue())
4376 // The backedge is always taken.
4377 return getCouldNotCompute();
4378 else
4379 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004380 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004381 }
4382
Eli Friedman361e54d2009-05-09 12:32:42 +00004383 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004384 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004385}
4386
Andrew Trick5116ff62011-07-26 17:19:55 +00004387/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004388/// backedge of the specified loop will execute if its exit condition
4389/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004390ScalarEvolution::ExitLimit
4391ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4392 ICmpInst *ExitCond,
4393 BasicBlock *TBB,
4394 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004395
Reid Spencere4d87aa2006-12-23 06:05:41 +00004396 // If the condition was exit on true, convert the condition to exit on false
4397 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004398 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004399 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004400 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004401 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004402
4403 // Handle common loops like: for (X = "string"; *X; ++X)
4404 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4405 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004406 ExitLimit ItCnt =
4407 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004408 if (ItCnt.hasAnyInfo())
4409 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004410 }
4411
Dan Gohman0bba49c2009-07-07 17:06:11 +00004412 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4413 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004414
4415 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004416 LHS = getSCEVAtScope(LHS, L);
4417 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004418
Dan Gohman64a845e2009-06-24 04:48:43 +00004419 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004420 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004421 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004422 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004423 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004424 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004425 }
4426
Dan Gohman03557dc2010-05-03 16:35:17 +00004427 // Simplify the operands before analyzing them.
4428 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4429
Chris Lattner53e677a2004-04-02 20:23:17 +00004430 // If we have a comparison of a chrec against a constant, try to use value
4431 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004432 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4433 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004434 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004435 // Form the constant range.
4436 ConstantRange CompRange(
4437 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004438
Dan Gohman0bba49c2009-07-07 17:06:11 +00004439 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004440 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004441 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004442
Chris Lattner53e677a2004-04-02 20:23:17 +00004443 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004444 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004445 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004446 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4447 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004448 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004449 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004450 case ICmpInst::ICMP_EQ: { // while (X == Y)
4451 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004452 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4453 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004454 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004455 }
4456 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004457 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4458 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004459 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004460 }
4461 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004462 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004463 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004464 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004465 break;
4466 }
4467 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004468 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4469 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004470 break;
4471 }
4472 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004473 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004474 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004475 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004476 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004477 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004478 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004479#if 0
David Greene25e0e872009-12-23 22:18:14 +00004480 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004481 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004482 dbgs() << "[unsigned] ";
4483 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004484 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004485 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004486#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004487 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004488 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004489 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004490}
4491
Chris Lattner673e02b2004-10-12 01:49:27 +00004492static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004493EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4494 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004495 const SCEV *InVal = SE.getConstant(C);
4496 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004497 assert(isa<SCEVConstant>(Val) &&
4498 "Evaluation of SCEV at constant didn't fold correctly?");
4499 return cast<SCEVConstant>(Val)->getValue();
4500}
4501
4502/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4503/// and a GEP expression (missing the pointer index) indexing into it, return
4504/// the addressed element of the initializer or null if the index expression is
4505/// invalid.
4506static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004507GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004508 const std::vector<ConstantInt*> &Indices) {
4509 Constant *Init = GV->getInitializer();
4510 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004511 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004512 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4513 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4514 Init = cast<Constant>(CS->getOperand(Idx));
4515 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4516 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4517 Init = cast<Constant>(CA->getOperand(Idx));
4518 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004519 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004520 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004521 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004522 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004523 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004524 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004525 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004526 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004527 }
4528 return 0;
4529 } else {
4530 return 0; // Unknown initializer type
4531 }
4532 }
4533 return Init;
4534}
4535
Andrew Trick5116ff62011-07-26 17:19:55 +00004536/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004537/// 'icmp op load X, cst', try to see if we can compute the backedge
4538/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004539ScalarEvolution::ExitLimit
4540ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4541 LoadInst *LI,
4542 Constant *RHS,
4543 const Loop *L,
4544 ICmpInst::Predicate predicate) {
4545
Dan Gohman1c343752009-06-27 21:21:31 +00004546 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004547
4548 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004549 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004550 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004551 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004552
4553 // Make sure that it is really a constant global we are gepping, with an
4554 // initializer, and make sure the first IDX is really 0.
4555 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004556 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004557 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4558 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004559 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004560
4561 // Okay, we allow one non-constant index into the GEP instruction.
4562 Value *VarIdx = 0;
4563 std::vector<ConstantInt*> Indexes;
4564 unsigned VarIdxNum = 0;
4565 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4566 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4567 Indexes.push_back(CI);
4568 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004569 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004570 VarIdx = GEP->getOperand(i);
4571 VarIdxNum = i-2;
4572 Indexes.push_back(0);
4573 }
4574
4575 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4576 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004577 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004578 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004579
4580 // We can only recognize very limited forms of loop index expressions, in
4581 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004582 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004583 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004584 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4585 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004586 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004587
4588 unsigned MaxSteps = MaxBruteForceIterations;
4589 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004590 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004591 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004592 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004593
4594 // Form the GEP offset.
4595 Indexes[VarIdxNum] = Val;
4596
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004597 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004598 if (Result == 0) break; // Cannot compute!
4599
4600 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004601 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004602 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004603 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004604#if 0
David Greene25e0e872009-12-23 22:18:14 +00004605 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004606 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4607 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004608#endif
4609 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004610 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004611 }
4612 }
Dan Gohman1c343752009-06-27 21:21:31 +00004613 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004614}
4615
4616
Chris Lattner3221ad02004-04-17 22:58:41 +00004617/// CanConstantFold - Return true if we can constant fold an instruction of the
4618/// specified type, assuming that all operands were constants.
4619static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004620 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004621 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4622 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004623
Chris Lattner3221ad02004-04-17 22:58:41 +00004624 if (const CallInst *CI = dyn_cast<CallInst>(I))
4625 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004626 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004627 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004628}
4629
Chris Lattner3221ad02004-04-17 22:58:41 +00004630/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4631/// in the loop that V is derived from. We allow arbitrary operations along the
4632/// way, but the operands of an operation must either be constants or a value
4633/// derived from a constant PHI. If this expression does not fit with these
4634/// constraints, return null.
4635static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4636 // If this is not an instruction, or if this is an instruction outside of the
4637 // loop, it can't be derived from a loop PHI.
4638 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004639 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004640
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004641 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004642 if (L->getHeader() == I->getParent())
4643 return PN;
4644 else
4645 // We don't currently keep track of the control flow needed to evaluate
4646 // PHIs, so we cannot handle PHIs inside of loops.
4647 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004648 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004649
4650 // If we won't be able to constant fold this expression even if the operands
4651 // are constants, return early.
4652 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004653
Chris Lattner3221ad02004-04-17 22:58:41 +00004654 // Otherwise, we can evaluate this instruction if all of its operands are
4655 // constant or derived from a PHI node themselves.
4656 PHINode *PHI = 0;
4657 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004658 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004659 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4660 if (P == 0) return 0; // Not evolving from PHI
4661 if (PHI == 0)
4662 PHI = P;
4663 else if (PHI != P)
4664 return 0; // Evolving from multiple different PHIs.
4665 }
4666
4667 // This is a expression evolving from a constant PHI!
4668 return PHI;
4669}
4670
4671/// EvaluateExpression - Given an expression that passes the
4672/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4673/// in the loop has the value PHIVal. If we can't fold this expression for some
4674/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004675static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4676 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004677 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004678 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004679 Instruction *I = cast<Instruction>(V);
4680
Dan Gohman9d4588f2010-06-22 13:15:46 +00004681 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004682
4683 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004684 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004685 if (Operands[i] == 0) return 0;
4686 }
4687
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004688 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004689 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004690 Operands[1], TD);
Jay Foad1d2f5692011-07-19 13:32:40 +00004691 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004692}
4693
4694/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4695/// in the header of its containing loop, we know the loop executes a
4696/// constant number of times, and the PHI node is just a recurrence
4697/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004698Constant *
4699ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004700 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004701 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004702 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004703 ConstantEvolutionLoopExitValue.find(PN);
4704 if (I != ConstantEvolutionLoopExitValue.end())
4705 return I->second;
4706
Dan Gohmane0567812010-04-08 23:03:40 +00004707 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004708 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4709
4710 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4711
4712 // Since the loop is canonicalized, the PHI node must have two entries. One
4713 // entry must be a constant (coming in from outside of the loop), and the
4714 // second must be derived from the same PHI.
4715 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4716 Constant *StartCST =
4717 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4718 if (StartCST == 0)
4719 return RetVal = 0; // Must be a constant.
4720
4721 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004722 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4723 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004724 return RetVal = 0; // Not derived from same PHI.
4725
4726 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004727 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004728 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004729
Dan Gohman46bdfb02009-02-24 18:55:53 +00004730 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004731 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004732 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4733 if (IterationNum == NumIterations)
4734 return RetVal = PHIVal; // Got exit value!
4735
4736 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004737 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004738 if (NextPHI == PHIVal)
4739 return RetVal = NextPHI; // Stopped evolving!
4740 if (NextPHI == 0)
4741 return 0; // Couldn't evaluate!
4742 PHIVal = NextPHI;
4743 }
4744}
4745
Andrew Trick5116ff62011-07-26 17:19:55 +00004746/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004747/// constant number of times (the condition evolves only from constants),
4748/// try to evaluate a few iterations of the loop until we get the exit
4749/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004750/// evaluate the trip count of the loop, return getCouldNotCompute().
Andrew Trick5116ff62011-07-26 17:19:55 +00004751const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4752 Value *Cond,
4753 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004754 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004755 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004756
Dan Gohmanb92654d2010-06-19 14:17:24 +00004757 // If the loop is canonicalized, the PHI will have exactly two entries.
4758 // That's the only form we support here.
4759 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4760
4761 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004762 // second must be derived from the same PHI.
4763 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4764 Constant *StartCST =
4765 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004766 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004767
4768 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004769 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4770 !isa<Constant>(BEValue))
4771 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004772
4773 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4774 // the loop symbolically to determine when the condition gets a value of
4775 // "ExitWhen".
4776 unsigned IterationNum = 0;
4777 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4778 for (Constant *PHIVal = StartCST;
4779 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004780 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004781 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004782
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004783 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004784 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004785
Reid Spencere8019bb2007-03-01 07:25:48 +00004786 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004787 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004788 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004789 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004790
Chris Lattner3221ad02004-04-17 22:58:41 +00004791 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004792 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004793 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004794 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004795 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004796 }
4797
4798 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004799 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004800}
4801
Dan Gohmane7125f42009-09-03 15:00:26 +00004802/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004803/// at the specified scope in the program. The L value specifies a loop
4804/// nest to evaluate the expression at, where null is the top-level or a
4805/// specified loop is immediately inside of the loop.
4806///
4807/// This method can be used to compute the exit value for a variable defined
4808/// in a loop by querying what the value will hold in the parent loop.
4809///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004810/// In the case that a relevant loop exit value cannot be computed, the
4811/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004812const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004813 // Check to see if we've folded this expression at this loop before.
4814 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4815 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4816 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4817 if (!Pair.second)
4818 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004819
Dan Gohman42214892009-08-31 21:15:23 +00004820 // Otherwise compute it.
4821 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004822 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004823 return C;
4824}
4825
4826const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004827 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004828
Nick Lewycky3e630762008-02-20 06:48:22 +00004829 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004830 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004831 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004832 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004833 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004834 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4835 if (PHINode *PN = dyn_cast<PHINode>(I))
4836 if (PN->getParent() == LI->getHeader()) {
4837 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004838 // to see if the loop that contains it has a known backedge-taken
4839 // count. If so, we may be able to force computation of the exit
4840 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004841 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004842 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004843 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004844 // Okay, we know how many times the containing loop executes. If
4845 // this is a constant evolving PHI node, get the final value at
4846 // the specified iteration number.
4847 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004848 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004849 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004850 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004851 }
4852 }
4853
Reid Spencer09906f32006-12-04 21:33:23 +00004854 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004855 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004856 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004857 // result. This is particularly useful for computing loop exit values.
4858 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004859 SmallVector<Constant *, 4> Operands;
4860 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004861 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4862 Value *Op = I->getOperand(i);
4863 if (Constant *C = dyn_cast<Constant>(Op)) {
4864 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004865 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004866 }
Dan Gohman11046452010-06-29 23:43:06 +00004867
4868 // If any of the operands is non-constant and if they are
4869 // non-integer and non-pointer, don't even try to analyze them
4870 // with scev techniques.
4871 if (!isSCEVable(Op->getType()))
4872 return V;
4873
4874 const SCEV *OrigV = getSCEV(Op);
4875 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4876 MadeImprovement |= OrigV != OpV;
4877
4878 Constant *C = 0;
4879 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4880 C = SC->getValue();
4881 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4882 C = dyn_cast<Constant>(SU->getValue());
4883 if (!C) return V;
4884 if (C->getType() != Op->getType())
4885 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4886 Op->getType(),
4887 false),
4888 C, Op->getType());
4889 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004890 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004891
Dan Gohman11046452010-06-29 23:43:06 +00004892 // Check to see if getSCEVAtScope actually made an improvement.
4893 if (MadeImprovement) {
4894 Constant *C = 0;
4895 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4896 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4897 Operands[0], Operands[1], TD);
4898 else
4899 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Jay Foad1d2f5692011-07-19 13:32:40 +00004900 Operands, TD);
Dan Gohman11046452010-06-29 23:43:06 +00004901 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004902 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004903 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004904 }
4905 }
4906
4907 // This is some other type of SCEVUnknown, just return it.
4908 return V;
4909 }
4910
Dan Gohman622ed672009-05-04 22:02:23 +00004911 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004912 // Avoid performing the look-up in the common case where the specified
4913 // expression has no loop-variant portions.
4914 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004915 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004916 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004917 // Okay, at least one of these operands is loop variant but might be
4918 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004919 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4920 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004921 NewOps.push_back(OpAtScope);
4922
4923 for (++i; i != e; ++i) {
4924 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004925 NewOps.push_back(OpAtScope);
4926 }
4927 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004928 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004929 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004930 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004931 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004932 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004933 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004934 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004935 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004936 }
4937 }
4938 // If we got here, all operands are loop invariant.
4939 return Comm;
4940 }
4941
Dan Gohman622ed672009-05-04 22:02:23 +00004942 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004943 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4944 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004945 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4946 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004947 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004948 }
4949
4950 // If this is a loop recurrence for a loop that does not contain L, then we
4951 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004952 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004953 // First, attempt to evaluate each operand.
4954 // Avoid performing the look-up in the common case where the specified
4955 // expression has no loop-variant portions.
4956 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4957 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4958 if (OpAtScope == AddRec->getOperand(i))
4959 continue;
4960
4961 // Okay, at least one of these operands is loop variant but might be
4962 // foldable. Build a new instance of the folded commutative expression.
4963 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4964 AddRec->op_begin()+i);
4965 NewOps.push_back(OpAtScope);
4966 for (++i; i != e; ++i)
4967 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4968
Andrew Trick3f95c882011-04-27 01:21:25 +00004969 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00004970 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00004971 AddRec->getNoWrapFlags(SCEV::FlagNW));
4972 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00004973 // The addrec may be folded to a nonrecurrence, for example, if the
4974 // induction variable is multiplied by zero after constant folding. Go
4975 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00004976 if (!AddRec)
4977 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00004978 break;
4979 }
4980
4981 // If the scope is outside the addrec's loop, evaluate it by using the
4982 // loop exit value of the addrec.
4983 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004984 // To evaluate this recurrence, we need to know how many times the AddRec
4985 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004986 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004987 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004988
Eli Friedmanb42a6262008-08-04 23:49:06 +00004989 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004990 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004991 }
Dan Gohman11046452010-06-29 23:43:06 +00004992
Dan Gohmand594e6f2009-05-24 23:25:42 +00004993 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004994 }
4995
Dan Gohman622ed672009-05-04 22:02:23 +00004996 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004997 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004998 if (Op == Cast->getOperand())
4999 return Cast; // must be loop invariant
5000 return getZeroExtendExpr(Op, Cast->getType());
5001 }
5002
Dan Gohman622ed672009-05-04 22:02:23 +00005003 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005004 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005005 if (Op == Cast->getOperand())
5006 return Cast; // must be loop invariant
5007 return getSignExtendExpr(Op, Cast->getType());
5008 }
5009
Dan Gohman622ed672009-05-04 22:02:23 +00005010 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005011 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005012 if (Op == Cast->getOperand())
5013 return Cast; // must be loop invariant
5014 return getTruncateExpr(Op, Cast->getType());
5015 }
5016
Torok Edwinc23197a2009-07-14 16:55:14 +00005017 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00005018 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00005019}
5020
Dan Gohman66a7e852009-05-08 20:38:54 +00005021/// getSCEVAtScope - This is a convenience function which does
5022/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005023const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005024 return getSCEVAtScope(getSCEV(V), L);
5025}
5026
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005027/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5028/// following equation:
5029///
5030/// A * X = B (mod N)
5031///
5032/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5033/// A and B isn't important.
5034///
5035/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005036static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005037 ScalarEvolution &SE) {
5038 uint32_t BW = A.getBitWidth();
5039 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5040 assert(A != 0 && "A must be non-zero.");
5041
5042 // 1. D = gcd(A, N)
5043 //
5044 // The gcd of A and N may have only one prime factor: 2. The number of
5045 // trailing zeros in A is its multiplicity
5046 uint32_t Mult2 = A.countTrailingZeros();
5047 // D = 2^Mult2
5048
5049 // 2. Check if B is divisible by D.
5050 //
5051 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5052 // is not less than multiplicity of this prime factor for D.
5053 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005054 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005055
5056 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5057 // modulo (N / D).
5058 //
5059 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5060 // bit width during computations.
5061 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5062 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005063 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005064 APInt I = AD.multiplicativeInverse(Mod);
5065
5066 // 4. Compute the minimum unsigned root of the equation:
5067 // I * (B / D) mod (N / D)
5068 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5069
5070 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5071 // bits.
5072 return SE.getConstant(Result.trunc(BW));
5073}
Chris Lattner53e677a2004-04-02 20:23:17 +00005074
5075/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5076/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5077/// might be the same) or two SCEVCouldNotCompute objects.
5078///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005079static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005080SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005081 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005082 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5083 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5084 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005085
Chris Lattner53e677a2004-04-02 20:23:17 +00005086 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005087 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005088 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005089 return std::make_pair(CNC, CNC);
5090 }
5091
Reid Spencere8019bb2007-03-01 07:25:48 +00005092 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005093 const APInt &L = LC->getValue()->getValue();
5094 const APInt &M = MC->getValue()->getValue();
5095 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005096 APInt Two(BitWidth, 2);
5097 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005098
Dan Gohman64a845e2009-06-24 04:48:43 +00005099 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005100 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005101 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005102 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5103 // The B coefficient is M-N/2
5104 APInt B(M);
5105 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005106
Reid Spencere8019bb2007-03-01 07:25:48 +00005107 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005108 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005109
Reid Spencere8019bb2007-03-01 07:25:48 +00005110 // Compute the B^2-4ac term.
5111 APInt SqrtTerm(B);
5112 SqrtTerm *= B;
5113 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005114
Reid Spencere8019bb2007-03-01 07:25:48 +00005115 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5116 // integer value or else APInt::sqrt() will assert.
5117 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005118
Dan Gohman64a845e2009-06-24 04:48:43 +00005119 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005120 // The divisions must be performed as signed divisions.
5121 APInt NegB(-B);
Nick Lewycky4fcc80a2011-10-03 05:14:59 +00005122 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005123 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005124 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005125 return std::make_pair(CNC, CNC);
5126 }
5127
Owen Andersone922c022009-07-22 00:24:57 +00005128 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005129
5130 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005131 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005132 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005133 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005134
Dan Gohman64a845e2009-06-24 04:48:43 +00005135 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005136 SE.getConstant(Solution2));
Nick Lewycky4fcc80a2011-10-03 05:14:59 +00005137 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005138}
5139
5140/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005141/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005142///
5143/// This is only used for loops with a "x != y" exit test. The exit condition is
5144/// now expressed as a single expression, V = x-y. So the exit test is
5145/// effectively V != 0. We know and take advantage of the fact that this
5146/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005147ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005148ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005149 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005150 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005151 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005152 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005153 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005154 }
5155
Dan Gohman35738ac2009-05-04 22:30:44 +00005156 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005157 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005158 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005159
Chris Lattner7975e3e2011-01-09 22:39:48 +00005160 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5161 // the quadratic equation to solve it.
5162 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5163 std::pair<const SCEV *,const SCEV *> Roots =
5164 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005165 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5166 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005167 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005168#if 0
David Greene25e0e872009-12-23 22:18:14 +00005169 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005170 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005171#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005172 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005173 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005174 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5175 R1->getValue(),
5176 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005177 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005178 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005179
Chris Lattner53e677a2004-04-02 20:23:17 +00005180 // We can only use this value if the chrec ends up with an exact zero
5181 // value at this index. When solving for "X*X != 5", for example, we
5182 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005183 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005184 if (Val->isZero())
5185 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005186 }
5187 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005188 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005189 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005190
Chris Lattner7975e3e2011-01-09 22:39:48 +00005191 // Otherwise we can only handle this if it is affine.
5192 if (!AddRec->isAffine())
5193 return getCouldNotCompute();
5194
5195 // If this is an affine expression, the execution count of this branch is
5196 // the minimum unsigned root of the following equation:
5197 //
5198 // Start + Step*N = 0 (mod 2^BW)
5199 //
5200 // equivalent to:
5201 //
5202 // Step*N = -Start (mod 2^BW)
5203 //
5204 // where BW is the common bit width of Start and Step.
5205
5206 // Get the initial value for the loop.
5207 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5208 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5209
5210 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005211 //
5212 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5213 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5214 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5215 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005216 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5217 if (StepC == 0)
5218 return getCouldNotCompute();
5219
Andrew Trick3228cc22011-03-14 16:50:06 +00005220 // For positive steps (counting up until unsigned overflow):
5221 // N = -Start/Step (as unsigned)
5222 // For negative steps (counting down to zero):
5223 // N = Start/-Step
5224 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005225 bool CountDown = StepC->getValue()->getValue().isNegative();
5226 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005227
5228 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005229 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5230 // N = Distance (as unsigned)
Nick Lewycky4fcc80a2011-10-03 05:14:59 +00005231 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5232 return Distance;
Andrew Trick635f7182011-03-09 17:23:39 +00005233
Andrew Trickdcfd4042011-03-14 17:28:02 +00005234 // If the recurrence is known not to wraparound, unsigned divide computes the
5235 // back edge count. We know that the value will either become zero (and thus
5236 // the loop terminates), that the loop will terminate through some other exit
5237 // condition first, or that the loop has undefined behavior. This means
5238 // we can't "miss" the exit value, even with nonunit stride.
5239 //
5240 // FIXME: Prove that loops always exhibits *acceptable* undefined
5241 // behavior. Loops must exhibit defined behavior until a wrapped value is
5242 // actually used. So the trip count computed by udiv could be smaller than the
5243 // number of well-defined iterations.
5244 if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5245 // FIXME: We really want an "isexact" bit for udiv.
5246 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005247
5248 // Then, try to solve the above equation provided that Start is constant.
5249 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5250 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5251 -StartC->getValue()->getValue(),
5252 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005253 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005254}
5255
5256/// HowFarToNonZero - Return the number of times a backedge checking the
5257/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005258/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005259ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005260ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005261 // Loops that look like: while (X == 0) are very strange indeed. We don't
5262 // handle them yet except for the trivial case. This could be expanded in the
5263 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005264
Chris Lattner53e677a2004-04-02 20:23:17 +00005265 // If the value is a constant, check to see if it is known to be non-zero
5266 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005267 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005268 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005269 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005270 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005271 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005272
Chris Lattner53e677a2004-04-02 20:23:17 +00005273 // We could implement others, but I really doubt anyone writes loops like
5274 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005275 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005276}
5277
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005278/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5279/// (which may not be an immediate predecessor) which has exactly one
5280/// successor from which BB is reachable, or null if no such block is
5281/// found.
5282///
Dan Gohman005752b2010-04-15 16:19:08 +00005283std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005284ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005285 // If the block has a unique predecessor, then there is no path from the
5286 // predecessor to the block that does not go through the direct edge
5287 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005288 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005289 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005290
5291 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005292 // If the header has a unique predecessor outside the loop, it must be
5293 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005294 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005295 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005296
Dan Gohman005752b2010-04-15 16:19:08 +00005297 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005298}
5299
Dan Gohman763bad12009-06-20 00:35:32 +00005300/// HasSameValue - SCEV structural equivalence is usually sufficient for
5301/// testing whether two expressions are equal, however for the purposes of
5302/// looking for a condition guarding a loop, it can be useful to be a little
5303/// more general, since a front-end may have replicated the controlling
5304/// expression.
5305///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005306static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005307 // Quick check to see if they are the same SCEV.
5308 if (A == B) return true;
5309
5310 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5311 // two different instructions with the same value. Check for this case.
5312 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5313 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5314 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5315 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005316 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005317 return true;
5318
5319 // Otherwise assume they may have a different value.
5320 return false;
5321}
5322
Dan Gohmane9796502010-04-24 01:28:42 +00005323/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5324/// predicate Pred. Return true iff any changes were made.
5325///
5326bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5327 const SCEV *&LHS, const SCEV *&RHS) {
5328 bool Changed = false;
5329
5330 // Canonicalize a constant to the right side.
5331 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5332 // Check for both operands constant.
5333 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5334 if (ConstantExpr::getICmp(Pred,
5335 LHSC->getValue(),
5336 RHSC->getValue())->isNullValue())
5337 goto trivially_false;
5338 else
5339 goto trivially_true;
5340 }
5341 // Otherwise swap the operands to put the constant on the right.
5342 std::swap(LHS, RHS);
5343 Pred = ICmpInst::getSwappedPredicate(Pred);
5344 Changed = true;
5345 }
5346
5347 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005348 // addrec's loop, put the addrec on the left. Also make a dominance check,
5349 // as both operands could be addrecs loop-invariant in each other's loop.
5350 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5351 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005352 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005353 std::swap(LHS, RHS);
5354 Pred = ICmpInst::getSwappedPredicate(Pred);
5355 Changed = true;
5356 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005357 }
Dan Gohmane9796502010-04-24 01:28:42 +00005358
5359 // If there's a constant operand, canonicalize comparisons with boundary
5360 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5361 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5362 const APInt &RA = RC->getValue()->getValue();
5363 switch (Pred) {
5364 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5365 case ICmpInst::ICMP_EQ:
5366 case ICmpInst::ICMP_NE:
5367 break;
5368 case ICmpInst::ICMP_UGE:
5369 if ((RA - 1).isMinValue()) {
5370 Pred = ICmpInst::ICMP_NE;
5371 RHS = getConstant(RA - 1);
5372 Changed = true;
5373 break;
5374 }
5375 if (RA.isMaxValue()) {
5376 Pred = ICmpInst::ICMP_EQ;
5377 Changed = true;
5378 break;
5379 }
5380 if (RA.isMinValue()) goto trivially_true;
5381
5382 Pred = ICmpInst::ICMP_UGT;
5383 RHS = getConstant(RA - 1);
5384 Changed = true;
5385 break;
5386 case ICmpInst::ICMP_ULE:
5387 if ((RA + 1).isMaxValue()) {
5388 Pred = ICmpInst::ICMP_NE;
5389 RHS = getConstant(RA + 1);
5390 Changed = true;
5391 break;
5392 }
5393 if (RA.isMinValue()) {
5394 Pred = ICmpInst::ICMP_EQ;
5395 Changed = true;
5396 break;
5397 }
5398 if (RA.isMaxValue()) goto trivially_true;
5399
5400 Pred = ICmpInst::ICMP_ULT;
5401 RHS = getConstant(RA + 1);
5402 Changed = true;
5403 break;
5404 case ICmpInst::ICMP_SGE:
5405 if ((RA - 1).isMinSignedValue()) {
5406 Pred = ICmpInst::ICMP_NE;
5407 RHS = getConstant(RA - 1);
5408 Changed = true;
5409 break;
5410 }
5411 if (RA.isMaxSignedValue()) {
5412 Pred = ICmpInst::ICMP_EQ;
5413 Changed = true;
5414 break;
5415 }
5416 if (RA.isMinSignedValue()) goto trivially_true;
5417
5418 Pred = ICmpInst::ICMP_SGT;
5419 RHS = getConstant(RA - 1);
5420 Changed = true;
5421 break;
5422 case ICmpInst::ICMP_SLE:
5423 if ((RA + 1).isMaxSignedValue()) {
5424 Pred = ICmpInst::ICMP_NE;
5425 RHS = getConstant(RA + 1);
5426 Changed = true;
5427 break;
5428 }
5429 if (RA.isMinSignedValue()) {
5430 Pred = ICmpInst::ICMP_EQ;
5431 Changed = true;
5432 break;
5433 }
5434 if (RA.isMaxSignedValue()) goto trivially_true;
5435
5436 Pred = ICmpInst::ICMP_SLT;
5437 RHS = getConstant(RA + 1);
5438 Changed = true;
5439 break;
5440 case ICmpInst::ICMP_UGT:
5441 if (RA.isMinValue()) {
5442 Pred = ICmpInst::ICMP_NE;
5443 Changed = true;
5444 break;
5445 }
5446 if ((RA + 1).isMaxValue()) {
5447 Pred = ICmpInst::ICMP_EQ;
5448 RHS = getConstant(RA + 1);
5449 Changed = true;
5450 break;
5451 }
5452 if (RA.isMaxValue()) goto trivially_false;
5453 break;
5454 case ICmpInst::ICMP_ULT:
5455 if (RA.isMaxValue()) {
5456 Pred = ICmpInst::ICMP_NE;
5457 Changed = true;
5458 break;
5459 }
5460 if ((RA - 1).isMinValue()) {
5461 Pred = ICmpInst::ICMP_EQ;
5462 RHS = getConstant(RA - 1);
5463 Changed = true;
5464 break;
5465 }
5466 if (RA.isMinValue()) goto trivially_false;
5467 break;
5468 case ICmpInst::ICMP_SGT:
5469 if (RA.isMinSignedValue()) {
5470 Pred = ICmpInst::ICMP_NE;
5471 Changed = true;
5472 break;
5473 }
5474 if ((RA + 1).isMaxSignedValue()) {
5475 Pred = ICmpInst::ICMP_EQ;
5476 RHS = getConstant(RA + 1);
5477 Changed = true;
5478 break;
5479 }
5480 if (RA.isMaxSignedValue()) goto trivially_false;
5481 break;
5482 case ICmpInst::ICMP_SLT:
5483 if (RA.isMaxSignedValue()) {
5484 Pred = ICmpInst::ICMP_NE;
5485 Changed = true;
5486 break;
5487 }
5488 if ((RA - 1).isMinSignedValue()) {
5489 Pred = ICmpInst::ICMP_EQ;
5490 RHS = getConstant(RA - 1);
5491 Changed = true;
5492 break;
5493 }
5494 if (RA.isMinSignedValue()) goto trivially_false;
5495 break;
5496 }
5497 }
5498
5499 // Check for obvious equality.
5500 if (HasSameValue(LHS, RHS)) {
5501 if (ICmpInst::isTrueWhenEqual(Pred))
5502 goto trivially_true;
5503 if (ICmpInst::isFalseWhenEqual(Pred))
5504 goto trivially_false;
5505 }
5506
Dan Gohman03557dc2010-05-03 16:35:17 +00005507 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5508 // adding or subtracting 1 from one of the operands.
5509 switch (Pred) {
5510 case ICmpInst::ICMP_SLE:
5511 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5512 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005513 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005514 Pred = ICmpInst::ICMP_SLT;
5515 Changed = true;
5516 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005517 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005518 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005519 Pred = ICmpInst::ICMP_SLT;
5520 Changed = true;
5521 }
5522 break;
5523 case ICmpInst::ICMP_SGE:
5524 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005525 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005526 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005527 Pred = ICmpInst::ICMP_SGT;
5528 Changed = true;
5529 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5530 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005531 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005532 Pred = ICmpInst::ICMP_SGT;
5533 Changed = true;
5534 }
5535 break;
5536 case ICmpInst::ICMP_ULE:
5537 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005538 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005539 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005540 Pred = ICmpInst::ICMP_ULT;
5541 Changed = true;
5542 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005543 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005544 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005545 Pred = ICmpInst::ICMP_ULT;
5546 Changed = true;
5547 }
5548 break;
5549 case ICmpInst::ICMP_UGE:
5550 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005551 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005552 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005553 Pred = ICmpInst::ICMP_UGT;
5554 Changed = true;
5555 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005556 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005557 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005558 Pred = ICmpInst::ICMP_UGT;
5559 Changed = true;
5560 }
5561 break;
5562 default:
5563 break;
5564 }
5565
Dan Gohmane9796502010-04-24 01:28:42 +00005566 // TODO: More simplifications are possible here.
5567
5568 return Changed;
5569
5570trivially_true:
5571 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005572 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005573 Pred = ICmpInst::ICMP_EQ;
5574 return true;
5575
5576trivially_false:
5577 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005578 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005579 Pred = ICmpInst::ICMP_NE;
5580 return true;
5581}
5582
Dan Gohman85b05a22009-07-13 21:35:55 +00005583bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5584 return getSignedRange(S).getSignedMax().isNegative();
5585}
5586
5587bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5588 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5589}
5590
5591bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5592 return !getSignedRange(S).getSignedMin().isNegative();
5593}
5594
5595bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5596 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5597}
5598
5599bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5600 return isKnownNegative(S) || isKnownPositive(S);
5601}
5602
5603bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5604 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005605 // Canonicalize the inputs first.
5606 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5607
Dan Gohman53c66ea2010-04-11 22:16:48 +00005608 // If LHS or RHS is an addrec, check to see if the condition is true in
5609 // every iteration of the loop.
5610 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5611 if (isLoopEntryGuardedByCond(
5612 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5613 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005614 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005615 return true;
5616 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5617 if (isLoopEntryGuardedByCond(
5618 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5619 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005620 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005621 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005622
Dan Gohman53c66ea2010-04-11 22:16:48 +00005623 // Otherwise see what can be done with known constant ranges.
5624 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5625}
5626
5627bool
5628ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5629 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005630 if (HasSameValue(LHS, RHS))
5631 return ICmpInst::isTrueWhenEqual(Pred);
5632
Dan Gohman53c66ea2010-04-11 22:16:48 +00005633 // This code is split out from isKnownPredicate because it is called from
5634 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005635 switch (Pred) {
5636 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005637 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005638 break;
5639 case ICmpInst::ICMP_SGT:
5640 Pred = ICmpInst::ICMP_SLT;
5641 std::swap(LHS, RHS);
5642 case ICmpInst::ICMP_SLT: {
5643 ConstantRange LHSRange = getSignedRange(LHS);
5644 ConstantRange RHSRange = getSignedRange(RHS);
5645 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5646 return true;
5647 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5648 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005649 break;
5650 }
5651 case ICmpInst::ICMP_SGE:
5652 Pred = ICmpInst::ICMP_SLE;
5653 std::swap(LHS, RHS);
5654 case ICmpInst::ICMP_SLE: {
5655 ConstantRange LHSRange = getSignedRange(LHS);
5656 ConstantRange RHSRange = getSignedRange(RHS);
5657 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5658 return true;
5659 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5660 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005661 break;
5662 }
5663 case ICmpInst::ICMP_UGT:
5664 Pred = ICmpInst::ICMP_ULT;
5665 std::swap(LHS, RHS);
5666 case ICmpInst::ICMP_ULT: {
5667 ConstantRange LHSRange = getUnsignedRange(LHS);
5668 ConstantRange RHSRange = getUnsignedRange(RHS);
5669 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5670 return true;
5671 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5672 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005673 break;
5674 }
5675 case ICmpInst::ICMP_UGE:
5676 Pred = ICmpInst::ICMP_ULE;
5677 std::swap(LHS, RHS);
5678 case ICmpInst::ICMP_ULE: {
5679 ConstantRange LHSRange = getUnsignedRange(LHS);
5680 ConstantRange RHSRange = getUnsignedRange(RHS);
5681 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5682 return true;
5683 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5684 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005685 break;
5686 }
5687 case ICmpInst::ICMP_NE: {
5688 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5689 return true;
5690 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5691 return true;
5692
5693 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5694 if (isKnownNonZero(Diff))
5695 return true;
5696 break;
5697 }
5698 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005699 // The check at the top of the function catches the case where
5700 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005701 break;
5702 }
5703 return false;
5704}
5705
5706/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5707/// protected by a conditional between LHS and RHS. This is used to
5708/// to eliminate casts.
5709bool
5710ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5711 ICmpInst::Predicate Pred,
5712 const SCEV *LHS, const SCEV *RHS) {
5713 // Interpret a null as meaning no loop, where there is obviously no guard
5714 // (interprocedural conditions notwithstanding).
5715 if (!L) return true;
5716
5717 BasicBlock *Latch = L->getLoopLatch();
5718 if (!Latch)
5719 return false;
5720
5721 BranchInst *LoopContinuePredicate =
5722 dyn_cast<BranchInst>(Latch->getTerminator());
5723 if (!LoopContinuePredicate ||
5724 LoopContinuePredicate->isUnconditional())
5725 return false;
5726
Dan Gohmanaf08a362010-08-10 23:46:30 +00005727 return isImpliedCond(Pred, LHS, RHS,
5728 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005729 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005730}
5731
Dan Gohman3948d0b2010-04-11 19:27:13 +00005732/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005733/// by a conditional between LHS and RHS. This is used to help avoid max
5734/// expressions in loop trip counts, and to eliminate casts.
5735bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005736ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5737 ICmpInst::Predicate Pred,
5738 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005739 // Interpret a null as meaning no loop, where there is obviously no guard
5740 // (interprocedural conditions notwithstanding).
5741 if (!L) return false;
5742
Dan Gohman859b4822009-05-18 15:36:09 +00005743 // Starting at the loop predecessor, climb up the predecessor chain, as long
5744 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005745 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005746 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005747 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005748 Pair.first;
5749 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005750
5751 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005752 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005753 if (!LoopEntryPredicate ||
5754 LoopEntryPredicate->isUnconditional())
5755 continue;
5756
Dan Gohmanaf08a362010-08-10 23:46:30 +00005757 if (isImpliedCond(Pred, LHS, RHS,
5758 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005759 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005760 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005761 }
5762
Dan Gohman38372182008-08-12 20:17:31 +00005763 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005764}
5765
Dan Gohman0f4b2852009-07-21 23:03:19 +00005766/// isImpliedCond - Test whether the condition described by Pred, LHS,
5767/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005768bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005769 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005770 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005771 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005772 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005773 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005774 if (BO->getOpcode() == Instruction::And) {
5775 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005776 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5777 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005778 } else if (BO->getOpcode() == Instruction::Or) {
5779 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005780 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5781 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005782 }
5783 }
5784
Dan Gohmanaf08a362010-08-10 23:46:30 +00005785 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005786 if (!ICI) return false;
5787
Dan Gohman85b05a22009-07-13 21:35:55 +00005788 // Bail if the ICmp's operands' types are wider than the needed type
5789 // before attempting to call getSCEV on them. This avoids infinite
5790 // recursion, since the analysis of widening casts can require loop
5791 // exit condition information for overflow checking, which would
5792 // lead back here.
5793 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005794 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005795 return false;
5796
Dan Gohman0f4b2852009-07-21 23:03:19 +00005797 // Now that we found a conditional branch that dominates the loop, check to
5798 // see if it is the comparison we are looking for.
5799 ICmpInst::Predicate FoundPred;
5800 if (Inverse)
5801 FoundPred = ICI->getInversePredicate();
5802 else
5803 FoundPred = ICI->getPredicate();
5804
5805 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5806 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005807
5808 // Balance the types. The case where FoundLHS' type is wider than
5809 // LHS' type is checked for above.
5810 if (getTypeSizeInBits(LHS->getType()) >
5811 getTypeSizeInBits(FoundLHS->getType())) {
5812 if (CmpInst::isSigned(Pred)) {
5813 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5814 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5815 } else {
5816 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5817 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5818 }
5819 }
5820
Dan Gohman0f4b2852009-07-21 23:03:19 +00005821 // Canonicalize the query to match the way instcombine will have
5822 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005823 if (SimplifyICmpOperands(Pred, LHS, RHS))
5824 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005825 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005826 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5827 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005828 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005829
5830 // Check to see if we can make the LHS or RHS match.
5831 if (LHS == FoundRHS || RHS == FoundLHS) {
5832 if (isa<SCEVConstant>(RHS)) {
5833 std::swap(FoundLHS, FoundRHS);
5834 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5835 } else {
5836 std::swap(LHS, RHS);
5837 Pred = ICmpInst::getSwappedPredicate(Pred);
5838 }
5839 }
5840
5841 // Check whether the found predicate is the same as the desired predicate.
5842 if (FoundPred == Pred)
5843 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5844
5845 // Check whether swapping the found predicate makes it the same as the
5846 // desired predicate.
5847 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5848 if (isa<SCEVConstant>(RHS))
5849 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5850 else
5851 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5852 RHS, LHS, FoundLHS, FoundRHS);
5853 }
5854
5855 // Check whether the actual condition is beyond sufficient.
5856 if (FoundPred == ICmpInst::ICMP_EQ)
5857 if (ICmpInst::isTrueWhenEqual(Pred))
5858 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5859 return true;
5860 if (Pred == ICmpInst::ICMP_NE)
5861 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5862 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5863 return true;
5864
5865 // Otherwise assume the worst.
5866 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005867}
5868
Dan Gohman0f4b2852009-07-21 23:03:19 +00005869/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005870/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005871/// and FoundRHS is true.
5872bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5873 const SCEV *LHS, const SCEV *RHS,
5874 const SCEV *FoundLHS,
5875 const SCEV *FoundRHS) {
5876 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5877 FoundLHS, FoundRHS) ||
5878 // ~x < ~y --> x > y
5879 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5880 getNotSCEV(FoundRHS),
5881 getNotSCEV(FoundLHS));
5882}
5883
5884/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005885/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005886/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005887bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005888ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5889 const SCEV *LHS, const SCEV *RHS,
5890 const SCEV *FoundLHS,
5891 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005892 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005893 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5894 case ICmpInst::ICMP_EQ:
5895 case ICmpInst::ICMP_NE:
5896 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5897 return true;
5898 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005899 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005900 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005901 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5902 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005903 return true;
5904 break;
5905 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005906 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005907 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5908 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005909 return true;
5910 break;
5911 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005912 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005913 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5914 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005915 return true;
5916 break;
5917 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005918 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005919 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5920 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005921 return true;
5922 break;
5923 }
5924
5925 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005926}
5927
Dan Gohman51f53b72009-06-21 23:46:38 +00005928/// getBECount - Subtract the end and start values and divide by the step,
5929/// rounding up, to get the number of times the backedge is executed. Return
5930/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005931const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005932 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005933 const SCEV *Step,
5934 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005935 assert(!isKnownNegative(Step) &&
5936 "This code doesn't handle negative strides yet!");
5937
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005938 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00005939
5940 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5941 // here because SCEV may not be able to determine that the unsigned division
5942 // after rounding is zero.
5943 if (Start == End)
5944 return getConstant(Ty, 0);
5945
Dan Gohmandeff6212010-05-03 22:09:21 +00005946 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005947 const SCEV *Diff = getMinusSCEV(End, Start);
5948 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005949
5950 // Add an adjustment to the difference between End and Start so that
5951 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005952 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005953
Dan Gohman1f96e672009-09-17 18:05:20 +00005954 if (!NoWrap) {
5955 // Check Add for unsigned overflow.
5956 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005957 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00005958 getTypeSizeInBits(Ty) + 1);
5959 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5960 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5961 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5962 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5963 return getCouldNotCompute();
5964 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005965
5966 return getUDivExpr(Add, Step);
5967}
5968
Chris Lattnerdb25de42005-08-15 23:33:51 +00005969/// HowManyLessThans - Return the number of times a backedge containing the
5970/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005971/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00005972ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00005973ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5974 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005975 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005976 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005977
Dan Gohman35738ac2009-05-04 22:30:44 +00005978 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005979 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005980 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005981
Dan Gohman1f96e672009-09-17 18:05:20 +00005982 // Check to see if we have a flag which makes analysis easy.
Andrew Trick3228cc22011-03-14 16:50:06 +00005983 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5984 AddRec->getNoWrapFlags(SCEV::FlagNUW);
Dan Gohman1f96e672009-09-17 18:05:20 +00005985
Chris Lattnerdb25de42005-08-15 23:33:51 +00005986 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005987 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005988 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005989
Dan Gohman52fddd32010-01-26 04:40:18 +00005990 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005991 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005992 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005993 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005994 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005995 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005996 // value and past the maximum value for its type in a single step.
5997 // Note that it's not sufficient to check NoWrap here, because even
5998 // though the value after a wrap is undefined, it's not undefined
5999 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006000 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006001 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006002 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006003 if (isSigned) {
6004 APInt Max = APInt::getSignedMaxValue(BitWidth);
6005 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6006 .slt(getSignedRange(RHS).getSignedMax()))
6007 return getCouldNotCompute();
6008 } else {
6009 APInt Max = APInt::getMaxValue(BitWidth);
6010 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6011 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6012 return getCouldNotCompute();
6013 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006014 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006015 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006016 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006017
Dan Gohmana1af7572009-04-30 20:47:05 +00006018 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6019 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6020 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006021 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006022
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006023 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006024 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006025
Dan Gohmana1af7572009-04-30 20:47:05 +00006026 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006027 const SCEV *MinStart = getConstant(isSigned ?
6028 getSignedRange(Start).getSignedMin() :
6029 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006030
Dan Gohmana1af7572009-04-30 20:47:05 +00006031 // If we know that the condition is true in order to enter the loop,
6032 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006033 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6034 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006035 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006036 if (!isLoopEntryGuardedByCond(L,
6037 isSigned ? ICmpInst::ICMP_SLT :
6038 ICmpInst::ICMP_ULT,
6039 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006040 End = isSigned ? getSMaxExpr(RHS, Start)
6041 : getUMaxExpr(RHS, Start);
6042
6043 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006044 const SCEV *MaxEnd = getConstant(isSigned ?
6045 getSignedRange(End).getSignedMax() :
6046 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006047
Dan Gohman52fddd32010-01-26 04:40:18 +00006048 // If MaxEnd is within a step of the maximum integer value in its type,
6049 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006050 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006051 // compute the correct value.
6052 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006053 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006054 MaxEnd = isSigned ?
6055 getSMinExpr(MaxEnd,
6056 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6057 StepMinusOne)) :
6058 getUMinExpr(MaxEnd,
6059 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6060 StepMinusOne));
6061
Dan Gohmana1af7572009-04-30 20:47:05 +00006062 // Finally, we subtract these two values and divide, rounding up, to get
6063 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006064 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006065
6066 // The maximum backedge count is similar, except using the minimum start
6067 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006068 // If we already have an exact constant BECount, use it instead.
6069 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6070 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6071
6072 // If the stride is nonconstant, and NoWrap == true, then
6073 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6074 // exact BECount and invalid MaxBECount, which should be avoided to catch
6075 // more optimization opportunities.
6076 if (isa<SCEVCouldNotCompute>(MaxBECount))
6077 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006078
Andrew Trick5116ff62011-07-26 17:19:55 +00006079 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006080 }
6081
Dan Gohman1c343752009-06-27 21:21:31 +00006082 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006083}
6084
Chris Lattner53e677a2004-04-02 20:23:17 +00006085/// getNumIterationsInRange - Return the number of iterations of this loop that
6086/// produce values in the specified constant range. Another way of looking at
6087/// this is that it returns the first iteration number where the value is not in
6088/// the condition, thus computing the exit count. If the iteration count can't
6089/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006090const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006091 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006092 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006093 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006094
6095 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006096 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006097 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006098 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006099 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006100 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006101 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006102 if (const SCEVAddRecExpr *ShiftedAddRec =
6103 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006104 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006105 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006106 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006107 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006108 }
6109
6110 // The only time we can solve this is when we have all constant indices.
6111 // Otherwise, we cannot determine the overflow conditions.
6112 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6113 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006114 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006115
6116
6117 // Okay at this point we know that all elements of the chrec are constants and
6118 // that the start element is zero.
6119
6120 // First check to see if the range contains zero. If not, the first
6121 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006122 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006123 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006124 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006125
Chris Lattner53e677a2004-04-02 20:23:17 +00006126 if (isAffine()) {
6127 // If this is an affine expression then we have this situation:
6128 // Solve {0,+,A} in Range === Ax in Range
6129
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006130 // We know that zero is in the range. If A is positive then we know that
6131 // the upper value of the range must be the first possible exit value.
6132 // If A is negative then the lower of the range is the last possible loop
6133 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006134 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006135 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6136 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006137
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006138 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006139 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006140 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006141
6142 // Evaluate at the exit value. If we really did fall out of the valid
6143 // range, then we computed our trip count, otherwise wrap around or other
6144 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006145 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006146 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006147 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006148
6149 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006150 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006151 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006152 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006153 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006154 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006155 } else if (isQuadratic()) {
6156 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6157 // quadratic equation to solve it. To do this, we must frame our problem in
6158 // terms of figuring out when zero is crossed, instead of when
6159 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006160 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006161 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006162 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6163 // getNoWrapFlags(FlagNW)
6164 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006165
6166 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006167 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006168 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006169 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6170 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006171 if (R1) {
6172 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006173 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006174 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006175 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006176 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006177 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006178
Chris Lattner53e677a2004-04-02 20:23:17 +00006179 // Make sure the root is not off by one. The returned iteration should
6180 // not be in the range, but the previous one should be. When solving
6181 // for "X*X < 5", for example, we should not return a root of 2.
6182 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006183 R1->getValue(),
6184 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006185 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006186 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006187 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006188 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006189
Dan Gohman246b2562007-10-22 18:31:58 +00006190 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006191 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006192 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006193 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006194 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006195
Chris Lattner53e677a2004-04-02 20:23:17 +00006196 // If R1 was not in the range, then it is a good return value. Make
6197 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006198 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006199 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006200 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006201 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006202 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006203 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006204 }
6205 }
6206 }
6207
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006208 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006209}
6210
6211
6212
6213//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006214// SCEVCallbackVH Class Implementation
6215//===----------------------------------------------------------------------===//
6216
Dan Gohman1959b752009-05-19 19:22:47 +00006217void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006218 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006219 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6220 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006221 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006222 // this now dangles!
6223}
6224
Dan Gohman81f91212010-07-28 01:09:07 +00006225void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006226 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006227
Dan Gohman35738ac2009-05-04 22:30:44 +00006228 // Forget all the expressions associated with users of the old value,
6229 // so that future queries will recompute the expressions using the new
6230 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006231 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006232 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006233 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006234 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6235 UI != UE; ++UI)
6236 Worklist.push_back(*UI);
6237 while (!Worklist.empty()) {
6238 User *U = Worklist.pop_back_val();
6239 // Deleting the Old value will cause this to dangle. Postpone
6240 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006241 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006242 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006243 if (!Visited.insert(U))
6244 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006245 if (PHINode *PN = dyn_cast<PHINode>(U))
6246 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006247 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006248 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6249 UI != UE; ++UI)
6250 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006251 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006252 // Delete the Old value.
6253 if (PHINode *PN = dyn_cast<PHINode>(Old))
6254 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006255 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006256 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006257}
6258
Dan Gohman1959b752009-05-19 19:22:47 +00006259ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006260 : CallbackVH(V), SE(se) {}
6261
6262//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006263// ScalarEvolution Class Implementation
6264//===----------------------------------------------------------------------===//
6265
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006266ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006267 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006268 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006269}
6270
Chris Lattner53e677a2004-04-02 20:23:17 +00006271bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006272 this->F = &F;
6273 LI = &getAnalysis<LoopInfo>();
6274 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006275 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006276 return false;
6277}
6278
6279void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006280 // Iterate through all the SCEVUnknown instances and call their
6281 // destructors, so that they release their references to their values.
6282 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6283 U->~SCEVUnknown();
6284 FirstUnknown = 0;
6285
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006286 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006287
6288 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6289 // that a loop had multiple computable exits.
6290 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6291 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6292 I != E; ++I) {
6293 I->second.clear();
6294 }
6295
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006296 BackedgeTakenCounts.clear();
6297 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006298 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006299 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006300 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006301 UnsignedRanges.clear();
6302 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006303 UniqueSCEVs.clear();
6304 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006305}
6306
6307void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6308 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006309 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006310 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006311}
6312
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006313bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006314 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006315}
6316
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006317static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006318 const Loop *L) {
6319 // Print all inner loops first
6320 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6321 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006322
Dan Gohman30733292010-01-09 18:17:45 +00006323 OS << "Loop ";
6324 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6325 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006326
Dan Gohman5d984912009-12-18 01:14:11 +00006327 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006328 L->getExitBlocks(ExitBlocks);
6329 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006330 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006331
Dan Gohman46bdfb02009-02-24 18:55:53 +00006332 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6333 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006334 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006335 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006336 }
6337
Dan Gohman30733292010-01-09 18:17:45 +00006338 OS << "\n"
6339 "Loop ";
6340 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6341 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006342
6343 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6344 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6345 } else {
6346 OS << "Unpredictable max backedge-taken count. ";
6347 }
6348
6349 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006350}
6351
Dan Gohman5d984912009-12-18 01:14:11 +00006352void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006353 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006354 // out SCEV values of all instructions that are interesting. Doing
6355 // this potentially causes it to create new SCEV objects though,
6356 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006357 // observable from outside the class though, so casting away the
6358 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006359 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006360
Dan Gohman30733292010-01-09 18:17:45 +00006361 OS << "Classifying expressions for: ";
6362 WriteAsOperand(OS, F, /*PrintType=*/false);
6363 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006364 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006365 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006366 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006367 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006368 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006369 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006370
Dan Gohman0c689c52009-06-19 17:49:54 +00006371 const Loop *L = LI->getLoopFor((*I).getParent());
6372
Dan Gohman0bba49c2009-07-07 17:06:11 +00006373 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006374 if (AtUse != SV) {
6375 OS << " --> ";
6376 AtUse->print(OS);
6377 }
6378
6379 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006380 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006381 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006382 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006383 OS << "<<Unknown>>";
6384 } else {
6385 OS << *ExitValue;
6386 }
6387 }
6388
Chris Lattner53e677a2004-04-02 20:23:17 +00006389 OS << "\n";
6390 }
6391
Dan Gohman30733292010-01-09 18:17:45 +00006392 OS << "Determining loop execution counts for: ";
6393 WriteAsOperand(OS, F, /*PrintType=*/false);
6394 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006395 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6396 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006397}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006398
Dan Gohman714b5292010-11-17 23:21:44 +00006399ScalarEvolution::LoopDisposition
6400ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6401 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6402 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6403 Values.insert(std::make_pair(L, LoopVariant));
6404 if (!Pair.second)
6405 return Pair.first->second;
6406
6407 LoopDisposition D = computeLoopDisposition(S, L);
6408 return LoopDispositions[S][L] = D;
6409}
6410
6411ScalarEvolution::LoopDisposition
6412ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006413 switch (S->getSCEVType()) {
6414 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006415 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006416 case scTruncate:
6417 case scZeroExtend:
6418 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006419 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006420 case scAddRecExpr: {
6421 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6422
Dan Gohman714b5292010-11-17 23:21:44 +00006423 // If L is the addrec's loop, it's computable.
6424 if (AR->getLoop() == L)
6425 return LoopComputable;
6426
Dan Gohman17ead4f2010-11-17 21:23:15 +00006427 // Add recurrences are never invariant in the function-body (null loop).
6428 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006429 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006430
6431 // This recurrence is variant w.r.t. L if L contains AR's loop.
6432 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006433 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006434
6435 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6436 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006437 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006438
6439 // This recurrence is variant w.r.t. L if any of its operands
6440 // are variant.
6441 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6442 I != E; ++I)
6443 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006444 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006445
6446 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006447 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006448 }
6449 case scAddExpr:
6450 case scMulExpr:
6451 case scUMaxExpr:
6452 case scSMaxExpr: {
6453 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006454 bool HasVarying = false;
6455 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6456 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006457 LoopDisposition D = getLoopDisposition(*I, L);
6458 if (D == LoopVariant)
6459 return LoopVariant;
6460 if (D == LoopComputable)
6461 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006462 }
Dan Gohman714b5292010-11-17 23:21:44 +00006463 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006464 }
6465 case scUDivExpr: {
6466 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006467 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6468 if (LD == LoopVariant)
6469 return LoopVariant;
6470 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6471 if (RD == LoopVariant)
6472 return LoopVariant;
6473 return (LD == LoopInvariant && RD == LoopInvariant) ?
6474 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006475 }
6476 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006477 // All non-instruction values are loop invariant. All instructions are loop
6478 // invariant if they are not contained in the specified loop.
6479 // Instructions are never considered invariant in the function body
6480 // (null loop) because they are defined within the "loop".
6481 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6482 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6483 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006484 case scCouldNotCompute:
6485 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006486 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006487 default: break;
6488 }
6489 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006490 return LoopVariant;
6491}
6492
6493bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6494 return getLoopDisposition(S, L) == LoopInvariant;
6495}
6496
6497bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6498 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006499}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006500
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006501ScalarEvolution::BlockDisposition
6502ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6503 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6504 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6505 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6506 if (!Pair.second)
6507 return Pair.first->second;
6508
6509 BlockDisposition D = computeBlockDisposition(S, BB);
6510 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006511}
6512
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006513ScalarEvolution::BlockDisposition
6514ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006515 switch (S->getSCEVType()) {
6516 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006517 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006518 case scTruncate:
6519 case scZeroExtend:
6520 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006521 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006522 case scAddRecExpr: {
6523 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006524 // to test for proper dominance too, because the instruction which
6525 // produces the addrec's value is a PHI, and a PHI effectively properly
6526 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006527 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6528 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006529 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006530 }
6531 // FALL THROUGH into SCEVNAryExpr handling.
6532 case scAddExpr:
6533 case scMulExpr:
6534 case scUMaxExpr:
6535 case scSMaxExpr: {
6536 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006537 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006538 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006539 I != E; ++I) {
6540 BlockDisposition D = getBlockDisposition(*I, BB);
6541 if (D == DoesNotDominateBlock)
6542 return DoesNotDominateBlock;
6543 if (D == DominatesBlock)
6544 Proper = false;
6545 }
6546 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006547 }
6548 case scUDivExpr: {
6549 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006550 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6551 BlockDisposition LD = getBlockDisposition(LHS, BB);
6552 if (LD == DoesNotDominateBlock)
6553 return DoesNotDominateBlock;
6554 BlockDisposition RD = getBlockDisposition(RHS, BB);
6555 if (RD == DoesNotDominateBlock)
6556 return DoesNotDominateBlock;
6557 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6558 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006559 }
6560 case scUnknown:
6561 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006562 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6563 if (I->getParent() == BB)
6564 return DominatesBlock;
6565 if (DT->properlyDominates(I->getParent(), BB))
6566 return ProperlyDominatesBlock;
6567 return DoesNotDominateBlock;
6568 }
6569 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006570 case scCouldNotCompute:
6571 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006572 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006573 default: break;
6574 }
6575 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006576 return DoesNotDominateBlock;
6577}
6578
6579bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6580 return getBlockDisposition(S, BB) >= DominatesBlock;
6581}
6582
6583bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6584 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006585}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006586
6587bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6588 switch (S->getSCEVType()) {
6589 case scConstant:
6590 return false;
6591 case scTruncate:
6592 case scZeroExtend:
6593 case scSignExtend: {
6594 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6595 const SCEV *CastOp = Cast->getOperand();
6596 return Op == CastOp || hasOperand(CastOp, Op);
6597 }
6598 case scAddRecExpr:
6599 case scAddExpr:
6600 case scMulExpr:
6601 case scUMaxExpr:
6602 case scSMaxExpr: {
6603 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6604 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6605 I != E; ++I) {
6606 const SCEV *NAryOp = *I;
6607 if (NAryOp == Op || hasOperand(NAryOp, Op))
6608 return true;
6609 }
6610 return false;
6611 }
6612 case scUDivExpr: {
6613 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6614 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6615 return LHS == Op || hasOperand(LHS, Op) ||
6616 RHS == Op || hasOperand(RHS, Op);
6617 }
6618 case scUnknown:
6619 return false;
6620 case scCouldNotCompute:
6621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6622 return false;
6623 default: break;
6624 }
6625 llvm_unreachable("Unknown SCEV kind!");
6626 return false;
6627}
Dan Gohman56a75682010-11-17 23:28:48 +00006628
6629void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6630 ValuesAtScopes.erase(S);
6631 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006632 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006633 UnsignedRanges.erase(S);
6634 SignedRanges.erase(S);
6635}