blob: 9f8b5c5dfe54e67ae972e1ea32cbc4ec25e417e2 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000160 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000161 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNW) &&
165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168 OS << ">";
169 return;
170 }
171 case scAddExpr:
172 case scMulExpr:
173 case scUMaxExpr:
174 case scSMaxExpr: {
175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000176 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 switch (NAry->getSCEVType()) {
178 case scAddExpr: OpStr = " + "; break;
179 case scMulExpr: OpStr = " * "; break;
180 case scUMaxExpr: OpStr = " umax "; break;
181 case scSMaxExpr: OpStr = " smax "; break;
182 }
183 OS << "(";
184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185 I != E; ++I) {
186 OS << **I;
187 if (llvm::next(I) != E)
188 OS << OpStr;
189 }
190 OS << ")";
191 return;
192 }
193 case scUDivExpr: {
194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196 return;
197 }
198 case scUnknown: {
199 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000200 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 if (U->isSizeOf(AllocTy)) {
202 OS << "sizeof(" << *AllocTy << ")";
203 return;
204 }
205 if (U->isAlignOf(AllocTy)) {
206 OS << "alignof(" << *AllocTy << ")";
207 return;
208 }
Andrew Trick635f7182011-03-09 17:23:39 +0000209
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 Constant *FieldNo;
212 if (U->isOffsetOf(CTy, FieldNo)) {
213 OS << "offsetof(" << *CTy << ", ";
214 WriteAsOperand(OS, FieldNo, false);
215 OS << ")";
216 return;
217 }
Andrew Trick635f7182011-03-09 17:23:39 +0000218
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 // Otherwise just print it normally.
220 WriteAsOperand(OS, U->getValue(), false);
221 return;
222 }
223 case scCouldNotCompute:
224 OS << "***COULDNOTCOMPUTE***";
225 return;
226 default: break;
227 }
228 llvm_unreachable("Unknown SCEV kind!");
229}
230
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000231Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000232 switch (getSCEVType()) {
233 case scConstant:
234 return cast<SCEVConstant>(this)->getType();
235 case scTruncate:
236 case scZeroExtend:
237 case scSignExtend:
238 return cast<SCEVCastExpr>(this)->getType();
239 case scAddRecExpr:
240 case scMulExpr:
241 case scUMaxExpr:
242 case scSMaxExpr:
243 return cast<SCEVNAryExpr>(this)->getType();
244 case scAddExpr:
245 return cast<SCEVAddExpr>(this)->getType();
246 case scUDivExpr:
247 return cast<SCEVUDivExpr>(this)->getType();
248 case scUnknown:
249 return cast<SCEVUnknown>(this)->getType();
250 case scCouldNotCompute:
251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252 return 0;
253 default: break;
254 }
255 llvm_unreachable("Unknown SCEV kind!");
256 return 0;
257}
258
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000259bool SCEV::isZero() const {
260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261 return SC->getValue()->isZero();
262 return false;
263}
264
Dan Gohman70a1fe72009-05-18 15:22:39 +0000265bool SCEV::isOne() const {
266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267 return SC->getValue()->isOne();
268 return false;
269}
Chris Lattner53e677a2004-04-02 20:23:17 +0000270
Dan Gohman4d289bf2009-06-24 00:30:26 +0000271bool SCEV::isAllOnesValue() const {
272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273 return SC->getValue()->isAllOnesValue();
274 return false;
275}
276
Owen Anderson753ad612009-06-22 21:57:23 +0000277SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000279
Chris Lattner53e677a2004-04-02 20:23:17 +0000280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281 return S->getSCEVType() == scCouldNotCompute;
282}
283
Dan Gohman0bba49c2009-07-07 17:06:11 +0000284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000285 FoldingSetNodeID ID;
286 ID.AddInteger(scConstant);
287 ID.AddPointer(V);
288 void *IP = 0;
289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000291 UniqueSCEVs.InsertNode(S, IP);
292 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
Chris Lattner53e677a2004-04-02 20:23:17 +0000294
Dan Gohman0bba49c2009-07-07 17:06:11 +0000295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000296 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000297}
298
Dan Gohman0bba49c2009-07-07 17:06:11 +0000299const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000302 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000303}
304
Dan Gohman3bf63762010-06-18 19:54:20 +0000305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000306 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000308
Dan Gohman3bf63762010-06-18 19:54:20 +0000309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000310 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000311 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000314 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman3bf63762010-06-18 19:54:20 +0000317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000318 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Dan Gohman3bf63762010-06-18 19:54:20 +0000325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000327 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000330 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000331}
332
Dan Gohmanab37f502010-08-02 23:49:30 +0000333void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000334 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000335 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000336
337 // Remove this SCEVUnknown from the uniquing map.
338 SE->UniqueSCEVs.RemoveNode(this);
339
340 // Release the value.
341 setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000345 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000346 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000347
348 // Remove this SCEVUnknown from the uniquing map.
349 SE->UniqueSCEVs.RemoveNode(this);
350
351 // Update this SCEVUnknown to point to the new value. This is needed
352 // because there may still be outstanding SCEVs which still point to
353 // this SCEVUnknown.
354 setValPtr(New);
355}
356
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000359 if (VCE->getOpcode() == Instruction::PtrToInt)
360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000361 if (CE->getOpcode() == Instruction::GetElementPtr &&
362 CE->getOperand(0)->isNullValue() &&
363 CE->getNumOperands() == 2)
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365 if (CI->isOne()) {
366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367 ->getElementType();
368 return true;
369 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000370
371 return false;
372}
373
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000376 if (VCE->getOpcode() == Instruction::PtrToInt)
377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000378 if (CE->getOpcode() == Instruction::GetElementPtr &&
379 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000380 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000382 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (!STy->isPacked() &&
384 CE->getNumOperands() == 3 &&
385 CE->getOperand(1)->isNullValue()) {
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387 if (CI->isOne() &&
388 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000389 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000390 AllocTy = STy->getElementType(1);
391 return true;
392 }
393 }
394 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000395
396 return false;
397}
398
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getNumOperands() == 3 &&
405 CE->getOperand(0)->isNullValue() &&
406 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409 // Ignore vector types here so that ScalarEvolutionExpander doesn't
410 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000411 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000412 CTy = Ty;
413 FieldNo = CE->getOperand(2);
414 return true;
415 }
416 }
417
418 return false;
419}
420
Chris Lattner8d741b82004-06-20 06:23:15 +0000421//===----------------------------------------------------------------------===//
422// SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427 /// than the complexity of the RHS. This comparator is used to canonicalize
428 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000429 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000430 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000431 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000433
Dan Gohman67ef74e2010-08-27 15:26:01 +0000434 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000435 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000436 return compare(LHS, RHS) < 0;
437 }
438
439 // Return negative, zero, or positive, if LHS is less than, equal to, or
440 // greater than RHS, respectively. A three-way result allows recursive
441 // comparisons to be more efficient.
442 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000443 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000445 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000446
Dan Gohman72861302009-05-07 14:39:04 +0000447 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000450 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000451
Dan Gohman3bf63762010-06-18 19:54:20 +0000452 // Aside from the getSCEVType() ordering, the particular ordering
453 // isn't very important except that it's beneficial to be consistent,
454 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000455 switch (LType) {
456 case scUnknown: {
457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000459
460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000462 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000463
464 // Order pointer values after integer values. This helps SCEVExpander
465 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000466 bool LIsPointer = LV->getType()->isPointerTy(),
467 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000468 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000470
471 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000472 unsigned LID = LV->getValueID(),
473 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000474 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000476
477 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000478 if (const Argument *LA = dyn_cast<Argument>(LV)) {
479 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 }
483
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 // For instructions, compare their loop depth, and their operand
485 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488
489 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 const BasicBlock *LParent = LInst->getParent(),
491 *RParent = RInst->getParent();
492 if (LParent != RParent) {
493 unsigned LDepth = LI->getLoopDepth(LParent),
494 RDepth = LI->getLoopDepth(RParent);
495 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000496 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 unsigned LNumOps = LInst->getNumOperands(),
501 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 case scConstant: {
509 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000511
512 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000513 const APInt &LA = LC->getValue()->getValue();
514 const APInt &RA = RC->getValue()->getValue();
515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000516 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000517 return (int)LBitWidth - (int)RBitWidth;
518 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000519 }
520
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521 case scAddRecExpr: {
522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524
525 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527 if (LLoop != RLoop) {
528 unsigned LDepth = LLoop->getLoopDepth(),
529 RDepth = RLoop->getLoopDepth();
530 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000532 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Addrec complexity grows with operand count.
535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536 if (LNumOps != RNumOps)
537 return (int)LNumOps - (int)RNumOps;
538
539 // Lexicographically compare.
540 for (unsigned i = 0; i != LNumOps; ++i) {
541 long X = compare(LA->getOperand(i), RA->getOperand(i));
542 if (X != 0)
543 return X;
544 }
545
546 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 }
548
Dan Gohman67ef74e2010-08-27 15:26:01 +0000549 case scAddExpr:
550 case scMulExpr:
551 case scSMaxExpr:
552 case scUMaxExpr: {
553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558 for (unsigned i = 0; i != LNumOps; ++i) {
559 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560 return 1;
561 long X = compare(LC->getOperand(i), RC->getOperand(i));
562 if (X != 0)
563 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000564 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000566 }
567
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568 case scUDivExpr: {
569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571
572 // Lexicographically compare udiv expressions.
573 long X = compare(LC->getLHS(), RC->getLHS());
574 if (X != 0)
575 return X;
576 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scTruncate:
580 case scZeroExtend:
581 case scSignExtend: {
582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584
585 // Compare cast expressions by operand.
586 return compare(LC->getOperand(), RC->getOperand());
587 }
588
589 default:
590 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000591 }
592
593 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000595 }
596 };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000604/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000605/// results from this routine. In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000610 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 if (Ops.size() < 2) return; // Noop
612 if (Ops.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
614 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616 if (SCEVComplexityCompare(LI)(RHS, LHS))
617 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000618 return;
619 }
620
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 // Do the rough sort by complexity.
622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624 // Now that we are sorted by complexity, group elements of the same
625 // complexity. Note that this is, at worst, N^2, but the vector is likely to
626 // be extremely short in practice. Note that we take this approach because we
627 // do not want to depend on the addresses of the objects we are grouping.
628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629 const SCEV *S = Ops[i];
630 unsigned Complexity = S->getSCEVType();
631
632 // If there are any objects of the same complexity and same value as this
633 // one, group them.
634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635 if (Ops[j] == S) { // Found a duplicate.
636 // Move it to immediately after i'th element.
637 std::swap(Ops[i+1], Ops[j]);
638 ++i; // no need to rescan it.
639 if (i == e-2) return; // Done!
640 }
641 }
642 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000643}
644
Chris Lattner53e677a2004-04-02 20:23:17 +0000645
Chris Lattner53e677a2004-04-02 20:23:17 +0000646
647//===----------------------------------------------------------------------===//
648// Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
Eli Friedmanb42a6262008-08-04 23:49:06 +0000651/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000652/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000654 ScalarEvolution &SE,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000655 Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 // Handle the simplest case efficiently.
657 if (K == 1)
658 return SE.getTruncateOrZeroExtend(It, ResultTy);
659
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000660 // We are using the following formula for BC(It, K):
661 //
662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // Suppose, W is the bitwidth of the return value. We must be prepared for
665 // overflow. Hence, we must assure that the result of our computation is
666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
667 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000670 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676 // This formula is trivially equivalent to the previous formula. However,
677 // this formula can be implemented much more efficiently. The trick is that
678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679 // arithmetic. To do exact division in modular arithmetic, all we have
680 // to do is multiply by the inverse. Therefore, this step can be done at
681 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // The next issue is how to safely do the division by 2^T. The way this
684 // is done is by doing the multiplication step at a width of at least W + T
685 // bits. This way, the bottom W+T bits of the product are accurate. Then,
686 // when we perform the division by 2^T (which is equivalent to a right shift
687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
688 // truncated out after the division by 2^T.
689 //
690 // In comparison to just directly using the first formula, this technique
691 // is much more efficient; using the first formula requires W * K bits,
692 // but this formula less than W + K bits. Also, the first formula requires
693 // a division step, whereas this formula only requires multiplies and shifts.
694 //
695 // It doesn't matter whether the subtraction step is done in the calculation
696 // width or the input iteration count's width; if the subtraction overflows,
697 // the result must be zero anyway. We prefer here to do it in the width of
698 // the induction variable because it helps a lot for certain cases; CodeGen
699 // isn't smart enough to ignore the overflow, which leads to much less
700 // efficient code if the width of the subtraction is wider than the native
701 // register width.
702 //
703 // (It's possible to not widen at all by pulling out factors of 2 before
704 // the multiplication; for example, K=2 can be calculated as
705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706 // extra arithmetic, so it's not an obvious win, and it gets
707 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000708
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Protection from insane SCEVs; this bound is conservative,
710 // but it probably doesn't matter.
711 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000712 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000714 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000715
Eli Friedmanb42a6262008-08-04 23:49:06 +0000716 // Calculate K! / 2^T and T; we divide out the factors of two before
717 // multiplying for calculating K! / 2^T to avoid overflow.
718 // Other overflow doesn't matter because we only care about the bottom
719 // W bits of the result.
720 APInt OddFactorial(W, 1);
721 unsigned T = 1;
722 for (unsigned i = 3; i <= K; ++i) {
723 APInt Mult(W, i);
724 unsigned TwoFactors = Mult.countTrailingZeros();
725 T += TwoFactors;
726 Mult = Mult.lshr(TwoFactors);
727 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000728 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000731 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000732
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000733 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000734 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736 // Calculate the multiplicative inverse of K! / 2^T;
737 // this multiplication factor will perform the exact division by
738 // K! / 2^T.
739 APInt Mod = APInt::getSignedMinValue(W+1);
740 APInt MultiplyFactor = OddFactorial.zext(W+1);
741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742 MultiplyFactor = MultiplyFactor.trunc(W);
743
744 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000746 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000750 Dividend = SE.getMulExpr(Dividend,
751 SE.getTruncateOrZeroExtend(S, CalculationTy));
752 }
753
754 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756
757 // Truncate the result, and divide by K! / 2^T.
758
759 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000761}
762
Chris Lattner53e677a2004-04-02 20:23:17 +0000763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number. We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000769///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000770/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000771///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000773 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 // The computation is correct in the face of overflow provided that the
777 // multiplication is performed _after_ the evaluation of the binomial
778 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000780 if (isa<SCEVCouldNotCompute>(Coeff))
781 return Coeff;
782
783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000784 }
785 return Result;
786}
787
Chris Lattner53e677a2004-04-02 20:23:17 +0000788//===----------------------------------------------------------------------===//
789// SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000793 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000795 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000796 assert(isSCEVable(Ty) &&
797 "This is not a conversion to a SCEVable type!");
798 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000799
Dan Gohmanc050fd92009-07-13 20:50:19 +0000800 FoldingSetNodeID ID;
801 ID.AddInteger(scTruncate);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000807 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000809 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000812
Dan Gohman20900ca2009-04-22 16:20:48 +0000813 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000815 return getTruncateExpr(ST->getOperand(), Ty);
816
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000819 return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826 // eliminate all the truncates.
827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828 SmallVector<const SCEV *, 4> Operands;
829 bool hasTrunc = false;
830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832 hasTrunc = isa<SCEVTruncateExpr>(S);
833 Operands.push_back(S);
834 }
835 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000836 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000838 }
839
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841 // eliminate all the truncates.
842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843 SmallVector<const SCEV *, 4> Operands;
844 bool hasTrunc = false;
845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847 hasTrunc = isa<SCEVTruncateExpr>(S);
848 Operands.push_back(S);
849 }
850 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000851 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000853 }
854
Dan Gohman6864db62009-06-18 16:24:47 +0000855 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000861 }
862
Dan Gohmanf53462d2010-07-15 20:02:11 +0000863 // As a special case, fold trunc(undef) to undef. We don't want to
864 // know too much about SCEVUnknowns, but this special case is handy
865 // and harmless.
866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867 if (isa<UndefValue>(U->getValue()))
868 return getSCEV(UndefValue::get(Ty));
869
Dan Gohman420ab912010-06-25 18:47:08 +0000870 // The cast wasn't folded; create an explicit cast node. We can reuse
871 // the existing insert position since if we get here, we won't have
872 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000875 UniqueSCEVs.InsertNode(S, IP);
876 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877}
878
Dan Gohman0bba49c2009-07-07 17:06:11 +0000879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000880 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000882 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000883 assert(isSCEVable(Ty) &&
884 "This is not a conversion to a SCEVable type!");
885 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000886
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000887 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889 return getConstant(
890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000892
Dan Gohman20900ca2009-04-22 16:20:48 +0000893 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000895 return getZeroExtendExpr(SZ->getOperand(), Ty);
896
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000897 // Before doing any expensive analysis, check to see if we've already
898 // computed a SCEV for this Op and Ty.
899 FoldingSetNodeID ID;
900 ID.AddInteger(scZeroExtend);
901 ID.AddPointer(Op);
902 ID.AddPointer(Ty);
903 void *IP = 0;
904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
Nick Lewycky630d85a2011-01-23 06:20:19 +0000906 // zext(trunc(x)) --> zext(x) or x or trunc(x)
907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908 // It's possible the bits taken off by the truncate were all zero bits. If
909 // so, we should be able to simplify this further.
910 const SCEV *X = ST->getOperand();
911 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000912 unsigned TruncBits = getTypeSizeInBits(ST->getType());
913 unsigned NewBits = getTypeSizeInBits(Ty);
914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000915 CR.zextOrTrunc(NewBits)))
916 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000917 }
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000921 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000924 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000925 const SCEV *Start = AR->getStart();
926 const SCEV *Step = AR->getStepRecurrence(*this);
927 unsigned BitWidth = getTypeSizeInBits(AR->getType());
928 const Loop *L = AR->getLoop();
929
Dan Gohmaneb490a72009-07-25 01:22:26 +0000930 // If we have special knowledge that this addrec won't overflow,
931 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000932 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000935 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // Check whether the backedge-taken count is SCEVCouldNotCompute.
938 // Note that this serves two purposes: It filters out loops that are
939 // simply not analyzable, and it covers the case where this code is
940 // being called from within backedge-taken count analysis, such that
941 // attempting to ask for the backedge-taken count would likely result
942 // in infinite recursion. In the later case, the analysis code will
943 // cope with a conservative value, and it will take care to purge
944 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000947 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000949
950 // Check whether the backedge-taken count can be losslessly casted to
951 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000952 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000953 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *Add = getAddExpr(Start, ZMul);
961 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000962 getAddExpr(getZeroExtendExpr(Start, WideTy),
963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966 // Cache knowledge of AR NUW, which is propagated to this AddRec.
967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000968 // Return the expression with the addrec on the outside.
969 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000971 L, AR->getNoWrapFlags());
972 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 // Similar to above, only this time treat the step value as signed.
974 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000977 OperandExtendedAdd =
978 getAddExpr(getZeroExtendExpr(Start, WideTy),
979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982 // Cache knowledge of AR NW, which is propagated to this AddRec.
983 // Negative step causes unsigned wrap, but it still can't self-wrap.
984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000988 L, AR->getNoWrapFlags());
989 }
Dan Gohman85b05a22009-07-13 21:35:55 +0000990 }
991
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step)) {
997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998 getUnsignedRange(Step).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001002 AR->getPostIncExpr(*this), N))) {
1003 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001010 } else if (isKnownNegative(Step)) {
1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001016 AR->getPostIncExpr(*this), N))) {
1017 // Cache knowledge of AR NW, which is propagated to this AddRec.
1018 // Negative step causes unsigned wrap, but it still can't self-wrap.
1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001021 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001023 L, AR->getNoWrapFlags());
1024 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 }
1026 }
1027 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // The cast wasn't folded; create an explicit cast node.
1030 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001034 UniqueSCEVs.InsertNode(S, IP);
1035 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001036}
1037
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042 ICmpInst::Predicate *Pred,
1043 ScalarEvolution *SE) {
1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045 if (SE->isKnownPositive(Step)) {
1046 *Pred = ICmpInst::ICMP_SLT;
1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048 SE->getSignedRange(Step).getSignedMax());
1049 }
1050 if (SE->isKnownNegative(Step)) {
1051 *Pred = ICmpInst::ICMP_SGT;
1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053 SE->getSignedRange(Step).getSignedMin());
1054 }
1055 return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001065 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001066 ScalarEvolution *SE) {
1067 const Loop *L = AR->getLoop();
1068 const SCEV *Start = AR->getStart();
1069 const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071 // Check for a simple looking step prior to loop entry.
1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074 return 0;
1075
1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077 // same three conditions that getSignExtendedExpr checks.
1078
1079 // 1. NSW flags on the step increment.
1080 const SCEV *PreStart = SA->getOperand(1);
1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
Andrew Trickcf31f912011-06-01 19:14:56 +00001084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001085 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001086
1087 // 2. Direct overflow check on the step operation's expression.
1088 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001089 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001090 const SCEV *OperandExtendedStart =
1091 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1092 SE->getSignExtendExpr(Step, WideTy));
1093 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1094 // Cache knowledge of PreAR NSW.
1095 if (PreAR)
1096 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1097 // FIXME: this optimization needs a unit test
1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1099 return PreStart;
1100 }
1101
1102 // 3. Loop precondition.
1103 ICmpInst::Predicate Pred;
1104 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1105
Andrew Trickcf31f912011-06-01 19:14:56 +00001106 if (OverflowLimit &&
1107 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return PreStart;
1109 }
1110 return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001115 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116 ScalarEvolution *SE) {
1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118 if (!PreStart)
1119 return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122 SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
Dan Gohman0bba49c2009-07-07 17:06:11 +00001125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001126 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001128 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001129 assert(isSCEVable(Ty) &&
1130 "This is not a conversion to a SCEVable type!");
1131 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001132
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001133 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135 return getConstant(
1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001138
Dan Gohman20900ca2009-04-22 16:20:48 +00001139 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001141 return getSignExtendExpr(SS->getOperand(), Ty);
1142
Nick Lewycky73f565e2011-01-19 15:56:12 +00001143 // sext(zext(x)) --> zext(x)
1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145 return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001147 // Before doing any expensive analysis, check to see if we've already
1148 // computed a SCEV for this Op and Ty.
1149 FoldingSetNodeID ID;
1150 ID.AddInteger(scSignExtend);
1151 ID.AddPointer(Op);
1152 ID.AddPointer(Ty);
1153 void *IP = 0;
1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001156 // If the input value is provably positive, build a zext instead.
1157 if (isKnownNonNegative(Op))
1158 return getZeroExtendExpr(Op, Ty);
1159
Nick Lewycky630d85a2011-01-23 06:20:19 +00001160 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162 // It's possible the bits taken off by the truncate were all sign bits. If
1163 // so, we should be able to simplify this further.
1164 const SCEV *X = ST->getOperand();
1165 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001166 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167 unsigned NewBits = getTypeSizeInBits(Ty);
1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001169 CR.sextOrTrunc(NewBits)))
1170 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001171 }
1172
Dan Gohman01ecca22009-04-27 20:16:15 +00001173 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001174 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001175 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001178 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001179 const SCEV *Start = AR->getStart();
1180 const SCEV *Step = AR->getStepRecurrence(*this);
1181 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182 const Loop *L = AR->getLoop();
1183
Dan Gohmaneb490a72009-07-25 01:22:26 +00001184 // If we have special knowledge that this addrec won't overflow,
1185 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001186 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001188 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001189 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001190
Dan Gohman01ecca22009-04-27 20:16:15 +00001191 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192 // Note that this serves two purposes: It filters out loops that are
1193 // simply not analyzable, and it covers the case where this code is
1194 // being called from within backedge-taken count analysis, such that
1195 // attempting to ask for the backedge-taken count would likely result
1196 // in infinite recursion. In the later case, the analysis code will
1197 // cope with a conservative value, and it will take care to purge
1198 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001201 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001202 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001203
1204 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001205 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001206 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001207 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001208 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001211 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001212 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214 const SCEV *Add = getAddExpr(Start, SMul);
1215 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001216 getAddExpr(getSignExtendExpr(Start, WideTy),
1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001222 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001224 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001225 L, AR->getNoWrapFlags());
1226 }
Dan Gohman850f7912009-07-16 17:34:36 +00001227 // Similar to above, only this time treat the step value as unsigned.
1228 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001230 Add = getAddExpr(Start, UMul);
1231 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001232 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001238 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001240 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001241 L, AR->getNoWrapFlags());
1242 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001243 }
1244
1245 // If the backedge is guarded by a comparison with the pre-inc value
1246 // the addrec is safe. Also, if the entry is guarded by a comparison
1247 // with the start value and the backedge is guarded by a comparison
1248 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001249 ICmpInst::Predicate Pred;
1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251 if (OverflowLimit &&
1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255 OverflowLimit)))) {
1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259 getSignExtendExpr(Step, Ty),
1260 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001261 }
1262 }
1263 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001264
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001265 // The cast wasn't folded; create an explicit cast node.
1266 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001270 UniqueSCEVs.InsertNode(S, IP);
1271 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001272}
1273
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001278 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280 "This is not an extending conversion!");
1281 assert(isSCEVable(Ty) &&
1282 "This is not a conversion to a SCEVable type!");
1283 Ty = getEffectiveSCEVType(Ty);
1284
1285 // Sign-extend negative constants.
1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287 if (SC->getValue()->getValue().isNegative())
1288 return getSignExtendExpr(Op, Ty);
1289
1290 // Peel off a truncate cast.
1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001292 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294 return getAnyExtendExpr(NewOp, Ty);
1295 return getTruncateOrNoop(NewOp, Ty);
1296 }
1297
1298 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001300 if (!isa<SCEVZeroExtendExpr>(ZExt))
1301 return ZExt;
1302
1303 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001304 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305 if (!isa<SCEVSignExtendExpr>(SExt))
1306 return SExt;
1307
Dan Gohmana10756e2010-01-21 02:09:26 +00001308 // Force the cast to be folded into the operands of an addrec.
1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310 SmallVector<const SCEV *, 4> Ops;
1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312 I != E; ++I)
1313 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001315 }
1316
Dan Gohmanf53462d2010-07-15 20:02:11 +00001317 // As a special case, fold anyext(undef) to undef. We don't want to
1318 // know too much about SCEVUnknowns, but this special case is handy
1319 // and harmless.
1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321 if (isa<UndefValue>(U->getValue()))
1322 return getSCEV(UndefValue::get(Ty));
1323
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 // If the expression is obviously signed, use the sext cast value.
1325 if (isa<SCEVSMaxExpr>(Op))
1326 return SExt;
1327
1328 // Absent any other information, use the zext cast value.
1329 return ZExt;
1330}
1331
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001360 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001361 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001362 const APInt &Scale,
1363 ScalarEvolution &SE) {
1364 bool Interesting = false;
1365
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001366 // Iterate over the add operands. They are sorted, with constants first.
1367 unsigned i = 0;
1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369 ++i;
1370 // Pull a buried constant out to the outside.
1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372 Interesting = true;
1373 AccumulatedConstant += Scale * C->getValue()->getValue();
1374 }
1375
1376 // Next comes everything else. We're especially interested in multiplies
1377 // here, but they're in the middle, so just visit the rest with one loop.
1378 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381 APInt NewScale =
1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001386 Interesting |=
1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 NewScale, SE);
1390 } else {
1391 // A multiplication of a constant with some other value. Update
1392 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394 const SCEV *Key = SE.getMulExpr(MulOps);
1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001396 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001397 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001398 NewOps.push_back(Pair.first->first);
1399 } else {
1400 Pair.first->second += NewScale;
1401 // The map already had an entry for this value, which may indicate
1402 // a folding opportunity.
1403 Interesting = true;
1404 }
1405 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 } else {
1407 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001409 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001411 NewOps.push_back(Pair.first->first);
1412 } else {
1413 Pair.first->second += Scale;
1414 // The map already had an entry for this value, which may indicate
1415 // a folding opportunity.
1416 Interesting = true;
1417 }
1418 }
1419 }
1420
1421 return Interesting;
1422}
1423
1424namespace {
1425 struct APIntCompare {
1426 bool operator()(const APInt &LHS, const APInt &RHS) const {
1427 return LHS.ult(RHS);
1428 }
1429 };
1430}
1431
Dan Gohman6c0866c2009-05-24 23:45:28 +00001432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001435 SCEV::NoWrapFlags Flags) {
1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001438 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001439 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001440#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001441 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001442 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001444 "SCEVAddExpr operand types don't match!");
1445#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001446
Andrew Trick3228cc22011-03-14 16:50:06 +00001447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001448 // And vice-versa.
1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001452 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454 E = Ops.end(); I != E; ++I)
1455 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001456 All = false;
1457 break;
1458 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001460 }
1461
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001463 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464
1465 // If there are any constants, fold them together.
1466 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001469 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001472 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001474 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001475 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001476 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 }
1478
1479 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001480 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001481 Ops.erase(Ops.begin());
1482 --Idx;
1483 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001484
Dan Gohmanbca091d2010-04-12 23:08:18 +00001485 if (Ops.size() == 1) return Ops[0];
1486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Dan Gohman68ff7762010-08-27 21:39:59 +00001488 // Okay, check to see if the same value occurs in the operand list more than
1489 // once. If so, merge them together into an multiply expression. Since we
1490 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001491 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001492 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001495 // Scan ahead to count how many equal operands there are.
1496 unsigned Count = 2;
1497 while (i+Count != e && Ops[i+Count] == Ops[i])
1498 ++Count;
1499 // Merge the values into a multiply.
1500 const SCEV *Scale = getConstant(Ty, Count);
1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001504 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001506 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001507 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001509 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001510 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohman728c7f32009-05-08 21:03:19 +00001512 // Check for truncates. If all the operands are truncated from the same
1513 // type, see if factoring out the truncate would permit the result to be
1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515 // if the contents of the resulting outer trunc fold to something simple.
1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001518 Type *DstType = Trunc->getType();
1519 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001520 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001521 bool Ok = true;
1522 // Check all the operands to see if they can be represented in the
1523 // source type of the truncate.
1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526 if (T->getOperand()->getType() != SrcType) {
1527 Ok = false;
1528 break;
1529 }
1530 LargeOps.push_back(T->getOperand());
1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001532 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536 if (const SCEVTruncateExpr *T =
1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538 if (T->getOperand()->getType() != SrcType) {
1539 Ok = false;
1540 break;
1541 }
1542 LargeMulOps.push_back(T->getOperand());
1543 } else if (const SCEVConstant *C =
1544 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001546 } else {
1547 Ok = false;
1548 break;
1549 }
1550 }
1551 if (Ok)
1552 LargeOps.push_back(getMulExpr(LargeMulOps));
1553 } else {
1554 Ok = false;
1555 break;
1556 }
1557 }
1558 if (Ok) {
1559 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001560 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001561 // If it folds to something simple, use it. Otherwise, don't.
1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563 return getTruncateExpr(Fold, DstType);
1564 }
1565 }
1566
1567 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569 ++Idx;
1570
1571 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 if (Idx < Ops.size()) {
1573 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // If we have an add, expand the add operands onto the end of the operands
1576 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001578 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 DeletedAdd = true;
1580 }
1581
1582 // If we deleted at least one add, we added operands to the end of the list,
1583 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001584 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001586 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
1588
1589 // Skip over the add expression until we get to a multiply.
1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591 ++Idx;
1592
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001593 // Check to see if there are any folding opportunities present with
1594 // operands multiplied by constant values.
1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001597 DenseMap<const SCEV *, APInt> M;
1598 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001599 APInt AccumulatedConstant(BitWidth, 0);
1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001601 Ops.data(), Ops.size(),
1602 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001603 // Some interesting folding opportunity is present, so its worthwhile to
1604 // re-generate the operands list. Group the operands by constant scale,
1605 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001608 E = NewOps.end(); I != E; ++I)
1609 MulOpLists[M.find(*I)->second].push_back(*I);
1610 // Re-generate the operands list.
1611 Ops.clear();
1612 if (AccumulatedConstant != 0)
1613 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001616 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001617 Ops.push_back(getMulExpr(getConstant(I->first),
1618 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001619 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001620 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 if (Ops.size() == 1)
1622 return Ops[0];
1623 return getAddExpr(Ops);
1624 }
1625 }
1626
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 // If we are adding something to a multiply expression, make sure the
1628 // something is not already an operand of the multiply. If so, merge it into
1629 // the multiply.
1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001634 if (isa<SCEVConstant>(MulOpSCEV))
1635 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001637 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 if (Mul->getNumOperands() != 2) {
1641 // If the multiply has more than two operands, we must get the
1642 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644 Mul->op_begin()+MulOp);
1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001646 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001648 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001649 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 if (Ops.size() == 2) return OuterMul;
1652 if (AddOp < Idx) {
1653 Ops.erase(Ops.begin()+AddOp);
1654 Ops.erase(Ops.begin()+Idx-1);
1655 } else {
1656 Ops.erase(Ops.begin()+Idx);
1657 Ops.erase(Ops.begin()+AddOp-1);
1658 }
1659 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 // Check this multiply against other multiplies being added together.
1664 for (unsigned OtherMulIdx = Idx+1;
1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // If MulOp occurs in OtherMul, we can fold the two multiplies
1669 // together.
1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671 OMulOp != e; ++OMulOp)
1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001677 Mul->op_begin()+MulOp);
1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001679 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001684 OtherMul->op_begin()+OMulOp);
1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001686 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001691 Ops.erase(Ops.begin()+Idx);
1692 Ops.erase(Ops.begin()+OtherMulIdx-1);
1693 Ops.push_back(OuterMul);
1694 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 }
1696 }
1697 }
1698 }
1699
1700 // If there are any add recurrences in the operands list, see if any other
1701 // added values are loop invariant. If so, we can fold them into the
1702 // recurrence.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704 ++Idx;
1705
1706 // Scan over all recurrences, trying to fold loop invariants into them.
1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708 // Scan all of the other operands to this add and add them to the vector if
1709 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001710 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001712 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001714 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 LIOps.push_back(Ops[i]);
1716 Ops.erase(Ops.begin()+i);
1717 --i; --e;
1718 }
1719
1720 // If we found some loop invariants, fold them into the recurrence.
1721 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 LIOps.push_back(AddRec->getStart());
1724
Dan Gohman0bba49c2009-07-07 17:06:11 +00001725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001726 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001727 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001728
Dan Gohmanb9f96512010-06-30 07:16:37 +00001729 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001730 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001731 // Always propagate NW.
1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001734
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 // If all of the other operands were loop invariant, we are done.
1736 if (Ops.size() == 1) return NewRec;
1737
Nick Lewycky980e9f32011-09-06 05:08:09 +00001738 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 for (unsigned i = 0;; ++i)
1740 if (Ops[i] == AddRec) {
1741 Ops[i] = NewRec;
1742 break;
1743 }
Dan Gohman246b2562007-10-22 18:31:58 +00001744 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 }
1746
1747 // Okay, if there weren't any loop invariants to be folded, check to see if
1748 // there are multiple AddRec's with the same loop induction variable being
1749 // added together. If so, we can fold them.
1750 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752 ++OtherIdx)
1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756 AddRec->op_end());
1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001759 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001761 if (OtherAddRec->getLoop() == AddRecLoop) {
1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001764 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001765 AddRecOps.append(OtherAddRec->op_begin()+i,
1766 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001767 break;
1768 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001769 AddRecOps[i] = getAddExpr(AddRecOps[i],
1770 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001771 }
1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001774 // Step size has changed, so we cannot guarantee no self-wraparound.
1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001776 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 }
1778
1779 // Otherwise couldn't fold anything into this recurrence. Move onto the
1780 // next one.
1781 }
1782
1783 // Okay, it looks like we really DO need an add expr. Check to see if we
1784 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001785 FoldingSetNodeID ID;
1786 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001787 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788 ID.AddPointer(Ops[i]);
1789 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001790 SCEVAddExpr *S =
1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001797 UniqueSCEVs.InsertNode(S, IP);
1798 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001799 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001800 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001801}
1802
Dan Gohman6c0866c2009-05-24 23:45:28 +00001803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001806 SCEV::NoWrapFlags Flags) {
1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001810 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001811#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001812 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001813 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001815 "SCEVMulExpr operand types don't match!");
1816#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001817
Andrew Trick3228cc22011-03-14 16:50:06 +00001818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001819 // And vice-versa.
1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001823 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825 E = Ops.end(); I != E; ++I)
1826 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 All = false;
1828 break;
1829 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001831 }
1832
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001834 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
1836 // If there are any constants, fold them together.
1837 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001839
1840 // C1*(C2+V) -> C1*C2 + C1*V
1841 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (Add->getNumOperands() == 2 &&
1844 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001847
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001851 ConstantInt *Fold = ConstantInt::get(getContext(),
1852 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001853 RHSC->getValue()->getValue());
1854 Ops[0] = getConstant(Fold);
1855 Ops.erase(Ops.begin()+1); // Erase the folded element
1856 if (Ops.size() == 1) return Ops[0];
1857 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001858 }
1859
1860 // If we are left with a constant one being multiplied, strip it off.
1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862 Ops.erase(Ops.begin());
1863 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001865 // If we have a multiply of zero, it will always be zero.
1866 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001867 } else if (Ops[0]->isAllOnesValue()) {
1868 // If we have a mul by -1 of an add, try distributing the -1 among the
1869 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001870 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872 SmallVector<const SCEV *, 4> NewOps;
1873 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001876 const SCEV *Mul = getMulExpr(Ops[0], *I);
1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878 NewOps.push_back(Mul);
1879 }
1880 if (AnyFolded)
1881 return getAddExpr(NewOps);
1882 }
Andrew Tricka053b212011-03-14 17:38:54 +00001883 else if (const SCEVAddRecExpr *
1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885 // Negation preserves a recurrence's no self-wrap property.
1886 SmallVector<const SCEV *, 4> Operands;
1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888 E = AddRec->op_end(); I != E; ++I) {
1889 Operands.push_back(getMulExpr(Ops[0], *I));
1890 }
1891 return getAddRecExpr(Operands, AddRec->getLoop(),
1892 AddRec->getNoWrapFlags(SCEV::FlagNW));
1893 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001894 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001896
1897 if (Ops.size() == 1)
1898 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001899 }
1900
1901 // Skip over the add expression until we get to a multiply.
1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903 ++Idx;
1904
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 // If there are mul operands inline them all into this expression.
1906 if (Idx < Ops.size()) {
1907 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // If we have an mul, expand the mul operands onto the end of the operands
1910 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001912 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 DeletedMul = true;
1914 }
1915
1916 // If we deleted at least one mul, we added operands to the end of the list,
1917 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001918 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001919 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001920 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 }
1922
1923 // If there are any add recurrences in the operands list, see if any other
1924 // added values are loop invariant. If so, we can fold them into the
1925 // recurrence.
1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927 ++Idx;
1928
1929 // Scan over all recurrences, trying to fold loop invariants into them.
1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931 // Scan all of the other operands to this mul and add them to the vector if
1932 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001933 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001935 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001936 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001937 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001938 LIOps.push_back(Ops[i]);
1939 Ops.erase(Ops.begin()+i);
1940 --i; --e;
1941 }
1942
1943 // If we found some loop invariants, fold them into the recurrence.
1944 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001946 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001948 const SCEV *Scale = getMulExpr(LIOps);
1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001951
Dan Gohmanb9f96512010-06-30 07:16:37 +00001952 // Build the new addrec. Propagate the NUW and NSW flags if both the
1953 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00001954 //
1955 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001956 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00001957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001959
1960 // If all of the other operands were loop invariant, we are done.
1961 if (Ops.size() == 1) return NewRec;
1962
Nick Lewycky980e9f32011-09-06 05:08:09 +00001963 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 for (unsigned i = 0;; ++i)
1965 if (Ops[i] == AddRec) {
1966 Ops[i] = NewRec;
1967 break;
1968 }
Dan Gohman246b2562007-10-22 18:31:58 +00001969 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 }
1971
1972 // Okay, if there weren't any loop invariants to be folded, check to see if
1973 // there are multiple AddRec's with the same loop induction variable being
1974 // multiplied together. If so, we can fold them.
1975 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1977 ++OtherIdx)
1978 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewycky28682ae2011-09-06 05:33:18 +00001979 // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C - B*D,+,2*B*D}<L>
1980 //
1981 // For reference, given that {X,+,Y,+,Z} = x + y*It + z*It^2 then
1982 // X = x, Y = y-z, Z = 2z.
1983 //
1984 // x = A*C, y = (A*D + B*C), z = B*D
1985 // Therefore X = A*C, Y = (A*D + B*C) - B*D and Z = 2*B*D.
Dan Gohman6a0c1252010-08-31 22:52:12 +00001986 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1987 ++OtherIdx)
1988 if (const SCEVAddRecExpr *OtherAddRec =
1989 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1990 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckyfa151a72011-09-06 05:05:14 +00001991 const SCEV *A = AddRec->getStart();
1992 const SCEV *B = AddRec->getStepRecurrence(*this);
1993 const SCEV *C = OtherAddRec->getStart();
1994 const SCEV *D = OtherAddRec->getStepRecurrence(*this);
1995 const SCEV *NewStart = getMulExpr(A, C);
1996 const SCEV *BD = getMulExpr(B, D);
1997 const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
Nick Lewycky28682ae2011-09-06 05:33:18 +00001998 getMulExpr(B, C),
1999 getNegativeSCEV(BD));
Nick Lewyckyfa151a72011-09-06 05:05:14 +00002000 const SCEV *NewSecondOrderStep =
2001 getMulExpr(BD, getConstant(BD->getType(), 2));
2002
2003 SmallVector<const SCEV *, 3> AddRecOps;
2004 AddRecOps.push_back(NewStart);
2005 AddRecOps.push_back(NewStep);
2006 AddRecOps.push_back(NewSecondOrderStep);
2007 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2008 AddRec->getLoop(),
Andrew Trick3228cc22011-03-14 16:50:06 +00002009 SCEV::FlagAnyWrap);
Dan Gohman6a0c1252010-08-31 22:52:12 +00002010 if (Ops.size() == 2) return NewAddRec;
2011 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2012 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2013 }
2014 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002015 }
2016
2017 // Otherwise couldn't fold anything into this recurrence. Move onto the
2018 // next one.
2019 }
2020
2021 // Okay, it looks like we really DO need an mul expr. Check to see if we
2022 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002023 FoldingSetNodeID ID;
2024 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002025 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2026 ID.AddPointer(Ops[i]);
2027 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002028 SCEVMulExpr *S =
2029 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2030 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002031 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2032 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002033 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2034 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002035 UniqueSCEVs.InsertNode(S, IP);
2036 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002037 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002038 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002039}
2040
Andreas Bolka8a11c982009-08-07 22:55:26 +00002041/// getUDivExpr - Get a canonical unsigned division expression, or something
2042/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002043const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2044 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002045 assert(getEffectiveSCEVType(LHS->getType()) ==
2046 getEffectiveSCEVType(RHS->getType()) &&
2047 "SCEVUDivExpr operand types don't match!");
2048
Dan Gohman622ed672009-05-04 22:02:23 +00002049 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002050 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002051 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002052 // If the denominator is zero, the result of the udiv is undefined. Don't
2053 // try to analyze it, because the resolution chosen here may differ from
2054 // the resolution chosen in other parts of the compiler.
2055 if (!RHSC->getValue()->isZero()) {
2056 // Determine if the division can be folded into the operands of
2057 // its operands.
2058 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002059 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002060 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002061 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002062 // For non-power-of-two values, effectively round the value up to the
2063 // nearest power of two.
2064 if (!RHSC->getValue()->getValue().isPowerOf2())
2065 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002066 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002067 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002068 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2069 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002070 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2071 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2072 const APInt &StepInt = Step->getValue()->getValue();
2073 const APInt &DivInt = RHSC->getValue()->getValue();
2074 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002075 getZeroExtendExpr(AR, ExtTy) ==
2076 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2077 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002078 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002079 SmallVector<const SCEV *, 4> Operands;
2080 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2081 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002082 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002083 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002084 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002085 /// Get a canonical UDivExpr for a recurrence.
2086 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2087 // We can currently only fold X%N if X is constant.
2088 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2089 if (StartC && !DivInt.urem(StepInt) &&
2090 getZeroExtendExpr(AR, ExtTy) ==
2091 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2092 getZeroExtendExpr(Step, ExtTy),
2093 AR->getLoop(), SCEV::FlagAnyWrap)) {
2094 const APInt &StartInt = StartC->getValue()->getValue();
2095 const APInt &StartRem = StartInt.urem(StepInt);
2096 if (StartRem != 0)
2097 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2098 AR->getLoop(), SCEV::FlagNW);
2099 }
2100 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002101 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2102 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2103 SmallVector<const SCEV *, 4> Operands;
2104 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2105 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2106 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2107 // Find an operand that's safely divisible.
2108 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2109 const SCEV *Op = M->getOperand(i);
2110 const SCEV *Div = getUDivExpr(Op, RHSC);
2111 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2112 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2113 M->op_end());
2114 Operands[i] = Div;
2115 return getMulExpr(Operands);
2116 }
2117 }
Dan Gohman185cf032009-05-08 20:18:49 +00002118 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002119 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002120 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002121 SmallVector<const SCEV *, 4> Operands;
2122 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2123 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2124 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2125 Operands.clear();
2126 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2127 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2128 if (isa<SCEVUDivExpr>(Op) ||
2129 getMulExpr(Op, RHS) != A->getOperand(i))
2130 break;
2131 Operands.push_back(Op);
2132 }
2133 if (Operands.size() == A->getNumOperands())
2134 return getAddExpr(Operands);
2135 }
2136 }
Dan Gohman185cf032009-05-08 20:18:49 +00002137
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002138 // Fold if both operands are constant.
2139 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2140 Constant *LHSCV = LHSC->getValue();
2141 Constant *RHSCV = RHSC->getValue();
2142 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2143 RHSCV)));
2144 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002145 }
2146 }
2147
Dan Gohman1c343752009-06-27 21:21:31 +00002148 FoldingSetNodeID ID;
2149 ID.AddInteger(scUDivExpr);
2150 ID.AddPointer(LHS);
2151 ID.AddPointer(RHS);
2152 void *IP = 0;
2153 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002154 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2155 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002156 UniqueSCEVs.InsertNode(S, IP);
2157 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002158}
2159
2160
Dan Gohman6c0866c2009-05-24 23:45:28 +00002161/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2162/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002163const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2164 const Loop *L,
2165 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002166 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002167 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002168 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002169 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002170 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002171 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002172 }
2173
2174 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002175 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002176}
2177
Dan Gohman6c0866c2009-05-24 23:45:28 +00002178/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2179/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002180const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002181ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002182 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002183 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002184#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002185 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002186 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002187 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002188 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002189 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002190 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002191 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002192#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002193
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002194 if (Operands.back()->isZero()) {
2195 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002196 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002197 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002198
Dan Gohmanbc028532010-02-19 18:49:22 +00002199 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2200 // use that information to infer NUW and NSW flags. However, computing a
2201 // BE count requires calling getAddRecExpr, so we may not yet have a
2202 // meaningful BE count at this point (and if we don't, we'd be stuck
2203 // with a SCEVCouldNotCompute as the cached BE count).
2204
Andrew Trick3228cc22011-03-14 16:50:06 +00002205 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002206 // And vice-versa.
2207 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2208 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2209 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002210 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002211 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2212 E = Operands.end(); I != E; ++I)
2213 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002214 All = false;
2215 break;
2216 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002217 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002218 }
2219
Dan Gohmand9cc7492008-08-08 18:33:12 +00002220 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002221 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002222 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002223 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002224 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002225 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002226 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002227 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002228 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002229 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002230 // AddRecs require their operands be loop-invariant with respect to their
2231 // loops. Don't perform this transformation if it would break this
2232 // requirement.
2233 bool AllInvariant = true;
2234 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002235 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002236 AllInvariant = false;
2237 break;
2238 }
2239 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002240 // Create a recurrence for the outer loop with the same step size.
2241 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002242 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2243 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002244 SCEV::NoWrapFlags OuterFlags =
2245 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002246
2247 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002248 AllInvariant = true;
2249 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002250 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002251 AllInvariant = false;
2252 break;
2253 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002254 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002255 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002256 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002257 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2258 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002259 SCEV::NoWrapFlags InnerFlags =
2260 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002261 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2262 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002263 }
2264 // Reset Operands to its original state.
2265 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002266 }
2267 }
2268
Dan Gohman67847532010-01-19 22:27:22 +00002269 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2270 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002271 FoldingSetNodeID ID;
2272 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002273 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2274 ID.AddPointer(Operands[i]);
2275 ID.AddPointer(L);
2276 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002277 SCEVAddRecExpr *S =
2278 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2279 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002280 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2281 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002282 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2283 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002284 UniqueSCEVs.InsertNode(S, IP);
2285 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002286 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002287 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002288}
2289
Dan Gohman9311ef62009-06-24 14:49:00 +00002290const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2291 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002292 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002293 Ops.push_back(LHS);
2294 Ops.push_back(RHS);
2295 return getSMaxExpr(Ops);
2296}
2297
Dan Gohman0bba49c2009-07-07 17:06:11 +00002298const SCEV *
2299ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002300 assert(!Ops.empty() && "Cannot get empty smax!");
2301 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002302#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002303 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002304 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002305 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002306 "SCEVSMaxExpr operand types don't match!");
2307#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002308
2309 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002310 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002311
2312 // If there are any constants, fold them together.
2313 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002314 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002315 ++Idx;
2316 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002317 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002318 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002319 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002320 APIntOps::smax(LHSC->getValue()->getValue(),
2321 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002322 Ops[0] = getConstant(Fold);
2323 Ops.erase(Ops.begin()+1); // Erase the folded element
2324 if (Ops.size() == 1) return Ops[0];
2325 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002326 }
2327
Dan Gohmane5aceed2009-06-24 14:46:22 +00002328 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002329 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2330 Ops.erase(Ops.begin());
2331 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002332 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2333 // If we have an smax with a constant maximum-int, it will always be
2334 // maximum-int.
2335 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002336 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002337
Dan Gohman3ab13122010-04-13 16:49:23 +00002338 if (Ops.size() == 1) return Ops[0];
2339 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002340
2341 // Find the first SMax
2342 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2343 ++Idx;
2344
2345 // Check to see if one of the operands is an SMax. If so, expand its operands
2346 // onto our operand list, and recurse to simplify.
2347 if (Idx < Ops.size()) {
2348 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002349 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002350 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002351 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002352 DeletedSMax = true;
2353 }
2354
2355 if (DeletedSMax)
2356 return getSMaxExpr(Ops);
2357 }
2358
2359 // Okay, check to see if the same value occurs in the operand list twice. If
2360 // so, delete one. Since we sorted the list, these values are required to
2361 // be adjacent.
2362 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002363 // X smax Y smax Y --> X smax Y
2364 // X smax Y --> X, if X is always greater than Y
2365 if (Ops[i] == Ops[i+1] ||
2366 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2367 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2368 --i; --e;
2369 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002370 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2371 --i; --e;
2372 }
2373
2374 if (Ops.size() == 1) return Ops[0];
2375
2376 assert(!Ops.empty() && "Reduced smax down to nothing!");
2377
Nick Lewycky3e630762008-02-20 06:48:22 +00002378 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002379 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002380 FoldingSetNodeID ID;
2381 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002382 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2383 ID.AddPointer(Ops[i]);
2384 void *IP = 0;
2385 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002386 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2387 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002388 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2389 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002390 UniqueSCEVs.InsertNode(S, IP);
2391 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392}
2393
Dan Gohman9311ef62009-06-24 14:49:00 +00002394const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2395 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002396 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002397 Ops.push_back(LHS);
2398 Ops.push_back(RHS);
2399 return getUMaxExpr(Ops);
2400}
2401
Dan Gohman0bba49c2009-07-07 17:06:11 +00002402const SCEV *
2403ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002404 assert(!Ops.empty() && "Cannot get empty umax!");
2405 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002406#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002407 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002408 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002409 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002410 "SCEVUMaxExpr operand types don't match!");
2411#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002412
2413 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002414 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002415
2416 // If there are any constants, fold them together.
2417 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002418 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002419 ++Idx;
2420 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002421 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002422 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002423 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002424 APIntOps::umax(LHSC->getValue()->getValue(),
2425 RHSC->getValue()->getValue()));
2426 Ops[0] = getConstant(Fold);
2427 Ops.erase(Ops.begin()+1); // Erase the folded element
2428 if (Ops.size() == 1) return Ops[0];
2429 LHSC = cast<SCEVConstant>(Ops[0]);
2430 }
2431
Dan Gohmane5aceed2009-06-24 14:46:22 +00002432 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002433 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2434 Ops.erase(Ops.begin());
2435 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002436 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2437 // If we have an umax with a constant maximum-int, it will always be
2438 // maximum-int.
2439 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002440 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002441
Dan Gohman3ab13122010-04-13 16:49:23 +00002442 if (Ops.size() == 1) return Ops[0];
2443 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002444
2445 // Find the first UMax
2446 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2447 ++Idx;
2448
2449 // Check to see if one of the operands is a UMax. If so, expand its operands
2450 // onto our operand list, and recurse to simplify.
2451 if (Idx < Ops.size()) {
2452 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002453 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002454 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002455 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002456 DeletedUMax = true;
2457 }
2458
2459 if (DeletedUMax)
2460 return getUMaxExpr(Ops);
2461 }
2462
2463 // Okay, check to see if the same value occurs in the operand list twice. If
2464 // so, delete one. Since we sorted the list, these values are required to
2465 // be adjacent.
2466 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002467 // X umax Y umax Y --> X umax Y
2468 // X umax Y --> X, if X is always greater than Y
2469 if (Ops[i] == Ops[i+1] ||
2470 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2471 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2472 --i; --e;
2473 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002474 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2475 --i; --e;
2476 }
2477
2478 if (Ops.size() == 1) return Ops[0];
2479
2480 assert(!Ops.empty() && "Reduced umax down to nothing!");
2481
2482 // Okay, it looks like we really DO need a umax expr. Check to see if we
2483 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002484 FoldingSetNodeID ID;
2485 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002486 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2487 ID.AddPointer(Ops[i]);
2488 void *IP = 0;
2489 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002490 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2491 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002492 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2493 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002494 UniqueSCEVs.InsertNode(S, IP);
2495 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002496}
2497
Dan Gohman9311ef62009-06-24 14:49:00 +00002498const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2499 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002500 // ~smax(~x, ~y) == smin(x, y).
2501 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2502}
2503
Dan Gohman9311ef62009-06-24 14:49:00 +00002504const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2505 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002506 // ~umax(~x, ~y) == umin(x, y)
2507 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2508}
2509
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002510const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002511 // If we have TargetData, we can bypass creating a target-independent
2512 // constant expression and then folding it back into a ConstantInt.
2513 // This is just a compile-time optimization.
2514 if (TD)
2515 return getConstant(TD->getIntPtrType(getContext()),
2516 TD->getTypeAllocSize(AllocTy));
2517
Dan Gohman4f8eea82010-02-01 18:27:38 +00002518 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2519 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002520 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2521 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002522 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002523 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2524}
2525
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002526const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002527 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002529 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2530 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002531 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002532 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2533}
2534
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002535const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002536 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002537 // If we have TargetData, we can bypass creating a target-independent
2538 // constant expression and then folding it back into a ConstantInt.
2539 // This is just a compile-time optimization.
2540 if (TD)
2541 return getConstant(TD->getIntPtrType(getContext()),
2542 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2543
Dan Gohman0f5efe52010-01-28 02:15:55 +00002544 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002546 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2547 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002548 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002549 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002550}
2551
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002552const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002553 Constant *FieldNo) {
2554 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002555 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002556 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2557 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002558 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002559 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002560}
2561
Dan Gohman0bba49c2009-07-07 17:06:11 +00002562const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002563 // Don't attempt to do anything other than create a SCEVUnknown object
2564 // here. createSCEV only calls getUnknown after checking for all other
2565 // interesting possibilities, and any other code that calls getUnknown
2566 // is doing so in order to hide a value from SCEV canonicalization.
2567
Dan Gohman1c343752009-06-27 21:21:31 +00002568 FoldingSetNodeID ID;
2569 ID.AddInteger(scUnknown);
2570 ID.AddPointer(V);
2571 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002572 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2573 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2574 "Stale SCEVUnknown in uniquing map!");
2575 return S;
2576 }
2577 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2578 FirstUnknown);
2579 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002580 UniqueSCEVs.InsertNode(S, IP);
2581 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002582}
2583
Chris Lattner53e677a2004-04-02 20:23:17 +00002584//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002585// Basic SCEV Analysis and PHI Idiom Recognition Code
2586//
2587
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002588/// isSCEVable - Test if values of the given type are analyzable within
2589/// the SCEV framework. This primarily includes integer types, and it
2590/// can optionally include pointer types if the ScalarEvolution class
2591/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002592bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002593 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002594 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002595}
2596
2597/// getTypeSizeInBits - Return the size in bits of the specified type,
2598/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002599uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002600 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2601
2602 // If we have a TargetData, use it!
2603 if (TD)
2604 return TD->getTypeSizeInBits(Ty);
2605
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002606 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002607 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002608 return Ty->getPrimitiveSizeInBits();
2609
2610 // The only other support type is pointer. Without TargetData, conservatively
2611 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002612 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002613 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002614}
2615
2616/// getEffectiveSCEVType - Return a type with the same bitwidth as
2617/// the given type and which represents how SCEV will treat the given
2618/// type, for which isSCEVable must return true. For pointer types,
2619/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002620Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002621 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2622
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002623 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002624 return Ty;
2625
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002626 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002627 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002628 if (TD) return TD->getIntPtrType(getContext());
2629
2630 // Without TargetData, conservatively assume pointers are 64-bit.
2631 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002632}
Chris Lattner53e677a2004-04-02 20:23:17 +00002633
Dan Gohman0bba49c2009-07-07 17:06:11 +00002634const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002635 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002636}
2637
Chris Lattner53e677a2004-04-02 20:23:17 +00002638/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2639/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002640const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002641 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002642
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002643 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2644 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002645 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002646
2647 // The process of creating a SCEV for V may have caused other SCEVs
2648 // to have been created, so it's necessary to insert the new entry
2649 // from scratch, rather than trying to remember the insert position
2650 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002651 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002652 return S;
2653}
2654
Dan Gohman2d1be872009-04-16 03:18:22 +00002655/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2656///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002657const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002658 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002659 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002660 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002661
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002662 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002663 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002664 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002665 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002666}
2667
2668/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002669const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002670 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002671 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002672 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002673
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002674 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002675 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002676 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002677 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002678 return getMinusSCEV(AllOnes, V);
2679}
2680
Andrew Trick3228cc22011-03-14 16:50:06 +00002681/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002682const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002683 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002684 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2685
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002686 // Fast path: X - X --> 0.
2687 if (LHS == RHS)
2688 return getConstant(LHS->getType(), 0);
2689
Dan Gohman2d1be872009-04-16 03:18:22 +00002690 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002691 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002692}
2693
2694/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2695/// input value to the specified type. If the type must be extended, it is zero
2696/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002697const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002698ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2699 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002700 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2701 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002702 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002703 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002704 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002705 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002706 return getTruncateExpr(V, Ty);
2707 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002708}
2709
2710/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2711/// input value to the specified type. If the type must be extended, it is sign
2712/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002713const SCEV *
2714ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002715 Type *Ty) {
2716 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002717 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2718 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002719 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002720 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002721 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002722 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002723 return getTruncateExpr(V, Ty);
2724 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002725}
2726
Dan Gohman467c4302009-05-13 03:46:30 +00002727/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2728/// input value to the specified type. If the type must be extended, it is zero
2729/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002730const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002731ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2732 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002733 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2734 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002735 "Cannot noop or zero extend with non-integer arguments!");
2736 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2737 "getNoopOrZeroExtend cannot truncate!");
2738 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2739 return V; // No conversion
2740 return getZeroExtendExpr(V, Ty);
2741}
2742
2743/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2744/// input value to the specified type. If the type must be extended, it is sign
2745/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002746const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002747ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2748 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002749 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2750 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002751 "Cannot noop or sign extend with non-integer arguments!");
2752 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2753 "getNoopOrSignExtend cannot truncate!");
2754 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2755 return V; // No conversion
2756 return getSignExtendExpr(V, Ty);
2757}
2758
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002759/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2760/// the input value to the specified type. If the type must be extended,
2761/// it is extended with unspecified bits. The conversion must not be
2762/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002763const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002764ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2765 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002766 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2767 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002768 "Cannot noop or any extend with non-integer arguments!");
2769 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2770 "getNoopOrAnyExtend cannot truncate!");
2771 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2772 return V; // No conversion
2773 return getAnyExtendExpr(V, Ty);
2774}
2775
Dan Gohman467c4302009-05-13 03:46:30 +00002776/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2777/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002778const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002779ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2780 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002781 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2782 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002783 "Cannot truncate or noop with non-integer arguments!");
2784 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2785 "getTruncateOrNoop cannot extend!");
2786 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2787 return V; // No conversion
2788 return getTruncateExpr(V, Ty);
2789}
2790
Dan Gohmana334aa72009-06-22 00:31:57 +00002791/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2792/// the types using zero-extension, and then perform a umax operation
2793/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002794const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2795 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002796 const SCEV *PromotedLHS = LHS;
2797 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002798
2799 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2800 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2801 else
2802 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2803
2804 return getUMaxExpr(PromotedLHS, PromotedRHS);
2805}
2806
Dan Gohmanc9759e82009-06-22 15:03:27 +00002807/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2808/// the types using zero-extension, and then perform a umin operation
2809/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002810const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2811 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002812 const SCEV *PromotedLHS = LHS;
2813 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002814
2815 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2816 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2817 else
2818 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2819
2820 return getUMinExpr(PromotedLHS, PromotedRHS);
2821}
2822
Andrew Trickb12a7542011-03-17 23:51:11 +00002823/// getPointerBase - Transitively follow the chain of pointer-type operands
2824/// until reaching a SCEV that does not have a single pointer operand. This
2825/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2826/// but corner cases do exist.
2827const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2828 // A pointer operand may evaluate to a nonpointer expression, such as null.
2829 if (!V->getType()->isPointerTy())
2830 return V;
2831
2832 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2833 return getPointerBase(Cast->getOperand());
2834 }
2835 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2836 const SCEV *PtrOp = 0;
2837 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2838 I != E; ++I) {
2839 if ((*I)->getType()->isPointerTy()) {
2840 // Cannot find the base of an expression with multiple pointer operands.
2841 if (PtrOp)
2842 return V;
2843 PtrOp = *I;
2844 }
2845 }
2846 if (!PtrOp)
2847 return V;
2848 return getPointerBase(PtrOp);
2849 }
2850 return V;
2851}
2852
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002853/// PushDefUseChildren - Push users of the given Instruction
2854/// onto the given Worklist.
2855static void
2856PushDefUseChildren(Instruction *I,
2857 SmallVectorImpl<Instruction *> &Worklist) {
2858 // Push the def-use children onto the Worklist stack.
2859 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2860 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002861 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002862}
2863
2864/// ForgetSymbolicValue - This looks up computed SCEV values for all
2865/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002866/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002867/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002868void
Dan Gohman85669632010-02-25 06:57:05 +00002869ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002870 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002871 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002872
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002873 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002874 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002875 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002876 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002877 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002878
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002879 ValueExprMapType::iterator It =
2880 ValueExprMap.find(static_cast<Value *>(I));
2881 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002882 const SCEV *Old = It->second;
2883
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002884 // Short-circuit the def-use traversal if the symbolic name
2885 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002886 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002887 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002888
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002889 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002890 // structure, it's a PHI that's in the progress of being computed
2891 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2892 // additional loop trip count information isn't going to change anything.
2893 // In the second case, createNodeForPHI will perform the necessary
2894 // updates on its own when it gets to that point. In the third, we do
2895 // want to forget the SCEVUnknown.
2896 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002897 !isa<SCEVUnknown>(Old) ||
2898 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002899 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002900 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002901 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002902 }
2903
2904 PushDefUseChildren(I, Worklist);
2905 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002906}
Chris Lattner53e677a2004-04-02 20:23:17 +00002907
2908/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2909/// a loop header, making it a potential recurrence, or it doesn't.
2910///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002911const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002912 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2913 if (L->getHeader() == PN->getParent()) {
2914 // The loop may have multiple entrances or multiple exits; we can analyze
2915 // this phi as an addrec if it has a unique entry value and a unique
2916 // backedge value.
2917 Value *BEValueV = 0, *StartValueV = 0;
2918 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2919 Value *V = PN->getIncomingValue(i);
2920 if (L->contains(PN->getIncomingBlock(i))) {
2921 if (!BEValueV) {
2922 BEValueV = V;
2923 } else if (BEValueV != V) {
2924 BEValueV = 0;
2925 break;
2926 }
2927 } else if (!StartValueV) {
2928 StartValueV = V;
2929 } else if (StartValueV != V) {
2930 StartValueV = 0;
2931 break;
2932 }
2933 }
2934 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002935 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002936 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002937 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002938 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002939 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002940
2941 // Using this symbolic name for the PHI, analyze the value coming around
2942 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002943 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002944
2945 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2946 // has a special value for the first iteration of the loop.
2947
2948 // If the value coming around the backedge is an add with the symbolic
2949 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002950 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002951 // If there is a single occurrence of the symbolic value, replace it
2952 // with a recurrence.
2953 unsigned FoundIndex = Add->getNumOperands();
2954 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2955 if (Add->getOperand(i) == SymbolicName)
2956 if (FoundIndex == e) {
2957 FoundIndex = i;
2958 break;
2959 }
2960
2961 if (FoundIndex != Add->getNumOperands()) {
2962 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002963 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002964 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2965 if (i != FoundIndex)
2966 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002967 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002968
2969 // This is not a valid addrec if the step amount is varying each
2970 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002971 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002972 (isa<SCEVAddRecExpr>(Accum) &&
2973 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002974 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00002975
2976 // If the increment doesn't overflow, then neither the addrec nor
2977 // the post-increment will overflow.
2978 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2979 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002980 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002981 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002982 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00002983 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00002984 dyn_cast<GEPOperator>(BEValueV)) {
2985 // If the increment is an inbounds GEP, then we know the address
2986 // space cannot be wrapped around. We cannot make any guarantee
2987 // about signed or unsigned overflow because pointers are
2988 // unsigned but we may have a negative index from the base
2989 // pointer.
2990 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00002991 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002992 }
2993
Dan Gohman27dead42010-04-12 07:49:36 +00002994 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00002995 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002996
Dan Gohmana10756e2010-01-21 02:09:26 +00002997 // Since the no-wrap flags are on the increment, they apply to the
2998 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002999 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003000 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003001 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003002
3003 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003004 // to be symbolic. We now need to go back and purge all of the
3005 // entries for the scalars that use the symbolic expression.
3006 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003007 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003008 return PHISCEV;
3009 }
3010 }
Dan Gohman622ed672009-05-04 22:02:23 +00003011 } else if (const SCEVAddRecExpr *AddRec =
3012 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003013 // Otherwise, this could be a loop like this:
3014 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3015 // In this case, j = {1,+,1} and BEValue is j.
3016 // Because the other in-value of i (0) fits the evolution of BEValue
3017 // i really is an addrec evolution.
3018 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003019 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003020
3021 // If StartVal = j.start - j.stride, we can use StartVal as the
3022 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003023 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003024 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003025 // FIXME: For constant StartVal, we should be able to infer
3026 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003027 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003028 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3029 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003030
3031 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003032 // to be symbolic. We now need to go back and purge all of the
3033 // entries for the scalars that use the symbolic expression.
3034 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003035 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003036 return PHISCEV;
3037 }
3038 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003039 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003040 }
Dan Gohman27dead42010-04-12 07:49:36 +00003041 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003042
Dan Gohman85669632010-02-25 06:57:05 +00003043 // If the PHI has a single incoming value, follow that value, unless the
3044 // PHI's incoming blocks are in a different loop, in which case doing so
3045 // risks breaking LCSSA form. Instcombine would normally zap these, but
3046 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003047 if (Value *V = SimplifyInstruction(PN, TD, DT))
3048 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003049 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003050
Chris Lattner53e677a2004-04-02 20:23:17 +00003051 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003052 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003053}
3054
Dan Gohman26466c02009-05-08 20:26:55 +00003055/// createNodeForGEP - Expand GEP instructions into add and multiply
3056/// operations. This allows them to be analyzed by regular SCEV code.
3057///
Dan Gohmand281ed22009-12-18 02:09:29 +00003058const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003059
Dan Gohmanb9f96512010-06-30 07:16:37 +00003060 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3061 // Add expression, because the Instruction may be guarded by control flow
3062 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003063 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003064 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003065
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003066 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003067 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003068 // Don't attempt to analyze GEPs over unsized objects.
3069 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3070 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003071 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003072 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003073 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003074 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003075 I != E; ++I) {
3076 Value *Index = *I;
3077 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003078 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003079 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003080 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003081 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3082
Dan Gohmanb9f96512010-06-30 07:16:37 +00003083 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003084 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003085 } else {
3086 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003087 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3088 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003089 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003090 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3091
Dan Gohmanb9f96512010-06-30 07:16:37 +00003092 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003093 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3094 isInBounds ? SCEV::FlagNSW :
3095 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003096
3097 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003098 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003099 }
3100 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003101
3102 // Get the SCEV for the GEP base.
3103 const SCEV *BaseS = getSCEV(Base);
3104
Dan Gohmanb9f96512010-06-30 07:16:37 +00003105 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003106 return getAddExpr(BaseS, TotalOffset,
3107 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003108}
3109
Nick Lewycky83bb0052007-11-22 07:59:40 +00003110/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3111/// guaranteed to end in (at every loop iteration). It is, at the same time,
3112/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3113/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003114uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003115ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003116 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003117 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003118
Dan Gohman622ed672009-05-04 22:02:23 +00003119 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003120 return std::min(GetMinTrailingZeros(T->getOperand()),
3121 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003122
Dan Gohman622ed672009-05-04 22:02:23 +00003123 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003124 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3125 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3126 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003127 }
3128
Dan Gohman622ed672009-05-04 22:02:23 +00003129 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003130 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3131 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3132 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003133 }
3134
Dan Gohman622ed672009-05-04 22:02:23 +00003135 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003136 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003137 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003138 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003139 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003140 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003141 }
3142
Dan Gohman622ed672009-05-04 22:02:23 +00003143 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003144 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003145 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3146 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003147 for (unsigned i = 1, e = M->getNumOperands();
3148 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003150 BitWidth);
3151 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003152 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003153
Dan Gohman622ed672009-05-04 22:02:23 +00003154 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003155 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003156 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003157 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003158 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003159 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003160 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003161
Dan Gohman622ed672009-05-04 22:02:23 +00003162 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003163 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003164 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003165 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003166 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003167 return MinOpRes;
3168 }
3169
Dan Gohman622ed672009-05-04 22:02:23 +00003170 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003171 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003172 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003173 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003174 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003175 return MinOpRes;
3176 }
3177
Dan Gohman2c364ad2009-06-19 23:29:04 +00003178 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3179 // For a SCEVUnknown, ask ValueTracking.
3180 unsigned BitWidth = getTypeSizeInBits(U->getType());
3181 APInt Mask = APInt::getAllOnesValue(BitWidth);
3182 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3183 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3184 return Zeros.countTrailingOnes();
3185 }
3186
3187 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003188 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003189}
Chris Lattner53e677a2004-04-02 20:23:17 +00003190
Dan Gohman85b05a22009-07-13 21:35:55 +00003191/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3192///
3193ConstantRange
3194ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003195 // See if we've computed this range already.
3196 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3197 if (I != UnsignedRanges.end())
3198 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003199
3200 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003201 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003203 unsigned BitWidth = getTypeSizeInBits(S->getType());
3204 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3205
3206 // If the value has known zeros, the maximum unsigned value will have those
3207 // known zeros as well.
3208 uint32_t TZ = GetMinTrailingZeros(S);
3209 if (TZ != 0)
3210 ConservativeResult =
3211 ConstantRange(APInt::getMinValue(BitWidth),
3212 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3213
Dan Gohman85b05a22009-07-13 21:35:55 +00003214 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3215 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3216 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3217 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003218 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003219 }
3220
3221 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3222 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3223 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3224 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003225 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003226 }
3227
3228 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3229 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3230 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3231 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003232 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003233 }
3234
3235 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3236 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3237 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3238 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003239 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 }
3241
3242 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3243 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3244 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003245 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003246 }
3247
3248 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3249 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003250 return setUnsignedRange(ZExt,
3251 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003252 }
3253
3254 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3255 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003256 return setUnsignedRange(SExt,
3257 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003258 }
3259
3260 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3261 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003262 return setUnsignedRange(Trunc,
3263 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003264 }
3265
Dan Gohman85b05a22009-07-13 21:35:55 +00003266 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003267 // If there's no unsigned wrap, the value will never be less than its
3268 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003269 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003270 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003271 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003272 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003273 ConservativeResult.intersectWith(
3274 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003275
3276 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003277 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003278 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003279 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003280 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3281 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003282 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3283
3284 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003285 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003286
3287 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003288 ConstantRange StepRange = getSignedRange(Step);
3289 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3290 ConstantRange EndRange =
3291 StartRange.add(MaxBECountRange.multiply(StepRange));
3292
3293 // Check for overflow. This must be done with ConstantRange arithmetic
3294 // because we could be called from within the ScalarEvolution overflow
3295 // checking code.
3296 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3297 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3298 ConstantRange ExtMaxBECountRange =
3299 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3300 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3301 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3302 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003303 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003304
Dan Gohman85b05a22009-07-13 21:35:55 +00003305 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3306 EndRange.getUnsignedMin());
3307 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3308 EndRange.getUnsignedMax());
3309 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003310 return setUnsignedRange(AddRec, ConservativeResult);
3311 return setUnsignedRange(AddRec,
3312 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003313 }
3314 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003315
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003316 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003317 }
3318
3319 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3320 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003321 APInt Mask = APInt::getAllOnesValue(BitWidth);
3322 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3323 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003324 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003325 return setUnsignedRange(U, ConservativeResult);
3326 return setUnsignedRange(U,
3327 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003328 }
3329
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003330 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003331}
3332
Dan Gohman85b05a22009-07-13 21:35:55 +00003333/// getSignedRange - Determine the signed range for a particular SCEV.
3334///
3335ConstantRange
3336ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003337 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003338 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3339 if (I != SignedRanges.end())
3340 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003341
Dan Gohman85b05a22009-07-13 21:35:55 +00003342 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003343 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003344
Dan Gohman52fddd32010-01-26 04:40:18 +00003345 unsigned BitWidth = getTypeSizeInBits(S->getType());
3346 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3347
3348 // If the value has known zeros, the maximum signed value will have those
3349 // known zeros as well.
3350 uint32_t TZ = GetMinTrailingZeros(S);
3351 if (TZ != 0)
3352 ConservativeResult =
3353 ConstantRange(APInt::getSignedMinValue(BitWidth),
3354 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3355
Dan Gohman85b05a22009-07-13 21:35:55 +00003356 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3357 ConstantRange X = getSignedRange(Add->getOperand(0));
3358 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3359 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003360 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003361 }
3362
Dan Gohman85b05a22009-07-13 21:35:55 +00003363 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3364 ConstantRange X = getSignedRange(Mul->getOperand(0));
3365 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3366 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003367 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003368 }
3369
Dan Gohman85b05a22009-07-13 21:35:55 +00003370 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3371 ConstantRange X = getSignedRange(SMax->getOperand(0));
3372 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3373 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003374 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003375 }
Dan Gohman62849c02009-06-24 01:05:09 +00003376
Dan Gohman85b05a22009-07-13 21:35:55 +00003377 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3378 ConstantRange X = getSignedRange(UMax->getOperand(0));
3379 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3380 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003381 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003382 }
Dan Gohman62849c02009-06-24 01:05:09 +00003383
Dan Gohman85b05a22009-07-13 21:35:55 +00003384 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3385 ConstantRange X = getSignedRange(UDiv->getLHS());
3386 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003387 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003388 }
Dan Gohman62849c02009-06-24 01:05:09 +00003389
Dan Gohman85b05a22009-07-13 21:35:55 +00003390 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3391 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003392 return setSignedRange(ZExt,
3393 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003394 }
3395
3396 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3397 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003398 return setSignedRange(SExt,
3399 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003400 }
3401
3402 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3403 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003404 return setSignedRange(Trunc,
3405 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003406 }
3407
Dan Gohman85b05a22009-07-13 21:35:55 +00003408 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003409 // If there's no signed wrap, and all the operands have the same sign or
3410 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003411 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003412 bool AllNonNeg = true;
3413 bool AllNonPos = true;
3414 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3415 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3416 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3417 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003418 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003419 ConservativeResult = ConservativeResult.intersectWith(
3420 ConstantRange(APInt(BitWidth, 0),
3421 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003422 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003423 ConservativeResult = ConservativeResult.intersectWith(
3424 ConstantRange(APInt::getSignedMinValue(BitWidth),
3425 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003426 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003427
3428 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003429 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003430 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003431 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003432 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3433 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003434 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3435
3436 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003437 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003438
3439 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003440 ConstantRange StepRange = getSignedRange(Step);
3441 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3442 ConstantRange EndRange =
3443 StartRange.add(MaxBECountRange.multiply(StepRange));
3444
3445 // Check for overflow. This must be done with ConstantRange arithmetic
3446 // because we could be called from within the ScalarEvolution overflow
3447 // checking code.
3448 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3449 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3450 ConstantRange ExtMaxBECountRange =
3451 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3452 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3453 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3454 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003455 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003456
Dan Gohman85b05a22009-07-13 21:35:55 +00003457 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3458 EndRange.getSignedMin());
3459 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3460 EndRange.getSignedMax());
3461 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003462 return setSignedRange(AddRec, ConservativeResult);
3463 return setSignedRange(AddRec,
3464 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003465 }
Dan Gohman62849c02009-06-24 01:05:09 +00003466 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003467
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003468 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003469 }
3470
Dan Gohman2c364ad2009-06-19 23:29:04 +00003471 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3472 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003473 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003474 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003475 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3476 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003477 return setSignedRange(U, ConservativeResult);
3478 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003479 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003480 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003481 }
3482
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003483 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003484}
3485
Chris Lattner53e677a2004-04-02 20:23:17 +00003486/// createSCEV - We know that there is no SCEV for the specified value.
3487/// Analyze the expression.
3488///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003489const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003490 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003491 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003492
Dan Gohman6c459a22008-06-22 19:56:46 +00003493 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003494 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003495 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003496
3497 // Don't attempt to analyze instructions in blocks that aren't
3498 // reachable. Such instructions don't matter, and they aren't required
3499 // to obey basic rules for definitions dominating uses which this
3500 // analysis depends on.
3501 if (!DT->isReachableFromEntry(I->getParent()))
3502 return getUnknown(V);
3503 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003504 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003505 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3506 return getConstant(CI);
3507 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003508 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003509 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3510 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003511 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003512 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003513
Dan Gohmanca178902009-07-17 20:47:02 +00003514 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003515 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003516 case Instruction::Add: {
3517 // The simple thing to do would be to just call getSCEV on both operands
3518 // and call getAddExpr with the result. However if we're looking at a
3519 // bunch of things all added together, this can be quite inefficient,
3520 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3521 // Instead, gather up all the operands and make a single getAddExpr call.
3522 // LLVM IR canonical form means we need only traverse the left operands.
3523 SmallVector<const SCEV *, 4> AddOps;
3524 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003525 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3526 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3527 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3528 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003529 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003530 const SCEV *Op1 = getSCEV(U->getOperand(1));
3531 if (Opcode == Instruction::Sub)
3532 AddOps.push_back(getNegativeSCEV(Op1));
3533 else
3534 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003535 }
3536 AddOps.push_back(getSCEV(U->getOperand(0)));
3537 return getAddExpr(AddOps);
3538 }
3539 case Instruction::Mul: {
3540 // See the Add code above.
3541 SmallVector<const SCEV *, 4> MulOps;
3542 MulOps.push_back(getSCEV(U->getOperand(1)));
3543 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003544 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003545 Op = U->getOperand(0)) {
3546 U = cast<Operator>(Op);
3547 MulOps.push_back(getSCEV(U->getOperand(1)));
3548 }
3549 MulOps.push_back(getSCEV(U->getOperand(0)));
3550 return getMulExpr(MulOps);
3551 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003552 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003553 return getUDivExpr(getSCEV(U->getOperand(0)),
3554 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003555 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003556 return getMinusSCEV(getSCEV(U->getOperand(0)),
3557 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003558 case Instruction::And:
3559 // For an expression like x&255 that merely masks off the high bits,
3560 // use zext(trunc(x)) as the SCEV expression.
3561 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003562 if (CI->isNullValue())
3563 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003564 if (CI->isAllOnesValue())
3565 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003566 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003567
3568 // Instcombine's ShrinkDemandedConstant may strip bits out of
3569 // constants, obscuring what would otherwise be a low-bits mask.
3570 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3571 // knew about to reconstruct a low-bits mask value.
3572 unsigned LZ = A.countLeadingZeros();
3573 unsigned BitWidth = A.getBitWidth();
3574 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3575 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3576 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3577
3578 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3579
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003580 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003581 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003582 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003583 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003584 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003585 }
3586 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003587
Dan Gohman6c459a22008-06-22 19:56:46 +00003588 case Instruction::Or:
3589 // If the RHS of the Or is a constant, we may have something like:
3590 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3591 // optimizations will transparently handle this case.
3592 //
3593 // In order for this transformation to be safe, the LHS must be of the
3594 // form X*(2^n) and the Or constant must be less than 2^n.
3595 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003596 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003597 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003598 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003599 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3600 // Build a plain add SCEV.
3601 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3602 // If the LHS of the add was an addrec and it has no-wrap flags,
3603 // transfer the no-wrap flags, since an or won't introduce a wrap.
3604 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3605 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003606 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3607 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003608 }
3609 return S;
3610 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003611 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003612 break;
3613 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003614 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003615 // If the RHS of the xor is a signbit, then this is just an add.
3616 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003617 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003618 return getAddExpr(getSCEV(U->getOperand(0)),
3619 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003620
3621 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003622 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003623 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003624
3625 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3626 // This is a variant of the check for xor with -1, and it handles
3627 // the case where instcombine has trimmed non-demanded bits out
3628 // of an xor with -1.
3629 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3630 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3631 if (BO->getOpcode() == Instruction::And &&
3632 LCI->getValue() == CI->getValue())
3633 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003634 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003635 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003636 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003637 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003638 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3639
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003640 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003641 // mask off the high bits. Complement the operand and
3642 // re-apply the zext.
3643 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3644 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3645
3646 // If C is a single bit, it may be in the sign-bit position
3647 // before the zero-extend. In this case, represent the xor
3648 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003649 APInt Trunc = CI->getValue().trunc(Z0TySize);
3650 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003651 Trunc.isSignBit())
3652 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3653 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003654 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003655 }
3656 break;
3657
3658 case Instruction::Shl:
3659 // Turn shift left of a constant amount into a multiply.
3660 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003661 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003662
3663 // If the shift count is not less than the bitwidth, the result of
3664 // the shift is undefined. Don't try to analyze it, because the
3665 // resolution chosen here may differ from the resolution chosen in
3666 // other parts of the compiler.
3667 if (SA->getValue().uge(BitWidth))
3668 break;
3669
Owen Andersoneed707b2009-07-24 23:12:02 +00003670 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003671 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003672 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003673 }
3674 break;
3675
Nick Lewycky01eaf802008-07-07 06:15:49 +00003676 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003677 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003678 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003679 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003680
3681 // If the shift count is not less than the bitwidth, the result of
3682 // the shift is undefined. Don't try to analyze it, because the
3683 // resolution chosen here may differ from the resolution chosen in
3684 // other parts of the compiler.
3685 if (SA->getValue().uge(BitWidth))
3686 break;
3687
Owen Andersoneed707b2009-07-24 23:12:02 +00003688 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003689 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003690 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003691 }
3692 break;
3693
Dan Gohman4ee29af2009-04-21 02:26:00 +00003694 case Instruction::AShr:
3695 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3696 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003697 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003698 if (L->getOpcode() == Instruction::Shl &&
3699 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003700 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3701
3702 // If the shift count is not less than the bitwidth, the result of
3703 // the shift is undefined. Don't try to analyze it, because the
3704 // resolution chosen here may differ from the resolution chosen in
3705 // other parts of the compiler.
3706 if (CI->getValue().uge(BitWidth))
3707 break;
3708
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003709 uint64_t Amt = BitWidth - CI->getZExtValue();
3710 if (Amt == BitWidth)
3711 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003712 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003713 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003714 IntegerType::get(getContext(),
3715 Amt)),
3716 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003717 }
3718 break;
3719
Dan Gohman6c459a22008-06-22 19:56:46 +00003720 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003721 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003722
3723 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003724 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003725
3726 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003727 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003728
3729 case Instruction::BitCast:
3730 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003731 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003732 return getSCEV(U->getOperand(0));
3733 break;
3734
Dan Gohman4f8eea82010-02-01 18:27:38 +00003735 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3736 // lead to pointer expressions which cannot safely be expanded to GEPs,
3737 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3738 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003739
Dan Gohman26466c02009-05-08 20:26:55 +00003740 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003741 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003742
Dan Gohman6c459a22008-06-22 19:56:46 +00003743 case Instruction::PHI:
3744 return createNodeForPHI(cast<PHINode>(U));
3745
3746 case Instruction::Select:
3747 // This could be a smax or umax that was lowered earlier.
3748 // Try to recover it.
3749 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3750 Value *LHS = ICI->getOperand(0);
3751 Value *RHS = ICI->getOperand(1);
3752 switch (ICI->getPredicate()) {
3753 case ICmpInst::ICMP_SLT:
3754 case ICmpInst::ICMP_SLE:
3755 std::swap(LHS, RHS);
3756 // fall through
3757 case ICmpInst::ICMP_SGT:
3758 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003759 // a >s b ? a+x : b+x -> smax(a, b)+x
3760 // a >s b ? b+x : a+x -> smin(a, b)+x
3761 if (LHS->getType() == U->getType()) {
3762 const SCEV *LS = getSCEV(LHS);
3763 const SCEV *RS = getSCEV(RHS);
3764 const SCEV *LA = getSCEV(U->getOperand(1));
3765 const SCEV *RA = getSCEV(U->getOperand(2));
3766 const SCEV *LDiff = getMinusSCEV(LA, LS);
3767 const SCEV *RDiff = getMinusSCEV(RA, RS);
3768 if (LDiff == RDiff)
3769 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3770 LDiff = getMinusSCEV(LA, RS);
3771 RDiff = getMinusSCEV(RA, LS);
3772 if (LDiff == RDiff)
3773 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3774 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003775 break;
3776 case ICmpInst::ICMP_ULT:
3777 case ICmpInst::ICMP_ULE:
3778 std::swap(LHS, RHS);
3779 // fall through
3780 case ICmpInst::ICMP_UGT:
3781 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003782 // a >u b ? a+x : b+x -> umax(a, b)+x
3783 // a >u b ? b+x : a+x -> umin(a, b)+x
3784 if (LHS->getType() == U->getType()) {
3785 const SCEV *LS = getSCEV(LHS);
3786 const SCEV *RS = getSCEV(RHS);
3787 const SCEV *LA = getSCEV(U->getOperand(1));
3788 const SCEV *RA = getSCEV(U->getOperand(2));
3789 const SCEV *LDiff = getMinusSCEV(LA, LS);
3790 const SCEV *RDiff = getMinusSCEV(RA, RS);
3791 if (LDiff == RDiff)
3792 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3793 LDiff = getMinusSCEV(LA, RS);
3794 RDiff = getMinusSCEV(RA, LS);
3795 if (LDiff == RDiff)
3796 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3797 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003798 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003799 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003800 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3801 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003802 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003803 cast<ConstantInt>(RHS)->isZero()) {
3804 const SCEV *One = getConstant(LHS->getType(), 1);
3805 const SCEV *LS = getSCEV(LHS);
3806 const SCEV *LA = getSCEV(U->getOperand(1));
3807 const SCEV *RA = getSCEV(U->getOperand(2));
3808 const SCEV *LDiff = getMinusSCEV(LA, LS);
3809 const SCEV *RDiff = getMinusSCEV(RA, One);
3810 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003811 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003812 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003813 break;
3814 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003815 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3816 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003817 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003818 cast<ConstantInt>(RHS)->isZero()) {
3819 const SCEV *One = getConstant(LHS->getType(), 1);
3820 const SCEV *LS = getSCEV(LHS);
3821 const SCEV *LA = getSCEV(U->getOperand(1));
3822 const SCEV *RA = getSCEV(U->getOperand(2));
3823 const SCEV *LDiff = getMinusSCEV(LA, One);
3824 const SCEV *RDiff = getMinusSCEV(RA, LS);
3825 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003826 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003827 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003828 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003829 default:
3830 break;
3831 }
3832 }
3833
3834 default: // We cannot analyze this expression.
3835 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003836 }
3837
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003838 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003839}
3840
3841
3842
3843//===----------------------------------------------------------------------===//
3844// Iteration Count Computation Code
3845//
3846
Andrew Trickb1831c62011-08-11 23:36:16 +00003847/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3848/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3849/// or not constant. Will also return 0 if the maximum trip count is very large
3850/// (>= 2^32)
3851unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3852 BasicBlock *ExitBlock) {
3853 const SCEVConstant *ExitCount =
3854 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3855 if (!ExitCount)
3856 return 0;
3857
3858 ConstantInt *ExitConst = ExitCount->getValue();
3859
3860 // Guard against huge trip counts.
3861 if (ExitConst->getValue().getActiveBits() > 32)
3862 return 0;
3863
3864 // In case of integer overflow, this returns 0, which is correct.
3865 return ((unsigned)ExitConst->getZExtValue()) + 1;
3866}
3867
3868/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3869/// trip count of this loop as a normal unsigned value, if possible. This
3870/// means that the actual trip count is always a multiple of the returned
3871/// value (don't forget the trip count could very well be zero as well!).
3872///
3873/// Returns 1 if the trip count is unknown or not guaranteed to be the
3874/// multiple of a constant (which is also the case if the trip count is simply
3875/// constant, use getSmallConstantTripCount for that case), Will also return 1
3876/// if the trip count is very large (>= 2^32).
3877unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3878 BasicBlock *ExitBlock) {
3879 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3880 if (ExitCount == getCouldNotCompute())
3881 return 1;
3882
3883 // Get the trip count from the BE count by adding 1.
3884 const SCEV *TCMul = getAddExpr(ExitCount,
3885 getConstant(ExitCount->getType(), 1));
3886 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3887 // to factor simple cases.
3888 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3889 TCMul = Mul->getOperand(0);
3890
3891 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3892 if (!MulC)
3893 return 1;
3894
3895 ConstantInt *Result = MulC->getValue();
3896
3897 // Guard against huge trip counts.
3898 if (!Result || Result->getValue().getActiveBits() > 32)
3899 return 1;
3900
3901 return (unsigned)Result->getZExtValue();
3902}
3903
Andrew Trick5116ff62011-07-26 17:19:55 +00003904// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003905// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003906// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003907const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3908 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003909}
3910
Dan Gohman46bdfb02009-02-24 18:55:53 +00003911/// getBackedgeTakenCount - If the specified loop has a predictable
3912/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3913/// object. The backedge-taken count is the number of times the loop header
3914/// will be branched to from within the loop. This is one less than the
3915/// trip count of the loop, since it doesn't count the first iteration,
3916/// when the header is branched to from outside the loop.
3917///
3918/// Note that it is not valid to call this method on a loop without a
3919/// loop-invariant backedge-taken count (see
3920/// hasLoopInvariantBackedgeTakenCount).
3921///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003922const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003923 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003924}
3925
3926/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3927/// return the least SCEV value that is known never to be less than the
3928/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003929const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003930 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003931}
3932
Dan Gohman59ae6b92009-07-08 19:23:34 +00003933/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3934/// onto the given Worklist.
3935static void
3936PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3937 BasicBlock *Header = L->getHeader();
3938
3939 // Push all Loop-header PHIs onto the Worklist stack.
3940 for (BasicBlock::iterator I = Header->begin();
3941 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3942 Worklist.push_back(PN);
3943}
3944
Dan Gohmana1af7572009-04-30 20:47:05 +00003945const ScalarEvolution::BackedgeTakenInfo &
3946ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003947 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003948 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003949 // update the value. The temporary CouldNotCompute value tells SCEV
3950 // code elsewhere that it shouldn't attempt to request a new
3951 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00003952 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00003953 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003954 if (!Pair.second)
3955 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003956
Andrew Trick5116ff62011-07-26 17:19:55 +00003957 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3958 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3959 // must be cleared in this scope.
3960 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3961
3962 if (Result.getExact(this) != getCouldNotCompute()) {
3963 assert(isLoopInvariant(Result.getExact(this), L) &&
3964 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00003965 "Computed backedge-taken count isn't loop invariant for loop!");
3966 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00003967 }
3968 else if (Result.getMax(this) == getCouldNotCompute() &&
3969 isa<PHINode>(L->getHeader()->begin())) {
3970 // Only count loops that have phi nodes as not being computable.
3971 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00003972 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003973
Chris Lattnerf1859892011-01-09 02:16:18 +00003974 // Now that we know more about the trip count for this loop, forget any
3975 // existing SCEV values for PHI nodes in this loop since they are only
3976 // conservative estimates made without the benefit of trip count
3977 // information. This is similar to the code in forgetLoop, except that
3978 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00003979 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00003980 SmallVector<Instruction *, 16> Worklist;
3981 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003982
Chris Lattnerf1859892011-01-09 02:16:18 +00003983 SmallPtrSet<Instruction *, 8> Visited;
3984 while (!Worklist.empty()) {
3985 Instruction *I = Worklist.pop_back_val();
3986 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003987
Chris Lattnerf1859892011-01-09 02:16:18 +00003988 ValueExprMapType::iterator It =
3989 ValueExprMap.find(static_cast<Value *>(I));
3990 if (It != ValueExprMap.end()) {
3991 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003992
Chris Lattnerf1859892011-01-09 02:16:18 +00003993 // SCEVUnknown for a PHI either means that it has an unrecognized
3994 // structure, or it's a PHI that's in the progress of being computed
3995 // by createNodeForPHI. In the former case, additional loop trip
3996 // count information isn't going to change anything. In the later
3997 // case, createNodeForPHI will perform the necessary updates on its
3998 // own when it gets to that point.
3999 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4000 forgetMemoizedResults(Old);
4001 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004002 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004003 if (PHINode *PN = dyn_cast<PHINode>(I))
4004 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004005 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004006
4007 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004008 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004009 }
Dan Gohman308bec32011-04-25 22:48:29 +00004010
4011 // Re-lookup the insert position, since the call to
4012 // ComputeBackedgeTakenCount above could result in a
4013 // recusive call to getBackedgeTakenInfo (on a different
4014 // loop), which would invalidate the iterator computed
4015 // earlier.
4016 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004017}
4018
Dan Gohman4c7279a2009-10-31 15:04:55 +00004019/// forgetLoop - This method should be called by the client when it has
4020/// changed a loop in a way that may effect ScalarEvolution's ability to
4021/// compute a trip count, or if the loop is deleted.
4022void ScalarEvolution::forgetLoop(const Loop *L) {
4023 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004024 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4025 BackedgeTakenCounts.find(L);
4026 if (BTCPos != BackedgeTakenCounts.end()) {
4027 BTCPos->second.clear();
4028 BackedgeTakenCounts.erase(BTCPos);
4029 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004030
Dan Gohman4c7279a2009-10-31 15:04:55 +00004031 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004032 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004033 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004034
Dan Gohman59ae6b92009-07-08 19:23:34 +00004035 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004036 while (!Worklist.empty()) {
4037 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004038 if (!Visited.insert(I)) continue;
4039
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004040 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4041 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004042 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004043 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004044 if (PHINode *PN = dyn_cast<PHINode>(I))
4045 ConstantEvolutionLoopExitValue.erase(PN);
4046 }
4047
4048 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004049 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004050
4051 // Forget all contained loops too, to avoid dangling entries in the
4052 // ValuesAtScopes map.
4053 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4054 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004055}
4056
Eric Christophere6cbfa62010-07-29 01:25:38 +00004057/// forgetValue - This method should be called by the client when it has
4058/// changed a value in a way that may effect its value, or which may
4059/// disconnect it from a def-use chain linking it to a loop.
4060void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004061 Instruction *I = dyn_cast<Instruction>(V);
4062 if (!I) return;
4063
4064 // Drop information about expressions based on loop-header PHIs.
4065 SmallVector<Instruction *, 16> Worklist;
4066 Worklist.push_back(I);
4067
4068 SmallPtrSet<Instruction *, 8> Visited;
4069 while (!Worklist.empty()) {
4070 I = Worklist.pop_back_val();
4071 if (!Visited.insert(I)) continue;
4072
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004073 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4074 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004075 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004076 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004077 if (PHINode *PN = dyn_cast<PHINode>(I))
4078 ConstantEvolutionLoopExitValue.erase(PN);
4079 }
4080
4081 PushDefUseChildren(I, Worklist);
4082 }
4083}
4084
Andrew Trick5116ff62011-07-26 17:19:55 +00004085/// getExact - Get the exact loop backedge taken count considering all loop
4086/// exits. If all exits are computable, this is the minimum computed count.
4087const SCEV *
4088ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4089 // If any exits were not computable, the loop is not computable.
4090 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4091
4092 // We need at least one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004093 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004094 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4095
4096 const SCEV *BECount = 0;
4097 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4098 ENT != 0; ENT = ENT->getNextExit()) {
4099
4100 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4101
4102 if (!BECount)
4103 BECount = ENT->ExactNotTaken;
4104 else
4105 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4106 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004107 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004108 return BECount;
4109}
4110
4111/// getExact - Get the exact not taken count for this loop exit.
4112const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004113ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004114 ScalarEvolution *SE) const {
4115 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4116 ENT != 0; ENT = ENT->getNextExit()) {
4117
Andrew Trickfcb43562011-08-02 04:23:35 +00004118 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004119 return ENT->ExactNotTaken;
4120 }
4121 return SE->getCouldNotCompute();
4122}
4123
4124/// getMax - Get the max backedge taken count for the loop.
4125const SCEV *
4126ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4127 return Max ? Max : SE->getCouldNotCompute();
4128}
4129
4130/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4131/// computable exit into a persistent ExitNotTakenInfo array.
4132ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4133 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4134 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4135
4136 if (!Complete)
4137 ExitNotTaken.setIncomplete();
4138
4139 unsigned NumExits = ExitCounts.size();
4140 if (NumExits == 0) return;
4141
Andrew Trickfcb43562011-08-02 04:23:35 +00004142 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004143 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4144 if (NumExits == 1) return;
4145
4146 // Handle the rare case of multiple computable exits.
4147 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4148
4149 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4150 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4151 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004152 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004153 ENT->ExactNotTaken = ExitCounts[i].second;
4154 }
4155}
4156
4157/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4158void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004159 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004160 ExitNotTaken.ExactNotTaken = 0;
4161 delete[] ExitNotTaken.getNextExit();
4162}
4163
Dan Gohman46bdfb02009-02-24 18:55:53 +00004164/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4165/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004166ScalarEvolution::BackedgeTakenInfo
4167ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004168 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004169 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004170
Dan Gohmana334aa72009-06-22 00:31:57 +00004171 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004172 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004173 bool CouldComputeBECount = true;
4174 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004175 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004176 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4177 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004178 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004179 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004180 CouldComputeBECount = false;
4181 else
4182 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4183
Dan Gohman1c343752009-06-27 21:21:31 +00004184 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004185 MaxBECount = EL.Max;
4186 else if (EL.Max != getCouldNotCompute())
4187 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004188 }
4189
Andrew Trick5116ff62011-07-26 17:19:55 +00004190 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004191}
4192
Andrew Trick5116ff62011-07-26 17:19:55 +00004193/// ComputeExitLimit - Compute the number of times the backedge of the specified
4194/// loop will execute if it exits via the specified block.
4195ScalarEvolution::ExitLimit
4196ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004197
4198 // Okay, we've chosen an exiting block. See what condition causes us to
4199 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004200 //
4201 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004202 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004203 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004204 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004205
Chris Lattner8b0e3602007-01-07 02:24:26 +00004206 // At this point, we know we have a conditional branch that determines whether
4207 // the loop is exited. However, we don't know if the branch is executed each
4208 // time through the loop. If not, then the execution count of the branch will
4209 // not be equal to the trip count of the loop.
4210 //
4211 // Currently we check for this by checking to see if the Exit branch goes to
4212 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004213 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004214 // loop header. This is common for un-rotated loops.
4215 //
4216 // If both of those tests fail, walk up the unique predecessor chain to the
4217 // header, stopping if there is an edge that doesn't exit the loop. If the
4218 // header is reached, the execution count of the branch will be equal to the
4219 // trip count of the loop.
4220 //
4221 // More extensive analysis could be done to handle more cases here.
4222 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004223 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004224 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004225 ExitBr->getParent() != L->getHeader()) {
4226 // The simple checks failed, try climbing the unique predecessor chain
4227 // up to the header.
4228 bool Ok = false;
4229 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4230 BasicBlock *Pred = BB->getUniquePredecessor();
4231 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004232 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004233 TerminatorInst *PredTerm = Pred->getTerminator();
4234 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4235 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4236 if (PredSucc == BB)
4237 continue;
4238 // If the predecessor has a successor that isn't BB and isn't
4239 // outside the loop, assume the worst.
4240 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004241 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004242 }
4243 if (Pred == L->getHeader()) {
4244 Ok = true;
4245 break;
4246 }
4247 BB = Pred;
4248 }
4249 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004250 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004251 }
4252
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004253 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004254 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4255 ExitBr->getSuccessor(0),
4256 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004257}
4258
Andrew Trick5116ff62011-07-26 17:19:55 +00004259/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004260/// backedge of the specified loop will execute if its exit condition
4261/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004262ScalarEvolution::ExitLimit
4263ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4264 Value *ExitCond,
4265 BasicBlock *TBB,
4266 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004267 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004268 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4269 if (BO->getOpcode() == Instruction::And) {
4270 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004271 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4272 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004273 const SCEV *BECount = getCouldNotCompute();
4274 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004275 if (L->contains(TBB)) {
4276 // Both conditions must be true for the loop to continue executing.
4277 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004278 if (EL0.Exact == getCouldNotCompute() ||
4279 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004280 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004281 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004282 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4283 if (EL0.Max == getCouldNotCompute())
4284 MaxBECount = EL1.Max;
4285 else if (EL1.Max == getCouldNotCompute())
4286 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004287 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004288 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004289 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004290 // Both conditions must be true at the same time for the loop to exit.
4291 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004292 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004293 if (EL0.Max == EL1.Max)
4294 MaxBECount = EL0.Max;
4295 if (EL0.Exact == EL1.Exact)
4296 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004297 }
4298
Andrew Trick5116ff62011-07-26 17:19:55 +00004299 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004300 }
4301 if (BO->getOpcode() == Instruction::Or) {
4302 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004303 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4304 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004305 const SCEV *BECount = getCouldNotCompute();
4306 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004307 if (L->contains(FBB)) {
4308 // Both conditions must be false for the loop to continue executing.
4309 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004310 if (EL0.Exact == getCouldNotCompute() ||
4311 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004312 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004313 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004314 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4315 if (EL0.Max == getCouldNotCompute())
4316 MaxBECount = EL1.Max;
4317 else if (EL1.Max == getCouldNotCompute())
4318 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004319 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004320 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004321 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004322 // Both conditions must be false at the same time for the loop to exit.
4323 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004324 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004325 if (EL0.Max == EL1.Max)
4326 MaxBECount = EL0.Max;
4327 if (EL0.Exact == EL1.Exact)
4328 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004329 }
4330
Andrew Trick5116ff62011-07-26 17:19:55 +00004331 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004332 }
4333 }
4334
4335 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004336 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004337 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004338 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004339
Dan Gohman00cb5b72010-02-19 18:12:07 +00004340 // Check for a constant condition. These are normally stripped out by
4341 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4342 // preserve the CFG and is temporarily leaving constant conditions
4343 // in place.
4344 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4345 if (L->contains(FBB) == !CI->getZExtValue())
4346 // The backedge is always taken.
4347 return getCouldNotCompute();
4348 else
4349 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004350 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004351 }
4352
Eli Friedman361e54d2009-05-09 12:32:42 +00004353 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004354 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004355}
4356
Andrew Trick5116ff62011-07-26 17:19:55 +00004357/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004358/// backedge of the specified loop will execute if its exit condition
4359/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004360ScalarEvolution::ExitLimit
4361ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4362 ICmpInst *ExitCond,
4363 BasicBlock *TBB,
4364 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004365
Reid Spencere4d87aa2006-12-23 06:05:41 +00004366 // If the condition was exit on true, convert the condition to exit on false
4367 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004368 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004369 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004370 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004371 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004372
4373 // Handle common loops like: for (X = "string"; *X; ++X)
4374 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4375 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004376 ExitLimit ItCnt =
4377 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004378 if (ItCnt.hasAnyInfo())
4379 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004380 }
4381
Dan Gohman0bba49c2009-07-07 17:06:11 +00004382 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4383 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004384
4385 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004386 LHS = getSCEVAtScope(LHS, L);
4387 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004388
Dan Gohman64a845e2009-06-24 04:48:43 +00004389 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004390 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004391 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004392 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004393 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004394 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004395 }
4396
Dan Gohman03557dc2010-05-03 16:35:17 +00004397 // Simplify the operands before analyzing them.
4398 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4399
Chris Lattner53e677a2004-04-02 20:23:17 +00004400 // If we have a comparison of a chrec against a constant, try to use value
4401 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004402 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4403 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004404 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004405 // Form the constant range.
4406 ConstantRange CompRange(
4407 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004408
Dan Gohman0bba49c2009-07-07 17:06:11 +00004409 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004410 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004411 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004412
Chris Lattner53e677a2004-04-02 20:23:17 +00004413 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004414 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004415 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004416 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4417 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004418 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004419 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004420 case ICmpInst::ICMP_EQ: { // while (X == Y)
4421 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004422 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4423 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004424 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004425 }
4426 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004427 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4428 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004429 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004430 }
4431 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004432 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004433 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004434 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004435 break;
4436 }
4437 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004438 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4439 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004440 break;
4441 }
4442 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004443 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004444 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004445 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004446 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004447 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004448 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004449#if 0
David Greene25e0e872009-12-23 22:18:14 +00004450 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004451 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004452 dbgs() << "[unsigned] ";
4453 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004454 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004455 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004456#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004457 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004458 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004459 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004460}
4461
Chris Lattner673e02b2004-10-12 01:49:27 +00004462static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004463EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4464 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004465 const SCEV *InVal = SE.getConstant(C);
4466 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004467 assert(isa<SCEVConstant>(Val) &&
4468 "Evaluation of SCEV at constant didn't fold correctly?");
4469 return cast<SCEVConstant>(Val)->getValue();
4470}
4471
4472/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4473/// and a GEP expression (missing the pointer index) indexing into it, return
4474/// the addressed element of the initializer or null if the index expression is
4475/// invalid.
4476static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004477GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004478 const std::vector<ConstantInt*> &Indices) {
4479 Constant *Init = GV->getInitializer();
4480 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004481 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004482 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4483 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4484 Init = cast<Constant>(CS->getOperand(Idx));
4485 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4486 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4487 Init = cast<Constant>(CA->getOperand(Idx));
4488 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004489 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004490 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004491 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004492 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004493 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004494 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004495 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004496 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004497 }
4498 return 0;
4499 } else {
4500 return 0; // Unknown initializer type
4501 }
4502 }
4503 return Init;
4504}
4505
Andrew Trick5116ff62011-07-26 17:19:55 +00004506/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004507/// 'icmp op load X, cst', try to see if we can compute the backedge
4508/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004509ScalarEvolution::ExitLimit
4510ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4511 LoadInst *LI,
4512 Constant *RHS,
4513 const Loop *L,
4514 ICmpInst::Predicate predicate) {
4515
Dan Gohman1c343752009-06-27 21:21:31 +00004516 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004517
4518 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004519 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004520 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004521 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004522
4523 // Make sure that it is really a constant global we are gepping, with an
4524 // initializer, and make sure the first IDX is really 0.
4525 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004526 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004527 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4528 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004529 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004530
4531 // Okay, we allow one non-constant index into the GEP instruction.
4532 Value *VarIdx = 0;
4533 std::vector<ConstantInt*> Indexes;
4534 unsigned VarIdxNum = 0;
4535 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4536 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4537 Indexes.push_back(CI);
4538 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004539 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004540 VarIdx = GEP->getOperand(i);
4541 VarIdxNum = i-2;
4542 Indexes.push_back(0);
4543 }
4544
4545 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4546 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004547 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004548 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004549
4550 // We can only recognize very limited forms of loop index expressions, in
4551 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004552 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004553 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004554 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4555 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004556 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004557
4558 unsigned MaxSteps = MaxBruteForceIterations;
4559 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004560 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004561 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004562 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004563
4564 // Form the GEP offset.
4565 Indexes[VarIdxNum] = Val;
4566
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004567 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004568 if (Result == 0) break; // Cannot compute!
4569
4570 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004571 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004572 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004573 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004574#if 0
David Greene25e0e872009-12-23 22:18:14 +00004575 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004576 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4577 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004578#endif
4579 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004580 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004581 }
4582 }
Dan Gohman1c343752009-06-27 21:21:31 +00004583 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004584}
4585
4586
Chris Lattner3221ad02004-04-17 22:58:41 +00004587/// CanConstantFold - Return true if we can constant fold an instruction of the
4588/// specified type, assuming that all operands were constants.
4589static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004590 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004591 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4592 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004593
Chris Lattner3221ad02004-04-17 22:58:41 +00004594 if (const CallInst *CI = dyn_cast<CallInst>(I))
4595 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004596 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004597 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004598}
4599
Chris Lattner3221ad02004-04-17 22:58:41 +00004600/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4601/// in the loop that V is derived from. We allow arbitrary operations along the
4602/// way, but the operands of an operation must either be constants or a value
4603/// derived from a constant PHI. If this expression does not fit with these
4604/// constraints, return null.
4605static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4606 // If this is not an instruction, or if this is an instruction outside of the
4607 // loop, it can't be derived from a loop PHI.
4608 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004609 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004610
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004611 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004612 if (L->getHeader() == I->getParent())
4613 return PN;
4614 else
4615 // We don't currently keep track of the control flow needed to evaluate
4616 // PHIs, so we cannot handle PHIs inside of loops.
4617 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004618 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004619
4620 // If we won't be able to constant fold this expression even if the operands
4621 // are constants, return early.
4622 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004623
Chris Lattner3221ad02004-04-17 22:58:41 +00004624 // Otherwise, we can evaluate this instruction if all of its operands are
4625 // constant or derived from a PHI node themselves.
4626 PHINode *PHI = 0;
4627 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004628 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004629 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4630 if (P == 0) return 0; // Not evolving from PHI
4631 if (PHI == 0)
4632 PHI = P;
4633 else if (PHI != P)
4634 return 0; // Evolving from multiple different PHIs.
4635 }
4636
4637 // This is a expression evolving from a constant PHI!
4638 return PHI;
4639}
4640
4641/// EvaluateExpression - Given an expression that passes the
4642/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4643/// in the loop has the value PHIVal. If we can't fold this expression for some
4644/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004645static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4646 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004647 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004648 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004649 Instruction *I = cast<Instruction>(V);
4650
Dan Gohman9d4588f2010-06-22 13:15:46 +00004651 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004652
4653 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004654 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004655 if (Operands[i] == 0) return 0;
4656 }
4657
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004658 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004659 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004660 Operands[1], TD);
Jay Foad1d2f5692011-07-19 13:32:40 +00004661 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004662}
4663
4664/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4665/// in the header of its containing loop, we know the loop executes a
4666/// constant number of times, and the PHI node is just a recurrence
4667/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004668Constant *
4669ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004670 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004671 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004672 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004673 ConstantEvolutionLoopExitValue.find(PN);
4674 if (I != ConstantEvolutionLoopExitValue.end())
4675 return I->second;
4676
Dan Gohmane0567812010-04-08 23:03:40 +00004677 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004678 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4679
4680 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4681
4682 // Since the loop is canonicalized, the PHI node must have two entries. One
4683 // entry must be a constant (coming in from outside of the loop), and the
4684 // second must be derived from the same PHI.
4685 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4686 Constant *StartCST =
4687 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4688 if (StartCST == 0)
4689 return RetVal = 0; // Must be a constant.
4690
4691 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004692 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4693 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004694 return RetVal = 0; // Not derived from same PHI.
4695
4696 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004697 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004698 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004699
Dan Gohman46bdfb02009-02-24 18:55:53 +00004700 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004701 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004702 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4703 if (IterationNum == NumIterations)
4704 return RetVal = PHIVal; // Got exit value!
4705
4706 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004707 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004708 if (NextPHI == PHIVal)
4709 return RetVal = NextPHI; // Stopped evolving!
4710 if (NextPHI == 0)
4711 return 0; // Couldn't evaluate!
4712 PHIVal = NextPHI;
4713 }
4714}
4715
Andrew Trick5116ff62011-07-26 17:19:55 +00004716/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004717/// constant number of times (the condition evolves only from constants),
4718/// try to evaluate a few iterations of the loop until we get the exit
4719/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004720/// evaluate the trip count of the loop, return getCouldNotCompute().
Andrew Trick5116ff62011-07-26 17:19:55 +00004721const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4722 Value *Cond,
4723 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004724 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004725 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004726
Dan Gohmanb92654d2010-06-19 14:17:24 +00004727 // If the loop is canonicalized, the PHI will have exactly two entries.
4728 // That's the only form we support here.
4729 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4730
4731 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004732 // second must be derived from the same PHI.
4733 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4734 Constant *StartCST =
4735 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004736 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004737
4738 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004739 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4740 !isa<Constant>(BEValue))
4741 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004742
4743 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4744 // the loop symbolically to determine when the condition gets a value of
4745 // "ExitWhen".
4746 unsigned IterationNum = 0;
4747 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4748 for (Constant *PHIVal = StartCST;
4749 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004750 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004751 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004752
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004753 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004754 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004755
Reid Spencere8019bb2007-03-01 07:25:48 +00004756 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004757 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004758 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004759 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004760
Chris Lattner3221ad02004-04-17 22:58:41 +00004761 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004762 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004763 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004764 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004765 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004766 }
4767
4768 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004769 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004770}
4771
Dan Gohmane7125f42009-09-03 15:00:26 +00004772/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004773/// at the specified scope in the program. The L value specifies a loop
4774/// nest to evaluate the expression at, where null is the top-level or a
4775/// specified loop is immediately inside of the loop.
4776///
4777/// This method can be used to compute the exit value for a variable defined
4778/// in a loop by querying what the value will hold in the parent loop.
4779///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004780/// In the case that a relevant loop exit value cannot be computed, the
4781/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004782const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004783 // Check to see if we've folded this expression at this loop before.
4784 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4785 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4786 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4787 if (!Pair.second)
4788 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004789
Dan Gohman42214892009-08-31 21:15:23 +00004790 // Otherwise compute it.
4791 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004792 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004793 return C;
4794}
4795
4796const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004797 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004798
Nick Lewycky3e630762008-02-20 06:48:22 +00004799 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004800 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004801 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004802 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004803 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004804 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4805 if (PHINode *PN = dyn_cast<PHINode>(I))
4806 if (PN->getParent() == LI->getHeader()) {
4807 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004808 // to see if the loop that contains it has a known backedge-taken
4809 // count. If so, we may be able to force computation of the exit
4810 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004811 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004812 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004813 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004814 // Okay, we know how many times the containing loop executes. If
4815 // this is a constant evolving PHI node, get the final value at
4816 // the specified iteration number.
4817 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004818 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004819 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004820 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004821 }
4822 }
4823
Reid Spencer09906f32006-12-04 21:33:23 +00004824 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004825 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004826 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004827 // result. This is particularly useful for computing loop exit values.
4828 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004829 SmallVector<Constant *, 4> Operands;
4830 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004831 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4832 Value *Op = I->getOperand(i);
4833 if (Constant *C = dyn_cast<Constant>(Op)) {
4834 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004835 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004836 }
Dan Gohman11046452010-06-29 23:43:06 +00004837
4838 // If any of the operands is non-constant and if they are
4839 // non-integer and non-pointer, don't even try to analyze them
4840 // with scev techniques.
4841 if (!isSCEVable(Op->getType()))
4842 return V;
4843
4844 const SCEV *OrigV = getSCEV(Op);
4845 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4846 MadeImprovement |= OrigV != OpV;
4847
4848 Constant *C = 0;
4849 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4850 C = SC->getValue();
4851 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4852 C = dyn_cast<Constant>(SU->getValue());
4853 if (!C) return V;
4854 if (C->getType() != Op->getType())
4855 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4856 Op->getType(),
4857 false),
4858 C, Op->getType());
4859 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004860 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004861
Dan Gohman11046452010-06-29 23:43:06 +00004862 // Check to see if getSCEVAtScope actually made an improvement.
4863 if (MadeImprovement) {
4864 Constant *C = 0;
4865 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4866 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4867 Operands[0], Operands[1], TD);
4868 else
4869 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Jay Foad1d2f5692011-07-19 13:32:40 +00004870 Operands, TD);
Dan Gohman11046452010-06-29 23:43:06 +00004871 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004872 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004873 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004874 }
4875 }
4876
4877 // This is some other type of SCEVUnknown, just return it.
4878 return V;
4879 }
4880
Dan Gohman622ed672009-05-04 22:02:23 +00004881 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004882 // Avoid performing the look-up in the common case where the specified
4883 // expression has no loop-variant portions.
4884 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004885 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004886 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004887 // Okay, at least one of these operands is loop variant but might be
4888 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004889 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4890 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004891 NewOps.push_back(OpAtScope);
4892
4893 for (++i; i != e; ++i) {
4894 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004895 NewOps.push_back(OpAtScope);
4896 }
4897 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004898 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004899 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004900 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004901 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004902 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004903 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004904 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004905 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004906 }
4907 }
4908 // If we got here, all operands are loop invariant.
4909 return Comm;
4910 }
4911
Dan Gohman622ed672009-05-04 22:02:23 +00004912 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004913 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4914 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004915 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4916 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004917 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004918 }
4919
4920 // If this is a loop recurrence for a loop that does not contain L, then we
4921 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004922 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004923 // First, attempt to evaluate each operand.
4924 // Avoid performing the look-up in the common case where the specified
4925 // expression has no loop-variant portions.
4926 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4927 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4928 if (OpAtScope == AddRec->getOperand(i))
4929 continue;
4930
4931 // Okay, at least one of these operands is loop variant but might be
4932 // foldable. Build a new instance of the folded commutative expression.
4933 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4934 AddRec->op_begin()+i);
4935 NewOps.push_back(OpAtScope);
4936 for (++i; i != e; ++i)
4937 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4938
Andrew Trick3f95c882011-04-27 01:21:25 +00004939 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00004940 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00004941 AddRec->getNoWrapFlags(SCEV::FlagNW));
4942 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00004943 // The addrec may be folded to a nonrecurrence, for example, if the
4944 // induction variable is multiplied by zero after constant folding. Go
4945 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00004946 if (!AddRec)
4947 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00004948 break;
4949 }
4950
4951 // If the scope is outside the addrec's loop, evaluate it by using the
4952 // loop exit value of the addrec.
4953 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004954 // To evaluate this recurrence, we need to know how many times the AddRec
4955 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004956 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004957 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004958
Eli Friedmanb42a6262008-08-04 23:49:06 +00004959 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004960 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004961 }
Dan Gohman11046452010-06-29 23:43:06 +00004962
Dan Gohmand594e6f2009-05-24 23:25:42 +00004963 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004964 }
4965
Dan Gohman622ed672009-05-04 22:02:23 +00004966 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004967 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004968 if (Op == Cast->getOperand())
4969 return Cast; // must be loop invariant
4970 return getZeroExtendExpr(Op, Cast->getType());
4971 }
4972
Dan Gohman622ed672009-05-04 22:02:23 +00004973 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004974 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004975 if (Op == Cast->getOperand())
4976 return Cast; // must be loop invariant
4977 return getSignExtendExpr(Op, Cast->getType());
4978 }
4979
Dan Gohman622ed672009-05-04 22:02:23 +00004980 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004981 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004982 if (Op == Cast->getOperand())
4983 return Cast; // must be loop invariant
4984 return getTruncateExpr(Op, Cast->getType());
4985 }
4986
Torok Edwinc23197a2009-07-14 16:55:14 +00004987 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004988 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004989}
4990
Dan Gohman66a7e852009-05-08 20:38:54 +00004991/// getSCEVAtScope - This is a convenience function which does
4992/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004993const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004994 return getSCEVAtScope(getSCEV(V), L);
4995}
4996
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004997/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4998/// following equation:
4999///
5000/// A * X = B (mod N)
5001///
5002/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5003/// A and B isn't important.
5004///
5005/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005006static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005007 ScalarEvolution &SE) {
5008 uint32_t BW = A.getBitWidth();
5009 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5010 assert(A != 0 && "A must be non-zero.");
5011
5012 // 1. D = gcd(A, N)
5013 //
5014 // The gcd of A and N may have only one prime factor: 2. The number of
5015 // trailing zeros in A is its multiplicity
5016 uint32_t Mult2 = A.countTrailingZeros();
5017 // D = 2^Mult2
5018
5019 // 2. Check if B is divisible by D.
5020 //
5021 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5022 // is not less than multiplicity of this prime factor for D.
5023 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005024 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005025
5026 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5027 // modulo (N / D).
5028 //
5029 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5030 // bit width during computations.
5031 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5032 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005033 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005034 APInt I = AD.multiplicativeInverse(Mod);
5035
5036 // 4. Compute the minimum unsigned root of the equation:
5037 // I * (B / D) mod (N / D)
5038 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5039
5040 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5041 // bits.
5042 return SE.getConstant(Result.trunc(BW));
5043}
Chris Lattner53e677a2004-04-02 20:23:17 +00005044
5045/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5046/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5047/// might be the same) or two SCEVCouldNotCompute objects.
5048///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005049static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005050SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005051 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005052 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5053 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5054 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005055
Chris Lattner53e677a2004-04-02 20:23:17 +00005056 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005057 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005058 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005059 return std::make_pair(CNC, CNC);
5060 }
5061
Reid Spencere8019bb2007-03-01 07:25:48 +00005062 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005063 const APInt &L = LC->getValue()->getValue();
5064 const APInt &M = MC->getValue()->getValue();
5065 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005066 APInt Two(BitWidth, 2);
5067 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005068
Dan Gohman64a845e2009-06-24 04:48:43 +00005069 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005070 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005071 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005072 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5073 // The B coefficient is M-N/2
5074 APInt B(M);
5075 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005076
Reid Spencere8019bb2007-03-01 07:25:48 +00005077 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005078 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005079
Reid Spencere8019bb2007-03-01 07:25:48 +00005080 // Compute the B^2-4ac term.
5081 APInt SqrtTerm(B);
5082 SqrtTerm *= B;
5083 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005084
Reid Spencere8019bb2007-03-01 07:25:48 +00005085 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5086 // integer value or else APInt::sqrt() will assert.
5087 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005088
Dan Gohman64a845e2009-06-24 04:48:43 +00005089 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005090 // The divisions must be performed as signed divisions.
5091 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00005092 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005093 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005094 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005095 return std::make_pair(CNC, CNC);
5096 }
5097
Owen Andersone922c022009-07-22 00:24:57 +00005098 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005099
5100 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005101 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005102 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005103 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005104
Dan Gohman64a845e2009-06-24 04:48:43 +00005105 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005106 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00005107 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005108}
5109
5110/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005111/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005112///
5113/// This is only used for loops with a "x != y" exit test. The exit condition is
5114/// now expressed as a single expression, V = x-y. So the exit test is
5115/// effectively V != 0. We know and take advantage of the fact that this
5116/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005117ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005118ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005119 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005120 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005121 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005122 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005123 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005124 }
5125
Dan Gohman35738ac2009-05-04 22:30:44 +00005126 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005127 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005128 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005129
Chris Lattner7975e3e2011-01-09 22:39:48 +00005130 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5131 // the quadratic equation to solve it.
5132 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5133 std::pair<const SCEV *,const SCEV *> Roots =
5134 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005135 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5136 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005137 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005138#if 0
David Greene25e0e872009-12-23 22:18:14 +00005139 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005140 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005141#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005142 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005143 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005144 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5145 R1->getValue(),
5146 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005147 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005148 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005149
Chris Lattner53e677a2004-04-02 20:23:17 +00005150 // We can only use this value if the chrec ends up with an exact zero
5151 // value at this index. When solving for "X*X != 5", for example, we
5152 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005153 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005154 if (Val->isZero())
5155 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005156 }
5157 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005158 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005159 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005160
Chris Lattner7975e3e2011-01-09 22:39:48 +00005161 // Otherwise we can only handle this if it is affine.
5162 if (!AddRec->isAffine())
5163 return getCouldNotCompute();
5164
5165 // If this is an affine expression, the execution count of this branch is
5166 // the minimum unsigned root of the following equation:
5167 //
5168 // Start + Step*N = 0 (mod 2^BW)
5169 //
5170 // equivalent to:
5171 //
5172 // Step*N = -Start (mod 2^BW)
5173 //
5174 // where BW is the common bit width of Start and Step.
5175
5176 // Get the initial value for the loop.
5177 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5178 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5179
5180 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005181 //
5182 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5183 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5184 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5185 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005186 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5187 if (StepC == 0)
5188 return getCouldNotCompute();
5189
Andrew Trick3228cc22011-03-14 16:50:06 +00005190 // For positive steps (counting up until unsigned overflow):
5191 // N = -Start/Step (as unsigned)
5192 // For negative steps (counting down to zero):
5193 // N = Start/-Step
5194 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005195 bool CountDown = StepC->getValue()->getValue().isNegative();
5196 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005197
5198 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005199 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5200 // N = Distance (as unsigned)
Nick Lewyckyb2840fd2011-09-06 02:43:13 +00005201 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5202 return Distance;
Andrew Trick635f7182011-03-09 17:23:39 +00005203
Andrew Trickdcfd4042011-03-14 17:28:02 +00005204 // If the recurrence is known not to wraparound, unsigned divide computes the
5205 // back edge count. We know that the value will either become zero (and thus
5206 // the loop terminates), that the loop will terminate through some other exit
5207 // condition first, or that the loop has undefined behavior. This means
5208 // we can't "miss" the exit value, even with nonunit stride.
5209 //
5210 // FIXME: Prove that loops always exhibits *acceptable* undefined
5211 // behavior. Loops must exhibit defined behavior until a wrapped value is
5212 // actually used. So the trip count computed by udiv could be smaller than the
5213 // number of well-defined iterations.
5214 if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5215 // FIXME: We really want an "isexact" bit for udiv.
5216 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005217
5218 // Then, try to solve the above equation provided that Start is constant.
5219 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5220 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5221 -StartC->getValue()->getValue(),
5222 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005223 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005224}
5225
5226/// HowFarToNonZero - Return the number of times a backedge checking the
5227/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005228/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005229ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005230ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005231 // Loops that look like: while (X == 0) are very strange indeed. We don't
5232 // handle them yet except for the trivial case. This could be expanded in the
5233 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005234
Chris Lattner53e677a2004-04-02 20:23:17 +00005235 // If the value is a constant, check to see if it is known to be non-zero
5236 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005237 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005238 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005239 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005240 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005241 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005242
Chris Lattner53e677a2004-04-02 20:23:17 +00005243 // We could implement others, but I really doubt anyone writes loops like
5244 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005245 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005246}
5247
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005248/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5249/// (which may not be an immediate predecessor) which has exactly one
5250/// successor from which BB is reachable, or null if no such block is
5251/// found.
5252///
Dan Gohman005752b2010-04-15 16:19:08 +00005253std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005254ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005255 // If the block has a unique predecessor, then there is no path from the
5256 // predecessor to the block that does not go through the direct edge
5257 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005258 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005259 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005260
5261 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005262 // If the header has a unique predecessor outside the loop, it must be
5263 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005264 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005265 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005266
Dan Gohman005752b2010-04-15 16:19:08 +00005267 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005268}
5269
Dan Gohman763bad12009-06-20 00:35:32 +00005270/// HasSameValue - SCEV structural equivalence is usually sufficient for
5271/// testing whether two expressions are equal, however for the purposes of
5272/// looking for a condition guarding a loop, it can be useful to be a little
5273/// more general, since a front-end may have replicated the controlling
5274/// expression.
5275///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005276static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005277 // Quick check to see if they are the same SCEV.
5278 if (A == B) return true;
5279
5280 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5281 // two different instructions with the same value. Check for this case.
5282 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5283 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5284 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5285 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005286 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005287 return true;
5288
5289 // Otherwise assume they may have a different value.
5290 return false;
5291}
5292
Dan Gohmane9796502010-04-24 01:28:42 +00005293/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5294/// predicate Pred. Return true iff any changes were made.
5295///
5296bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5297 const SCEV *&LHS, const SCEV *&RHS) {
5298 bool Changed = false;
5299
5300 // Canonicalize a constant to the right side.
5301 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5302 // Check for both operands constant.
5303 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5304 if (ConstantExpr::getICmp(Pred,
5305 LHSC->getValue(),
5306 RHSC->getValue())->isNullValue())
5307 goto trivially_false;
5308 else
5309 goto trivially_true;
5310 }
5311 // Otherwise swap the operands to put the constant on the right.
5312 std::swap(LHS, RHS);
5313 Pred = ICmpInst::getSwappedPredicate(Pred);
5314 Changed = true;
5315 }
5316
5317 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005318 // addrec's loop, put the addrec on the left. Also make a dominance check,
5319 // as both operands could be addrecs loop-invariant in each other's loop.
5320 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5321 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005322 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005323 std::swap(LHS, RHS);
5324 Pred = ICmpInst::getSwappedPredicate(Pred);
5325 Changed = true;
5326 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005327 }
Dan Gohmane9796502010-04-24 01:28:42 +00005328
5329 // If there's a constant operand, canonicalize comparisons with boundary
5330 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5331 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5332 const APInt &RA = RC->getValue()->getValue();
5333 switch (Pred) {
5334 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5335 case ICmpInst::ICMP_EQ:
5336 case ICmpInst::ICMP_NE:
5337 break;
5338 case ICmpInst::ICMP_UGE:
5339 if ((RA - 1).isMinValue()) {
5340 Pred = ICmpInst::ICMP_NE;
5341 RHS = getConstant(RA - 1);
5342 Changed = true;
5343 break;
5344 }
5345 if (RA.isMaxValue()) {
5346 Pred = ICmpInst::ICMP_EQ;
5347 Changed = true;
5348 break;
5349 }
5350 if (RA.isMinValue()) goto trivially_true;
5351
5352 Pred = ICmpInst::ICMP_UGT;
5353 RHS = getConstant(RA - 1);
5354 Changed = true;
5355 break;
5356 case ICmpInst::ICMP_ULE:
5357 if ((RA + 1).isMaxValue()) {
5358 Pred = ICmpInst::ICMP_NE;
5359 RHS = getConstant(RA + 1);
5360 Changed = true;
5361 break;
5362 }
5363 if (RA.isMinValue()) {
5364 Pred = ICmpInst::ICMP_EQ;
5365 Changed = true;
5366 break;
5367 }
5368 if (RA.isMaxValue()) goto trivially_true;
5369
5370 Pred = ICmpInst::ICMP_ULT;
5371 RHS = getConstant(RA + 1);
5372 Changed = true;
5373 break;
5374 case ICmpInst::ICMP_SGE:
5375 if ((RA - 1).isMinSignedValue()) {
5376 Pred = ICmpInst::ICMP_NE;
5377 RHS = getConstant(RA - 1);
5378 Changed = true;
5379 break;
5380 }
5381 if (RA.isMaxSignedValue()) {
5382 Pred = ICmpInst::ICMP_EQ;
5383 Changed = true;
5384 break;
5385 }
5386 if (RA.isMinSignedValue()) goto trivially_true;
5387
5388 Pred = ICmpInst::ICMP_SGT;
5389 RHS = getConstant(RA - 1);
5390 Changed = true;
5391 break;
5392 case ICmpInst::ICMP_SLE:
5393 if ((RA + 1).isMaxSignedValue()) {
5394 Pred = ICmpInst::ICMP_NE;
5395 RHS = getConstant(RA + 1);
5396 Changed = true;
5397 break;
5398 }
5399 if (RA.isMinSignedValue()) {
5400 Pred = ICmpInst::ICMP_EQ;
5401 Changed = true;
5402 break;
5403 }
5404 if (RA.isMaxSignedValue()) goto trivially_true;
5405
5406 Pred = ICmpInst::ICMP_SLT;
5407 RHS = getConstant(RA + 1);
5408 Changed = true;
5409 break;
5410 case ICmpInst::ICMP_UGT:
5411 if (RA.isMinValue()) {
5412 Pred = ICmpInst::ICMP_NE;
5413 Changed = true;
5414 break;
5415 }
5416 if ((RA + 1).isMaxValue()) {
5417 Pred = ICmpInst::ICMP_EQ;
5418 RHS = getConstant(RA + 1);
5419 Changed = true;
5420 break;
5421 }
5422 if (RA.isMaxValue()) goto trivially_false;
5423 break;
5424 case ICmpInst::ICMP_ULT:
5425 if (RA.isMaxValue()) {
5426 Pred = ICmpInst::ICMP_NE;
5427 Changed = true;
5428 break;
5429 }
5430 if ((RA - 1).isMinValue()) {
5431 Pred = ICmpInst::ICMP_EQ;
5432 RHS = getConstant(RA - 1);
5433 Changed = true;
5434 break;
5435 }
5436 if (RA.isMinValue()) goto trivially_false;
5437 break;
5438 case ICmpInst::ICMP_SGT:
5439 if (RA.isMinSignedValue()) {
5440 Pred = ICmpInst::ICMP_NE;
5441 Changed = true;
5442 break;
5443 }
5444 if ((RA + 1).isMaxSignedValue()) {
5445 Pred = ICmpInst::ICMP_EQ;
5446 RHS = getConstant(RA + 1);
5447 Changed = true;
5448 break;
5449 }
5450 if (RA.isMaxSignedValue()) goto trivially_false;
5451 break;
5452 case ICmpInst::ICMP_SLT:
5453 if (RA.isMaxSignedValue()) {
5454 Pred = ICmpInst::ICMP_NE;
5455 Changed = true;
5456 break;
5457 }
5458 if ((RA - 1).isMinSignedValue()) {
5459 Pred = ICmpInst::ICMP_EQ;
5460 RHS = getConstant(RA - 1);
5461 Changed = true;
5462 break;
5463 }
5464 if (RA.isMinSignedValue()) goto trivially_false;
5465 break;
5466 }
5467 }
5468
5469 // Check for obvious equality.
5470 if (HasSameValue(LHS, RHS)) {
5471 if (ICmpInst::isTrueWhenEqual(Pred))
5472 goto trivially_true;
5473 if (ICmpInst::isFalseWhenEqual(Pred))
5474 goto trivially_false;
5475 }
5476
Dan Gohman03557dc2010-05-03 16:35:17 +00005477 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5478 // adding or subtracting 1 from one of the operands.
5479 switch (Pred) {
5480 case ICmpInst::ICMP_SLE:
5481 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5482 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005483 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005484 Pred = ICmpInst::ICMP_SLT;
5485 Changed = true;
5486 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005487 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005488 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005489 Pred = ICmpInst::ICMP_SLT;
5490 Changed = true;
5491 }
5492 break;
5493 case ICmpInst::ICMP_SGE:
5494 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005495 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005496 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005497 Pred = ICmpInst::ICMP_SGT;
5498 Changed = true;
5499 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5500 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005501 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005502 Pred = ICmpInst::ICMP_SGT;
5503 Changed = true;
5504 }
5505 break;
5506 case ICmpInst::ICMP_ULE:
5507 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005508 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005509 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005510 Pred = ICmpInst::ICMP_ULT;
5511 Changed = true;
5512 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005513 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005514 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005515 Pred = ICmpInst::ICMP_ULT;
5516 Changed = true;
5517 }
5518 break;
5519 case ICmpInst::ICMP_UGE:
5520 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005521 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005522 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005523 Pred = ICmpInst::ICMP_UGT;
5524 Changed = true;
5525 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005526 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005527 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005528 Pred = ICmpInst::ICMP_UGT;
5529 Changed = true;
5530 }
5531 break;
5532 default:
5533 break;
5534 }
5535
Dan Gohmane9796502010-04-24 01:28:42 +00005536 // TODO: More simplifications are possible here.
5537
5538 return Changed;
5539
5540trivially_true:
5541 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005542 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005543 Pred = ICmpInst::ICMP_EQ;
5544 return true;
5545
5546trivially_false:
5547 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005548 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005549 Pred = ICmpInst::ICMP_NE;
5550 return true;
5551}
5552
Dan Gohman85b05a22009-07-13 21:35:55 +00005553bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5554 return getSignedRange(S).getSignedMax().isNegative();
5555}
5556
5557bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5558 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5559}
5560
5561bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5562 return !getSignedRange(S).getSignedMin().isNegative();
5563}
5564
5565bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5566 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5567}
5568
5569bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5570 return isKnownNegative(S) || isKnownPositive(S);
5571}
5572
5573bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5574 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005575 // Canonicalize the inputs first.
5576 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5577
Dan Gohman53c66ea2010-04-11 22:16:48 +00005578 // If LHS or RHS is an addrec, check to see if the condition is true in
5579 // every iteration of the loop.
5580 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5581 if (isLoopEntryGuardedByCond(
5582 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5583 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005584 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005585 return true;
5586 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5587 if (isLoopEntryGuardedByCond(
5588 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5589 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005590 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005591 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005592
Dan Gohman53c66ea2010-04-11 22:16:48 +00005593 // Otherwise see what can be done with known constant ranges.
5594 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5595}
5596
5597bool
5598ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5599 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005600 if (HasSameValue(LHS, RHS))
5601 return ICmpInst::isTrueWhenEqual(Pred);
5602
Dan Gohman53c66ea2010-04-11 22:16:48 +00005603 // This code is split out from isKnownPredicate because it is called from
5604 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005605 switch (Pred) {
5606 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005607 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005608 break;
5609 case ICmpInst::ICMP_SGT:
5610 Pred = ICmpInst::ICMP_SLT;
5611 std::swap(LHS, RHS);
5612 case ICmpInst::ICMP_SLT: {
5613 ConstantRange LHSRange = getSignedRange(LHS);
5614 ConstantRange RHSRange = getSignedRange(RHS);
5615 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5616 return true;
5617 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5618 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005619 break;
5620 }
5621 case ICmpInst::ICMP_SGE:
5622 Pred = ICmpInst::ICMP_SLE;
5623 std::swap(LHS, RHS);
5624 case ICmpInst::ICMP_SLE: {
5625 ConstantRange LHSRange = getSignedRange(LHS);
5626 ConstantRange RHSRange = getSignedRange(RHS);
5627 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5628 return true;
5629 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5630 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005631 break;
5632 }
5633 case ICmpInst::ICMP_UGT:
5634 Pred = ICmpInst::ICMP_ULT;
5635 std::swap(LHS, RHS);
5636 case ICmpInst::ICMP_ULT: {
5637 ConstantRange LHSRange = getUnsignedRange(LHS);
5638 ConstantRange RHSRange = getUnsignedRange(RHS);
5639 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5640 return true;
5641 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5642 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005643 break;
5644 }
5645 case ICmpInst::ICMP_UGE:
5646 Pred = ICmpInst::ICMP_ULE;
5647 std::swap(LHS, RHS);
5648 case ICmpInst::ICMP_ULE: {
5649 ConstantRange LHSRange = getUnsignedRange(LHS);
5650 ConstantRange RHSRange = getUnsignedRange(RHS);
5651 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5652 return true;
5653 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5654 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005655 break;
5656 }
5657 case ICmpInst::ICMP_NE: {
5658 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5659 return true;
5660 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5661 return true;
5662
5663 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5664 if (isKnownNonZero(Diff))
5665 return true;
5666 break;
5667 }
5668 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005669 // The check at the top of the function catches the case where
5670 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005671 break;
5672 }
5673 return false;
5674}
5675
5676/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5677/// protected by a conditional between LHS and RHS. This is used to
5678/// to eliminate casts.
5679bool
5680ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5681 ICmpInst::Predicate Pred,
5682 const SCEV *LHS, const SCEV *RHS) {
5683 // Interpret a null as meaning no loop, where there is obviously no guard
5684 // (interprocedural conditions notwithstanding).
5685 if (!L) return true;
5686
5687 BasicBlock *Latch = L->getLoopLatch();
5688 if (!Latch)
5689 return false;
5690
5691 BranchInst *LoopContinuePredicate =
5692 dyn_cast<BranchInst>(Latch->getTerminator());
5693 if (!LoopContinuePredicate ||
5694 LoopContinuePredicate->isUnconditional())
5695 return false;
5696
Dan Gohmanaf08a362010-08-10 23:46:30 +00005697 return isImpliedCond(Pred, LHS, RHS,
5698 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005699 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005700}
5701
Dan Gohman3948d0b2010-04-11 19:27:13 +00005702/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005703/// by a conditional between LHS and RHS. This is used to help avoid max
5704/// expressions in loop trip counts, and to eliminate casts.
5705bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005706ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5707 ICmpInst::Predicate Pred,
5708 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005709 // Interpret a null as meaning no loop, where there is obviously no guard
5710 // (interprocedural conditions notwithstanding).
5711 if (!L) return false;
5712
Dan Gohman859b4822009-05-18 15:36:09 +00005713 // Starting at the loop predecessor, climb up the predecessor chain, as long
5714 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005715 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005716 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005717 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005718 Pair.first;
5719 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005720
5721 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005722 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005723 if (!LoopEntryPredicate ||
5724 LoopEntryPredicate->isUnconditional())
5725 continue;
5726
Dan Gohmanaf08a362010-08-10 23:46:30 +00005727 if (isImpliedCond(Pred, LHS, RHS,
5728 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005729 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005730 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005731 }
5732
Dan Gohman38372182008-08-12 20:17:31 +00005733 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005734}
5735
Dan Gohman0f4b2852009-07-21 23:03:19 +00005736/// isImpliedCond - Test whether the condition described by Pred, LHS,
5737/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005738bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005739 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005740 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005741 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005742 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005743 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005744 if (BO->getOpcode() == Instruction::And) {
5745 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005746 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5747 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005748 } else if (BO->getOpcode() == Instruction::Or) {
5749 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005750 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5751 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005752 }
5753 }
5754
Dan Gohmanaf08a362010-08-10 23:46:30 +00005755 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005756 if (!ICI) return false;
5757
Dan Gohman85b05a22009-07-13 21:35:55 +00005758 // Bail if the ICmp's operands' types are wider than the needed type
5759 // before attempting to call getSCEV on them. This avoids infinite
5760 // recursion, since the analysis of widening casts can require loop
5761 // exit condition information for overflow checking, which would
5762 // lead back here.
5763 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005764 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005765 return false;
5766
Dan Gohman0f4b2852009-07-21 23:03:19 +00005767 // Now that we found a conditional branch that dominates the loop, check to
5768 // see if it is the comparison we are looking for.
5769 ICmpInst::Predicate FoundPred;
5770 if (Inverse)
5771 FoundPred = ICI->getInversePredicate();
5772 else
5773 FoundPred = ICI->getPredicate();
5774
5775 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5776 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005777
5778 // Balance the types. The case where FoundLHS' type is wider than
5779 // LHS' type is checked for above.
5780 if (getTypeSizeInBits(LHS->getType()) >
5781 getTypeSizeInBits(FoundLHS->getType())) {
5782 if (CmpInst::isSigned(Pred)) {
5783 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5784 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5785 } else {
5786 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5787 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5788 }
5789 }
5790
Dan Gohman0f4b2852009-07-21 23:03:19 +00005791 // Canonicalize the query to match the way instcombine will have
5792 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005793 if (SimplifyICmpOperands(Pred, LHS, RHS))
5794 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005795 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005796 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5797 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005798 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005799
5800 // Check to see if we can make the LHS or RHS match.
5801 if (LHS == FoundRHS || RHS == FoundLHS) {
5802 if (isa<SCEVConstant>(RHS)) {
5803 std::swap(FoundLHS, FoundRHS);
5804 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5805 } else {
5806 std::swap(LHS, RHS);
5807 Pred = ICmpInst::getSwappedPredicate(Pred);
5808 }
5809 }
5810
5811 // Check whether the found predicate is the same as the desired predicate.
5812 if (FoundPred == Pred)
5813 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5814
5815 // Check whether swapping the found predicate makes it the same as the
5816 // desired predicate.
5817 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5818 if (isa<SCEVConstant>(RHS))
5819 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5820 else
5821 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5822 RHS, LHS, FoundLHS, FoundRHS);
5823 }
5824
5825 // Check whether the actual condition is beyond sufficient.
5826 if (FoundPred == ICmpInst::ICMP_EQ)
5827 if (ICmpInst::isTrueWhenEqual(Pred))
5828 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5829 return true;
5830 if (Pred == ICmpInst::ICMP_NE)
5831 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5832 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5833 return true;
5834
5835 // Otherwise assume the worst.
5836 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005837}
5838
Dan Gohman0f4b2852009-07-21 23:03:19 +00005839/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005840/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005841/// and FoundRHS is true.
5842bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5843 const SCEV *LHS, const SCEV *RHS,
5844 const SCEV *FoundLHS,
5845 const SCEV *FoundRHS) {
5846 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5847 FoundLHS, FoundRHS) ||
5848 // ~x < ~y --> x > y
5849 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5850 getNotSCEV(FoundRHS),
5851 getNotSCEV(FoundLHS));
5852}
5853
5854/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005855/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005856/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005857bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005858ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5859 const SCEV *LHS, const SCEV *RHS,
5860 const SCEV *FoundLHS,
5861 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005862 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005863 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5864 case ICmpInst::ICMP_EQ:
5865 case ICmpInst::ICMP_NE:
5866 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5867 return true;
5868 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005869 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005870 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005871 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5872 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005873 return true;
5874 break;
5875 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005876 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005877 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5878 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005879 return true;
5880 break;
5881 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005882 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005883 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5884 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005885 return true;
5886 break;
5887 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005888 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005889 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5890 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005891 return true;
5892 break;
5893 }
5894
5895 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005896}
5897
Dan Gohman51f53b72009-06-21 23:46:38 +00005898/// getBECount - Subtract the end and start values and divide by the step,
5899/// rounding up, to get the number of times the backedge is executed. Return
5900/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005901const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005902 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005903 const SCEV *Step,
5904 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005905 assert(!isKnownNegative(Step) &&
5906 "This code doesn't handle negative strides yet!");
5907
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005908 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00005909
5910 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5911 // here because SCEV may not be able to determine that the unsigned division
5912 // after rounding is zero.
5913 if (Start == End)
5914 return getConstant(Ty, 0);
5915
Dan Gohmandeff6212010-05-03 22:09:21 +00005916 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005917 const SCEV *Diff = getMinusSCEV(End, Start);
5918 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005919
5920 // Add an adjustment to the difference between End and Start so that
5921 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005922 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005923
Dan Gohman1f96e672009-09-17 18:05:20 +00005924 if (!NoWrap) {
5925 // Check Add for unsigned overflow.
5926 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005927 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00005928 getTypeSizeInBits(Ty) + 1);
5929 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5930 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5931 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5932 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5933 return getCouldNotCompute();
5934 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005935
5936 return getUDivExpr(Add, Step);
5937}
5938
Chris Lattnerdb25de42005-08-15 23:33:51 +00005939/// HowManyLessThans - Return the number of times a backedge containing the
5940/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005941/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00005942ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00005943ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5944 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005945 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005946 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005947
Dan Gohman35738ac2009-05-04 22:30:44 +00005948 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005949 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005950 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005951
Dan Gohman1f96e672009-09-17 18:05:20 +00005952 // Check to see if we have a flag which makes analysis easy.
Andrew Trick3228cc22011-03-14 16:50:06 +00005953 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5954 AddRec->getNoWrapFlags(SCEV::FlagNUW);
Dan Gohman1f96e672009-09-17 18:05:20 +00005955
Chris Lattnerdb25de42005-08-15 23:33:51 +00005956 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005957 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005958 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005959
Dan Gohman52fddd32010-01-26 04:40:18 +00005960 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005961 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005962 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005963 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005964 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005965 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005966 // value and past the maximum value for its type in a single step.
5967 // Note that it's not sufficient to check NoWrap here, because even
5968 // though the value after a wrap is undefined, it's not undefined
5969 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005970 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005971 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005972 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005973 if (isSigned) {
5974 APInt Max = APInt::getSignedMaxValue(BitWidth);
5975 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5976 .slt(getSignedRange(RHS).getSignedMax()))
5977 return getCouldNotCompute();
5978 } else {
5979 APInt Max = APInt::getMaxValue(BitWidth);
5980 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5981 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5982 return getCouldNotCompute();
5983 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005984 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005985 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005986 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005987
Dan Gohmana1af7572009-04-30 20:47:05 +00005988 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5989 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5990 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005991 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005992
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005993 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005994 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005995
Dan Gohmana1af7572009-04-30 20:47:05 +00005996 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005997 const SCEV *MinStart = getConstant(isSigned ?
5998 getSignedRange(Start).getSignedMin() :
5999 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006000
Dan Gohmana1af7572009-04-30 20:47:05 +00006001 // If we know that the condition is true in order to enter the loop,
6002 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006003 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6004 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006005 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006006 if (!isLoopEntryGuardedByCond(L,
6007 isSigned ? ICmpInst::ICMP_SLT :
6008 ICmpInst::ICMP_ULT,
6009 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006010 End = isSigned ? getSMaxExpr(RHS, Start)
6011 : getUMaxExpr(RHS, Start);
6012
6013 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006014 const SCEV *MaxEnd = getConstant(isSigned ?
6015 getSignedRange(End).getSignedMax() :
6016 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006017
Dan Gohman52fddd32010-01-26 04:40:18 +00006018 // If MaxEnd is within a step of the maximum integer value in its type,
6019 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006020 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006021 // compute the correct value.
6022 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006023 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006024 MaxEnd = isSigned ?
6025 getSMinExpr(MaxEnd,
6026 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6027 StepMinusOne)) :
6028 getUMinExpr(MaxEnd,
6029 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6030 StepMinusOne));
6031
Dan Gohmana1af7572009-04-30 20:47:05 +00006032 // Finally, we subtract these two values and divide, rounding up, to get
6033 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006034 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006035
6036 // The maximum backedge count is similar, except using the minimum start
6037 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006038 // If we already have an exact constant BECount, use it instead.
6039 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6040 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6041
6042 // If the stride is nonconstant, and NoWrap == true, then
6043 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6044 // exact BECount and invalid MaxBECount, which should be avoided to catch
6045 // more optimization opportunities.
6046 if (isa<SCEVCouldNotCompute>(MaxBECount))
6047 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006048
Andrew Trick5116ff62011-07-26 17:19:55 +00006049 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006050 }
6051
Dan Gohman1c343752009-06-27 21:21:31 +00006052 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006053}
6054
Chris Lattner53e677a2004-04-02 20:23:17 +00006055/// getNumIterationsInRange - Return the number of iterations of this loop that
6056/// produce values in the specified constant range. Another way of looking at
6057/// this is that it returns the first iteration number where the value is not in
6058/// the condition, thus computing the exit count. If the iteration count can't
6059/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006060const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006061 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006062 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006063 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006064
6065 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006066 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006067 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006068 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006069 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006070 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006071 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006072 if (const SCEVAddRecExpr *ShiftedAddRec =
6073 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006074 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006075 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006076 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006077 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006078 }
6079
6080 // The only time we can solve this is when we have all constant indices.
6081 // Otherwise, we cannot determine the overflow conditions.
6082 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6083 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006084 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006085
6086
6087 // Okay at this point we know that all elements of the chrec are constants and
6088 // that the start element is zero.
6089
6090 // First check to see if the range contains zero. If not, the first
6091 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006092 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006093 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006094 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006095
Chris Lattner53e677a2004-04-02 20:23:17 +00006096 if (isAffine()) {
6097 // If this is an affine expression then we have this situation:
6098 // Solve {0,+,A} in Range === Ax in Range
6099
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006100 // We know that zero is in the range. If A is positive then we know that
6101 // the upper value of the range must be the first possible exit value.
6102 // If A is negative then the lower of the range is the last possible loop
6103 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006104 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006105 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6106 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006107
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006108 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006109 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006110 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006111
6112 // Evaluate at the exit value. If we really did fall out of the valid
6113 // range, then we computed our trip count, otherwise wrap around or other
6114 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006115 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006116 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006117 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006118
6119 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006120 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006121 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006122 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006123 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006124 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006125 } else if (isQuadratic()) {
6126 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6127 // quadratic equation to solve it. To do this, we must frame our problem in
6128 // terms of figuring out when zero is crossed, instead of when
6129 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006130 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006131 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006132 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6133 // getNoWrapFlags(FlagNW)
6134 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006135
6136 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006137 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006138 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006139 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6140 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006141 if (R1) {
6142 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006143 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006144 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006145 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006146 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006147 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006148
Chris Lattner53e677a2004-04-02 20:23:17 +00006149 // Make sure the root is not off by one. The returned iteration should
6150 // not be in the range, but the previous one should be. When solving
6151 // for "X*X < 5", for example, we should not return a root of 2.
6152 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006153 R1->getValue(),
6154 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006155 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006156 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006157 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006158 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006159
Dan Gohman246b2562007-10-22 18:31:58 +00006160 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006161 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006162 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006163 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006164 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006165
Chris Lattner53e677a2004-04-02 20:23:17 +00006166 // If R1 was not in the range, then it is a good return value. Make
6167 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006168 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006169 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006170 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006171 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006172 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006173 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006174 }
6175 }
6176 }
6177
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006178 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006179}
6180
6181
6182
6183//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006184// SCEVCallbackVH Class Implementation
6185//===----------------------------------------------------------------------===//
6186
Dan Gohman1959b752009-05-19 19:22:47 +00006187void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006188 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006189 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6190 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006191 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006192 // this now dangles!
6193}
6194
Dan Gohman81f91212010-07-28 01:09:07 +00006195void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006196 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006197
Dan Gohman35738ac2009-05-04 22:30:44 +00006198 // Forget all the expressions associated with users of the old value,
6199 // so that future queries will recompute the expressions using the new
6200 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006201 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006202 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006203 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006204 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6205 UI != UE; ++UI)
6206 Worklist.push_back(*UI);
6207 while (!Worklist.empty()) {
6208 User *U = Worklist.pop_back_val();
6209 // Deleting the Old value will cause this to dangle. Postpone
6210 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006211 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006212 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006213 if (!Visited.insert(U))
6214 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006215 if (PHINode *PN = dyn_cast<PHINode>(U))
6216 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006217 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006218 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6219 UI != UE; ++UI)
6220 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006221 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006222 // Delete the Old value.
6223 if (PHINode *PN = dyn_cast<PHINode>(Old))
6224 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006225 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006226 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006227}
6228
Dan Gohman1959b752009-05-19 19:22:47 +00006229ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006230 : CallbackVH(V), SE(se) {}
6231
6232//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006233// ScalarEvolution Class Implementation
6234//===----------------------------------------------------------------------===//
6235
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006236ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006237 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006238 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006239}
6240
Chris Lattner53e677a2004-04-02 20:23:17 +00006241bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006242 this->F = &F;
6243 LI = &getAnalysis<LoopInfo>();
6244 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006245 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006246 return false;
6247}
6248
6249void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006250 // Iterate through all the SCEVUnknown instances and call their
6251 // destructors, so that they release their references to their values.
6252 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6253 U->~SCEVUnknown();
6254 FirstUnknown = 0;
6255
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006256 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006257
6258 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6259 // that a loop had multiple computable exits.
6260 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6261 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6262 I != E; ++I) {
6263 I->second.clear();
6264 }
6265
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006266 BackedgeTakenCounts.clear();
6267 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006268 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006269 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006270 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006271 UnsignedRanges.clear();
6272 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006273 UniqueSCEVs.clear();
6274 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006275}
6276
6277void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6278 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006279 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006280 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006281}
6282
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006283bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006284 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006285}
6286
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006287static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006288 const Loop *L) {
6289 // Print all inner loops first
6290 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6291 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006292
Dan Gohman30733292010-01-09 18:17:45 +00006293 OS << "Loop ";
6294 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6295 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006296
Dan Gohman5d984912009-12-18 01:14:11 +00006297 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006298 L->getExitBlocks(ExitBlocks);
6299 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006300 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006301
Dan Gohman46bdfb02009-02-24 18:55:53 +00006302 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6303 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006304 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006305 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006306 }
6307
Dan Gohman30733292010-01-09 18:17:45 +00006308 OS << "\n"
6309 "Loop ";
6310 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6311 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006312
6313 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6314 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6315 } else {
6316 OS << "Unpredictable max backedge-taken count. ";
6317 }
6318
6319 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006320}
6321
Dan Gohman5d984912009-12-18 01:14:11 +00006322void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006323 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006324 // out SCEV values of all instructions that are interesting. Doing
6325 // this potentially causes it to create new SCEV objects though,
6326 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006327 // observable from outside the class though, so casting away the
6328 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006329 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006330
Dan Gohman30733292010-01-09 18:17:45 +00006331 OS << "Classifying expressions for: ";
6332 WriteAsOperand(OS, F, /*PrintType=*/false);
6333 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006334 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006335 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006336 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006337 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006338 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006339 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006340
Dan Gohman0c689c52009-06-19 17:49:54 +00006341 const Loop *L = LI->getLoopFor((*I).getParent());
6342
Dan Gohman0bba49c2009-07-07 17:06:11 +00006343 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006344 if (AtUse != SV) {
6345 OS << " --> ";
6346 AtUse->print(OS);
6347 }
6348
6349 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006350 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006351 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006352 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006353 OS << "<<Unknown>>";
6354 } else {
6355 OS << *ExitValue;
6356 }
6357 }
6358
Chris Lattner53e677a2004-04-02 20:23:17 +00006359 OS << "\n";
6360 }
6361
Dan Gohman30733292010-01-09 18:17:45 +00006362 OS << "Determining loop execution counts for: ";
6363 WriteAsOperand(OS, F, /*PrintType=*/false);
6364 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006365 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6366 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006367}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006368
Dan Gohman714b5292010-11-17 23:21:44 +00006369ScalarEvolution::LoopDisposition
6370ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6371 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6372 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6373 Values.insert(std::make_pair(L, LoopVariant));
6374 if (!Pair.second)
6375 return Pair.first->second;
6376
6377 LoopDisposition D = computeLoopDisposition(S, L);
6378 return LoopDispositions[S][L] = D;
6379}
6380
6381ScalarEvolution::LoopDisposition
6382ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006383 switch (S->getSCEVType()) {
6384 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006385 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006386 case scTruncate:
6387 case scZeroExtend:
6388 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006389 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006390 case scAddRecExpr: {
6391 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6392
Dan Gohman714b5292010-11-17 23:21:44 +00006393 // If L is the addrec's loop, it's computable.
6394 if (AR->getLoop() == L)
6395 return LoopComputable;
6396
Dan Gohman17ead4f2010-11-17 21:23:15 +00006397 // Add recurrences are never invariant in the function-body (null loop).
6398 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006399 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006400
6401 // This recurrence is variant w.r.t. L if L contains AR's loop.
6402 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006403 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006404
6405 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6406 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006407 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006408
6409 // This recurrence is variant w.r.t. L if any of its operands
6410 // are variant.
6411 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6412 I != E; ++I)
6413 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006414 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006415
6416 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006417 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006418 }
6419 case scAddExpr:
6420 case scMulExpr:
6421 case scUMaxExpr:
6422 case scSMaxExpr: {
6423 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006424 bool HasVarying = false;
6425 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6426 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006427 LoopDisposition D = getLoopDisposition(*I, L);
6428 if (D == LoopVariant)
6429 return LoopVariant;
6430 if (D == LoopComputable)
6431 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006432 }
Dan Gohman714b5292010-11-17 23:21:44 +00006433 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006434 }
6435 case scUDivExpr: {
6436 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006437 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6438 if (LD == LoopVariant)
6439 return LoopVariant;
6440 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6441 if (RD == LoopVariant)
6442 return LoopVariant;
6443 return (LD == LoopInvariant && RD == LoopInvariant) ?
6444 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006445 }
6446 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006447 // All non-instruction values are loop invariant. All instructions are loop
6448 // invariant if they are not contained in the specified loop.
6449 // Instructions are never considered invariant in the function body
6450 // (null loop) because they are defined within the "loop".
6451 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6452 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6453 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006454 case scCouldNotCompute:
6455 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006456 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006457 default: break;
6458 }
6459 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006460 return LoopVariant;
6461}
6462
6463bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6464 return getLoopDisposition(S, L) == LoopInvariant;
6465}
6466
6467bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6468 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006469}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006470
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006471ScalarEvolution::BlockDisposition
6472ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6473 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6474 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6475 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6476 if (!Pair.second)
6477 return Pair.first->second;
6478
6479 BlockDisposition D = computeBlockDisposition(S, BB);
6480 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006481}
6482
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006483ScalarEvolution::BlockDisposition
6484ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006485 switch (S->getSCEVType()) {
6486 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006487 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006488 case scTruncate:
6489 case scZeroExtend:
6490 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006491 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006492 case scAddRecExpr: {
6493 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006494 // to test for proper dominance too, because the instruction which
6495 // produces the addrec's value is a PHI, and a PHI effectively properly
6496 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006497 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6498 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006499 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006500 }
6501 // FALL THROUGH into SCEVNAryExpr handling.
6502 case scAddExpr:
6503 case scMulExpr:
6504 case scUMaxExpr:
6505 case scSMaxExpr: {
6506 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006507 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006508 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006509 I != E; ++I) {
6510 BlockDisposition D = getBlockDisposition(*I, BB);
6511 if (D == DoesNotDominateBlock)
6512 return DoesNotDominateBlock;
6513 if (D == DominatesBlock)
6514 Proper = false;
6515 }
6516 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006517 }
6518 case scUDivExpr: {
6519 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006520 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6521 BlockDisposition LD = getBlockDisposition(LHS, BB);
6522 if (LD == DoesNotDominateBlock)
6523 return DoesNotDominateBlock;
6524 BlockDisposition RD = getBlockDisposition(RHS, BB);
6525 if (RD == DoesNotDominateBlock)
6526 return DoesNotDominateBlock;
6527 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6528 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006529 }
6530 case scUnknown:
6531 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006532 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6533 if (I->getParent() == BB)
6534 return DominatesBlock;
6535 if (DT->properlyDominates(I->getParent(), BB))
6536 return ProperlyDominatesBlock;
6537 return DoesNotDominateBlock;
6538 }
6539 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006540 case scCouldNotCompute:
6541 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006542 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006543 default: break;
6544 }
6545 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006546 return DoesNotDominateBlock;
6547}
6548
6549bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6550 return getBlockDisposition(S, BB) >= DominatesBlock;
6551}
6552
6553bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6554 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006555}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006556
6557bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6558 switch (S->getSCEVType()) {
6559 case scConstant:
6560 return false;
6561 case scTruncate:
6562 case scZeroExtend:
6563 case scSignExtend: {
6564 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6565 const SCEV *CastOp = Cast->getOperand();
6566 return Op == CastOp || hasOperand(CastOp, Op);
6567 }
6568 case scAddRecExpr:
6569 case scAddExpr:
6570 case scMulExpr:
6571 case scUMaxExpr:
6572 case scSMaxExpr: {
6573 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6574 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6575 I != E; ++I) {
6576 const SCEV *NAryOp = *I;
6577 if (NAryOp == Op || hasOperand(NAryOp, Op))
6578 return true;
6579 }
6580 return false;
6581 }
6582 case scUDivExpr: {
6583 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6584 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6585 return LHS == Op || hasOperand(LHS, Op) ||
6586 RHS == Op || hasOperand(RHS, Op);
6587 }
6588 case scUnknown:
6589 return false;
6590 case scCouldNotCompute:
6591 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6592 return false;
6593 default: break;
6594 }
6595 llvm_unreachable("Unknown SCEV kind!");
6596 return false;
6597}
Dan Gohman56a75682010-11-17 23:28:48 +00006598
6599void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6600 ValuesAtScopes.erase(S);
6601 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006602 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006603 UnsignedRanges.erase(S);
6604 SignedRanges.erase(S);
6605}